
Analysis of MRI for Knee Osteoarthritis using

Machine Learning

Claire Rebecca Donoghue

A dissertation submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

of

Imperial College London

August 2013

Department of Computing

Imperial College London

1



To Sheila, Rose and James

2



Declaration of originality

I declare that the work presented in this thesis is my own, unless specifically acknowledged.

Claire Donoghue

3



Copyright

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy,

distribute or transmit the thesis on the condition that they attribute it, that they do not use it

for commercial purposes and that they do not alter, transform or build upon it. For any reuse

or redistribution, researchers must make clear to others the licence terms of this work.

4



5



Abstract

Approximately 8.5 million people in the UK (13.5% of the population) have osteoarthritis

(OA) in one or both knees, with more than 6 million people in the UK suffering with painful

osteoarthritis of the knee. In addition, an ageing population implies that an estimated 17 million

people (twice as many as in 2012) are likely to be living with OA by 2030. Despite this, there

exists no disease modifying drugs for OA and structural OA in MRI is poorly characterised.

This motivates research to develop biomarkers and tools to aid osteoarthritis diagnosis from

MRI of the knee. Previously many solutions for learning biomarkers have relied upon hand-

crafted features to characterise and diagnose osteoarthritis from MRI. The methods proposed

in this thesis are scalable and use machine learning to characterise large populations of the OAI

dataset, with one experiment applying an algorithm to over 10,000 images. Studies of this size

enable subtle characteristics of the dataset to be learnt and model many variations within a

population.

We present data-driven algorithms to learn features to predict OA from the appearance of

the articular cartilage. An unsupervised manifold learning algorithm is used to compute a

low dimensional representation of knee MR data which we propose as an imaging marker of

OA. Previous metrics introduced for OA diagnosis are loosely based on the research commu-

nities intuition of the structural causes of OA progression, including morphological measures

of the articular cartilage such as the thickness and volume. We demonstrate that there is a

strong correlation between traditional morphological measures of the articular cartilage and

the biomarkers identified using the manifold learning algorithm that we propose (R2 = 0.75).

The algorithm is extended to create biomarkers for different regions and sequences. A com-

bination of these markers is proposed to yield a diagnostic imaging biomarker with superior

performance. The diagnostic biomarkers presented are shown to improve upon hand-crafted

morphological measure of disease status presented in the literature, a linear discriminant anal-

ysis (LDA) classification for early stage diagnosis of knee osteoarthritis results with an AUC

of 0.9.

From the biomarker discovery experiments we identified that intensity based affine registration

of knee MRIs is not sufficiently robust for large scale image analysis, approximately 5% of these

registrations fail. We have developed fast algorithms to compute robust affine transformations
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of knee MRI, which enables accurate pairwise registrations in large datasets. We model the

population of images as a non-linear manifold, a registration is defined by the shortest geodesic

path over the manifold representation. We identify sources of error in our manifold represen-

tation and propose fast mitigation strategies by checking for consistency across the manifold

and by utilising multiple paths. These mitigation strategies are shown to improve registration

accuracy and can be computed in less than 2 seconds with current architecture.
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Chapter 1

Introduction

1.1 Motivation

Osteoarthritis (OA) is a debilitating and prevalent pathology of the joints. It is a multifactorial

disease which results in constant pain for 71% of sufferers in the UK (Arthritis Care (2012)).

Osteoarthritis is structurally characterized by loss of articular cartilage within synovial joints in

addition to hypertrophy of bone, i.e. osteophytes and subchondral bone sclerosis and thickening

of the capsule. Clinically, the condition is characterized by joint pain, tenderness, limitation

of movement, crepitus, occasional effusion, and some local inflammation. Risk factors for knee

OA have been suggested to include ageing (DeGroot et al. (2004)), being female (Srikanth

et al. (2005)), obesity (Lohmander et al. (2009)), history of knee injury (Wildera et al. (2002)),

genetic factors (Neame et al. (2004)), smoking (Amin et al. (2007)) and altered biomechanics

due to malalignment (Sharma et al. (2001)). It can occur in any joint but is most common in

the hip, knee, the joints of the hand and foot and spine.

OA affects a large number of people in the western world, Arthritis Care (2012) approximate

that 8.5 million people in the UK have OA in one or both knees, with more than 6 million

people in the UK suffering with painful osteoarthritis of the knee. With a population of 62.5

million people, this is a sizeable proportion of the UK population. Due to an ageing population,

an estimated 17 million people (twice as many as in 2012) are likely to be living with OA by

23
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2030 (Arthritis Care (2012)).

There is a large economic and societal burden associated with osteoarthritis: the total cost to

the UK economy is estimated at 1% of the gross national product and an estimated 36 million

working days are lost as a result of osteoarthritis (Arthritis Care (2012)). Due to the likely

increased prevalence of OA attributed to an ageing population, a large socio-economic impact

in the future can be expected (Felson et al. (2000); March and Bachmeier (1997)). Presently

it is a leading cause of disability and work limitation among adults resulting in enormous costs

to society (Felson et al. (2000)), both through lost working hours and healthcare expenses.

Approximately 77,578 primary knee replacements were performed in England and Wales in

2011-2012 for osteoarthritis (which makes up 98% of all primary knee replacements) (National

Joint Registry (NJR) (2012)). Approximately 33% of people with osteoarthritis retire early,

stop working or reduce their working hours (Arthritis Care (2012)). These reduced working

hours contributes to arthritis being the leading cause of disability living allowance provided for

under 65 years old from the Department for Work and Pensions (2012).

Not only does osteoarthritis have a very significant societal impact with regards to the economy

but OA often has substantial impact upon sufferer’s daily routines and overall quality of life.

The findings of Arthritis Care (2012) indicate that osteoarthritis has a detrimental impact on

an individual’s social life, due to simple tasks such as getting in and out of a chair presenting

challenges. With 20% of sufferers abstaining from holidays, leisure activities and hobbies; 13% of

OA sufferers find socialising and meeting friends a challenge; and 13% of sufferers experiencing

unbearable pain on a daily basis (Arthritis Care (2012)).

The knee is the focus of the work presented here. Osteoarthritis of the knee is extremely

debilitating due to large mechanical stress experienced because of high leverage of the joint.

The knee structure is strictly two joints, the tibiofemoral joint and the patellofemoral joint. The

work presented here addresses osteoarthritis of the tibiofemoral joint, which is the articulating

joint of the femoral (thigh bone) and tibial (shin bone) bone. It should be noted however

despite the focused scope with regards to anatomy, the methodology and techniques described

could be applied to other joints associated with osteoarthritis including the patellofemoral joint,
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Figure 1.1: Example MR image of the knee for a healthy subject from the OAI dataset. The
MR sequence is a sagittal 3D DESS.

joints in the hands and feet, hip joint or many more. No specific effort was made to tailor any

techniques for the joint in question.

Magnetic resonance (MR) imaging is argued by many to be one of the most useful imaging

modalities for structural evidence of knee osteoarthritis (Conaghan et al. (2006)). Its key

advantages lie in its ability to visualise soft tissue structures in 3D. In addition to imaging

the bone as with plain radiographs, MR is able to capture and visualise ligaments, synovium,

menisci and subchondral bone. Magnetic resonance imaging (MRI) is also often acquired at

high spatial resolution and is advantageous when compared to x-ray because there is no ionising

radiation. An example of a knee MRI used within the thesis is presented in figure 1.1. The 3D

MR image is visualised using three cross-sectional views; the first image shows an axial slice,

the second image a coronal slice, and the final image is a sagittal slice through the MR image.

For a sagittal view, as in figure 1.1, assuming the participant is standing, the first image shows

the knee as if viewed from above, the second is from the front and the third is from the side.

The Osteoarthritis Initiative dataset (OAI) is used exclusively throughout this thesis. In this

study thousands of participants with progressive osteoarthritis have been recruited and observed

over four years to create a large scale longitudinal dataset. The OAI provides a longitudinal

public dataset with 4796 participants consisting of medical images, clinical data and biospec-

imens. It is an ethnically diverse dataset of men and women with participants ranging from

49 to 79 in age, collated at four sites. Despite this wealth of data, large population imaging
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studies are yet to become commonplace for OA investigation. This thesis presents scalable

methodologies to automatically analyse very large population studies of OA.

The methods presented are scalable and use machine learning to characterise large populations

of the OAI dataset, with one experiment using over 10,000 images. Studies of this size enable

subtle characteristics of the dataset to be learnt and model many variations within a population.

Many of the methods presented here require computationally expensive training phases due to

the large scale of the experiments. This has been time consuming for some experiments and

the thesis construction but yielded novel and demonstrably scalable methods.

1.2 Biomarkers Discovery

It is advantageous to be able to quantify or rank subjects based upon a diagnosis (the severity

of pathology of the joint) and a prognosis (likely rate of progression of the pathology). This

enables clinicians to select appropriate treatment options or for clinical trials to determine the

efficacy of drugs in a large population of subjects.

A biological marker or a biomarker is used to measure the status of biological systems. A

definition for biomarkers has been curated by an expert working group organised by the National

Institutes of Health which has been charged to propose terms, definitions, and a conceptual

model

A characteristic that is objectively measured and evaluated as an indicator of nor-

mal biological processes, pathogenic processes, or pharmacologic responses to a

therapeutic intervention (Biomarkers Definitions Working Group (2001)).

Biomarker applications include use as a diagnostic tool for the identification of those patients

with disease, to classify the extent of disease, as an indicator of disease prognosis and use for

prediction and monitoring of clinical response to an intervention. The definition and classifi-

cation of biomarkers has been further developed by Bauer et al. (2006) to be more specifically

applicable as a guide to developing and validating osteoarthritis biomarkers.
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Biomarker Name Modality SQ/Q † Description Citation
K&L grade X-Ray SQ Radiologists grades to describe

joint space thickness and osteo-
phytes

Kellgren and
Lawrence
(1957)

BLOKS MRI SQ Aggregation of radiologist scores
for various joint structures

Hunter et al.
(2008)

WORMS MRI SQ Aggregation of radiologist scores
for various joint structures

Peterfy et al.
(2004)

articular cartilage
volume

MRI Q Articular cartilage morphology
computed from segmentation

Wluka et al.
(2004)

articular cartilage
thickness

MRI Q Articular cartilage morphology
computed from segmentation

Williams
et al. (2003)

articular cartilage
curvature

MRI Q Articular cartilage morphology
computed from segmentation

Hohe et al.
(2002)

articular cartilage
surface area

MRI Q Articular cartilage morphology
computed from segmentation

Hohe et al.
(2002)

Table 1.1: Details of existing imaging biomarkers, all are based upon the community’s current
understanding of osteoarthritis progression. †where SQ=semi-quantitative and Q=quantitative

The work presented here will focus on structural biomarkers derived from image analysis.

Diagnostic imaging biomarkers are defined as a quantifiable score which classifies individuals

as either diseased or non-diseased from the analysis of medical images. If an accurate early

diagnostic biomarker was developed, it could be suitable to aid clinicians to select appropriate

early interventions to treat symptoms of osteoarthritis quickly and cost effectively.

Imaging biomarkers that have been presented previously are detailed in table 1.1. The reader

should be aware, that in addition to these imaging biomarkers, biochemical biomarkers have

been discovered for quantification of diagnostic and prognostic status (Tanishi et al. (2009);

Garnero (2006); Clark et al. (1999)) but are not mentioned further since they are not in the

scope of this thesis. Semi-quantitative measures are derived from a reader visually assessing the

appearance of the image. Quantitative biomarkers for osteoarthritis are derived from manual

or automated segmentations, for which accuracy and repeatability is problematic. All of these

metrics are based upon the community’s current understanding of osteoarthritis progression,

which is currently incomplete.

We present an alternative approach using machine learning algorithms which learn early di-

agnostic markers from a large population of medical images. This is in contrast to previous
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methods which define biomarkers based on human observation of disease progression. More-

over, the methods we present are automated, three dimensional imaging data takes a vast

amount of time to thoroughly analyse by humans. Due to human errors, the data extracted

is liable to inconsistencies and problems with reproducibility, since inter-reader variability has

been shown to be high (Schneider et al. (2012)). An automated solution can add both speed

and consistency to the analysis, saves time and ensures reproducibility. .

1.2.1 Machine Learning

Machine learning describes a set of tools which enables data driven analysis by representing,

identifying or interpreting patterns. The algorithms generalise the input data such that a

solution can be determined without being explicitly designed. Osteoarthritis is a complex

condition which is challenging to define by human observation, machine learning provides tools

which can be trained to recognise patterns and provide reproducible results over large datasets.

We use classification tools, regression tools and manifold learning for representing data.

Manifold Learning

Medical images are very high dimensional data. Each image can be thought of as a feature

vector embedded in a high dimensional space with as many dimensions as voxels. This is

approximately 25 million dimensions for knee MRI from the OAI dataset. Since all of the MR

images are of the knee and acquired under a strict protocol, the content of each image is strongly

constrained and the feature vectors exhibit strong patterns and trends. Thus, it is reasonable

to expect that no or very few feature vectors will occupy much of the high dimensional space.

Instead many of the feature vectors lie on or near a lower dimensional manifold embedded in

higher dimensions. Manifold learning describes a class of algorithms which learn the underlying

low dimensional structure of the manifold given sufficient sampling of the manifold. Within

the lower dimensional manifold embedding some important relationships between images are

preserved such that the data can be analysed, visualised and explored more effectively.
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Manifold learning features extensively in the chapters of the thesis with many of the mani-

fold learning algorithms providing the facility to non-linearly reduce the dimensionality of high

dimensional data. Manifold learning algorithms preserve desirable relationships in a low dimen-

sional embedding which renders them useful for understanding dynamics of large population

studies without the "curse of dimensionality" (Houle et al. (2010)).

1.3 Registration

It is important to find spatial correspondences between images, such that it is possible to

compare local regions in a given image to the corresponding anatomical region in other images,

this is commonly achieved by using a registration algorithm. A registration algorithm is defined

as "the determination of a one-to-one mapping between the coordinates in one space and those

in another such that points in the two spaces that correspond to the same anatomical point

are mapped to each other" (Maurer and Fitzpatrick (1993)). An affine registration operates

globally and transforms the co-ordinate system of an image to achieve a global alignment of

structures. A non-rigid registration operates locally to deform small structures in the images

to maximise joint similarity non-linearly.

1.3.1 Intensity based Affine Registration of the Knee

Our experiments in this thesis show that an affine registration algorithm which establishes

correspondences based on intensity based similarity metric (Studholme et al. (1998)) is not

sufficiently robust for knee MRI. We found that approximately 4-5% of registrations failed. An

affine registration which fails to align images will make a subsequent non-rigid alignment of the

images fail also. Over a large scale dataset, this problem becomes significant.

The three main challenges experienced for affine registration of the knee are due to :

1. Variation in volume and spatial distribution of various tissues,



1.3. Registration 30

2. Pose variation,

3. The globally cylindrical shape of many of the structures.

The following paragraphs elaborate upon these challenges.

The volume and spatial distribution of soft tissues can also vary based on the subject’s lifestyle

and genetics. Inter-subject scale variation of the entire joint is pronounced. The appearance of

subjects who have high muscle quantity around the knee differ significantly from obese subjects

who have higher volumes of fatty tissues because the intensity of these tissues in MR varies.

An affine registration which uses an intensity based similarity measure might fail in the case

where a good affine alignment (as defined by a human observer) has a low similarity .

Pose variation of a subject within the scanner also provides challenges as the field of view

may vary and the flexion of the joint is variable. The OAI dataset provides a strict protocol

for the MRI scans, knees are externally constrained to maintain a fixed flexion of the joint,

however inter-subject anatomical variation means that the external constraint does not impose

an identical internal flexion angle in two subjects. Despite an external constraint imposing

a fixed flexion angle, internal soft tissue anatomy can not be as strictly constrained between

scans. Additionally, a subject with severe OA may not be able to maintain the pose required.

A further problem with registration of the knee is the global shape of the anatomical struc-

tures. The global shape of many of the structures in knee MRI are approximately cylindrical.

Registration of two knee MRI can result in the tibial bone and femoral bone overlapping. This

might yield a high similarity measure even though it does not produce anatomically meaningful

correspondences.

Comparison of Musculoskeletal and Neuroimaging Affine Registration

Affine registration is widely used for and applied to brain MR images, with great success. Affine

registration for brain MR imaging poses different challenges, and is arguably less challenging

when compared with affine registration of musculoskeletal images. The global shape and scale of
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a human brain varies less across a population than the human knee. Moreover, the distribution

of tissue types varies more significantly in musculoskeletal imaging, with specific reference to

inter-subject variation in volume of muscle and fat tissue in knee MRI. Brain tissue has high

local variability but this is less significant when considering maximising the similarity of images

for affine registration.

The pose of an articulated joint is more variable than that of the brain, since the brain is

constrained by the skull it can be expected that the global shape or pose will not vary signif-

icantly between scans. Registration of brain MRI is usually performed after skull stripping, a

process which extracts brain tissue from skull and the background (Hajnal and Hill (2010)).

Such a process does not exist for knee registration moreover, extracting joint tissue would be

an ambiguous goal because it is not clear which tissues would be considered part of the joint .

Affine registration may have been considered a solved problem in the context of brain registra-

tion. Registration of joints has many unsolved challenges which are yet to have been addressed.

This thesis presents strategies which overcome some of the obstacles that are exposed when

registering joints.

1.4 Thesis Contributions

This work uses structural MR images to learn the characteristics of the early onset of os-

teoarthritis. In the first part of this work machine learning algorithms are proposed to learn

the appearance of healthy and diseased knees with a greater success than previous contributions

in the literature. The second part of this works aims to solve a practical problem of robust

global registration of knee MRI.

1.4.1 Learning Osteoarthritis Diagnostic Markers

The first part of the thesis presents an automated method to learn biomarkers for osteoarthri-

tis diagnosis using manifold learning. A high dimensional representation of all images is con-
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structed based upon pairwise similarities of all images in the sample. Manifold learning is used

to reduce the dimensionality of the dataset, classification and regression are used to predict clin-

ical variables and outcomes with high levels of accuracy. The thesis addresses the combination

of multiple local regions of interest and multiple sequences .

1.4.2 Affine Registration of Knee MRI

To learn local diagnostic markers as described in section 1.4.1, it is important to find spatial

correspondences between images. For the purposes of biomarker discovery, a manual global

registration can be initialised to ensure the knee joints are approximately aligned and thus it

is likely for the registration to converge to an accurate solution. However, this solution is not

practical for large scale studies of knee OA.

The second part of this thesis is aimed at finding a fast, accurate and robust method for affine

registration of knee MRI. It was found when learning diagnostic markers that intensity based

affine registration of the knee was unreliable and susceptible to registration failures. This

part of the thesis improves the accuracy to mitigate a practical problem which was identified.

By ensuring the method is fast it is feasible to compute pairwise registrations as opposed to

registering all images to a single target, this removes bias of a single image being selected as

the registration target.

1.5 Thesis Overview

The thesis begins by introducing the themes and theory underpinning the key contributions.

The thesis contributions (section 1.4) broadly divides the thesis into two parts, the first part

(chapters 3 & 4) addresses biomarker discovery and the second part (chapters 5 & 6) addresses

accurate and fast affine registrations of knee MRI.

The remainder of the thesis can be outlined as follows:
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Chapter 1, the current chapter, has presented the motivations for the thesis. The major contri-

butions and themes are introduced and this section provides a reference of the contents of the

chapters in the thesis.

Chapter 2 explores the state of the art techniques in the literature and provides a critique of

methods available. Further motivations for the thesis are explored in addition to details of spe-

cific challenges which are addressed in subsequent chapters. This chapter presents background

information on registration, machine learning and manifold learning.

Chapter 3 proposes a method which uses manifold learning to learn a low dimensional represen-

tation of a large dataset of knee MR images. We use a manifold learning technique which aims

to best preserve local Euclidean distances between all pairs of images. Further details on mani-

fold learning can be found in section 2.2.6. The co-ordinates of the low dimensional embedding

are used as explanatory variables in a multiple linear regression, with clinical data regarding

OA diagnosis as the dependant variable. The clinical data used in this study are quantita-

tive physical outcome measures regarding articular cartilage morphology, previous studies have

suggested these measure are suitable biomarkers. A high correlation coefficient between the

manifold embedding and clinical data suggests that the co-ordinates are indicative of disease

severity and can be used as a biomarker. The weight bearing region of the medial femur is

selected as the region of interest for this study. Multiple MR sequences are explored to find

which sequence contains the most useful information for OA diagnosis.

Chapter 4 further explores manifold learning as a method to establish automatically generated

biomarkers of osteoarthritis of the knee. Here, multiple regions of interest and two MR se-

quences are explored. Two MR sequences selected are those that performed best in chapter 3.

This chapter presents a way to combine the diagnostic capabilities of the different regions and

different MR sequences, with an application of classifying disease status to discover novel diag-

nostic imaging biomarkers for osteoarthritis. This is a data driven approach which is derived

from pairwise similarity between subjects.

Chapter 5 addresses an issue identified in chapters 3 and 4. It was found that the scalability

was impaired by poor affine registration between subjects. This chapter seeks to rectify this
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by proposing a method to improve affine registration accuracy in a large population of MRI

images. A graphical representation of the population of images is constructed such that a

registration between any pair of images can be derived from the shortest path across the graph.

The accuracy of this is enhanced through a refinement step which is proposed.

Chapter 6 seeks to find a better refinement of the graphical registration algorithm introduced in

chapter 5, which aims to boost both computational efficiency and accuracy. The refinement in

chapter 5 achieves accurate results but with a computational cost. The refinements proposed a)

fuse the transformations from multiple paths across the graph and b) apply a global consistency

constraint to identify erroneous affine transformations.

Chapter 7 concludes the thesis with a summary of contributions and proposal for future direc-

tions of study.



Chapter 2

Background

2.1 Introduction

The aim of this chapter is to outline the background theory, motivations and some of the state

of the art methods behind this thesis. The background is broadly divided into three main

sections: machine learning algorithms, registration and a review of state of the art methods for

analysis of radiographical imaging of Osteoarthritis. In addition, the datasets used within the

thesis are described.

In the first part of the chapter, machine learning methods which are used through out the

thesis in chapters 3, 4, 5 and 6 are reviewed; namely regression, classification and dimension-

ality reduction are discussed. Regression analysis allows for predicting and analysing observed

continuous variables from training data. Classification enables observed data to be categorised

into a finite set of classes. Finally, dimensionality reductions aims to define a low dimensional

representation of data, which is better suited for further analysis or visualisation.

This chapter shall then introduce image registration. We will focus on global transformation

models and their properties because chapters 5 and 6 present a robust global registration method

designed for knee MRI. Non-rigid registration models are also discussed due to their application

in chapters 3 and 4. In addition to transformation models, similarity metrics, optimisation and

the application of registration are also described.

35
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Finally, the chapter presents a clinical introduction to Osteoarthritis, along with a motivation

and a review of state of the art techniques for biomarker extraction and analysis. An intro-

duction to the osteoarthritis initiative (OAI) dataset, which is used through out the thesis, is

provided.

2.2 Machine Learning

Challenging problems in computer vision have been addressed traditionally using hand-crafted

solutions which are carefully designed by a human to achieve high performance. Another

option to solve these challenges is by designing algorithms which have the capability to "learn"

the solution. This can be referred to as machine learning. Machine learning algorithms are

often data-driven and have the ability to generalise data to form effective and evidence-based

solutions to the problem.

In general machine learning algorithms use feature vectors which describe samples from a

training dataset to derive either a prediction or interpretation of the underlying data. A feature

vector is a representation of each sample in the training dataset which satisfactorily describes

the extraction of the data. The solution which has been learnt from the training data is used

as a powerful tool to predict, understand or interpret unseen data. It is therefore important

that the solution is generalisable to unseen data and produces accurate results.

Two common applications of machine learning in medical image analysis are segmentation and

pathology diagnosis or prognosis. Segmentation is the delineation of organs or structures in a

medical image which enables future processing such as shape analysis, biomechanical modelling

or morphemetric analysis (such as structure volume). The input for a segmentation application

are generally the voxels in the image, such that each voxel can be assigned a label and the

feature vector for the input will generally be a mathematical description of the properties

of each voxel in the image. Pathology diagnosis or prognosis is the task of predicting the

disease status of a subject using information or features derived from the MRI. The input for

a diagnostic application is generally the entire medical image and possibly additional clinical
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data, such that each subject can be assigned a label. A simple feature vector of a structure of

interest could be constructed using the image intensities, such that for an image consisting of

M voxels, it is represented using a D-dimensional feature vector x = (x1, x2, . . . , xM). These

applications will be discussed further throughout the chapter.

Machine learning is a broad field of study but we focus only upon areas that are relevant to

the thesis. We briefly discuss regression, classification and dimensionality reduction. A more

thorough insight into machine learning can be found in Mitchell (1997).

2.2.1 Terminology and Notation

All machine learning algorithms can be separated into three classes: supervised, unsupervised

and semi-supervised learning. Supervised learning uses labelled training data to predict a

class label for previously unseen data. Unsupervised learning algorithms discover and explain

the underlying structure of unlabelled data. Semi-supervised learning combines both labelled

and unlabelled data to learn an appropriate function to predict unseen data. Semi-supervised

learning algorithms are not explored further in this work.

Supervised Learning Algorithms

The input for supervised learning algorithms is a set of n pairs of training data {(x1, y1), . . . , (xn, yn)}

where each feature vector xi belongs to some feature or instance space RM , associated with

each xi is a class label (or property or response) yi. We denote training data as the matrix

X = [xi,j]i=1,...,M ;j=1,...,n and the response vector as y = [y1, . . . , yn]T . During a training phase a

function or relation f is learnt which predicts response variable y; f(x) : x→ y. After training,

classification algorithms predict the class label ŷ for previously unseen data x̂.

The two broad types of supervised learning algorithms that are reviewed here are classification

in section 2.2.2 and regression in section 2.2.5. The performance of supervised algorithms can

be assessed by using performance metrics described in section 2.2.3, test and train data can be

divided for validation as described in section 2.2.4.
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Unsupervised Learning Algorithms

The input data for unsupervised algorithms are unlabelled and so the input is a set of n

feature vectors {x1, . . . ,xn} ∈ RM . As before, feature vectors will be denoted as matrix

X = [xi,j]i=1,...,M ;j=1,...,n.

Unsupervised algorithms summarise and explain key properties of the data by trying to de-

termine the underlying structure of the data, such that further statistical analysis, processing

or other machine learning algorithms can be applied to the data. This is achieved by either

learning an alternative representation of the features or finding structurally appropriate clusters

of data. An alternative representation of features can be learnt using manifold learning and

dimensionality reduction algorithms. These techniques are discussed in section 2.2.6. Exam-

ples of clustering algorithms include k-means (MacQueen (1967)) and hierarchical clustering

(Johnson (1967)). These algorithms assume that there a k clusters and each feature vector is

assigned to a cluster yi ∈ {C1, C2, . . . , Ck} iteratively based on clusters centroids. Clustering is

not discussed further in this work but more details about clustering techniques can be found a

review by Xu and Wunsch (2010).

2.2.2 Classification

Classification algorithms are types of supervised learning, where a classifier function, f , is learnt

to predict, y, as a member from a set of discrete class labels {C1, C2, . . . , CN}. A classifier learns

a mapping f , that maps data, xi, to a class label; f : x → y. For unseen data x̂, function f

predicts ŷ ∈ {C1, C2, . . . , CN} where ŷ = f(x̂).

k-Nearest Neighbour (k-nn)

The k-Nearest Neighbour (k-nn) classification algorithm (Cover and Hart (1967)) is a super-

vised, instance-based learning algorithm. k-nn classifies an unseen data point based on its

proximity to previously observed data.
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The k-nn algorithm defers all the computation until classification where the feature space is only

approximated locally. Prior to classification, features vectors (xi) are stored with their class

label (yi) in a database. Given unseen data point x̂, the k-nearest neighbour classifier (f(x̂))

searches for the k data points in the database with the smallest distance d(xi, x̂), ∀xi ∈ X.

This results in a probability distribution of class labels from the k samples. The class label

with the highest probability is selected for ŷ.

The distance function d(xi, x̂) can be defined in a number of ways but the most common choices

include

1. Manhattan distance (L1 norm) : dmanh(xi, x̂) = |xi − x̂|1 = ∑d
j=1 |xi,j − x̂j|. The

Hamming distance for non-numeric strings is equivalent and often used as fast distance

metric for text analysis.

2. Euclidean distance (L2 norm) : deucl(xi, x̂) = |xi − x̂|2 =
√∑d

j=1(xi,j − x̂j)2 is a

standard distance function in Euclidean space.

3. Mahalanobis distance : dmahal(xi, x̂) =
√∑d

j=1(xi,j − x̂j)TS−1(xi,j − x̂j) where S

is the covariance matrix of the data X. The euclidean distance is adjusted such that

the distribution of the X is considered and feature vectors are weighted based on their

variance.

4. Supervised distance metric learning : The classification accuracy of k-nn can be

improved if the distance metric (dlearn(xi, x̂)) is learnt specifically for the underlying

data (Yang (2006)). Here feature vectors are weighted based upon their significance, such

as in neighbourhood component analysis (NCA) (Goldberger et al. (2005)).

5. Image Simiarity Metrics : If feature vector xi is an image, the distance measure can

be defined based upon the image similarities, such as those which are described in section

2.3.3.

The k-nn algorithm is attractive due to its simplicity, however it has drawbacks. Some of these

have been discussed and contributions in the literature have improved upon the basic algorithm.
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Firstly, exhaustively searching the database for the nearest neighbours for each classification

can be costly. If many classifications are required, much of this search will be duplicated on

subsequent classification. It can therefore be quicker to implement algorithms with sub-linear

complexity. There are many contributions in the literature to improve upon the efficiency of the

search including kd-trees (Bentley (1975)) and locality sensitive hashing (Indyk and Motwani

(1998)).

A further drawback to the basic k-nn classification algorithm which works via majority vote,

is that class labels with more examples (xi) in the database are likely to dominate the classifi-

cation of the unseen data (x̂), since they tend to appear at a higher rate within the k nearest

neighbours. The effect of this can be reduced by weighting the contribution of each of the

k nearest neighbours based upon the distance between x̂ and xi, where xi ∈ {x1, . . . ,xk}

(indexing is based upon nearest neighbours to x̂).

Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA), or Fisher linear discriminant (Fisher (1936)), is a simple

classifier which determines a linear combination of features which separates two or more classes.

LDA seeks to reduce dimensionality while preserving as much of the class discriminatory infor-

mation as possible.

LDA achieves linear classification by projecting the data on to a single dimension which min-

imises the within class scatter matrix (SW ) and maximises the between class scatter matrix

(SB), see equation 2.1. Each training data sample xi has an associated label from the set of

class labels {C1, . . . , CN}. A class Cα has nα training samples. The mean of all samples from

class Cα has a mean µα. x̄ is the mean of all training samples.

SW =
N∑
α=1

nα∑
i=1

(xi − µα)(xi − µα)T ,SB =
N∑
α=1

(µα − x̄)(µα − x̄)T (2.1)

The between class scatter matrix is maximised whilst the within class scatter matrix is min-

imised simultaneously by maximising the ratio of the two. This leads to the objective function
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in equation 2.2 in which W denotes the projection matrix:

arg max
x

W TSBW

W TSWW
(2.2)

This reduces to the generalised eigen-problem in equation 2.3. For two class labels there will be

at most one non zero eigenvalue. The corresponding eigenvector forms the discriminant vector

w and the non-zero eigenvalue defines the value of separation between the class labels:

(SW−1SB)v = λv (2.3)

The classifier f(x̂) is defined as in equation 2.4, where b defines the location of the discriminatory

hyperplane.

f(x̂) = W T x̂+ b (2.4)

Adaboost

Adaboost is a greedy algorithm which finds a linear combinations of weak classifiers to construct

a strong classifier (Freund and Schapire (1997)). A weak classifier is a classifier which has a

low classification accuracy, typically just over 50% for a binary classification problem. A strong

classifier is a classifier which achieves high classification accuracy.

In the training phase, Adaboost greedily selects weak classifiers over a series of T rounds. Upon

each round the weak hypothesis (h(x)) that best separates data points based upon their class

labels is added to the final classifier f(x). A weight α is used to explain its contribution of the

weak hypothesis to f(x).

f(x) =
T∑
t=1

αtht(x) (2.5)

Data points which are unsuccessfully classified in previous rounds are considered to be more

challenging exemplars to classify. Thus it is considered to be more important to find a good weak
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classifier to discriminate these data points in subsequent rounds. Upon each training round,

Adaboost weights each training example based on how challenging it has been to classify.

Initially, all weights are set equally, but in each round, the weights of incorrectly classified

examples are increased so that the weak learner is forced to focus on the challenging examples

in the training set.

Despite each weak classifier only achieving low classification accuracy, its failings are compen-

sated by the linear combination of the weak classifiers in the ensemble. The computational

time of classifying unseen data is low since it is a linear combination of very simple classifiers. It

has been successfully used as a face detector (Viola and Jones (2001)). Adaboost has been used

for medical image analysis for detecting the knee joint in MR images (Yin et al. (2010)) and

has been compared to other classifiers, eg. support vector machines (SVM) for the detection

of Alzheimer’s disease (Morra et al. (2010)).

Adaboost is referred to as an ensemble learning method. Ensemble learning combines multiple

classifiers and weights their contribution towards an overall classification. Other ensemble

learning approaches include bagging (Breiman (1996)) which was later extended to random

forests (Breiman (2001)).

Support Vector Machines (SVM)

Support vector machines (SVM) is a supervised algorithm which divide a set of points into

classes with a hyperplane that maximises the margin or the distance between the closest points

to the class boundaries. It is also called a wide margin classifier. This section gives an overview

of SVM. For a thorough tutorial please refer to Smola and Schölkopf (2004).

Each data point is represented by a vector in a vector space. The distance between those

vectors that are closest to the hyperplane is maximized for the training data. This wide margin

ensures that the test data points, which do not exactly correspond to the data used for training,

are classified as reliably as possible. The hyperplane depends only on the closest vectors. The

vectors which are further away from the hyperplane do not affect the location and position
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of the hyperplane. The closest points to the boundary which define the margin are known as

support vectors, hence giving the name support vector machine.

The concepts were first introduced with the Generalized Portrait algorithm (Vapnik and Cher-

vonenkis (1964)), which is a linear classifier. More recent contributions provide a nonlinear

generalization for data which can not be classified with a linear hyperplane. For non-linearly

separable data, support vector machines use the ’kernel trick’ (Boser et al. (1992)). The idea

behind the ’kernel trick’ is to transform the vector space and thus the training vectors into a

higher-dimensional space. With a sufficiently high number of dimensions (or even an infinite di-

mensional space) the classification task is converted to a linearly separable problem, so that it is

possible to compute a linear hyperplane to separate the classes. The kernel function enables the

linear hyperplane to be computed at high-dimensions without it being necessary to explicitly

perform the mapping into a high dimensional space. As part of the ’kernel trick’, the solution

is transformed back to the lower dimensional space, which converts the linear hyperplane to a

non-linear hypersurface.

As a preprocessing step before the support vector machine classifier is applied, it is important

to scale the features in both the training and test data, such that those with high variance do

not dominate those with lower variances.

2.2.3 Classification Performance Metrics

It is essential to be able to assess the performance of a classifier so that is possible to decide

whether a classifier is appropriate for the data.

Accuracy, Sensitivity and Specificity

Classification results can be represented by a confusion matrix (in table 2.1). It is also called

contingency table or error matrix in other fields of study. It consists of two rows and two

columns that reports the number of false positives (incorrectly identified subjects), false neg-

atives (incorrectly rejected subjects), true positives (correctly identified subjects) and true
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Predicted Classes
Positive
(patient)

Negative
(control)

Actual
Classes

Positive
(patient)

True
Positive
(TP)

False
Negative
(FN)

Negative
(control)

False
Positive
(FP)

True
Negative
(TN)

Table 2.1: Confusion Matrix

negatives (correctly rejected subjects).

It is useful to understand the accuracy of the classifier, i.e. the proportion of correct classifica-

tion, to give some indication of the overall performance. Accuracy is computed as

Accuracy = TP + TN

FP + FN + TP + TN
(2.6)

However, the percentage of correct classifications is not a reliable metric for the real performance

of the classifier. It can be misleading if the dataset is unbalanced (the number of samples in

each classes varies significantly). For example if the classifier predicted the disease status of

every sample as healthy, this would be a very poor classifier. If there were only a small number

of diseased subjects in the training dataset, an accuracy metric would appear high because

the class distributions of the training samples were not considered. Additionally, accuracy on

its own does not provide information about what the classifier is likely to misclassify. For

an example of pathology screening, where a large group is screened for a disease, it may be

important to ensure that a subject with the disease is not misclassified (false negative), since

this could have a severe health impact. However, it might be less problematic if a subject who

is healthy is misclassified (false positive).

Sensitivity and specificity are statistical measures of the performance of a binary classification

test which enable analysis in an dataset with unbalanced labels. Sensitivity (also called the

true positive rate; TP

TP + FN
) measures the proportion of actual positives which are correctly

identified as such (e.g. the percentage of sick people who are correctly identified as having the
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condition). Specificity (also called the true negative rate; TN

TN + FP
) measures the proportion

of negatives which are correctly identified as such (e.g. the percentage of healthy people who

are correctly identified as not having the condition, sometimes called the true negative rate).

Area Under Receiver Operating Characteristic Curve (AUC ROC)

The receiver operating characteristic or ROC (Fawcett (2006)) is a graphic to represent the

performance of a binary classifier. The x-axis corresponds to 1 − specificity (or the false

positive rate (FPR)), the y-axis shows the sensitivity (or the true positive rate (TPR)). It is

a comparison of the two operating characteristics (FPR vs TPR) as the classifier threshold is

altered. It represents the trade off between the FPR and TPR. It shows how well the classifier

can model the underlying data and demonstrates its performance over a range of classifier

thresholds. As described previously, some applications benefit from maximising the specificity

(whilst of course maintaining a reasonably high sensitivity) as opposed to purely maximising

the accuracy. Figure 2.1 shows an example of a ROC curve for a linear classification of a one

dimensional feature, where samples from each classes are normally distributed with differing

means and identical standard deviations .

The area under the curve (AUC) corresponds to the probability that a classifier will rate

a randomly chosen positive instance higher than a randomly chosen negative one (assuming

’positive’ rates higher than ’negative’). AUC of the receiver operator curve is often reported

to describe the overall performance of a classifier as a measure to explain the trade of between

the FPR and TPR.

2.2.4 Cross Validation

Cross validation is an approach used to compute a reliable value for the quality of a machine

learning solution, testing its ability to generalise unseen data. It is important to ensure that a

machine learning solution is tested on different data to which it was trained. In practise studies

frequently suffer from a small sample size which will not faithfully reflect the entire population.
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Figure 2.1: A linear classifier of a single feature is represented in sub-figure 2.1 (a). The left
curve constitutes the sampling distribution of subjects from the negative class, the curve on the
right is the sampling distribution of subjects from the positive class. A separation threshold
(green arrow) classifies a proportion of both sub-populations incorrectly; either false positive
(FP, pink area) or false negative (FN, light blue area), these proportion vary based upon the
location of the threshold. Sub-figure 2.1 (b) shows the corresponding ROC curve. The point
and green arrow represents the separation threshold in sub-figure 2.1 (a) †.

(a) Sample distribution (b) ROC curve

†Illustrations from http://upload.wikimedia.org/wikipedia/commons [accessed 29/03/13]

Given a small sample of data, it is possible that, by chance, the distribution of the test and

training data could bias the test and be a poor indicator of performance. Cross validation is

employed to guard against such eventualities by repeatedly partitioning the data into different

test and training sets. For each partition the algorithm is trained and then testing on the

specified datasets.

k-fold Cross Validation

In k-fold cross-validation, the original dataset is randomly partitioned into k equal size subsets.

The cross-validation process is repeated k times. Upon each iteration of the k-fold cross valida-

tion, a single subset is selected as the validation data for testing the model and the remaining

k − 1 subsets are used as training data. Each of the k subsets are used exactly once as the

validation data. The k results from the folds are then averaged to produce a single estimation of

performance. All observations are used for both training and validation, and each observation

is used for validation exactly once.
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Stratified k-fold Cross Validation

Stratified k-fold cross validation is similar to k-fold cross validation except that the partition se-

lection is not random but determined such that each fold contains roughly the equal proportions

of the types of class labels.

Leave one out cross validation

Upon each iteration of a leave-one-out cross-validation framework, a single sample from the

original dataset is selected as the validation data and the remaining observations are used as

the training data. This is equivalent to k-fold cross validation were k is the number of samples

in the dataset (n) . As such there are n iterations and each observation in the dataset is used

once as the validation data.

Summary

Cross-validation is a tool which predicts the fit of a solution to a hypothetical validation set

when an explicit validation set is not available by "taking turns" with the test or training data.

The goal of cross-validation is to estimate the performance of a model to a dataset that is

independent of the training data.

2.2.5 Regression

Regression describes algorithms which model the relationship between explanatory variables

(or observed data or in our case feature vector), X and the scalar response y. Linear regres-

sion models the relationship of a single explanatory variable or a single feature and a single

response variable. Multiple linear regression describes the case where the relationship between

explanatory variables or multiple features and a single response variable are modelled. In some

case a linear model is not appropriate for the data. In this case, non-linear regression models

can be used but these are not covered here.
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Multiple linear regression models the relationship between y and X = [xi,j]n×M by fitting a

linear model to the observed data, see equation 2.7. The coefficients β explain the contribution

of each explanatory variable where the associated error in the model is explained by ε.

yi = β0 + β1xi,1 + ...+ βnxi,M + εi (2.7)

The coefficients are described as partial regression coefficients because they allow for the effect

of other variables and in combination can explain the response data with some residual error.

The unknown coefficients β0, β1,..., βn are computed using a least squares approach, so that

the squared deviations of the observed data to the predicted data is minimised.

The applications of regression are two-fold:

1. To predict the response for unseen data. If an unseen feature vector x̂ is given and the

response value is unknown, the model can be used to predict the response ŷ. In order to be

used for prediction the model must be validated with cross-validation. This is described

in section 2.2.4.

2. To learn the relationship between the explanatory and response variables, by discovering

the strength of the relationship by recording the residuals R2 and the p-value, associated

with the F -test. The F -test is used to test the significance of the model.

Statistics for Analysing Regression

The R2 statistic or the coefficient of determination indicates how well the data points fit the

model. R2 is defined as the proportion of variability in a dataset that is accounted for by the

statistical model. It can be computed as from the sum of squared error SSE = ∑
i(yi − ŷi)2

and the sum of square total SST = ∑
i(yi − ȳ)2. Where ȳ is the mean and ŷi is the value of yi

predicted using the model from xi.

R2 = 1− SSE

SST
(2.8)
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The R2 statistic is often accompanied by a p-value to indicate statistical significance. For

multiple linear regression there are two associated p-values one is associated with an F -test

and the other with a t-test. It is possible to compute a t-test p-value for each coefficient in the

model. A low p-value indicates the variable which is multiplied by that coefficient is important

to the model. A single F -test p-value can be computed for the entire regression model. A

p < 0.05 indicates a significant linear regression relationship between the response variable and

the predictor variables.

2.2.6 Manifold Learning

Dimensionality reduction seeks to find a lower dimensional representation of a dataset by finding

a small number of features to represent a large number of observed dimensions. Given a dataset

{x1, . . . ,xn} ∈ RM , dimensionality reduction aims to learn a set of points {y1, . . . ,yn} ∈ Rm

such that the dimensionality is reduced m�M and xi "corresponds" to yi.

Data can generally be explained in fewer dimensions than the number of features which are used

to observe the data. Natural data is often highly constrained where patterns and structures

can be expected in the data. For example an MR image of the knee will always contain boney

structures of comparable intensity. Intuitively, it can be expected that samples within the

feature space will form strong trends or clusters (along a low dimensional manifold), while other

regions of the high dimensional feature space might not contain any sample points. As a results

data samples lie on or near a low dimensional manifold in ambient space, {x1, . . . ,xn} ∈ M.

Given a sufficiently-many data samples (n), manifold learning approximates the m-dimensional

manifold M embedded in RM , where m � M . The data is unlikely to lie directly upon the

manifold in high dimensional space as we expect to incur some observational noise. Experiments

on hypothetical data have demonstrated their ability to learn manifold embeddings even in the

presence of observational noise (Belkin and Niyogi (2003)). A detailed overview can be found

at Van der Maaten et al. (2009); Cayton (2005).

The manifold learning algorithms described here aim to preserve different properties of the

underlying high dimensional data. Principle component analysis and Multidimensional Scaling
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are linear algorithms that compute a global projection that preserves both global and local

distances using a linear transformation of the data to a new basis. All other methods learn

a non-linear relationship between the high and low dimensional representations. Local linear

embedding and Laplacian eigenmap embedding are both classed as algorithms which preserve

local neighbourhoods. Isomap embedding learns a manifold representation which preserves

global distances.

Principle Component Analysis (PCA)

Principle component analysis (PCA) is a linear dimensionality reduction algorithm. It was first

introduced by Pearson (1901), and developed independently by Hotelling (1933). A thorough

overview has been provided by Joliffe (1986).

PCA reduces the dimensionality of the data by embedding it into a lower dimensional linear

subspace. The low-dimensional representation is constructed by finding a linear basis of reduced

dimensionality which explains as much of the variance in the data as possible.

More precisely, PCA finds a linear basis A which explains as much of variance ofX as possible.

This is achieved by maximising the cost function trace(ATCA), where C = [cov(xi,xj)]M×M

is defined as the zero-mean adjusted sample covariance matrix of data X = [xi,j]n×M . The ith

column of the data xi is a feature vector of length n.

C(i, j) = cov(xi,xj) =
∑n
k=1(xi,k − x̄i)(xj,k − x̄j)

n− 1 (2.9)

The cost function is maximised by solving the eigenproblem (2.10) for the m principle (largest)

eigenvalues λ. The corresponding m principle eigenvectors v form the linear mapping A.

CV = λV (2.10)

The low dimensional representation of data points are computed as a mapping Y = XA.
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Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) (Cox and Cox (2000)) computes the low dimensional embed-

ding that best preserves pairwise Euclidean distances between data points. MDS uses the

distance or weight matrix W with its elements wi,j which represent the proximity between

two high-dimensional data points xi and xj. MDS seeks to find a linear transformation of the

data on to a lower dimensional space that best preserves the pairwise distances in the high

dimensional space. This is computed by minimising the objective function

n∑
i,j=0

(w2
i,j− || yi − yj ||2) (2.11)

Solving this optimisation problem reveals the position of data points yi and yj in the low

dimensional embedding such that when xi and xj are close/far in the high dimensional space,

they will also be so in the low dimensional space. This constraint is imposed by squaring

weights from the weight matrix W .

2.2.7 Non-linear Manifold Learning Algorithms

PCA and MDS are called classical scaling algorithms. They both aim to retain pairwise Eu-

clidean distances through a linear transformation of the high dimensional feature space. Com-

plex natural data often lies on or near a curved manifold. In this case classical scaling is no

longer appropriate. Instead it is important for the manifold learning algorithm to consider the

distribution of neighbouring data points.

Neighbourhood Definitions

For non-linear manifold learning it is important to represent the neighbourhood of data points,

we present some background on graphs which are used to define data point relationships.
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Graphs A graph G = (V,E) can be constructed to explain local neighbourhoods or pairwise

relationships between data points. V defines the set of vertices which represents the n data

points (often corresponding to X). E defines the set of edges which explain the relationship

between the data points (often indicating similarity or distance). Associated with each edge

ei,j ∈ E is a weight wi,j. The weight matrix W = [wi,j]n×n is defined as the distances between

pairs of data points at vertex vi and vj via the function wi,j = d(i, j).

An undirected graph is a graph where edges between two vertices are bidirectional, explicitly

∀ei,j ∈ E ⇐⇒ ∃ej,i ∈ E and the weight matrix W is symmetrical. In a directed graph the

edges connecting vertices are unidirectional, explicitly ∃ei,j ∈ E 6=⇒ ∃ej,i ∈ E and the weight

matrix W is not a symmetric matrix.

A Fully Connected Graph is a graph in which all vertices are connected via an edge andW

is dense.

A Sparse Neighbourhood Graph has a sparse set of edges and corresponding weights,

vertices are connected to their neighbours as defined by neighbourhood function (N(vi)). The

neighbourhood function N(vi) can be defined as:

• ε- or radius-neighbourhood creates an undirected graph in which vertices are only

connected if the distance between data points is less than ε; d(i, j) < ε =⇒ ∃ei,j ∈ E.

• k-nearest neighbourhood generates a directed graph which selects the k most similar

neighbours of vi in V . Where the graph is required to be undirected or symmetric (ei,j =

ej,i) the definitions of neighbourhood have to be adjusted and referred to as:

– the k-nearest neighbour graph, by making every edge that exists bidirectional. If

∃ei,j ∈ E then create ej,i and wj,i = wi,j.

– mutual k-nearest neighbour graph, by removing edges which are not bidirectional. If

∃ei,j ∈ E and 6 ∃ ej,i ∈ E then ei,j is removed from the set of edges E.

Fully connected graphs define pairwise relations between all points, where as a sparse neigh-

bourhood graph encodes information regarding local neighbourhoods.
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Isomap Embedding

Isomap (Tenenbaum et al. (2000)) is a non-linear manifold embedding algorithm which uses the

MDS algorithm as a key component. Isomap preserves pairwise geodesic distances between data

points. A geodesic distance is defined as the distance between two points measured along the

manifold. To achieve this, Isomap approximates pairwise geodesic distance (dg(xi,xj)) between

all data points, represented as matrix, GeoDist(X) = [dg(xi,xj)]n×n. The geodesic distances

are approximated for data X by constructing a sparse symmetric k-nearest neighbour (or ε-

neighbourhood) graph G. The edge weights wi,j are defined by an appropriate similarity metric

for the data and dg(xi,xj) is the sum of the weights of the edges of the shortest path between

vi and vj. The shortest path can be computed using Dijkstra’s algorithm (Dijkstra (1959))

for finding single shortest paths or Floyd’s algorithm (Floyd (1962)) for finding all pairwise

shortest paths. The final embedding coordinates yi are obtained by applying classical MDS to

the geodesic distance matrix GeoDist(X). MDS preserves the geodesic distances computed by

the shortest path algorithms.

Isomap is computed using a dense matrix, the following will discuss manifold learning solutions

which are sparse algorithms.

Locally Linear Embedding (LLE)

Locally Linear Embedding (LLE) introduced by Roweis and Saul (2000) learns a low dimen-

sional embedding which preserves the local neighbourhoods of high-dimensional data. The

data is assumed to be locally linear but globally non-linear, which means that the algorithm

can characterise the localised linear geometry of a set of patches. All data points xi in X

are represented as a weighted combination of their neighbours (neighbourhoods are defined in

section 2.2.7) in high dimensional space. A reconstruction error can be computed by the cost

function in equation 2.12 which sums the squared distances between all data points (xi) and

their reconstructions (∑n
j=1wi,jxj). The weights wi,j summarise the contribution of the jth data

point to the ith reconstruction.
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Since data point xi is reconstructed only from its neighbours, this implies that wi,j = 0 if xj is

not contained in the neighbourhood set of xi. The matrix W is learnt by an optimisation of

the reconstruction error. This can be posed as a least squares minimisation problem.

n∑
i=1
|| xi −

n∑
j=1

wi,jxj ||2 (2.12)

The new embedding co-ordinates Y are then learnt from the weight matrix W which is com-

puted using equation 2.12 such that the reconstruction error is minimised:

n∑
i=1
|| yi −

n∑
j=1

wi,jyj ||2 (2.13)

Laplacian Eigenmap Embedding (LEE)

Laplacian eigenmap embedding (Belkin and Niyogi (2003)) learns a low dimensional manifold

representation which aims to preserve the local similarities. Locality is preserved by ensuring

that the local neighbourhood of each data point in the high dimensional space is reflected

in the low dimensional space. Laplacian eigenmap embeddings are closely related to spectral

clustering for which von Luxburg (2007) presents a detailed tutorial. Local neighbourhoods for

each data point are expressed using a weight matrixW and a graph representation. Laplacian

eigenmaps uses a sparsely connected graph G which can be defined using a symmetrical k-

nearest neighbour graph or an ε-nearest neighbour graph. The weight matrixW which defines

the connectivity of each edge is defined as a dissimilarity function (d(xi,xj)).

The manifold is learnt by minimising the objective function ∑n
i,j=1wi,j(yi−yj)2. The objective

function ensures that when data points xi and xj are close in high dimensional space, that the

corresponding data points yi and yj are also close in the low dimensional manifold representa-

tion. The objective function can be minimised via a closed form solution. Assuming the graph

Laplacian is defined as L = D −W and D is the diagonal degree matrix, Di,i = ∑
j wi,j and

Di,j = 0 where i 6= j, we can write:
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n∑
i,j=1

wi,j(yi − yj)2 =
n∑
i=1

diy
2
i − 2

n∑
i,j=1

yiyjwi,j +
n∑
j=1

djy
2
j

= 2(
n∑
i=1

diy
2
i −

n∑
i,j=1

yiyjwi,j)

= 2(Y TDY − Y TWY )

= 2Y T (D −W )Y

= 2Y TLY

(2.14)

Equation 2.14 is minimised subject to the constraint yTDy = 1. This constraint removes arbi-

trary scaling factors in the embedding, this prevents trivial solution where all yi are zero. This is

solved using the generalised eigenvalue problem LV = λDV . The eigenvectors corresponding

to the smallest non-zero eigenvalues form the embedding coordinates Y .

Summary

The non-linear manifold learning algorithms reviewed here are powerful methods which provide

insight by learning the low dimensional structure of the data. Complex natural world data

can rarely undergo an effective linear transform which describes the nuances of the data and

maximises the information present. Non-linear manifold learning algorithms go some way to

explaining this data.

2.3 Registration

Image registration aims to find an optimal spatial transformation or deformation that maximises

correspondences between a pair of images containing comparable objects. Medical image reg-

istration is applied to tomographic images, images of the interior of the body, these include

CT, MRI, SPECT, PET or x-ray. The pair of images selected for registration can be of dif-

fering modalities or acquired from different subjects but must contain approximately the same

anatomical region of interest so that correspondences can be found.
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Registration for medical image analysis has been extensively reviewed in the literature. Specifi-

cally Maintz and Viergever (1998) provide an early review of work on image registration. Crum

et al. (2004) present a more recent review of non-rigid registration, while Pluim et al. (2003)

present a review of registration with a focus on mutual information metrics as a similarity

measure.

2.3.1 Definitions and Basic Terminology

Given a pair of medical images, a registration algorithm determines a suitable transformation

which warps (transforms, moves or deforms) the source image (moving image) such that a simi-

larity metric between itself and the target image (fixed image) is maximised. Many registration

algorithms can be subdivided into three key components. For a given application a suitable

combination of components can be assembled to tackle the registration challenge. The three

key components are;

1. A Transformation model which defines a class of transformations or deformations

which can be used to transform the images.

2. A Similarity metric which evaluates the degree of spatial correspondence between

images.

3. A Optimisation method which aims to optimise an objective function whilst avoiding

local maxima.

Notation

For the purposes of explaining the concept of registration we refer to the source image as IS and

the target image as IT . The transformation T maps a point in IT at voxel location p = (i, j, k)

to another point in IS at voxel location p′ = (i′, j′, k′).

T : p =⇒ p′ (2.15)
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The similarity metric of the registration is computed over all voxels in the image overlap domain

ΩT,S, which includes voxels in both the source and the target image that are overlapping, for a

given transformation T , p ∈ ΩT,S ⇔ p′ ∈ ΩT,S. The intensity at voxel location p in the target

image is defined as IT (p) and the intensity at the corresponding voxel location in the source

image is defined as IS(p′) or IS(T (p)).

World and Image co-ordinates

The voxels of a medical image may be referred to in multiple different ways. Two standards

are widely adopted, world co-ordinates and image co-ordinates. World co-ordinates (sometimes

called scanner co-ordinates) define the origin in a real world position (this might not exist in

the field of view of the image), the axis are defined relative to the scanner and the position of

any point is indexed in mm. Image co-ordinates define the origin to be at a fixed location in any

given image, commonly a corner or the center of the image, the axes are defined relative to the

image and the position of any point is indexed by the voxel count from the origin. Sometimes

it is useful to work in mm and other occasions voxel co-ordinates are more convenient, a

transformation matrix exists for converting between the two standards.

2.3.2 Transformation Models

A transformation model describes a set of transformations that can be imposed upon an image

to alter its shape and structure. The transformation model defines which spatial operations

can be performed during the registration.

There are three core choices of transformation models which define varying degrees of expressive

freedom; a rigid transformation model preserves distances and angles in the image; an affine

transformation model preserves parallel lines and a non-rigid transformation model does not

preserve straight or parallel lines.

The domain of the transformation can be defined as global if it applies to the entire image,

and the transformation is defined as local if the deformation varies over regions of the image.
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Both rigid and affine transformation models express global spatial transformations, whereas

non-rigid transformation models explain local, non-linear variations in anatomy.

Non-rigid transformation models are useful for formulating the local changes in the image. To

achieve this it is often necessary to ensure there is a initial global correspondence between the

image pair first. Initially, a registration with global transformation model is applied to the

image pair to resolve global alignment. The result from this is used as an initialisation for

a further registration with local or non-rigid transform model. The resultant transformation

from such a combination of transformations can be written as:

T (p) = T global(p) + T local(p) (2.16)

In the subsequent sections we shall discuss each of these three classes of transformation models

in more detail.

Rigid Transformation

The rigid transformation model includes translations and rotations. When the transformation

model is considered for a 3D image, it has six degrees of freedom. Translations in direction of

the x, y and z axis in addition to rotation about each of these axis. A rigid transformation can

be defined by a rotation matrix Ro plus a translation tr:

p′ = Ro · p+ tr (2.17)

The translation vector tr can be used to define a translational displacement of size tx in the x

axis, ty in the y axis and tz in the z axis.

Rotations in 3D can be represented as Ro = [roi,j]3×3. A rotation around the x, y and z

axis can be defined as Rox(θx), Roy(θy) and Roz(θz). The rotation matrix Ro is constructed

through composition of the rotations matrices Ro(θx, θy, θz) = Rox(θx)Roy(θy)Roz(θz). It is
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Figure 2.2: Example of a rigid transformation.

important to maintain a consistent ordering when composing rotation matrices because of the

non-commutativity property of matrices. For mathematical convenience both the translational

and rotational operations are formulated as a single matrix using homogeneous coordinates.

T rigid(p) = p′ =



i′

j′

k′

1


=



ro00 ro10 ro20 trx

ro01 ro11 ro21 try

ro02 ro12 ro22 trz

0 0 0 1





i

j

k

1


(2.18)

Affine Transformation Model

The affine transformation model is an extension of the rigid transformation model described

in section 2.3.2. Additional operations include skewing (in xy, yz and xz) and scaling (in x, y

and z). The resulting transformation model has 12 degrees of freedom.

An affine transformation written as an affine matrix (Af) plus a translation vector (tr).

p′ = Af · p+ tr (2.19)
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Figure 2.3: Example of an affine transformation.

The affine transformation matrix Af is a composition of a rotation matrix transformation

(Ro), a skew transformation (Sk) and a scale transformation (Sc). Again, order is important

due the non-commutative property of matrices.

Af = Ro · Sk · Sc (2.20)

As with the rigid transformation model, the affine transformation model can also be defined in

homogeneous coordinates:

T affine(p) = p′ =



i′

j′

k′

1


=



af0,0 af1,0 af2,0 trx

af0,1 af1,1 af2,1 try

af0,2 af1,2 af2,2 trz

0 0 0 1





i

j

k

1


(2.21)

Properties of Rigid and Affine Transformation Models

Global transformations can be written as A = [ai,j]4×4 where T (p) = A · p. As such, many

simple properties of matrices apply to global transformations that can be written in matrix form.

Explicitly we draw the reader’s attention to composition, inversion, mean transformations and

the identity property.
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Transformation Composition Homogeneous co-ordinates enable efficient composition of

transformations. An image, IS, initially transformed by transformation T A and then TB is

equivalent to IS undergoing transformation T A ◦TB, or ∀p ∈ ΩS,T : A · (B ·p) =⇒ (A ·B) ·p

. The operation however, is not commutative, i.e. T A ◦ TB 6= TB ◦ T A.

Inverse Transformations The inverse of a transformation, T−1(p′) = p, can computed

by inverting the transformation matrix. The inverse of a matrix can only be computed if

the matrix is non-singular. However, since singular matrices do not represent a valid affine

transformation which can be decomposed into a linear transformation, this does not pose any

practical problem.

Mean Transformation The mean transformation (T̄ ) of n transformations T 1,T 2, . . . ,T n

can not be computed trivially by averaging the elements of the transformation matrix; T̄ 6=

[t̄i,j]4×4 where t̄i,j =
∑n
k t

k
i,j

n
. This is because affine transformations do not exist in a linear

space. Instead the Frechet mean can be computed. This is discussed in more detail in section

6.2.2, where it is also applied.

Non-rigid Transformation Model

Non-rigid transformations are defined by a local transformation. The number of degrees of

freedom can be large (up to the number of voxels in the image). In the case where the number

of degrees of freedom equals the number of voxels, a deformation is defined for each voxel. It

is useful for the deformations computed to be both smooth and invertible, such that there are

no discontinuities in the transformed images.

Smooth deformations can be achieved by modelling the deformation to be elastic (Bajcsy and

Kovačič (1989)), fluid (Crum et al. (2005)) or diffeomorphic. The latter models the deformations

as geodesic flows expressed as vector field which is constrained to be smooth (Beg et al. (2005)).

Within this thesis the free-form deformation (FFD) model (Rueckert et al. (1999)) is used to
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achieve good anatomical correspondences between globally registered images. The FFD model

is briefly reviewed here.

Free-form Deformation Model (FFD) Free-form deformations (FFDs) were first devel-

oped and used by Sederberg and Parry (1986) for computer graphics applications and first

applied to medical image registration by Rueckert et al. (1999). FFDs are defined as a regular

mesh of control points which are uniformly spaced. Manipulation of a control point defines

a deformation to the mesh and this can be used to deform the image. B-splines are locally-

controlled blending functions. They are used to smoothly approximate the displacements of

the control points and so can be used to model FFDs. B-splines are computationally efficient

with a large number of control points since manipulating a control point only affects the trans-

formation in the local neighbourhood of that control point. B-splines also are more effective for

modelling local deformations than those which use radial basis function, as these have infinite

support and a global influence upon the deformation field.

The displacement field u can be computed at each voxel using a B-spline function in equation

2.22. The function is a 3D tensor product of 1D cubic B-splines. It blends the effect of

neighbouring control points on the mesh of nx × ny × nz control points φi,j,k with uniform

spacing δ:

u(x, y, z) =
3∑
l=0

3∑
m=0

3∑
n=0

θl(u)θm(V )θn(w)φi+l,j+m,k+n (2.22)

Here i =
⌊
x

δ

⌋
− 1, j =

⌊
y

δ

⌋
− 1, k =

⌊
z

δ

⌋
− 1, u = x

δ
−
⌊
x

δ

⌋
, v = y

δ
−
⌊
y

δ

⌋
, w = z

δ
−
⌊
z

δ

⌋
and θl

represents the lth B-spline basis function;

θ0(s) = (1− s)3/6

θ1(s) = (3s3 − 6s2 + 4)/6

θ2(s) = (−3s3 + 3s2 + 3s+ 1)/6

θ3(s) = s3/6

FFDs based B-splines can introduce folding into the overall deformation. This means that the
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transformation is non-invertible and may not reflect the true anatomy of structures in medical

images. Regularisation can be used to enforce smoothness to prevent such undesirable effects

Rueckert et al. (1999).

2.3.3 Similarity Metrics

Similarity metrics are used in the registration framework to evaluate the quality of spatial

correspondence between two images. To achieve the best spatial correspondence, the similarity

metric is maximised through optimisation methods.

Similarity metrics are not only used for registration in this thesis. After registration the image

intensities still differ with regards to pathological status or inter-subject variations. Similarity

metrics are applied to observe variation of pathology across a large population, in chapters 3

and 4.

Sum of Squared Differences

The Sum-of-squared difference (SSD) can be defined as the Euclidean distance of the intensities

at each voxel between both images IT and IS. It is computed where images overlap p ∈ ΩT,S.

SSD(IT , IS) = 1
N

∑
p∈ΩT,S

| IT (p)− IS(p′) |2 (2.23)

SSD is minimised since a perfect registration would have SSD of zero. Sum-of-squared differ-

ences is an appropriate measure if the images differ only by Gaussian noise (Viola and Wells

(1995)). When registering images of different modalities (e.g. CT/MR), the intensities of struc-

tures differs by significantly more than Gaussian noise. Futhermore the difference between two

MR images acquired on different occasions is non-Gaussian, due to the bias field and artefacts

of MR. SSD can only be used on mono-modal registration. It is also sensitive to a small

number of voxels that have very large intensity differences (Crum et al. (2004); Hajnal and Hill

(2010)), i.e. it is sensitive to outliers. In the case where it is necessary to reduce the influence
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Figure 2.4: Registration Demo: A source image is being registered and warped to a target
image. The source image is displayed in its native co-ordinate space, after an affine registration,
a B-spline non-rigid freeform deformation and finally with the deformation grid.
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of outliers, the L1 norm distance between the intensities can be computed. This is referred to

as the sum of absolute differences.

Normalised Cross Correlation

A registration algorithm which uses sum of square differences (SSD) as similarity metric relies

on the assumption that once the images are registered, they differ only by Gaussian noise.

When normalised cross correlation (NCC) is used as a similarity metric the assumption is

relaxed and it is assumed that corresponding intensities in the images have a linear relationship

(Crum et al. (2004); Hajnal and Hill (2010)). Normalised cross correlation is also referred to

as the correlation coefficient and is the normalised version of the cross correlation measure.

Normalised cross correlation (NCC) is defined as

NCC(IT , IS) =
∑
p∈ΩT,S

(IT (p)− ĪT )(IS(p′)− ĪS)√∑
p∈ΩT,S

(IT (p)− ĪT )2∑
p∈ΩT,S

(IS(p′)− ĪS)2
(2.24)

Here ĪT and ĪS are defined as the mean intensity of the images and p is the index of a voxel

within image IT

Normalised Mutual Information (NMI)

Multi-modal image registration requires computing spatial correspondences between images

where a linear relationship can not be assumed between intensities of spatially corresponding

voxels. Multi-modal images can include MR imaging with a different acquisition sequence or

two different tomographic images, including MRI, CT or PET.

Registration can be thought of as reducing the amount of shared information content in both

images. If the images are aligned then corresponding structures overlap which reduces dupli-

cation, therefore a successful registration reduces the total information in the combined image

pair. Information theory is used to determine non-linear correspondences between voxel inten-

sities in registered images and information can be used as similarity metric.
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The most commonly used measure of information is called marginal or Shannon entropy (Shan-

non et al. (1949)). The entropy of a single image can be computed by constructing a histogram,

where each voxel is binned based on the intensity value. The marginal probability of a voxel

belonging to intensity bin is denoted as p(t). The marginal entropy measure, H(IT ), between

image IT and IS is the average information supplied by a set of n intensity bins , computed in

equation 2.25.

H(IT ) = −
n∑
t

p(t) log(p(t)) (2.25)

The marginal entropy is maximum if all intensity bins have equal probability (i.e. p(t) = 1
n
∀t).

Entropy has a minimum value of 0 if the probability of one intensity bin is 1 (i.e. ∃i | p(i) = 1).

An image contains less information if the intensity histogram is uniform.

Joint entropy measures the amount of shared information content in two or more images. If

image IT and image IS are very different then the joint entropy (H(IT , IS)) will equal the

sum of entropies in both images. A joint histogram is constructed for image IT and IS,

for any given voxel location in both image domains intensity values from both images are

simultaneously binned in the 2D histogram. The 2D histogram is represented as a matrix,

each entry corresponds to a histogram bin, h(t, s) represents the number of times a binned

intensity pair (t, s) has co-occurred at the same voxel in images T and S. The joint probability

distribution function, p(t, s) is computed by normalising the bins of the joint histogram by the

total number of voxels (p(t, s) = h(t, s)
N

where N is the number of voxels in the image). Joint

entropy is computed as H(IT , IS) in equation 2.26.

H(IT , IS) = −
∑
t

∑
s

p(t, s) log p(t, s) (2.26)

A similarity metric that maximises the information content of each image whilst minimising

the shared information content can be defined. Mutual information (MI) is a metric which

calculates to what extent one image can be explained by another (Viola and Wells (1995));
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MI = H(IT ) +H(IS)−H(IT , IS).

NMI corresponds to the ratio of the sum of the marginal entropies to the joint entropy. NMI

assumes a probabilistic relationship between intensities. This means that a correspondence can

be found from a tissue featuring in images acquired from different modalities and with differing

intensities (Crum et al. (2004)). Several versions of the normalised mutual information measure

have been proposed, all of which are closely related. In this thesis we adopt the normalisation

approach proposed by Studholme et al. (1998).

NMI(IT , IS) = H(IT ) +H(IS)
H(IT , IS) (2.27)

Other Similarity metrics

There are other similarity metrics which have been introduced for registration. A recent con-

tribution is a multi-modal similarity measure introduced by Wachinger and Navab (2010), they

find new structural representations of images using manifold learning, such that the similarity

of the images can be defined as a simple L1 or L2 norm. This is computationally more efficient

than normalised mutual information.

2.3.4 Optimisation Methods

In most registration algorithms an optimisation process is required to find transformation pa-

rameters which maximises or minimises a cost function for the two images. The cost function is

optimised by either a maximising a similarity measure (such as CC or NMI) or minimising a

dissimilarity measure (such as SSD). The optimal transformation is one which most faithfully

maps or warps one image to another using the operations permissible by the transformation

model.

Optimisation algorithms determine the solution by iteratively generating a series of estimates

starting from an initial guess. The starting guess is a transformation which has to be sufficiently
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close to the optimal transformation for the algorithm to converge to the correct solution. The

range between the initial starting point and the optimal solution required for convergence is

known as the "capture range". Following the initial guess, further transformations are estimated

iteratively with the cost function recalculated at each iteration. A cost function or similarity

measure explains the quality of registration between two images. An optimal registration is

achieved by finding a transformation which maximises (or minimise) the cost function. A review

of optimisation algorithms can be found in Press et al. (2007).

For generality, we shall from hence forth refer to optimisation of cost functions as maximisations

of similarity.

Gradient Descent

In this thesis gradient descent is used to optimise rigid, affine and non-rigid registrations.

For consistent terminology, Gradient Ascent would be a more appropriate nomenclature if we

consider the optimisation process maximises image similarity.

The set of transformation parameters φ are adjusted iteratively such that upon each iteration

the similarity is maximised. The optimisation steps along the direction of the steepest gra-

dient upon each iteration. For a user specified step size of δ and a similarity metric S, the

transformations parameters are updated upon the ith iteration as follows:

Φi+1 ← Φi + δ∇ΦS (2.28)

The gradient ∇ΦS can be determined analytically for some similarity metrics such as SSD.

Otherwise it can be found using a finite difference method. As the optimisation converges to

the solution, successively smaller step sizes can be used to refine the solution.

Local optimum

A common limitation of optimisation algorithms is a tendency to be trapped by local optima

with the solution failing to converge to the global maximum similarity.
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The space of all solutions of the similarity function can be viewed as a similarity landscape,

where each transformation parameter describes a dimension in the solution space. Sampling this

space with a set of transformation parameters yields the similarity of the image. The landscape

is a surface in the solution space, with peaks representing maxima and valleys representing

minima. If the algorithm converges to a local maximum, this point on the similarity landscape

is where the similarity is not the highest possible (a peak of a foothill). The transformation

parameters to which this corresponds yields a sub-optimal or locally optimal registration.

Some strategies exist to avoid the optimisation getting trapped in local maxima. These include

a multi-scale framework, centring and regions of interest, which will be briefly overviewed.

Multi-resolution Strategies Registration algorithms commonly use a hierarchical coarse-

to-fine strategy to reduce the likelihood of convergence to a local optimum. Initially, transforma-

tion parameters are approximated coarsely to resolve correspondences between large structures.

The coarse solution should be closer to the global optimum than the initial guess. The coarse

solution forms the initial guess for a series of subsequent registration where the transformation

parameters are refined. This strategy has been applied in two ways: with multi-resolution

images (Studholme et al. (1997)) and a hierarchy of B-spline control points for non-rigid FFD

registration (Schnabel et al. (2001)).

For registration using a multi-resolution approach, both images are blurred using a Gaussian

kernel of width σ and then downsampled. An initial coarse registration is computed with a large

step size. The transformation parameters are subsequently re-optimised using high resolution

images with a smaller σ and smaller step size.

2.3.5 Measuring registration accuracy

It is important to be able to assess the quality of registration between different methods but

it is very challenging to provide a suitable measure for registration accuracy. Whilst common

anatomical structures exist between subjects, a one to one mapping of anatomy across subjects

simply does not exist. Structures might either differ substantially or simply not be present in
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an image. With higher resolutions this limitation becomes more apparent. For example there

certainly is not a one to one mapping between cells in histology imaging. It is thus challenging

to define what a correct transformation between two subjects would be. Despite challenges, it

is useful to devise a metric which provides a simplified measure of success of registration.

Surrogate measure of registration accuracy

It is possible to use patient outcomes measures to estimate registration accuracy. Measuring

registration success on the basis of patient outcomes convolves the quality of the alignment

with the quality of the diagnosis pipeline (Fitzpatrick (2001)), for which the registration is just

a component. As a result it is desirable to decouple the testing of predicted patient outcomes

and registration accuracy.

Registration Error Metrics

Registration error metrics measure the error between markers or points located in two medical

images after a registration. These can be measured in two different ways: fiducial registration

errors (FRE) and target registration errors (TRE).

Fiducial Registration Error (FRE)

A fiducial marker is an physical object attached to subject’s anatomy which is visible in the

acquired medical image and can be used as a point of reference or a measure. Attached fiducial

markers can be used to establish accurate fiducial points for registration. Fiducial co-ordinates

are selected for their locatability but not for their clinical significance.

The Fiducial Registration Error (FRE) is the distance, after registration, between the measured

position of the fiducial markers in both images. FRE is commonly reported as a distance

between the N fiducial markers, where the ith fiducial markers are referred to as pi and qi:
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FRE2 =
N∑
i

|T (pi)− qi|2 (2.29)

Target Registration Error (TRE)

Target registration errors (TRE) are calculated based using clinically relevant landmarks. The

target registration error is a measure of displacement between corresponding landmarks after

registration. Let p represent a target point in IT and q represent a target point in IS. TRE is

computed as in equation 2.30 as a vector, however since the direction of the error is frequently

unimportant, often the magnitude is reported alone.

TRE = T (p)− q (2.30)

Localisation Errors

To compute accurate registration errors target points or fiducial markers are required to be

accurately located. The errors associate with locating these points are referred to as localisation

errors. The Fiducial Localisation Error (FLE) is defined as the distance between the true

position of a fiducial marker and its measured position. The Target Localisation Error (TLE)

is defined as the distance between the true target point and its manually located position in

the MRI.

Localisation errors are present in images prior to registration but these errors will be propagated

via registration. Localisation errors are hard to measure directly because it is challenging to

determine the true location of such points.

2.4 Knee Osteoarthritis

Osteoarthritis (OA) is a debilitating pathology and the most prevalent amongst joint diseases

(Dunlop et al. (2003); Conaghan et al. (2006)). OA imposes a large expense upon society
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through medical treatment and inability of individuals to generate an independent income due

to disability (Dunlop et al. (2003); March and Bachmeier (1997)). Despite its prevalence and

severity, OA still remains poorly understood and a condition for which there are limited effective

symptomatic treatments available (Hunter et al. (2009)).

OA is poorly defined and understood. Researchers are as yet unsure what initiates osteoarthritis

or in which tissues the pathology originates (Aspden (2008)). It can be challenging to separate

the structural changes due to ageing from pathological changes as a result of OA (Conaghan

et al. (2006)). It is often considered to be a condition with multiple causes, making the condition

harder to define and to establish a relationship between cause and effect.

OA historically has been considered to be a disease which is characterised by the erosion of

articular cartilage. OA is now no longer perceived to be a disease solely of the articular cartilage

and is recognised to be a multi-factorial process which alters both structure and function of the

entire joint (Hunter et al. (2008)). OA is a complex disease where the pathophysiology involves

both biomechanics and biochemistry and the treatments range from surgery to nutritional

supplements and pharmaceutical products to education of the patient (Felson et al. (2000)).

Due to this many different academic research fields are expressing interest in OA. This ranges

from imaging sciences to biomechanical engineering, genetics, epidemiology and biochemistry.

2.4.1 Knee Anatomy

An illustration of healthy knee anatomy can be found in figure 2.5. It is important to draw the

readers attention to the following structures; bone (tibia, femur, fibular and patella), meniscus

(medial and lateral), articular cartilage (tibial, femoral and patellar) and ligaments (the cru-

ciate and collateral ligaments). These are just some of the structures which are relevant upon

studying Osteoarthritis. In this section, we shall introduce the function of these structures in

a healthy individual.

The knee joint is the largest synovial joint in the body. It consists of what can be regarded

as two joints, the joint of the tibia and the femur (tibiofemoral joint), the second is of the
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patella and femur (patellofemoral joint). The tibiofemoral joint is the weight-bearing joint

whose movement enables the leg to bend, its stability is assisted by the presence of ligaments

tethering the joint as its bends. The patella is attached to the quadriceps femoris muscles (at

the front of the upper thigh) via the quadriceps tendon this facilitates the straightening as the

patella increases the moment and provides a platform for a muscle to pass over the front of the

knee without wearing the tendons (Drake et al. (2005)). The stability of the patellofemoral joint

is ensured by the geometry of the bone structures and the patella’s position in the trochlear

grove of the femur.

The articular cartilage has hyaline surfaces , which has extremely low friction. The two

main surfaces on the tibiofemoral joint are on the lateral and medial femoral condyle and the

adjacent surface of the tibial plateaus. The condyles are the two protruding surfaces of the

femur and the plateau is the corresponding surface which meet at the joint on the tibia. There

are similar surfaces for the patellofemoral joint (Drake et al. (2005)). The articular cartilage

provides a smooth and low-friction surface which is able to withstand very large loads with

minimal wear (Mow and Huiskes (2005)).

There are two menisci, which are "C" shaped piece of cartilage in the knee joint. Both of

the menisci (medial and lateral) are attached at each end to the tibial plateau. The menisci

improves congruency between the surfaces of the tibia and femur, so that during knee flexion

the femoral articular surface is in contact with the tibia. This facilitates load transmission,

stability and lubrication (Vedi et al. (1999)).

Tendons attach muscles to bone and ligaments attach bone to bone. There are four key lig-

aments involved in the tibiofemoral joint. There are two collateral ligaments, on each side

(lateral and medial) of the joint, they stabilise the hinge motion of the knee. There are also

two cruciate ligaments (anterior [ACL] and posterior [PCL]). The cruciate ligaments cross

each other on the sagittal plane, in the intercondyle region and act to tether the join anteriorly

and posteriorly. A torn ACL is a common injury and if not repaired, can be a risk factor for

osteoarthritis incidence.

The synovial membrane is attached to the two membranes of the articular surfaces and the
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outer margin of the menisci. The synovial membrane forms two pouches to provide low friction

surfaces for the movement of the tendons (Drake et al. (2005)).

2.4.2 Osteoarthritis Definition

Osteoarthritis is generally characterised by joint pain, cartilage wear and the presences of boney

growths. However, the definition of OA is inconsistent in the literature. We adopt the definition

of knee OA used by the Osteoarthritis Initiative for the progression subcohort. Subjects have

symptomatic tibiofemoral knee OA at baseline if they have both of the following in at least one

native knee at baseline:

1. Radiographic tibiofemoral knee OA, defined as definite tibiofemoral osteophytes equiva-

lent to Kellgren and Lawrence (K-L) grade ≥ 2 (Kellgren and Lawrence (1957) and 2.4.8)

or OARSI atlas grades 1-3 (Altman and Gold (2007)), on a fixed flexion radiograph

2. Frequent knee symptoms in the past 12 months defined as "pain, aching or stiffness in or

around the knee on most days" for at least one month during the past 12 months

This concise definition is limited, other structures visible in MR are known to either be contrib-

utors or symptoms of OA. Symptomatic responses also present a challenge to define, i.e. pain

is an ambiguous term which is challenging to assess in a reproducible and comparable way.

2.4.3 The Osteoarthritis Initiative

This thesis solely uses data from the Osteoarthritis Initiative (OAI) [http://oai.epi-ucsf.org/datarelease/].

The OAI (Peterfy et al. (2008)) provides a longitudinal public dataset with 4796 participants

consisting of medical images, clinical data and biospecimens. It is an ethnically diverse dataset

of men and women with participants ranging from 49 to 79 in age, collected at five clinical

centres in four sites in the United States: Rhode Island, Maryland, Ohio and Pittsburgh.

The OAI selected the knee joint as a principle focus of the study because this is the site where

OA symptoms most frequently cause significant loss of function and disability. The OAI’s
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Figure 2.5: Knee anatomy diagram (left), matching radiological view MRI of a subject (right).
Note that due to availability of knee illustrations, both left and right knees are displayed but
clearly labelled†.
†Illustrations from http://upload.wikimedia.org/wikipedia/commons [accessed 20/03/13].
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Figure 2.6: Diagram of a normal knee on the left compared with an osteoarthritic degree on
the right†.
†Illustration adapted from commons.wikimedia.org based on Hunter (2011).

primary objectives are to evaluate radiographic and MR joint images as biomarkers for OA and

explore their potential as surrogate endpoints for clinical studies and treatment trials of knee

OA.

Joint imaging biomarkers (MR imaging and radiography), biochemical and genetic markers

(from blood and urine) are collected at baseline and at all follow-up visits. There are four

planned annual follow-up visits. Participants are followed for changes in the clinical status of the

knee and other joints, including worsening and onset of symptoms and disabilities, worsening

and onset of knee structural abnormalities, and changes in other imaging and biochemical

markers of OA.

There are three main subgroups enrolled in the OAI dataset;

1. Progression : those with clinically significant tibiofemoral knee OA who are at risk of

disease progression. Participants must have pain or risk factors for OA (total=1390).

2. Incident : individuals who are at high risk of initiation of clinically significant knee OA

(total=3284).
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3. Controls : non-exposed control subjects who have no pain or risk factors (total=122).

Exclusion criteria are: where there is evidence or suggestion of Rheumatoid Arthritis (RA)

in any joint, the subject has severe joint space narrowing in both knees on the baseline knee

radiograph (very late stage OA), bilateral total knee joint replacement or plans to have bilateral

knee replacement are excluded, a positive pregnancy test, is unable to undergo a 3.0T Tesla

MRI exam of the knee or they are unwilling to sign a consent form.

2.4.4 MR Imaging of Osteoarthritis

MR imaging is argued by many to be one of the most useful imaging modalities for structural

evidence of knee OA (Conaghan et al. (2006)). Its key advantages lie in its ability to visualise

soft tissue structures in 3D. In addition to imaging the bone as with plain radiographs, MR is

able to capture ligaments, synovium, menisci and subchondral bone. MRI is also often acquired

at high-spatial resolution and is advantageous when compared to X-Ray because there is no

ionising radiation.

2.4.5 MR Positioning

The OAI positioning protocol is strict and so some spatial a-priori alignment of the knee can

be assumed. The patella is aligned with a point on the knee coil (figure 2.7), all of the knees

are in a fixed angle of flexion, the leg is in a relaxed neutral position and the position of the

foot and big toe is specified in the protocol. This enables some assumptions to be made about

the appearance of the knee MRI in the OAI dataset.

2.4.6 MR Sequences

MR images are acquired using Siemens 3T Trio scanners. Details of the MR sequences from

the OAI dataset are described in table 2.2. Examples of coronal MR images can be seen in
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Figure 2.7: Photo of MRI knee-imaging coil with liners and pad †.
† from https://oai.epi-ucsf.org/datarelease/operationsManuals/MRI_knee_coil_size_screenV1_0p.pdf [accessed 15/04/13].

figure 2.8, examples of sagittal MR images can be found in figure 2.9. Further information can

be found in the MRI manual provided by the OAI and from Peterfy et al. (2008).

Peterfy et al. (2008) discusses the design rationale of the various acquisitions and concludes that

for quantitative cartilage morphometry, fat-suppressed, 3D dual-echo in steady state (DESS)

acquisitions appear to provide the best universal cartilage discrimination.

Some sequences such as Cor T1W 3D FLASH WE and Sag T2 MAP are acquired in the right

knee only, unless the right knee is a knee replacement or there are metallic implants or foreign

bodies seen on the right knee localizer, in which case these two sequences are performed on the

left knee. Since there are more sequences acquired for the right knee, much of the work in this

thesis uses the right knee MRIs.

2.4.7 Quantifying Osteoarthritis

It is useful to be able to quantify OA severity and progression both structurally and functionally.



2.4. Knee Osteoarthritis 79

(a) Coronal IW TSE

(b) Coronal T1 3D Flash

Figure 2.8: Examples of the MR images acquired in the coronal plane. The images are of a
healthy candidates right knee at baseline (id=9093584).
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Sequence Abbreviation Intended Use Figures

Coronal
Intermediate-

Weighted Turbo
Spin Echo

Cor IW TSE used for evaluation of joint alignment, cartilage
morphology, osteophytes, the body of the menisci,
collateral ligaments and for the presence / extent of

subchondral bone cysts and attrition.

2.7 (a)

Coronal
T1-weighted 3D
Water-Excitation
Fast Low Angle

Shot

Cor T1 3D
FLASH

commonly used for cartilage thickness measurements
and volume segmentation.

2.7 (b)

Sagital
Intermediate-

Weighted Turbo
Spin Echo

Sag IW TSE used for evaluation of the effusion volume, the anterior
and posterior femoral and tibial osteophytes and for
the presence / extent of subchondral bone cysts and

attrition.

2.8 (a)

Sagital
Water-Excitation
3D Dual Echo
Steady State

Sag 3D DESS provides information for total joint cartilage thickness
and volume. In addition, information about
osteophytes, subarticular bone cysts and bone

attrition, and possibly collateral ligaments will be
available.

2.8 (b)

Sagital T2 MAP Sag T2 MAP used to assess the cartilage morphology and condition,
the anterior and posterior meniscal horns, the cruciate

ligaments, anterior / posterior femoral and tibial
osteophytes, superior / inferior patellar osteophytes,
as well as subchondral bone cysts and attrition.

2.8 (c)

Table 2.2: MR sequences, their abbreviations, intended uses and example MRI.
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(a) Sagital IW TSE

(b) Sagital 3D WE DESS

(c) Sagital T2 MAP

Figure 2.9: Examples of the MR images acquired in the sagittal plane. The images are of a
healthy candidates right knee at baseline (id=9093584).
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Functional Quantification

In this work we focus upon structural abnormalities and progression of pathology as can be

observed with MR imaging. Whilst articular cartilage loss is strongly associated with OA, the

cartilage is aneural and as a result does not sense pain. Identifying subjects experiencing pain

using MR imaging is an extremely challenging problem.

Pain has been defined by the International Association for the Study of Pain (IASP) as

"An unpleasant sensory and emotional experience associated with actual or potential

tissue damage, or described in terms of such damage." (Bonica (1979) (president of

IASP)).

Structural Quantification

Medical imaging can capture structural information which could potentially help to extract

biomarkers and may lead to an understanding of OA function. To analyse the structural causes

and effects of OA pathology upon the knee joint it is highly desirable to extract quantitative

metrics or biomarkers from MR images. These metrics can be divided into two categories;

quantitative and semi-quantitative scores which are derived from MR scans or X-rays.

2.4.8 Osteoarthritis Imaging Measures and Biomarkers

Biomarkers for OA can be employed to learn risk factors or predictors to help understand the

manifestation and progression of the pathology. Biomarkers can also be used for drug discovery,

both for stratifying a population for a well-defined sample and to test the efficacy of disease

modifying OA drugs (DMOADs). All of these applications benefit from a method that can be

used with a large dataset, thus scalability of biomarker extraction is paramount. Accuracy and

precision are also important for any inter-subject comparisons.

Many quantitative imaging techniques to assess OA progression or diagnosis rely on the segmen-

tation of the articular cartilage from MRI (Dam et al. (2007); Eckstein et al. (2009)). However,
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K&L Grade Description

0 Normal

1

Doubtful narrowing of joint space and

possible osteophytic lipping

2

Possible narrowing of joint space and

definite osteophytes

3

Definite narrowing of the joint space,

moderate multiple osteophytes,

some sclerosis and

possible deformity of bone ends

4

Marked narrowing of joint space,

large osteophytes,

severe sclerosis and

definite deformity of bone ends

Table 2.3: K&L scale for OA grading

manual segmentation is often tedious and time-consuming and current automatic segmenta-

tion approaches have limited accuracy and robustness. Semi-quantitative assessments such as

BLOKS (Hunter et al. (2008)) are also employed and whilst these are less time consuming to

read the images, their discretised nature leads to poor precision, limiting their applicability.

Additionally, as manual approaches rely heavily on human input, the size of a feasible study is

restricted and its results are susceptible to intra-rater and inter-rater variability.

Kellgren and Lawrence grades (K&L)

Kellgren and Lawrence grades (K&L) can be used for quantifying radiographic OA (Kellgren

and Lawrence (1957)). Table 2.3 details the grades assigned for varying severities of OA. In

summary, it assesses joint space width, osteophytes and subchondral bone sclerosis but many

more structures than just these are involved in OA, where knees whose K&L grade is ≥2 are

considered to be osteoarthritic. It is a course grading system from 2D radiographs and so it is

not possible to assess soft tissue pathology, therefore it is a fairly crude measure of OA severity.
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Semi-Quantitative OA Biomarkers

Trained readers read and assess medical images to give scores of OA status as a predefined

combination of discretised ratings of the status of several tissues associated with OA, not limited

to the articular cartilage. Examples of semi-quantitative OA scores include the Kellgren and

Lawrence grade (K&L) (Kellgren and Lawrence (1957)), as well as Boston Leeds osteoarthritis

knee score (BLOKS) (Hunter et al. (2007)) and whole-organ MRI scoring method (WORMS)

(Peterfy et al. (2004)) which are derived from reading MRI.

Semi-quantitative approaches have the advantage of being faster than metrics which require a

manual segmentation. However, they still require trained readers which imposes some limits

(financial and time) upon the scale of the study. Additionally, the granularity of the results

are lower than their quantitative counterparts due to its discrete scale and the technique can

still fall foul of manual errors. Manual methods inherently struggle with inter- and intra-reader

reproducibility when compared with automated methods.

Quantitative OA Scores

Quantitative measures typically extract biomarkers from a segmentation of the articular car-

tilage. Quantitative methods initially obtain a segmentation or delineation of organ interfaces

and then extract morphometric measurements which can be used as OA biomarkers. These

segmentations are either acquired manually (Eckstein et al. (2009); Hunter et al. (2009)), semi-

automatically (Stammberger et al. (1999); Grau et al. (2004)) or fully-automatically (Yin et al.

(2010); Fripp et al. (2010); Folkesson et al. (2007); Vincent et al. (2010)).

Cartilage morphology metrics computed from segmentations have been shown to differ signif-

icantly for different segmentations teams (Schneider et al. (2012)). Due to the extent of this

variation the author recommends readers do not pool results from different teams unless equiv-

alence can be demonstrated. Ideally a good biomarker could be computed by multiple teams

and the results would be comparable, this is a limitation associated with this approach.
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Manual Segmentation Manual delineation of the articular cartilage interface is performed

by trained readers and it is reported to take approximately 2 hours to segment the medial tibial

and femoral cartilage (Folkesson et al. (2007)). Additionally some groups choose to perform a

quality control step to ensure inter-scan consistency (Eckstein et al. (2009)), which increases

costs and reduces the potential scale of a study due to time constraints. Quality control is

designed to make assurances about reproducibility but it is still inherently problematic due to

human decision making being a core element of the procedure. Due to the time consuming

nature of manual segmentation many studies are unable to exploit the potential value of large

cohorts.

Automated Segmentation Automated segmentation of the articular cartilage is a challeng-

ing problem and how to perform accurate segmentations automatically still remains an open

question and an active area of research. The challenges are predominantly attributed to its con-

vex, thin and flat structure, partial volume effects and low contrast with surrounding tissues

and fluid.

Current state of the art segmentation techniques for articular cartilage involve voxel-wise clas-

sifiers (Folkesson et al. (2007); Dam and Loog (2008); Yin et al. (2010)), active appearance

models (Vincent et al. (2010); Fripp et al. (2010)), graph cuts (Yin et al. (2010)), watershed

(Grau et al. (2004)) and many other methods. At MICCAI 2010, a Grand Challenge was

introduced to segment knee MR images of both bone and articular cartilage. The winning

team presented a fully automatic method based on active appearance models (Vincent et al.

(2010)). The MICCAI Grand Challenge has now been extended under the name SKI10, the

data provided for the challenge and the collated results are presented as a league table on the

webpage (http://www.ski10.org/).

Leading state-of-the-art automated segmentation techniques typically achieve excellent speci-

ficity but poor sensitivity (sensitivity is reported as 75%-87% (Folkesson et al. (2007); Fripp

et al. (2010); Yin et al. (2010)). This reveals a strong trend of under-segmentation, or misclas-

sification of positive voxels. This can have a deleterious effect on the accuracy and reliability

of morphometric measures, such as thickness, surface area and volume, which are extracted
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Author Biomarkers Ground Truth AUC (95%

Confidence Interval)

Validation Set

Dam et al.

(2009)

“cartilage longevity”

automated

segmentation required

Folkesson et al. (2007)

diagnosis from

K&L grade

0.84

(0.77 to 0.92)

classifying K&L <2
0.82
(not stated)

classifying K&L <1

159 participants (287 knees)

- 51% healthy (K&L=0),

- 30% boarderline OA (K&L=1),

- 10% mild OA (K&L=2),

- 9% moderate/severe OA (K&L=

3 or 4)

Eckstein et al.

(2011)

dGEMRIC

manual segmentation

required

diagnosis from

K&L grade

(table 1)

0.738

classifying healthy vs

radiographic OA (ROA)

152 participants (152 knees)

- 49% healthy (K&L 0)

- 51% ROA (K&L 2 or 3)

Table 2.4: Summary state-of-the-art OA biomarkers. “cartilage longevity” is a combination
of biochemical (CTX-II) and imaging measures (cartilage volume, area, thickness, congruity,
roughness, and homogeneity).

from the segmentations. Typically, global segmentation results are reported whilst regional

segmentation results are often omitted. Automated segmentation methods that only report

global accuracies could mask regional inaccuracies, potentially further harming the accuracy of

morphometric measures.

The size of the validation set for automated segmentation techniques reported in the literature

has been fairly small to date, with Folkesson et al. (2007) having the largest sample size of 114

participants, the work by Yin et al. (2010) tested 60 subjects and Fripp et al. (2010) was only

tested on 20 subjects. The limited sample sizes can probably be attributed to the fact that

the ground truths for these experiments require manual segmentation. Since this ground truth

is time consuming to acquire, the feasible test sizes are limited. Many experiments have been

performed predominately or entirely healthy knees. In Folkesson et al. (2007) the test sample

was constructed of 70% with K&L grade 0 or 1. In Yin et al. (2010) the sample contained

80% K&L grade 0 or K&L grade 1 and in Fripp et al. (2010) the sample consisted of 100%

K&L grade 0. Whilst this sample was probably determined by available data, it should be

remembered that these experiments generally avoided participants with severe OA, which are

more challenging to segment. This is likely to result in a poorer segmentation results and thus

poorer late stage biomarkers.
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OA Imaging Biomarker Validation Protocol

Bauer et al. (2006) suggests new diagnostic tests should be evaluated by comparison against an

established gold standard in an appropriate spectrum of subjects. Bauer et al. (2006) specifically

suggests that a diagnostic test using radiographs are a suitable option, typically a Kellgren-

Lawrence (K&L) grade > 2 is required for a diagnosis of OA. K&L is a radiological measure

primarily concerned with the presence of osteophytes (boney spurs on the bone margin). K&L

grading is limited as it does not consider all manifestations of the pathology, it is derived from

an X-ray which is 2-D, soft tissues are not visualised and it is inconsistently applied across

many studies (Felson et al. (2011)). Despite these limitations, K&L grades are widely used and

provided for many subjects in the OAI dataset therefore it is still important for our algorithms

to be validated using this grading system.

State of the Art Quantitative Imaging Biomarkers

Studies have been performed to assess change in cartilage morphology as a biomarker with

varying rates of success. After acquiring an accurate segmentation through either manual or

automated approaches, morphometric biomarkers can be extracted. Morphometric biomarkers

reported are using volume (Raynauld et al. (2004); Dam et al. (2007); Wildi et al. (2013)),

surface area (Dam et al. (2007)), thickness (Dam et al. (2007); Eckstein et al. (2009)), homo-

geneity (Qazi et al. (2007)), curvature (Folkesson et al. (2008); Dam et al. (2007)), congruity

(Dam et al. (2009)), roughness (Dam et al. (2009)), percentage of denuded bone area (Graichen

et al. (2004)) and a combination study of some of the previously mentioned techniques (Dam

et al. (2009)).

A summary of the strongest biomarkers in the literature can be found in table 2.4. To date,

the MRI based biomarker to achieve the highest AUC is presented by Dam et al. (2009).

It combines multiple MRI imaging biomarkers with known biochemical biomarkers to find

improved classification results for identifying subjects with OA. Much of the literature focuses

on increasing the accuracy of automated segmentation. Very few of these works follow on

the work to produce quantitative biomarkers for OA. Since the ultimate goal of segmenting
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osteoarthritic knees is diagnostics or prognostics, it is disappointing to not see this application

of the segmentations reported.

Limited work has been presented to date regarding subregional biomarkers. A regional approach

for acquiring morphometric biomarkers has been recognised as important by Buck et al. (2009);

Wirth et al. (2010). Wirth and Eckstein (2008) first proposed regional analysis, dividing the

articular cartilage into 16 arbitrary anatomically regions or interest using a method which they

find to be highly reproducible. This is later developed by the author such that the regions are

defined so that they are meaningful with respect to cartilage change for subjects with OA pro-

gression (Wirth et al. (2010)). Buck et al. (2009) addresses how to analyse regional data. They

propose ranking change in thickness of the articular cartilage for subregional compartments by

magnitude and direction. This enables comparison of regions with greatest change regardless

of anatomical location and is called ordered values. This ordered value approach was found

to be more sensitive than comparing thickness for corresponding regions across subjects. The

ordered values enables studies to observe OA progression independent of the specific anatomic

location in the joint, but in its current form does not make any attempt to combine information

from multiple regions.

To our knowledge no biomarkers have been proposed for combining information from multiple

MR sequences. There is evidence that different sequences provide useful and complementary

information for OA diagnosis. However, to date the discussions have mostly focused on finding

the most appropriate sequences (Peterfy et al. (2008); Eckstein et al. (2006b)) as opposed to

combining information from multiple imaging sequences.

2.4.9 Summary

OA is a multifactorial disease with a complex inter-relation between structure and function,

much of the recent contributions regarding OA imaging focus on the articular cartilage. With

this in mind, many of the methods presented in the thesis focus on the articular cartilage

to enable comparison and validation with results in the literature. For generality of future

applicability to OA diagnosis the methods presented are designed to be generalisable and can
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be applied to any structure within the entire joint that is visible on MRI.
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Abstract

This chapter looks to manifold learning as an automatic approach to harness the plethora of

imaging data provided by the Osteoarthritis Initiative (OAI). We construct spectral embeddings

of articular cartilage appearance from MR images of the knee using multiple MR sequences.

A region of interest (ROI) defined as the weight bearing medial femur is automatically located

in all images through non-rigid registration. A pairwise intensity based similarity measure is

computed between all images, resulting in a fully connected graph, where each vertex represents

an image and the weight of the edges expresses the similarity of the images. Spectral analysis is

then applied to these pairwise similarities, which acts to reduce the dimensionality non-linearly

and embeds these images in a manifold representation. In the manifold space, images that are

close to each other are considered to be more "similar" than those far away. We use manifold

learning to automatically predict the morphological changes in the articular cartilage by using

the co-ordinates of the images in the manifold as independent variables for multiple linear

regression. In the study presented here five manifolds are generated from five MR sequences.

We observe statistically significant correlations (up to R2 = 0.75) between our predictors and

the results presented in the literature.

3.1 Introduction

This chapter aims to identify a concise, low dimensional representation of a large population

of MR images, such that the relationship between images can be described by only a few

explanatory variables. It is possible to define a high dimensional representation of the imaging

dataset by observing and recording a large number of features. However high dimensional data

can often be expressed with fewer degrees of freedom than the number of features used to

observe the data. The observed data is likely to incorporate redundant features and redundant

combinations of features which can be excluded from a concise representation.

The OAI dataset contains a very large sample of subjects with a large variation in natural

appearance and varying appearance due to pathology. These variations in the appearance of

knee MRI can be regarded as continuous. As a result we can expect the data points to lie on or
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near a lower dimensional manifold in the observed feature space. Due to noise in the model we

would not expect the data points to lie directly on the manifold. In this work we attempt to

approximate the structure of the manifold using manifold learning or dimensionality reduction.

Manifold learning can be used to construct a representation of data lying on a low dimensional

manifold embedded in a high-dimensional space (Cayton (2005)).

Manifold learning has been applied across the field of medical imaging, Wolz et al. (2010) used

manifold learning for segmenting brain MR images, Wachinger et al. (2010) used manifold

learning to detect the position of the body from full body MRI and Yang et al. (2008) analysed

cyclical motion patterns such as beating of the heart in ultrasound images.

Imaging biomarkers of osteoarthritis can potentially enable clinicians to determine severity of

disease and speed of progression. Some biomarkers have been proposed for which a segmenta-

tion is used to obtain morphological measures such as thickness and volume (Dam et al. (2007);

Eckstein et al. (2009)). However, under-segmentation is common problem for automated seg-

mentation of the articular cartilage. If the segmentation is inaccurate, this can result in an

unreliable estimate of morphology.

Manifold learning is used here to learn a concise low dimensional representation of a large

dataset of knee MR images with and without pathology. With the help of machine learning

and statistical analysis these feature vectors from the new representation can be used to generate

effective image based predictors and classifiers.

3.2 Method

3.2.1 Overview

This chapter proposes a predictor for cartilage morphology from a single region of interest for

a large population study. Initially, an approximate automatic segmentation based non-rigid

registration to a reference image is used to identify a well known region of interest, the central

medial femur. A spectral embedding is computed based on the pair-wise similarities of the
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Figure 3.1: Pipeline of the framework for a single MR sequence. In step a), the region of interest
has been identified in every image using registration (sections 3.2.2 and 3.2.3). Steps b) and c)
depict the knn graph construction, where edges of low similarity are discarded. The spectral
embedding is represented by step d) (section 3.2.4). Multiple linear regression is used to learn a
linear combination of embedding coordinates to predict clinical data in step e) (section 3.2.5).

region of interest for every image. The embedding co-ordinates are used in a multiple linear

regression framework to find a linear combination of embedding components which have a

strong correlation with clinical data. The clinical data chosen is a morphological measure of

articular cartilage which is often used as diagnostic biomarkers for osteoarthritis diagnostics in

the knee. The method is well suited to a large dataset, such as that provided by the OAI. An

overview of the proposed approach is depicted in diagram 3.1.
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3.2.2 Registration

This chapter aims to compare a pathologically significant anatomical region of interest across

many subjects with and without symptomatic and radiographic osteoarthritis. To achieve this

it is efficacious to compute a transformation between all subjects such that a mapping exists

to a common coordinate space which is suitable for voxel-wise comparison. Given a sample of

n distinct knees and corresponding MR images, {I1, I2, . . . , In}, a single subject is selected as

the reference image I i to which all other images will be registered to derive n transformations.

These transformation map all images into a common space. The reference image is chosen

randomly from patient knees with Kellgren and Lawrence (K-L) grade 0 (radiographically

normal) (Kellgren and Lawrence (1957)) and who experience no symptoms.

Each image is initially rigidly transformed to allow for position and orientation variation within

the scanner. This is followed by an affine registration of the knee joint region to allow for scale

discrepancies between images. Finally, each image is coarsely non-rigidly registered to I i, by

a free-form deformation based on B-splines (Rueckert et al. (1999)) using normalised mutual

information as a voxel similarity measure (Studholme et al. (1998)) and a 10mm B-spline control

point spacing. It is important that the image is aligned with a coarse control point spacing to

ensure the region of interest contains the area of interest whilst preserving some of the relevant

structural differences.

Region of Interest to Improve Registration Accuracy In some circumstances it can

improve registration results to exclude some regions from registration. By excluding irrelevant

tissues higher accuracy results maybe obtained for the region of study. Hajnal et al. (1995)

found it useful to exclude the soft tissue of the face to achieve precise rigid registration of the

brain. By selecting a smaller region of interest, a speed increase is achieved through a faster

similarity computation and in the case of FFD registration, the number of parameters to be

optimised is reduced. As a result non-rigid registrations are computed over the joint space as

defined by a bounded box. Figure 2.4 shows registration pipeline for a single MR sequence,

from affine registration to a non-rigid deformation with the deformation grid. The bounding
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box around the joint region can be seen in the freeform deformation grid visualised in the

bottom sub-figure. The bounding box is where the grid appears deformed.

3.2.3 Region of Interest (ROI) Definition

A segmentation of the reference image, I i, can be propagated to all other images through non-

rigid registration. This technique is referred to atlas-based segmentation (Dawant et al. (1999)).

Atlas-based segmentation is well studied, and uses registration to yield accurate segmentations.

Many extensions to the basic framework have been proposed to improve the quality of segmen-

tations (Heckemann et al. (2006); Aljabar et al. (2009)). However our method does not require

exceptionally accurate delineation of organs and as such the approach adopted here is chosen

for its simplicity.

The region of interest in the reference image, I i was segmented from a mean image in the

reference space. The mean image is computed as the mean voxel-wise intensity from all images

non-rigidly registered to I i (described in 3.2.2). When registrations are of high quality, a

high contrast mean image is produced, this lends itself to a semi-automatic region-growing

segmentation (Adams and Bischof (1994)). This suffices as an approximate segmentation of all

images. The segmentation is then dilated by 5 voxels to allow for small errors in the registration

and to ensure it encompasses the defined region in every image.

For the experiments presented in this chapter, the region of interest selected is the weight-

bearing region of the medial femoral condyle shown in figure 3.2. It was selected because it

was found to incur the greatest rate of change in articular cartilage morphology in two recent

one year follow-up studies (Hunter et al. (2009); Eckstein et al. (2009)). Eckstein et al. (2006a)

proposed a nomenclature which defines anatomical labels of the knee joint cartilage. We follow

the definition for the central medial femoral condyle (cMF). Furthermore, Eckstein et al. (2006a)

have released publicly available data regarding the cartilage morphology of this well defined

ROIs.
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Figure 3.2: Weight bearing region of the medial femoral condyle (cMF) region of interest shown
on the reference image.

3.2.4 Manifold Learning

Spectral analysis learns low dimensional features based upon similarities between data points of

high dimensions. It is an unsupervised algorithm which preserves the underlying local structure

to yield a lower dimensional embedding. More information can be found in Chung (1997) and

a thorough tutorial is provided by von Luxburg (2007).

In the high dimensional space each data point represents an image, explicitly the images

I1, I2, . . . , In are represented as a high dimensional point cloud x1,x2, . . . ,xn ∈ RM . The

algorithm finds an embedding which preserves local similarities between images. The positions

of images in the embedding are described as y1,y2, . . . ,yn ∈ Rm where m�M . An overview

of the manifold learning procedure employed in this section is visualised in figure 3.3.

The data is represented in high dimensions as a fully connected graph where each vertex of

the graph (x) corresponds to an image (I) and each edge is associated with a weight which

defines the similarity between the connected pair of vertices. An affinity matrixW = [wi,j]n×n

is computed, wi,j ≥ 0 is computed by a pairwise similarity measure between two images I i

and Ij. For this work the similarity metric is defined as normalised mutual information, NMI
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Figure 3.3: Overview of manifold learning. Laplacian Eigenmap embedding finds an appropri-
ate low dimensional embedding Y from input images X, by representing all images based on
their pairwise similarities W , and computing the k-nearest neighbours such that connections
are retained for most similar images to find W ′. Y is a low dimensional embedding such that
images which are represented as similar in W ′ are also close in Y . ,
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(Studholme et al. (1998)). The similarity measure is computed over an ROI which is defined

in section 3.2.3.

From this high dimensional representation a sparse k-nearest neighbour graph is constructed

(the parameter choice of k is discussed in section 3.3.2). The connectivity and edge weights of

the graph are represented as matrixW ′ where w′i,j = 0 if I i is not within k nearest neighbours

of Ij. The weight matrix encodes the local similarities in the graph. The degree matrix D is

a diagonal matrix defined by the degree or contribution of each vertex di,i = ∑n
j=1wi,j

We compute spectral analysis to preserve image similarities with the normalised graph Lapla-

cian. The normalised graph Laplacian matrix L is defined as

L = D−1/2(D −W ′)D−1/2 (3.1)

The embedding co-ordinates are derived by solving the generalised eigenvalue problem. This

algorithm is closely related to a Laplacian eigenmap embedding (section 2.2.7).

3.2.5 Predictor of Cartilage Morphology

The representation computed by manifold learning can be used to quantify disease severity in

previously undiagnosed subjects. We determine whether there is a linear relationship between

these co-ordinates and clinical data. To investigate this link we use multiple linear regression.

The clinical data that we are interested in are quantitative morphological changes in the ar-

ticular cartilage, which are considered to be biomarkers of structural osteoarthritis. If such a

relationship exists, we can predict the biomarkers using our automated learning approach.

Multiple linear regression can be used to model the relationship between a response variable

(biomarker or clinical data) and more than one explanatory variables (manifold embedding

co-ordinates) by fitting a linear model to the observed data. The m explanatory variables are

from the manifold embedding are Y . The response vector are clinical variables which have been

observed for each subject (α). Multiple linear regression is used to compute the coefficients (
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β0, β1,. . ., βm) for the explanatory variables that are required to satisfy equation 3.2 with an

associated error ε (assuming i ∈ [1, n]).

αi = β0 + β1y1,i + . . .+ βmym,i + εi (3.2)

The coefficients are described as partial regression coefficients because they allow for the effect

of other variables and in combination can explain clinical data with some residual error. The

unknown coefficients β0, β1, . . ., βm are computed using a least squares approach, so that the

squared deviations of the observed data to the predicted data is minimised. The quality of

the model is assessed by observing the R2 and p-values. The R2 explains how well the data

points fit the model. We observe the F -test p-value to check for a significant linear regression

relationship between the response variable and the explanatory variables. More information

can be found in the background chapter section 2.2.5.

3.2.6 Incorporating Multiple MR Sequences

We have proposed how to compute a manifold for a single MR sequence. In this section we

propose an extension for efficiently computing a manifold for other sequences.

For all n knees we have MR images acquired in ρ sequences. The images are indexed as Iϕφ

where φ ∈ [1, n] and ϕ ∈ [1, ρ]. The reference image described in 3.2.2 was acquired using MR

sequence j and subject index i is now referred to as Iji . To compute embeddings for the ρ− 1

other sequences the ROI needs to be located in all n× ρ images.

Registration and ROI definition

The OAI protocol specifies that each sequence is acquired during the same visit, with strict

alignment and positioning with the aid of an extremity coil and without removing the subject

from the scanner between sequence acquisitions. As a result, we can expect there to be no non-

rigid variation caused by pose or anatomical variation between MRI sequences acquired from
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the same subject at the same time-point. It follows that we can resolve alignment discrepancies

between any two images of the same subject index φ via a rigid-registration.

Non-rigid registrations have been computed between all images acquired using the reference

sequence j, {Ij1, Ij2, . . . Ijn} and the reference image Iji . Image Iϕφ with subject index φ, where

φ ∈ [1, n] and MR sequence ϕ, where ϕ 6= j, is rigidly registered to the reference knee in the

selected sequence Ijφ. This approach ensures there are no global alignment between MR images

of the same subject on the same visit, and reduces the total number of non-rigid registrations

computed. This rigid registration is composed with a non-rigid registration between Ijφ and the

reference image Iji , so that a transformation exists between image Iϕφ and the reference image.

The new registration pipeline which incorporates multiple sequences is illustrated in figure 3.4.

Manifold Learning and Predicting Morphology

All other steps in the algorithm described remain identical to the process for the reference

sequence. This includes computing a manifold embedding for the sequence over the ROI and

analysis of the correlation of the embedding coordinates with clinical data.

3.3 Experiments

3.3.1 Data

Our study focuses on five MR sequences of 390 right knees from the OAI public use dataset

from groups 1.C.0 and 1.E.0. Of these 50 knees have evidence of radiographic and symptomatic

OA, 218 are at risk of developing OA or have OA in their other knee (some of these knees may

in fact also have radiographic evidence of joint degradation but not OA) and 122 are healthy

control participants. Subject data selected for the study are required to have all five sequences

acquired.

For this experiment we propose to use cartilage thickness and volume as predicted values. The
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Figure 3.4: Schematic of registration pipeline used to incorporate multiple MR sequences using
the non-rigid components of the principle sequence.
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data selected as the ground truth for cartilage morphology is provided by the OAI and published

in Eckstein et al. (2009) (project 7) for a subcohort of 120 progression enrollees. Additionally,

270 more knees for which clinical data is unavailable are selected to ensure that the manifold

is well sampled and thus can be modelled more reliably.

The Osteoarthritis Initiative (OAI) provides five MR sequences (ρ = 5) for the right knee of

each subject at the baseline time point. The Sag 3D DESS is selected as the reference sequence

j because it is a high-resolution image and thus more faithfully represents the anatomy than

2D sequences for 3D registration. The other four sequences which are used are Sag IW TSE,

Cor IW TSE, Sag T2 MAP and Cor T1 3D FLASH. Details of these MR sequences can be

found in the section 2.4.6 and their use within the registration scheme can be seen in figure 3.4.

3.3.2 Selecting the Graph Neighbourhood

It is important to identify a suitable neighbourhood size (k) for the definition of pairwise

similarities in the high dimensional space such that the representation is geometrically mean-

ingful with regards to the underlying manifold. Since the underlying structure varies between

manifolds, k is chosen individually for each manifold. Figure 3.5 shows R2 values for varying

neighbourhoods used to create five different manifolds. The observed clinical data used for

parameter selection of k is mean thickness excluding denuded bone area.

k is selected for each manifold by maximising the predictive power of multiple linear regression

against observed clinical data for a sample of possible k values. k is selected when R2 is large,

however as can be seen in figure 3.5 R2 fluctuates as k varies. Therefore, we find a k where

over a small range of k ± 5, the mean R2 is maximised. This enables us to avoid picking a k

where the corresponding R2 value is an unrealistically high. It is important that all results are

statistically significant and as such it is ensured that p < 0.05.

From figure 3.5 it can be seen that a high R2 value can be found for a fully connected similarity

graph (k = n). Despite this, R2 is less when k = n than the peak observed R2 value when

k � n. Additionally, a fully connected graph is not geometrically meaningful on a non-linear
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Figure 3.5: R2 computed from multiple linear regression using the first 14 eigenvectors as
predictors for quantitative variable mean cartilage thickness (excluding denude bone area) with
a varying neighbourhood of the similarity graph (where k < 300). This has been performed for
five different MR sequences. Statistically insignificant regions are ’greyed-out’, such that they
can be identified and ignored.

manifold where local measures of similarity express the manifold structure, as a result k > 300

is considered invalid.

3.3.3 Selecting Number of Predictors

It is necessary to select the number of predictors for multiple linear regression. In our case the

number of predictors is the same as the number of dimensions used from the low dimensional

manifold space (m). It is advisable that m � M both for the purposes of manifold learning

and multiple linear regression.

In figure 3.6, we observe the relationship between the number of predictorsm and the predictive

power of the model R2. The mean R2 is presented, which is the mean computed over the range

k ± 5 (where R2 was maximised), as described in section 3.3.2. This is to ensure that the

selection of k is robust to fluctuations. Figure 3.6 shows results for fixed k with results for each
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Figure 3.6: Mean R2 (a local average of R2 over a range of k ± 5) computed from multiple
linear regression with a variable number of predictors (m). This is visualised for five MR
sequences. When the rate of change of R2 reduces the extra information being contributed by
the predictors is having less influence on the prediction result.

sequence.

As the number of predictors (m) increases the R2 value increases initially, however this increase

later decays. m is chosen where the rate of change in R2 reduces since as the improvement

in R2 plateaus, additional dimensions do not contribute notable extra information from the

manifold. However, including extra predictors will generally improves R2 but this does not

necessarily mean those predictors are important for the prediction of the outcome of interest.

3.3.4 Results

Visualising the Low Dimensional Embedding

Figure 3.7 depicts a low dimensional embedding (m = 2). Only two dimensions are selected

purely for visualisation. However, subsequent dimensions still contain valuable information

regarding the manifold and are utilised for data analysis. Despite this the visualisation is
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Figure 3.7: MR images embedded in a 2D manifold. The different symbols describe the OA
status of the knee.

able to show the images embedded in lower dimensions and clearly shows a cluster of non-

symptomatic knees on the left side of the figure .

Multiple Linear Regression

Our results from the multiple linear regression demonstrate there is a high correlation between

the structure of the manifold space and the cartilage morphology in the region of interest.

Specifically the results display strongest correlation with volumetric images and clinical vari-

ables which observe thickness or normalised volume. A more thorough analysis can be found

in table 3.1

This enables the co-ordinates of the images in the manifold space to act as a predictor of

cartilage morphology for other images in the cohort.
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Sag 3D DESS
(k = 134± 5,

n = 10)

Cor T1 3D FLASH
(k = 84± 5,

n = 14)

Sag IW TSE
(k = 96± 5 ,

n = 14)

Cor IW TSE
(k = 78± 5 ,

n = 16)

Sag T2 MAP
(k = 102± 5,

n = 16)

Mean R2 Mean R2 Mean R2 Mean R2 Mean R2

ThCcAB 0.746 0.741 0.617 0.619 0.628
ThCtAB 0.737 0.740 0.593 0.618 0.609
VCtAB 0.745 0.738 0.596 0.609 0.610
VC 0.644 0.642 0.555 0.572 0.590

ThCcAB – mean thickness excluding denuded bone area;
ThCtAB – mean thickness including denuded bone area;
VCtAB – normalised volume
VC - volume (not normalised)

Table 3.1: Results of multiple linear regression, using the co-ordinates from the manifold as
predictor for known quantitative clinical variables of cartilage morphology published in Eckstein
et al. (2009) , where a neighbourhood size is chosen for each manifold individually. p is always
< 0.1e− 13 for the R2 values quoted.

3.4 Discussion

Manifold learning, to our knowledge, has not been applied to MRI of the knee and provides an

excellent way to analyse a large cohort of MR images automatically. Spectral analysis maps

the images from a high dimensional space to a low-dimensional manifold representation, whilst

preserving local similarity in high dimensions. Relationships between images are represented as

a graph with local similarities encoded as edges and the images as vertices. The manifold repre-

sentation respects local neighbourhood similarity relationships. We are then able to efficiently

analyse these relationships in this lower dimensional space and use the manifold representation

to derive predictors of morphology.

Our results suggest that the Sag 3D DESS sequence out-performs the other MR sequences for

predicting cartilage morphology in the central medial femoral region of the articular cartilage in

the right knee. The results also show that fewer dimensions (m) from the manifold are required

to predict the clinical variables from Sag 3D DESS images. Despite this it should be noted that

the registration technique applied relies on only computing a non-rigid transformation between

the Sag 3D DESS acquisitions and all other transformation are derived from this computation.

Whilst this produces good results for the other sequences, it is possible the difference in accuracy

could be attributed to a poor non-rigid transformation.



3.4. Discussion 107

The method presented here lends itself to a large dataset. The dimensionality of the embedding

space be significantly smaller than the observed feature space (m�M). The experiments here

found that m = 10 is a suitable dimensionality for the embedding space. We suggest that this

might be an appropriate approximation of the intrinsic dimensionality of the manifold.

It should be noted that approximately 4% of images do not register successfully during the

first stage of the method. Within this sample of images, errors were always due to poor initial

rigid and affine registration, usually as a result of large difference in initial joint location or

large variation in image appearances. This was fixed by adjusting rigid and affine parameters

and then re-running the pipeline, specifically adjusting the region of interest to the joint area

in image Ij. Chapters 5 and 6 seek to automatically test and improve the success of rigid and

affine registration.

3.4.1 Contributions

This chapter demonstrates that a data driven manifold learning algorithm can learn a repre-

sentation of the appearance of knee MRI without supervision. For each data point x in the

high dimensional representation, a corresponding data point, y, is learnt using spectral anal-

ysis. The manifold embedding preserves the local similarities between data points in the high

dimensional space when represented in a lower dimensional space. The resulting manifold is

non-linear. The data points in the manifold representation are compared to clinical patient out-

comes which are considered important in osteoarthritis progression. It is observed that there is

a high correlation between the embedding co-ordinates and the clinical data. This initial piece

of work on exploring biomarkers has also looked at discovering a suitable dimensionality for the

manifold embedding and finding a suitable k-nearest neighbour parameter.

This proposed algorithm could potentially lead to using the embedding co-ordinates as a pre-

dictor of cartilage morphology. This contribution could be clinically significant as a fully au-

tomated method as a surrogate measure of cartilage morphology. The metric would be repro-

ducible and not susceptible to errors associated with human error from manual segmentation

or automated segmentation errors.
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As future work, cross validation could be used to demonstrate how well the method would

generalise to an independent dataset. The work in this chapter should be considered a proof

of concept for using Laplacian eigenmap embeddings as a predictor for accepted osteoarthritis

disease indicators. It would be of greater use to predict osteoarthritis disease status as opposed

to cartilage morphology which are surrogate measures of the disease. The next chapter explores

the classification of osteoarthritis diagnostic scores using structural measures of OA severity

with fully cross validated results.



Chapter 4

Osteoarthritis Diagnosis on Low

Dimensional Embeddings

Work in this chapter has, in part, been presented in:

C. R. Donoghue, A. Rao, A. M. J. Bull, and D. Rueckert. Learning Osteoarthritis Imaging

Biomarkers Using Laplacian Eigenmap Embeddings with Data from the OAI. IEEE Interna-

tional Symposium on Biomedical Imaging, 2014.

(prize won : young investigators award) C. Donoghue, A. Rao, A. M. J. Bull, and D. Rueckert.

Automatically Generated Novel Diagnostic Imaging Biomarkers with Data from the OAI. 4th

Imaging Workshop for Osteoarthritis, 2011.
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Abstract

We propose a data-driven approach to learn diagnostic biomarkers of osteoarthritis (OA) status

using multi-region and multi-sequence data for a large population study. This study looks to

manifold learning as an automatic approach to harness a large subset of the plethora of data

provided by the Osteoarthritis Initiative (OAI). We explore three methods of combining multi-

region and multi-sequence data to derive a consolidated score or biomarker for OA diagnosis.

We show that combining each of the embeddings of multi-region and multi-sequence data to

create an ensemble of manifolds is superior to creating an embedding of a single large region

of interest. The efficacy of the novel biomarkers presented in this chapter is tested using

Linear Discriminant Analysis (LDA), which linearly projects the diagnostic biomarkers onto

a discriminant hyperplane. The area under the receiver-operator curve (AUC) for strongest

early diagnostic biomarker of 0.904 (95% confidence interval 0.887-0.920) if the population is

separated by K&L<2. The results demonstrate that these techniques improve upon results

reported in the literature. This improvement on previous works opens the door to a single

unified imaging biomarker of osteoarthritis.

4.1 Introduction

4.1.1 Discovery of Novel Biomarkers For OA

The method presented in this chapter is scalable and results are demonstrated using a very

large subset of 1131 knee scans from the OAI dataset. It is automatic and does not rely on an

accurate segmentation algorithm or a strict manual segmentation protocol to achieve accurate

results. The features used for the diagnostic biomarkers are learnt using machine learning

algorithms and not designed by humans. It combines information from multiple regions and

multiple MR sequences to derive the global diagnosis of the knee. Additionally the results

presented show an improvement compared to those previously presented in the literature.

Methods to compute OA biomarkers in the literature typically require a precomputed segmen-

tation. Features are computed from the segmentation, these features are hand-crafted measures
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Feature type Citation
volume Wluka et al. (2004); Eckstein et al. (2006b); Dam et al.

(2007)
thickness Williams et al. (2003); Eckstein et al. (2006b); Dam et al.

(2007)
surface area Hohe et al. (2002); Dam et al. (2007)
homogeneity Qazi et al. (2007)
curvature Hohe et al. (2002); Dam et al. (2007); Folkesson et al.

(2008)
congruity Dam et al. (2009)
roughness Dam et al. (2009)
a linear combination (LDA)
of those listed above

Dam et al. (2009)

Table 4.1: Previous contributions for developing OA biomarkers, they are all measures of
cartilage morphology computed from segmentations. These contributions are hand-crafted and
based upon the communities understanding of OA.

of cartilage morphology, which are selected based upon the communities understanding of OA.

These features are detailed in table 4.1. Schneider et al. (2012) showed that cartilage mor-

phology metrics including volume and mean thickness computed by independent segmentation

teams differ significantly. These segmentation teams used manual, semi-automated and au-

tomated approaches. It suggests there are some limitations with creating a biomarker which

requires segmentation approaches.

There are further problems associated with segmentations, this is discussed in the background

section 2.4.8 but summarised here. Manual methods require significant human interaction

which is both financially and time costly, potentially reducing the scale of a study. Scalable

methodologies appropriate for large cohort OA studies are valuable for both drug development

and understanding the manifestation of pathology over a large population. Whilst automated

segmentation methods do not suffer from these constraints, low sensitivity is currently a problem

amongst state of the art algorithms. The reported segmentation results do not generally assess

subregional accuracy of the methods. The algorithms are mostly tested on knees which are

not severely diseased and the number of subjects for evaluation have previously been small.

Additionally many recent automated segmentation studies do not calculate biomarkers based

on their segmentation results, which means we are unable to compare our results. Since the

method presented here does not rely on an accurate segmentation it is not limited by these
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shortcomings.

This chapter provides methodology for combining both multi-regional and multi-sequence data.

Previously state of the art methods only use results from single MRI sequences for OA studies.

Eckstein et al. (2006b) shows that cartilage morphology measures including thickness and vol-

ume are correlated in sequences Cor T1 3D FLASH and Sag 3D DESS from the OAI. Schneider

et al. (2012) also compares thickness and volume metrics in sequences Cor T1 3D FLASH and

Sag 3D DESS from the OAI, they found the sequences had similar precision, were generally

equivalent, and may be combined for cross-sectional analysis with some adjustments. Whilst

biomarkers computed from these sequences are compared, to the best of our knowledge carti-

lage morphology biomarkers have not previously been combined to provide a multi-sequence

approach, instead the most appropriate MR sequence is selected. In this chapter we try to

combine biomarkers from Sag 3D DESS and Cor T1 3D FLASH sequences to create a unified

multi-sequence biomarker.

The methods presented in the literature commonly use diagnostic biomarkers or morphological

measures derived from large regions of interest which often encompass the entire joint. In

some cases sub-regional analysis of cartilage morphology is computed (Wirth and Eckstein

(2008); Wirth et al. (2009)). However, these sub-regional metrics are not combined into a

unifying biomarker. An approach introduced by Buck et al. (2009, 2011) differs from this, they

propose ranking change in thickness of the articular cartilage for subregional compartments by

magnitude and direction. This enables comparison of regions with greatest change regardless

of anatomical location and is called ordered values. This ordered value approach was found to

be more sensitive than comparing thickness for corresponding regions across subjects. Despite

this ordered values still results in multiple diagnosis per subject, rather than a unified score of

disease severity for the joint. We propose a method which uses regional information to identify

images which exhibit similar pathology across each region independently. We then combine all

of this regional data to identify images which are globally similar. The algorithm presented

combines information from multiple ROI and MR sequences as opposed to selecting the most

informative ROI or sequence.
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Manifold Learning

Manifold learning is a non-linear technique that can be used to characterise low dimensional

datasets which lie within a high dimensional space.

Manifold learning has been applied widely to many machine learning problems including face

recognition (Wu et al. (2004)), handwriting recognition (Belkin and Niyogi (2002)) and speech

signal analysis (Belkin and Niyogi (2003)). In medical imaging it has been used widely in

brain and cardiac imaging (Gerber et al. (2009)), including for atlas-based segmentation (Wolz

et al. (2010)). Laplacian eigenmaps and other manifold techniques have also been explored

for patient position detection in MRI (Wachinger et al. (2010)) and to characterise neonatal

brain development (Aljabar et al. (2011)). The methodology proposed here specifically uses

Laplacian eigenmap embeddings.

In this work we use the Laplacian eigenmap algorithm, a non-linear dimensionality reduction

tool which preserves local information within the data. Two images which are similar to each

other are close in the high dimensional feature space. Laplacian eigenmaps preserves close

spatial proximity between images which are similar to each other in the manifold embedding.

Laplacian eigenmaps are relatively insensitive to outliers and noise (Belkin and Niyogi (2003)).

Overview of Proposed Framework

The principle goal of this chapter is to describe the population of knee MRIs present in the

OAI dataset as a low dimensional manifold embedding, from which diagnostic biomarkers can

be discovered and extracted. The Osteoarthritis Initiative (OAI) released a plethora of images

into the public domain which are further supplemented with detailed clinical data. To utilise

this dataset to its full potential it is important to consider methods which are both automatic

and scalable. Our proposed framework can be described as follows.

Initially all knee MR images are aligned using non-rigid registration (Rueckert et al. (1999)),

such that an approximate region of interest (ROI) can be defined automatically for all images

in the dataset. We construct Laplacian eigenmap embeddings (von Luxburg (2007)) for several
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ROIs of the articular cartilage, in multiple MR sequences, based on their appearance. Intuitively

images that are close to each other in the low dimensional embedding space are considered to

be more "similar" than those far away. Having generated multiple low dimensional embeddings

for each ROI, using multiple sequences, we are able to derive multiple regional diagnosis of OA

status for a given region and sequence. Each embedding provides region-specific and sequence-

specific diagnostic information. We present three approaches of combining multi-region and

multi-sequence data to provide a global diagnosis for a single knee joint (illustrated in figure

4.1) ;

1. Computing a Laplacian eigenmap embedding of a large region of interest composed of

multiple regions.

2. Concatenating the embedding co-ordinates from multiple manifolds generated using dif-

ferent regions of interest and MR sequences followed by a linear dimensionality reduction

of the concatenation.

3. Concatenating the embedding co-ordinates from multiple manfiolds generated using differ-

ent regions of interest and MR sequences followed by a non-linear dimensionality reduction

of the concatenation, by a further Laplacian eigenmap embedding.

The experiments presented explore a variety of different pairwise similarity measures, different

image sequences, multiple anatomical ROIs and different definitions of the ROI.

The efficacy of the technique is demonstrated through Linear Discriminant analysis (LDA) in

the embedding space. The biomarkers are validated by demonstrating strong classification re-

sults with K&L grades from the OAI which, for these purposes, we consider to be the ground

truth of OA diagnosis. It should be remembered that K&L grades is a crude measure of OA

because the grades are very coarse and read from a 2-dimensional image which does not vi-

sualise soft tissues. Despite, this we choose to use K&L as our ground truths because of the

availability in the OAI dataset and results can be compared to previous work in the litera-

ture (Dam et al. (2009)). The results improve on previously presented MRI biomarkers in the

literature. Bauer et al. (2006) propose the classification of biomarkers for osteoarthritis into
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Figure 4.1: Combining multi-region and multi-sequence data workflow
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five classes: investigative, diagnostic, prognostic, burden of disease and efficacy of intervention.

Some of the proposed standards have been adopted for previous work investigating OA imaging

biomarkers (Dam et al. (2009); Eckstein et al. (2009)). The biomarkers we explore are diag-

nostic biomarkers, which predict the current pathological status of the structure of interest.

Bauer et al. (2006) suggests diagnostic biomarkers should be assessed by AUC, sensitivity and

specificity.

4.2 Method

4.2.1 Dataset

The experiments presented use 1131 right knees of 445 males and 686 females from the Os-

teoarthritis Initiative (OAI) public use dataset from groups 1.C.0 and 1.E.0 at baseline. Of this

subset 29.7% are healthy (K&L grade 0), 11.3% boarderline/mild OA (K&L grade 1), 23.8%

have moderate OA (K&L grade 2), 16.3% have severe OA (K&L grade 3), 2.8% have end point

OA (K&L grade 4), 16.1% are unknown because the K&L grades are not as yet available.

For this work, Sag 3D DESS and Cor T1 3D FLASH have been selected as image sequences

(described in section 2.4.6). These MR sequences are selected because they have the highest

resolutions and because they have been shown to correlate well with morphological measures

of the articular cartilage (Chapter 3). resolution, for Sag 3D DESS the in plane resolution

is 0.365 × 0.365mm2 with 0.7mm slice thickness and the in-plane resolution for COR T1 3D

FLASH is 0.313×0.313mm2 with 1.5mm slice thickness. Figure 4.2 shows some sample images.

Clinical comparison - Kellgren and Lawrence grade

For comparative purposes the biomarker is assessed through its ability to diagnose OA where

the subjects K&L grade is considered to be ground truth. The work presented in this chapter

can only be compared to biomarkers which have been assessed for diagnostic potential in the

literature (Dam et al. (2009)). It is not possible to compare our biomarkers directly with
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Figure 4.2: Sample of knee MR sequences from the OAI dataset: Sag 3D DESS (left) and COR
T1 3D FLASH (right).

results from automated segmentation algorithms where only segmentation quality is assessed

(Yin et al. (2010); Fripp et al. (2010)).

The K&L scale is recommended for initial validation of OA biomarkers by Bauer et al. (2006).

The OAI provides K&L grades for 949 subjects of the subjects selected in this chapter, whilst

this not a full complement of results, the additional subjects embedded in the manifold increase

the sampling of the manifold, thus enriching the information set used to describe the entire

population.

4.2.2 Registration

A randomly selected sample of n subjects with corresponding MRI are selected from the OAI

dataset. The set of images is denoted as {I1, I2, . . . , In}. For each subject, ρ MR images of

different sequences are acquired. The set of images for the αth sequence is denoted as the set

of images Iα = {Iα1 , Iα2 , . . . , Iαn}.

In the same way as described in section 3.2.2 and 3.2.6, a reference image of a specified sequence

is selected. For the current study the MR sequence chosen is Sag 3D DESS. This is discussed

further in section 4.3. We assume without loss of generality that the reference subject is

randomly selected with the following constraints: the subject is from the healthy cohort (with

K&L grade 0, i.e. radiographically normal and whom experience no symptoms) and the image
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Figure 4.3: Registration pipeline; MRI of the same subject acquired at the same time-point
are rigidly registered to the corresponding Sag 3D DESS image. All Sag 3D DESS images are
registered non-rigidly to the reference image.

is visually inspected to ensure the image is both of high contrast and appears typical of the

population.

As shown in figure 4.3 each image of the same sequence is automatically rigidly and affinely

aligned to the reference image to allow for position variation within the scanner and scale

discrepancies. These are all then coarsely non-rigidly registered to this reference image by a

free-form deformation based on B-splines with a 10mm B-spline control point spacing (Rueckert

et al. (1999)). A coarse registration is chosen as opposed to fine registration to ensure that the

region of interest contains the tissue structure of interest while preserving some of the relevant

shape differences through preventing excessive deformation.

The OAI protocol specifies that each sequence is acquired during the same visit, with strict

patient alignment and positioning with the aid of an extremity coil and without removing
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the subject from the scanner between sequence acquisitions (section 2.4.5 for details). It is

not necessary to compute non-rigid and affine registration for all ρ MR sequences. Instead

rigid registrations are computed for each subject between the different sequences as in figure

4.3. Through combining transformations from the precomputed coarse non-rigid registration

between subjects (described above) and rigid registration of each subject between sequences,

all n× ρ images can be aligned to the space of the reference image.

4.2.3 Approximate Region of Interest Selection

Atlas Iαmean is created from the voxel-wise mean for all images which have been transformed

to the reference image, for a given MR sequence, α. Iαmean is high contrast, with well defined

boundaries to the articular cartilage. An example is shown in figure 4.4, thus a region growing

segmentation is well suited to select the appropriate region of interest in the atlas. Since the

approximate segmentation is generated in the space of the reference image, the region of interest

can be propagated to all images of all MR sequences.

Since the segmentation generated is in atlas space it can be thought of as a region of interest

selection as opposed to a segmentation since only one very rough segmentation is required to

represent the region of interest across the population. It is important to stress that regardless of

the size of the dataset (in this case n = 1131 and ρ = 2), only one region growing segmentation

is generated semi-automatically. The propagation of the region of interest to all n× ρ images

is performed fully automatically and thus is scalable.

The approximate segmentation was subdivided into 16 distinct anatomical regions using an

automated algorithm described by Wirth and Eckstein (2008); Eckstein et al. (2006a). To

achieve this I replicated their algorithm in C++, which divides each of the tibial plateau into

five regions, a central region which covers 20% of the bone surface and four peripheral regions.

The segmentation respects the structure of the articular cartilage through finding the principle

orthogonal axis of cartilage distribution across the bone cartilage interface (see figure 4.5 (a)).

The femoral ROI are defined as the weight bearing region on the femoral condyle, which is then

evenly divided into three strips from medial to lateral (see figure 4.5 (b)). All of the regions
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Figure 4.4: Mean image, Iαmean , where n = 1131; where α is sequence Sag 3D DESS on right,
Cor T1 FLASH on left

of interest are listed in table 4.2. The set of images for region of interest β and sequence α is

expressed as Iα,β = {Iα,β1 , Iα,β2 , . . . , Iα,βn }.

The regions are dilated to compensate for small errors in the coarse non-rigid registration but

also to allow for the contribution of contextual information from the area around the articular

cartilage. Figure 4.6 shows a dilated region of interest over the articular cartilage within the

medial and lateral tibial plateaus and the medial and lateral femoral condyles.

4.2.4 Laplacian Eigenmap Embedding

For all nMR images of a given sequence α and region β, a low-dimensional manifold embedding

Mα,β is learnt. Images in set Iα,β are used to construct a graph Gα,β = (V α,β, Eα,β) such that

vertex vα,βi corresponds to image Iα,βi . An edge eα,βi,j defines the relative pairwise relationships

or similarity between the images Iα,βi and Iα,βj . The underlying m-dimensional manifoldMα,β

(wherem�M) is then approximated or learnt from the sampled imaging data using Laplacian

eigenmaps (Belkin and Niyogi (2003)).

Gα,β is represented by an n × n affinity matrix W α,β, such that wα,βi,j encodes the similarity

of image Iα,βi and image Iα,βj . The goal is to model the local neighbourhood properties of the

data and so W α,β is sparsified by only retaining connections to the nearest neighbours. The

k-nearest neighbour graph is required to be symmetrical. This is implemented by assuming
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Figure 4.5: Regions of interest as defined and illustrated in Wirth and Eckstein (2008).

(a) Regions of interest on the tibial plateau.

(b) Regions of interest on the central femoral condyles.
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Region Abbreviation

external central medial femur ecMF
central central media femur ccMF
internal central media femur icMF
external central lateral femur ecLF
central central lateral femur ccLF
internal central lateral femur icLF

lateral medial tibia lMT
posterior medial tibia pMT
central medial tibia cMT
medial medial tibia mMT
anterior medial tibia aMT
lateral lateral tibia lLT

posterior lateral tibia pLT
central lateral tibia cLT
medial lateral tibia mLT
anterior lateral tibia aLT

Table 4.2: Regions of interest as defined by Wirth and Eckstein (2008); Eckstein et al. (2006a)

Figure 4.6: Sag 3D DESS MR image with dilated Region of Interest (ROI) for the lateral tibia
(yellow), medial tibia (red), central lateral femur (blue) and central medial femur (green).
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Iα,βi and Iα,βj are connected if Iα,βi is a neighbour of Iα,βj or if Iα,βj is a nearest neighbour of

Iα,βi , as described in section 2.2.7.

Laplacian eigenmap embedding (Belkin and Niyogi (2003)) is a spectral method which aims to

minimise the following objective function:

∑
i,j

wα,βi,j (yα,βi − y
α,β
j )2 (4.1)

Here yα,βi and yα,βj are points in the new embedding. The objective function essentially min-

imises the distances between pairs of coordinates in the embedded space, with greater im-

portance assigned to images with a higher weight wα,βi,j . A constraint is imposed to prevent

the trivial solution where yα,βi = 0. More details with regards to both the theoretical and

implementation details can be found in section 2.2.7.

The new coordinates of the images in the manifold embedding yα,β1 ,yα,β2 , . . . ,yα,βn ∈ Rm are

used as features to extract novel biomarkers for diagnosis of structural pathology. Images are

embedded in a lower dimensional manifold space where closer images are more “similar” to

each other.

The k-nearest neighbour graph is an important component of the algorithm. For this a value

of k needs to be selected. It is also important to discover the intrinsic dimensionality of the

embedding space m. There currently exists no theoretical basis for determining the intrinsic

dimensionality of the manifold learnt by the Laplacian eigenmap algorithm. Therefore, we

choose to determine this parameter empirically. This is discussed further in section 4.3.1.

4.2.5 Combining Multi-Region and Multi-Sequence Data

There has been evidence that osteoarthritis affects the articular cartilage non-uniformly where

both thickening and thinning is experienced. Buck et al. (2010) observed that medial femorotib-

ial cartilage thickening was observed as frequently as cartilage thinning in K&G 2 knees. Due to
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the non-uniformity of the articular cartilage it is important to identify regional variations. Ad-

ditionally, several MR sequences have been suggested as appropriate for studying osteoarthritis

of the articular cartilage, yet in each study a single sequence is typically used. In this part of

the method we wish to address the utilisation of both multi-sequence and multi-regional data.

Embedding co-ordinates are computed for 16 regions of the articular cartilage and for two

different MRI sequences selected from the OAI. Therefore there are 32 different embeddings

which could each be used as feature vectors to learn an osteoarthritis diagnostic biomarker. The

next section explores three different ways of combining the embedding co-ordinates to provide

a unified biomarker for automated diagnostic prediction of OA;

1. composites of Regions of Interest (ROI),

2. concatenation of biomarkers with PCA dimensionality reductions and

3. concatenation of biomarkers with Laplacian eigenmap dimensionality reductions

Composites of Regions of Interest

We propose creating several composites of regions of interest, which are each constructed of

several distinct regions of interest. These are grouped such that they are anatomically relevant,

such as “all regions of the articular cartilage” or “all regions of cartilage on the tibial surface”

or “medial side of the joint”, etc. The full list can be found in table 4.3. A single embedding

is created for each region in that same way as described in section 4.2.4. There are a further 9

regions defined through the composites of regions. The total number of manifold embedding for

regions of interest and their composites is 25. The manifold embeddings created from regions

are also used as components in the ensembles described in the next two sections.

Concatenation of Biomarkers

For R anatomical regions of interest and ρMR sequences, there are R×ρ sets of images Iα,β for

which we have described how to compute a set of low-dimensional manifolds {Mα,β | 1 ≤ α ≤
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Composite ROI Composition Abbrev.

central medial femur ecMF + ccMF +icMF cMF
central lateral femur ecLF + ccLF +icLF cLF

central femur cLF + cMF F
medial tibia lMT + pMT + cMT + mMT + aMT MT
lateral tibia lLT + pLT + cLT + mLT + aLT LT

tibia LT + MT T
lateral side LT + LF L
medial side MT + MF M
all regions T + F (or L + M) All

Table 4.3: Composite regions of interest

ρ, 1 ≤ β ≤ R}. Each image Iα,βi , is represented within every manifold embeddingMα,β as the

embedding coordinate yα,βi , which is a feature vector of length m, the intrinsic dimensionality

of the embedding. The feature vector yα,βi is scaled such that the first eigenvector (embedding

dimension) is centred at zero and of unit variance. The new feature vectors for each subject i are

then concatenated such that
[
y1,1
i , ...,yρ,Ri

]
becomes the new feature vector. The concatenated

feature vector is not used directly as a biomarker because it is in a very high dimensional space

(n× ρ×R), so dimensionality reduction is required so that dimensionality is sufficiently low to

apply a classification algorithm successfully.

Ensemble by Principle Component Analysis (PCA) The concatenated feature vectors

are reduced in dimensionality linearly using PCA.

Ensemble by Laplacian Eigenmaps Embeddings (LEE) The pairwise distances between

subjects can be computed via the L2 norm of concatenated feature vectors. These distances are

then converted from a dissimilarity measure to a similarity measure to find an affinity matrix.

Finally we impose another Laplacian eigenmap step to reduce the dimensionality and find a

generalised manifold M corresponding to R regions of interest and ρ sequences. This approach

has been influenced by Aljabar et al. (2011).
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4.3 Experiments

Data Selection

In the previous chapter five manifolds were constructed for five MR sequences provided by the

OAI and multiple linear regression was used to observed how well the manifold coordinates

predicted cartilage morphology. The results suggested that the 3D MR sequences were better

predictors of cartilage morphology than the other 2D sequences. In addition Peterfy et al. (2008)

find that for quantitative cartilage morphometry, Sag 3D DESS provides the best universal

cartilage discrimination. Therefore Sag 3D DESS and Cor T1 3D FLASH are used in the

following experiments, with Sag 3D DESS chosen as the reference sequence.

Region of Interest Dilation

We also experimented with different dilations of the region of interests. We used both a 5 voxel

and 2 voxel dilation. Generally the diagnostic power of the manifolds generated using a 5 voxel

region of interest performed better. It is speculated that this could be due to ensuring that all

of the articular cartilage is contained within the ROI or because the larger ROI provides extra

contextual information with respect to the subject’s anatomy for the learning algorithm

Similarity Metrics

Different similarity metrics were used as a measure of similarity between two images to describe

neighbourhood information including normalised mutual information (NMI), normalised cross

correlation (NCC) and sum of squared differences (SSD), described in section 2.3.3.

From preliminary experiments it was found that sum of squared differences performed very

poorly in tests to separate candidates with different OA diagnosis. However, it was not con-

clusive whether Normalised Mutual Information or Cross Correlation were better able to sep-

arate subjects based on their OA diagnosis. Normalised Cross Correlation appears to perform

marginally better and as a result this measure is adopted as the similarity metric going forward.
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4.3.1 LDA Classification Experiments

Linear discriminant analysis (LDA) is used here to assess the quality of the biomarkers produced

by the data representations. LDA is a simple and robust classifier which finds a discriminatory

hyperplane that minimises the within class distances and the between class distances. More

details about LDA can be found in section 2.2.2.

Whilst more sophisticated non-linear classification methods could be employed here, this chap-

ter aims to show the strength of a novel data representation method in the field. If the method

presented here outperforms previous results reported in the literature with a simple classifica-

tion method, then there is reduced ambiguity about the reasons for the algorithms improved

performance, and the successes can be attributed to the data representation.

LDA classifications have been computed for all disease severities on the K&L scale. Whilst the

main focus of the chapter is for early diagnostics as this is beneficial for early intervention and

for comparison with previous techniques in the literature, it is worth displaying the capability

of this method across the disease spectrum.

Statistics for Assessing LDA Classification Accuracy

For all experimental results from the LDA classifier a 20-fold cross validation is computed for all

results and the mean results from all folds are reported. The area under the receiver operator

curve (AUC) and a 95% confidence interval is reported to provide an overall representation

of the performance of the classifier. For those with high AUC, classification rates including

accuracy, sensitivity and specificity are recorded. This is the recognised approach for assessing

the performance of a diagnostic biomarker (Bauer et al. (2006)) and also allows comparison

with other methods that have been previously published in the literature (Dam et al. (2009)).
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Embedding Parameter Selection

It is important to select two parameters for Laplacian eigenmap embeddings, namely the neigh-

bourhood for the affinity matrix k and the intrinsic dimensionality of the manifold m. We are

interested in finding an accurate early diagnostic imaging biomarker to aid early detection for

clinical interventions. We define this to be classifying subjects whose K&L grade is <2. To

ensure a good overall classifier performance, we are interested in optimising the area under the

ROC curve (AUC).

These parameters are selected empirically using cross validation and a 2D grid search. The data

is divided into two sets a validation set and a test set, 20% and 80% of the dataset respectively.

The parameters for the Laplacian eigenmap embedding are determined from the validation

dataset. The test set is reserved for further experiments, using the parameters selected from

the validation dataset.

The parameter space is discretised for a bounded range, for which optimal parameters are

selected using an exhaustive search within this 2D grid. The search aims to find the vicinity

of the maximum average AUC across all regional manifolds. The selected parameters are

assumed to be sufficiently robust for each of the Laplacian eigenmap embeddings. Since each

element on the grid is computed independently, this process can be easily parallelised for

increased performance. Figure 4.7 is a visualisation of the discretised parameter space grid. The

parameter landscape is fairly stable when the connectivity neighbourhood is greater than 100

and the intrinsic dimensionality is greater than 5. For all future experiments, the connectivity

neighbourhood of the graph was set to 120 and the intrinsic dimensionality to 20.

4.3.2 Results

Mono-Sequence Experiment

Table 4.4 shows the area under the receiver operator curve (AUC) results with a 95% confidence

interval for all the classifications of OA status. All the results displayed in this table are
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(a)

(b)

Figure 4.7: Grid search parameter selection visualisation for MR sequences; 4.6 (a) SAG
3D DESS and 4.6 (a) Cor T1 3D FLASH, to choose suitable parameters for the number of
nearest neighbours in the graph required for nearest neighbourhood analysis and the intrinsic
dimensionality of the manifold embedding. The metric for success is the AUC over the ROC
which measures the overall success of the classifier. The measure is computed for each regional
manifold and the mean of this score is computed.
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computed for just one MR sequence, ρ = 1. Results for each sequence are displayed in two

separate columns.

Results presented in the bottom half of table 4.4 contains the top five embeddings which are

computed from using a single Laplacian eigenmap embedding. * denotes those regions that

are defined as a composites of regions of interest as described in section 4.2.5. The embedding

rankings are defined based on their performance for early OA diagnosis for both MR sequences.

Results presented in the top half of table 4.4 refer to the different combination methods in this

chapter;

• Composite of all regions * : composite of regions as described in 4.2.5 for the entire

articular cartilage.

• Ensemble by PCA : combination of manifold embeddings, reduced in dimensionality lin-

early by PCA.

• Ensemble by LEE M : combination of manifold embeddings, reduced in dimensionality

non-linearly by Laplacian eigenmap embeddings.
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AUC (95% CI)
Ensemble of Sag 3D DESS and Cor 3D T1 FLASH

Region of Interest K&L<1 K&L<2 K&L<3 K&L<4
Ensemble by LEE

M
0.830

(0.800-0.861)
0.839

(0.811-0.867)
0.920

(0.900-0.940)
0.913

(0.836-0.989)
Ensemble by PCA 0.848

(0.821-0.876)
0.862

(0.837-0.887)
0.927

(0.911-0.944)
0.910

(0.837-0.983)

Table 4.5: Results for ensemble methods for all regions and both sequences. Results reported
using area under receiver operator curve from LDA, separating data between K&L grades listed
in the separated columns.

Multi-Sequence Experiment

Table 4.5 shows the results for the ensemble by Laplacian eigenmap embeddings and ensemble

by PCA, where all MR sequences and regions are concatenated into a single feature vector.

4.3.3 Analysis

It appears that in general the multi-sequence, multi-region ensemble methods perform worse

than the mono-sequence, multi-region ensemble method for AUC. However, for late stage di-

agnosis (K &L < 4) performance is slightly improved.

As can be seen from table 4.4, the ensemble by Laplacian eigenmap embedding and the ensemble

by PCA methods outperform all other manifolds. This demonstrates the advantage of com-

bining the regions through the concatenation of features from multiple manifold embeddings,

followed by a further dimensionality reduction step.

Of the mono-sequence experiments, those which use the Sag 3D DESS sequence outperform

the results for Cor 3D T1 Flash experiments. This could be indicate that the Sag 3D DESS

sequence contains more relevant information in the intensity patterns in the articular cartilage.

However, the enhanced performance could be attributed to Sag 3D DESS being the selected

reference MR sequence. This could be investigated further as future work. Since we note
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Figure 4.8: ROC curve for LDA classification of Ensemble by Laplacian eigenmap embeddingM
(LEE), Ensemble by PCA (PCA) and Composite of all regions of interest for the sequence Sag
3D DESS (since it outperformed sequence Cor 3D T1 Flash for early diagnosis).

higher AUC for experiments with the sequence Sag 3D DESS, future analysis will concentrate

on mono-sequence, multi-region experiments with this MR sequence.

Early OA diagnosis (Diagnostic Imaging Biomarkers) The strongest biomarker in the

literature to date was presented by Dam et al. (2009). Their cartilage longevity marker, which

is a linear combination of cartilage morphology measures acquired from MRI, achieved an AUC

of 0.84 (0.77 to 0.92), when assessed for diagnosing K&L<2 . The strongest marker presented

here was through the Ensemble by PCA using regions in the ensemble, it achieved an AUC of

0.90 (0.89 to 0.92). Not only is the AUC improved by 6%, the confidence interval is narrower

which suggests the method presented here is more robust.

Figure 4.8 visualises the ROC curve for the three methods of combining the data from multiple

regions of interest using Sag 3D DESS. Here the diagnostic threshold is set to K&L<2. It

suggests that ensemble by PCA slightly outperforms composite of all regions and Ensemble by

Laplacian eigenmap embedding.
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Late stage OA diagnosis (Burden of Disease Imaging Biomarkers) Whilst not at

the heart of the work in this thesis, the reader’s attention should be drawn to the results for

late stage OA classification, achieving up to AUC= 95%. For previous studies which required

an accurate segmentation to extract morphometric biomarkers, segmentations are notoriously

difficult for subjects which look different from the healthy population and thus accurate mor-

phometric measurements might not be feasible. Since the solution proposed here profits from

dissimilarities between images from different classes, a manifold learning based biomarker is well

suited to such a problem, as accurate segmentations are not required and the affinity matrix is

generated through measurement of similarity of image appearance.

Classification Accuracy Results

Figure 4.9 shows a visualisation of the classification rate, sensitivity and specificity achieved by

the methods for combining regions with the Sag 3D DESS sequence.

4.3.4 Visualisation of Laplacian Eigenmap Embedding

It is possible to visualise two (or up to three) dimensions of the Laplacian eigenmap embeddings.

Typically the first two are visualised since these contain the most information regarding the

embedding. In a visualisation, each point represents a subject and the clinical data can be

represented through the colour of the point. Here the colour corresponds to OA status (K&L

grade) of the subject.

Figure 4.10 shows the manifold embeddings for the ensemble of Laplacian eigenmap embed-

dings. The ensemble for visualisation 4.10 (a) uses only regions in the sequence Sag 3D DESS

and the visualisation in 4.10 (b) combines regions from only Cor T1 3D FLASH sequences.

The visualisation in 4.10 (c) shows the ensemble is constructed using all regions of interest from

both sequences Sag 3D DESS and Cor T1 3D FLASH.

It should be remembered that the intrinsic dimensionality of the embedding (m) is likely to be

higher than displayed in the visualisation. Despite the incomplete nature of the visualisation,
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Figure 4.9: Classification results including correct rate, sensitivity and specificity for three dif-
ferent approaches for combining regional for the Sag 3D DESS sequence; Ensemble by Laplacian
eigenmap embeddingM (LEE), Ensemble by PCA (PCA) and composite of all regions . Each
circle represents a sample, specificity can be read by the proportion of the left (green) bar
shaded, sensitivity by the percentage of the right (red) bar shaded and the classification rate
is the percentage of both of the shaded sections of the bars.
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visualisations can still be used as a powerful tool for understanding the key structure of the

data, identifying trends and outliers.

4.4 Conclusion and Discussion

This chapter uses a machine learning algorithm to discover new diagnostic biomarkers directly

from image appearance without requiring an accurate segmentation. Previous approaches cre-

ate handcrafted and designed features which are thought to have a relationship with OA pro-

gression, these include thickness, volume and texture measures (Dam et al. (2009); Eckstein

et al. (2009); Buck et al. (2009); Qazi et al. (2007); Raynauld et al. (2004)). Previously studies

which have observed the articular cartilage over reduced regions of interest generally do not

combine data across multiple-regions. Buck et al. (2009) has been successful in isolating the

most descriptive region of interest in an ordered values approach, in contrast we combine these

measures through machine learning to allow us to exploit the diversity and richness of data

available.

The biomarkers proposed in this chapter improve upon previously proposed biomarkers. The

current state of the art biomarker based on the articular cartilage in MRI (Dam et al. (2009))

reports an AUC (95% confidence interval) for LDA classification of K&L grade<1 as 0.82

(0.77-0.92) and of K&L grade<2 as 0.84. Our results are for K&L grade<1 0.88 (0.86-0.89),

K&L grade<2 0.90 (0.89 to 0.92). The biomarkers presented here perform well and are very

competitive for early stage OA diagnosis.

Bauer et al. (2006) discusses biomarkers for late stage OA diagnosis which they define as K&L

grade<3. Bauer et al. (2006) describe these as burden of disease imaging biomarkers, as the

name suggests the biomarker indicates the severity of OA. Such results for late stage OA are

rarely presented in the literature. It could be speculated that biomarkers which rely on accurate

segmentations might not perform very well, since inaccurate or noisy measurements are likely

in cases where the articular cartilage is badly damaged due to OA. Our results show very good

results for late stage OA classification, K&L grade<3 0.95 (0.94-0.96).
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Figure 4.10: Visualisation of ensemble of Laplacian eigenmap embeddings, displaying only the
first two eigenvectors, based on ascending non-zero eigenvalue order. It should be remembered
that this visualisation is only illustrative of the population in two dimensions, whilst classifica-
tion occurs in a low dimensional manifold space, dimensionality would be greater than two. The
visualisation shows the population of knee MRI focusing on the articular cartilage for sequence
a) Sag 3D DESS and b) Cor T1 3D FLASH c) both sequences

(a) (b)

(c)
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We have found in these experiments that combining multiple regions of interest from the Sag

3D DESS sequence yields higher diagnostic performance than using a multi-sequence biomarker

for early OA diagnosis. However, for very late stage OA classification (K&L grade<4), a multi-

sequence, multi-regional embedding (the multi-sequence Ensemble by LEE) yields the highest

AUC when compared with all other manifold embeddings presented.

4.4.1 Contribution Of Work

We have proposed a novel way of combining all regions of interest and MR sequences into a

single unified biomarker and we have demonstrated empirically that this unified biomarker has

strong diagnostic performance. The automated algorithm presented is demonstrated on a large

dataset. With further validation and experimentation the work presented in this chapter could

be used to form a clinically applicable diagnostic OA biomarker at all stages of OA for knee

MRI.

4.4.2 Limitations

The K&L scale is used as the ground truth data for classification of radiographic OA in this

chapter as recommended by Bauer et al. (2006). However, K&L have been shown to have a weak

relationship with pain and symptomatic OA, Hannan et al. (2000) showed that radiographic

evidence of structural osteoarthritis does not indicate a symptomatic response. The K&L scale

is limited as it is a one dimensional biomarker which describes three structural features which

can be observed in radiographs of knees and are associated with osteoarthritis (more details

in table 2.3). Additionally the K&L scale is difficult to apply due to inexact wording of the

descriptors (Schiphof et al. (2008)) which affects reproducibility. K&L grades are derived from

radiographs which are unable to detect soft tissue and so the grades focus on bone structures

which are apparent in the radiographs. The methodology proposed here focuses on the articular

cartilage (and its immediate neighbourhood in the 5 voxel dilation). Radiographs are further

limited as a diagnostic tool because of the 2D nature of the images. The methodology proposed
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in this chapter which generates biomarkers from MRI can capture subtle differences in cartilage

appearance that the methodology for the K&L grades are unable to detect. It is therefore

possible that the method presented here could outperform the K&L grade as a diagnostic

biomarker. Since we are training the classifier using K&L grades some of the errors presented

could be partially attributed to the limitations of the K&L grade.

Other limitations are introduced and addressed in future work (section 4.4.3).

4.4.3 Future Work

A linear classifier was employed to test the efficacy of the biomarkers derived in this chapter.

The chapter primarily focuses upon biomarker discover, a linear classifier enables the study to

test the expressive power of a biomarker generated by non-linear dimensionality reduction tools.

Additionally, the LDA classification experiments in this chapter replicate those performed by

Dam et al. (2009), this enables a fair comparison between our study and theirs. A non-linear

classifier, such as SVM, might increase classification accuracy, this should be explored.

To address the limitations of the K&L grades as indicators of structural OA severity as observed

on radiographs, it would be beneficial to use WORMS (Peterfy et al. (2004)) or BLOKS (Hunter

et al. (2007)) as ground truth measures. WORMS and BLOKS are richer semi-quantitative

measures of structural OA as observed by radiologists from MRI, this data has recently been

released by the OAI.

It could be clinically useful to generate a prognostic biomarker which predicts patient outcome

data. Outcome data could be structural such as whether patients need knee replacements or

functional such as pain experienced by the patient. The relationship between structure and

function as yet has been very challenging to determine.

It was found that occasionally region of interest selections were insufficiently accurate. This was

attributed to a poor initial affine registration, which lead to implausible non-rigid registrations.

The rate of affine registration failures and methods to compute robust and accurate affine

transformations are presented in the subsequent chapters.



Chapter 5

Accurate Global Geodesic

Registrations

Work in this chapter has, in part, been presented in:

C.R. Donoghue, A. Rao, A.M.J. Bull, and D. Rueckert. Robust Global Registration through

Geodesic Paths on an Empirical Manifold with Knee MRI from the Osteoarthritis Initiative

(OAI). Biomedical Image Registration, 7359:1-10, 2012.
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Abstract

Registration is important for many applications in medical image analysis. Affine registration

of knee MR images can suffer failures due to large anatomical, scale and articulated pose

variations. Within the OAI dataset we have observed a failure rate of approximately 4.2%

for direct affine registrations of knee MRI without manual initialisation. With the increase

in large population datasets any manual interventions to aid registration are not feasible and

so full automation with high accuracy is of paramount importance. Additionally, computing

exhaustive pairwise registrations across the OAI dataset is very computationally expensive.

We present a sparse ’geodesic’ registration method that increases the accuracy of pairwise

registration and also enables fast online computation of registration. We model the population

of unregistered knee MR images as a sparse k-nearest-neighbour graph to capture the empirical

low dimensional manifold of the images. Affine registrations are computed in advance for nearest

neighbours only. When a pairwise image registration is required the shortest path across the

graph is extracted to find a geodesic path on the empirical manifold. The precomputed affine

transformations along this path are composed to estimate the transformation. We propose an

additional refinement step to boost the registration accuracy.

5.1 Introduction

5.1.1 Motivation

Affine registration is necessary for many applications in medical image analysis. In some cases

this is achieved through the affine or rigid registration techniques described in chapter 3 and

4 as well as in the literature. Fripp et al. (2010) employs an affine initialisation prior to using

a 3D active shape model for bone segmentation. In work by Carballido-Gamio and Majumdar

(2011) an affinely aligned atlas is used to assess local cartilage changes of the patella. Atlases

are further used in work by Tamez-Pena et al. (2011) for multi-atlas based segmentation of

the articular cartilage, for which all images are affinely registered prior to atlas construction

and non-rigid deformation. Despite the prominence of affine registration in the literature for
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registration between inter-subject knee MRI, little exploratory work has been undertaken to

boost performance for both accuracy of results and speed.

Yin et al. (2010) present an alternative approach, an adaboost sliding window detector to locate

the tibia, femur and patella independently as a precursor to segmentation. The authors report

that no erroneous detections were observed but do not report precision of the localisation.

The method is tested only on 20 subjects and so it is unclear whether the method is truely

robust to a large population of subjects. The authors report that the algorithm requires 6

minutes on a IntelCore Duo 2.6GHz with 4GB RAM. A similar but faster method marginal

space learning (Zheng et al. (2009)) which subdivides the algorithm to reduce the search space

has been demonstrated on cardiac images.

Numerous contributions recognise affine registration to be a prerequisite step for accurate spa-

tial alignment (Carballido-Gamio and Majumdar (2011); Fripp et al. (2010)). Despite this

affine registration is commonly assumed to be a solved problem. Affine registration may have

appeared to be insignificant in studies where the sample size is approximately 20 subjects (Yin

et al. (2010); Fripp et al. (2010)).

With large datasets it is infeasible to expect that registration failures can be corrected manually.

The Osteoarthritis Initiative (OAI) provides public access data for large scale studies with about

4796 subjects. Robust automated tools that yield accurate and consistent results are essential

for analysis of datasets of this scale and fundamental to aid understanding of pathology and

biomarker discovery. Pairwise affine registration between images is highly desirable to remove

positional, scale and orientational bias from an experiment but exhaustive pairwise registration

is computationally unrealistic with thousands of images. Scalable solutions to address issues of

speed and accuracy are of extreme importance.

In a small study with only very few registration failures, it is trivial to manually correct for

errors. Based upon our findings of a 4.2% error rate, the impact of affine registration failures on

real world large scale projects is likely to become significant. Additionally manually correction

means that there is not consistent preprocessing for all subjects.
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Figure 5.1: MRI of four subjects right knee, subjects were selected for having the highest and
lowest BMIs in the database, the BMI of each are as follows a) 47.7, b) 45.4, c) 16.9, d) 17.6.
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figure a b c d

a
CC : 0.35

NMI : 1.014
CC : 0.22

NMI : 1.008
CC : 0.29

NMI : 1.011

b
CC : 0.35

NMI : 1.014
CC : 0.31

NMI : 1.013
CC : 0.32

NMI : 1.014

c
CC : 0.22

NMI : 1.009
CC : 0.31

NMI : 1.012
CC : 0.63

NMI : 1.042

d
CC : 0.29

NMI : 1.011
CC : 0.32

NMI : 1.014
CC : 0.63

NMI : 1.042

Table 5.1: Registration quality of pairwise registration between subjects with very high BMI
(a and b) and very low BMI (c and d). Registration qualitative success indicated by colour
of square; green indicates a successful registration, orange indicates the registration had
limited success with the results being ambiguous and red indicates the registration failed.
Quantitative success measured by similarity metrics cross correlation and normalised mutual
information are also displayed.

5.1.2 Preliminary Experiment

To demonstrate the potential difference in structure of anatomy in different subjects in the OAI

dataset we have selected some subjects with vastly different BMI. These are shown in figure

5.1. The maximum BMI in the database is 47.7 and the minimum BMI is 16.9. Since we would

expect that these subjects are likely to be dissimilar and therefore yield a poor registration,

we have conducted an experiment comparing the similarity of pairs of image pre- and post-

registration. The results can be found in table 5.1. If a and c are manually aligned so that the

images appear to have a very good overlap the cross correlation metric between the images is

poorer than after an automated registration which doesn’t appear to be so well aligned (0.24,

0.22 respectively).

5.1.3 Intermediate Template Selection

It is challenging to find anatomically meaningful correspondences between subjects with vastly

different anatomy. One challenge is finding correspondences between subjects where some struc-

tures are not present in both images. Such differences in anatomy can be explained as either

natural healthy variation but more often differences can be incurred due to pathology or devel-

opmental changes. Moreover, whilst it may be possible to determine correspondences between
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healthy controls on a gross structure level, at higher imaging resolutions such correspondences

become ambiguous.

Recently a new class of registration algorithms has been pioneered using intermediate templates

to aid accurate registration (Serag et al. (2012); Hamm et al. (2009, 2010); Jia et al. (2010, 2011,

2012)). The methods use intermediate templates to avoid direct registrations between a pair

of dissimilar images. A pair of dissimilar images can be registered via a series of intermediate

templates. Each intermediate template is similar to its neighbouring images in the series, a

registration between similar images is more likely to find accurate anatomical correspondences.

Serag et al. (2012) proposes registering neonatal brain MRI by selecting intermediate templates

based on their gestational age. This ensures that the deformations reflect the typical develop-

mental changes of subjects. Hamm et al. (2009) propose registering subjects using an empirical

manifold which is represented as a graph. Upon requiring a registration a shortest geodesic

path is computed across the empirical manifold. Jia et al. (2011) uses intermediate template

selection to initialise registrations. This method differs from other methods because each reg-

istration in the tree is precomputed. Further related work has been employed to model an

empirical manifold of non-rigid transformations of medical images (Hamm et al. (2009, 2010);

Jia et al. (2010, 2012)). Prior to this large deformation registration methods have been pro-

posed to preserve the topology of non-rigid deformations Christensen et al. (1996) but these do

not model the biological anatomical variations of the population of images.

In addition to applying the ideas of intermediate templates to affine registration of the knee, we

also look at refining the results of such a registration. Serag et al. (2012) propose refining the

final transformation by using the transformation from the geodesic shortest path in the graph

as an initialisation for a further registration. Section 6.2 addresses refinements of registration

in more detail.
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5.2 Geodesic Registration Framework

5.2.1 Overview

Upon affine registration of pairs of images without manual initialisation in a large dataset,

a high failure rate has been observed (4.2%), where failure is defined in section 5.3.1. This

chapter reports a registration framework which is robust to challenging pairwise registrations.

We firstly propose a framework to register any pair of images in a dataset and then a refinement

step is proposed in order to increase accuracy.

In the first section of this chapter we will address improving the accuracy of registration using a

variation of the data driven, intermediate template selection approach. We propose modelling

the empirical manifold of unaligned knee MR images in order to find a series of intermediate

templates for improved affine registrations. We propose a method for sparse graph construction

of an empirical manifold which is well suited to the registration of a large set of images. The

method proposed here, also differs because we compute all registrations in the sparse graph

offline.

Registrations may fail because the optimisation only finds a local minima and will not reliably

locate the global minimum. We hypothesise that pairs of images with greater similarities

are more likely to register successfully because the initial transformation is closer to the final

solution. Therefore, we assume that images with high similarity will generally achieve an

accurate affine registration. A large and varied dataset maybe considered advantageous as it

is likely to result in a dense sampling of the manifold. Knee MRI are acquired in a variety

of orientations, scales and positions (in addition to non-rigid variations in anatomy and pose),

in a densely sample manifold a path of intermediate templates may exist between two very

different subjects.

The low dimensional empirical manifold is represented as a graph with similar knee MRI con-

nected via an edge. The proposed method suggests a way for a small number of registrations

only between similar images to be precomputed. This means the computational cost is low.
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Figure 5.2: Registration scheme of standard sparse graphical registration

Figure 5.2 depicts an overview of this framework.

In the second section of this chapter we propose a refinement to geodesic registration. Any

intermediate transformation has a small error associated with it and so the shortest path in the

empirical manifold incorporates the registration errors. We consider the geodesic registration

as an initialisation of registration. The refinement step is a further affine registration to com-

pensate for such accumulated errors. The idea of registration refinement is further explored

and discussed in more detail in chapter 6.

5.2.2 Representation of the population

A graph G = (V,E) is constructed to model the low dimensional manifold of all MRIs in native

space for an anatomical region of interest. Each vertex in V is a sample on the manifold and

V represents the set of images {I1, I2, ..., In} in the dataset. Each edge in E is weighted wi,j

according to the similarity of images I i and Ij (see section 5.2.3 for more details). Each edge

ei,j also has a transformation, T i,j associated with it describing a spatial mapping from image

I i to image Ij.

G is chosen to be an undirected, sparse k-nearest neighbour graph. The representation G is

designed to model the local neighbourhood properties and preserve local relationships, this
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is why G is a sparse k-nearest neighbour graph, the connectivity of G is discussed in more

details in section 5.2.4. G is chosen to be an undirected graph since affine transformations are

invertible and so transformations are only computed in one direction. The inverse is computed

on the fly when required, this is discussed in more detail in section 5.2.5.

The registration transformation T i,j is assumed to be more likely to be successful if edge ei,j is

present and weigth wi,j is low, since this indicates that images I i and Ij have high similarity.

Images with high similarity are likely to be closer to a registration minimum and so have an

increased likelihood of a successful registration. Conversely, very dissimilar subjects will not be

nearest neighbours and so a direct transformation is not computed between such images.

5.2.3 Edge Weights

We weight the each edge ei,j in graph G based on the dissimilarity of images I i and Ij. The

weighting wi,j reflects the quality of an affine registration, where a low weight is more likely

to be successful since the transformation is theoretically closer to the global minima. A lower

weighted edge is more likely to be travelled through in a shortest path computation.

5.2.4 Connectivity of k-Nearest Neighbour Graph

The graph G is computed as a k-nearest neighbour graph, thus an edge exists between two

images I i and Ij if the similarity metric associated with edge ei,j is amongst the k highest edge

weights connected to either vi or vj. The similarity metric to define the nearest neighbours is

application specific. In our preliminary experiments we observed that normalised cross corre-

lation resulted in better registrations than normalised mutual information. We therefore use

normalised cross correlation in the remainder of this chapter.

To construct the graph, pairwise similarities are computed for all pairs of images, due to the

size of the OAI dataset |V | is very large. Computing all pairwise registrations in advance is

intractable and has complexity of
(
|V |
2

)
registrations. For example if |V | = 2000, the number of

registrations needed would be 1, 999, 000. Assuming that an affine registration take 6 minutes,
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the computations would take 8329 days on a single core machine. As a result it is not feasible

to compute the post-registration similarity metric to determine connectivity.

The images are blurred and downsampled prior to computing similarities. It is computationally

expensive to compute pairwise similarities of full image resolution using the available architec-

ture when the experiment was devised, mostly due to network bandwidth when reading images

from disk. Since the goal of the method is to achieve a strong global transformation and local

details are immaterial at this stage, pairwise similarities of images at this lower resolution are

sufficient.

5.2.5 Intermediate Transformations

Intermediate transformations are computed between images which are nearest neighbours on the

empirical manifold. For each edge ei,j ∈ E, the intermediate transformation T i,j is computed

as an affine registration between images I i and Ij. T i,j is stored in a database, with its

direction explicitly specified such that a matrix inversion of the transformation matrix T−1
i,j

can be computed in real time to yield T j,i. Registrations for all E are precomputed so any

intermediate transformation can be retrieved instantaneously. All T i,j are computed using an

intensity based affine registration algorithm (Studholme et al. (1998)).

5.2.6 Geodesic Pairwise Registrations

To register any pair of images I i and Ij, which may be very dissimilar, the empirical manifold

G can be used to find a sequence of similar intermediate templates. A corresponding sequence

of intermediate transformations can be composed to find a geodesic transformation (T i,j).

The sequence of intermediate transformations is computed as the geodesic shortest path in G

from I i to Ij using Dijkstra’s algorithm (Dijkstra (1959)). The elements of the shortest path

shall be indexed sequentially based on the element’s position in the path and shall be denoted

as •′, to distinguish it from indexing in G. A path in the graph < v′1, e
′
1, . . . , e

′
s−1, v

′
s > of length

s has an associated cost of the sum of the weights on each of the edges passed ∑s
r=1 w

′
r. A path
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constructed of vertices and edges in the graph encodes a representation of a series of similar

images connected by intermediate templates I and intermediate transformations T . Therefore

this path can be expressed as < I ′1,T ′1, . . . ,T ′s−1, I
′
s >.

Geodesic transformation, T i,j, between images I i and Ij is computed as the composition of the

intermediate transformations along the shortest geodesic path < I ′1,T ′1, . . . ,T ′s−1, I
′
s >, where

I ′1 = I i and I ′s = Ij.

T i,j = T ′1,s = T ′1 ◦ T ′2 ◦ . . . ◦ T ′s−1 (5.1)

Any geodesic pairwise registration can be retrieved rapidly. The composition of geodesic trans-

formations is achieved by a short series of matrix multiplications since all of the intermediate

transformations are computed in advance.

5.2.7 Simple Refinement of Registrations

When several affine transformations are composed, small errors in each transformation will

accumulate. Therefore the geodesic composed transformation T is suboptimal and it is possible

that it will have a considerable error associated with it. A refinement step can be employed in

which T is considered to be an initialisation for a further affine registration step. The refined

geodesic transformation is referred to as T̂ , the refinement transformation is referred to as

T refined. This is illustrated in figure 5.3.

T̂ = T ◦ T refined (5.2)
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Figure 5.3: Illustration of accumulation of affine registration error and the refinement step to
reduce errors
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5.3 Experiments

5.3.1 Data

Image Data

The experiments presented use 10,307 MRIs of left and right knees obtained from the OAI.

Specific datasets used are 1.C.0 and 1.E.0 at baseline and 1.C.1 and 1.E.1 at 12 months after

the baseline date. The fat-suppressed, sagittal 3D dual-echo in steady state (DESS) sequence

with selective water excitation (WE) has been selected since it has both high in plane resolution

(0.36 x 0.36mm) and a small slice thickness (0.7mm).

Validation Data

Pairwise registration accuracy is validated for a set of 97 randomly selected and manually

annotated images. The size of the validation set is significantly smaller than the size of the whole

dataset due to the overhead of manual annotation. Since the graph is symmetric, registrations

are only computed in one direction which means that 4656 registrations are evaluated.

Each image is annotated with four distinct landmarks, at the ACL and PCL ligament insertions

on the femur and the tibia. The middle voxel of each ligament is selected just before it meets

the bone. These landmarks are selected as they are visible in most subjects and exhibit a high

degree of placement reproducibility by readers. Osteoarthritis is predominantly associated with

structures in the joint space (articular cartilage, meniscus, synovium etc) therefore, observing

registration error in the joint space is clinically relevant.

It is time consuming and challenging to annotate landmarks on knee images which are not

affinely aligned. As a result, only four landmark points are annotated on the dataset. Land-

marks which are harder to place are likely to have a higher target localisation error, which adds

noise when measuring the target registration error.
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Computing Target Error

The registrations are validated by computing the error as the mean L2 norm of the target

registration error (TRE), from N annotated landmarks (here N = 4). pi and qi are the ith

annotated landmarks in the source and target image respectively. Landmark pi undergoes

transformation T , where T can be substituted with other transformations discussed in this

chapter (eg T , T̂ )

err = 1
N

N∑
i

||T (pi)− qi|| (5.3)

Registration Failure

We have defined registrations with mean target registration error (err) greater than 10mm as

failures. This error threshold is recognised to be fairly arbitrary. Despite the arbitrary nature

of this chosen threshold it is convenient to be able to quantify the number of registration errors

which are unacceptably high. The threshold has been set due to experimental findings. The

errors have been observed to form a log-normal distribution with a large tail for high registration

errors.

Assessing Target Localisation Error

The annotated landmarks are the center of the cruciate ligaments as they attach to the bone.

These landmarks were selected since landmarks on thin and cylindrical ligaments were easy

to identify. The mean target localisation error is computed using equation 5.3 where T is the

identity . It is computed to quantify the reproducibility of manual annotations for a single

reader.

Initially we tested landmark localisation on an MRI annotated twice by a single reader. 13

subjects were annotated twice, the mean localisation error computed between landmarks was

1.1mm. This suggests there is an expected reader error of 1.1mm, when all other possible
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sources of errors are eliminated.

We also tested landmark localisation on a single subject, where the MRI is acquired at different

time points. The anatomy is consistent between scans but they are not affinely registered.

It is challenging to accurately localise landmarks on images which are not affinely registered.

Unregistered baseline and 12 month MRI of 13 subjects were annotated. The 12 month MRI

were affinely registered to the corresponding baseline MRI. All registrations were manually

verified for failures and could be assumed successful. The mean localisation error is 2.1mm.

This explains a lower bound for same subject localisation error with pose variation.

The errors explored can predominantly be attributed to target localisation error. These exper-

iments provide lower bound error expectations for target registration errors computed in this

chapter.

5.3.2 Implementation Details

Choosing k for Graph Construction

To determine the connectivity (the set E) of the graphG we use a k-nearest neighbour approach.

When k is very large, G is fully connected and thus as k grows the shortest path across the

graph is more likely to be equivalent to a direct registration. However, if k is too small, there

would be multiple connected components and a shortest path would not exist between some

vertices. In these experiments we chose the smallest k such that there is only one connected

component.

Centring

A common initial guess for a registration is derived from aligning the images using the real world

scanner co-ordinates. However, this is not an appropriate initialisation for affine registration of

the knee which is susceptible to convergence to local minima. This was verified via preliminary

experiments from the OAI dataset. Instead the central voxel on each image is aligned as an
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initialisation by using a translation operation. This appears to be more successful, we speculate

that this is due to the effort made by the radiologist to ensure that the joint is approximately

at the centre of each image.

This initial transformation is used to define the connectivity of the graph, the edge weights and

as an initial guess when computing the intermediate transformations.

Degrees of Freedom

Experiments regarding the number of degrees of freedom appropriate for computing inter-

mediate transformations with this dataset were performed and nine degrees of freedom were

deemed sufficient, these included translations, rotations and scaling. It was found from visually

inspecting registration results that occasionally large skews would produce an inappropriate

transformation. These transformations maximised the similarity of the images but generated

transformations which were not anatomically meaningful with regards to the knee. Typically

in these cases, the transformations were represented more faithfully as a scale plus a rotation

operation. We speculate that this is due to the vastly differing scales of knees in the human

population.

Geodesic transformations might incorporate skew transformations. A composition of transfor-

mation where a rotation is composed with a subsequent scale will yield a skew. However, we

considered such a skew in the geodesic registration’s transformation model to be anatomically

meaningful because we assume that each intermediate transformation is anatomically mean-

ingful, the model is constrained such that that large skew transformations which do not reflect

anatomy are unlikely.

Similarity Metric

The similarity metric is used to define the connectivity of the graph, the edge weights and is

used for computing intermediate transformations. In all cases we use measures which are based
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Figure 5.4: Histograms of the registration error (mean Euclidean distance between a set of
landmarked points) distribution for all pairwise registrations

on normalised cross correlation (NCC), more details in section 2.3.3. To define edge weightings

a dissimilarity metric is employed, this is computed as wi,j = 1−NCC.

5.3.3 Results and Analysis

Three registration approaches between each image pair (image I i and image Ij ) are compared

here :

1. Direct intensity based registration, T i,j

2. Geodesic registration, T i,j

3. Geodesic registration with refinement, T̂ i,j

Figure 5.4 shows the distribution of errors for all the pairwise registration. Table 5.2 shows the

mean and standard deviation of the registration errors and the proportion of failed registrations.

As can be seen from the results the geodesic registration improves upon direct registration,

the standard deviation of the errors is reduced (4.69mm, 3.17mm respectively) and figure 5.4

indicates there are fewer outliers. However, errors appears to accumulate as transformations

are composed along the geodesic shortest path. The mean and the standard deviation of the

errors are further reduced due to a refinement step being added to geodesic registration. It

can be seen in figure 5.4 (c) that the mean target registration error is smaller, in addition to
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Affine registration algorithm Mean Euclidean distance
[mean (sd)] (mm)

Failed registrations
(%)

Direct registration (Studholme
et al. (1998))

5.80 (3.17) 4.17%

Geodesic registration 5.71 (2.17) 1.63%
Geodesic registration (refined) 5.01 (1.89) 0.97%

Table 5.2: Mean and standard deviation of registration error and the percentage of failed
registrations. A failed registration is considered to have an error of greater than 10mm.
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Figure 5.5: Histograms of the registration error distribution of 95th-100th percentile of ordered
errors, showing the worst 5% of affine registrations for each approach.

fewer outliers with high registration error. This is further confirmed by the results in table 5.2

which show a significant reduction in mean registration error (-0.79mm), standard deviation

(-1.28mm) and the number of failed registrations (-3.2%).

The focus of this work is to reduce the failure rate of affine registration. Figure 5.5 shows the

error distribution across the worst 5% of affine registration (the 95th - 100th percentile). It

can be observed that the geodesic registration method proposed here improves upon the direct

registration, reducing the number of failed registrations. This is also evident in the statistics

reported in table 5.2.

Figure 5.6 shows how the registration error changes when the geodesic registration with re-

finement is used compared to direct registration. Green indicates geodesic registration with

refinement is more accurate. Orange indicates that both methods are of similar accuracy. Red

indicates direct registration is more accurate. It can be seen that there are many more green

points, which indicates that geodesic registration with refinement is generally more accurate



5.4. Discussion 158

0 5 10 15 20 25 30 35 40 45 50 55
0

5

10

15

20

25

30

35

40

45

50

55

error of  graph registration with refinement in mm

e
rr

o
r 

o
f 

 d
ir

e
ct

 r
e
g

is
tr

a
ti

o
n

 i
n

 m
m

Figure 5.6: A quantitative assessment of both direct registration and geodesic registration
with refinement. Each point on the graph represents a registration error. Points are red when
the direct registration error is lower than geodesic registration with refinement error. Points
are green when the direct registration error is higher than geodesic registration with refinement
error. Points are orange when both errors associated with both methods are approximately
equivalent.

than direct registration.

Figure 5.7 gives a qualitative example of failed direct affine registration which was improved

by the geodesic registrations framework.

5.4 Discussion

In this chapter we have proposed modelling the population of unregistered knee MRI as an

empirical manifold using a graph, where the local properties of the manifold are modelled at

each vertex. This enables registrations to be precomputed for each edge of the graph. Since
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Figure 5.7: Qualitative example of inaccurate registrations improved by geodesic framework.

the graph is a sparse k-nearest neighbour graph where k is small, the maximum number of

registrations required is k × |V |. However, it is frequently observed that nearest neighbours

might be common between vertices and so this upper bound is unlikely to be reached. All of

the intermediate transformations are precomputed as part of the training phase and Dijkstra’s

shortest path algorithm is highly efficient, which means the run time computational cost is low.

A registration computed via the shortest path on the graph can be considered an initialisation

which is quickly computed between any pair of images. A refinement step is also proposed,

leading to to dramatically increased registration accuracy relative to direct affine registrations.

Mean target registration errors were shown to be approximately 5mm. However, some of this

error could be attributed to the target localisation error of the manually placed landmarks.

Mean target localisation error was estimated to be around 2mm when markers were placed

on the same subject at different poses. However, this estimation does not include anatomical

variation that is likely to be included in the mean target registration errors. This interpretation

enables us to suggest that on average these localisation errors are fairly small. Despite this,
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there are still outliers present and this motivates future work to reduce the number registrations

with large errors.

5.4.1 Limitations

The search for k-nearest neighbours for the graph construction is exhaustive and the number

of comparisons grows quadratically with the number of images. There are many contributions

in the literature which discuss improvements, including hashing (Indyk and Motwani (1998))

or tree based searches (Bentley (1975)). However, since the graph only needs to be constructed

once, this was not considered to be a major limitation.

An out-of-sample extension could be added to this framework so that an unseen image could

be accurately registered to any image in the population. Initially, the nearest neighbour of the

unseen image would need to be determined, then the method proposed here can be applied to

find the registration. This scenario would benefit from an efficient nearest neighbour algorithm

to find the nearest image in the empirical manifold, a sub-linear search would be preferable to

an exhaustive linear search.

Currently, similarity metrics can only be computed at low resolutions for the graph construction

due to the large cost of pairwise computations. For the purposes of this application, the

computations at low resolution appears to be sufficient since the methods achieves boosted

performance when compared with direct registration. However, the effect of similarities at

higher resolutions could be explored using a multiscale approach. The l-nearest neighbours of

G determined by pairwise similarity of low resolution images can be found, where |V | � l >

k. From the set of l selected neighbours, the k-nearest neighbours can be determined using

similarity metrics of higher resolution images.

5.4.2 Future Work

The geodesic registration method presented here performs well only as an initialisation. This

was investigated by manually inspecting registrations with poor accuracy that were computed
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using the geodesic framework. It appears that the registration failures can typically be assigned

to occasional erroneous edges on the graph. The next chapter shall explore approaches to omit

such erroneous edges or improve paths through more sophisticated machine learning algorithms.



Chapter 6

Fast and Accurate Global Geodesic

Registrations

Work in this chapter has, in part, been presented in:

C. R. Donoghue, A. Rao, A. M. J. Bull, and D. Rueckert. Fast and Accurate Global Geodesic

Registrations using Knee MRI from the Osteoarthritis Initiative. Medical Computer Vision

Workshop (MCV) at Computer Vision and Pattern Recognition (CVPR), 2012
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Abstract

This chapter follows on from chapter 5 and addresses some of the limitations. In chapter 5

it was found that the geodesic registration method provides small accuracy improvements and

faster registration compared with direct registration. The refinement method proposed signif-

icantly increases accuracy of the geodesic registrations but reduces the speed. In this chapter

we present two novel refinement steps which boost registration accuracy over the graph but

also preserve speed advantages of the geodesic registration. We use all precomputed trans-

formations to infer transformation errors for each edge, through assuming global registration

cycle consistency across a sparse graph. In conjunction with this, we propose fusing multiple

successful registrations as a strategy to mitigate small errors in each intermediate transforma-

tion of the graph. It is shown that, in combination, these techniques achieve more accurate

pairwise registrations than both geodesic registration and direct pairwise registration. This

chapter addresses accuracy of registrations, speed of computation and scalability to a large

scale dataset.

6.1 Introduction

The previous chapter (chapter 5) aimed to reduce the frequency of ’failed’ registrations using

an empirical model of the manifold of unregistered knee MR images. A shortest geodesic path

across the empirical manifold is used to find accurate approximations of the correct transforma-

tion between a pair of images embedded in the manifold, this is fast to compute. A refinement

step to increase the accuracy of geodesic registrations is also presented but the refinement step

increases the computational costs so that it is equivalent to a direct registration.

This chapter provides a method which enables fast, robust and accurate pairwise registrations to

be computed for all images embedded in the empirical manifold. It combines the speed benefits

of the transformation being computed using a geodesic path across an empirical manifold

(sections 5.2.1 - 5.2.6) together with the accuracy benefits of the refinement (section 5.2.7).

This chapter begins by identifying the key causes of registration errors which are incorporated

into the model presented in chapter 5. If the registration errors which are corrected using the
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refinement step (section 5.2.7) can be identified and mitigated during the geodesic registration

algorithm presented then the refinement step can be eliminated.

6.1.1 Notation

We shall overview notation for consistency with the previous chapter. Geodesic transformation

T is computed from a shortest path over an empirical manifold represented as sparse graph

G = (V,E). The shortest path is of length s; < v′1, e
′
1, . . . , e

′
s−1, v

′
s >, which has cost c =∑s

r=1w
′
r, •′ defines elements of a path which are indexed sequentially. The shortest path

encodes a representation of a series of highly similar images connected by transformations

T . This path can be expressed as < I ′1,T
′
1, . . . ,T

′
s−1, I

′
s >. Intermediate transformations

T i,j associated with edge ei,j ∈ E are all precomputed using a standard affine registration

algorithm. Transformation T I′
1,I

′
s
between images I ′1 and I ′s is computed as the composition

of the intermediate transformations T I′
1,I

′
s

= T ′1 ◦ T ′2 ◦ . . . ◦ T ′s−1.

6.1.2 Sources of Registration Error in Geodesic Registration

Registrations errors which are incorporated in a shortest geodesic path of the graph can be

two-fold (illustrated in figure 6.1):

Error type 1 : Each intermediate transformation T are likely to incorporate small errors

due to local minima, ambiguities and imperfect registrations on a discretised grid. These errors

can accumulate along a path and become significant for a geodesic registration resulting with

error in T .

Error type 2 : It is possible that there exists intermediate transformations T which have

failed to find correspondences between subjects. This can result in a large error in any T which

contains an erroneous intermediate transformation.



6.1. Introduction 165

Figure 6.1: A registration between a source and target image across the shortest path in the
graph (6.1 (a)) is used to represent a path upon the empirical manifold as depicted in 6.1 (b).
However this method incurs two types of registration errors as described in subfigures 6.1 (c)
and 6.1 (d).

(a) geodesic shortest path across the discrete repre-
sentation of empirical manifold

(b) images in the geodesic shortest path over the empiri-
cal manifold

(c) Error type 1 : small errors are associated with
each registration since an affine registration can not
define a perfect spatial mapping between two sub-
jects with different anatomy, this error can accumulate
across a path. These errors are addressed using Regis-
tration Fusion.

(d) Error type 2 : occasionally some of the interme-
diate transformations within the graph are erroneous
registrations, these errors can be quite significant, as
with transformation T 3 in the diagram. Such regis-
trations disrupt any registration path that passes this
edge. The diagram also contains error type 1 , since
error type 1 is inherently ubiquitous. Cycle Consis-
tency is used to try to mitigate the effects of error
type 2.
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6.1.3 Strategies to Reduce Registration Error

This chapter presents two solutions devised to combat each of these error types. We mitigate

error type 1 by computing transformations for several shortest geodesic paths in the graph

and computing the average of these transformations. This is analogous to selecting several ap-

proximations and fusing to yield an accurate transformation. Future references to this concept

shall be referred to as registration fusion.

As described by error type 2, a single erroneous transformation in G has the potential to

pollute a number of geodesic registrations if it is used in multiple shortest geodesic paths. It

is assumed that the majority of the intermediate transformations in G are reasonably accurate

because only similar images are registered. Therefore very inaccurate intermediate transforma-

tions are not consistent with most intermediate transformations in the G. Inaccurate interme-

diate transformation can be identified offline prior to geodesic registration since all intermediate

transformations T of the empirical manifold are precomputed. The edge weight matrixW can

be adjusted such that intermediate transformations for which a high error is predicted can be

penalised. Consistency is established by observing cycles in the graph, hence future references

shall refer to this concept as cycle consistency.

6.1.4 Contributions

This chapter contributes a method which is fast, robust and tested on a large scale dataset.

By mitigating error types 1 and 2 using registration fusion and cycle consistency, a geodesic

registration has been demonstrated to offer improved robustness relative to a direct registration.

We find that the mean error is reduced by 1.0mm and the standard deviation is reduced by

1.9mm . We observe the number of outliers to be significantly decreased.

The computational speed of the algorithm is improved compared to geodesic registration with

refinement (section 5.2.7). The proposed method computes a registration between a pair of

images in approximately 2 seconds. Moreover, cycle consistency can boost accuracy offline and
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thus does not affect runtime computational speed of geodesic registrations. Registration fusion

computes multiple shortest paths when computing a registration between a pair of images. We

show that the computational cost grows linearly with respect to the number of paths (in section

6.2.2).

The method we present has been demonstrated to perform well on a modern large-scale dataset,

in addition there is reason to believe that performance is enhanced due to the dense sampling

of subjects on the manifold.

6.2 Increasing Geodesic Registration Accuracy through

Refinements

The geodesic registration algorithm in chapter 5 proposes computing a transformation com-

posed from the shortest geodesic path in a graph connected by image similarity. A refinement

step (section 5.2.7) was applied to enhance the accuracy of the algorithm. This chapter inves-

tigates two alternative refinement methods instead; registration fusion and cycle consistency.

6.2.1 Graph Construction for Geodesic Registration

The geodesic registration algorithm presented here is very similar to the basic algorithm pre-

sented in sections 5.2.1 - 5.2.6.

The set of edges E in the G are the k-nearest neighbours of V . The nearest neighbours are

defined by using the pre-registration similarity metric between two connected images. The

choice of connectivity parameter k varies between chapters, in this chapter the selection of the

parameter is explored in more detail in section 6.3.2. All other details of the algorithm remain

constant between chapters.

The weightings W of edges E in G are defined as the post-registration normalised-cross cor-

relation similarity. This is in contrast to the approach in described section 5.2.3 where pre-
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registration similarity is used for both selecting k-nearest neighbours and weightings W . The

modification is made because the variance of pre-registration similarity is low and it is hypoth-

esised that post-registration similarity assesses registration quality more accurately.

6.2.2 Registration Fusion : Fusing Registration on Multiple Paths

In general, an affine registration error is present at each edge in G and small errors can accu-

mulate along a path in G. Registration errors here can be attributed to convergence to a local

minima, numerical inaccuracies or that no single affine transformation exists for all anatomy.

We propose eliminating some of the accumulated deviations of T by fusing multiple trans-

formation approximations T 1, . . . ,T K. The fusion is expected to average out random noise

.

A similar idea has previously been adopted to fuse segmentations created by multiple raters

(Warfield et al. (2004)) or multiple atlases where each segmentation is viewed as a classifier

(Heckemann et al. (2006)). In the segmentation scenario, each classifier votes on the final

segmentation outcome. In this work multiple registration estimates can be combined to generate

improved registration. An overview of the registration fusion algorithm is presented in figure

6.2.

Multiple Paths using Yen’s loopless K-shortest paths

We propose finding the K-shortest-paths1 on the graph using a fast implementation of the Yen’s

loopless K-shortest paths algorithm (Martins and Pascoal (2003)). Yen’s algorithm is known as

a deviation algorithm. Firstly it finds the shortest path and then seeks to find K−1 deviations

of the best path. When K-shortest paths are requested between images associated with vertices

vi and vj over graph G, the algorithm constructs a "psuedo"-tree representation of the graph.

The "pseudo"-tree has vi at the root of the tree and vj at the leaf nodes. A route between the

root and a leaf defines a path qi. It is called a "psuedo"-tree because it has repeated nodes in
1Within this section K is used to denote the number of shortest paths which should not be confused with

connectivity parameter k.



6.2. Increasing Geodesic Registration Accuracy through Refinements 169

the tree. However, the tree does not contain repeated nodes in any path qi which is why the

algorithm is considered to be loopless. No edges can have a non-negative weight associated

with them. This is consistent with the work in this thesis since all weights in graph G are

non-negative. An illustration of the "pseudo"-tree can be seen in figure 6.2 (d).

The implementation employed here2 differs from the standard Yen’s K-shortest path algorithm

by analysing the nodes in a different order. This enables improved worst case computational

complexity. The algorithm has complexity of O(Kn(m+n log(n))), where n = |V | andm = |E|.

Assuming that a suitable empirical manifold is learnt and represented as G with fixed n and m,

the algorithm is of linear complexity with respect to the number of paths selected. Each shortest

path computed by Yen’s algorithm can be considered a guess at an accurate global transfor-

mation. We shall refer to the K transformation approximations as the set {T 1,T 2, . . . ,T K}.

Fusing Transformations

Registration fusion computes a single transformation from {T 1,T 2, . . . ,T K}. The transfor-

mations are fused by taking the mean of the transformations (T̄ ).

Affine transformations do not occupy a linear space and as a result T̄ can not simply be

computed by calculating an element-wise mean of the affine matrices, where T̄ = [τ̄i,j], τ̄i,j 6=∑K
k=1 t

k
i,j

K
. This can be illustrated by computing the element-wise mean of a 180◦ rotation (as

transformation T 1) and a 0◦ rotation (as transformation T 2), where the average transformation

would be expected to be a 90◦ rotation (as transformation T̄ ). However an element-wise average

of T 1 and T 2 results in the matrix in equation 6.1, which we denote as T . It can be seen

that T̄ 6= T . Moreover, T is not an affine transformation since it is not a rotation, scaling,

translation or shearing operation and it is singular and so thus is not constructed from these.
2 C++ implementation of K-shortest paths algorithm version 2.0 downloaded from

http://code.google.com/p/k-shortest-paths/downloads/list (accessed December 2011)
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T =



(cos(180) + 1)/2 0 0 0

0 (cos(180) + 1)/2 0 0

0 0 1 0

0 0 0 1


=



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


(6.1)

These effects are because affine transformations exist in a Riemannian manifold. A Riemannian

manifold (or metric space) is a space for which there is a defined distance metric and the

topology is uniform. The distance between two points in a Riemannian manifold can not

be computed as the Euclidean distance between the points, instead a geodesic distance is

computed. Any measurements that need to be computed can not be computed in a vector

space but instead measurements need to be generalised for Riemannian manifolds (Pennec

(2006)).

To find the mean of K transformations we introduce the Frechet mean (Fréchet (1944), the

original paper is in French but a high-level summary in English can be found in Pennec (2006)).

The mean transformation as defined by the Frechet mean is the transformation which minimises

the log-Euclidean distance between K transformations. It can be computed iteratively by

minimising the distance between K transformations and the current estimate of the average

transformation T̄

arg min
T̄
{exp( 1

K

K∑
i=1
| log(T i)− log(T̄ )|)} (6.2)

In this case T i refers to the ith transformation, the transformation is not raised to the power

of i. The approach presented here using log-Euclidean distances has previously been presented

for averaging transformations by Alexa (2002); Aljabar et al. (2008) and Arsigny et al. (2006)

who uses the Frechet mean to average tensors.

We propose that each of these registration estimates should be voting for an accurate global

registration. In this implementation we demonstrate the simplest voting scheme where each

estimate has an equally weighted vote but further extensions could investigate the benefits of a

weighted scheme since these are found to be advantageous for atlas based segmentation fusion
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(Artaechevarria et al. (2009)).

We can increase the speed of pairwise affine registrations. Since registrations in G are precom-

puted, upon requesting a pairwise registration only the shortest path needs to be computed

followed by a composition of the affine transformations along this path, which is a matrix multi-

plication of the 4x4 transformation matrices traversed on the path. However, we have observed

that errors can be incorporated into registrations using the graphical model. In the previous

chapter this was solved with a simple refinement of the registrations.

6.2.3 Cycle Consistency : Globally consistent transformations

The basic geodesic registration method presented in section 5.2 assumes that similar images are

more likely to yield an accurate registration than two dissimilar ones. However, occasionally

two similar images might result in convergence to a local minimum as opposed to the true

global minimum. Large registration errors are less likely in graphs connected by only similar

images but such errors exist. Additionally, in this graph mis-registered images can have a high

similarity since registration optimises the similarity. Thus, one should be sceptical about using

the same similarity measure as an indicator of registration accuracy. We propose inferring the

error of each edge by observing known errors in the graph using a technique which we call cycle

consistency. We use global cycle consistencies to improve the weight of edges, which indicates

transformations quality, on graph G.

The idea of registration consistency has been introduced previously Christensen and Johnson

(2001). However, more recently Datteri et al. (2011) has suggested using cycles to validate

registrations and to improve on multi-atlas segmentation. The method presented by Datteri

et al. (2011) uses a dense graph of images and therefore limits the number of subjects which can

be included due to computational reasons. The method presented here is a sparse representation

which can be solved for large numbers of subjects. The registration quality in this chapter is

learnt offline, resulting in benefits in both speed and accuracy.

We extend on this method by assessing registration errors in the empirical manifold. This is
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Figure 6.2: Martins and Pascoal (2003) is used to compute the multiple shortest paths in a
graphs, these paths are then fused to find a registration between two subjects using a Frechet
mean. 6.2 (a), 6.2 (b) and 6.2 (c) show all the paths selected by the multiple shortest paths
algorithm. 6.2 (d) shows the three shortest paths represented as a loopless tree and the frechet
mean registration fusion.
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t1  o  t2  o   t3  =  I

Figure 6.3: Cycle consistency

used as a similarity metric to weight the edges in the graph. This enables more reliable geodesic

paths to be selected and in turn improved registration accuracy across the empirical manifold.

Cycle Consistency

If a path on G is taken such that it starts and finishes at the same vertex to form a cycle, we

expect that the composed transformations on this path should be the identity transformation.

Since the operation is effectively equivalent to registering an image to itself. To take this a step

further, we can assume that all cycles in the graph should produce an identity transformation.

Each edge is part of many cycles, so we use this intuition to infer the error of each edge in the

graph by assuming that each cycle should adhere to this consistency constraint.

A cycle of length 3 is constructed of images I i, Ij, Ik which are all connected by edges, ei,j, ej,k,

ek,i, with corresponding precomputed transformations , T i,j, T j,k, T k,i, in sparse graph G. The

cyclic transformation is constructed by composing the transformations, T c := T i,j ◦T j,k ◦T k,i,

as shown in figure 6.3.

dc is used to express the distance between T c and the identity which defines the consistency

error. The distance function to compute dc can be defined on an application specific basis. We

assume that the error xi,j of each edge ei,j additively contributes to the cycle error and that

xi,j is non-negative. We model the cycle error as dc = xi,j + xj,k + xk,i + ε, where ε represents

the random unmodelled registration errors. Considering all three-node cycles extracted from
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our sparse graph, we globally model the cycle consistency as

d = Ax+ ε s.t. x > 0 , (6.3)

in which x is the vector of unknown edge errors which we wish to recover. Here, A is a

sparse matrix with elements ai,j ∈ {0, 1} which encode the connectivity of all cycles, where

each row is a cycle and the columns are edge indexes. An entry of A is 1 if and only if the

corresponding edge is present in the corresponding cycle. We adapted the method presented

by Datteri et al. (2011) by formulating (6.3) as a least squares minimisation problem which

enables us to introduce the convex non-negativity constraint:

min
x
||Ax− d||22 st x > 0 (6.4)

We optimise (6.4) using the method proposed in Coleman and Li (1996).

For this application, the distance between cycle transformation T c and I is computed by mea-

suring the mean error of the eight corner points of the 3D knee MR, p, after transformation

T c,

dc = 1
8

8∑
i

||T c(pi)− pi||2 (6.5)

This approach is based on sparse precomputed pairwise transformations which are used to in-

fer edge errors from known cycle errors (distances from the identity). We propose using the

estimated edge errors to weight the transformations in our graphical registration framework.

As shown later in the experiments, it is more reliable to use the estimated edge errors than

other measures of registration accuracy such as the normalised cross correlation (NCC). How-

ever, many of the edge errors are very close to zero, which means that these weights are not

appropriate for finding the shortest path, since a large path length is likely to be selected. We

adjust for this effect by defining the edge weights wi,j as
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wi.j = xi,j + σ(x) , (6.6)

where σ(x) is the standard deviation of all learnt edge errors. The standard deviation is selected

to reflect the distribution of x. If the weight wi,j is too low for those edges with low error,

it is likely that many edges will be selected when finding a shortest path. A long path is not

desirable because it is possible that small errors will accumulate therefore is is necessary for

some penalty σ(x) to be associated with an edge even if the error is predicted as very low.

Finally, it is important to mention that it is straightforward to generalise this approach to

cycles composed of more than three nodes.

6.3 Experiments

6.3.1 Data

Image Data

The experiments presented use 2743 MRIs of right knees from the Osteoarthritis Initiative

(OAI) public use dataset from groups 1.C.0 and 1.E.0 at baseline. The fat-suppressed, sagittal

3D dual-echo in steady state (DESS) sequence with selective water excitation (WE) (referred

to here as Sag 3D DESS) has been selected, since it has both high in plane resolution (0.36mm

by 0.36mm) and a small slice thickness (0.7mm).

The dataset used for experiments in section 5.3.1 uses subject’s left and right knees, from

baseline and 12 month scans. It is computationally expensive to compute the graph and

registration error reduction methods for a very large dataset. To speed up experiments for this

chapter, the dataset has been reduced to just include subject’s right knee at baseline.



6.3. Experiments 176

Validation Data

For validation of registration accuracy, 75 MRIs were randomly selected and annotated with

landmark points at the insertions of the cruciate ligaments. The methods are tested for 2775

unique pairwise registrations. The selected landmarks and annotation protocol for the valida-

tion data is the same as in section 5.3.1.

6.3.2 Results and Analysis

We compare several approaches for registering image pairs:

Method 1 Direct registrations, where a pair of images are registered using a standard affine

registration algorithm;

Method 2 A geodesic registration approach using a sparse graph described in section 5.2,

which uses one geodesic registration path and a normalised cross correlation based dis-

tance metric;

Method 3 A geodesic registration approach using a sparse graph with cycle consistency to

choose suitable weights for edges in the graph and a single registration path, as described

in section 6.2.3;

Method 4 A geodesic registrations approach using a sparse graph with registration fusion,

described in 6.2.2, using three fused registration paths and a normalised cross correlation

based distance metric;

Method 5 A combination of the approaches, discussed in sections 5.2, 6.2.3 and 6.2.2, using a

geodesic registrations approach using a sparse graph with three fused registration paths

and cycle consistency to choose suitable weights for edges in the graph.

Analysis will begin by exploring the robustness of the algorithm to parameters k and K.
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Figure 6.4: Mean registration error in mm for values of k, where the number of paths K = 3

Method Comparison with Respect to Varying Connectivity k

Parameter K is fixed to 3 for these analyses, these conclusions generalise to other values of

K. Parameter K is necessary for registration fusion (method 3) and cycle consistency and

registration fusion (method 5).

The connectivity parameter of the graph, k, determines the sparsity of graph G by specifying

the number of edges connected to each vertex. At most k × |V | registrations are required

but frequently many vertices have common nearest neighbours and so in practise the number

of registrations required is much lower. If the selected k is very large there is an increased

probability that a geodesic registration between two subjects will be equivalent to a direct

registration, since the shortest path becomes more likely to be a single edge. However, k needs

to be suitably large such that unnecessarily long paths incorporating many edges and therefore

many small errors can be avoided.

Results for affine registration for the methods proposed are presented in figure 6.4 for vary-
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ing parameter k. It can be observed that direct registration has a higher mean error when

compared to all of the methods which use geodesic registration as a basis (methods 2-5). Di-

rect registration is not dependant upon k. When the connectivity of the graph k > 35, the

geodesic registration with registration fusion (method 3) has lower mean error when compared

to geodesic registration (method 2). Geodesic registration with cycle consistency (method 4)

has slightly lower mean error than standard geodesic registration (method 2) when the connec-

tivity of the graph k > 30. We found that using geodesic registration with cycle consistency

and registration fusion (method 5) has the lowest mean error for all k.

Geodesic registration with registration fusion (method 3) is very sensitive to parameter k.

However, when registration fusion is used with cycle consistency (method 5), the results are

less sensitive to parameter k. This supports the hypothesis that image similarity is not suitable

for the edge weights. Since when multiple paths are selected bad edges are included because the

weightings are not appropriate. When cycle consistency is used as edge weights, more reliable

paths are selected and the error is more consistent over changes in k.

The standard deviation of the error for methods over this range was also observed and similar

trends were noted, with fluctuations over varying k for registration fusion (method 3). Addi-

tionally, when geodesic registration is combined with cycle consistency and registration fusion

(method 5) the standard deviation of the error is consistent over all k. Also the standard

deviation of error over all k is lower than all other methods proposed.

Having observed the effect of k upon the methods, subsequent analysis will fix k=60, where a

strong performance is observed for all methods.

Method Comparison with Respect to Varying Paths K

The number of K-shortest paths for the registration fusion is an important parameter that needs

to be selected. Figure 6.5 shows the effect of varying K upon the mean error and computations

time. As can be seen from figure 6.5 (a), the mean error is reduced dramatically with the first

3 paths but the gain tails off. The mean computational time is measured on one core of an

Intel Core2 Duo E8400 3.00GHz with data stored on a network file system. It can be seen from
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Affine registration algorithm Mean Euclidean distance
[mean(sd)] (mm)

Method 1 5.88 (3.46)
Method 2 5.25 (1.84)
Method 3 5.08 (1.71)
Method 4 4.97 (1.66)
Method 5 4.86 (1.59)

Table 6.1: Statistics of errors (mean and standard deviation) in mm where k = 60

6.5 (b) that computational cost grows linearly with the number of paths. A multi-threaded

CPU implementation of the software would render this constant time if the number of paths is

less than or equal to the number of threads.

Method Comparison with fixed k and K

A summary of results for k = 60 are presented in table 6.1. It can be seen that using the

geodesic registration with cycle consistency and registration fusion (method 5) , has lower

mean and standard deviations than other methods. Figure 6.6 compares the distribution of

errors for different registration methods. Figure 6.6 (a) shows geodesic registration with cycle

consistency and registration fusion (method 5) compared to direct registration (method 1) it

can be seen that outliers are significantly reduced by using method 5. This demonstrates an

increase in robustness. A more subtle reduction in outliers is observed in figure 6.6 (b).

Figure 6.7 visualises how the error of pairwise registrations changes with two registration meth-

ods, namely direct registration versus geodesic registration with cycle consistency and regis-

tration fusion. Each point represents a registration between a pair of images and its position

represents the error for both methods. If a point lies upon the black line, it can be seen that this

registration has not changed despite using different methods. We draw the readers attention to

registrations with high errors using direct registration that are improved using geodesic regis-

tration with cycle consistency and registration fusion. It can be observed in a minority of cases

that geodesic registration with cycle consistency and registration fusion increases the error of

the registration by up to 5mm. Geodesic registration with cycle consistency and registration
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Figure 6.5: Graphs illustrating the performance in terms of computational speed and accuracy
for the method presented in this chapter (Geodesic registration with cycle consistency and
registration fusion)

(a) Mean registration error in mm for number of paths selected in registration
fusion.
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(b) Computational time cost in seconds for number of paths selected in registra-
tion fusion.
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Figure 6.6: These box plots show the distribution of errors for 3 registration methods, where
n = 2743. Note the scales on these plots are different to illustrate the vast improvement of our
method upon direct registration but more subtle improvement upon geodesic registration.

(a) This box plot compares direct registration with our method.
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(b) This box plot compares geodesic registration to our method.
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Figure 6.7: Pairwise comparison of registrations methods; direct registration versus the method
proposed here, registrations to the upper-left of the line have reduced error with geodesic
registration with cycle consistency and registration fusion, registrations to the lower-right have
reduced error using direct registration.

fusion drastically reduces the number of registrations which have registration error greater than

1cm.

A contribution in chapter 5 was to propose the refinement step. However, some differences exist

between this chapter and chapter 5, making it inappropriate to compare results directly between

chapters. We test the efficacy of the refinement step proposed in chapter 5 by applying it to

geodesic registration with cycle consistency and registration fusion (method 5). When applying

the refinement step to these transformations, we find the accuracy on average degrades, the

distribution of these results is presented in a box plot in figure 6.8

A Qualitative example of registration accuracy improvement is visualised in figure 6.9.
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Figure 6.8: Box plot of the presented method without (left) and with (right) a refinement step.
The results from the algorithm presented in this chapter are considered to be an approximation
of an affine registration. The refinement step (as presented in chapter 5) is a further affine
registration after the registration algorithm with the expectation of improving the accuracy. It
can be seen that the accuracy decreases after the refinement, this suggests that a refinement
step after the method is of no value.
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Source 

Target Direct registration

Geodesic regisration using cycle 
consistency and registration fusion

Figure 6.9: Example of registration using direct registration and geodesic registration with
cycle consistency and registration fusion. The images on the left are the target and source to
be registered. Images on the right show the results of registration with the contours of the
transformed source overlaid on the target.

6.4 Discussion

In this chapter cycle consistency is used as an approach to infer a more reliable distance metric to

weight the quality of a transformation connecting any two vertices (or images) in the empirical

manifold. When a single shortest path is found in the empirical manifold, the transformations on

the path traversed should be of higher quality and therefore able to perform a more meaningful

global registration of a pair of images. With this approach alone, we show that the registration

error reduces when compared to the standard geodesic registration model where a normalised

cross correlation based metric is used instead. Direct affine registration is an optimisation which

aims to minimise normalised cross correlation to find a suitable alignment. In the case where

the registration gets trapped in a local minimum, the similarity metric between the images

will be high without there being an accurate registration, which suggests a normalised cross

correlation based metric will not perform well. We present evidence to suggest that assuming

global cycle consistency across the empirical manifold to rate transformation reliability appears

to be effective in identifying strong and weak transformations in the graph.

Fusing multiple shortest paths on the graph of affine transformations enables voting between
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many successful registration estimates. It appears to have a degree of success using normalised

cross correlation as a similarity metric to weight the edges in the graph. Although the perfor-

mance of this approach appears to be unstable across different experiments where the connec-

tivity parameter k is varied. For some k the mean error is much worse than similar graphical

registrations approaches.

When both cycle consistency and registration fusion are combined both the mean and standard

deviation of the error is reduced. Moreover, we observe the error to be stable over varying k.

Geodesic registration with cycle consistency and registration fusion performs better than each

approach in isolation. We find that the mean error is reduced by 1.0mm and the is reduced by

1.9mm when compared with direct registration this is because outliers are significantly reduced.

It can be seen in figure 6.6 that very few registrations computed using a geodesic registration

with cycle consistency and registration fusion have registration errors greater than 1cm.

6.4.1 Computational Cost

The graph used in this work is well sampled with 2743 images. However, it is impractical to work

with a fully connected graph. The work presented in Datteri et al. (2011) uses cycle consistency

as a measure of registration quality for multi-atlas segmentation on a fully connected graph

but experiments are limited to 10 subjects. The work presented here demonstrates that the

techniques presented here can be applied to a large, sparse k-nn graph.

The number of registrations required to compute the large, sparse graph offline is large. In

the case of the experiment for the 60-nearest-neighbour graph with 2743 vertices there are

approximately 125,000 unique registrations that need to be computed. Whilst this may seem

excessive, it should be remembered that the method will yield results with improved accuracy

upon direct registration for any pairwise registration. To compute all pairwise registration

using the direct registration approach approximately 3,750,000 unique registrations would be

computed.

The method presented here is fast for online computation of registrations. Geodesic registra-
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tions with cycle consistency and registration fusion can be computed in less than 2 seconds

on one core of an Intel Core2 Duo E8400 3.00GHz with data stored on a network file system.

This compares favourably to direct registration which takes approximately 150 seconds. If

registration fusion is not used, geodesic registration with or without cycle consistency can be

computed in approximately 1 second. Whilst geodesic registrations using registration fusion

provides more accurate results, the speed of computation is slower. Therefore the preferred

approach is likely to vary depending whether the application requires high accuracy or fast

online computation.

6.5 Future Work

We present and demonstrate a scalable algorithm for geodesic affine registration because affine

registration has been shown to not be sufficiently robust when applied to the knee. For other

anatomical structures, such as the brain, affine registration is a robust solution however, non-

rigid registration is not. Future work could be embarked upon to extend this work for a non-

rigid geodesic registration model. The affine geodesic registration technique in this chapter

serves as a proof of concept to demonstrate that registrations can be improved through offline

learning and fusion. In addition the pairwise registrations computed here could be used as an

initialisation to non-rigid registrations across the graph.

It is possible to weight the contribution of the transformation matrices when computing the

Frechet mean. The K shortest paths each have a different associated weight which reflects the

quality of the components in the composed affine transformation. The transformations could

be weighted accordingly when computing the average of these. This extension takes inspira-

tion from the multi atlas based segmentation literature, where weighted fusion is employed

(Artaechevarria et al. (2009)).

The accurate registrations computed in this work can be used as an input for further stud-

ies. This includes increasing registration accuracy for atlas based segmentation or biomarker

discovery.



Chapter 7

Conclusion

7.1 Contributions

The contributions of this thesis can be broadly separated into two categories; discovering diag-

nostic biomarkers of Osteoarthritis from knee MRI and developing a computationally efficient

method for robust intensity based registration for knee MRI.

7.1.1 Diagnostic Biomarkers

We have introduced novel fully automated algorithms, based upon manifold learning, which

differ significantly from current state of the art methodologies. Typically, hand-crafted quanti-

tative morphological measures are computed from segmentations (Dam et al. (2007); Eckstein

et al. (2009)) or observed by a radiologist (Hunter et al. (2008); Peterfy et al. (2004)). These

morphological measures are selected and designed to reflect the current understanding of the

progression of OA. However, it is recognised that OA is a complex disease (Aspden (2008);

Conaghan et al. (2006)) which is yet to be fully understood. These approaches could omit

subtle but key features in the MR images. Cartilage morphology metrics computed from seg-

mentations have been shown to differ significantly for different segmentations teams (Schneider

et al. (2012)), due to this limitation the author recommends readers do not pool results from

different teams.

187
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To tackle these issues we introduce data-driven algorithms which learn features that best predict

OA. These features are learnt from a very large dataset of healthy knee MR and MR of knees

at various stages of OA. In this thesis diagnostic biomarkers are learnt from the appearance of

the articular cartilage in MR. Automation removes errors which can be attributed to human-

readers of images and yields results which are reproducible and makes large scale studies feasible.

The algorithms presented avoid the need for an accurate segmentation. This is beneficial since

segmentation is a common source of errors especially when studying the articular cartilage which

is a challenging structure to segment. Moreover, the segmentation becomes more challenging

for subjects with more severe OA.

The diagnostic biomarkers presented have been shown to provide superior AUC results com-

pared with state of the art algorithms (Dam et al. (2009)) (chapter 4). It has also been shown

that there is a strong correlation between clinical variables and the manifold embedding (chap-

ter 3). The algorithm presented has potential for applications in a clinical setting, for drug

discovery and as a research tool.

7.1.2 Robust and Efficient Affine registration of the Knee

We identified that intensity based affine registration of the knee is not sufficiently robust for

large scale image analysis. On average, approximately 5% of affine registrations between a

pair of knee MRI fail catastrophically. We developed fast algorithms to compute robust affine

transformations of the knee, taking inspiration from Serag et al. (2012); Hamm et al. (2009,

2010); Jia et al. (2010, 2011, 2012).

We model the population of images as a non-linear manifold, where the similarity is defined

by a prediction of registration success. We compute geodesic shortest paths on the graph to

guide registration which increases robustness (chapter 5). We also identify sources of error for

which we seek to find fast mitigation strategies using cycle consistency and registration fusion

(chapter 6).

The method proposed here has been demonstrated to offer improved accuracy relative to a
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direct registration between a pair of images. We find that the mean error is reduced by 1.02mm

and the standard deviation is reduced by 1.87mm. We observe the number of outliers to be

significantly decreased. The algorithm computes a registration between a pair of images in

under 2 seconds. The method we present has been demonstrated to perform well on a modern

large-scale dataset. In addition we believe that performance is enhanced due to the dense

sampling of subjects on the manifold.

7.2 Future Work

At present the algorithms lend themselves to large scale clinical trials, where a large cohort is

recruited and analysis to assess the efficacy of DMOADS is required. However, for a clinical

application it is useful to provide a rapid computer aided diagnosis for a subject. Currently

computing robust affine registration and diagnostic biomarkers for previously unseen subjects

requires significant computation. This limitation can be addressed with out-of-sample solutions

which exist on a theoretical basis (Bengio et al. (2004)) but would need to be incorporated and

applied to the problem presented.

All algorithms presented are data driven and rely upon pairwise similarity metrics. It was found

that cross correlation provided a good metric, both for registration accuracy and biomarker dis-

covery. Cross correlation performed well because it was sufficient to assume a linear relationship

between voxel intensities as all images are acquired as single sequences. However, if the simi-

larity metric could be learnt for the specific task, performance may be improved. This might

be achieved using recent research in sparse learning, which has been used to learn regions of

important voxels (Janousova et al. (2012)) or by using Adaboost to boost feature comparison

for distance metric learning (Yang et al. (2010)). It is likely that a different similarity metric

might be required to compute robust affine registration and diagnostic biomarkers.
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7.2.1 Diagnostic Biomarkers

The ground truth selected to validate the biomarkers presented was K&L grades. K&L grades

are a crude and coarse way to define structural disease status. To improve upon K&L grades it

would be beneficial to validate biomarkers against semi-quantitative metrics of disease severity

which have greater granularity, such as BLOKS or WORMS (Hunter et al. (2008); Peterfy et al.

(2004)).

Diagnostic biomarkers are a useful tool to aid understanding of the current pathological status

of a subject. This can be complemented by effective prediction of outcome or prognosis. An

accurate prognosis may lead to early surgical or non-invasive interventions. Bauer et al. (2006)

suggests a framework for prognostic biomarker specification and validation. Recently Eckstein

et al. (2013) has published a case-control study predicting joint replacement in patients using

cartilage loss as a biomarker of OA progression. The outcome data used here has very recently

been released by the OAI. A study comparing the manifold learning biomarkers presented in

this thesis with cartilage loss would be interesting.

Understanding pain is an important motivation in Osteoarthritis research. It is challenging to

find a relationship between function and structure but achieving some understanding would be

a large contribution to the field. Addressing this with data driven approaches is more likely to

yield positive results than hand-crafted solutions because of the complexity of the relationship.

7.2.2 Robust and Efficient Affine registration of the Knee

Pairwise affine transformations for this large sample of subjects from the OAI can be computed

very quickly and accurately. Using this data it would be possible to build an unbiased atlas

which establishes a common space for comparisons of knee MRI. Such a facility already exists

for the brain MRI and is referred to as MNI standard space (Evans et al. (1993)). Moreover, it

is possible to make pairwise comparisons of subjects in their native co-ordinate space.

It would be valuable to extend this work to include non-rigid registration in the framework.

Pairwise affine registrations can currently be established for the entire population. Image pairs
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which are similar after the affine transformation has been applied have an increased likelihood

of a successful non-rigid registration. This non-rigid graph based algorithm would take further

inspiration from Serag et al. (2012); Hamm et al. (2009, 2010); Jia et al. (2010, 2011, 2012). One

could also explore adopting cycle consistency and registration fusion for a non-rigid version.

One could consider adopting a B-spline non-rigid transformation model or a polyaffine model.

The applications of this would be two-fold, firstly as an input for finding a transformation

between any pair of images which would be useful for discovering biomarkers (as in chapter 4)

or as a fast initialisation for an automated segmentation algorithm.



Chapter 8

Publications

Work presented in this thesis, has in part, been presented in:

C. R. Donoghue, A. Rao, A. M. J. Bull, and D. Rueckert. Learning Osteoarthritis Imaging

Biomarkers Using Laplacian Eigenmap Embeddings with Data from the OAI. IEEE Interna-

tional Symposium on Biomedical Imaging, 2014.

C. R. Donoghue, A. Rao, A. M. J. Bull, and D. Rueckert. Fast and Accurate Global Geodesic

Registrations using Knee MRI from the Osteoarthritis Initiative. Medical Computer Vision

Workshop (MCV) at Computer Vision and Pattern Recognition (CVPR), 2012

C.R. Donoghue, A. Rao, A.M.J. Bull, and D. Rueckert. Robust Global Registration through

Geodesic Paths on an Empirical Manifold with Knee MRI from the Osteoarthritis Initiative

(OAI). Biomedical Image Registration, 7359:1-10, 2012.

(prize won : young investigators award) C. Donoghue, A. Rao, A. M. J. Bull, and D. Rueckert.

Automatically Generated Novel Diagnostic Imaging Biomarkers with Data from the OAI. 4th

Imaging Workshop for Osteoarthritis, 2011.

C. Donoghue, A. Rao, A. M. J. Bull, and D. Rueckert. Manifold learning for automatically

predicting articular cartilage morphology in the knee with data from the osteoarthritis initiative

(OAI). SPIE Medical Imaging 2011 : Image Processing, 7962, 2011.

192



193

C. Donoghue, A. Rao, A. M. J. Bull, and D. Rueckert. Articular Cartilage as an Automatic Pre-

dictor for Cartilage Morphology with Data from the Osteoarthritis Initiative. 4th International

Workshop on Imaging Based Measures of Osteoarthritis, 2010.

(2nd prize) C. Donoghue, A. Rao, A. M. J. Bull, and D. Rueckert. Articular Cartilage as

an Automatic Predictor for Cartilage Morphology with Data from the Osteoarthritis Initia-

tive. Poster Competition Research Students’ Summer Symposium 2010, Graduate School of

Engineering and Physical Sciences, Imperial College, 2010.
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