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Abstract

Cardiovascular diseases are the single most important cause of death in the developed

world. Their early diagnosis and treatment is becoming crucial in order to reduce mortal-

ity and to improve the patient’s quality of life. The detection of cardiac diseases requires

advanced methods for the quantification and analysis of the cardiovascular system. Re-

cent advances in image modalities allow the high resolution imaging of the heart. Among

them, MR imaging plays an increasingly important role for the understanding of the heart

and the detection of cardiac abnormalities. However, MR imaging remains a new tech-

nology limited to specialised imaging centers. Therefore, algorithms assisting with the

interpretation of cardiac MR images are of high importance.

In this thesis, several novel approaches for the spatio-temporal alignment of cardiac

MR image sequences have been developed. The registration algorithms have the ability

to correct any spatial misalignment caused by differences in the acquisition of the hearts

and by local shape differences. Furthermore, the registration techniques have the ability

to correct temporal misalignment caused by differences in the length of the cardiac cycles

and by differences in the dynamic motion patterns of the hearts.

The spatio-temporal registration methods are used for the development of novel sta-

tistical and probabilistic atlases describing the anatomy and function of a healthy heart.

To our best knowledge, this is the first attempt to build atlases for cardiac MR image

sequences describing the cardiac function as well anatomy. The probabilistic atlas pro-

vides statistical information in the form of tissue probability maps while the statistical

atlas provides additional information regarding shape and function variability across the

healthy population. During the construction of the statistical atlas the distribution of car-

diac shapes is divided into two subspaces. One distribution subspace accounts for changes

in cardiac shape caused by inter-subject variability. The second distribution subspace ac-

counts for changes in cardiac shape caused by deformation during the cardiac cycle (i.e.

intra-subject variability).
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The atlases can be used as educational tools and for assisting the diagnosis of cardiac

diseases. A possible use of the statistical atlases is demonstrated by using them to classify

image sequences from normal subjects and subjects with hypertrophic myocardiopathy.
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Chapter 1

Introduction

Cardiovascular diseases (CVDs) are the single most important cause of death in the devel-

oped world [133]. According to a recent estimate of theWorld Health Organization16.7

million deaths each year are caused by CVDs [133]. Their early diagnosis and treatment

is becoming crucial in order to reduce mortality and to improve patients’ quality of life.

The detection of CVDs requires advanced methods for the quantification and analysis

of the cardiovascular system. Novel cardiac imaging modalities provide researchers and

clinicians with important tools for the diagnosis and treatment of CVDs. This chapter pro-

vides the motivation for this work, reviews the basic anatomy and function of the heart,

describes the main modalities for the imaging of the cardiovascular system and finally

analyses the contributions of this thesis.

1.1 Motivation

Recent advances in non-invasive imaging modalities allow for the high resolution imag-

ing of the cardiovascular system. Among these modalities, magnetic resonance imaging

(MR) is playing an increasingly important role. MR imaging allows not only the acqui-

sition of high resolution 3D cardiac images which describe the cardiac anatomy but also

the acquisition of 4D cardiac image sequences which describe the cardiac anatomy and

function. Although the use of MR imaging in clinical practice is rapidly increasing, it
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still remains a new technology primarily limited to specialised imaging centers. There-

fore, applications assisting the interpretation of MR images are of high importance for

increasing the clinical use of MR imaging.

The recent advances in MR imaging have led to an increased need for image regis-

tration and normalisation methods which are used in a large number of applications for

calculating the cardiac motion [29], segmenting cardiac images [109] and building models

which describe the cardiac anatomy [112]. However, most of these registration methods

ignore any temporal information contained in the cardiac MR images and deal only with

the cardiac anatomy. The development of techniques for the spatial and temporal nor-

malisation and alignment of 4D cardiac MR images will enable comparison between the

cardiac anatomy and function of number of subjects to be made. These spatial and tem-

poral registration methods could also be used for the construction of computerised proba-

bilistic and statistical models containing information regarding the variability of anatomy

and function of a healthy heart. Furthermore, these models would assist the better inter-

pretation of MR image sequences. They could also be used for classifying images and

segmenting images. For example, Valdés et al. used a probabilistic atlas of the heart

to enable the segmentation of cardiac MR images [108]. Moreover, the atlases will also

enable statistical and computational comparisons between individuals and groups to be

performed making them important clinical tools.

In order to build a cardiac model from MR images describing both the cardiac anatomy

and function of a healthy heart the following research issues must be addressed:

• How to compare the cardiac anatomy and dynamics for an individual subject, be-

tween different subjects and between different group of subjects. Current approaches,

enable the comparison of only the cardiac anatomy or the cardiac dynamics.

• How to build a model of the heart which captures statistical information regard-

ing variability of both the cardiac anatomy and dynamics across a population of

subjects. Current approaches enable the construction of cardiac models of only

the cardiac anatomy or the cardiac dynamics. No approach presently exists which
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combines information regarding the cardiac anatomy and dynamics into a single

model.

1.2 Objectives of the thesis

The following are the main objectives of this thesis:

• To develop new registration methods which enable the mapping of cardiac MR im-

age sequences into a common spatial and temporal coordinate system. Mapping

only the cardiac anatomy, as most cardiac registration approaches do, is not enough

since the heart is undergoing spatially and temporally a varying degree of motion

during the cardiac cycle. The spatio-temporal mapping will allow the direct com-

parison between the cardiac anatomy and function of a number of image sequences

to be made. In order to achieve this, novel methods for the spatial and temporal

alignment of cardiac MR image sequences are required.

• To develop new methods for building probabilistic and statistical models of the

cardiac anatomy and function. These models will contain statistical information

regarding the variability of both the anatomy and function of the heart across a

population of subjects. The spatio-temporal registration methods will be used in

order to align a number of cardiac MR image sequences, used for the construction

of the models, to the same spatial and temporal coordinate system enabling direct

comparisons between their cardiac anatomy and function to be made.

1.3 The cardiovascular system

For a better understanding of the remainder of this dissertation, a brief review of the

anatomy and function of the human cardiovascular system as well as its imaging modal-

ities is given in the next two sections. For a more detailed analysis of the cardiovascular

system see [18] and for MR imaging see [117].
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The cardiovascular system is one of the most vital systems in the body. Its prime

responsibility is the circulation of blood to cells throughout the body. The blood provides

oxygen from the lungs to the cells and transfers carbon dioxide from the cells to the lungs.

The circulation of the blood is achieved by the heart which forces the blood through the

blood vessels. The circulation of the blood can be divided into two stages: thepulmonary

circulation and thesystemic circulation. During thepulmonary circulationthe blood is

carried out from the heart to the lungs. In the lungs oxygen is absorbed and carbon dioxide

is removed from the blood. During thesystemic circulationthe blood is pumped by the

heart to the cells in the body. It is obvious that if the heart stops pumping blood, the cells

of the body will not be able to survive without the necessary oxygen and death will be the

eventual consequence.

Pulmonary vein

Right ventricle

Left atrium

Papillary muscle

Right atrium

Left ventricle

Pulmonary artery

Superior vena cava

Inferior vena cava

Aorta

Myocardium

Bicuspid atrioventricular valve

Tricuspid atrioventricular
Valve

Pulmonary
valve

Aortic valve

Figure 1.1: A schematic figure of the heart (adapted from [18].

The heart is composed of two pumps. A schematic diagram of the heart is shown in

figure 1.1. The left part of the heart is responsible for thesystemic circulationand the right

part is responsible for thepulmonary circulation. Each side of the heart has two chambers

(theatrium and theventricle). Theatrium receives blood from the veins and aids its flow

into the ventricle which forces it into the arteries. Therefore, the blood coming from

the body enters the rightatrium, flows to the rightventricle(RV) and exits towards the
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lungs. After absorbing the necessary oxygen, the blood returns to the heart through the

left atriumand then it is propelled to the body by the leftventricle(LV). The walls of the

ventriclesare composed of a muscular tissue which contracts and thus pumps the blood

out of theventricles. The muscular tissue in theventricular walls is themyocardium.

The inner surface of themyocardiumis theendocardium, while the outer surface is the

epicardium. Theatria can also contract like theventriclesbut their main function is to

act as reservoirs which are filled with blood flowing back through the veins to the heart.

The heart is enclosed by thepericardiumwhich separates it from theepicardiumby the

pericardial fluid.

The ventriclesand theatria are connected by theatrioventricular (AV) valves (the

tricuspid and themitral valves). Attached to the free margins of these valves are the

tendinous cordswhich are attached to projections ofventricularmuscles known aspapil-

lary muscles. The exit from the rightventricleinto thepulmonaryartery is guarded by the

pulmonary semilunar valveand the exit from the leftventricle into the aorta is guarded

by theaortic semilunar valve.

The main role of the blood vessels is to carry blood through the entire body. The

blood vessels are divided intoarteriesandveins. The arteriescarry blood away from

the heart while theveinscarry blood towards the heart. The large arteries are named

elastic arteriessince their volume is dynamically changed due to the large volume of

blood ejected from the heart. The elastic properties of these arteries have an important

role in the cardiovascular haemodynamics. They transform the rhythmic pulsating high

pressured blood flow coming from the heart into a more stable flow with significantly

lower pressure.

During the circulatory process the blood flows from the systemic circulation into the

right atriumvia the superior and inferiorvena cavaand from the pulmonary circulation to

the leftatrium via the fourpulmonary veins. When the pressure of eachatrium is greater

than the pressure of the correspondingventricle, the AV valves open causing the blood to

flow towards theventricles. When theventriclesare about 80% full, theatria contract and

propel blood into theventriclesto complete their filling. The high pressure increase in the
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ventriclescauses the AV valves to close preventing the blood flowing back to theatria.

The contraction of the rightatrium wall causes the blood to flow from the rightatrium to

the rightventriclevia thetricuspidvalve. The rightventriclecontracts forcing the blood

through thesemilunarvalve into thepulmonaryartery leading to the lungs where the

blood is saturated with oxygen. The high pressure increase in the rightventriclecauses

the tricuspid valve to close preventing the blood entering back to the rightatrium. The

oxygenated blood flows back into the leftatrium through thepulmonaryveins. The blood

enters from the leftatrium the leftventriclewhen themitral valve opens. When the left

ventriclecontracts, the pressure of the oxygenated blood rises. When the pressure in the

left ventricleexceeds the one in theaorta, theaortic semilunarvalve opens ejecting blood

with high pressure into theaorta.

1.3.1 Electrical properties of the heart

The cardiac muscle has the ability to contract without nervous input. The action potential

for each heart beat is generated by a pacemaker node in the rightatriumand is transmitted

through the heart along specialised pathways (figure 1.2). The pacemaker is a small

area in the wall of the rightatrium known assinoatrial node(SA). The action potential,

generated in the SA node, is carried from cell to cell along the plasma membrane through

the low electrical resistance of the intercalated disks. The conduction velocity throughout

theatrial muscle is increased by three pathways: theanteriorband, themiddleband, and

theposteriorband. These bands merge near the next node, theatrioventricular node(AV

node). The AV node is located in theatrioventricular fibrousring on the right side of

theatrial septum. From the AV node the action potential travels to thebundle of Hisand

from there to thePurkinje network. From there the action potential is spread throughout

the ventricular wall. Figure 1.2 provides a schematic description of the nodes and the

conduction pathways of the heart.

The cardiac action potential has different characteristics in different regions of the

heart. It has different characteristics in theatrial muscle, in the SA and AV nodes, in
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Figure 1.2: The conducting pathways of the heart(reproduced from [18]).

Figure 1.3: Shape, duration and sequence of cardiac output potential (reproduced from
[18]).

Purkinjefibres and in theventricularmuscle (see figure 1.3). The duration of the action

potential (action potential duration) also varies in different regions of the heart (figure

1.3). The shortest duration occurs in the SA and AV nodes and also theatrial muscle
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ventricular muscle SA and AV node

Figure 1.4: Cardiac potentials in theventricle and SA or VA nodes (reproduced from
[18]).

(200-250msec), while the longest duration occurs in thePurkinje fibres(300-400msec)

[18]. In thebundle of Histhe duration of the action potential is within the range of 250-

300msec. The action potential characteristics of the following areas are (figures 1.3 and

1.4) [18]:

• In the ventricularmuscle the resting membrane potential is steady, approximately

at -90mV (Phase 4 in figure 1.4). The action potential has a rapid depolarisation

(Phase 0), reaches its peak at approximately +20mV, and afterwards it has a rapid

but short decline (Phase 1). Then, the action potential has a prolonged shoulder

(Phase 2). At the end, the membrane repolarises very quickly (Phase 3).

• The action potential of theatrial muscle has similar characteristics with theventric-

ular muscle. As figure 1.3 shows, it has less obvious plateau (phase 2) and longer

repolarisation.

• In theSAandAV nodes the cells have less negative resting membrane potential than

other heart cells. In between action potentials, their membrane potential (Phase 4 in

figure 1.4) is also unstable and depolarises at approximately 20mV (from around -

70mV to around -50mV). The cells in these nodes have slower depolarisation (phase

0 in figure 1.4) than the cells in theventricularmuscles. This slow depolarisation

is called thepacemaker potential. The action potential reaches its peak at around



1.3 The cardiovascular system 28

0mV and repolarises with speed similar to theatrial muscle (phase 3). This can be

seen in figure 1.3.

1.3.1.1 The Electrocardiogram (ECG)

The synchronised deporalisation spreading through the heart causes currents in the extra-

cellular fluid that establish field potentials over the entire body. These potential differ-

ences can be detected by placing electrodes on various places on the body’s surface. The

detected signal is called theelectrocardiogram(ECG). Prior to recording, the detected

signal needs to be amplified. Figure 1.5 provides a schematic figure of a standard ECG

record at resting heart rate.

Figure 1.5: A standard ECG record (reproduced from [18]).

The pattern on the ECG signal depends in the position of the electrodes. However,

certain features are always present (figure 1.5). TheP waveis produced by the spread

of electrical activity during theatrial depolarisation. TheQRS complexis produced by

ventriculardepolarisation. TheT waveis produced byventricular repolarisation. When

no repolarisation or depolarisation occurs, there is not potential difference in the ECG

record (theisometric line). Theatrial depolarisation occurs during theQRS complexand
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Figure 1.6: The depolarisation and repolarisation of the heart and the resulting ECG
record (reproduced from [18]).

does not produce any visible wave in the ECG signal. TheT waveis longer than the

QRS complexbut smaller in amplitude because theventricular repolarisation is less well

synchronised than theventricular depolarisation. ThePQ interval (or thePR interval)

in figure 1.5 is the time required for excitation to spread through theatria, the AV node

and thebundle of His. The time required for excitation to spread through theventricle

is denoted by theQS interval. TheQT interval measures the duration of theventricular

action potential, while thePSinterval measures the duration of the action potential. Figure

1.6 shows the depolarisation and repolarisation of the heart and the resulting ECG record

[18].

1.3.2 The cardiac cycle

In normal conditions the human heart beats between 65 to 75 times per minute, which

means that each heart beat lasts around 0.85sec. Each heart beat is considered as a car-

diac cycle which is separated into a contraction phase (systole) and a relaxation phase

(diastole) of the atria andventricles. In order to analyse the cardiac cycle in more de-

tail it latter is separated into seven phases ([91]). Figure 1.7 provides an example of the
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Figure 1.7: An example of the pressure and volume of the heart during the cardiac cycle
(adapted from [91]).

volume of the leftventricleduring each phase of the cardiac cycle. In addition, it shows

the relationship between the ECG signal, theventricularvolume and the cardiac pressure

during the cardiac cycle. The seven phases of the cardiac cycle are:

• Theatrial contraction

• The isovolumetric contraction

• Therapid ejection
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• Thereduced ejection

• The isovolumetric relaxation

• Therapid ventricular filling

• Thereduced ventricular filling

Theatrial contractionis initiated by the electrical depolarisation of theatria (P wave

of figure 1.5). As theatria contract, the pressure within theatrial chambers increases.

The pressure gradient which is generated across the open AV valves causes a rapid flow

of blood into theventricles(figure 1.7).

Theisovolumetric contractionis initiated by theventriculardepolarisation (QRS com-

plexof figure 1.5). During the isovolumetric contraction all the valves are closed and the

volume of theventriclesremains the same. However, there is a rapid increase in the

intraventricularpressure due to depolarisation of theventricle.

In therapid ejectionphase theintraventricularpressures exceed the pressures within

theaorta andpulmonaryartery. This causes theaortic andpulmonicvalves to open and

blood is ejected out of theventricles.

After therapid ejectionphase,ventricularrepolarisation occurs (T waveof figure 1.5)

causing theventriculartension to fall and the rate ofventricularemptying to be reduced.

This is called thereduced ejectionphase. In this phase theventricularpressure falls below

the blood pressure in the outflow tracts. However, the blood continues to flow due to its

kinetic energy.

When the total energy of the blood within theventriclesis less than the energy of the

blood in the outflow tracts, theaortic andpulmonicvalves close (isovolumetric relaxation

phase). During this phase, theventricularpressures decrease. However, theatrial pres-

sures continue to rise due to venous return (figure 1.7). The volumes of theventricles

remain constant since all the valves are closed. The volume of the blood which remains

in the ventricle is called theend-systolicvolume. In the leftventricle the end-systolic

volume is about 50ml.
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The rapid ventricular filling occurs when theventricular pressures fall bellow the

atrial pressures. Then, the AV valves open and theventricular filling begins. Theven-

tricles continue to relax, despite blood inflow, which causesintraventricularpressure to

continue falling by a few additionalmmHg. The opening of the AV valves and the rapid

flow of blood cause a rapid fall in theatrial pressure (figure 1.7).

In reduced ventricular fillingphase theventricularpressure rises as theventriclesfill

with blood. This reduces the pressure gradient across the AV valves so that the rate of the

filling falls. Theaortic pressure (andpulmonary arterialpressure) continue to fall.

1.3.3 Relationship between cardiac volume and pressure

The performance of the cardiac muscle is affected by the extent to which it is stretched

during diastole, its current state of contractible energy and theatrial pressure against

which the blood has to be ejected [18]. The performance of the heart can be studied

by examining the relationship between the cardiac volume and the cardiac pressure. An

example of a volume-pressure curve of the leftventricleis given in figure 1.8.

Figure 1.8: Leftventricularvolume-pressure curve of a normal cardiac cycle (reproduced
from [18]).

During the diastole the heart fills with blood, increasing its volume (from an end-

systolic volume of 60ml to an end-diastolic volume of 130ml). At this phase there is an
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increase in the pressure in the leftventriclefrom 5mmHgat point A (figure 1.8), where the

AV valve opens (rapid ventricular filling phase), to around 10mmHgat point B where the

AV valve closes (isovolumetric contractionphase). During theisovolumetric contraction

there is a rapid increase in the pressure (point C on figure 1.8). If at this phase theaorta

was clamped so that blood could not escape, the pressure would rise to pointC∗ on figure

1.8. This is themaximum systolic ventricularpressure. The pressure at C depends on the

diastolic pressures of theaorta. At C theaortic valve opens (rapid ejectionphase) and

blood is ejected from the heart. During the ejection of the blood the ventricular pressure

increases from about 80mmHgto about 120mmHgand then declines reaching point D

(at this point the aortic valve closes) at about 100mmHg. The contraction phase from

point C to D is referred to asauxotonicbecause it is occurring against the afterload of

a varying aortic pressure. The aortic valve closes at D, where isovolumetric relaxation

occurs and the pressure drops from D to A. The area enclosed under the volume-pressure

loop (ABCDA) is a measure of theexternal workdone by the heart.

A number of measurements are important in clinical practice. Thestroke volumeis the

difference of theventricularvolumes at the end-diastole (EDV) and end-systole (ESV).

The stroke volumemultiplied by the heart rate is thecardiac output. The ratio of the

stroke volumeto theend diastolicvolume is theejection fraction[4]. The volume of the

left ventricle, theejection fractionand the wall thickness are the most important indices

of cardiac performance [132]. Table 1.1 provides representative values for these cardiac

measurements at rest and after exercising [18].

Cardiac output Heart rate Stroke volume EDV ESV
(Lmin−1) (beatsmin−1) (ml) (ml) (ml)

Non-athlete
Rest 5 70 70 130 60
Max. exercise 21 190 110 130 20

Trained athlete
Rest 5 40 120 200 80
Max. exercise 34 190 180 200 20

Table 1.1: Representative values of cardiac measurements at rest and after exercising.
Values for trained athletes and non-athletes are provided (adapted from [18]).
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1.3.4 Cardiovascular diseases

According to the American Heart Association, 54% of deaths in United States in 2002

resulting fromcardiovascular diseases(CVDs) are due to thecoronary heart disease[2].

Furthermore,strokeresults to 18% of deaths caused by CVDs, whilecongestive heart

failure and high blood pressure cause the 6% and 5% of deaths resulting from CVDs.

Finally, diseases of the arteries account for 4% of the deaths caused by CVDs. Figure 1.9

provides the percentage breakdown of deaths caused by CVDs [2].

54%

18%

13%

6%

5%
4%

Coronary Heart Disease
Stroke
Other
Congestive Heart Failure
High Blood Pressure
Diseases of the Arteries

Figure 1.9: Analysis of deaths caused by cardiovascular diseases (adapted from [2]).

Coronary heart diseasesare caused by the occlusion of coronary arteries. Occlusion

in the arteries can be caused from the build up of fatty tissue. If a coronary artery is

occluded, part of the cardiac muscle receives a restricted supply of oxygen. This causes

the loss of cardiac function which can even lead to death. Thestrokedoes not affects

the heart but the arteries leading to and from the brain. Astrokeis caused when a vessel

carrying blood to the brain is blocked by a clot. The consequences of thestrokeare very

serious and result in the death of a part of the brain.Congestive heart failureis the result

of the weakening of the heart by a chronic disease. Diseases of the arteries are most often

caused by a condition known asatherosclerosis. Atherosclerosisis caused by the buildup

of a plaque in the arteries. The plaque consists of fatty substances, cholesterol, cellular
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waster products and other substances.Atherosclerosisreduces the blood flow through the

artery and can cause it to lose its elasticity.

1.4 Imaging of the cardiovascular System

The main imaging modalities of the cardiovascular system are:X-Ray, Ultrasound (US),

Positron Emission Tomography (PET), Single Photon Emission Computed Tomography

(SPECT), Computed Tomography (CT)andMagnetic Resonance Imaging (MR). A more

detailed description of the imaging methods can be found by Suetens [188] and by Webb

[203]. Each imaging modality provides a different type of information and is used for

specific purposes [122].

1.4.1 X-Ray

In X-Rayimaging of the heart a radio-opaque medium is injected into the blood in the

heart. The contrast medium is injected directly into theatrial muscle,ventriclesor vessels

of the heart by means of the cardiac catheter. After introducing the medium a recording

of the chambers or the vessels of the heart is made. The recording (angiocardiogram)

is made by using a rapid-sequence digital subtraction technique. In this technique, one

image of the heart is acquired before the contrast medium is added and one after the

injection of the medium. Then, the first image is subtracted from the contrast enhanced

image allowing the anatomy of the blood vessels and the blood supply of an organ to be

imaged with high spatial (0.1mm) and temporal (20-50msec) resolution. An example of

coronary angiography is shown in figure 1.10.

Angiocardiography is commonly used in diagnosis of cardiac diseases and in planning

the surgical treatment of the heart. It allows clinicians to assess the status of the coronary

arteries inischemicdisease, the function of the cardiac valves, the congenital heart lesions

and the abnormalities of the great vessels. Furthermore, it allows clinicians to measure

the volume of the cardiac chambers.
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Figure 1.10: An example of coronary angiography.

1.4.2 Ultrasound

Ultrasound(US) employs pulsed, high frequency sound waves. When an ultrasound wave

meets an interface of differing echogenicity, the wave is reflected, refracted and absorbed.

The reflected sound waves are sensed by the transducer (which also emits the sound

waves) and then, processed to produce the image. The ultrasound beam can be aimed

at specific directions and obeys the laws of optics with regards to refraction, reflection

and transmission. The intensity of the ultrasound beam decreases as it travels away from

the ultrasound source due to divergence, absorption, scatter and reflection of the wave

energy at tissue interfaces. Stronger reflections are returned when the ultrasound beam is

perpendicular to the imaged structure. Fig 1.11 shows an example of a cardiac ultrasound

image.

Ultrasoundproduces high resolution images and is capable of resolving fine anatomi-

cal structures. The thickness, size and location of various soft-tissue structures in relation

to the origin of the ultrasound beam can be calculated at any point in time.

Ultrasoundis frequently used for the imaging of the heart (echocardiography). There

are three types ofechocardiography: M-modeUS,B-mode(brightness) US andDoppler

mode US. TheM-modeprovides one dimensional view (depth) into the heart. TheB-
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Figure 1.11: An example of cardiac ultrasound.

modeUS uses an array of transducers which allows a plane of tissue to be imaged, thus

making the anatomical relationships between different structures easier to appreciate than

with the M-modeimaging. Doppler imaging allows evaluation of blood flow patterns

(direction and velocity) by detecting frequency changes occurring when ultrasound waves

reflect off individual blood cells moving towards or away from the transducer.

The recent advances in the development ofUltrasoundimaging enable the acquisition

of 3D images which overcome some limitations of the conventional 2DUltrasoundimag-

ing. 3DUltrasoundimaging [57] has the potential to provide real time 3D visualisations

of the heart.

Echocardiographyis more frequently used to evaluate cardiac chamber size, wall

thickness, wall motion, valve configuration and motion and the proximal great vessels.

Ultrasound has a high temporal resolution and is widely used because it is more portable

and less expensive than other modalities. However, the signal to noise ratio of the US

images is low. The fact that it is operator dependent also leads to significant artifacts

especially in 3D imaging.
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1.4.3 Nuclear imaging

In nuclear imaging a tracer containing radioactive isotopes is administrated to the patient

prior to the imaging procedure. The isotopes reach the organs as part of its metabolic

process and emit gamma ray photos which are used to reconstruct maps of the concen-

tration of the tracer over time. Two kinds of imaging can be performed depending on the

tracer module:Positron Emission TomographyandSingle Photon Emission Computed

Tomography.

1.4.3.1 Positron Emission Tomography

Positron Emission Tomography(PET) has improved the understanding of the biochemical

basis of normal and abnormal functions within the body. Positrons (β+) are positively

charged electrons. They are emitted from the nucleus of some positively charged ra-

dioisotopes (excessive number of protons). In positron emission the nucleus is stabilised

by converting a proton into a neutron (i.e. by removing a positive charge). During the

conversion the element formed from positron decay is not radioactive. When a positron

comes in contact with an electron, the mass of the two particles is turned into two 511-

KeV gamma rays which are emitted with 180 degree angle to each other. These rays

escape from the human body and can be recorded by a number of detectors. The detec-

tion of the two rays is called a coincidence line. The coincidence line provides a unique

detection scheme for forming tomographic images with PET.

Positron Emission Tomography (PET) provides valuable information regarding the

physiology of the heart. It provides a unique tool for biochemistry and physiology mea-

sure of the cardiac muscles. It can be used to localise and describe coronary artery dis-

eases and also to identify injured but zoetic myocardium.

1.4.3.2 Single Photon Emission Computed Tomography

In Single Photon Emission Computed Tomography(SPECT), radioactive tracers are in-

jected to the subject. The radioactive tracers emit radiation within the organs. The SPECT
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camera is a large scintillation crystal connected to multiple photo-multiplier tubes which

can detect the radiation emitted from the body. The technology of SPECT arises from

positioning the camera head at a large number of angles around the body accumulating as

many as 180 views of a specific organ.

There are techniques for the direct imaging of the myocardium or the imaging of the

blood pool. Nuclear-tagged compounds are used for selection of the correct radioactive

material for a specific type of tissue. For example for myocardial imaging, compounds

such as Thallium 201 are used. SPECT imaging is similar to PET but only one gamma-ray

is emitted per nuclear disintegration while in PET imaging two gamma-rays are emitted.

SPECT is used to assess the location and extent ofischemiain the heart resulting

from coronary heart disease. This modality provides a 3D density map of blood in the

myocardium. In order to identifyischemic, infarcted and normal tissues, a stress-rest

study is performed. In the stress-rest study images are acquired while the patient is at rest

and while the patient heart is under stress (by exercising). If the density distributions in the

two perfusion maps are normal in the stress and rest images the state of the myocardium

is normal. The state of the myocardium isischemicif the density distribution in the stress

perfusion map is low but normal in the rest perfusion map. The state of the myocardium

is infarctedif the density distribution in both the rest and stress images are low.

1.4.4 Computed Tomography

Computed Tomography(CT) is a technique based on x-rays. The resulting images are

formed by x-ray absorption of tissue. The technique uses a narrowly collimated x-ray

beam to irradiate a slice of the body. The amount of radiation transmitted along each

projection line is collected by a number of photo-multiplier tubes. The image is formed

by rapidly acquiring a large number of views by rotating the tube and the detectors around

the body. In cardiac imaging the advantage of CT is its ability to image the cardiac

arteries. CT provides anatomical images with a high spatial resolution and with a good

contrast between bone structures and soft-tissue structures. However, the contrast between
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different types of tissue is very poor and can be only enhanced using contrast materials.

Figure 1.12 shows an example of a CT image of the heart.

Figure 1.12: An example of cardiac CT.

The motion artifacts due to respiratory movement affect the quality of CT images.

These artifacts occur when one or more slices acquired in different breathholds are dis-

placed due to the breathing motion of the patient. One major disadvantage of CT modal-

ities is the use of x-ray radiation. Even though a large number of measures have been

taken to reduce the amount of radiation during a CT scan, it is generally not considered

acceptable to expose a patient to such an amount of radiation unless when it is absolutely

necessary. The main applications of CT in cardiac imaging are the evaluation of cardiac

masses and the evaluation of aortic and pericardial diseases.

1.4.5 Magnetic resonance imaging

Magnetic Resonance Imaging(MR) plays an increasingly important role for the imaging

of the cardiovascular system. The physical principles of MR are more complex than any

of the previous tomographic modalities. MR uses strong magnetic fields to produce maps

of atomic nuclei. Hydrogen is the most commonly atomic nucleus in the human body. In

the human body, hydrogen atoms are contained in water and fat molecules. The spin of

the atomic nuclei could be considered as a magnetic vector, causing the proton to behave

like a magnet. The image acquisition involves an initial sequence of exciting pulses and
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the recording of the emitted signal. The amplitude of the signal is used to generate maps

showing the anatomy of the heart.

The advantage of MR modality is the high resolution imaging of the cardiac anatomy

in tomographic planes of any desired position and orientation. MR imaging allows not

only the acquisition of 3D images describing the anatomy of the heart but also the acquisi-

tion of 3D image sequences (3D + time) describing the cardiac anatomy and function. The

high tissue contrast enables the assessment and measurement of different cardiac struc-

tures. A detailed discussion regarding the principles of MR imaging is outside the scope

of this thesis. For more detailed analysis of the MR imaging see [24, 195, 117, 97, 118] .

The quality of cardiac MR images can be affected by a large number of factors:

• The constant motion in all three dimensions that the heart undergoes during the

cardiac cycle.

• The motion artifacts due to respiratory movement. These can occur when one or

more slices acquired in different breathholds are displaced due to the breathing

motion of the patient.

• The partial volume effects. This problem occurs when a voxel contains two or more

types of tissue and as a result the edges of the images are blurred. This problem is

usually caused due to the anisotropic resolution of the images. The in-plane resolu-

tion can be high (1mm) but the through-plane resolution is usually low (10mm).

Conventional MR imaging techniques require a sequence of excitations to reconstruct

the image. These excitations need to be triggered away at the same part of the cardiac cy-

cle. In order to achieve this the electrocardiogram is used resulting in a technique known

ascardiac gating. There are two main techniques for synchronising the measurement of

MR data with the cardiac cycle.Prospective gatingtechniques wait for the trigger signal

to start acquisition of data. The data are acquired using excitations at a fixed time points in

the cardiac cycle. The data collection is paused at the end of the cardiac cycle and and the

sequence waits for the next trigger signal. As mentioned in section 1.3.1.1 theR waveof
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the ECG signal corresponds to the beginning of the contraction phase of the heart. After a

small time interval,tdelay, the first frame of the image sequence is acquired (figure 1.13).

After the acquisition of the first frame, frames are acquired everytoffsetmsec. In retro-

spective gatingdata collection is done continuously throughout the entire cardiac cycle.

Then, the recorded trigger signal is used to retrospectively assign the data to the different

positions in the cardiac cycle.
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Figure 1.13: An example of an ECG-gated acquisition of a cardiac MR image sequence:
The parametertdelay describes the delay after theR waveafter which the MR acquisition
starts whiletoffset describes the temporal resolution of the image sequence.

Conventional ECG-gatedspin echoand gradient echotechniques were the first to

be applied in the imaging of the heart. However, these techniques are slow and cause

degradation in the image resolution. Rapid acquisition and improvement in the image

contrast are of growing importance.Dual Echo, Fast Spin Echo(FSE) andTurbo Spin

Echo(TSE) are variants of the firstspin echotechniques. They are normally used for the

anatomic delineation of mediastinum and great vessels.Fast Low-Angle Shot(FLASH),

Turbo-FLASH, Turbo Field Echo(TFE) andEcho Planar Imaging(EPI) are also variants

of the firstgradient echotechniques. They are commonly used for coronary artery imag-

ing, ventricular function assessment, myocardial perfusion assessment, valvular motion

and for valvular regurgitation assessment. The differences between these techniques and

the conventional ECG-gated techniques is that they use lower flip angles.
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In order to enable cardiac motion studies to be performed, magnetisation tags within

the heart walls are introduced in the images (tagged images) [7, 4, 5]. Tagging is achieved

by reducing the magnetisation in limited regions within the cardiac wall. These regions

appear different if the image data are acquired before the magnetisation of the perturbed

areas. In addition, if the cardiac wall moves between the tagging and imaging times, the

magnetisation tag will follow the tissue [4]. The most commonly used magnetisation se-

quences are:Spatial Modulation of Magnetisation(SPAMM) [7, 6, 207],Complementary

Spatial Modulation of Magnetisation(CSPAMM) [58] andDelays Alternating with Nuta-

tions for Tailored Excitation(DANTE) [129]. MR imaging can also be used for analysis

of the blood flow. Inphase-contrastMR imaging velocity data is additionally acquired in

the form of three different images,Vx, Vy, Vz, corresponding to the Cartesian coordinates

of the the velocity vectorV [142].

Ultrafast methods such asSimultaneous Acquisition of Spatial Harmonics(SMASH)

[184] andsensitivity encoding(SENSE) [164] have been investigated to reduce the effects

of the cardiac motion to the image quality. These methods use combination of signals

from an RF coil array to acquire multiple lines of k-space.

MR imaging is also used to access blood perfusion in the myocardium (perfusionMR

imaging). Blood perfusion in tissues can by studied by using contrast agents. Perfusion

MR techniques use both exogenous tracers and endogenous contrast. Chenet al. [31]

developedT1 Fast Acquisition Relaxation Mapping(T1-FARM) to obtain single-slice T1

maps of the heart using exogenous tracers. In techniques using endogenous contrast only

indirect measures of the blood flow can be obtained. The endogenous contrast techniques

are categorised asspin-labeling[205],magnetisation transfer contrast[161, 9] andblood-

oxygen dependent contrast[106].

A recent development, the steady state free precession imaging with balanced gradi-

ent (TrueFISP), has been shown to be less susceptible to artifacts caused by slow flow

[155, 156]. TrueFISP also provides significantly enhanced blood-myocardial contrast in

comparison with the conventionalgradient echomechanism.
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1.4.5.1 Imaging planes

MR images are acquired in standard imaging planes (coronal, sagittal and transverse).

However, these planes are not suitable for the imaging of the LV of the heart because

its location can lead to varying obliquity which may cause significant artifacts. When

imaging the heart, planes that are oriented parallel or perpendicular to the long-axis of the

left ventricleare used instead of the standard planes. These planes are called horizontal

and vertical long-axis and short-axis views. The short-axis and the vertical and horizontal

long-axis planes are shown in figure 1.14. Examples of such planes can been seen in

figure 1.15. In this figure, the left image is a short-axis view of the heart, the image in

the middle is the horizontal long-axis and the image on the right is the vertical long-axis.

The space correspondence between the short-axis and the long-axis is also displayed in

the figure.
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Figure 1.14: The cardiac imaging planes [27].

1.4.6 Comparison of imaging modalities

This chapter has provided a description of the cardiovascular system and its imaging

modalities. Each image modality has its own properties and provides different types of
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Short axis Long axis horizontal Long axis vertical

Figure 1.15: Two different MR imaging views of the heart. On the left is the short-axis
view, on the middle is the horizontal long-axis view and on the right is the vertical long-
axis view. The space correspondence between the short-axis and the long-axis views is
also displayed by the rectangular boxes.

information. O ’Dell et al. describe a number of criteria for the objective comparison

between image modalities [132]. These criteria include the signal quality (indicated by

signal to noise ratio (SNR)), the degree of difficulty in distinguishing the myocardium

from its neighbouring tissue (indicated by the contrast to noise ratio (CNR)), the temporal

and spatial resolution, the susceptibility to image blurring and artifact, the acquisition and

analysis time, the relative cost and ease of use. Table 1.2 provides a comparison between

the properties of the above imaging modalities.

Imaging properties
X-Ray US PET SPECT CT MR

Invasive Yes No Yes Yes No No
2D/3D 2D 2D/3D 3D 3D 3D 3D
Resolution 0.1mm 61.5mm 65mm 615mm ≤1mm '1mm(in x,y)

and 5-10mm
(in z)

CNR Low Low High High

Table 1.2: Comparison between different cardiac image modalities.

1.5 Contributions

In recent years, with the development of new sufficient computational methods for the

analysis of cardiac MR images, MR imaging has emerged as an important modality for
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the imaging and understanding of the cardiovascular system. MR imaging is becoming

the modality of choice due to its flexibility and versatility. It is safe, non-invasive and can

acquire both 3D and 4D images with high spatial and temporal resolution. Even though

the use of MR imaging in clinical practice is rapidly increasing, cardiac MR imaging a

new technology primarily limited to specialised imaging centers.

The focus of the research presented in this thesis is the development of spatio-temporal

registration methods and methods for modelling the cardiac anatomy and function. The

work presented in this thesis makes the following main contributions:

• A new method for the simultaneous spatial and temporal alignment of cardiac MR

image sequences to the same coordinate system is presented. Initially, the presented

registration algorithm had the ability to correct spatial misalignment of affine nature

between the image sequences and also temporal misalignment which could be the

result of differences in the length of the cardiac cycles of the subjects and in the

temporal acquisition parameters. Then the registration method is extended by the

introduction of adeformablespatial transformation model which not only corrects

global spatial shape differences but also local differences in the cardiac anatomy.

• The registration method for the simultaneous spatial and temporal alignment of

cardiac MR image sequences is extended by the introduction of adeformabletem-

poral transformation part. Therefore, this spatio-temporal registration method has

the ability to correct spatial misalignment between the images caused by global and

local shape differences. Furthermore, it has the ability to correct temporal misalign-

ment caused by differences in the length of the cardiac cycles and in the dynamic

properties of the hearts.

• Another method for the spatio-temporal alignment of cardiac MR image sequences

is presented. As with the earlier method, this method also corrects spatial mis-

alignment between the images caused by global and local shape differences and

temporal misalignment caused by differences in the length of the cardiac cycles

and in the dynamic properties of the hearts. The major difference compared to the
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previous method is that this method optimises the temporal and spatial components

separately. The temporal mapping of the image sequences is based on a normalised

cross-correlation measure, while the spatial mapping is based on image information

from only the first frames of the sequences. This registration method is significantly

faster than the previous methods. Moreover, this registration method can be used to

enable only the temporal alignment of cardiac MR image sequences, since it does

not require the cardiac image sequences to be aligned in the spatial domain in order

to find their temporal correspondence.

• A 4D probabilistic atlas describing the cardiac anatomy and function (only in terms

of how the cardiac anatomy changes over the cardiac cycle) is developed. The

probabilistic atlas contains information regarding the anatomy and function of a

healthy heart in the form of tissue probability maps. Separate probabilistic atlases

for the left ventricle, theright ventricleand themyocardiumhave been developed.

Modelling the cardiac anatomy function addresses the limitations of current prob-

abilistic atlases of the heart which are limited only to the cardiac anatomy and not

the cardiac function.

• A statistical atlas containing information regarding the anatomy of a healthy heart

and how the anatomy of the heart changes during the cardiac cycle has been also

constructed. In order to build the statistical atlas the distribution space of the car-

diac shape is subdivided into two subspaces. The first distribution space describes

the changes in the cardiac shape caused by different subjects. The second distribu-

tion space describes the changes in the cardiac shape caused by the cardiac cycle.

Two separateprincipal component analysis(PCA) have been performed in order to

calculate the most significant modes of variation of each subspace. As in the prob-

abilistic atlas, separate statistical atlases for each of the three anatomical structures

have been constructed.

• A possible use of the statistical atlases for the classification of cardiac data is

demonstrated. The statistical atlases of the myocardium are used for the classifica-
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tion of image sequences from normal subjects as well as subjects with hypertrophic

cardiomyopathy.

1.6 Overview of the thesis

The dissertation is divided in two main parts and the final conclusions. The first part of

the dissertation includes this chapter and two chapters describing the areas of registration

of cardiac images and modelling of anatomy. Chapter 2 describes the underlying theories

behind image registration and presents an overview of different registration techniques

and their application in cardiac imaging. Chapter 3 describes the underlying theories for

anatomy modelling and presents an overview of different modelling methods.

The second part presents the contributions of this dissertation. Chapter 4 presents a

method for the spatio-temporal alignment of cardiac MR image sequences. The method

corrects spatial misalignment of affine nature between the image sequences and also tem-

poral misalignment which may be the result of differences in the length of the cardiac

cycles of the subjects. Later in the chapter, adeformablespatial transformation model is

introduced enabling the correction of local differences in the shape of the hearts as well

as global differences. The methods described in chapter 4 have been published in [152],

[153]:

• D. Perperidis, A. Rao, R. Mohiaddin, and D. Rueckert. Non-rigid spatio-temporal

alignment of 4D cardiac MR images.In Second International Workshop on Biomed-

ical Image Registration (WBIR ’03), Lecture Notes in Computer Science, LNCS

2717, pages 191-200, 2003.

• D. Perperidis, A. Rao, M. Lorenzo-Valdés, R. Mohiaddin, and D. Rueckert. Spatio-

temporal alignment of 4D cardiac MR images.In Functional Imaging and Mod-

eling of the Heart (FIMH ’03), Lecture Notes in Computer Science, LNCS 2674,

pages 205-214, 2003.
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Chapter 5 presents two registration methods for thedeformablespatio-temporal align-

ment of cardiac MR image sequences. These methods correct spatial misalignment be-

tween the image sequences caused by global and local shape differences. In addition, they

have the ability to correct temporal misalignment caused by differences in the length of

the cardiac cycles and in the dynamic properties of the hearts. The methods described in

chapter 5 have been published in [151], [150], [147], [148]:

• D. Perperidis, R. Mohiaddin, and D. Rueckert. Spatio-temporal free-form registra-

tion of cardiac MR image sequences.In Medical Image Analysis, 9(5):441-456,

2005.

• D. Perperidis, R. Mohiaddin, and D. Rueckert. Fast spatio-temporal registration

of cardiac MR image sequences.In Functional Imaging and Modeling of the

Heart (FIMH’05), Lecture Notes in Computer Science, LNCS 3504, pages 414-

424, 2005.

• D. Perperidis, R. Mohiaddin, and D. Rueckert. Spatio-temporal free-form regis-

tration of cardiac MR image sequences.In Seventh Int. Conf. on Medical Image

Computing and Computer- Assisted Intervention (MICCAI ’04), Lecture Notes in

Computer Science, LNCS 3217, pages 911-919, 2004.

• D. Perperidis, R. Mohiaddin, and D. Rueckert. Spatio-temporal free-form registra-

tion of cardiac MR image sequences.In Proc. of Medical Image Understanding

and Analysis ’04, pages 157- 160, 2004.

Chapter 6 presents a method for building a probabilistic atlas of the cardiac anatomy

and function as well as a method for building a 4D statistical atlas of the cardiac anatomy.

The methods described in chapter 6 have been published in [149], [145], [146]:

• D. Perperidis, R. Mohiaddin, and D. Rueckert. Construction of a 4D statistical atlas

of the cardiac anatomy and its use in classification.In Eight Int. Conf. on Medi-

cal Image Computing and Computer- Assisted Intervention (MICCAI ’05), Lecture

Notes in Computer Science, 2005.
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• D. Perperidis, M. Lorenzo-Vald́es, R. Chandrashekara, A. Rao, R. Mohiaddin, G.

I. Sanchez- Ortiz, and D. Rueckert. Building a 4D atlas of the cardiac anatomy

and motion using MR imaging.In IEEE International Symposium on Biomedical

Imaging, pages 412-415, 2004.

• D. Perperidis, M. Lorenzo-Vald́es, R. Chandrashekara, A. Rao, R. Mohiaddin, G.I.

Sanchez- Ortiz, and D. Rueckert. Building a 4D atlas of the cardiac anatomy and

motion using MR imaging.In Proc. of Medical Image Understanding and Analysis

’04, pages 9-12, 2004.

Chapter 7 discusses the presented algorithms, their limitations and the conclusions

which can be drawn from this work and proposes potential directions for future work in

this area.



Chapter 2

Image registration

Image registration is an active research area in computer vision, image processing and

medical image processing. Reviews on image registration techniques can be found in

[21, 208], on medical image registration in [77, 104] and on cardiac image registration in

[116]. This chapter provides a description of medical image registration techniques and

in particular cardiac image registration techniques.

2.1 Image registration

The goal of image registration is to calculate a mapping,T, which relates each point

of one imageI to a corresponding anatomical point in the reference imageI ′. Figure

2.1 provides an example of the image registration. Images usually have two dimensions

x = (x, y), three dimensionsx = (x, y, z) or four dimensionsx = (x,y, z, t) . If the

images can be defined as arrays (two, three or four dimensional) of a given size denoted

by I ′ andI, then the mapping between them can be expressed as ([21]):

I ′(x) = g(I(T(x)) (2.1)

wherex is a vector of the point’s location,I ′(x) andI(x) is the intensity of imageI ′ and

I in positionx, g is the intensity transformation andT is the coordinate transformation.

The transformationT can have several forms. In this thesis the following types of
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Figure 2.1: A schematic figure of the image registration.

transformation are considered: rigid, affine and non-rigid transformations. A rigid trans-

formation allows only rigid operations to be performed (rotation and translation) i.e. op-

erations that maintain distance between points. An affine transformation (rotation, trans-

lation, scaling and shearing) maps parallel lines to parallel lines. A non-rigid transforma-

tion allows the object additionally to deform. Finding the best transformation,T, can be

broken into the following tasks [21]:

• Selection of the feature space

• Selection of the similarity measure

• Selection of the type of the transformation

• Selection of the optimisation strategy

Maintz et al. described a classification approach for registration methods [114]. The

main classification criteria are the following:

1. Dimensionality of the images: 1D/1D, 2D/2D, 2D/3D, 3D/3D, 4D/4D, etc.

2. Feature space

(a) Extrinsic

(b) Intrinsic

(c) Non-Image Based
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3. Nature of the transformation

(a) Rigid

(b) Affine

(c) Non-rigid

4. Domain of the transformation

5. Interaction

6. Optimisation procedure

7. Modalities involved

(a) Monomodal

(b) Multimodal

8. Subject

(a) Intra-subject

(b) Inter-subject

(c) Atlas

Monomodalregistration methods use images acquired by the same imaging modality

(for example MR, SPECT, CT) whilemultimodalregistration methods combine images

acquired by two different types of modalities (for example MR/SPECT).Intra-subject

registration approaches register images from the same subject (for example before and

after treatment), whileinter-subjectregistration approaches register images from two dif-

ferent subjects.Intersubjectregistration methods are frequently used in the construction

of models of anatomical structures.Atlas basedregistration approaches register an atlas

to a specific subject or a medical atlas to another atlas.Atlas basedregistration methods

are frequently used for the segmentation of medical images.
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2.2 Feature space of the registration

One of the first steps when registering two images is to decide upon the feature space

to use during the approach. This may be the image itself (i.e. intensity values), other

features of the images (edges, contours, surfaces, etc.) and foreign objects inserted to the

image space. The registration methods can be classified according to their feature space

as:

• Extrinsicregistration methods. These methods calculate the optimal transformation

using information provided by foreign objects which are introduced into the image

space. For example medical imaging methods use artificial fiducials attached to

the patients. The fiducials need to be well visible in order to be very accurately

detectable. The most commonly used fiducials in brain imaging is astereotactic

framewhich is screwed rigidly to the patient’s outer skull. The stereotactic frame is

considered as the ”gold-standard” for registration accuracy. Other artificial markers

include objects screwed to the bones. The advantage ofextrinsicregistration meth-

ods is that is easy and fast to calculate the image transformation mapping. However,

the quality of the transformation mapping will always depend on the correct plac-

ing of the markers. Furthermore, in cardiac imaging it is impossible to useextrinsic

registration methods since invasive markers cannot be placed on the heart.

• Intrinsic registration methods. These methods calculate the optimal transformation

using information contained within the images. In these methods the registration

procedure can be based on identified salient features (landmarks and edges), on

segmented structures, on extracted surfaces or directly on measures computed from

the intensities of the images. Calculating salient features and obtaining segmented

structures can be done manually or by using automated approaches. Manual land-

marking and segmenting images is a very time consuming task prone to errors. A

number of approaches have been developed which use image registration methods

to automatically segment cardiac images [109] and to automatically identify land-

marks in cardiac images [63].
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• Non-image basedregistration methods. These methods calculate the image map-

ping without using image information. For example in cases where the coordinate

systems of two images are calibrated with respect to each other, the mapping can

be found without using image information.

2.3 Transformations

As mentioned above, the transformation model can have a large number of forms de-

pending on the specific application. The transformation model imposes mathematical

constraints on the type of geometric distortions that can be imposed during the registra-

tion procedure. The number of parameters needed to describe a transformation are often

calleddegrees of freedom. The number ofdegrees of freedomdepends on the type of

transformation type and also on the dimensionality of the images. For example if the

transformation utilises only translation and the images are 3D, then the transformation

will have threedegrees of freedom(translation along the x-axis, y-axis and z-axis). The

domain of the transformation isglobal if the transformation applies to the entire image

andlocal if the transformation applies to a part of the image.

2.3.1 Linear transformations

Using homogeneous coordinates a linear transformation can be expressed as matrix mul-

tiplications. In 3D, a linear transformation has the following form [206]:

Tlinear(x
′, y′, z′) =




x′

y′

z′

1




=




a01 a02 a03 ax

a11 a12 a13 ay

a21 a22 a23 az

0 0 0 1







x

y

z

1




(2.2)

The linear transformation is defined by the parametersaij.
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2.3.1.1 Rigid transformation

The rigid body model is the most constrained transformation model in the area of medical

image registration. It ensures that distances and internal angles within an image structure

will not change during the registration. As the name suggests, the rigid body model

allows only operations which maintain the shape and size of the anatomical structures,

i.e. translation and/or rotation. The rigid body transformation model in 3D has 6degrees

of freedomand has the following form:

Trigid(x
′, y′, z′) =




x′

y′

z′

1




=




r01 r02 r03 tx

r11 r12 r13 ty

r21 r22 r23 tz

0 0 0 1







x

y

z

1




(2.3)

The parametersr form a3 × 3 matrix which rotates the image around in the x-, y- and

z-axis while the parameterst translate the image along the x-, y- and z-axis. A transfor-

mation utilising only translation can be expressed as:

Ttranslation(x′, y′, z′) =




x′

y′

z′

1




=




1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1







x

y

z

1




(2.4)

Furthermore using the same matrix notation, a rotation around the x-axis can be ex-

pressed as:

Trotation(x′, y′, z′) =




x′

y′

z′

1




=




1 0 0 0

0 cosθ sinθ 0

0 −sinθ cosθ 0

0 0 0 1







x

y

z

1




(2.5)

where the parameterθ is the rotation angle. Similarly, rotations around the y- and z-axis
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Cardiac Images

Figure 2.2: Examples of 2D linear transformations.

can be expressed in matrix form.

2.3.1.2 Affine transformations

A more general class of transformations is the affine transformation. The affine transfor-

mation model allows rotation, translation, scaling and shearing. In 3D, it has the following

form:

Taffine(x
′, y′, z′) =




x′

y′

z′

1




=




θ11 θ12 θ13 θ14

θ21 θ22 θ23 θ24

θ31 θ32 θ33 θ34

0 0 0 1







x

y

z

1




(2.6)

where the coefficientsθ parameterise the twelvedegrees of freedomof the transformation.

The affine transformation model ensures that lines which are parallel before the transfor-

mation will remain parallel after the transformation. Figure 2.2 provides examples of 2D

linear transformations.
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Cardiac Images

Figure 2.3: Example of a 2D non-linear transformation.

2.3.2 Non-linear transformations

The above transformations (rigid and affine) preserve straightness of lines but they can-

not model the change in the shape of an object which has undergone local deformation.

For example several applications require a transformation which can accommodate tissue

deformation or the substantial anatomical variability across individual subjects (e.g. the

variability in the shape of a healthy heart). Linear transformations preserve straightness

of lines while non-linear transformations deform the image structures. Hence, non-rigid

transformations are suitable for this kind of applications because they allow the objects to

deform. Figure 2.3 provides an example of a 2D non-linear transformation.

Unlike the rigid and affine transformations, non-rigid transformations are still sub-

ject of ongoing research activity. An overview on hierarchical non-linear registration

approaches for medical images can be found in [104] while an overview of common reg-

istration approaches is given in [74].
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2.3.2.1 Spline based transformations

The term splines originated in engineering. In order to model ships and planes, the engi-

neers used to employ long flexible strips of wood or metal, the splines. The strips were

bent to the desired shape by applying a set of weights at particular places. This is the

main idea behind the use of splines to model an image transformation. In spline based

transformations, the applied weights correspond to the displacement of a particular point.

A detailed description of the usage of splines in signal and image processing can be

found in [196]. Many registration techniques which use splines based transformations

assume that a set of corresponding landmarks, thecontrol pointsof the spline based trans-

formation, can be identified in both images. The transformation either interpolates or

approximates the displacement required to map each control point of the reference image

to the corresponding control point in the other image. Furthermore, a spline based trans-

formation provides a smooth varying displacement field between these control points.

The interpolation condition can be written as:

T(φi) = φ′i i = 1, ..., n (2.7)

whereφi is the location of the control point in the reference image andφ′i is the location

of the corresponding control point in the other image. There is a large number of ways to

determine the control points. For example, anatomical landmarks which can be identified

in both images can be used to define the spline based transformation. An alternative

approach is to identify the control points to have equal spacing along the two images

forming a rectangular mesh [45]. In such case, the control points are referred aspseudo-

landmarksand they are only used as a parameterisation of the transformation.

Thin-plate splines are a family of splines based on radial-basis functions. They have

been formulated by Duchon [52] and Meinguet [124] for the surface interpolation of scat-

tered data and they have also been used in a large number of image registration approaches
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[68, 15, 16]. They can be defined as a combination ofn radial functionsθ(s):

t(x, y, z) = α1 + α2x+ α3y + α4z +
n∑

j=1

bjθ(|φj − (x, y, z)|) (2.8)

The transformation is defined as three separate splines,T = (t1, t2, t3)
T . The coefficients

α characterise the affine part of the transformation while the coefficientsb characterise the

non-affine part. There are3n interpolation equations (equation 2.7). In order to determine

3(n+4) coefficients uniquely, 12 additional equations are required. These equations must

guarantee that the sum of the coefficientsb is equal to zero and that their cross-product is

equal to zero as well. This can be expressed with the following matrix form:




Θ Φ

ΦT 0







b

α


 =




Φ′

0


 (2.9)

In the above equation,b is an × 3 matrix of non-affine coefficients,α is a4 × 3 vector

of affine coefficients andΘ is the kernel matrix withΘij = (|φi − φj|). The solution for

α andb is a thin-plate spline transformation which interpolates the displacement at the

control points. The radial basis function of a thin-plate spline is defined as:

θ(s) =





|s|2 log(|s|), in 2D

|s| , in 3D

(2.10)

2.3.2.2 Free-form deformations

Radial basis functions have infinite support. Therefore, each control point has a global

influence on the entire transformation. This is undesirable in cases where local defor-

mations need to be modelled. Furthermore, the computational complexity of a thin-plate

spline is high and not efficient.

Free Form Deformations(FFDs) have been introduced by Sederberg and Parry [179]

and are used to model local deformations. This approach requires a rectangular mesh

of control points with uniform spacing to be placed on the image. An FFD deforms an
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object by manipulating the underlying mesh of control points. To define an FFD the

spatial domain of the image volume is denoted asΩI = {(x, y, z) | 0 ≤ x < X, 0 ≤ y <

Y, 0 ≤ z < Z}. Let Φ denote anx × ny × nz mesh of control pointsφi,j,k with uniform

spacingδ. Then, the displacement fieldu can be evaluated by the trivariate tensor product

of Bernstein polynomials:

u(x, y, z) =
l∑

i=0

m∑
j=0

n∑

k=0

Bi
lB

j
mB

k
n(1− x)l−ixi(1− y)m−jyj(1− z)n−kzkφi,j,k (2.11)

whereφi,j,k is a vector containing the Cartesian coordinates of the control points. The

polynomials are defined byBi
j = (i

l)x
i(1 − x)i−l where (i

l) is a binomial coefficient

(figure 2.4):

B0,0(x) = 1

B0,1(x) = (1− x)

B1,1(x) = x

B0,2(x) = (1− x)2

B1,2(x) = 2(1− x)x

B2,2(x) = x2

B0,3(x) = (1− x)3

B1,3(x) = 3(1− x)2x

B2,3(x) = 3(1− x)2

B3,3(x) = x3

An FFD could also be formulated as the 3D tensor product of B-Splines instead of the

non-tensor product of Bernstein polynomials [179]. The most commonly used B-Spline

function is the cubic B-Spline [99, 100]:

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (2.12)
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Figure 2.4: Graphical representation of some of the first Bernstein polynomials
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Figure 2.5: Graphical representation of B-Splines.

wherei = b x
nx
c − 1, j = b y

ny
c − 1, k = b z

nz
c − 1, u = x

nx
− b x

nx
c, v = y

ny
− b y

ny
c, w =

z
nz
− b z

nz
c and whereBl represents thel-th basis function of the B-Spline (figure 2.5):

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6

B-Splines are locally controlled which makes them computationally efficient even for

a large number of control points. In particular, the basis functions of cubic B-Splines have
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a limited support, i.e. changing a control pointφi,j,k affects the transformation only in the

local neighborhood of that control point.

Rueckertet al. introduced a transformation model which consists of a global part and

a local part [174]:

T(x′, y′, z′) = Tglobal(x, y, z) + Tlocal(x, y, z) (2.13)

The global transformation,Tglobal, describes the overall differences between the two

subjects (i.e. differences due to translation, rotation, shearing and scaling) [174]. An

affine transformation ( equation 2.6) was used as a global part. The local differences

in the shape of the two subjects are modelled byTlocal which is an FFD based on cubic

B-Splines (equation 2.12).

An example of the FFD can be seen in figure 2.6. In figure 2.6, (a) is the identity FFD,

(b) is a deformed FFD and (c) is the same deformed FFD with smaller control spacingδ.

Dentonet al. [48] compared and evaluated a number of registration methods for

breast MR images based on rigid, affine and FFD transformations. The study contained

54 MR breast scans from which 27 MR scans were reported as normal and 27 with an

abnormality. The images were registered using the above registration methods and the

results were assessed by two experienced radiologists. Their results showed significant

improvement on the registration of the data with the FFD model compared to other two

models. They also showed that there was no significant improvement when using the

affine model instead of the rigid model.

2.3.3 Physical models of deformation

A large amount of research interest has been focused on non-rigid registration techniques

based on FFDs. In addition to B-Splines based registration techniques, there is significant

research interest on non-rigid registrations methods which use elastic and fluid transfor-

mation models.
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(a) (b) (c)

Figure 2.6: Examples of FFDs. (a) shows the initial FFD (identity), (b) shows how the
FFD deforms after the registration of two subjects and (c) shows the same FFD with
smaller control point spacing.

2.3.3.1 Elastic transformation

The use of elastic transformation models for image registration was first proposed by

Broit [20] and has been extended by Bajcsy and Kovacic [8, 74]. They have been initially

used for matching a brain atlas with a CT image of a human subject. The underlying idea

behind the elastic transformation models is to represent the deformation of an image into

the reference image by a process which is similar to stretching an elastic material like

rubber. This process is driven by two separate forces, theinternaland theexternalforces.

The internal force models any forces which deform the elastic body from its equilibrium

state. Theexternalforce models any forces acting on the elastic body. The deformation

of the elastic body stops only when the two acting forces form an equilibrium solution.

The behavior of the elastic body can be described by the Navier linear elastic partial

differential equation:

µ∇2u(x, y, z) + (λ+ µ)∇(∇ · u(x, y, z)) + f(x, y, z) = 0 (2.14)

whereu describes the displacement field,f is the external force,∇ is the gradient operator

while∇2 denotes the Laplace operator. The behavior of the elastic body is defined by the

constantsλ andµ (Lame’s elasticity constants). These constants are often interpreted

in terms of Young’s modulusE1, which relates the strain and the stress of the object,
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and the Poisson’s ratioE2, which is the ratio between lateral shrinking and longitudinal

stretching:

E1 =
3λ+ 2µ

λ+ µ
E2 =

λ

2(µ+ λ)
(2.15)

The equation 2.14 can be solved by finite differences and successive over relaxation

(SOR) which yields a discrete displacement for each voxel. Davatzikos [43] proposed an

extension of this elastic registration in which certain anatomical structures are allowed to

deform more freely than others.

2.3.3.2 Viscous fluid transformation

One disadvantage of the elastic transformations is that they cannot model large localised

deformations since the deformation energy increases proportionally with the stress of the

deformation. Viscous fluid transformation models can handle a large amount of defor-

mation while preventing any folding in the resulting deformation fields. These transfor-

mation models are popular in intersubject registration tasks where large shape variability

exists. However, they have a large number ofdegrees of freedomwhich makes it more dif-

ficult to find the optimal transformation and the scope for misregistration becomes larger.

Fluid deformations are described in aEulerian reference frame, i.e. with respect to

their final position, while elastic deformations are described with respect to their initial

position, theLagrangianreference frame. In theEulerian reference frame, the deforma-

tion of fluid is characterised by the Navier-Stokes differential equation:

µ∇2v(x, y, z) + (λ+ µ)∇(∇ · v(x, y, z)) + f(x, y, z) = 0 (2.16)

Equation 2.16 is similar to equation 2.14 except that the differentiation is carried out

on the velocity fieldv rather than on the displacement fieldu and it is solved for each

time step. The relationship between the displacement field and the Eulerian velocity is

given by:

v(x, y, z, t) =
∂u(x, y, z, t)

∂t
+ v(x, y, z, t) · ∇u(x, y, z, t) (2.17)
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Christensenet al. [32] proposed to solve equation 2.16 by using a successive over

relaxation method. However, this approach is slow and requires significant processing

time. A faster approach has been suggested by Bro-Nielsenet al. [19]. In this approach

the equation 2.16 is solved by deriving a convolution filter from the eigenfunctions of

the linear elasticity operator which is similar to a regularisation by a convolution with a

Gaussian filter [19].

2.4 Similarity measures

The similarity measure provides a way to assess how similar two images are. This section

describes the basic similarity measures which have been widely used in image registra-

tion.

2.4.1 Point based methods

Point registration methods rely on the identification of corresponding sets of points in the

two imagesxi : i ∈ 0, 1..N andyi : i ∈ 0, 1..N . The sets of landmarks ofx andy could

beextrinsic(foreign objects which have been introduced to the image space) orintrinsic

(anatomical features). The identification of the point sets can be manual or automatic.

Alignment is achieved by minimising the distance between the corresponding landmarks

of x and the landmark of sety:

D =
∑

i

w2
i ‖xi −T(yi)‖2 (2.18)

whereT(yi) is the transformed landmarkyi andw2
i are weight coefficients that mea-

sure the degree of confidence in which the points features have been located. For rigid

transformations a least square fitting method can be used [3]. Furthermore, methods exist

for spline based transformations and for affine transformations (with isotropic and non-

isotropic scaling) [59].

Landmark based registration of the heart is a very difficult task because there are
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few spatial anatomical landmarks which could be accurately identified. Moreover, these

landmarks can be less visible in certain modalities and as well as under a number of

pathological conditions.

2.4.2 Surface based methods

Surface based registration methods require the identification and extraction of surface

features in the images. In these methods registration is achieved by finding the transfor-

mation,T, which aligns corresponding points of surface features present in the images.

Surfaces tend to be more distinct than landmarks and can be accurately identified by a

number of segmentation methods. Themarching cubesalgorithm [107] is often used to

extract contours from images and to generate a triangulation of the surface. Schroederet

al. presented an approach for the decimation of the triangle meshes [178]. This approach

is useful in cases where the generated surfaces contain a large number of vertices. Peliz-

zari and colleagues [143, 105] proposed a method for surface based registration using the

head and hatalgorithm. In this method two surfaces are identified in the two images. The

high resolution surface is represented as a stack of disks (head). The second surface is

represented by a list of unconnected 3D points (hat). The optimal rigid transformation

is calculated as the one that minimises the square distance between each point of thehat

and the closest point of the head surface towards the direction of thehead’scentroid.

Theiterative closest point algorithm(ICP) is another surface based registration method

which finds the optimal transformation between two surfaces [12]. In ICP the surfaces

being registered are represented as point sets: one surface point set is kept fixed during

the registration while the other surface point set is moving. The optimal transformation

is found using an iterative approach. In each iteration, the algorithm establishes point

correspondence by identifying for each point of the moving surface the closest point in

the fixed surface. Then, the two surfaces are registered (using a point based registration

method) and the transformation is applied to the moving surface point set.
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2.4.3 Intensity based methods

2.4.3.1 Cross-correlation

Cross-correlation is one of the first intensity based similarity methods used on image

registration methods [170]. Thecross-correlationmeasure of two images is defined by

[162]:

R =
∑
x∈Ω

I ′(x) · I(T(x)) (2.19)

whereΩ is the spatial domain of overlap of the imagesI ′ andI andx is a column vector

of a particular image position (e.g. in 3D casex = (x, y, z)T ). As this measure stands

it is affected by changes in the image contrast and brightness. These are linear intensity

transformations of the type:

I ′(x) = α · I(x) + β (2.20)

In order to make the cross-correlation insensitive to contrast changes it can be nor-

malised resulting in thenormalised cross-correlation:

R =

∑
x∈Ω(I ′(x)− Ī ′) · (I(T(x))− Ī)√∑

x∈Ω(I ′(x)− Ī ′)2 ·
√∑

x∈Ω(I(T(x))− Ī)2
(2.21)

whereĪ ′ is the average intensity of the reference imageI ′ and Ī is the average intensity

of the source imageI. Equation 2.21 will have a maximum value when the two images

are the same.

2.4.3.2 Sum of squared differences

The idea behind the use of thesum of squared differences(SSD) or theEuclidean distance

as a similarity measure is simple. If the two images are the same then the sum of the

squared differences between their pixels’ intensity will be equal to zero. In this case the

optimal transformation,T, is found by minimising:

E2 =
∑
x∈Ω

(I ′(x)− I(T(x)))2 (2.22)
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The above equation is expanded to:

E2 =
∑
x∈Ω

(I ′(x))2 +
∑
x∈Ω

(I(T(x))2 − 2(
∑
x∈Ω

(I ′(x) · I(T(x))) (2.23)

The first term of equation 2.23 is independent ofT and can be eliminated since the

goal is the minimisation ofE with respect toT. This means that in order to minimiseE

the third term of the equation 2.23 has to be maximised. However, the last term of the

equation is the cross-correlation of the images (equation 2.19). Therefore, minimising

the sum of the squared differences is similar to maximising the cross-correlation of the

images. The SSD is the optimum similarity measure when the images differ only by

Gaussian noise [199, 59].

Another similarity measure is thesum of absolute differences(SAD). In this case the

absolute intensity difference is calculated instead of the squared intensity difference. Hoh

et al. compared the two methods by simulating various defects and misalignments using

cardiac PET images [80]. No significant differences in the resulting errors, obtained by

the two similarity measures, in translation and rotation were found [80].

Similar to equation 2.19, equation 2.22 is also affected by contrast and brightness

changes. It can be normalised in the same ways as the cross-correlation, resulting in:

E2 =

∑
x∈Ω(I ′(x)− I(T(x))2)√∑

x∈Ω(I ′(x))2 ·√∑
x∈Ω(I(T(x)))2

(2.24)

2.4.3.3 Entropy and mutual information

Entropy based similarity measures do not depend on a specific functional relationship

between the intensity distributions in the images, making them particularly suitable for

multimodalregistration methods. Theentropysimilarity measure is closely related to pre-

dictability. A predictable random variable has low entropy while a totally unpredictable

random variable has high entropy [198]. The average information provided by the inten-

sity values of an image can be measured by themarginal entropy. Themarginal entropy
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Combined Image 1 Combined Image 2 Combined Image 3

Figure 2.7: A schematic figure of the entropy of the combined image.

of a pair of imagesI andI ′ is given by [186]:

H(I) = −
∑
i∈I

p{i}log(p{i}) (2.25)

H(I ′) = −
∑

i′∈I′
p{i′}log(p{i′}) (2.26)

wherep{i} andp{i′} are the marginal probabilities ofI andI ′ (i.e. the probability of a

voxel of imageI to have a valuei).

When the transformation, mapping corresponding features, combines two images,

then the information content of this combined view is given by thejoint entropyof the

images [186]:

H(I ′, I) = −
∑

i′∈I′

∑
i∈I

p{i′, i}log(p{i′, i}) (2.27)

wherep{i′, i} is the joint distribution probability ofI ′ andI .

The combined image can be considered as an image in which pairs of intensity values

occur together, where each pair of values corresponds to two values occurring in the two

images. The concept of the image correlation using theentropyas a similarity measure

is simple. The information which the combined image provides will be minimum only

when the two images are registered correctly. Figure 2.7 shows that when the images are

correctly registered (combined image 3), there are no duplicated regions and hence the

amount of information provided by the combined image is minimum.
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Figure 2.8: Venn diagrams illustrating the relationship betweenentropyandmutual infor-
mation(adapted from [186]).

Theentropyof the combined image will be low under two conditions: when the im-

ages is predictable from the model and when the image is by itself predictable [199].

There are a number of problems using theentropyas a similarity measure. When the im-

ages have a limited field of view, then any measure of information content of the combined

image will be a function of the extent to which the fields of view overlap.

A commonly used similarity measure in medical image registration is theMutual

Information(MI) [199, 198, 113, 186].Mutual informationwas initially used in informa-

tion theory as a measure of information between the transmitter and the receiver at either

end of a communication channel. It relates the changes in the value of thejoint entropy,

H(I, I ′), back to themarginal entropies,H(I ′) andH(I), of the two images :

MI(I ′; I) = H(I ′) +H(I)−H(I ′, I) (2.28)

If the entropiesH(I ′),H(I) andH(I ′, I) are substituted by equations 2.25, 2.26 and

2.27, the following equation can be derived [113]:

MI(I ′; I) =
∑

i′∈I

∑
i∈I

p{i′, i}log p{i′, i}
p{i′}p{i} (2.29)

The relationship between themutual informationand the joint entropy is provided by

the Venn diagrams of figure 2.8 [186]. There are two ways to calculate the joint prob-

ability distribution valuesp{i, i′}. One approach is to form a continuous mathematical

estimate of the distribution by, for example, fitting a function to the data. The most com-

monly used continuous approach is using a Parzen Window [51]. Alternatively, the joint
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distribution probability values can be estimated by using a joint discrete histogram of the

images’ intensity values. The second approach is computationally less expensive since no

functional fit is required [79].

The mutual informationhas the following properties [113]:

• Non negativity: MI(I ′; I) ≥ 0

• Independence:MI(I ′; I) = 0 ⇒ p{i′, i} = p{i′} · p{i}

• Symmetry: MI(I ′; I) = MI(I; I ′)

• Self Information: MI(I; I) = H(I)

• Boundedness:

MI(I ′; I) ≤ min(H(I ′), H(I))

≤ (H(I ′) +H(I))

2

≤ max(H(I ′), H(I))

≤ H(I ′, I)

≤ H(I ′) +H(I)

(2.30)

• Data Processing:MI(I ′; I) ≤MI(I ′;T(I))

The representation of themutual informationin equation 2.29 relates the size of the

overlap of a pair of regions (p{i′, i}) to their total size (p{i′} andp{i}). A change in the

proportion of the image overlap may result in highermutual informationvalues even if the

image registration is not improved. In order to take into account changes in the proportion

of the image overlap, the amount ofmutual informationwith respect to the information

provided by the individual images is required. An approach for the normalisation of the

measure is to evaluate the ratio of thejoint andmarginal entropies[186]:

MI(I ′; I) =
H(I ′) +H(I)

H(I ′, I)
(2.31)
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Other approaches for achieving the same goals have also been proposed. They include

theentropy correlation coefficient[186]:

Ce(I ′; I) =
2MI(I ′; I)
H(I ′, I)

(2.32)

Another approach for measuring image similarity would be instead of using thejoint

entropyfor image correlation, to use theentropyof the difference imageIdif [144, 22].

In this approach theentropyoperates on a single difference image which is created by

subtracting the reference image from the other image by using a suitable scale factors.

Then, theentropyof the difference image is used instead of thejoint entropy:

H(Idif) = −
∑

p{i}log(p{i}) (2.33)

2.4.3.4 Comparison of intensity based similarity measures

Penneyet al. [144] performed a comparison of a number of similarity measures used

in 2D/3D medical image registration. The measures under consideration includednor-

malised cross correlation, entropyof the difference image,mutual informationand gradi-

ent correlation. The similarity measures were evaluated by performing rigid registration

(6 degrees of freedom) between a CT scan and a fluroscopy image of a spine phantom. In

their research, themutual informationhad the worst performance among the considered

similarity measures while theentropyof the difference image was one of the best consid-

ered measures. A similar evaluation of the same similarity measures was later performed

by Russakoffet al. [175]. The results of their research were substantially different from

those reported by Penneyet al. [144]. Russakoffet al. found that themutual information

is one of the most reliable similarity measures. One possible explanation for the difference

in the performance ofmutual informationis that Russakoffet al. used higher resolution

images. As a result a larger number of samples are used for the calculation ofmutual

information leading to more accurate estimates of the probability density functions and

image entropies. Therefore,mutual informationmay fail if the 2D histogram is relatively
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sparsely populated while thedifference entropymay succeed because the corresponding

1D histogram will be much better populated. It should be noted that while Penneyet al.

used fluroscopy images of a spine phantom, Russakoffet al. used only clinical data which

may have an effect on the results. Holdenet al. also performed an evaluation of eight dif-

ferent similarity measures used for rigid body registration of serial MR brain scans [81].

In this evaluation it has been shown that the similarity measures based onentropyper-

formed more consistently than the other similarity measures. In particular,entropybased

similarity measures proved to be the least sensitive methods in the presence of extradural

tissue.

Despite its good performance and wide use,mutual informationhas also been shown

to lack robustness for certain registration problems [158]. Problems can arise when the

images are of a low resolution [158], when the overlapping part of the images is small

or as a result of the interpolation method used in the registration approach [159]. To

overcome this problem, Pluimet al. [158] suggested to include spatial information to

the measure by combiningmutual informationwith a term based on the gradient of the

two images. The gradient term will seek to align locations which have a gradient with a

high magnitude and also similar orientation. Rueckertet al. proposed the use of higher

ordermutual information[171], which incorporates spatial information by forming four

dimensional intensity histograms. A survey of medical image registration methods based

onmutual informationcan be found in [160].

2.5 Optimisation approach

The optimisation approach attempts to find the optimal transformation,T, that maximises

the similarity of the two images. This is achieved by finding the optimal parameters of

the transformation,T, which control the correspondences between the images. Finding

the correct parameters of a transformation is not an easy task, especially when the trans-

formation has a large number ofdegrees of freedom. Usually the optimisation approach is

an iterative process which in each step tries to improve the correspondence of the images.
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Figure 2.9 shows a schematic representation of the optimisation approach.
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Figure 2.9: A schematic representation of the optimisation approach (adapted from [81]).

The selection of the appropriate search space strategy is very crucial in order for the

optimal transformation to be found. For example, the search space may have a large

number of local minima which could trap the optimisation approach or the starting point

may be far away from the correct solution. The shape of the search space is affected

by the type of the similarity measure, the properties of the images and the type of the

transformation. There is extensive research on techniques used for searching such spaces.

For more details on optimisation methods and search strategies see [163]. Hierarchical

strategies are often used in order to increase the likelihood of finding a global optimum

match [104]. The multi-scale space techniques are a widely used type of hierarchical

strategies. These methods use stacks of images which contain increasingly simplified

versions of the initial images [104]. The optimisation approach starts using images in the

top of the stacks (the most simplified version of the initial images) to calculate a rough
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estimate of the transformation. Then the estimate of the transformation is improved by

using each successive level of the image stacks. In cardiac image registration, hierarchical

strategies are often used to find the optimal transformation [134, 14, 115].

2.6 Applications of cardiac image registration

This section provides an analysis on several cardiac image registration approaches for a

number of applications. It is worth noticing that cardiac image registration is an active

research area but no reference to a 4D cardiac MR image registration approach can been

found in the literature. A 4D cardiac MR image registration approach is considered to

be the one which provides a 4D mapping between two 4D cardiac MR images where the

fourth dimension is the time.

2.6.1 Image registration for analysis of the cardiac motion

Chandrashekaraet al. [28, 29] used an extension of the FFD model (equation 2.13) to

analyse the motion of the myocardium using tagged MR cardiac images. The extension

of the FFDs is introduced by Schnabelet al. [177] where a number of single level FFDs

are combined to a multi-level one (MFFD):

T(x, t) =
T∑

h=1

T h
local(x) (2.34)

The estimation of the myocardial motion requires a sequence of registration steps.

Each image,V1, V2, ....., Vt, of the sequence is registered to the end-diastolic imageV0. In

order to recover the long-axis motion both short-axis and long-axis images were registered

at the same time. The registration involves the optimisation of a cost function based on the

normalised mutual informationbetween the registered short-axis and long-axis images.

Because the similarity measure is evaluated on both short-axis and long-axis image sets,

a complete 3D motion field of the myocardium can be recovered. After registeringV1 to

V0, a multi-level FFD (MFFD) is obtained consisting of a single level representing the
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motion of the myocardium at timet = 1. The registration ofV2 to V1 provides the next

level of the MFFD representing the motion of the myocardium at timet = 2. The process

continues until all volumes in the sequence are registered.

The method was validated using a cardiac motion simulator to produce cardiac im-

ages with known motion and also by reconstructing the deformation field within the my-

ocardium on images acquired from 11 healthy volunteers. The technique was tested on

9 image sequences produced by the motion simulator. The relative RMS error in the re-

construction of the deformation fields reaches a maximum between 4.2-6.5% at the last

frame [29]. In order to assess how well the registration algorithm performed in track-

ing the motion of the myocardium for the volunteer data, the tag-intersection points in

three different SA slices and one LA slice for all time points between end-diastole and

end-systole were manually identified by an expert. Then, the RMS error in the in-plane

displacements estimated by the registration method and by the expert was measured. The

results showed that for all the image sequences the RMS error was smaller than a voxel

for most of the cardiac cycle. In seven image sequences the RMS error was approximately

2mmat end-systole while in the other four it was approximately 3mm.

Carbayoet al. proposed a similar method for calculating the cardiac displacement

field in 2D ultrasound image sequences [98]. The basic idea of the method is similar to the

one introduced by Chandrashekaraet al. The cardiac displacement field is calculated by

registering all the images of the sequence to the first frame using adeformableregistration

model. However what makes this method different is the use of a spatio-temporal semi-

local deformation model. In this work the displacement fieldg is represented using a

time-space separable linear modeldj,l:

g(t,x) = x +
∑

l∈Z

∑

j∈ZN

dj,lφj(x)ψl(t) (2.35)

whereφj(x) influences the spatial deformation andψl(t) influences the temporal coher-

ence of the deformation. B-Splines are used to model both the spatial and the temporal
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components:

g(x) = x +
∑

l∈Z

∑

j∈ZN

dj,lβx(x/h− j)βt(t/s− l) (2.36)

where the basis functionsβx are placed on a rectangular grid in the spatial domain and

βt at regularly spaced time points. Moreover, the scale parametersh ands govern the

total number of parametersdj,l, the smoothness of the mapping and the knot spacing

between the control points of the B-Splines. The optimal displacement field is found by

optimising a global pixel-based criterion assessing the quality of the registration over the

entire image sequence at once. The method was tested using 4 simulated image sequence

models, 4 image sequences from healthy volunteers and 4 image sequences fromischemic

patients. In the simulated images, the mean square error over the entire sequence for 85

selected points within the myocardium was found to be between 0.3mmand 0.83mm. No

quantitative analysis on the method’s performance for the real sequences was reported.

Raoet al. [167, 166] used the FFD model in order to enable the direct comparison

between the motion extracted from cardiac MR image sequences within or across pa-

tients. This is achieved by using two registrations. Initially, the cardiac motion field is

calculated by using the method introduced by Chandrashekaraet al. [28, 29]. Then, the

end-diastolic untagged images of each patient (the untagged images are acquired shortly

after the tagged images) are registered together using a non-rigid registration method

based on FFDs. This resulting transformation provides a way to map the motion fields

of each subject to the same coordinate system. This method provides a good approach

for the comparison of the cardiac motion patterns within subjects. Its use has potential

advantages including the comparison of changes in cardiac motion in patients and the

assessment of pharmacological or surgical intervention. The potential of the method was

demonstrated by visually assessing a small number of images. Figure 2.10 demonstrates

the method.

Petijeanet al. have also developed a similar approach for the direct comparison be-

tween motion extracted from cardiac MR image sequences within or across patients [154].

The key difference between the two approaches is that Raoet al. used a parametric non-
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Figure 2.10: Mapping cardiac motion fields across subjects (adapted from [166]).

rigid registration method over a free-form deformation space, while Petijeanet al. used

f-information based non-rigid registration over a non-parametric transformation [154].

2.6.2 Image registration for cardiac motion correction

Turkingtonet al. developed a registration model to align images from dynamic cardiac

N − 13 ammonia positron emission tomography scans [194] used for measuring regional

myocardial blood flow. This type of study requires to acquire images for the first 2 min-

utes after the injection of12NH3. The registration technique was used to correct artifacts

in the images introduced from breathing, motion of the heart and the overall motion of

the patient. The method corrected only translation differences across the images. It was

assumed that the orientation of the heart remained the same during the scanning. This

assumption is appropriate to a certain degree, but a small rotational motion could occur

during the acquisition of the images [194]. The registration was based on a number of
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templates. These templates are derived from a frame acquired around 10 minutes after

the injection of the contrast media. Three different templates were constructed: a my-

ocardial template, a blood pool template (which was used to match frames where the left

ventricle’s blood pool is dominant) and finally a modified blood pool template (which

reduced the affects of the right ventricle activity). Each image frame was assigned to a

template by visual inspection of the cardiac activity and registration was performed. The

method was tested on phantom data and resulted in translations of less than one voxel

which is consistent with the fact that the phantom was scanned at the same position. The

technique was also tested in a small number of human data (3 subjects). Even if quantita-

tive analysis in the performance of the method has not been provided, it has been shown

that the technique corrects for cardiac motion to a large degree. The fitting of the blood

pool template in the direction of the z-axis was not as good as in the direction of the x-

and y-axis. The authors explained that this may be the result of the fact that the blood

pool extends beyond the base of the myocardium [194].

In myocardial perfusion studies, a contrast media is injected before the acquisition of

the MR images. Due to the dynamic nature of the data and because the acquisition has

to be gated, it usually takes more than 3 minutes to obtain reliable information about the

perfusion and distribution of the contrast media. During this time it is impossible for the

subjects to hold their breaths. Therefore, motion artifacts are introduced due to breathing

during the acquisition procedure. Bidautet al. developed an automated registration ap-

proach for the correction of these artifacts during acquisition of dynamic MR images [14].

The approach uses sequences of short-axis views of the heart. A rigid two-dimensional

transformation model with 3degrees of freedom(2 for translation and 1 for rotation) is

used for the correction of motion artifacts. In order to constrain the registration only to

the region of interest, a mask was applied to each frame encompassing the most likely

position of the heart. The mask was calculated by taking the maximum value for each

pixel over the entire sequence. A single early slice from the sequence was selected as a

reference image. Then, all slices were registered to the reference image by minimising

the pixel based squared differences between each frame and the reference frame. After
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the registration of the entire sequence, a new reference image was defined as the aver-

age of all registered slices. The registration was then repeated in order to handle larger

displacements.

The method was evaluated by calculating the relative motion of anatomical landmarks

on individual slices before and after registration. For the evaluation of the method images

from eight ambulatory patients with stable coronary artery disease were used [14]. The

results show that the method improved significantly the overlap of the images even when

compared with manually aligned images. In addition the method was evaluated by using

a compartment model for estimating two myocardial perfusion parameters: the blood

to myocardium transfer constant,K1, and the Gd-DTPA distribution volume,Vd. After

applying the method to the data, the variability of both parameters was reduced compared

to the variability obtained from the uncorrected images.

Ablitt et al. presented a technique for predictive cardiac motion modelling and cor-

rection [1]. The method uses a registration approach based on FFDs (equation 2.13)

to recover the cardiac deformation due to respiration. Then, it uses partial least square

regression to extract intrinsic relationships between the 3D cardiac deformation due to

respiration and multiple one-dimensional measurable real-time intensity tracers at chest.

This model is used to predict cardiac motion due to respiration. The method was tested

using cardiac MR images from 10 normal subjects. The accuracy of the motion pre-

diction method was assessed by performing cross-validation experiments (i.e. the data

were divided into two parts, one for training the model and one for testing the model).

The errors of the motion model were normalised with the residual errors achieved by 3D

free-form registration (the results of the free-form registrations were considered as the

gold standard for this study). These measurements demonstrated that with the model the

maximum/minimum error is consistently very small.

Klein et al. introduced an affine registration model for correction of respiratory motion

on respiratory-gated PET data [93, 92]. In this approach the use of an affine (12 dof)

global transformation model for the registration of different end-diastolic respiratory gates

in a PET sequence is investigated. In order to correct the respiratory motion, all images
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of the sequence are registered to the image acquired during end-expiration. The cost

function used during the registration procedure consisted of a least square difference term

and a temporal term. In order to ensure smoothly varying motion between adjacent image

frames, a priori knowledge model is used which assumes that the motion of the heart

from one frame to the next is likely to follow a smooth progression. The temporal part

of the cost function penalizes any departure from the prediction model. The method was

tested on images obtained from 10 subjects as well as on noisy phantom data [93] and was

compared to two similar methods. One of the methods used only a rigid transformation

model while the other method used an affine model without the temporal constraints. The

results indicated the use of an affine transformation and the temporal smoothing constraint

provides better performance than the other two methods.

McLeishet al. performed a study of the motion and deformation of the heart due to

respiration [123]. In their study, 3D cardiac MR images were used. The study included

images from 8 healthy volunteers and 10 patients. The healthy volunteers were scanned

into various time points between the end-expiratory and end-inspiratory positions. The

patients were scanned only at the end-expiratory and end-inspiratory positions. The im-

ages at maximum exhalation were selected as references and all the other images were

registered to them using rigid registration followed by non-rigid registration. The results

indicated that during inhalation the average movement of the heart is in craniocaudal di-

rection (CC) (by 12.4± 5.9mm), in the anterior-posterior direction (AP) (by 4.3±3.7mm

towards the anterior direction) and in the left-right (RL) direction (by 2.0±2.1 to the

right) [123]. Furthermore, the left ventricle deforms more at the apex than at its base. The

left ventricle has larger deformations than the right atrium and the right coronary artery.

Moreover, when going from an inhale to an exhale position, the outer right atrial wall and

the right coronary artery move outwards, while the left ventricle moves upwards.
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2.6.3 Image registration for cardiac segmentation

Image registration has also been used for the segmentation of cardiac MR images [109,

130]. In cardiac imaging, segmentation is used in a large number of applications in-

cluding the calculation of cardiac volume and blood ejection fraction, the analysis of

contraction and wall motion and the visualisation of the cardiac anatomy. In order to be

clinically valuable, the segmentation procedure has to be automatic. Lorenzo-Valdéset

al. developed a fully automated approach for the segmentation of the myocardium and

the ventricles of a cardiac MR image sequence [109]. Their approach uses a non-rigid

registration algorithm based on free form deformations (equation 2.12).

The key idea of the proposed algorithm is to reduce the segmentation of the entire

sequence problem to one of manually segmenting the end-diastolic frame of the sequence

and then propagate the segmentation to the rest of the sequence’s frames. In order to prop-

agate the segmentation, each frame of the image sequence is registered to the end-diastolic

frame using a multilevel non-rigid registration method based on B-Splines. Furthermore,

an approach for the automatic segmentation of the end-diastolic frame is also presented.

In order to automatically segment the end-diastolic frame, two atlases are used.

A population specific atlas of the end-diastolic frame was constructed by registering

the manual segmentations of 14 diastolic cardiac MR images. The population specific la-

belled 3D atlas contained the left ventricle, the right ventricle and the myocardium. If the

mapping between the atlas and a specific end-diastolic image is known, the segmentation

can be propagated to the end-diastolic image. The robust and accurate segmentation of

this frame is crucial since it is propagated to the rest of the sequence’s images. A subject

specific atlas of the heart corresponding to the end-diastolic time frame is constructed.

The subject specific atlas is used instead of the end-diastolic image during the registration

with the population specific atlas. The subject specific atlas is constructed by registering

all time frames to the end-diastolic time frame, transforming each frame with the resulting

transformation and calculating the average image. This enables a better alignment with

the population specific since the subject specific atlas reduces the effect of image noise
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and poor contrast to the registration procedure.

The automatic segmentation approach was validated against the manual segmenta-

tions of nine 3D MR image sequences. All the segmentations contained the left ventricle

(LV), the right ventricle (RV) and the myocardium (MYO). The volumes of the ventri-

cles and the myocardium were calculated and regression analysis was used to compare

the two methods. Two types of experiments were performed assessing how well the seg-

mentation can be propagated to the subsequent frames as well as the entire automated

approach. In the first experiment the transformations between different time frames were

applied to the manual segmentations of the end-diastolic frame instead of the subject-

specific atlas. The resulting volumes yield a good correlation between the manual and the

automated segmentation (LV=0.99, MYO=0.98, RV=0.96). In the second experiment the

image sequences were segmented by using the entire automated approach. In this case the

results showed a good correlation between the volumes of the corresponding structures

(LV=0.94, MYO=0.83, RV=0.96).

Nobleet al. also used non-rigid registration for the segmentation of the endo-cardial

and epi-cardial surfaces of cardiac MR images [130]. Their method required the end-

diastolic endocardial and epicardial surfaces to be manually segmented. In this method

only three slices corresponding approximately to basal, mid and apical positions of the

heart are used instead of the entire image. The first step of the segmentation approach is

to calculate the centre of area of the ventricular blood pool in the segmented images for

all slices. Then all the images were re-sampled in a polar fashion around each slice’s cen-

tre. Two segmentation approaches have been developed [130]. The first registers all the

time frames to the manually segmented image (all to one), while the second registers each

adjacent frame (piecewise). To evaluate the method, images from 10 patients undergoing

cardiac MR for the investigation of coronary artery disease were used. The performance

of the two methods was compared to manual segmentations of the images and also to a

commercially available software package. The correlation coefficient between the epi-

and endo-cardial volumes produced by the manual segmentation and the above two seg-

mentation methods were compared. The results showed that the piecewise segmentation
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method correlates with the manual segmentation better than the other method.

2.6.4 Image registration for alignment of cardiac stress and rest SPECT

images

Declercket al. proposed a method to enable the better visual or quantitative interpretation

of myocardial perfusion studies using SPECT imaging [47]. In a stress-rest study, two

perfusion maps of the cardiac muscle in the left ventricle are acquired. One image is

acquired before the injection of the tracer (at rest) and the other after the injection of the

tracer during maximal exercise.

The approach proposed by Declercket al. involves two major steps [47]. First, the

stress and rest pair of images are aligned using a point-based registration method. During

the registration of the rest and stress pair of images an affine transformation which defines

correspondence between a point in the stress image and a point in the rest image is used.

Then a non-rigid registration method based on B-Splines (equation 2.12) is used to map

the stress images to a template image. The template image is a single selected normal

image characterised by good contrast and low intensities on all non-cardiac features. Fi-

nally, the obtained transformation maps are used to resample both images to the geometry

of the template image.

2.6.5 Spatial and temporal registration of cardiac SPECT and MR

images

In cardiology more than one type of image modality can be acquired for a single patient.

Images from different modalities provide different kinds of information to clinicians. The

goal of multimodal image registration is to merge the information provided from these

images. Faberet al. developed an approach for the spatial and temporal registration of

single photon emission computed tomography (SPECT) and magnetic resonance images

(MR) [55]. They have used high resolution MR images containing the left ventricle (LV)

of the heart and lower resolution SPECT images containing information regarding my-
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Figure 2.11: Method for the spatial and temporal registration of SPECT and MR images
(adapted from [55]).

ocardial perfusion. When the images are registered, the exact anatomic location of the

perfusion can be identified and its effects on the cardiac motion and wall thickening can

be studied.

The first step of the algorithm involves the application of a surface detection algorithm

to both the MR images and the SPECT images. The surface detection algorithm fits the

images’ intensity gradients to a model of the LV. The output of the detection algorithm is

a set of 288 points on the endocardial surface of the LV. The end-systolic (ES) and end-

diastolic (ED) frames are determined from the segmented surfaces. A rigid registration

method is used to determine the best transformationT which maps both the end-diastolic

and end-systolic SPECT surfaces to the end-diastolic and end-systolic MR surfaces. The

registration method aims to minimise the distance between corresponding surfaces. After

the registration of the ED and ES surfaces, linear interpolation is used to create SPECT

frames corresponding to the MR frames [55]. A graphical representation of the registra-

tion is presented in figure 2.11.

The algorithm was evaluated using images from 3 healthy subjects and one subject

with coronary artery disease. The subjects were studied in both MR and SPECT perfusion

imaging while three of them underwent stress perfusion imaging as well (7 studies in

total). The mean distance between the surfaces before the registration was 4.00mmwhile

after the registration it was 2.7mm. No evaluation of how much the surface detection

algorithm affects the performance of the registration method is provided. In addition,
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the temporal mapping between the SPECT and MR images is provided only for the end-

systolic and end-diastolic frames. This does not mean that the same temporal relationship

will be valid for the frames between them since the dynamic properties of the hearts may

change from one scanning session to the other.

2.7 Conclusions

This chapter has provided an overview of medical image registration. Image registration

is an essential tool for the analysis of cardiac images. The following issues affect the

registration procedure and need to be addressed in order to accomplish the registration of

two images:

• The nature of the data to be registered.The nature of the data are described in

sections 2.1 and 2.2. Depending on the imaging modalities used to acquired the

images, the data can be points, surfaces or intensities. In case of point or surface

based registration, features need to be extracted during the registration procedure.

In the case where image intensities are used, a preprocessing step may be used to

enhance image features and to improve image quality. The nature of the data is

a very important factor on deciding on the similarity measure as well as on the

optimisation approach.

• The similarity measure to use during the registration.A large number of simi-

larity measures have been described in section 2.4. The selection of the similarity

measure depends on the nature of the data to be registered. Euclidean distance

measures can be used when registering surfaces and points. A large number of sim-

ilarity measures which could be used for intensity based registration approaches

have been presented in section 2.4.

• Type of transformation. Details regarding the different types of transformations

are provided in section 2.3. Depending on the application, the type of transforma-

tion can be linear or non-linear. Linear transformations maintain the shape of the
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structures and are usually used to combine information from a number of image

modalities. Non-linear transformations provide a better mapping between anatom-

ical structures by deforming the images. They are commonly used in applications

in the analysis of cardiac images (for example tracking of cardiac motion), due to

the variability in the shape of the heart of different subjects.

• The optimisation procedure. The selection of the correct optimisation procedure

is crucial in order to find the optimal parameters of the transformation with the least

number of calculations. Usually the optimisation approach is an iterative process

which in each step tries to improve the correspondence of the images. Details on

the optimisation approach are provided in section 2.5.

Since the heart is undergoing spatially and temporally a varying degree of motion

during the cardiac cycle, 4D cardiac image registration methods are required when reg-

istering cardiac MR image sequences. Contrary to most of the methods reviewed in this

chapter, the work presented in this thesis aims to align a number of cardiac MR image

sequences not only to the same spatial but also to the same temporal coordinate system.

Thus, the transformation model used during the spatio-temporal registration addresses dif-

ferences in the spatial domain as well as differences in the temporal domain of the image

sequences. Furthermore, the registration methods presented in this thesis are automatic

(except initialisation) and require no segmentation in order to determine temporal fea-

tures in the cardiac cycles. Table 2.1 summarises the cardiac image registration methods

considered in this section.
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Method Dimensionality Modality Registration Area
Chandrashekara
et al. [28, 29]

3D MR Non-rigid Analysis of car-
diac motion

Carbayo etl al.
[98]

2D+time Ultrasound Non-rigid Analysis of car-
diac motion

Rao et al. [167,
165]

3D MR Non-rigid Comparison of
cardiac motion
across subjects

Petijean et al.
[154]

3D MR Non-rigid Comparison of
cardiac motion
across subjects

Turkington et al.
[194]

3D PET Only transla-
tion

Cardiac motion
correction

Ablitt et al. [1] 3D MR Non-rigid Cardiac motion
correction

Bidaut et al. [14] 2D MR Rigid Cardiac motion
correction

Klein et al. [93,
92]

3D PET Affine Cardiac motion
correction

McLeish et al.
[123]

3D MR Non-rigid Motion and de-
formation of the
heart due to respi-
ration

Lorenzo-Valdés
et al. [109]

3D MR Non-rigid Image segmenta-
tion

Nobleet al. [130] 3D MR Non-rigid Image segmenta-
tion

Declerck et al.
[47]

3D SPECT Non-rigid Comparison of
stress and rest
images

Faber et al. [55] 3D+time SPECT/MR Rigid Spatial and tem-
poral registration
of two modalities

Table 2.1: Overview of cardiac image registration applications.



Chapter 3

Modelling of anatomy

Applications assisting the automatic interpretation and understanding of MR images

are of high importance for increasing the clinical use of MR imaging. Computational

anatomy enables the construction of models describing the anatomy and function of

anatomical structures. Moreover, these anatomical models can represent information re-

garding anatomical and functional variability in the population. Models of anatomical

structures enable clinicians not only to interpret medical images but also to better under-

stand anatomical structures. A model provides a better visualisation of the anatomical

structure since medical images suffer from artifacts (e.g. noise, poor contrast to signal

ratio, etc). Furthermore, different visualisation methods will allow clinicians to visu-

alise different properties of the modelled anatomy and function. In addition, collecting

information from a large number of subjects to a single model will enable the better un-

derstanding of the anatomical structure and its variation within the population. Finally,

modelling anatomical structures with certain pathologies will enable the better under-

standing of the pathology, i.e. how the anatomical structure is affected, how the pathology

progresses, etc. This chapter reviews on methods for modelling anatomical structures.
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3.1 Anatomical atlases

Computational anatomy is an active research area [70]. Anatomical atlases are very simi-

lar to geographical atlases as both contain information regarding the anatomy of a physical

reality. However, geographical atlases describe a constant physical reality (for example

a continent) which can be described by a large number of abstract representations (e.g.

population, rainfall, temperature). On the other hand, anatomical atlases do not describe

a single constant reality since the shape, size and function of a particular anatomical

structure differs across the population. In order for anatomical atlases to be meaning-

ful and representative of the population, they must deal with the fact that an anatomical

structure might have a large number of physical realities. Traditional anatomical atlases

contain anatomical and functional information from a single subject and focus primarily

on the human brain [176, 190]. These atlases do not contain any information regard-

ing the anatomical and functional variability across the entire population and are suitable

for anatomical structures without large inter-subject variability. However, they are less

suitable for anatomical structures with large variability across the population.

3.2 Probabilistic atlases

Population based atlases provide a solution to this problem by incorporating informa-

tion from a lager number of subjects. Population based atlases can be used to guide

knowledge based image analysis algorithms and also to support pathology detection in

individual subjects or groups [192]. In order for an atlas to be representative of the popu-

lation, the variability must be captured in an appropriate framework. Probabilistic atlases

retain information regarding variability in the form of tissue probability maps (i.e. each

voxel of the atlas is assigned with a value that describes its probability to belong to a

certain structure). They have a number of advantages over conventional atlases, most im-

portantly their ability to retain information regarding anatomical and functional variance.

Furthermore, the probabilistic framework enables calculations between the morphometry
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of different subjects or atlases to be performed efficiently. Moreover, it also enables sta-

tistical and computational comparisons between individuals and groups making the atlas

an important clinical research tool. Building a probabilistic atlas should be thought as of

an ever-evolving process. It should be relatively easy to add new data to the atlas. The

more data is added to the atlas the more representative of the population the atlas will be.

During the last few years a number of approaches have been developed for the cre-

ation of probabilistic atlases describing the anatomy and function of anatomical structures

as well as the variability across the entire population. The majority of these atlases focus

on the anatomy and function of the human brain [121], [119], [120], [168], [50], [131],

[35]. Probabilistic atlases of the human brain have been successfully used to investigate

the structural and functional differences in the human brain as parts of theInternational

Consortium for Brain Mapping[121], [119], [120]. The aim of theInternational Con-

sortium for Brain Mapping(ICBM) is to develop a voxel based probabilistic atlas of the

human brain. The atlas will contain information from a large number of subjects with a

wide ethnic and racial distribution and various imaging modalities. Furthermore, it will

describe the brain anatomy and function in a 3D spatial domain as well as a temporal one

modelling the age of subjects. The images acquired during this work have been separated

into target brain and reference brain sets. The target brain set is the dataset, derived from

a small number of individuals from whom the richest collection of data exists. The target

brains have been segmented into several anatomical structures. They are used in several

applications including automatic segmentation of brain subjects (by registering them with

unlabelled data). Contrary to the target brain set, the reference brain set is derived from

a large number of subjects (the aim of this work is to include more than 7000 subjects).

This dataset provides information regarding the variance of the population and could be

used for calculation of population and sub-population statistics.

Figure 3.1 provides illustrations of probabilistic atlases developed as part of theIn-

ternational Consortium of Brain Mapping[60]. These atlases are constructed using T1-

weighted MR scans from 452 subjects. The reference space of the atlas is the average

position, scale and shear from all the individual subjects. Figures 3.1 (a), (b), (c) show
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the probabilistic atlases of the gray Matter (GM), the white matter (WM) and the CSF.

(a) (b) (c)

Figure 3.1: Examples of probabilistic atlases of the human brain (a) gray matter atlas, (b)
white matter atlas, (c) CSF Atlas. These atlases are developed as part of theInternational
Consortium for Brain Mapping[60].

The following steps are used for the construction of the probabilistic brain atlases

(analysis pipeline) [119, 120]:

• Screening of the data to find incomplete studies or studies with artifacts.

• Intensity normalisation of the data (in all three dimensions).

• Registration of the data across studies within the same subject.

• Tissue classification (i.e. GM, WM, CSF).

• Removal of extracerebral structures.

• Spatial normalisation of each subject to a target subject.

• Extraction of surface features.

• Visualisation of the atlas.

The intensity of the data is normalised in order to assist the tissue classification proce-

dure.Spatial normalisation of each subject to a target brain enables the automatic segmen-

tation of the subjects. Different image segmentation methods could be used to segment

the brain images to particular anatomical structures. The development of novel image
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registration methods is very important for the construction of probabilistic atlases. Reg-

istration is not as simple as equating the origin of similar coordinate systems. The reg-

istration methods must accommodate for diverse types of image data each with different

spatial resolution and coverage [192]. Furthermore, image registration is also an essential

for the further use of the atlases [120], [192]:

• Mapping all the images to a common coordinate system enables the construction

of the atlas. The type (rigid, affine, non-rigid) of the registration method depends

on the application of the atlas. Registration methods which maintain the shape

(i.e. methods which use linear transformations) of the anatomical features are used

during the construction of most atlases.

• Deformableregistration methods enable the registration of the atlas to an individual

subject. Adapting the shape of an atlas to an individual subject allows the construc-

tion of individualised atlases. Information from an atlas can be transferred to the

individual subject while maintaining the intricate patterns of structural variation in

the subject’s anatomy. Hence, non-rigid registration of an atlas to a subject can be

used to produce valuable information regarding abnormalities [191]. Furthermore,

non-rigid registration methods can be used to determine morphometric variability

which exists in the data [36]. Moreover, registration of an atlas to an individual

image enables the segmentation of the image [109].

• Registration between individual subjects can be used to transfer physiological data

from different individuals to a single anatomical template enabling their comparison

without the confounding effects of their anatomical shapes. For example, rigid

registration [66], [103], [81] and non-rigid registration [65], [169] can be used for

the comparison of humans brains in a normalised reference space.

• Image registration can be used to compare atlases from different populations and

help identify significant anatomical and functional differences between different

population groups.
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The visualisation of the atlas can be separated into two forms [119, 120]. The first

concerning the visualisable aspect of the atlas (3D renderings, etc) and the second one

relating the atlas to a database containing clinical information regarding the region of

interest.

The Montreal Neurological Institute[35] has developed a probabilistic atlas of the

human brain. In order to build this atlas, MR images from 305 subjects were mapped into

the same stereotactic space then, intensity normalised and averaged on a voxel-by-voxel

basis. More recently, Mazziottaet al. have built a four-dimensional probabilistic atlas of

the human brain which includes both macroscopic and microscopic information on the

function and structure of the human brain [119]. At the current stage, the brain atlas is

constructed from more than 1000 subjects, aged 18 to 90 years old. However, the aim of

this work is to include more than 7000 subjects of different ages and countries.

Dinov et al. have used a probabilistic atlas of the human brain in order to develop a

subvolume thresholding method for the analysis of positron emission tomography (PET)

and single photon emission CT data of the brain [50]. The atlas is also used to determine

the statistical significance of the effects of motor simulation on brain perfusion. Nowinski

et al. have also used a brain atlas to assist a method for localisation analysis of functional

images [131]. This technique has a number of limitations mostly due to the nature of the

atlas. The brain atlas they used, an enhanced and extended electronic Talairach-Tournoux

brain atlas [189, 190], is one of the first electronic brain atlases. However, it has significant

limitations due to the fact that it is based on a single subject. Rasseret al. have developed

a nonlinear registration technique to project the Brodmann areas of the brain onto 3D co-

registered functional MR datasets [168]. Similar to the Nowisnksi’set al. approach, this

method uses a single subject based MR atlas.

Parket al. produced a probabilistic atlas of the abdomen using 32 noncontrast ab-

dominal computed tomography scans acquired from patients [140]. The probabilistic

atlas consisted of four organs (liver, kidneys and spinal cord). In order to construct the

atlas all the images were manually segmented. One subject was selected as reference and

all the other images were registered to the reference subject using adeformableregistra-
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tion method based on thin plate splines [140]. Care was taken to ensure that the reference

subject was a normal representative of the population. The information provided by the

atlas was incorporated into a segmentation framework in order to aid the automatic seg-

mentation of abdominal images.

In brain imaging there is very complex structural variability between normal individ-

uals and particularly between different population groups [192]. Therefore, a single brain

atlas may fail to serve as a faithful representation of the population. In this case, cus-

tomised atlases for specific population groups could be more faithful representations of

the group. Hillet al. have recently presented a novel approach for building dynamic at-

lases [78]. In this approach a dynamic atlas can be customised to meet particular criteria,

for example: age, sex, etc. The method enables the specification a number of criteria for

the subjects used to build the atlas. The advantages of dynamic atlases is that they can be

tailored to meet particular needs of the research question of interest.

In cardiac image analysis, probabilistic cardiac atlases have been developed by Lötjönen

et al. [111]. In this work a probabilistic atlas of the cardiac anatomy using MR images

has been constructed by combining information from standard short- and long-axis im-

ages. The atlas was built from 25 healthy subjects. The images were segmented into

atria, ventricles and epicardium by fitting a 3D surface model to both short- and long-

axis images simultaneously . The main steps in the construction of the atlas were: the

affine registration of the segmented subjects to the reference subject, the blurring of the

registered images with a Gaussian kernel and the averaging of the blurred images [111].

Lorenzo-Vald́eset al. have also constructed probabilistic atlases of the cardiac anatomy

and function from 14 MR image sequences of healthy volunteers [108]. Lorenzo-Valdés

et al. developed separate probabilistic atlases of the left and right ventricles as well as for

the myocardium. The main differences between these two approaches is that Lötjönenet

al. address the issue of the poor image resolution in the direction orthogonal to the slice by

using both short- and long-axis images, while Lorenzo-Valdéset al. used only short-axis

images. Moreover, L̈otjönenet al. model only the cardiac anatomy at end-diastole while

Lorenzo-Vald́eset al. model both the cardiac anatomy and function. During the con-
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struction of the probabilistic atlas, Lorenzo-Valdéset al. map the image sequences only

to the same spatial coordinate system and not to a spatio-temporal coordinate one. This

introduces artifacts into the atlas since image frames from different temporal positions in

the cardiac cycles would be averaged.

3.2.1 Reference space of the atlas

The selection of the reference space of the atlas is very crucial. In the case where one

subject of the population is randomly selected to be the reference subject, care must be

taken to ensure that it is a normal representative of the entire population. The Talairach

coordinate system [189, 190] was derived from the brain of a 60 year old woman and was

one of the first coordinate systems used in brain atlases. The Talairach coordinate system

was initially developed to help interpret brain stem and ventricular studies acquired using

pneumoencephalography [189]. It has become an international standard for reporting

functional activation sites in PET studies.

In order to avoid bias towards a specific subject, iterative registration approaches can

be used to calculate the reference space of the atlas. Such a reference space can be con-

structed by [192]: (1) using automated linear registration to align the data to a randomly

selected image; (2) intensity averaging the aligned data; and (3) recursively re-registering

the data to the resulting average image. The resulting average image is then adjusted to

have the mean affine shape for the group [192]. Lötjönenet al. used a similar method to

calculate the reference space of the atlas [111], while Valdéset al. have randomly selected

one of subjects to be the reference space [108]. Guimondet al. presented a convergence

study for calculating average brain models [71]. Their approach consists of the following

steps:

1. Evaluation of the global intensity and shape differences by calculating an affine

transformationTglobal
i between each subjectIi and the reference subjectI ′.

2. Use of non-rigid registration to map each image,Ii, to the reference,I ′, using the

obtained affine transformation,Tglobal
i , as an initial estimate. This step provides the
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resulting matched imagesTlocal
i (Ii) and the resulting non-rigid displacement field

Tlocal
i .

3. Calculation of the mean intensity image by averaging allTlocal
i (Ii) .

4. Production of the mean deformation field by calculating the vectorwise average of

the deformation fieldsTlocal
i .

5. Application of the mean deformation to the average intensity image to produce the

mean average intensity and shape model.

These steps are repeated using an iterative approach in order for the method to converge

to a reference image close to the centroid of the population.
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Figure 3.2: Examples of an atlas coordinate systems. (a) The atlas is defined in the
coordinate system ofI1. (b) The atlas is defined in the natural coordinate system.

Rueckertet al. constructed an atlas of the brain using pairwise registration between

each subject and the reference subject [173]. The mean deformation is then applied to

the atlas to obtain a model in itsnatural coordinates(the coordinates of the mean shape)

[173]. Bhatiaet al. created an atlas directly in thenatural coordinatesby using a method

for groupwise non-rigid registration of brain MR images [13]. The natural coordinate

system is calculated implicitly by constraining the sum of all deformations from the ref-

erence space to each subject to be equal to zero [13]. Figure 3.2 shows how an atlas is
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constructed using an individual subject as a coordinate system (a) and the natural coordi-

nate system (b).

3.2.2 Encoding variability

The methods for creating probabilistic atlases fall into three main categories [192]. Each

category differs in its conceptual foundations. The three categories are:

• Intensity based approaches. In these approaches the average representation of

anatomy is calculated by averaging the intensity of corresponding voxels.

• Segmented based approaches. In these approaches the data are segmented into

anatomical structures. The probability map for each segmented structure is con-

structed by determining the proportion of subjects assigned to a given anatomic

label at each voxel position.

• Deformation based approaches. In these approaches probabilistic information is

locally encoded from the deformation maps. The deformation maps are produced

by using non-rigid registration and enable determination of the magnitude and di-

rectional biases of anatomic variation.

The main difference in the three categories for the construction of probabilistic at-

lases is how the statistical distribution is modelled and analysed. Random vector fields

are analysed on deformation based approaches, while random scalar fields are used to

model intensity statistics in the intensity based approaches and binary labels in space in

the segmentation based approaches [192]. One problem with the intensity and segmen-

tation based methods is that averaging after linear registration introduces blurring in the

boundary definition of structures with spatial variability in the population. This could

destroy information regarding small structures (e.g. the gyral feature of the cortex in the

brain) [192]. A solution to this problem is to use a non-linear registration method which

will enable a better boundary definition of anatomical structures.
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3.3 Statistical modelling

Probabilistic atlases contain information about the degree of variability at every voxel

of the atlas. However, they cannot provide information regarding the type of variabil-

ity. Statistical atlases enable the calculation of additional information regarding the type

variability which exists in anatomical structures. The construction of statistical models

of shape usually requires the identification of a set of landmarks on every image of the

population. The landmarks are placed on strong image features like boundaries and points

with high curvature. Statistical analysis is performed on the landmark locations enabling

the calculation of the average shape and also its significant modes of variation. Figure 3.3

provides an example of statistical shape modelling. In order to perform statistical analysis

on the location of the landmarks, correspondence between the landmarks in each image

has to be established.
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Figure 3.3: Statistical modelling of shapes.

3.3.1 Statistical shape models

There have been a number of attempts to build statistical shape models of the cardiac

anatomy [40, 38, 64, 112] and statistical models of the appearance of the heart [17, 128,

126, 197]. Active Shape Models (ASM) and Active Appearance Models (AAM) are ex-

amples of statistical approaches for modelling cardiac anatomy and appearance. Active

shape models have been introduced by Cooteset al. [40] for modelling the shape of

anatomical structures by gathering statistical information from a large set of images. The

construction of an active shape model requires all sets of landmarks to be aligned with
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the corresponding reference landmark set. The alignment aims to correct scaling, trans-

lation and rotation differences and is performed using an iterative approach based on the

Procrustes method [69]. The alignment method is the following [40]:

• Align (utilising rotation, translation and scaling) each shape with the first shape of

the population.

• Repeat:

– Calculate the mean shape from the aligned shapes.

– Normalise the orientation, scale and origin of the mean to suitable defaults.

– Realign every shape of the population with the current mean.

• Until: the process converges.

After the shape alignment, a correspondence between each point of each set can be

established. The resulting alignment is the model space. Let{xi; i = 0...N} denoteN

shapes. Each shape consists ofm 3D landmarks,{pj = (p1j, p2j, p3j); j = 1....m}. Each

vectorxi consists of the landmarks(p11, p21, p31, p12, p22, p32, ...., p1m, p2m, p3m). After

the alignment into a common coordinate system, each shapexi can be represented by a

single point in a3m-dimensional space.

A Point Distribution Model(PDM) which models the variation in the coordinates of

the aligned shapes’ landmarks can be generated. The variation is assumed to be ellipsoidal

and its centre and major axis are calculated. Calculating the centre provides the mean

shape, while finding the major axes of the ellipsoidal gives a way of moving around the

shape distribution space. The mean shape is calculated as:

x̄ =
1

N

N∑
i=1

xi (3.1)

The aim of the statistical analysis is to approximate the distribution of the landmarks

with a linear model of the form:

x = x̄ + Φsbs (3.2)
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wherex̄ is the average landmark vector,bs is the shape parameter vector of the model,

andΦs is a matrix of eigenvectors. The matrixΦs is obtained by performing aPrincipal

Component Analysis(PCA) [87] to the3m× 3m covariance matrixS:

S =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T (3.3)

During theprincipal component analysis, the principal components ofS are calculated as

its eigenvectorsφi and the corresponding eigenvaluesλi are sorted (such thatλi < λi+1).

New shape examples can be generated by varying the parametersbs of equation 3.2.

Assuming that the distribution of the data follows a multidimensional Gaussian distri-

bution, the variance of theith parameter ofbs across the training set is given byλi. If

limits in the variation ofbsi are applied such thatbsi ≤ ±3
√
λi, then it is ensured than the

generated shape is similar to those contained in the training class.

A similar technique could be used to model the appearance as well as the shape. Active

Appearance Models (AAM) have also been introduced by Cooteset al. [37], [39]. In

order to build a statistical model of the appearance, each image of the population is warped

so that its control points (landmarks) match the mean shape. The images are warped to

match the mean shape using a triangulation algorithm [37, 39]. Intensity information

from the shape normalised images is sampled over the region covered by the mean shape.

The samples can be further normalised to reduce the effect of variation in global lighting.

Then PCA can be applied to obtain a linear model of appearance similar to the one defined

by equation 3.2:

g = ḡ + Φgbg (3.4)

whereḡ is the mean normalised grey-level vector,Φg is the eigenvector of appearance

variation andbg is the model’s parameters [37, 39]. Therefore, the shape and the ap-

pearance of a subject can be described by the vectorsbs andbg. Since there might be

correlations between the shape and the appearance of a subject, the vectors are concate-

nated by applying an additional PCA to both shape and intensity. The following model is
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obtained [37, 39]:

b =




Wsbs

bg


 =




Qs

Qg


 c = Qc (3.5)

whereWs is a diagonal matrix of weights for each shape parameter, allowing for the

difference in units between the shape and intensity models.Q is a set of orthogonal

modes andc is a vector of parameters controlling both the shape and the appearance of

the model.

An alternative approach for modelling shape and appearance is to useIndependent

Component Analysis[85], [86] (ICA) instead of PCA. In PCA the objective is to find

modes of shape variation which explain the maximal amount of variance in the population.

In ICA on the other hand, the objective is to find modes of shape variation which are

statistically independent. ICA enables the modelling of input data which do not have

Gaussian distribution and can also describe localised variation. ICA is widely used for

separation of mixed signals.

Assume thatx is a shape vector which come from a mixture of signals of the form:

x = A · S (3.6)

whereA is a matrix containing the mixing parameters andS the source shape. Then,

the goal of ICA is to calculate the original shape from the mixed signal. Therefore, ICA

calculates the de-mixing matrixU:

Ŝ = U · x (3.7)

The matrixU is found by calculating a cost function. TheJoint Approximated Di-

agonalization of Eigenmatricesalgorithm (which is based on the joint diagonalisation of

the cumulant matrices) can be used to calculate the matrixU [23]. Üzümc̈u et al. [197]

used ICA to build an Active Appearance Model of the heart using 2D MR images. The

model was used for cardiac MR segmentation. One major disadvantage of ICA compared
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to PCA is that the resulting vectors of shape deviation are not ordered and a method for

ordering the independent components is required [197].

Mitchell et al. have developed a multistage hybrid active appearance model of cardiac

MR images. They use the model for the segmentation of the left and right ventricles of

cardiac MR images. Hemarnehet al. have developed 2D spatio-temporal active shape

models (ASMM) [75], while Sonkaet al. presented an active appearance motion model

[102, 127, 185] (AAMM) which captures the cardiac dynamics as well as the image ap-

pearance of the heart. In their framework, shape correspondence was defined in a similar

way to the conventional ASM approaches, while temporal correspondence was defined

by normalising the cardiac cycle of the images. The temporal normalisation is achieved

by selecting a fixed number of frames covering the entire cardiac cycle and using nearest

neighbour interpolation to generate image information between these frames. The con-

tour points from the phase normalised images were then concatenated to form a vector.

Standard PCA analysis and AAM intensity normalisation schemes were applied to cap-

ture the model statistics. Boschet al. have also developed AAMs which capture the

spatial and temporal information of echocardiographic sequences [17]. In their frame-

work, correction for non-Gaussian intensity distribution of the appearance is used prior to

the construction of the model.

Shape modelling needs a large number of landmarks to be identified in all the images

used for the construction of the model. This is a very difficult task which is prone to

errors. An exemption to this is the work by Frangiet al. [63], [64], [61]. In this approach,

a set ofpseudo-landmarksare used instead of real anatomical landmarks. Thepseudo-

landmarksare generated using themarching cubesalgorithm [107] to generate a dense

triangulation (pseudo-landmarks) of the boundary surfaces of each anatomical structure.

The automatic landmarking of each image is achieved by using a non-rigid registration

algorithm based on B-Splines to propagate thepseudo-landmarksfrom the landmarked

atlas to each image of the population. The resulting model included the left and right

ventricles.
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In order to evaluate how well the propagation of landmarks is performed, Frangiet al.

used images from 14 healthy volunteers [64]. Three experienced observers were asked

to identify seven landmarks on each subject and also on the atlas. The observers iden-

tified the seven landmarks twice in two different sessions. The algorithm was able to

automatically place the landmarks with an average accuracy of about 2.2mmand a pre-

cision of about 1.5mm. In the same experiments they found that the precision of manual

landmarking was about 0.8mm[64].

Lötjönenet al. used the method developed by Frangiet al. [64] to develop statisti-

cal shape models of atria, ventricles and epicardium [112]. Their statistical models were

constructed using short- (SA) and long-axis (LA) MR images from 25 healthy volunteers.

The use of long-axis images in the construction of the atlas provides more information in

the direction orthogonal to the short-axis slice. A typical short-axis cardiac MR image has

out-of-plane resolution several times larger than in-plane resolution. Therefore, the use

of both long- and short-axis cardiac images enables the more accurate localisation of the

ventricles in the basal and apical levels. The mapping between the short- and long-axis

images was calculated using information, contained in the image files, regarding the coor-

dinate system of the images. An algorithm for the correction of movements in the images

was applied prior to the construction of the atlas. The movement correction algorithm

optimises the normalised mutual information (NMI) between the SA and LA volumes.

The algorithm assumes that the displacement of each slice is independent from the dis-

placements of the other slices. One slice is randomly selected from the SA and LA stack

and it is moved to the direction which optimises the NMI [112]. The atria, ventricles and

epi-cardium were manually segmented from each image by a clinician. In this approach,

instead of registering the grey-level images, the segmented data were utilised. Intensity

volumes were generated from the surface data. One volume was selected as the reference

and other volumes were aligned to the reference using translation, rotation and isotropic

scaling. The variability in the shape was modelled using several analysis methods: PCA,

ICA, LPDs (landmark probability distribution).
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Horkaewet al. developed an approach for the construction of dynamic statistical mod-

els for complex topological shapes. Their method uses a harmonic embedding method to

establish optimal global correspondence between a set of dynamic surfaces [82], [84]. The

proposed method eliminates the need for shape partitioning and introduction of artificial

structures to the parameterisation domain. The strength of the method was demonstrated

by constructing a statistical model of the left side of the heart that includes the left ventri-

cle, left atrium, aortic outflow track and the pulmonary veins.

3.3.2 Statistical deformation models

Statistical deformation models (SDMs) are very similar to statistical models of shape. One

of the key ideas here is to carry out statistical analysis directly on the deformation fields

which describe a dense correspondence between the anatomies of two images. There are

two main advantages of performing statistical analysis on the deformation fields rather

than the shape [173]. Firstly, the resulting statistical model is not limited to a single

anatomical structure. It can instead describe the intra- and inter-structure variability across

a population. Secondly, the deformation fields can be obtained by non-rigid registration,

eliminating the need for segmentation of the images. Rueckertet al. used non-rigid

registration based on B-Splines to construct a 3D statistical deformation model of the

brain using MR images from 25 different subjects [173]. The registration algorithm uses

a transformation,T, consisting of a global and a local part (this transformation model is

described in detail in section 2.3.2.1):

T(x′, y′, z′) = Tglobal(x, y, z) + Tlocal(x, y, z) (3.8)

The global transformation describes the overall differences of the images and is rep-

resented by an affine transformation. The local transformation describes the local shape

differences and is represented by adeformablemodel based on B-Splines:

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (3.9)
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whereφ denotes amx ×my ×mz lattice of control points. The resulting transformation

T maps each point of the reference subjectI ′ to the corresponding point in the anatomy

of subjectIi. The goal of SDMs is to perform statistical analysis of the deformations re-

quired to mapI ′ to eachIi. However, the effects of the global transformation component,

Tglobal, which are the result of differences in position, orientation and overall size of each

subject’s anatomy, have to be removed prior to statistical analysis. In order to remove

any dependency of the local transformation to the global transformation, the following

displacements are calculated:

d(x,y, z) = J−1 ◦Tlocal(x,y, z)

=
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)J−1φi+l,j+m,k+n

(3.10)

whereJ is the Jacobian matrix of the global transformation. The Jacobian matrix of the

affine transformation, with coefficientsaij is:

J =




a01 a02 a03

a11 a12 a13

a21 a22 a23




(3.11)

Suppose that there aren free-form deformations described as control pointsC1, ....,Cn.

Each vector of control pointsCi corresponds to a concatenation ofmx × my × mz 3D

control points,Ci = (c1, ...., cm). These points produce a free-form deformation mapping

the anatomy of the reference subjectI ′ to subjectIi. The goal of SDMs is to approximate

the distribution ofC using a parameterised linear model [173], similar to the one defined

by equation 3.2:

C = C̄ + Φdbd (3.12)

whereC̄ = 1
n

∑n
i=1 Ci is average control point vector,bd is the model’s parameter vector

andΦd is the matrix of eigenvectors. As in the statistical shape modelling, the columns
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of Φd are formed by performing PCA analysis on the covariance matrix:

Sd =
1

n

N∑
i=1

(Ci − C̄)(Ci − C̄)T (3.13)

Joshi [88] and Geeet al. [67] have also perform statistical deformation modelling of

the brain. These approaches are closely related to the approach developed Rueckertet al.

[173] but differ in one important aspect. Rueckertet al. performs statistical analysis on

the control points of the free-form deformation rather than directly on the deformation

fields. The control points parameterise the deformation fields providing a very compact

representation. Cseransyet al. have used SDMs for the analysis of the hippocampal

shape [42] and Wanget al. for the analysis of hippocampal asymmetry [202]. Moreover,

Davatzikoset al. employed a non-rigid registration algorithm to calculate 2D deformation

fields of the corpus callosum. Then, statistical analysis of these deformation fields is used

to quantify changes between two population groups (in this case male and female subjects)

[44]. In a similar way, Booksteinet al. studied the shape variability of corpus callosum

in patients with schizophrenia and normal control subjects by analysing the deformation

maps based on thin-plate splines [15], [49].

Lappet al. combined the concepts of SDMs to AAMs to develop a 4D Active Appear-

ance model of the heart. In this method all corresponding frames of the image sequences

are registered to the same coordinate system using non-rigid registration. The resulting

deformation fields are assembled to a pseudo 4D deformation fields. Then PCA analysis

is performed on the obtained deformation fields [94, 95]. The appearance of the heart is

modelled similarly to the AAMs. The images are warped to same coordinate system using

the obtained deformation fields and then PCA analysis is performed on their appearance

vectors [94, 95]. The temporal misalignment between the image sequences has not been

corrected during the construction of the models.
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3.4 Atlases of the cardiac function

Raoet al. [167, 165, 166] have developed an atlas of the cardiac motion by using MR

image sequences of the heart from nine volunteers. The method for extracting the cardiac

motion and mapping the motion fields across subjects is described in detail in section

2.6.1. As described in section 2.6.1, the cardiac motion fields are calculated using the

method described by Chandrashekaraet al. [29]. Then a non-rigid registration algorithm

is used to calculate the mapping between end-diastolic frames of each untagged image

sequence. Petijeanet al. [154] developed a similar atlas of the motion of the heart. The

key difference between the two approaches is that while Raoet al.’s approach produces

a parametric atlas, this approach produces a non parametric motion atlas which has the

ability to preserve the statistical diversity of the motion content of MR data during the

contraction phase of the heart [154]. Moreover, Petijeanet al. performed PCA analysis on

the motion data calculating not only the average deformation field but also the significant

modes of motion variation. Both approaches provided a temporal correction only for

the length of the cardiac cycles [154]. This may not be enough since each heart may

have different dynamic properties (one heart may have a longer contraction and a shorter

relaxation phase). In another publication Chandrashekaraet al. presented a new technique

for tracking the movement of the myocardium by the use of a statistical model derived

from the cardiac motion fields of several healthy volunteers [30]. The approach for the

construction of the statistical model consists of three steps. Firstly, the motion fields

are extracted for all subjects between end-diastole and end-systole using the previously

mentioned approach [29]. Secondly, the extracted motion fields are mapped to the same

coordinate system using Raoet al.’s approach [167]. Finally, (PCA) is performed on the

motion fields in order to calculate the significant modes of variation in the motion fields.
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3.5 Other modelling approaches

In recent years a large number of approaches have also been developed for the geometric

and biomechanical modelling of the heart. A comprehensive review of these approaches

can be found in Frangiet al. [62]. A major difference between geometric approaches and

probabilistic and statistical approaches for modelling anatomical structures is that geo-

metric models do not contain any information regarding the shape and function variability

within the population. This section provides a brief description of such methods. Detailed

analysis of geometric modelling methods is outside the scope of this thesis. Frangiet al.

categorise the geometric modelling methods depending on the way in which the models

are geometrically represented [62]:

• Surface modelling

• Volumetric modelling

• Deformable modelling

In early studies of 2D echocardiography images, the left-ventricle is modelled as a

simple ellipsoidal [200], [53]. More advanced approaches which use 3D acquisition to

reconstruct the LV using global and hierarchical parameterised models have also been

developed. Approaches which use global parameterised models are based on simple ge-

ometric models which enable a rough shape approximation of the anatomical structure

[62]. Cauvinet al. used a combination of an ellipsoid and a cylinder (atruncated bullet)

to model the left ventricle [26], while Metaxas and Terzopoulos proposedsuperquadrics

to model simple objects with a limited number of parameters [125]. Parket al. extended

thesuperquadricsmodel by introducing parameter functions like radial and longitudinal

contraction, twisting and long-axis deformation [141]. Bardinetet al. used a combina-

tion of a superquadricand free-form deformations to model the LV [10, 11]. In their

approach, asuperquadricmodel is used to fit the inner and outer surfaces of the left ven-

tricle and then a free-form deformation model is used to refine the crude approximation of

thesuperquadricmodel. The method is applied in order to estimate the LV wall motion
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[10]. This is achieved by deforming the entire model (superquadricand FFD) to match

the anatomy of the first frame and modifying only the FFD in the subsequent frames.

Hierarchical parameterised models contain hierarchical representation of the model,

where each level describes the model in more detail. Gustavssonet al., for instance, used

a truncated ellipsoid to obtain a coarse position of the left ventricle from contours drawn

into the short-axis and three apical views of ultrasound images [72]. The model is refined

using cubic B-Splines curves which approximate the manually segmented contours in

multiple views.

There are also surface models which incorporate temporal and spatial variation of the

LV shape. Tuet al. introduced a 4D model-based LV boundary detector for 3D CT im-

age sequences [193]. The method applies a spatio-temporal gradient operator in spherical

coordinates which is only sensitive to moving edges. An iterative approach refines the

boundaries of the model by discarding edge points which are far away from the global

model. Spherical harmonics are used to parameterise the model as the refinement ap-

proach proceeds. Faberet al. [56] uses a discrete 4D model to segment the left ventricle

from SPECT and MR images using a relaxation labelling scheme [90]. In this approach,

the endocardial and epicardial surfaces are modelled as a discrete template which is de-

fined in a mixed spherical/cylindrical system co-axial with the long-axis of the left ven-

tricle. Each point in the template represents a radius connected to the long-axis. During

the segmentation procedure, information from neighbouring points in both the spatial and

temporal domains is used. More recently, Declercket al. introduced a 4D continuous

planispheric transformation which enables the tracking of LV motion [46]. The plani-

spheric transformations have the advantage that they are continuous in both spatial and

temporal domains. Sermesantet al. have developed adeformablebiomechanical model

of the heart by combining information from various imaging modalities [180, 181]. The

construction of the model involved three main stages: generation of the geometrical mesh,

non-rigid registration of the mesh in images of various modalities and finally retrieving

information from each volumetric image to the volumetric mesh.
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In recent years the trend is moving away from surface based modelling of the heart

to more accurate volumetric based modelling of the cardiac motion [54]. A review on

imaging three-dimensional cardiac function and on analysis of cardiac deformation can

be found by O’Dell and McGulloch [132]. Shiet al. extended an earlier surface modelling

approach [182] to produce a biomechanical model by combining surface and motion in-

formation from magnitude and phase-contrast MR images respectively [183]. Haberet

al. developed a model of biventricular geometry using finite elements [73]. Papademetris

et al. developed a cardiac biomechanical modelling approach using a deformation model

inspired by continuum mechanics [136, 138, 135, 137]. In this approach a dense tri-

angulation field is calculated using point correspondence which is obtained by using an

extension of the work developed by Shiet al. [183]. A linear elasticity model is used for

the estimation of a dense motion field. The model accounts for the muscle fiber direc-

tions in the left ventricle. The motion field is used to calculate the deformation of the left

ventricle’s wall in terms of strain in cardiac specific directions [137].

3.6 Conclusions

There are three main methods for modelling the shape and function of the heart.Proba-

bilistic atlasescontain information regarding the shape and function of structures in the

form of tissue probability maps (i.e. the probability of a voxel to belong to a certain

anatomical structure). A disadvantage of probabilistic atlases is that they can not provide

information regarding the type of variability.Statistical atlasesenable the calculation of

additional statistical information regarding the type of variability. The main categories of

statistical models which have been reviewed in this chapter are: the statistical shape and

appearance models and statistical deformation models. In statistical shape models, anal-

ysis on the shape of the heart is performed. Statistical models of appearance go one step

further by analysing not only the shape of the heart but also its appearance. Statistical de-

formation models are very similar to statistical models of shape. One of the key ideas here

is to perform statistical analysis directly on the deformation fields which describe a dense
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correspondence between the anatomies of two images. Furthermore, there are approaches

for the construction of statistical atlases of the cardiac motion. Finally, in recent years a

large number of approaches have also been developed includinggeometric modellingand

biomechanical modellingof the heart. A major difference between these models is that

they do not contain information regarding the shape and function variability within the

population.

Contrary to most of the methods reviewed in this chapter, the work presented in this

thesis aims to build 4D probabilistic and statistical atlases of the cardiac anatomy and

function. In this chapter a number of approaches for building atlases of the cardiac

anatomy and function have been presented. However, none of the above approaches cap-

tures information regarding anatomical and functional variability into a single model. The

probabilistic and statistical atlases presented in this thesis contain information regarding

anatomical variability and functional variability. These models describe the shape of a

healthy heart and how the shape of the heart changes over the cardiac cycle.



Chapter 4

Spatio-temporal alignment of cardiac

MR image sequences

This chapter presents a novel method for the spatio-temporal registration of 3D cardiac

MR image sequences. The algorithm uses a 4D transformation model which is separated

into decoupled spatial and temporal components. Firstly, a registration algorithm is pre-

sented which has the ability to correct spatial misalignment of affine nature between the

image sequences. It also has the ability to correct temporal misalignment which may be

the result of differences in the length of the cardiac cycles of the subjects and in the tem-

poral acquisition parameters [152]. Secondly, adeformablespatial transformation model

is introduced which enables the better spatial registration of the image sequences. With

the introduction of the spatialdeformabletransformation model, the algorithm corrects

not only global spatial shape differences but also local differences in the shape of the

hearts [153].

4.1 Why spatio-temporal registration is needed

Since the heart is undergoing spatially and temporally a varying degree of motion during

the cardiac cycle, 4D cardiac image registration algorithms are required when registering

two cardiac MR image sequences. Spatial alignment of corresponding frames of the im-
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age sequences (e.g. the second frame of one image sequence with the second frame of the

other) is not sufficient since these frames may not correspond to the same position in the

cardiac cycle of the hearts. This is due to differences in the acquisition parameters (trig-

ger offset from R-wave and different intervals in the acquisition of consecutive frames),

differences in the length of cardiac cycles (e.g. one cardiac cycle may be longer than the

other) and differences in the dynamic properties of the hearts (e.g. one heart may have

a longer contraction phase and a shorter relaxation phase). Figure 4.1 shows an example

of how differences in the trigger offset (tdelay), in the frequency of the acquisition of con-

secutive frames and in the length of the cardiac cycles affect the temporal alignment of

two image sequences. An affine temporal transformation can correct for differences in the

acquisition parameters and in the length of the cardiac cycles. However, the correction

for the differences in the dynamic properties of the hearts requires more complex trans-

formations. The spatio-temporal alignment enables comparison between corresponding

anatomical positions and corresponding positions in the cardiac cycle of the hearts. This

can be seen from the volume curves of the left ventricles in figure 4.2. In 4.2(a) there is

no temporal registration between the image sequences. This may lead to the comparison

of frames in different positions in the cardiac cycle (the position were one heart is at peak

contraction while the other heart is still during the contraction phase). What is needed is

to find the temporal relationship between the two image sequences in order to compare

corresponding positions in the cardiac cycles (figure 4.2 (b)).

The method developed by Raoet al. [167, 165, 166] for the direct comparison of

motion fields between different subjects suffers from the problem mentioned above. The

deformation fields calculated for each subject contain the deformation between adjacent

frames. When non-rigid registration is used to map the deformation fields to the same

reference system, the mapping is performed only in the spatial domain. However, the

size of motion fields from one frame to the next will depend on the offset (toffset) in

the acquisition of consecutive frames. The larger this acquisition offset is, the larger

the cardiac motion between adjacent frames would be. Therefore, comparing a number of

motion fields without knowing the temporal relation between the cardiac cycles introduces
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errors in the observations.

R−wave

delay offset

R−wave

offset
t

t

R−wave

time

time

R−wave

delay

tt

Frame acquisition time points

Frame acquisition time points

Figure 4.1: An example of two MR image acquisitions with different initial delay in the
acquisition of the first frame and offset in the acquisition of consecutive frames. The
image sequences have different numbers of frames. It is clear that comparison between
corresponding frames is not sufficient since these frames correspond to different positions
in the cardiac cycles of the heart. Temporal registration is needed to establish correspon-
dence between these frames.

4.2 Contributions

This chapter makes the following contributions:

• The development of a new method for the spatial and temporal alignment of a num-

ber of cardiac MR image sequences to the same coordinate system. The registration

method uses a 4D transformation mapping decoupled into separate temporal and

spatial components. This spatio-temporal transformation mapping enables the di-

rect comparison of the anatomy and function of cardiac MR image sequences to be
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Figure 4.2: An example of why spatio-temporal registration is needed. (a) the identity
temporal relation has been assumed, (b) the temporal relation provides a mapping between
corresponding positions in the cardiac cycle.

made. The registration method aims to minimise any patient specific temporal and

spatial variability which is caused as a result of spatial differences in the position,

size and orientation of the cardiac anatomies and temporal differences in the length

of the cardiac cycle of the hearts.

• The extension of the spatio-temporal registration method with the introduction of

a deformablespatial transformation. This extension enables the correction of any

specific temporal and spatial variability which is caused as a result of spatial local

shape differences between the cardiac anatomies in addition to the global spatial

and temporal differences.

4.3 Spatio-temporal registration of cardiac MR image se-

quences

The proposed registration approach uses information provided only by the intensity of

the image sequences. There is no need to identify feature positions in the cardiac cycles

(e.g. the positions of the peak contraction) of the hearts and also no need to segment the

images.
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A 3D cardiac image sequence can be represented as an ordered sequence ofn 3D

imagesSk(x, y, z) with a fixed field of viewΩSk
and an acquisition timetk, tk < tk+1,

in the temporal direction. The resulting image sequence can be viewed as 4D image

S(x, y, z, t) defined on the spatio-temporal domainΩSk
× [t1, tn]. The goal of 4D image

registration is to relate each point in one image sequence to its corresponding point in the

reference image sequence. In this case the transformationT : (x, y, z, t) → (x′, y′, z′, t′)

where(x′, y′, z′, t′) = (x+ u, y + v, z +w, t+ τ) maps any point of one image sequence

S(x, y, z, t) into its corresponding point in the reference image sequenceS ′(x′, y′, z′, t′).

In general, the 4D mappingT can have the following forms:

1. T(x, y, z, t) = (x′(x, y, z, t), y′(x, y, z, t), z′(x, y, z, t), t′(x, y, z, t))

2. T(x, y, z, t) = (x′(x, y, z, t′), y′(x, y, z, t′), z′(x, y, z, t′), t′(t))

3. T(x, y, z, t) = (x′(x, y, z), y′(x, y, z), z′(x, y, z), t′(t))

The first type of 4D mapping is under-constrained and it would be very difficult to

find the optimal transformation mapping without introducing additional constraints or

employing heuristic algorithms to reduce the search space. Furthermore, this mapping is

undesirable due to the fact that two points from the same temporal frame can correspond

to two points in two different time frames in the source image sequence. This is not intu-

itive or desirable. The second type of 4D mapping allows a different spatial mapping for

each frame of the image sequences. Such a 4D mapping is preferable when the differences

in the shape of the hearts are not constant within the cardiac cycle. However, finding the

optimal transformation of such type would have a very high computational complexity.

The last form of 4D mapping separates the temporal alignment of the image sequences

from the spatial alignment. Hence, this form of 4D mapping decouples the misalignment

caused by spatial differences from misalignment caused by temporal differences. Further-

more, its computational complexity is substantially lower than that of the previous type

of transformation mapping since a common spatial transformation for each frame of the

sequences is required.
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Figure 4.3: The mapping has to ensure that different regions in a 3D image will not be
warped differently in the temporal direction (dashed line). Each voxel in the temporal
framet of the image sequence B will map to another voxel in framet′ of image sequence
A.

The 4D mapping used in this thesis is of the form:

T(x, y, z, t) = (x′(x, y, z), y′(x, y, z), z′(x, y, z), t′(t)) (4.1)

It can be of a subvoxel displacement in the spatial domain and of a sub-frame displace-

ment in the temporal domain.

Since the temporal and the spatial domains are different, the 4D mapping can be re-

solved into decoupled spatial and temporal componentsTspatial and Ttemporal respec-

tively, where

Tspatial(x, y, z) = (x′(x, y, z), y′(x, y, z), z′(x, y, z)) (4.2)

and

Ttemporal(t) = t′(t) (4.3)

One consequence of this decoupling is that each temporal framet in image sequence

S will map to another temporal framet′ in image sequenceS ′, ensuring causality and

preventing different regions in a 3D imageSk(x, y, z) to be warped differently in the

temporal direction byTtemporal (figure 4.3). Another advantage of the decoupled model

is the ability to interchange easily the type of the temporal transformationTtemporal and

spatial transformationTspatial.
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Figure 4.4: The spatio-temporal mapping can help to solve spatial ambiguities (adapted
from [25]).

A similar spatio-temporal registration approach has also been used by Caspiet al. for

the registration of different video sequences [25]. In this approach a decoupled spatio-

temporal transformation model is used to establish spatial and temporal correspondence

between two 2D video sequences (2D+time). The algorithm uses an affine temporal

model correcting for different offsets between the sequences and different frame rates.

The spatial model is a 2D projective transformation correcting for different internal and

external camera parameters. Two optimisation methods have been developed. The first is

based on the trajectories of segmented objects while the second one on intensity informa-

tion only.

The use of spatio-temporal registration has a number of potential advantages. The

registration could be based not only on information provided by each frame but also on

subframe information. Furthermore, introducing a temporal transformation can help to

solve a number of spatial ambiguities. An example of spatial ambiguities is shown in

figure 4.4. In figure 4.4 (a) there are two images of two spherical objects. There is a

number of possible alignments between them. In figure 4.4 (b) the same spherical objects

are displayed over time. It can be seen how much easier it is to find a mapping between

the objects if temporal information is available. However, introducing the temporal trans-
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formation can also result in spatio-temporal ambiguities. These occur when the temporal

alignment corrects for spatial differences or the spatial alignment corrects for temporal

differences [25].

As mentioned above, in this thesis the spatio-temporal alignment of image sequences

is enabled using only image information. Alternative ways for the temporal alignment of

image sequences include the use of the ECG signal and the ventricular pressure. The ECG

signal records the electrical activations of the heart which can be related to the phases of

the cardiac cycle (figure 1.7). However, during the MR image acquisition the ECG signal

is distorted due to the presence of a strong magnetic field. Recently, Kachelriesset al.

presented a technique for the extraction of information about the cardiac motion directly

from the measured raw data of spiral CT of the heart [89]. The measure is called the

kymogramand is a local measure of the heart motion as a function of timet or as a

function of projection angleα. Thekymogramcan be used to detect the beginning and

the end of the contraction but it does not provide enough information regarding the other

phases of the cardiac cycle. The ventricular pressure could also be used to find temporal

correspondence between two cardiac cycles. However, the pressure information tends not

to be recorded and is usually not available in clinical practice.

4.4 Affine spatio-temporal registration

4.4.1 Spatial alignment of 4D image sequences

The aim of the spatial part of the transformation is to relate each spatial point of an im-

age to a point of the reference image, i.e.Tspatial : (x, y, z) → (x′, y′, z′) maps any

point (x, y, z) of a particular time framet in one image sequence into its correspond-

ing point (x′, y′, z′) of another particular time framet′ of the reference image sequence.

The simplest choice ofTspatial is a rigid transformation which has sixdegrees of free-

domcorresponding to translation and rotation. In this approach an affine transformation

is selected which is a more general class of transformations with 12degrees of freedom
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utilising scaling and shearing in addition to translation and rotation (3degrees of free-

dom for rotation, 3 for translation, 3 for scaling and 3 for shearing). Such a 3D affine

transformation can be written as:

Tglobal
spatial(x, y, z) =




θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33







x

y

z




+




θ14

θ24

θ34




(4.4)

where the coefficientsθ parameterise the twelvedegrees of freedomof the transformation.

4.4.2 Temporal alignment of 4D image sequences

The temporal alignment of two image sequences aims to find the transformation func-

tion Ttemporal which establishes a correspondence between timet in one image sequence

and the corresponding timet′ in the reference image sequence, thereby establishing a

correspondence between corresponding time points in two cardiac cycles. In addition

to differences in the length of the cardiac cycle, the temporal alignment of two image

sequences is further complicated by the fact that the acquisition of cardiac MR image se-

quences typically depends on two parameters (figure 4.1): the first parameter describes

the delay,tdelay, after which the MR acquisition starts while the second parameter,toffset,

describes the temporal resolution of the image sequence.

In the current approach the temporal transformation,Ttemporal : (t) → (t′), is repre-

sented as an affine transformation of the following form:

Ttemporal(t
′) = αt+ β (4.5)

Hereα accounts for scaling differences between the two image sequences (different length

of cardiac cycles or different temporal resolution) whileβ accounts for translation differ-

ences between the two image sequences. Translation differences may be introduced by

the acquisition parametertdelay and by missing frames.
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4.4.3 Similarity and optimisation

The optimal transformationT is found by maximising a voxel similarity measure, nor-

malised mutual information (NMI) [187], as a measure of spatio-temporal alignment of

the image sequences. Normalised mutual information has previously been used success-

fully in mono- and multi-modal image registration approaches [33, 113, 157, 204]. The

use of a voxel-based similarity measure eliminates any need for any feature detection and

segmentation of structures as the epi- or endo-cardial surfaces. The normalised mutual

information between two image sequences is defined as:

NMI(S ′, S) =
H(S ′) +H(S)

H(S ′, S)
(4.6)

whereH(·) denotes the marginal entropy of each image sequence andH(·, ·) is the joint

entropy of two image sequences. The normalised mutual information can be calculated

directly from the joint intensity histogram of the two sequences over their spatio-temporal

domain of overlapΩS′ × [tS′1 , tS′n ]
⋂

T(ΩS × [tS1 , tSn ]). Figure 4.5 provides an example

of the joint intensity histogram over the spatio-temporal domain of overlap of two image

sequences. The temporal transformation,Ttemporal, has only 2degrees of freedomwhile

the spatial one has 12. Therefore, the spatio-temporal registration has 14degrees of free-

domin total. A simple iterative uphill method can be used to optimise the transformation.

The optimisation is carried out to calculate the optimal transformation :

arg max
α,β,Θ

NMI(S ′,T(S)) (4.7)

whereS ′ is the reference image sequence andT(S) is the transformed image sequence

S. The method is the same as the one described by Studholme [186].

Listing 1 describes the algorithm. The idea behind this optimisation approach is to use

a large step size to obtain a rough estimate of the optimal transformation and then, reduce

the step size to obtain a better estimate. However, care must be taken when selecting

the step size. A small step size may not be enough to reach the optimal solution and
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the optimisation procedure may become stuck into a local minima, while a large step

may move the transformation far away from the optimal solution (figure 4.6) . In figure

4.6 is shown that a small step size is not enough to overcome the local minima, while a

large step size moves the transformation far away from the correct solution, trapping the

optimisation procedure in another local minima.

Listing 1 The uphill descent optimisation approach.
1: Given a current estimate of the transformation,Tn = T0.
2: repeat
3: repeat
4: evaluate the similarity measure for a set of 29 transformationsT (Tn). This

set consists of the transformations resulting by increasing and decreasing each
degree of freedomof the current estimate by a certain step,s, and the current
transformation (14dofs× 2 + 1)

5: selectthe best estimate of the transformation with respect to the similarity NMI:

Tn+1 = max
T∈T (Tn)

{(NMI(S ′,T(S))} (4.8)

6: if Tn+1 results to a greater value in the similarity measure thanTn, then
7: Tn+1 becomes the current estimate:Tn = Tn+1

8: end if
9: until maximum number of iterations

10: subdividestep sizes
11: until maximum number of subdivisions

During the optimisation new voxel values are generated in the temporal domain using

linear interpolation and trilinear interpolation in the spatial domain. Linear interpolation

has high computational efficiency. The use of a more advanced interpolation method, like

sinc interpolation and B-Spline interpolation, will make the registration process slower

without substantially improving its accuracy. A review on interpolation methods in med-

ical image processing can be found in [101].
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Parameter Setting
No. of bins 64
No. of iterations 20
No. of steps 4
Length of spatial steps 5mm
Length of temporal steps 5msec

Table 4.1: Registration parameters used for the affine spatio-temporal registration.

Table 4.1 contains the parameters used for the registrations:

• Number of bins: the number of partitions of the histogram for estimating the sim-

ilarity measure. Practical evaluation has shown that the value of 64 bins is a good

choice for cardiac MR images. A larger number of bins will make the registra-

tion process slower without improving accuracy. Furthermore, a smaller number of

bins will adversely affect the results since intensity information from a number of

different types of tissue could correspond to the same bin in the histogram.

• Number of steps:the number of times the optimisation process has to be repeated.

In each iteration the length of step is halved. If the length of the final step is less than

the dimensions of the sequence’s voxels then, subvoxel accuracy can be achieved.

• Number of iterations: the maximum number of times that the optimal transforma-

tion estimate,Tn+1, is calculated for a certain step size.

• Length of steps: the initial length of the step. The length of the step is defined in

mmin the spatial domain andmsecin the temporal domain.

4.4.4 Evaluation of the method

To evaluate the affine spatio-temporal registration algorithm, cardiac MR image se-

quences from seven volunteers have been acquired. All image sequences used in the

experiments were acquired on a Siemens Sonata 1.5T scanner using a TrueFisp pulse

sequence. For the reference subject 32 different time frames were acquired (the length
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Figure 4.6: An example of cost function and the optimisation step. A small step is not
enough to pass the local minima. A large step will trap the optimisation in another local
minima.

of the cardiac cycle was 950msec). The frames of the reference sequence had a resolu-

tion of 256×192×46 with a pixel size of 0.97mm×0.97mmand a slice thickness of 3mm.

The other six 4D cardiac MR images were registered to the reference subject. These

sequences had a pixel size between 1.36mm×1.36mmand 1.48mm×1.48mmand a slice

thickness of 10mm. For these subjects 15-20 different time frames were acquired (car-

diac cycles’ length between 600msecto 800msec). In one image sequence the temporal

acquisition parameters were estimated because the real parameters were unknown. An

initial estimate of transformation was provided due to the large differences in the length

of the cardiac cycle of each image and also due to the large variety in the position and

orientation of the cardiac anatomies. The temporal part of the transformation was initially

calculated in order to match the temporal ends of the 4D cardiac MR images. The initial

estimate of the spatial part was calculated from the rigid registration of three manually

selected cardiac anatomical positions in the first frame of the image sequences. These

anatomical positions are the apex of the left ventricle, the anteroseptal at the base of the

heart and the inferoseptal at the base of the heart.

Figures 4.7 and 4.8 show examples of the affine spatio-temporal registration of two

random subjects . In the first row of figures 4.7 and 4.8 are the short-axis (a) and the

long-axis (b) views of particular slices of the reference sequence and a temporal view of a
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short-axis line of the reference sequence (c). The second row of figures 4.7 and 4.8 shows

the corresponding views before the registration (without mapping the temporal ends of the

image sequences). The third row of figures 4.7 and 4.8 shows the corresponding views

before the registration (after mapping the temporal ends of the image sequences). Finally,

the bottom row of the figures shows the corresponding views after affine spatio-temporal

registration. The isolines of intensity of the reference subject are overlayed on every

image. The figures show a large improvement in the alignment of the images after the

registration. In figures 4.7 and 4.8 (j)-(l) the spatio-temporal overlap of the two image

sequences has been substantially improved after their spatio-temporal affine registration.

Figure 4.9 shows another example of registration of a subject to the reference image

sequence (the figure shows the registration over the cardiac cycle). Figure 4.9 (a) shows

different frames of the two image sequences (the top part of each frame is the reference

image sequence) before the registration, while 4.9 (b) shows the corresponding frames

from the same two image sequences after affine registration. Before the registration the

two image sequences follow different motion patterns, while after affine spatio-temporal

registration they follow similar motion patterns.

In order to evaluate how well the temporal alignment has been performed, the volume

of the left ventricle in each frame was measured before the registration and after the reg-

istration. Figure 4.10 (a) contains the same volume curves of the left ventricles before the

registration, while figure 4.10 (b) contains the volumes of the left ventricle over time after

spatio-temporal registration. Before the registration, the contraction and relaxation prop-

erties of each heart are completely different (figure 4.10 (a)). For example, the position

of the peak contraction has large variability. In contrary, after affine 4D registration the

hearts have similar contraction and relaxation properties (figure 4.10 (b)).

The quality of the registrations in the spatial domain has also been assessed quanti-

tatively by calculating the volume differences of the left ventricle between each subject

and the reference subject (before and after registration). The volume difference of the left
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ventricle between two images is defined by [34]:

∆volume(I
′, I) =

VI′ − VI

VI′
× 100% (4.9)

where∆volume is the absolute volume difference between the two image,VI′ is the vol-

ume of the left ventricle of the reference image andVI is the volume of the left ventricle

of the other image. In order to calculate the volume difference for the entire image se-

quences,∆volume(S
′, S), the mean∆volume(S

′
i, Si) for each pair of corresponding frames

is calculated. The volumes of the left ventricle are calculated by the use of the manually

segmented images (the segmentation was performed by an expert). The quality of the

registration was also evaluated by calculating the volume overlap between the ventricles

and the myocardium of each subject and the reference subject. The volume overlap for an

objectO is defined as:

∆(S ′, S) =
2× |S ′ ⋂S|
|S ′|+ |S| × 100% (4.10)

HereS ′ denotes the voxels in the reference (target) image part of objectO andS denotes

the voxels in the other image part of objectO. In order to calculate the volume overlap

for the entire image sequences, the mean∆(S ′i, Si) for each pair of corresponding frames

is calculated.

Volume overlap Before registration After registration
Left ventricle 54.43% 79.94%
Right ventricle 54.32% 74.53%
Myocardium 47.39% 67.93%

Table 4.2: The mean volume overlap before and after the 4D affine registration.

Table 4.2 shows the mean volume overlap before and after the registration for the

left ventricle, the right ventricle and the myocardium (the mean volume overlap is cal-

culated over their temporal domain of overlap). The mean volume difference of the left

ventricle (calculated over their temporal domain of overlap) between the image sequences

was 29.55% before the registration and has been reduced to 13.90%. The mean error in

mapping the positions of the left ventricles’ peak contraction was 80msecbefore the reg-
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istration (taking into account that the temporal resolution of the reference image sequence

was 30msecthis error corresponds to 2.6 frames) while after the registration it is reduced

to 40msec(which corresponds to 1.3 frames). This can be also observed in figure 4.10.

The figure clearly shows that the temporal features of the volume curves are substantially

better aligned after the spatio-temporal registration even though no segmentation of the

left ventricle was used during the registration.

It is not expected that the images would be perfectly aligned either in the temporal

domain or in the spatial domains. This is due to the nature of the temporal and spa-

tial components of the 4D transformation. For example mapping the cardiac anatomy

of two different subjects most likely requires a non-rigid transformation. These spatial

differences can be modelled to a certain extent by the currentTspatial. Furthermore, the

temporal transformation (equation 4.5) can only be applied to the entire cardiac cycle and

not parts of it. Therefore, it is not possible to address the temporal misalignment caused

by differences in the dynamic properties of the contraction and relaxation phases of the

cardiac cycle (e.g. one heart may have a longer contraction phase than relaxation phase).

An example of a temporal misalignment that cannot be recovered by the currentTtemporal

can been seen in the volume curves (figure 4.10). In this figure, the volume of the left ven-

tricle of the reference image sequence (figure 4.10 (a), (b)) appears stable after a certain

time period which means this heart has a long isovolumetric relaxation phase. However,

this is not true for all the other images (figure 4.10 (a)).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.7: Results of the 4D affine cardiac MR registration algorithm: (a) the short-
axis view of the reference subject, (b) the long-axis view of the reference subject, (c) a
temporal view of a short-axis line of the reference subject, (d)-(f) the corresponding views
before the registration (without mapping the temporal ends of the image sequences), (g)-
(i) shows the corresponding views before the registration (after mapping the temporal ends
of the image sequences), (j)-(l) show the corresponding images after the 4D registration.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.8: Results of the 4D affine cardiac MR registration algorithm: (a) the short-
axis view of the reference subject, (b) the long-axis view of the reference subject, (c) a
temporal view of a short-axis line of the reference subject, (d)-(f) the corresponding views
before the registration (without mapping the temporal ends of the image sequences), (g)-
(i) the corresponding views before the registration (after mapping the temporal ends of
the image sequences), (j)-(l) the corresponding images after the 4D registration.
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Figure 4.9: An example of affine spatio-temporal registration of two image sequences:
(a) frames of the reference image sequence (above half) with a particular subject before
the registration; (b) the corresponding frames after the registration.
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Figure 4.10: The volume of the left ventricle of the reference image and the other sub-
jects over time: (a) before the 4D affine registration (mapping the temporal ends of the
sequences), (b) after the 4D affine registration . The thick line is the volume curve of the
reference subject.
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4.5 Introduction of a non-rigid spatial translation

As mentioned above, the affine spatial alignment allows only translation, scaling, rotation

and shearing operations to be performed. These operations are not enough to correct

the misregistration caused by local shape differences of the cardiac anatomy. In this

section the affine spatio-temporal cardiac MR image registration method [152] is extended

by the introduction of a non-rigid spatial part,Tspatial, based on B-Splines [153]. The

temporal part of the spatio-temporal registration approach remains the same. i.e. an

affine temporal transformation (equation 4.5) is used correcting scaling and translation

differences between the image sequences.

4.5.1 Non-rigid spatial transformation

The spatial part of the 4D transformationTspatial contains a global and a local part:

Tspatial(x, y, z) = Tglobal
spatial(x, y, z) + Tlocal

spatial(x, y, z) (4.11)

The global part,Tglobal
spatial, will correct differences in the size, orientation and alignment

of the hearts while the local part,Tlocal
spatial, will address the differences in the shape of the

cardiac anatomy. An affine transformation was selected as the global part (equation 4.4).

A free-form deformation (FFD) model based on B-Splines is used in order to describe

the differences in the local shape of the hearts. To define a spline based FFD, the spatial

domain of the image volume is denoted asΩS = {(x, y, z) | 0 ≤ x < X, 0 ≤ y < Y, 0 ≤
z < Z}. LetΦ denote anx×ny×nz mesh of control pointsφi,j,k with uniform spacingδ.

Then, the FFD can be written as the 3D tensor product of the familiar 1D cubic B-Splines

[174]:

Tlocal
spatial(x, y, z) =

3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (4.12)

wherei = b x
nx
c − 1, j = b y

ny
c − 1, k = b z

nz
c − 1, u = x

nx
− b x

nx
c, v = y

ny
− b y

ny
c, w =
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z
nz
− b z

nz
c and whereBl represents thel-th basis function of the B-Spline ([99, 100]):

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6

One advantage of B-Splines is that they are locally controlled which makes them

computationally efficient even for a large number of control points. In particular, the

basis functions of cubic B-Splines have a limited support, i.e. changing a control point

affects the transformation only in the local neighbourhood of that control point. This

spatial transformation model based on free-form deformations has been introduced by

Rueckertet al. [174]. It has also been used for a number of applications [29, 174, 172,

63, 61, 28, 167, 165, 109].

4.5.2 Optimisation approach

There is no need to optimiseTtemporal andTglobal
spatial since they have been previously opti-

mised. The only part of the transformation which needs to be optimised is theTlocal
spatial. In

order to find the optimalTlocal
spatial information from the entire image sequences is used. As

before, normalised mutual information is used as a similarity measure. The normalised

mutual information was calculated directly from the joint intensity histogram of the two

image sequences over their spatio-temporal domain of overlapΩS′×[tS′1 , tS′n ]
⋂

T(ΩS×
[tS1 , tSn ]). The optimisation approach calculates the optimal transformation:

arg max
α,β,Θ,Φ

NMI(S ′,T(S)) (4.13)

whereS ′ is the reference image sequence andT(S) is the transformed image sequenceS.

As mentioned above,α, β, Θ have been already optimised using a simple iterative uphill

method.
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The free-form deformation has a large number ofdegrees of freedom(in this case:

number of control points× 3). Thus, a simple iterative uphill method will not be sufficient

in order to find the optimal parametersΦ. An iterative gradient descent method is used to

find the optimalTlocal
spatial . The method is similar as the one used by Rueckertet al. for the

optimisation of the FFDs [174].

In order to find the optimal parameters,Φ, a cost function containing two competing

terms is minimised. The first term represents the cost associated with the image similarity

measureNMI. The second goal of the cost function ensures the smoothness of the

transformation:

C(Θ,Φ) = −NMI(S ′,T(S)) + λCsmooth(Tspatial) (4.14)

whereCsmooth is a penalty term regularising the transformation [174] andλ is the weight-

ing parameter which defines the tradeoff between maximising the alignment of the im-

ages and the smoothness of the transformation. The smoothness constraint is described

by Wahba [201].

Rueckertet al. suggest that a value ofλ = 0.01 provides a good compromise between

the two terms in the cost function [174]. The regularisation term in the cost function be-

comes important when the spacing of the control points is small. This is due to the fact

that the FFD’s ability to model localised deformation increases as the the spacing of the

control points of the B-Spline function decreases [174]. In the experiments reported in

this chapter,λ = 0. Therefore, the optimisation approach relies on the intrinsic smooth-

ness of the B-Spline deformation fields. This is sufficient for this type of application since

the spacing of the control points used during the registration is not very small. The op-

timisation procedure steps in the direction of the gradient vector∇C = ∂C(Θ,Φl)
∂Φl with a

certain step sizeµ [174]. Listing 2 describes the algorithm.

As mentioned above,Tlocal
spatial has a large number ofdegrees of freedom. Therefore,

using very small spacing between the control points and also very high resolution images

will make the registration approach very slow. Hence, in this method the space of the
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Listing 2 The gradient descent optimisation approach
1: initialise the control pointsΦ
2: repeat
3: repeat
4: repeat
5: calculatethe gradient vector of the cost function in equation 4.14 with respect

to the non-rigid transformation parametersΦ:

∇C =
∂C(Θ,Φl)

∂Φl

6: while ||∇C|| > ε do
7: recalculatethe control pointsΦ = Φ + µ ∇C

||∇C||
8: recalculatethe gradient vector∇C
9: end while

10: increasethe control point resolution by calculating new control pointsΦl+1

from Φl

11: increasethe image resolution
12: until finest level of resolution is reached
13: until maximum number of iterations
14: subdividesteps sizeµ
15: until maximum number of subdivisions

FFD’s control point was set to 20mm(resulting in 1176degrees of freedom). This con-

trol spacing allows to useλ = 0 without affecting the results. Table 4.3 contains the

parameters used for these registrations.

Parameter Setting
No. of bins 64
No. of iterations 20
No. of steps 4
δ for finite difference approximation of gradient 5mm
λ 0

Table 4.3: Registration parameters used for the spatio-temporal registration with a non-
rigid spatial part.

4.5.3 Evaluation of the method

The method has been evaluated using the same seven image sequences as the ones used

in the spatio-temporal affine registration method.

Figures 4.11 and 4.12 show examples of the registration. In the first row of figures
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.11: Results of the non-rigid spatial 4D MR registration algorithm: (a) the short-
axis view of the reference subject, (b) the long-axis view of the reference subject, (c) a
temporal view of a short-axis line of the reference subject, (d-f) the images after the affine
registration, (g)-(i) the corresponding images after the non-rigid registration.

4.11 and 4.12 are the short-axis (a) and the long-axis (b) views of particular slices of the

reference sequence and a temporal view of a vertical short axis line (c) of the reference

image sequence. The middle and the bottom rows contain the corresponding views of

the corresponding slices after the optimisation ofTtemporal andTglobal
spatial (i.e. after spatio-

temporal affine registration) and after the optimisation ofTlocal
spatial. On the images of the

middle and bottom rows isolines of intensity of the reference subject are also overlayed.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12: Results of the non-rigid spatial 4D MR registration algorithm: (a) the short-
axis view of the reference subject, (b) shows the long-axis view of the reference subject,
(c) a temporal view of a short-axis line of the reference subject, (d-f) the correspond-
ing images after affine registration, (g)-(i) the corresponding images after the non-rigid
registration.

It can be seen from the figures that the introduction of a non-rigid spatial part improves

substantially the spatial alignment of the image sequences.

The volume overlap (equation 4.10) was also used to measure the quality of the reg-

istrations. Table 4.4 shows the mean volume overlap for each anatomical region after

non-rigid registration and after affine registration. These measures also indicate that the



4.6 Conclusions 141

introduction of the non-rigid spatial part results in a substantial improvement in the over-

lap of the image sequences.

Anatomical region Non-rigid 4D registration Affine 4D registration
Left ventricle 86.68% 79.94%
Right ventricle 77.16% 74.53%
Myocardium 71.15% 67.93%

Table 4.4: The mean volume overlap after the affine 4D registration and after non-rigid
4D registration.

The introduction of the non-rigid spatial part,Tspatial, provides a significant improve-

ment in the spatio temporal cardiac MR image registration. However, it is still not ex-

pected that the image sequences would be perfectly aligned due to the nature of the tem-

poral transformation. The temporal transformation cannot address misalignment caused

by differences in the dynamic properties of the contraction and relaxation phases of the

cardiac cycle (for example one heart may have a longer contraction phase than relaxation

phase). The optimisation approach may also try to use the spatial transformation to cor-

rect for temporal differences. The registration of the image sequences will be significantly

improved by the introduction of a temporal transformation which can address temporal

misalignment due to different cardiac motion patterns.

4.6 Conclusions

In this chapter a spatio-temporal registration method for the alignment of cardiac MR

image sequences has been presented. The method has a number of advantages over the

registration methods presented in chapter 2. It enables comparison between the anatomy

and function of a number of cardiac image sequences to be made. The method (except

initialisation) is automatic. Furthermore, contrary to the method introduced by Faberet al.

[55], no segmentation is required in order to determine the end-diastolic and end-systolic

frames.
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A 4D transformation model which consists of decoupled spatial and temporal compo-

nents is used by the registration method. Initially, an affine spatial transformation model

and an affine temporal transformation model was used. This spatial model corrects global

shape differences (translation, rotation, scale and shearing) while the temporal transfor-

mation model corrects global differences in the length of the cardiac cycles and also in

the temporal acquisition parameters. Later in the chapter, adeformablespatial trans-

formation model based on B-Splines which enables the better spatial registration of the

image sequences has been introduced. Both registration methods were tested using MR

cardiac image sequences from normal subjects. The results demonstrate that the spatio-

temporal registration method not only enables the spatial mapping between two cardiac

images but also the temporal mapping between their cardiac cycles. However, the current

temporal mapping cannot address temporal differences due to different temporal dynam-

ics. The introduction of a temporal transformation in the next chapter addresses temporal

misalignment due to different temporal dynamics will provide a better spatio-temporal

alignment between the image sequences.



Chapter 5

Spatio-temporal free-form registration

of cardiac MR image sequences

In this chapter two registration algorithms for the spatio-temporal alignment of cardiac

MR image sequences are presented. Both algorithms have the ability to correct spatial

misalignment between the image sequences caused by global and local shape differences.

In addition, they have the ability to correct temporal misalignment caused by differences

in the length of the cardiac cycles and in the dynamic properties of the hearts. The al-

gorithms use a 4Ddeformabletransformation model which is separated into spatial and

temporal components. The first registration algorithm optimises the spatial and tempo-

ral transformation models simultaneously, while the second registration algorithm opti-

mises the temporal transformation component before optimising the spatial component.

The combined optimisation of the transformation components provides better accuracy

than the method which optimises the transformation components separately. However,

the method which optimises the transformation components separately has substantially

lower computational complexity. Furthermore, two experiments are performed aiming to

test how the use of an initial estimation of the temporal transformation may affect the

performance (in terms of accuracy and computational complexity) of the spatio-temporal

registration which optimises the transformation components simultaneously.
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5.1 Whydeformablespatio-temporal registration is needed

In the previous chapter, a method for the spatial and temporal alignment of cardiac MR

image sequences was presented. The method has the ability to correct spatial misalign-

ment caused by both global and local differences in the shape of the cardiac anatomy.

It addition, it can correct temporal misalignment caused by differences in the length of

the cardiac cycles and in the temporal acquisition parameters. However, this method

cannot correct any temporal misalignment caused by different contraction and relaxation

patterns.

In chapter 1 it has been presented that the cardiac cycle is separated into 7 phases (the

atrial systole, isovolumetric contraction, rapid ejection, reduced ejection, isovolumetric

relaxation, rapid ventricular filling and reduced ventricular filling) [91]. Figure 5.1

shows an example of how the pressure and volume of the heart changes during each

phase.

The length of each of these phases varies from heart to heart. Therefore, using only

an affine temporal transformation to provide a mapping between the temporal character-

istics of two image sequences will not be enough in most cases. Figure 5.2 provides an

example of such a case. The figure shows the volume curves of the LV of two subjects

over their cardiac cycle. The length of each phase of the cardiac cycle varies in each

subject resulting in different contraction and relaxation patterns. There is no temporal

transformation utilising only scaling and translation which will provide correct temporal

mapping between these two image sequences. What is required is adeformabletemporal

transformation to deform the cardiac motion of one subject in order to map the cardiac

motion of the other subject.

The registration methods presented in this chapter extend the 4D cardiac MR image

registration method presented in chapter 4 [152, 153, 145], by introducing adeformable

temporal transformation model. Hence, both temporal and spatial components use more

sophisticateddeformabletransformation models which allow the better spatio-temporal

registration of cardiac MR image sequences. This transformation model corrects spatial
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Figure 5.1: An example of the pressure and the volume of the heart during the cardiac
cycle (adapted from [91]).

misalignment between the image sequences caused by global and local shape differences.

Furthermore, it also corrects temporal misalignment caused by differences in the length of

the cardiac cycles and in the dynamic properties of the hearts. This allows a direct com-

parison between both the cardiac anatomy and function of different subjects to be made.

Two different approaches for the optimisation of the non-rigid spatio-temporal registra-

tion of cardiac MR image sequences are presented. The first approach finds the optimal

spatio-temporal mapping by optimising of the spatial and temporal components simulta-

neously. The second approach optimises each component separately (first the temporal
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Figure 5.2: An example where adeformablespatio-temporal registration is needed.

component and then the spatial component).

5.2 Contributions

The contributions of this chapter are:

• The development of a method for the simultaneous spatial and temporaldeformable

registration of MR image sequences. This registration method has the ability to cor-

rect spatial misalignment between the image sequences caused by global and local

shape differences. Furthermore, it has the ability to correct temporal misalignment

caused by differences in the length of the cardiac cycles and in the dynamic prop-

erties of the hearts.

• The development of another method for thedeformablespatio-temporal alignment

of cardiac MR image sequences. The major difference compared to the previous

method is that this method optimises the temporal and spatial components sepa-

rately. In this method, the temporal registration of the image sequences is based

on a normalised cross-correlation measure, while the spatial mapping is based on

image information from only the first frames of the sequences. This registration
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method is substantially faster than the previous method. Moreover, it can be used to

enable only the temporal alignment of cardiac MR image sequences, since it does

not require the cardiac image sequences to be aligned in the spatial domain in order

to find their temporal correspondence. Furthermore, two experiments are performed

aiming to test how the use of this method to calculate the temporal transformation

may affect the performance (in terms of accuracy and computational complexity)

of the first spatio-temporal registration method.

5.3 Spatio-temporal registration

As before, a 4D cardiac image sequence can be represented as an ordered sequence of

n 3D imagesSk(x, y, z) with a fixed field of viewΩSk
and an acquisition timetk with

tk < tk+1, in the temporal direction. The resulting image sequence can be viewed as 4D

imageS(x, y, z, t), defined on the spatio-temporal domainΩSk
× [t1, tn]. The goal of 4D

image registration described in this section is to relate each point of one image sequence

to its corresponding point of the reference image sequence. In this case the transformation

T : (x, y, z, t) → (x′, y′, z′, t′) maps any point of one image sequenceS(x, y, z, t) onto its

corresponding point in the reference image sequenceS ′(x′, y′, z′, t′). The mapping used

in this section is the same as in chapter 4 and it has the following form:

T(x, y, z, t) = (x′(x, y, z), y′(x, y, z), z′(x, y, z), t′(t)) (5.1)

This mapping can be of a subvoxel displacement in the spatial domain and of a sub-frame

displacement in the temporal domain. The 4D mapping can be resolved into decoupled

spatial and temporal componentsTspatial andTtemporal respectively where:

Tspatial(x, y, z) = (x′(x, y, z), y′(x, y, z), z′(x, y, z))

and

Ttemporal(t) = t′(t)
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5.3.1 Spatial alignment

The aim of the spatial part of the transformation is to relate each spatial point in an image

to a point of the reference image, i.e.Tspatial : (x, y, z) → (x′, y′, z′) maps any point

(x, y, z) of a particular time framet in one image sequence into its corresponding point

(x′, y′, z′) of another particular time framet′ in the reference image sequence. As in

section 4.5.1, the transformationTspatial consists of a global transformation and a local

transformation:

Tspatial(x, y, z) = Tglobal
spatial(x, y, z) + Tlocal

spatial(x, y, z) (5.2)

The global transformation addresses differences in the size, orientation and transla-

tion of the hearts while the local part addresses differences in the shape of the cardiac

anatomies.Tglobal
spatial is an affine transformation with 12degrees of freedomutilising scal-

ing, shearing, translation and rotation:

Tglobal
spatial(x, y, z) =




θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33







x

y

z




+




θ14

θ24

θ34




(5.3)

A free-form deformation (FFD) model based on B-Splines is used to describe the

differences in the local shape of the cardiac anatomies. To define a spline based FFD the

spatial domain of the image volume is denoted asΩS = {(x, y, z) | 0 ≤ x < X, 0 ≤ y <

Y, 0 ≤ z < Z}. Let Φ denote anx × ny × nz mesh of control pointsφi,j,k with uniform

spacingδ. Then the FFD can be written as the 3D tensor product of the familiar 1D cubic

B-Splines [174]:

Tlocal
spatial(x, y, z) =

3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (5.4)

wherei = b x
nx
c − 1, j = b y

ny
c − 1, k = b z

nz
c − 1, u = x

nx
− b x

nx
c, v = y

ny
− b y

ny
c, w =

z
nz
− b z

nz
c and whereBl represents thel-th basis function of the B-Spline [99, 100](see
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section 4.5.1) .

5.3.2 Temporal alignment

In contrast to chapter 4.4.2, the temporal part of the transformation consists of a temporal

global part,Tglobal
temporal, and a temporal local part,Tlocal

temporal:

Ttemporal(t) = Tglobal
temporal(t) + Tlocal

temporal(t) (5.5)

As before, the global part of the transformation,Tglobal
temporal, addresses global differ-

ences in the size of the cardiac cycles and differences in the acquisition parameters. The

local part of the temporal transformation,Tlocal
temporal, addresses local differences between

the motion patterns of the hearts. An affine transformation is used as a global part:

Tglobal
temporal(t

′) = αt+ β (5.6)

Hereα accounts for scaling differences between the two image sequences (different length

of cardiac cycles or different frequency in the acquisition of each frame) whileβ accounts

for translation differences between the two image sequences. Translation differences may

be introduced by different acquisition parameters (for example the trigger offset) and by

missing frames.

The local temporal transformation,Tlocal
temporal, is modelled by a free-form deformation

using a 1D B-Spline and corrects for temporal misalignment caused by different cardiac

dynamic properties (differences in the length of each of the cardiac phases (figure 5.1),

e.g. one heart may have a longer contraction phase and a shorter relaxation phase, dif-

ferent motion patterns, etc.). To define a spline based temporal free-form deformation,

the temporal domain of the image sequence is denoted asΩt = {(t) | 0 ≤ x < T}. Let

Φt denote a set ofnt control pointsφt with a temporal spacingδt. Then the temporal

free-form deformation can be defined as a 1D cubic B-Spline:
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Tlocal
temporal(t) =

3∑

l=0

Bl(u)φti+l
(5.7)

wherei = b t
nt
c − 1, u = t

nt
− b t

nt
c andBl represents the l-th basis function of the

B-Spline.

Tlocal
temporal deforms the temporal characteristics of each image sequence in order to

follow the same motion pattern as the reference image sequence. The combined 4D trans-

formation model (equation 5.1) is the spatio-temporal free-form deformation (STFFD)

based on a 4D B-Spline model.

The temporal transformationTtemporal(t) (equation 5.5) needs to be non-decreasing,

i.e. whenevert1 ≤ t2 thenTtemporal(t1) ≤ Ttemporal(t2), in order to preserve causality

of events between the two cardiac cycles. In order to ensure thatTtemporal(t) is non-

decreasing it is ensured that the derivative ofTtemporal(t) at the positions of control points,

φt, is always positive or zero. In practice this restriction will ensure that equation 5.5 is

non-decreasing.

5.3.3 Optimisation of the transformation components

Two registration algorithms for finding the optimal transformationT have been devel-

oped. The first optimisation algorithm optimises the spatial and temporal transformation

components simultaneously, while the second registration algorithm optimises the tem-

poral transformation component before optimising the spatial component.

5.3.3.1 Combined optimisation of the spatial and temporal components

In this registration method the optimal transformationT is found by optimising the tem-

poralTtemporal and the spatialTspatial transformation components at the same time using

image information only.

The optimal transformationT is found by maximising a voxel based similarity mea-

sure. The use of a voxel-based similarity measure eliminates the need for any feature

detection and segmentation of structures such as the epi- or endo-cardial surfaces dur-
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ing the registration procedure. As before, normalised mutual information (NMI) [187]

is selected as a measure of the spatio-temporal alignment. This similarity measure has

been previously used successfully for mono- and multi-modality image registration. The

normalised mutual information of two image sequences can be written as:

NMI(S ′, S) =
H(S ′) +H(S)

H(S ′, S)
(5.8)

whereH(·) denotes the marginal entropy of an image sequence andH(·, ·) is the joint

entropy of two image sequences. The normalised mutual information of the two image se-

quences can be calculated directly from the joint intensity histogram of the two sequences

over the spatio-temporal domain of overlapΩS′ × [tS′1 , tS′n ]
⋂

T(ΩS × [tS1 , tSn ]). Dur-

ing the optimisation new voxel values are generated in the temporal domain using linear

interpolation and trilinear interpolation in the spatial domain.

In the first part of the optimisation procedure, NMI is optimised as a function of

Tglobal
spatial andTglobal

temporal using an iterative uphill descent algorithm (described in section

4.4.3). In the second part, NMI is optimised as a function ofTlocal
spatial andTlocal

temporal. In

order to find the optimal parametersΦt andΦ a cost function similar to equation 4.14 is

minimised. As in equation 4.14, the cost function contains two competing goals.

C(Θ,Φ, α, β,Φt) = −NMI(S ′,T(S)) + λCsmooth(Tspatial) (5.9)

The termsλ andCsmooth have been described in section 4.4.3. The optimisation pro-

cedure steps in the direction of the gradient vectors∇C = ∂C(Θ,Φl)
∂Φl and∇Ct =

∂C(α,β,Φl
t)

∂Φl
t

with certain step sizesµ andµt. Listing 3 describes the optimisation method.

As previously mentioned,Tlocal
spatial has a large number ofdegrees of freedom. There-

fore by using very small spacing between the control points and image sequences with

high resolution image sequences the registration approach will be very slow. Hence, in

this method the space of the FFD’s control points was set to 15mmand 10mm(resulting

to 2400 and 7560degrees of freedomrespectively). This control spacing allows to use
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λ = 0 without affecting the results. Table 5.1 contains the parameters used for these

registrations.

Listing 3 The spatio-temporal gradient descent optimisation approach.
1: initialise the control pointsΦ andΦt

2: repeat
3: repeat
4: repeat
5: calculatethe gradient vectors of the cost function in equation 5.9 with respect

to the non-rigid transformation parametersΦ andΦt:

∇C =
∂C(Θ,Φl)

∂Φl

∇Ct =
∂C(α, β,Φl

t)

∂Φl
t

6: while ||∇C|| > ε or ||∇Ct|| > εt do
7: recalculatethe control pointsΦ = Φ + µ ∇C

||∇C||
8: recalculatethe control pointsΦt = Φt + µt

∇Ct

||∇Ct||
9: recalculatethe gradient vectors∇C and∇Ct

10: end while
11: increasethe control point resolution by calculating new control pointsΦl+1

from Φl andΦl+1
t from Φl

t

12: increasethe image resolution
13: until finest level of resolution is reached
14: until maximum number of iterations
15: subdividesteps sizeµ andµt

16: until maximum number of subdivisions

Parameter Setting
No. of bins 64
No. of iterations 20
No. of steps 4
δ for finite difference approximation of gradient 10mm
δt for finite difference approximation of gradient 50msec
λ 0

Table 5.1: Registration parameters used for the spatio-temporal free-form registration of
image sequences (combined optimisation of the transformation parts).



5.3 Spatio-temporal registration 153

5.3.3.2 Separate optimisation of the spatial and temporal components

The computational complexity of the previous spatio-temporaldeformableregistration

method is very high. However, it can be reduced by optimising each transformation com-

ponent (the temporal and the spatial one) separately. This optimisation approach opti-

mises the temporal componentTtemporal of the transformationT first and then the spatial

componentTspatial. The global temporal componentTglocal
temporal is calculated to align the

temporal ends of the image sequences while the local temporal componentTlocal
temporal is

a temporal free-form deformation (equation 5.7) which aligns limited temporal feature

positions of the cardiac cycles.Tlocal
temporal aligns the feature position of the peak contrac-

tion of the left ventricle, the end-diastolic feature position and the beginning and end of

the cardiac cycles (as in figure 5.3). In order to detect these temporal feature positions in

each image sequence, the normalised cross-correlation coefficient of the first and each of

the frames of the sequence is calculated:

CC =

∑
x

∑
y

∑
z(S0(x, y, z)− S̄0) · (Si(x, y, z)− S̄i)√∑

x

∑
y

∑
z(S0(x, y, z)− S̄0)2 ·

√∑
x

∑
y

∑
z(Si(x, y, z)− S̄i)2

(5.10)

whereS0 is the first frame,̄S0 the mean intensity of the first frame,Si is theith frame of

the sequence and̄Si the mean intensity of that frame.

The idea behind this approach is that during the contraction phase of the cardiac cycle

each consecutive image will appear less similar to the first image and during the relax-

ation phase of the cardiac cycle each consecutive image will appear more similar to the

first image. The end-systolic image should have the highest degree of dissimilarity with

the first image since the heart has a different shape and size due to the contraction. Sim-

ilarly, assuming periodicity of the cardiac cycle, the end-diastolic image should have a

high degree of similarity with the first image since the heart at these positions of the

cardiac cycle has similar size and shape. There is a wide choice of similarity measures

which could be used for this application. In practice it is found that the normalised cross-

correlation coefficient works well for this application. Figure 5.4 provides an example of



5.3 Spatio-temporal registration 154

the displacements of the control points ofTlocal
temporal required to align the 4 feature posi-

tions of the cardiac cycles. The position of the control points,φt, of Tlocal
temporal is calculated

by using linear interpolation between the displacements required to align the 4 identified

feature positions. ThusTlocal
temporal also enables the alignment of temporal features between

these 4 determined feature positions.
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Figure 5.3: The temporal positions in the cardiac cycle used for the temporal alignment
between two image sequences.

A similar technique based on cross-correlation has been used by Larsonet al. [96]

for the recovery of temporal information from cardiac cine MRI. The purpose of this

work was to develop a newself-gatedacquisition technique by extracting the motion syn-

chronisation signal directly from the cardiac MR images. Three different strategies using

radial k-space sampling are proposed for deriving temporal information from the MR

images [96]. Among these techniques are the peak magnitude, the kymogram [89] and

the 2D correlation. A comparison of the results showed that the image quality obtained

by these techniques is similar to the image quality obtained by conventional ECG gating

techniques.

Figure 5.5 (a) shows the plot of the calculated normalised cross-correlation curve

for a particular image sequence, figure 5.5 (b) shows the second derivative of the cross-
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Figure 5.4: An example of the temporal mapping between two image sequences using
Tlocal

temporal which aligns the 4 positions of the cardiac cycles.

correlation curve while figure 5.5 (c) shows the volume of the left ventricle of the same

image sequence over time. It is clear from figure 5.5 that the cross-correlation and the

volume curves are very similar. The feature position of peak contraction is found by the

minimum cross-correlation value. In order to find the end-diastolic position, the minimum

value of the second derivative after the location of peak contraction is used (figure 5.5

(b)). The second derivative is calculated using finite differences between neighbouring

time frames.

The optimal spatial transformationTspatial is calculated using the non-rigid 3D regis-

tration (equation 5.2) of the first frames of the image sequences. In this case,Tglobal
spatial is

an affine transformation correcting translation, rotation, shearing and scaling differences

between the first frames.Tlocal
spatial is a free-form deformation (equation 5.4) deforming

the sequence’s first frame to map the reference sequence’s first frame. BothTglobal
spatial and

Tlocal
spatial are optimised using normalised mutual information (NMI). However, in this case

NMI is based on the intensity histogram of the spatial domain of overlap of the two first
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Figure 5.5: The cross-correlation between the first frame and each consecutively frame
(a), the second derivative of the cross-correlation (b) and the volume of the left ventricle
of the same subject over time (c).
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frames and not on the spatio-temporal domain of overlap. The normalised mutual infor-

mation of the first frames of two image sequences,S ′ andS, can be written as:

I(S ′1, S1) =
H(S ′1) +H(S1)

H(S ′1, S1)
(5.11)

Tglobal
spatial is optimised using a simple iterative uphill method. The optimisation is carried

out to calculate the optimal transformation:

arg max
Θ

NMI(S ′1,Tspatial(S1)) (5.12)

Tlocal
spatial is optimised using an iterative gradient descent method which is the same as

the one described in section 4.4.3. The following cost function, is minimised:

C(Θ,Φ) = −NMI(S ′1,T(S1)) + λCsmooth(Tspatial) (5.13)

Equation 5.13 is the same as equation 4.14 with the exception of the domain where

the normalised mutual information is calculated. Table 5.2 contains the parameters used

in these registrations.

Parameter Setting
No. of bins 64
No. of iterations 20
No. of steps 4
δ for finite difference approximation of gradient 10mm
λ 0

Table 5.2: Registration parameters used for the spatial free-form registration of the first
frames.
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5.4 Results

To evaluate the spatio-temporaldeformableregistration algorithm, cardiac MR image se-

quences from fifteen healthy volunteers have been acquired. All image sequences used for

these experiments were acquired on a Siemens Sonata 1.5T scanner using TrueFisp pulse

sequence. For the reference subject 32 different time frames were acquired (cardiac cycle

of length 950msec). Each 3D image of the sequence had a resolution of 256×192×46

with a pixel size of 0.97mm×0.97mmand a slice thickness of 3mm. Fourteen 4D cardiac

MR images were registered to the reference subject. These image sequences had a pixel

size between 1.36mm×1.36mmand 1.48mm×1.48mmand a slice thickness of 10mm. For

these subjects 15-20 different time frames were acquired (cardiac cycles’ length between

600msecto 800msec). In one image sequence the temporal acquisition parameters were

estimated because the real parameters were unknown. Figure 5.6 contains a short-axis

and a long-axis views of the reference image and of another subject. In both registration

methods the global temporal transformation was calculated in order to compensate the

differences in length of the cardiac cycles of the subjects (by matching the first and the

last time frames of the image sequences). This is a fair assumption since all image se-

quences almost contained the entire cardiac cycles. Furthermore, an initial estimate of the

global spatial transformation was also provided due to the large variety in the position and

orientation of the hearts. The initial estimate was calculated from rigid registration of six

manually selected cardiac anatomical positions in the first frames of the image sequences.

These anatomical positions are: the apex of the left ventricle, the apex of the right ven-

tricle, two landmarks on the myocardium at the base of the heart, the anteroseptal at the

base of the heart and the inferoseptal at the base of the heart (figure 5.7).

The registrations were qualitatively evaluated by visual inspection. Furthermore, the

quality of the registration in the spatial domain was measured by calculating the volume

overlap for the left and right ventricles as well as for the myocardium (as in section 4.4.4).
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(a) (b) (c) (d)

Figure 5.6: The short-axis (a) and (c) and the long-axis (c) and (d) views of the reference
and of an another subject.
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Figure 5.7: The six manually selected landmarks which are used to calculate the initial
estimate of the spatial transformation.

The volume overlap for an objectO is defined as:

∆(S ′, S) =
2× |S ′ ⋂S|
|S ′|+ |S| × 100% (5.14)

HereS ′ denotes the voxels in the reference (target) image part of objectO andS denotes

the voxels in the other image part of objectO. The mean surface distance of the above

anatomical regions was calculated after the affine and thedeformable4D registration.

In order to calculate the overlap of the anatomical structures, the surface distance and

the volume curves, segmented images were used. The segmented images were obtained

using the EM algorithm developed by Valdéset al. [110]. In order to calculate the mean

surface distance between an anatomical structure of two image sequences (the reference
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and another one), the boundary surfaces (of the anatomical structures) in all of frames of

the segmented image sequences are generated. Then, the Euclidean distance transform of

the anatomical structure in all of the frames of the reference sequence is also calculated.

Finally, the position of the boundary surface is compared to the corresponding position in

the calculated distance map (for all frames of the image sequences).

5.4.1 Separate optimisation of the transformation components

5.4.1.1 Qualitative evaluation

Figure 5.8 (a) shows the volume curves of the left ventricles after affine spatio-temporal

registration, while figure 5.8 (b) shows the corresponding volume curves after separate

optimisation of the transformation componentsTtemporal
spatial andTlocal

spatial. It is clear from this

figure that with the introduction of thedeformabletransformation components the hearts

are substantially better aligned in the temporal domain.

Figures 5.9 - 5.14 provide examples of thedeformablespatio-temporal registration.

The images in the top rows are the short-axis (a), the long-axis (b) and the temporal

(c) views (the temporal view is a short-axis line over time) of a frame in the middle

of the image sequence after optimisation of the global transformation components (i.e.

affine spatio-temporal registration). The lines in the images represent iso-contours of the

reference image sequence. The images in the bottom rows (d-f) of the figures are the

same images after spatio-temporaldeformableregistration (separate optimisation of the

transformation components). It is clear from the figures that with the introduction of the

deformabletemporal and spatial transformations there is a substantial improvement in the

alignment of the image sequences both in the spatial and in the temporal domain. The

dark areas in the long-axis views are caused by the a smaller field of view in the current

subject.
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Figure 5.8: The volume curves of the left ventricle for all subjects after affine spatio-
temporal registration (a) and after spatio-temporaldeformableregistration (with separate
optimisation of the transformation components) (b). The spacing of spatial control points
is 10mm. The thick line is the volume curve of the reference subject.
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Results of the 4D cardiac MR registration algorithm. (a) The short-axis , (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (separate optimisation of the transformation components).
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(a) (b) (c)

(d) (e) (f)

Figure 5.10: Results of the 4D cardiac MR registration algorithm. (a) The short-axis , (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (separate optimisation of the transformation components).
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: Results of the 4D cardiac MR registration algorithm. (a) The short-axis , (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (separate optimisation of the transformation components).
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(a) (b) (c)

(d) (e) (f)

Figure 5.12: Results of the 4D cardiac MR registration algorithm. (a) The short-axis , (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (separate optimisation of the transformation components).
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(a) (b) (c)

(d) (e) (f)

Figure 5.13: Results of the 4D cardiac MR registration algorithm. (a) The short-axis , (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (separate optimisation of the transformation components).
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(a) (b) (c)

(d) (e) (f)

Figure 5.14: Results of the 4D cardiac MR registration algorithm. (a) The short-axis , (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (separate optimisation of the transformation components).
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5.4.1.2 Quantitative evaluation

The error in the estimation of the peak contraction and end-diastolic positions in the

cardiac cycle was calculated by determining manually where these positions appear and

comparing them with positions identified by the algorithm. The mean error in the detec-

tion of position where peak contraction appears is 1.2 frames while the mean error of the

detection of the end-diastolic position is 0.93 frames.

Tables 5.3 and 5.4 show the mean overlap and the mean surface distance (inmm) (cal-

culated over all subjects and time frames) for each anatomical region after affine spatio-

temporal registration (simultaneous optimisation of the transformation components) and

after spatio-temporal free-form registration (separate optimisation of the transformation

components). The spacing of the control points in the spatial domain was 10mm(table

5.3) and 15mm(table 5.4). The affine spatio-temporal registration method is similar to

the one described in the previous chapter [152]. It is clear from the figures that the

introduction of thedeformablemodels substantially improves the overlap of the anatom-

ical features. Furthermore, the computational complexity of this optimisation approach

remains low. The volume overlap of the left ventricles at two specific locations in the

cardiac cycle has also been calculated. The first location is the position of peak contrac-

tion and the other location is the position where the relaxation phase of the heart ends

(end-diastole) and the iso-volumetric relaxation phase starts. Table 5.5 shows the mean

volume overlap of the left ventricles (calculated over all subjects) at these two positions.

In order to evaluate the quality of the temporal alignment, the mean absolute error

in the temporal mapping of the same specific locations in the cardiac cycle has been

measured. These temporal positions were manually determined for each image sequence.

Table 5.6 shows the temporal error after affine 4D registration and after spatio-temporal

deformableregistration.
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Volume overlap Surface distance inmm
Affine Non-rigid Affine Non-rigid

Anatomical region 4D 4D 4D 4D
Left ventricle 76.16% 82.38% 4.16 3.41
Right ventricle 77.39% 83.56% 4.95 3.93
Myocardium 70.57% 71.62% 4.77 4.21

Table 5.3: The mean volume overlap and surface distance after spatio-temporal free-form
registration (separate optimisation of the transformation components) and after affine
spatial-temporal registration (combined optimisation of the transformation components).
The control spacing in the spatial domain is 10mm.

Volume overlap Surface distance inmm
Affine Non-rigid Affine Non-rigid

Anatomical region 4D 4D 4D 4D
Left ventricle 76.16% 82.80% 4.16 3.37
Right ventricle 77.39% 83.43% 4.95 3.73
Myocardium 70.57% 71.62% 4.77 4.98

Table 5.4: The mean volume overlap and surface distance after spatio-temporal free-form
registration (separate optimisation of the transformation components) and after affine
spatial-temporal registration (combined optimisation of the transformation components).
The control spacing in the spatial domain is 15mm.

Volume overlap at specific positions in the cardiac cycle
ds 10mm ds 15mm

Affine Non-rigid Affine Non-rigid
Temporal position 4D 4D 4D 4D
Peak contraction 74.72% 72.88% 74.72% 74.42%
End-diastole 69.27% 84.63% 69.27% 84.75%

Table 5.5: The mean volume overlap at a specific position in the cardiac cycle after affine
4D registration and after spatio-temporaldeformableregistration (separate optimisation
of the transformation components).

Error in the temporal mapping of two specific positions in the cardiac cycle
dt 90msec

Temporal position Affine Non-rigid
Peak contraction 73.72msec 46.86msec
End-diastole 93.57msec 30.352msec

Table 5.6: The mean absolute error in the temporal mapping of specific positions in the
cardiac cycle after affine 4D registration and after spatio-temporaldeformableregistration
(separate optimisation of the transformation components).



5.4 Results 170

5.4.2 Combined optimisation of the transformation components

5.4.2.1 Qualitative evaluation

Figure 5.15 (a) shows the volume curves of the left ventricle after the optimisation of

the spatio-temporal affine transformation, while figure 5.15 (b) shows the same volume

curves and after the optimisation of the spatio-temporaldeformabletransformation. The

volume of the left ventricles was calculated using the EM algorithm developed by Valdés

et al. [110]. As with figure 5.8, it is clear that with the introduction of thedeformable

components the hearts are substantially better aligned in the temporal domain. All the

hearts in figure 5.15 (b) show very similar volume curves.

Figures 5.16 - 5.21 provide examples of the spatio-temporaldeformableregistration

(combined optimisation of the transformation components). The images in the top rows

(a-c) are the short-axis, the long-axis and the temporal views (the temporal view is a short-

axis line over time) of a frame in the middle of the image sequence after the optimisation

of the global transformation components (affine spatio-temporal registration). The lines

in the images represent the intensity iso-lines of the reference image sequence. The im-

ages in the bottom rows of figures 5.16 - 5.21 are the same images after spatio-temporal

deformableregistration. The introduction of thedeformabletemporal and spatial registra-

tion resulted in a substantial improvement in the alignment of the image sequences both in

the spatial and in the temporal domains. The dark areas in the long-axis views are caused

by the smaller field of view in the current subject.
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Figure 5.15: The volume curves of the left ventricle for all subjects after affine spatio-
temporal registration (a) and after spatio-temporaldeformableregistration (combined op-
timisation of the transformation components) (b). The spacing of the spatial control point
is 10mm. The thick line is the volume curve of the reference subject.
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(a) (b) (c)

(d) (e) (f)

Figure 5.16: Results of the 4D cardiac MR registration algorithm. (a) The short-axis, (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (combined optimisation of the transformation components).
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(a) (b) (c)

(d) (e) (f)

Figure 5.17: Results of the 4D cardiac MR registration algorithm. (a) The short-axis, (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (combined optimisation of the transformation components).
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(a) (b) (c)

(d) (e) (f)

Figure 5.18: Results of the 4D cardiac MR registration algorithm. (a) The short-axis, (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (combined optimisation of the transformation components).
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(a) (b) (c)

(d) (e) (f)

Figure 5.19: Results of the 4D cardiac MR registration algorithm. (a) The short-axis, (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (combined optimisation of the transformation components).
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(a) (b) (c)

(d) (e) (f)

Figure 5.20: Results of the 4D cardiac MR registration algorithm. (a) The short-axis, (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (combined optimisation of the transformation components).
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(a) (b) (c)

(d) (e) (f)

Figure 5.21: Results of the 4D cardiac MR registration algorithm. (a) The short-axis, (b)
the long-axis and (c) the temporal views after the affine alignment. The corresponding
(d) short-axis, (e) long-axis and (f) temporal views after the spatio-temporal free-form
registration (combined optimisation of the transformation components).
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5.4.2.2 Quantitative evaluation

Tables 5.7 and 5.8 show the mean volume overlap and the mean surface distance (inmm)

(calculated for all subjects and at all time frames) for each anatomical region after spatio-

temporal affine registration and after the spatio-temporaldeformableregistration. Table

5.9 shows the same overlap and surface distance measures after 3D non-rigid registration

of the first frames (by matching the first and the last time frames of the image sequences).

The spacing of the control points in the spatial domain was 10mmand 15mm(tables 5.7

and 5.8). In order to measure how well the images are registered in the temporal domain,

the volume overlap of the left ventricles at two specific locations in the cardiac cycle

has been measured. The first location is the position of peak contraction and the other

location is the position where the relaxation phase of the heart ends (end-diastole) and the

iso-volumetric relaxation phase starts (in which the volume of the heart remains roughly

the same). The better the temporal alignment, the better the overlap will be in these two

locations. Table 5.10 shows the mean volume overlap of the left ventricle (calculated

over all subjects) at these two positions after spatio-temporal affine registration, non-rigid

registration of the first frames and after spatio-temporaldeformableregistration. Figure

5.22 shows an example of the volume overlap of the left ventricles over time after spatio-

temporaldeformableregistration and after non-rigid registration of the first frames. The

volume overlap of the left ventricles remains almost constant with the introduction of

thedeformabletemporal model, while without thedeformabletemporal model the image

sequences become more misaligned as the hearts contract. These results indicate that

the use of thedeformablespatial and temporal parts provides a substantial improvement

in the quality of the registration compared to the two methods described in the previous

chapter.

Furthermore, the quality of the temporal alignment has been evaluated by calculat-

ing the mean absolute error in the temporal mapping of the two specific locations in the

cardiac cycle (as previously). Table 5.11 contains the temporal error after non-rigid 3D

(mapping the temporal ends) registration and after spatio-temporaldeformableregistra-
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tion.

The comparison of the results of tables 5.7 vs. 5.3 and tables 5.8 vs. 5.4 suggests

that the simultaneous optimisation of the transformation components provides better over-

lap measures than those produced by separate optimisation. One reason for this is that

the temporal free-form deformation described in section 5.3.3.2 aligns a limited number

of temporal positions in the cardiac cycles. On the other hand, the temporal free-form

deformation described in section 5.3.3.1 provides a better temporal alignment between

these temporal positions. Moreover, the optimisation of the spatial transformation de-

scribed in section 5.3.3.2 is based only on the first frames of the image sequences while

the combined optimisation approach is based on image information from the entire image

sequences.

Volume overlap Surface distance inmm
Affine Non-rigid Affine Non-rigid

Anatomical region 4D 4D 4D 4D
Left ventricle 76.16% 85.57% 4.16 2.96
Right ventricle 77.39% 84.67% 4.95 3.60
Myocardium 70.57% 73.18% 4.77 4.16

Table 5.7: The mean volume overlap and surface distance after affine 4D registration and
after spatio-temporal deformable registration (combined optimisation of the transforma-
tion components). The control spacing in the spatial domain is 10mmand in the temporal
domain 90msec.

Volume overlap Surface distance inmm
Affine Non-rigid Affine Non-rigid

Anatomical region 4D 4D 4D 4D
Left ventricle 76.16% 84.95% 4.16 3.05
Right ventricle 77.39% 84.34% 4.95 3.51
Myocardium 70.57% 72.56% 4.77 4.14

Table 5.8: The mean volume overlap and surface distance after affine 4D registration and
after spatio-temporaldeformableregistration (combined optimisation of the transforma-
tion components). The control spacing in the spatial domain is 15mmand in the temporal
domain 90msec.
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Volume overlap Surface distance inmm
ds 10mm ds 15mm ds 10mm ds 15mm
Non-rigid Non-rigid Non-rigid Non-Rigid

Anatomical region 3D 3D 3D 3D
Left ventricle 80.97% 81.66% 3.56 3.47
Right ventricle 83.38% 83.18% 3.93 3.73
Myocardium 71.63% 71.66% 4.21 4.02

Table 5.9: The mean volume overlap and surface distance afterdeformable3D registration
of the first frames (matching the temporal ends of the sequences). The control spacing in
the spatial domain is 10mmand 15mm.

Volume overlap at specific positions in the cardiac cycle
ds 10mm ds 15mm

Affine Non-rigid Affine Non-rigid
Temporal position 4D 3D 4D 4D 3D 4D
Peak contraction 74.72% 72.75% 82.33% 74.72% 73.99% 80.18%
End-diastole 69.27% 77.41% 85.62% 69.27% 79.61% 85.32%

Table 5.10: The mean volume overlap at a specific position in the cardiac cycle after affine
4D registration, after thedeformable3D and after spatio-temporaldeformableregistration
(combined optimisation of the transformation components).

Error in the temporal mapping of two specific positions in the cardiac cycle
dt 90msec

ds 10mm ds 15mm
Non-rigid Non-rigid Non-rigid Non-rigid

Temporal position 3D 4D 3D 4D
Peak contraction 73.72msec 58.03msec 73.72msec 62.76msec
End-diastole 93.57msec 31.84msec 93.57msec 27.31msec

Table 5.11: The mean absolute error in the temporal mapping of specific positions in
the cardiac cycle after non-rigid 3D registration (mapping the temporal ends) and af-
ter spatio-temporaldeformableregistration (combined optimisation of the transformation
components).

5.4.2.3 Using the cross correlation based method to calculate the temporal align-

ment

Similar experiments with the same image sequences have been performed in order to

investigate if the cross-correlation based method (described on section 5.3.3.2) can be

used to calculate an initial estimate of the temporal transformation during the combined
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Figure 5.22: The volume overlap over time of the left ventricles of two image sequences
after 4D non-rigid registration (combined optimisation of the transformation components)
and after non-rigid registration of the first frames (matching the first and last frames of
the image sequences).

optimisation method. More precisely the aim of the experiments is to test how the use of a

better initial estimation of the temporal transformation may affect the performance of the

current spatio-temporal registration method. Two experiments using the cross-correlation

based method were performed:

• The aim of the first experiment was to investigate the effects of a better initial es-

timation of the temporal transformation on the performance of the spatio-temporal

deformableregistration algorithm which optimises the transformation components

simultaneously. Hence, before optimising thedeformablepart of the spatial and

temporal transformations, an initial estimate of the temporal transformation using

the cross-correlation based method was calculated. This method is referred to as

experimentA.
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• The aim of the second experiment was to improve the computational efficiency

of this spatio-temporal registration algorithm which optimises the transformation

components simultaneously. The computational complexity of this algorithm is

very high due to the large number ofdegrees of freedomof the transformation and

to the large number of voxels in the image sequences. A typical combined opti-

misation takes more than 24 hours. The performance of the registration algorithm

was investigated when the cross-correlation based method is used to calculate the

temporal transformationTlocal
temporal and onlyTlocal

spatial is optimised. This method is

referred to as experimentB.

Tables 5.12 and 5.13 provide the volume overlap and the surface distance measures

for the above two experiments (with spatial control point spacing 10mmand 15mm). Fig-

ures 5.23 - 5.28 provide examples of the non-rigid registrations obtained by using the

method as previously described for (experimentA). The results of these figure are very

similar to figures 5.16 - 5.21. As expected, there is no substantial difference between

the results. The algorithm converges to a similar solution whether an initial estimate of

the temporal transformation has been used or not. The mean volume overlap of the left

ventricles at specific temporal locations is described in table 5.14.

Volume overlap Surface distance inmm
Experiment Experiment Experiment Experiment

A B A B
Anatomical region 4D 4D 4D 4D
Left ventricle 85.91% 85.70% 2.97 3.16
Right ventricle 84.84% 84.79% 3.72 3.74
Myocardium 73.35% 73.26% 4.16 4.14

Table 5.12: The mean volume overlap and surface distance after STFFD registration using
a temporal initial estimate and after using the cross-correlation based method to calculate
the temporal part and optimising only the spatial part. The control spacing in the spatial
domain is 10mm.

The mean absolute error in the temporal alignment of specific feature location of the

cardiac cycle was also measured for experimentA. Table 5.15 shows the error inmsec. A

comparison of the temporal error measurements of table 5.15 to those of table 5.11 indi-
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Volume overlap Surface distance inmm
Experiment Experiment Experiment Experiment

A B A B
Anatomical region 4D 4D 4D 4D
Left ventricle 85.12% 84.85% 3.06 3.13
Right ventricle 84.21% 84.29% 3.57 3.55
Myocardium 72.74% 72.45% 4.09 4.14

Table 5.13: The mean volume overlap and surface distance after STFFD registration using
a temporal initial estimate and after using the cross-correlation based method to calculate
the temporal part and optimising only the spatial part. The control spacing in the spatial
domain is 15mm.

Volume overlap at specific positions in the cardiac cycle
ds 10mm ds 15mm

Experiment Experiment Experiment Experiment
A B A B

Temporal position 4D 4D 4D 4D
Peak contraction 83.15% 81.92% 81.22% 79.86%
End-diastole 85.63% 86.17% 85.19% 85.79%

Table 5.14: The mean volume overlap at specific position in the cardiac cycle after STFFD
registration using a temporal initial estimate and after using the cross-correlation based
method to calculated temporal part and optimising only the spatial part.

Error in the temporal mapping of two specific positions in the cardiac cycle
dt 90msec

Experiment A
Temporal position ds 10mm ds 15mm
Peak contraction 56.85msec 54.69msec
End-diastole 35.89msec 34.22msec

Table 5.15: The mean absolute error in the temporal mapping of specific positions in the
cardiac cycle after the STFFD registration using a temporal initial estimate.

cates that there are no substantial differences, between the two methods, in the temporal

alignment of these two specific feature positions. This also indicates that the algorithms

converge to a similar solution in both cases.
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(a) (b) (c)

(d) (e) (f)

Figure 5.23: Results of the 4D cardiac MR registration algorithm. The short-axis (a),
the long-axis (b) and the temporal (c) views after the affine alignment. The correspond-
ing (d) short-axis, long-axis (e) and temporal (f) views after using the cross-correlation
based method to calculate an initial estimate of the temporal part followed by combined
optimisation of the transformation components (experimentA).

5.5 Discussion

The results reported on tables 5.6 and 5.11 and in figure 5.30 indicate that calculating

the temporal transformation using either the cross-correlation based approach or the com-

bined optimisation approach provides similar results. Figure 5.30 shows the temporal

mapping of the cardiac cycles of six randomly selected image sequences and the refer-

ence image sequence. This figure presents the resulting temporal mappingsTglobal
temporal and

Tlocal
temporal after combined optimisation andTlocal

temporal after separate optimisation. The tem-

poral mappings after separate optimisation and after combined optimisation have similar

shapes. However, the temporal mapping after the combined optimisation aligns better
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(a) (b) (c)

(d) (e) (f)

Figure 5.24: Results of the 4D cardiac MR registration algorithm. The short-axis (a),
the long-axis (b) and the temporal (c) views after the affine alignment. The correspond-
ing (d) short-axis, long-axis (e) and temporal (f) views after using the cross-correlation
based method to calculate an initial estimate of the temporal part followed by combined
optimisation of the transformation components (experimentA).

the temporal details between the two image sequences. The differences in the resulting

temporal mapping towards the end of the cardiac cycle are mainly caused by the long

iso-volumetric relaxation of the reference subject. As seen from the volume curves of the

left ventricles in figure 5.15 the reference subject has a long iso-volumetric relaxation

phase where the shape and the volume of the heart remains almost the same. This creates

a small degree of ambiguity for the temporal alignment since all frames in this cardiac

phase are very similar.

The volume curves in figures 5.8 and 5.15 show that the contraction phase of the

hearts is better aligned than the relaxation phase. The corrected curves appear to have a

long end-diastolic phase and a rapid filling phase. The main reason for this is the temporal
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(a) (b) (c)

(d) (e) (f)

Figure 5.25: Results of the 4D cardiac MR registration algorithm. The short-axis (a),
the long-axis (b) and the temporal (c) views after the affine alignment. The correspond-
ing (d) short-axis, long-axis (e) and temporal (f) views after using the cross-correlation
based method to calculate an initial estimate of the temporal part followed by combined
optimisation of the transformation components (experimentA).

ambiguities which are generated by the long iso-volumetric relaxation of the reference

subject. When the registration approach attempts to align this part of the cardiac cycles,

it is forced to compress the relaxation phase.

Optimising the spatial part of the transformation based only on information from the

first frame of the sequences (tables 5.3 and 5.4) does not result in as good a spatial

alignment as the one based on information from the entire image sequences (tables 5.7

and 5.8). This suggests that the shape differences between two cardiac anatomies do not

remain constant over the cardiac cycle. The results of table 5.5 show that the volume over-

lap between two cardiac anatomies decreases during the contraction phase. Therefore, the

cardiac anatomies become more misaligned in the spatial domain during the contraction
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(a) (b) (c)

(d) (e) (f)

Figure 5.26: Results of the 4D cardiac MR registration algorithm. The short-axis (a),
the long-axis (b) and the temporal (c) views after the affine alignment. The correspond-
ing (d) short-axis, long-axis (e) and temporal (f) views after using the cross-correlation
based method to calculate an initial estimate of the temporal part followed by combined
optimisation of the transformation components (experimentA).

phase. At the end-diastolic position the volume overlap of the image sequences is similar

for both the separate and combined optimisation of the transformation components (tables

5.5 and 5.10).

Optimising the spatial part of the transformation based on information from the entire

image sequences, and not only from the first frames, takes into consideration the fact

that the spatial differences of the hearts are not constant over the cardiac cycle. Hence,

the mean volume overlap and surface distance measures provided in tables 5.12 - 5.14

(experimentB) are better than the ones in tables 5.3 - 5.5 even though the sameTtemporal

used in both methods.

The importance of the results of tables 5.12 - 5.14 is that using the cross-correlation
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(a) (b) (c)

(d) (e) (f)

Figure 5.27: Results of the 4D cardiac MR registration algorithm. The short-axis (a),
the long-axis (b) and the temporal (c) views after the affine alignment. The correspond-
ing (d) short-axis, long-axis (e) and temporal (f) views after using the cross-correlation
based method to calculate an initial estimate of the temporal part followed by combined
optimisation of the transformation components (experimentA).

based method to calculate the temporal transformation and optimising only the spatial

transformation provides similar spatio-temporal registration to the method which per-

forms combined optimisation. However, in this case the computational complexity of

the algorithm is substantially reduced since the gradient vector of the cost function (equa-

tion 5.9) with respect to the non-rigid transformation parametersΦt, ∇Ct =
∂C(α,β,Φl

t)

∂Φl
t

,

is not calculated during the optimisation approach. Figures 5.31 - 5.36 provide exam-

ples of the non-rigid free-form spatio-temporal registration by using the cross-correlation

method to calculate the temporal part and optimising only the spatial part (experimentB).

Figure 5.29 shows the overlap of the left ventricles by the methods described in ex-

perimentA and in experimentB. These results are very similar to those reported for the
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(a) (b) (c)

(d) (e) (f)

Figure 5.28: Results of the 4D cardiac MR registration algorithm. The short-axis (a),
the long-axis (b) and the temporal (c) views after the affine alignment. The correspond-
ing (d) short-axis, long-axis (e) and temporal (f) views after using the cross-correlation
based method to calculate an initial estimate of the temporal part followed by combined
optimisation of the transformation components (experimentA).

spatio-temporal free-form registration by using combined optimisation of the transforma-

tion components (figure 5.22).

Optimising the temporal and spatialdeformablecomponents simultaneously results in

a very good spatio-temporal registration. However, the computational complexity algo-

rithm is very high due to the large number ofdegrees of freedomin the transformation and

to the large number of voxels in the image sequences. A typical combined optimisation

takes more than 24 hours. Optimising only the spatial part of the transformation and us-

ing the already calculated temporal transformation asTlocal
temporal reduces the computational

complexity of the algorithm while still providing a good spatio-temporal registration.

The computational complexity can be further reduced by optimising the transforma-
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Figure 5.29: The volume overlap of the left ventricles over time after the STFFD registra-
tion using a temporal initial estimate (experimentA) and after using the cross-correlation
based method to calculate the temporal part and optimising only the spatial part (experi-
mentB).
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Figure 5.30: Temporal alignment between six image sequences and the reference im-
age sequence. The plots show the temporal mapping between the image sequences after
optimising the global temporal transformation component, after optimising the local tem-
poral transformation component (using simultaneous optimisation) and after optimising
the local temporal transformation component (using separate optimization)
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tion components separately. However, in this case the results of the registration are not as

good as those obtained by the other methods. An additional advantage of calculating the

temporal transformation by using the method described in section 5.3.3.2 is that a tempo-

ral alignment between two cardiac image sequences can be generated without having to

perform image registration. There is no need for the image sequences to be registered in

the spatial domain in order to calculate the temporal transformation.

(a) (b) (c)

(d) (e) (f)

Figure 5.31: Results of the 4D cardiac MR registration algorithm. The short-axis (a), the
long-axis (b) and the temporal (c) views after the affine alignment. The corresponding
short-axis (d), long-axis (e) and temporal (f) views after using the cross-correlation based
method to calculate the temporal part and optimising only the spatial part (experimentB).
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(a) (b) (c)

(d) (e) (f)

Figure 5.32: Results of the 4D cardiac MR registration algorithm. The short-axis (a), the
long-axis (b) and the temporal (c) views after the affine alignment. The corresponding
short-axis (d), long-axis (e) and temporal (f) views after using the cross-correlation based
method to calculate the temporal part and optimising only the spatial part (experimentB).
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(a) (b) (c)

(d) (e) (f)

Figure 5.33: Results of the 4D cardiac MR registration algorithm. The short-axis (a), the
long-axis (b) and the temporal (c) views after the affine alignment. The corresponding
short-axis (d), long-axis (e) and temporal (f) views after using the cross-correlation based
method to calculate the temporal part and optimising only the spatial part (experimentB).
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(a) (b) (c)

(d) (e) (f)

Figure 5.34: Results of the 4D cardiac MR registration algorithm. The short-axis (a), the
long-axis (b) and the temporal (c) views after the affine alignment. The corresponding
short-axis (d), long-axis (e) and temporal (f) views after using the cross-correlation based
method to calculate the temporal part and optimising only the spatial part (experimentB).
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(a) (b) (c)

(d) (e) (f)

Figure 5.35: Results of the 4D cardiac MR registration algorithm. The short-axis (a), the
long-axis (b) and the temporal (c) views after the affine alignment. The corresponding
short-axis (d), long-axis (e) and temporal (f) views after using the cross-correlation based
method to calculate the temporal part and optimising only the spatial part (experimentB).
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(d) (e) (f)

Figure 5.36: Results of the 4D cardiac MR registration algorithm. The short-axis (a), the
long-axis (b) and the temporal (c) views after the affine alignment. The corresponding
short-axis (d), long-axis (e) and temporal (f) views after using the cross-correlation based
method to calculate the temporal part and optimising only the spatial part (experimentB).
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5.6 Conclusions

In this chapter two spatio-temporaldeformableregistration methods for cardiac MR im-

age sequences have been presented. The registration approaches correct spatial misalign-

ment caused by different acquisition parameters and spatial misalignment caused by dif-

ferences in the local shape of the cardiac anatomies. Furthermore, the approaches correct

temporal misalignment caused by differences in the length of the cardiac cycles and tem-

poral misalignment caused by different dynamic properties of the hearts. The first regis-

tration approach calculates the spatial and temporal components of the transformation si-

multaneously, while the second approach calculates first the temporal transformation and

then the spatial one. In the latter, a novel approach based on normalised cross-correlation

was used to calculate the temporal component of the transformation. The spatio-temporal

registration algorithms have been evaluated by measuring the volume overlap and the sur-

face distance of corresponding anatomical structures and by visual inspection. A number

of experiments were performed to investigate the performance of both methods. The re-

sults indicate that the use of the spatio-temporal free-form deformation model results in

a substantial improvement in the temporal and spatial alignment of the image sequences.

Furthermore, performing combined optimisation of the temporal and spatial parts of the

transformation results in better registration rather than when these are calculated sepa-

rately. However, in this case the computational complexity is much higher. Moreover,

the experiments indicated that calculating the temporal transformation using the cross-

correlation based method provides a close approximation to the temporal transformation

that resulted from the combined optimisation approach. Evidently, it only aligns a limited

number of feature positions in the cardiac cycles, while optimising the transformation

components simultaneously provides a better temporal alignment between these cardiac

positions.



Chapter 6

Construction of an atlas of cardiac

anatomy and function

This chapter presents two novel methods for the construction of 4D probabilistic and

statistical atlases of the cardiac anatomy and function using cardiac MR imaging. The

probabilistic atlas captures information regarding the cardiac anatomy and function in the

form of tissue probability maps. The method for the construction of the probabilistic atlas

enables the spatio-temporal modelling of tissue probability maps.

The statistical atlas describes the cardiac anatomy and how the cardiac anatomy changes

during the cardiac cycle. The method for the construction of the statistical atlas divides the

distribution of the cardiac shapes into two subspaces. One distribution subspace accounts

for changes in cardiac shape caused by inter-subject variability. The second distribution

subspace accounts for changes in cardiac shape caused by deformation during the cardiac

cycle (i.e. intra-subject variability). Principal component analysis (PCA) has been per-

formed in order to calculate the most significant modes of variation of each distribution

subspace.

In order to build the atlases 30 cardiac image sequences from healthy volunteers have

been used. The resulting statistical atlas has been used to differentiate between cardiac

image sequences from patients with hypertrophic cardiomyopathy and normal subjects.
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6.1 Introduction

A large number of approaches have been developed for the volumetric modelling of the

heart. A comprehensive review of these approaches can be found by Frangiet al. [62].

Biomechanical models of the heart have been developed by combining surface informa-

tion and motion information [183] and by using a deformation model inspired by contin-

uum mechanics [135]. These models do not usually contain any information regarding the

variation met in the population. In contrast to these biomechanical models a number of

researchers have developed statistical models of the cardiac anatomy (e.g. Active Shape

Models) [112] [83] and statistical models of the appearance of the heart (e.g. Active Ap-

pearance models) [128] [126]. For example, Frangiet al. have presented an approach

for the construction of three-dimensional statistical shape models of the cardiac anatomy

[64]. This approach eliminates the need for landmarking by using non-rigid registration

to propagate the landmarks from an automated landmarked atlas to the rest of the images.

The resulting model includes the left and right ventricles. The approach developed by

Lötjönenet al. goes one step further: in this work, statistical shape models of the atria,

ventricles and epicardium from short-axis and long-axis MR images are constructed and

used for the segmentation of cardiac images [111]. In addition, a variety of methods which

model shape variability have been explored including PCA [87], ICA [85], [86] and LPD.

However, in both cases the statistical shape models only describe the 3D cardiac anatomy

at a single time point and ignore the shape variation during the cardiac cycle. Although

cardiac modelling of the anatomy is relatively well investigated, very few attempts have

been made to build a computerised atlas which captures functional variability of the heart

across a group of subjects. Raoet al. suggested a framework for building an atlas of the

myocardial motion [167] by using tagged MR image sequences to calculate the cardiac

motion fields. Then the calculated motion fields of different subjects are mapped into the

same coordinate system using a vector field transformation technique which accounts for

differences in the size, orientation and shape of the heart.
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6.2 Contributions

This chapter presents a novel method for building a probabilistic atlas of the cardiac

anatomy and function as well as a method for building a 4D statistical atlas of the cardiac

anatomy. The probabilistic atlas contains information regarding the cardiac anatomy and

function in the form of tissue probability maps. The 4D statistical atlas describes the car-

diac anatomy and how the cardiac anatomy changes during the cardiac cycle. During the

construction of the statistical atlas the need for manual landmarking of the cardiac images

is eliminated by using a non-rigid registration algorithm to propagate a set of pseudo-

landmarks from an automatically landmarked atlas to each frame of all image sequences.

The key contribution of this chapter is the extension of the statistical and probabilis-

tic modelling of the heart in 4D. In particular, the contributions of this chapter are the

following:

• The construction of a probabilistic atlas of the cardiac anatomy and function which

enables spatio-temporal modelling of the cardiac anatomy.

• The construction of a 4D statistical model of the heart that subdivides the distribu-

tion space of the cardiac shape to two subspaces: one distribution space accounts

for changes in cardiac shape due to deformations throughout the cardiac cycle and

the other distribution space accounts for changes in the cardiac shape due to inter-

subject variability.

• The use of a non-rigid registration method to propagate a set of pseudo-landmarks

from an automatically landmarked atlas to all frames of the image sequences used

during the construction of the statistical model. Contrary to the method presented

by Frangiet al. [64], this approach propagates pseudo-landmarks not only to a

single frame but to entire image sequences.

• The application of 4D statistical models to differentiate between cardiac image se-

quences from patients with hypertrophic cardiomyopathy and normal volunteers.
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6.3 Building anatomical and functional atlases of the heart

Figure 6.1 summarises the steps in the construction of the atlases. The first steps in the

construction of both the probabilistic and statistical atlases are identical:

• The image sequences are registered into a common spatio-temporal coordinate sys-

tem. This enables direct comparison between the cardiac anatomy and function of

a number of cardiac MR image sequences to be made.

• The image sequences are segmented into left and right ventricle as well as my-

ocardium using an automated segmentation algorithm [109]. An example of cardiac

MR images and their segmented tissue maps can be seen in figure 6.2.

• Shape-based interpolation [76] is used to resample the spatial domain of the seg-

mented image sequences into isotropic voxels of size 1mm×1mm×1mm.

• The segmented image sequences are transformed to the common spatio-temporal

coordinate system.

• The transformed segmented image sequences are blurred with a Gaussian filter with

σ = 2mm. The use of blurring during the construction of the atlas compensates for

the low out-of-plane resolution of the images. Aσ = 2mmwas chosen because

it compensates for the low out-of-plane resolution without introducing substantial

blurring which can destroy information regarding anatomical detail.

After these steps, the probabilistic atlas can be constructed by averaging the trans-

formed segmented image sequences. Before calculating the average image sequence,

each segmented image sequence is separated into three separate image sequences con-

taining the left ventricle, myocardium and right ventricle. The result is a spatio-temporal

map of probabilities of left ventricle, myocardium and right ventricle.

The construction of the statistical atlas requires the following additional steps:

• The surfaces are extracted from all the segmented frames of every image sequence

using themarching cubesalgorithm [107].
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• A non-rigid registration method is used to automatically propagate a set of pseudo-

landmarks from an automated landmarked atlas to the rest of the image sequences.

• Statistical analysis in the form of PCA is performed on the position of these land-

marks.

The following sections explain these steps in more detail.

6.3.1 Spatio-temporal registration of cardiac MR image sequences

As mentioned in the previous chapters, since the heart is undergoing spatially and tempo-

rally a varying degree of motion during the cardiac cycle, 4D cardiac image registration

algorithms are required when comparing two cardiac MR image sequences. Comparison

of the corresponding frames (by using only spatial alignment) is not enough since these

frames may correspond to different positions in the cardiac cycles (figure 4.2).

In order to register the image sequences, a spatio-temporal registration method similar

to the ones presented in chapters 4 and 5 [151], [147], [153], [152] is used. In these

methods the 4D transformation mappingT has been decoupled into a spatialTspatial and

a temporalTtemporal component ensuring causality and preventing different regions in a

3D imageSt(x, y, z) from being warped differently in the temporal direction byTtemporal.

The aim of the spatial part of the transformation is to relate each spatial point of

a particular frame of one image sequence to a point in another particular frame of the

reference image sequence. However, since the models need to explain the variability in

the local shape of the hearts, the spatial transformation part needs to preserve the local

shape of the hearts. It therefore only contains a global part:

Tspatial(x, y, z) = Tglobal
spatial(x, y, z) (6.1)
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The global spatial transformation is an affine transformation with 9degrees of freedom

addressing differences in the size, orientation and alignment of the hearts (equation 4.4)

The aim of the temporal part is to relate corresponding positions in the cardiac cycle

of the two hearts. As previously mentioned, in order to relate corresponding positions in

the cardiac cycle of two hearts, adeformabletemporal transformation is required. Thus,

the temporal transformation consists of a global and a local part:

Ttemporal(t) = Tglobal
temporal(t

′) + Tlocal
temporal(t

′)

Tglobal
temporal is an affine transformation which corrects for differences in the length of the

cardiac cycles and differences in the acquisition parameters (equation 5.6).Tlocal
temporal is

modelled by a free-form deformation using a 1D B-Spline (equation 5.7) and corrects

for temporal misalignment caused by different cardiac dynamic properties (differences in

the length of contraction and relaxation phases, different motion patterns, etc). For more

information on the temporal free-form deformation see section 5.3.2.

The optimal transformation is found by maximising a voxel based similarity mea-

sure, the normalised mutual information (NMI) [187] calculated directly from the joint

intensity histogram of the two sequences over the spatio-temporal domain of overlap. In

the first part of the optimisation procedure, NMI is optimised as a function ofTglobal
spatial and

Tglobal
temporal using an iterative uphill descent algorithm. In the second part, NMI is optimised

as a a function ofTlocal
temporal by also using an iterative uphill descent method.

6.3.2 Segmentation of cardiac MR image sequences

The method developed by Lorenzo-Valdés et al. [109] has been used to segment the

image sequences. In this method the first frame of each image sequence is segmented

manually and then the segmentation is propagated to the subsequent frames using a non-

rigid registration algorithm. The image sequences are segmented into three anatomical

structures: the left ventricle, the myocardium and the right ventricle. An example of this

is shown in figure 6.2.
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(a) (b) (c) (d)

Figure 6.2: The greylevel short axis (a) and the long axis (b) views of a cardiac MR image

and the corresponding segmented tissue maps (c and d).

6.3.3 Building the probabilistic atlas of the heart

After aligning all the image sequences to the same spatio-temporal coordinate system,

the obtained transformations are used to map the segmented image sequences to the same

spatio-temporal coordinate system. The probabilistic atlasA will have the same voxel

dimensions and number of frames as the image sequence used as a reference during

spatio-temporal registration. Each frame{Ai; i = 0...nf} (wherenf is the number of

frames in the sequences) ofA will be formed by averaging the corresponding frames of

the transformed segmented image sequences{Oki; k = 0....np} (wherenp is the number

of subjects used to construct the atlas):

Ai(x, y, z) =
1

np

np∑

k=0

Oki(x, y, z) (6.2)

Before producing the average image sequence, each segmented image is blurred with

a Gaussian kernel withσ = 2. As mentioned above, the use of blurring during the con-

struction of the atlas is needed due to the low out-of-plane resolution which results in sig-

nificant partial volume effects in the segmentation. Blurring the images with a Gaussian

kernel addresses this problem by modelling this uncertainty in the tissue classification.
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Figure 6.3: The mean image is calculated by averaging each slice separately. Calculating

the average image for each slice separately reduces the effects of different coverage of the

heart in the image.

A problem during the construction of the probabilistic atlas is that the image sequences

may not have exactly the same coverage of the heart. For example an image may not

include part of the apex or part of the base of the heart. The fact that information regarding

part of the anatomy might be missing needs to be taken into account when producing the

tissue probability maps. Hence, in order to reduce the effects of a different coverage of

the heart in each image, the tissue probability maps have been calculated by averaging

each image slice separately (figure 6.3).

6.3.4 Building a statistical atlas of the heart

As in the construction of the probabilistic atlas, during the construction of the statistical

atlas the images are also blurred with a Gaussian kernel to reduce the effects of low out-of-

plane resolution. In order to perform statistical analysis a set of anatomical landmarks are

required to be identified in each image. Usually these landmarks are manually identified

in each image. However, this is a time consuming task prone to errors. The approach

presented in this thesis eliminates the need from manual landmarking by using a method

similar to the one used by Frangiet al. [64]. In this method a set of pseudo-landmarks are

propagated from an automatically landmarked atlas to all frames of each image sequence.

Lötjönenet al. [111] have also used a similar approach for landmark propagation.
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6.3.4.1 Landmark extraction and propagation

After blurring the image sequences with a Gaussian kernel withσ = 2, the marching

cubes[107] algorithm is used to generate a dense triangulation of the boundary surface of

each anatomical structure (left ventricle, myocardium and right ventricle) of all the frames

of each image sequence. The vertices of the triangulation serve aspseudo-landmarks. In

order to perform any statistical analysis, correspondence between the pseudo-landmarks

of correspondent frames needs to be established. This is achieved by using a 3D surface

based registration method based on B-Splines [139]. The end-diastolic frame of the im-

age sequence used as a reference during the construction of the atlases is also used as

the reference surface in these registrations. The extracted surfaces from each frame of

all image sequences are registered to the reference surface using a non-rigid registration

method. The main difference between this approach the method proposed by Frangiet al.

[64] is that the former propagates landmarks over the entire image sequences rather the

first frames only. Furthermore, this approach registers corresponding extracted surfaces

while the approach proposed by Frangiet al. [64] registers the corresponding segmented

images. After registering all surfaces, the obtained transformations are used to propagate

thepseudo-landmarksof the reference surface to each frame (figure 6.4).

6.3.4.2 Modelling shape variability

Once landmark correspondence has been established between all shapes, modelling tech-

niques, such as principal components analysis can be used to analyse shape variability.

Let {qik; i = 0...np; k = 0...nf} denoten shapes (np subjects withnf frames each).

Each shape consists ofm 3D landmarks,pj = (p1j, p2j, p3j; j = 1....m). Each vector

qik consists of the landmarksp11, p21, p31, p12, p22, p32, ...., p1m, p2m, p3m. The aim of the

statistical analysis is to approximate the distribution of the landmarks with a linear model

of the form:

q = q̄ + Φb (6.3)



6.3 Building anatomical and functional atlases of the heart 209

whereq̄ is the average landmark vector,b is the shape parameter vector of the model,

and Φ is a matrix of eigenvectors. The matrixΦ is obtained by performing principal

component analysis (PCA) [87] to the covariance matrixC. During the principal compo-

nent analysis, the principal components ofC are calculated as its eigenvectorsφi and the

corresponding eigenvaluesλi are also calculated (such thatλi < λi+1).

The aim of this statistical analysis is to identify what changes in the cardiac anatomy

occur due to the cardiac cycle and what changes occur due to inter-subject variation.

Therefore, the aim of this statistical analysis is to approximate the distribution of the

landmarks with two linear models similar to equation 6.3:

qwithin = q̄ + Φwithinbwithin (6.4)

qbetween = q̄ + Φbetweenbbetween (6.5)

Principal component analysis (PCA) will be used to find the estimate of two subspaces

of the overall distribution. In order to achieve this, two separate principal component

analyses are performed. The covariance matrix for the total shape distribution is given

by:

Ctotal =
1

nfnp

np∑
i=1

nf∑

k=1

(qik − q̄)(qik − q̄)T (6.6)

wherenf is the number of frames of each image sequence,np is the number of image

sequences and̄q is the mean shape.

The covariance matrix of the shape differences occurring across the cardiac cycle

(intra-subject) is given by:

Cwithin =
1

nfnp

np∑
i=1

nf∑

k=1

(qik − q̄i)(qik − q̄i)
T (6.7)

whereq̄i is the mean for the subjecti (the image sequences contain the same number of

frames since they are registered in the temporal domain) andqik is the shape of framek

of subjecti.
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The covariance matrix which describes the shape differences occurring across the pop-

ulation (inter-subject) is given by:

Cbetween =
1

np

np∑
i=1

(q̄i − q̄)(q̄i − q̄)T (6.8)

where, as in eq. 6.7,np is the number of image sequences andq̄ is the total mean.

Figure 6.5 explains which changes in the cardiac shape are explained by the covari-

ance matrixCbetween and which by the covariance matrixCwithin. In order to find the

principal components of each subspace the eigenvalues and eigenvectors of each covari-

ance matrix (eq. 6.7 and 6.8) are calculated. The eigenvectors ofCbetween are used to

form Φbetween, while the eigenvectors ofCwithin are used to formΦwithin. A similar de-

composition of the total distribution space to subspaces has been used by Costenet al. for

the automatic extraction of the face identity-subspace [41]. New shape examples can be

generated by varying the parametersbwithin andbbetween of equations 6.4 and 6.5. As-

suming that the distribution of the data follows a multidimensional Gaussian distribution,

the variance of theith parameter ofb across the training set is given byλi. If limits in

the variation ofbi are applied such thatbi ≤ ±3
√
λi, then it is ensured that the generated

shape is similar to those contained in the training class.
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Figure 6.5: The changes in the cardiac shape described by the covariance matricesCwithin

andCbetween.
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6.4 Results

6.4.1 Materials

In order to produce the probabilistic and statistical 4D atlases, 30 untagged MR image

sequences from healthy volunteers have been acquired. The image sequences have been

acquired using a Siemens Sonata 1.5T scanner using TrueFisp pulse sequence in a form

of a series short-axis images. Seven of the image sequences were acquired using retro-

spective gating while the rest were acquired using prospective gating. One of the image

sequences was selected to be the reference subject for the spatio-temporal registration.

Care was taken by visual inspection to ensure that the reference subject was a normal rep-

resentative of the population. The image sequence of the reference subject had 18 frames

with in-plane resolution of192 × 256 and pixel size of 1.48mm×1.48mm. Furthermore,

each frame of the reference subject contained 10 slices covering the heart from the apex

to the base. The thickness of each slice was 10mm(which is the typical pixel size used

in these acquisitions). The length of the cardiac cycle of the subject was 792.5msec. The

global temporal transformation was calculated in order to compensate for the differences

in the length of the cardiac cycles of the subjects (by matching the first and the last time

frames of the image sequences). This is a fair assumption since all image sequences con-

tained almost entire cardiac cycles. Furthermore, an initial estimate of the global spatial

transformation was also provided due to the large variety in the position and orientation of

the hearts. Most of the images covered the entire left ventricle from base to apex, while a

limited number of images did not include the apex of the heart. One image sequence was

excluded from the data set due to poor registration with the reference image sequence.

6.4.2 Probabilistic atlas

During the construction of the probabilistic atlas, all the image sequences were included

independent of whether the images covered the entire heart or not. The reason for includ-

ing images with different coverage of the heart is that, at the current stage, it is considered
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very important to include as many subjects as possible in the atlas. In the future, where

the population would be substantially increased (for example more than 100 subjects), it

would be possible to ensure that all the images have exactly the same coverage. As ex-

plained in section 6.3.3, in order to minimise the effects of different image coverage the

tissue probability maps are calculated by averaging each slice separately.

Figures 6.6 - 6.8 provide examples of the probabilistic atlases of the left ventricle,

the myocardium and the right ventricle. In the probabilistic atlases, the smaller the inten-

sity values, the smaller is the probability of a particular voxel belonging to a particular

structure (the intensity of 255 corresponds to a probability of 1, while the intensity 0 cor-

responds to a probability of 0). Figure 6.7, shows that the papillary muscles are more

blurred that the rest of the myocardium. Furthermore, the probability of a voxel to belong

to a certain anatomical structure is smaller towards the edges of the anatomical structures

(figures 6.6 - 6.8). This indicates that there is a large variation in the position and the

size of the papillary muscles and also in the local shape of the hearts. The registration

approach, described in section 6.3.1, uses only an affine spatial transformation model.

This transformation model addresses spatial difference caused by translation, orientation

and scaling. It cannot correct differences in the shape of the structures which results in a

high degree of blurring on the edges of the structures.

Volume renderings of the tissue probability maps have also been produced. The vol-

ume renderings were produced using theVisualisation Toolkitpackage (www.vtk.org).

Figures 6.9 - 6.11 show the volume rendering of the atlases of the left ventricle, the

myocardium and the right ventricle from two different views. In the volume renderings,

the smaller the probability of a voxel to belong to a structure the more transparent the

voxel is rendered. Similar to figures 6.6 - 6.8, the voxels near the sides of the anatomical

structures in figures 6.9 - 6.11 are rendered more transparent than the voxels in the centre

due to their smaller probability values.
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Figure 6.6: The probabilistic atlas of the left ventricle.
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Figure 6.7: The probabilistic atlas of the myocardium.
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Figure 6.8: The probabilistic atlas of the right ventricle.
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Figure 6.9: Examples of the volume renderings of the left ventricle viewed from two
different positions.
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Figure 6.10: Examples of the volume renderings of the myocardium viewed from two
different positions.
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Figure 6.11: Examples of the volume renderings of the right ventricle viewed from two
different positions.
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6.4.3 Statistical atlas

In the construction of the statistical atlas it is very important for all the images to include

the same area of the anatomy. Otherwise the most significant modes of shape variation

will describe the missing areas of some images. As mentioned above, during the con-

struction of the probabilistic atlas, the tissue probability maps are calculated by averaging

each image slice separately. In contrast, in the construction of the statistical atlas, PCA

analysis is performed on the surfaces extracted from the entire image rather than on each

separate slice. Three image sequences were further excluded from the data due to miss-

ing a significant part of the hearts towards the apex. Hence, the statistical atlases were

constructed using cardiac image sequence from 26 healthy volunteers.

6.4.3.1 Statistical model of the inter-subject variability

These models describe the significant changes in the shape of the left ventricle, the my-

ocardium and the right ventricle due to inter-subject variability. Figures 6.12 - 6.14

show the three most significant modes of variation for the left ventricle, the myocardium

and the right ventricle. For the left ventricle, the three most significant modes of shape

variation describe the differences in the size of the left ventricle (mode 1), the variation of

the position of the apex of the heart (mode 2) and the elongation of the apex of the heart

(mode 3). For the myocardium, the three most significant modes of variation describe

the size of the myocardium in the long-axis direction (mode 1), the size and thickness of

the myocardium (mode 2) and the direction of the myocardium long-axis (mode 3). For

the right ventricle the three most significant modes of variation describe the elongation of

the apex of the right ventricle (mode 1), the size of the right ventricle (mode 2) and the

shape of the right ventricle (mode 3). Table 6.1 provides a description of the three most

significant modes of shape variation.
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Figure 6.12: The significant modes of shape variation of the left ventricle due to inter-
subject variability.
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Figure 6.13: The significant modes of shape variation of the myocardium due to inter-
subject variability.
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Figure 6.14: The significant modes of shape variation of the right ventricle due to inter-
subject variability.

6.4.3.2 Statistical model of the intra-subject variability

These models describe the most significant changes in the shape of the left ventricle and

the myocardium which occur across the cardiac cycle (i.e. intra-subject variability). Fig-

ures 6.15 - 6.17 show the three most significant modes of variation of the left ventricle,

the myocardium and the right ventricle. For the left ventricle, the three most significant

modes of variation describe the differences in the volume of the left ventricle during the

cardiac cycle (mode 1), the twisting of the heart during the contraction phase (mode 2)

and the changes in the position of the apex of the left ventricle as well as the position of

the papillary muscles (mode 3). For the myocardium, the three most significant modes

of variation describe the changes in the size of the left ventricle and the thickening of

the myocardium (mode 1), the twisting of the myocardium during the contraction phase

(mode 2) and the changes in the size of the left ventricle in the direction of the long-axis

and the movement of the cardiac wall (mode 3). For the right ventricle, the first two most
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significant modes of variation describe the changes in the volume of the right ventricle

(mode 1) and the twisting of the right ventricle as well as the changes in the position of

the right ventricle’s apex (modes 2). Finally, the third most significant mode of variation

of the right ventricle’s shape also describes twisting of the right ventricle (mode 3). Table

6.2 provides a description of the three most significant modes of shape variation.
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Figure 6.15: The significant modes of shape variation of the left ventricle due to intra-
subject variability.
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Figure 6.16: The significant modes of shape variation of the myocardium due to intra-
subject variability.
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Figure 6.17: The significant modes of shape variation of the right ventricle due to intra-
subject variability.



6.4 Results 226

Left Ventricle
Mode Shape Variance Description
Mode 1 25.07% Size of the left ventricle
Mode 2 17.34% Position of the apex of the heart
Mode 3 11.63% Elongation of the apex of the heart

Myocardium
Mode Shape Variance Description
Mode 1 20.31% Size of the myocardium in the long-axis direction
Mode 2 17.06% Size and thickness of the myocardium
Mode 3 12.54% Direction of the myocardium long-axis

Right Ventricle
Mode Shape Variance Description
Mode 1 25.86% Elongation of the apex of the right ventricle
Mode 2 23.11% Size of the right ventricle
Mode 3 13.42% Elongation of the apex and shape of the right ventricle

Table 6.1: The three most significant modes of variation for the left ventricle, the my-
ocardium and the right ventricle due to inter-subject variability.

Left Ventricle
Mode Shape Variance Description
Mode 1 71.48% Volume of the left ventricle during the contraction
Mode 2 3.87% Twisting of the heart during the contraction
Mode 3 2.30% Changes in the position of the

apex and the papillary muscles
Myocardium

Mode Shape Variance Description
Mode 1 65.87% Size of the left ventricle and

thickening of the myocardium
Mode 2 4.69% Twisting of the myocardium during the contraction phase
Mode 3 2.13% Changes in the size of the left ventricle in

the direction of the long-axis and movement
of the cardiac wall

Right Ventricle
Mode Shape Variance Description
Mode 1 42.45% Volume of the right ventricle during the contraction
Mode 2 8.93% Twisting of the right ventricle

and changes in the position of the apex
Mode 3 3.90% Twisting of the right ventricle

Table 6.2: The three most significant modes of variation for the left ventricle, the my-
ocardium and the right ventricle due to intra-subject variability.
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6.4.3.3 Discussion

Figure 6.18 shows the amount of shape variance explained by various modes of the two

shape distribution subspaces (inter-subject (a) and intra-subject (b)) for the left ventricle,

the myocardium and the right ventricle. In order to describe 90% of the left ventricle’s

inter-subject shape variability, 13 modes (out of 26) of shape variation are required. Fur-

thermore, 16 (of 468) modes of shape variation are required to describe 90% of the left

ventricle’s intra-subject shape variability. Similarly, for the myocardium 13 modes are

required to describe 90% of its inter-subject shape variability and 28 modes of shape

variation are required to describe 90% of its intra-subject shape variability. In order to de-

scribe 90% of the right ventricle’s inter-subject shape variability, 12 modes (out of 26) of

shape variation are required. Finally, 42 modes of shape variation are required to describe

90% of the right ventricle’s intra-subject shape variability. The inter-subject statistical

model has 26 modes while the intra-subject statistical model has 468. Therefore, in order

to enable direct comparison between the curves in figure 6.18 (a) and 6.18 (b) more sub-

jects need to be included in the statistical atlas. The inter-subject shape variability curves

are steeper than the intra-subject curves which indicates that the shape variability of the

cardiac anatomy is larger across different subjects than across the cardiac cycle.

During the construction of the atlases it is assumed that the distribution of the cardiac

shapes in both the inter-subject and intra-subject models is Gaussian. Unfortunately, this

assumption has some limitations as seen on figures 6.20 and 6.21. This limitation may

produce a difficulty in explaining a shape with a few modes of shape deviation. This will

lead to a suboptimal ability of the model to represent unseen instances of cardiac shapes

and to generate new instances of cardiac shapes that are similar to those in the training

set.

In order to construct the atlases the image sequences need to be registered both in

spatial domain and temporal domains. As previously mentioned, the shape of the hearts

has to be preserved while the temporal characteristics of each heart have to be deformed so

that every corresponding frame of the image sequences corresponds to the same position
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Figure 6.18: The cumulative variance of the left ventricle, the myocardium and the right
ventricle: (a) inter-subject and (b) intra-subject.
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in the cardiac cycle of the hearts. Figure 6.19 provides the volumes of the left-ventricle

of the subjects over the cardiac cycle and shows that after the spatio-temporal registration

the hearts follow a similar motion pattern (the volume curves have been separated into two

parts: figure 6.19 (a) and 6.19 (b) ) . However, it is not expected that the volume curves

will completely match since only affine differences are corrected in the spatial domain.

6.5 Differences between the probabilistic and the statis-

tical atlases

The probabilistic atlases contain information about the degree of variability at every voxel

of the atlas, i.e. each voxel contains a probability of belonging to a certain structure. How-

ever, the probabilistic atlases cannot provide information regarding the type of variability.

Furthermore, information regarding shape variability occurring across the population and

due to the cardiac cycle is combined to a single probability value. The statistical atlases

provide additional information regarding the variability of the cardiac shape. In particular,

performing statistical analysis in each shape distribution subspace allows the visualisation

of the average shape of the cardiac anatomy and also the identification of the most signif-

icant modes of variation in the cardiac shape due to inter-subject and intra-subject shape

variability.

As mentioned above, the first steps in the construction of both atlases are identical.

However, the probabilistic atlas is created directly from the segmented image sequences

(after mapping them to a common spatio-temporal domain), while during the construction

of the statistical atlases surfaces need to be extracted from the segmented images and also

exact correspondence between landmarks needs to be established.
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Figure 6.19: The volume curves of the left ventricle of the subjects over cycle.
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Figure 6.20: The distribution of all subjects’ myocardium using the inter-subject covari-
ance matrix.
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Figure 6.21: The distribution of all subjects’ myocardium using the intra-subject covari-
ance matrix.
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6.6 Classification of cardiac MR image sequences using

the statistical models

In this section a possible use of the statistical atlases for the classification of cardiac

data is demonstrated. The aim of this section is not to provide a detailed classification

approach but to demonstrate how the statistical models can be used for classification of

cardiac MR image sequences. The above statistical models have been used to classify

cardiac data from normal volunteers and patients with hypertrophic cardiomyopathy (a

condition in which the myocardium has an excessive thickening). In order to perform this

classification, six normal subjects have been excluded from the model (i.e. the model has

been constructed from only 20 healthy subjects) and cardiac MR image sequences from

10 patients with hypertrophic cardiomyopathy have been acquired. The subjects with

hypertrophic cardiomyopathy were not age and sex matched. In a more detailed study

of the disease it would be more appropriate to use subjects from the same sex and age

group. This forms a set of 16 image sequences to be classified. The same processing

steps for the registration and pseudo-landmark extraction and propagation were used for

these image sequences as those used for the construction of the statistical models (see

section 6.3). Then, for each image sequence, the mean surface (over the cardiac cycle)

was calculated. These mean surfaces were projected to the space of the statistical models.

Figure 6.22 shows the projections of the subjects’ myocardium to the space of the inter-

subject population atlas (a) and intra-subject atlas (b) . It is clear from the distribution of

the data that a simple classifier should enable the correct differentiation between normal

and hypertrophic subjects.

In order to classify the data ak-weighted NN-classifierhas been used. After projecting

the subject to be classified to the space of the statistical models, the classifier calculates its

distance from the 5 nearest subjects. Then two weighted sums of distances are calculated.

The first is the weighted sum of the subject’s distance to each of the normal subjects.

The second is the weighted sum of the subject’s distance to each of the subjects with

hypertrophic cardiomyopathy. The subject is classified depending on the smallest of the
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weighted distance sums. Two subjects were excluded from the experiments due to poor

registration with the reference subject. A leave one out experiment was performed using

the rest 14 subjects (the algorithm is described in listing 4).

Listing 4 The leave one out experiment usingk-weighted NN-classifieralgorithm.
1: repeat
2: selecta subject,si, to be used for classification
3: describesi using the model’s eigenvectors
4: describethe rest of the subjects using the model’s eigenvectors
5: calculatethe distance,di, betweensi and each subjecti
6: sort the subjects such thatdi ≤ di+1

7: calculatethe weight factor for the first 5 nearest subjects (N = 5): w =
∑i=N

i=0 di

8: calculatethe total distance of normal subjects:

Dn =
4∑

i=0

di

w
, if i ∈ normals

9: calculatethe total distance of hypertrophic subjects:

Dh =
4∑

i=0

di

w
, if i ∈ hypertrophics

10: if Dn ≤ Dh then
11: si is normal
12: end if
13: if Dh ≤ Dn then
14: si has hypertrophic cardiomyopathy
15: end if
16: until all subjects have been classified

The first 4 principal components were employed when using the statistical atlas de-

scribing the intra-subject cardiac shape variability, while the second and the third principal

components were employed when using the statistical atlas describing the inter-subject

shape variability. In this case, the first principal component was not used in the classifica-

tion since it describes the size of the myocardium in the long-axis direction. Furthermore,

the combination of these modes was also used for data classification. The classification

results are reported in table 6.3.

All the subjects with hypertrophic cardiomyopathy and 83% of the normal subjects

were classified correctly using the statistical model of the myocardium describing changes

in the cardiac anatomy due to intra-subject variation (model A). All the normal subjects
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Model A Model B Both
Normal 83% 100% 100%
Hypertrophic cardiomyopathy 100% 87.5% 87.5%

Table 6.3: Accuracy of the classification using the statistical atlas of the myocardium
describing changes due to intra-subject shape variation (model A), inter-subject shape
variation (model B) and a combination of both.

and 87.5% of the subjects with hypertrophic cardiomyopathy were classified correctly

using the statistical model of the myocardium describing changes in the cardiac anatomy

due to inter-subject variation (model B). The combination of the features of the two sta-

tistical models does not improve the results. This might be due to the limited size in the

two data sets. The fact the hypertrophic cardiomyopathy is a progressive disease could

affect the classification approach. This is especially true for subjects at the early stages of

the disease.

6.7 Conclusions

This chapter presented methods for building a 4D probabilistic atlas of the cardiac anatomy

and function and a 4D statistical atlas of the cardiac anatomy. The probabilistic atlas cap-

tures information regarding the cardiac anatomy and function in the form of tissue proba-

bility maps. However, the probabilistic framework cannot provide information regarding

the type of variability. The 4D statistical atlas describes the cardiac anatomy and how

the cardiac anatomy changes during the cardiac cycle. Contrary to probabilistic atlases,

the statistical atlases provide not only information regarding how much variability exists

in the data but also what the variability is. The method for building statistical atlases

separates the distribution space of the cardiac shape into two subspaces. One distribution

subspace accounts for the changes in cardiac shape caused by inter-subject variability.

The second distribution subspace accounts for the changes in cardiac shape caused by de-

formation in the cardiac cycle (i.e. intra-subject variability). Principal component analysis

(PCA) has been performed in order to calculate the most significant modes of variation of

each distribution subspace. Moreover, this method eliminates the need for manual land-



6.7 Conclusions 235

−1500 −1000 −500 0 500
−400

−300

−200

−100

0

100

200

300
Projection of the subjects’ myocardium to the space of the inter−subject statistical atlas

Principal Component 2
                     

P
rin

ci
pa

l C
om

po
ne

nt
 3

(a)

−400 −200 0 200 400 600 800 1000
−300

−200

−100

0

100

200

300
Projection of the subjects’ myocardium to the space of the intra−subject statistical atlas

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

(b)

Figure 6.22: Projection of the subjects’ myocardium to the space of the (a) inter-subject
atlas and (b) the intra-subject atlas (the circles on the graphs represent the subjects with
hypertrophic cardiomyopathy while the stars represent the normal subjects).
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marking of the cardiac images by using a non-rigid registration algorithm to propagate

landmarks from an automatically landmarked atlas to each frame of the image sequences.

Both atlases of the myocardium have been used to classify cardiac image sequences from

six healthy volunteers and ten patients with hypertrophic cardiomyopathy. The results

showed that the use of statistical atlas describing shape changes due to intra-subject vari-

ability enables 83% of the normal subjects and 100% of the hypertrophic subjects to be

classified correctly. The use of the statistical atlas describing shape changes due to inter-

subject variability enables 100% of the normal subjects and 87.5% of the hypertrophic

subjects to be classified correctly.



Chapter 7

Conclusions

Spatio-temporal registration and modelling of the cardiac anatomy and function using

cardiac MR imaging are challenging tasks. In this chapter, the principal contributions of

this thesis are analysed, the general limitations of the presented work are discussed and

a description of possibilities for future research is presented. Animation examples (of

spatio-temporal registration and the atlases) can be found at:

http://www.doc.ic.ac.uk/˜dp1/Research/Thesis/

7.1 Contributions

Chapters 4 and 5 describe novel registration methods which enable the spatial and tempo-

ral registration of cardiac MR image sequences. Furthermore, chapter 6 describes meth-

ods for modelling the cardiac anatomy and function. In contrast to published methods for

building probabilistic and statistical atlases of the cardiac anatomy, the work presented in

chapter 6 aims to build probabilistic and statistical atlases which will describe not only

the cardiac anatomy but also how it changes over the cardiac cycle.

In chapter 4, a new method for the simultaneous spatial and temporal alignment of

cardiac MR image sequences to the same coordinate system is presented. The presented

registration algorithm has the ability to correct spatial misalignment of affine nature be-

tween the image sequences and also temporal misalignment which could be the result
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of differences in the length of the cardiac cycles of the subjects and in the temporal ac-

quisition parameters. The registration method has been extended by the introduction of

a deformablespatial transformation model which not only corrects global spatial shape

differences but also local differences in the cardiac anatomy.

In chapter 5, the registration method for the simultaneous spatial and temporal align-

ment of cardiac MR image sequences is further extended by the introduction of ade-

formabletemporal transformation part. Therefore, this spatio-temporal registration method

has the ability to correct spatial misalignment between the images caused by global and

local shape differences. Furthermore, it has the ability to correct temporal misalignment

caused by differences in the length of the cardiac cycles and in the dynamic properties of

the hearts. An alternative method for thedeformablespatio-temporal alignment of cardiac

MR image sequences is also presented. The major difference compared to the previous

method is that this method optimises the temporal and spatial components separately. In

this method, the temporal registration of the image sequences is based on a normalised

cross-correlation measure, while the spatial mapping is based on image information from

only the first frames of the sequences. This registration method is significantly faster than

the previous methods. Moreover, this registration method can be used to enable only the

temporal alignment of cardiac MR image sequences, since it does not require the car-

diac image sequences to be aligned in the spatial domain in order to find their temporal

correspondence.

In chapter 6, a probabilistic atlas of the cardiac anatomy and function (in terms of

how the anatomy changes during the cardiac cycle) is presented. Modelling the cardiac

anatomy and function addresses the limitations of current probabilistic atlases of the heart

which are only limited to cardiac anatomy and not to the cardiac function. A statistical

atlas containing statistical information regarding the anatomy of a healthy heart and how

the anatomy of the heart changes during the cardiac cycle is also presented. This sta-

tistical cardiac atlas addresses the limitations of current statistical cardiac atlases which

describe either the cardiac anatomy or the cardiac function. In order to build the statistical

atlases the distribution space of the cardiac shape has been subdivided into two separate
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subspaces. The first distribution space describes the changes in the cardiac shape caused

by inter-subject variability. The second distribution space describes the changes in the

cardiac shape caused by the cardiac cycle. Two separateprincipal component analyses

(PCA) have been performed in order to calculate the most significant modes of variation

of each subspace.

In chapter 6, a possible use of the statistical atlases for the classification of cardiac data

is demonstrated. The statistical atlases of the myocardium are used for the classification

of image sequences from normal subjects and subjects with hypertrophic cardiomyopathy.

7.2 Conclusions

7.2.1 Spatio-temporal registration

The registration methods presented in chapters 4 and 5 enable the spatial and tempo-

ral comparison of cardiac MR image sequences. The resolution of the image sequences

and the spacing of the control points of the B-Spline transformation models used in this

thesis, enable spatio-temporal alignment of cardiac MR image sequences with sufficient

accuracy for building statistical and probabilistic models of the heart.

A linear spatial transformation model and a linear temporal transformation model are

not sufficient to provide complete mapping between the cardiac anatomy and function of

two cardiac MR image sequences. Several applications require a more detailed mapping

both in the spatial and temporal domain. For example, the construction of 4D models of

the cardiac anatomy and function requires the use of adeformabletemporal transforma-

tion model since a mapping between the cardiac anatomies at corresponding time points

in the cardiac cycles needs to be established. The evaluation of the registration methods

showed that the introduction of thedeformablespatial part, in the registration method de-

scribed in chapter 4, significantly improves the spatial alignment of the image sequences.

Furthermore, thedeformabletemporal part (chapter 5) addresses the limitations of the

affine temporal model. The affine model can only scale and translate the entire temporal
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domain of the image sequences. However, thedeformablemodel can deform parts of the

temporal domain differently. Its use improves significantly the temporal mapping of the

image sequences by deforming the motion characteristics of each image sequence to map

the reference image sequence.

The calculation of the temporal transformation using the simultaneous optimisation

approach provides similar results as the cross-correlation based approach. The temporal

mapping after simultaneous optimisation aligns better the temporal details between the

two image sequences (figure 5.30). However, the cross-correlation based approach is

significantly faster and does not require the image sequences to be registered in the spatial

domain.

The results of chapters 5.4.1 and 5.4.2 showed that optimising the spatial part of

the transformation based on information from the entire image sequences and not only

from the first frames, results in a better spatial alignment (figure 5.22). This is due to

the fact that the combined optimisation approach takes into consideration that the spa-

tial differences of the hearts are not constant over the cardiac cycle and also can resolve

ambiguities.

The simultaneous optimisation of the transformation components provides better spatio-

temporal registration than optimising the transformation components separately. Using

the cross-correlation based method to calculate the temporal mapping and optimising only

the spatial transformation reduces the computational complexity of the combined optimi-

sation approach without affecting its performance significantly. The different approaches

for deformablespatio-temporal alignment of cardiac MR image sequences can be used

depending on the type of application (e.g. how fast the spatio-temporal mapping should

be calculated and how accurate it should be).

7.2.2 Models of the cardiac anatomy and function

The techniques presented in this thesis allow the building of 4D atlases containing infor-

mation regarding the anatomy and function (in terms of how the anatomy changes during
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the cardiac cycle) of a healthy heart. The probabilistic atlas contains information in the

form of tissue probability maps. However, the probabilistic framework cannot provide

information regarding the type of variability. The statistical atlases provide not only in-

formation regarding how much variability exists in the data but also what the variability

is. The method for the construction of the statistical atlas allows the decomposition of the

distribution space of the cardiac shape into two subspaces. This enables the construction

of two separate models: one describing changes in the cardiac shape caused by inter-

subject variability, and the other by intra-subject variability. The most significant modes

of shape variation of these models describe meaningful variations of the cardiac shape.

7.3 General limitations

The approaches proposed in this dissertation have a number of limitations. There are lim-

itations due to the underlying assumptions of the spatio-temporal registration. The type

of mapping,T(x, y, z, t) = (x′(x, y, z), y′(x, y, z), z′(x, y, z), t′(t)), used in the spatio-

temporal registration methods assumes that the spatial differences between two hearts are

constant over the cardiac cycle. However, in chapter 5 it has been shown that this as-

sumption has some limitations. This can been seen from the overlap measures (section

5.4.1.2) of the registration method which calculates the optimal spatial transformation us-

ing only information from the first frames of the sequences (separate optimisation). Fur-

thermore, figures 5.3 and 5.4 show that the hearts become more misaligned in the spatial

domain during the contraction phase of the cardiac cycle. Finally, the alignment of the

volume curves of figure 5.8 is not as good as the volume curves of figure 5.15 because

the optimisation of the spatial transformation is based only on the first frames and not

the entire sequences. Although the proposed registration methods cannot provide 100%

spatio-temporal alignment between different image sequences, they still provide a good

approximation to the problem. The simultaneous optimisation of the temporal and spatial

components is not able to completely separate the spatial differences from the temporal

differences. Therefore, the spatial mapping will compensate for temporal differences to a
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certain extent. Similarly, the temporal mapping will compensate for spatial differences to

a certain extent.

There are also limitations due to image acquisition and quality which could affect

the results. The quality of the resulting temporal mapping of the proposed methods will

depend on the temporal resolution of the image sequence. The more frames a sequence

has (i.e. temporal information), the better the temporal alignment will be. Furthermore,

the quality of the image sequences will also affect the results since the similarity measure

(normalised mutual information) used during registration is based only on image informa-

tion. However, the use of image blurring and the choice of normalised mutual information

as a similarity measure reduces the effect of image noise on the quality of the resulting

spatio-temporal registration.

The identification of features in the cardiac cycle using the cross-correlation based

method will also depend on the quality of the images and the temporal resolution of the

image sequences. Calculating the normalised cross-correlation between frames with low

signal to noise ratio may affect the resulting similarity values which could influence the

identification of the temporal features.

The low resolution in the through-plane direction (typical slice thickness is 8-10mm)

affects the registration and the segmentation of the apex and the base of the heart. This

introduces artifacts in the probabilistic and statistical atlases making them less accurate in

the areas of the apex and base of the heart.

7.4 Future research

There are two main directions for future research. The first involves the development of

new methods for the spatio-temporal alignment of image sequences and for modelling

the cardiac anatomy and function. The use of a transformation mapping of the following

form could be investigated:

T(x, y, z, t) = (x′(x, y, z, t′), y′(x, y, z, t′), z′(x, y, z, t′), t′(t)) (7.1)
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This type of 4D mapping does not assume that the spatial differences between two hearts

are constant over the cardiac cycle. It can provide different spatial alignment for different

frames of the image sequences. A 4D B-Spline transformation can be used asTspatial.

In order to define a 4D B-Spline transformation, letΦ4D denote annx, ny, nz, nt mesh of

control pointsφi,j,k,t with uniform spacingδ in the spatial domain andδt in the temporal

domain. Then the 4D spatial mapping can be written as:

Tlocal
spatial(x, y, z, t) =

3∑
s=0

3∑

l=0

3∑
m=0

3∑
n=0

Bs(o)Bl(u)Bm(v)Bn(w)φt+s,i+l,j+m,k+n (7.2)

As mentioned in chapter 4, finding the optimal transformation of such type will be

significantly more computationally expensive than the type of transformation used in this

thesis. For example, a transformation consisting of a 3D B-Spline with10 × 10 × 10

control points and a 1D temporal B-Spline with 10 control points will have 3010degrees

of freedom. On the other hand, a transformation consisting of a 4D B-Spline with10 ×
10× 10× 10 control points and a 1D temporal B-Spline with 10 control points will have

30010degrees of freedom. Increasing the spacing of the control points in the temporal

domain,δt, will reduce the number ofdegrees of freedomin the 4D transformation. It

might be appropriate to calculateδt such that it provides spatial alignment for a limited

number of temporal feature positions (e.g. for the beginning and ends of the cardiac cycles

and for the feature position of peak contraction). In this case, the 4D B-Spline based

transformation for the spatial alignment of the image sequences will have10×10×10×3

control points and 9000degrees of freedom.

A statistical deformation atlas of the cardiac anatomy and function could be con-

structed. As mentioned in chapter 3, the key difference of statistical deformation atlases

is that statistical analysis is performed directly on the deformation fields which describe

a dense correspondence between the anatomies and also cardiac function of two image

sequences. Statistical deformation atlases have mainly been developed for the human

brain [173]. The construction of a statistical deformation model from cardiac MR im-

age sequences will provide statistical information regarding the deformation required to
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map the anatomies of several hearts. It will also provide information regarding the tem-

poral deformation required to map the motion characteristics of several hearts. In order

to obtain these deformation fields (spatial and temporal), adeformablespatio-temporal

registration method will be used.

The second direction for future research is the development of new applications which

use the proposed methods. As mentioned in chapter 3, the construction of an atlas should

be seen as an ever evolving process. The more data an atlas has, the more accurate repre-

sentation of the population it will be. Hence, it is very important to add more cardiac MR

image sequences to the atlas to make it more representative of the population.

Different statistical and probabilistic atlases can be constructed for different groups

of the population. For example, statistical and probabilistic atlases can be constructed

for specific cardiovascular diseases. These atlases can be used in a large number of tasks

including for the segmentation of cardiac MR images. They can also be used to enable

the better understanding of the cardiovascular diseases and also the classification of im-

age sequences. Furthermore, the comparison of different atlases can enable clinicians to

assess qualitative and quantitative differences between groups (e.g. normal subjects and

subjects with hypertrophic cardiomyopathy).

The spatio-temporal registration methods can be used for the assessment of pharma-

cological and surgical intervention. The effect of pharmacological or surgical intervention

will be studied by comparing images prior and after to the intervention. Mapping a num-

ber of image sequences to a common spatio-temporal coordinate system (this coordinate

system could be defined by an atlas) will enable to study the effect of the intervention to

the cardiac physiology. It may also be possible to use the same methodology to study how

the cardiac anatomy and function changes due to aging.

The methods presented in this dissertation enable the spatio-temporal mapping of im-

age sequences with minimal user interaction. The methods (except an initialisation step)

are automatic and require no segmentation of anatomical features and also identification

of temporal features in the cardiac cycles. These methods are used to build atlases describ-

ing the cardiac anatomy and how the anatomy changes over the cardiac cycle. The use
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of atlases is expected to play a significant role in the interpretation of cardiac MR images

since they collect anatomical and functional information from a large set of the popula-

tion to a single model. The work presented in this dissertation provides the foundations

for the spatio-temporal mapping of cardiac MR image sequences and also for modelling

the cardiac anatomy and function. This will hopefully encourage many important new

developments still to come.
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