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Abstract 

The study of cerebral anatomy in developing neonates is of great importance for 

the understanding of brain development during the early period of life. This 

dissertation therefore focuses on three challenges in the modelling of cerebral 

anatomy in neonates during brain development. The methods that have been 

developed all use Magnetic Resonance Images (MRI) as source data.  

 

To facilitate study of vascular development in the neonatal period, a set of image 

analysis algorithms are developed to automatically extract and model cerebral 

vessel trees. The whole process consists of cerebral vessel tracking from 

automatically placed seed points, vessel tree generation, and vasculature 

registration and matching. These algorithms have been tested on clinical Time-of-

Flight (TOF) MR angiographic datasets.  

 

To facilitate study of the neonatal cortex a complete cerebral cortex segmentation 

and reconstruction pipeline has been developed. Segmentation of the neonatal 

cortex is not effectively done by existing algorithms designed for the adult brain 

because the contrast between grey and white matter is reversed. This causes pixels 

containing tissue mixtures to be incorrectly labelled by conventional methods. The 

neonatal cortical segmentation method that has been developed is based on a novel 

expectation-maximization (EM) method with explicit correction for mislabelled 

partial volume voxels. Based on the resulting cortical segmentation, an implicit 

surface evolution technique is adopted for the reconstruction of the cortex in 



 

 

neonates. The performance of the method is investigated by performing a detailed 

landmark study.  

 

To facilitate study of cortical development, a cortical surface registration algorithm 

for aligning the cortical surface is developed. The method first inflates extracted 

cortical surfaces and then performs a non-rigid surface registration using free-form 

deformations (FFDs) to remove residual alignment. Validation experiments using 

data labelled by an expert observer demonstrate that the method can capture local 

changes and follow the growth of specific sulcus. 
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Chapter 1 

Introduction 

1.1 Motivation 

The study of cerebral anatomy in developing neonates is of great importance for 

the understanding of the microscopic and macroscopic brain development during 

the early period of life and can help identify variant neurological lesions in 

immature brains. (Shah et al., 2005; Marlow et al., 2005; Inder et al., 2005; Wilson 

et al., 2006; Kostovic and Judas, 2006; Boardman et al., 2006; Kapellou et al., 

2006; Srinivasan et al., 2007; Counsell et al., 2007; Adamsbaum, 2007). With 

advanced magnetic resonance imaging (MRI) techniques, especially using 3T MRI 

scanners and rapid imaging techniques (Huppi et al., 1998; Inder and Huppi, 2000; 

Huppi and Inder, 2001; Counsell et al., 2003; Neil and Inder, 2004; Rutherford et 

al., 2005; O'Shea et al., 2005; Rutherford et al., 2006; Rousseau et al., 2006; Jiang 

et al., 2007; Boardman and Dyet, 2007), detailed images of the developing brain 

anatomy in neonates can be reliably acquired using the MR anatomical imaging 

sequences, e.g. T1 weighted (T1w) or T2 weighted (T2w). Although these 

advances lead to highly improved images of the cerebral anatomy, the 

morphometric analysis of the three-dimensional (3D) brain images is still difficult 

due to the lack of automated image processing tools. The goal of this dissertation is 

the development of automatic image processing tools for the analysis of these 

images. 

 

The manual delineation of the human brain anatomy from high-resolution 3D MR 

images requires expert knowledge and is a tedious and very time-consuming task. 
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This is especially true for population studies. For example, the systematic study of 

cortical morphometric abnormality caused by preterm birth requires the manually 

segmentation and labeling of the cerebral cortex from MR images for tens of 

preterm neonates at different gestational ages, which can take months for an 

experienced neonatologist. Additionally, the manual delineation is influenced by 

the variability of the human operator, which limits its reliability and reproducibility.  

 

Ideally, an accurate and robust algorithm could automate this task, therefore 

reducing the workload of clinical scientists and simultaneously minimizing intra- 

and inter-operator variability.  The main goal of the research in this dissertation is 

to develop and validate the computerized segmentation and modeling algorithms to 

reconstruct the cerebral anatomy across different neonates and across different ages. 

Specifically, three aims are addressed: The first goal is to develop an algorithm to 

extract and model the cerebral vasculature in neonates. This is motivated by the 

difficulties in characterizing 3D vasculature accurately from 2D projections or 

cross-sectional images which are currently used in radiological practice. The 

second goal is to develop an effective segmentation and reconstruction algorithm 

for developing cortex in neonates. The analysis of cortical morphometry has 

attracted significant interest in the neuroscience community in order to explore the 

structure and function of the human brain. However, there remain significant 

challenges in extending this to the developing cortex during the early phase of life. 

The final goal is to develop cortical mapping/registration methods which are based 

on the successful reconstruction of neonatal cortical surfaces, as the effective 

cortical registration will favor the comparison of developing cortical structures 

across different time-points and different subjects.  

 

To maximize the acceptance of developed image analysis algorithms by clinicians 

and neonatologists, the accuracy, robustness and reliability of proposed techniques 

are emphasized. This leads to a requirement that the proposed image-processing 

methods can be applied reliably by clinician scientists and fulfill the requirements 
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of effective neuroscience studies. As a result, considerable amount of effort has 

been spent to validate the developed techniques in several ways. 

1.2 Contribution and overview 

This dissertation focuses on a couple of tasks in the modeling of cerebral anatomy 

in neonates during brain development: extraction of cerebral vasculatures, 

automatic segmentation and reconstruction of cortical surfaces and comparison of 

developing cortical structures. The main contributions are: 

 

• A complete image analysis pipeline to extract and model cerebral vessel 

trees in neonatal MRI. The whole process consists of cerebral vessel 

tracking from automatically placed seed points, vessel tree generation, and 

vasculature registration and matching. These algorithms have been tested 

on clinical Time-of-Flight (TOF) MR angiographic datasets with regards to 

robustness to noise, segmentation completeness and precision. The 

algorithms have also been applied to adult vascular analysis and in a study 

of normal volunteers where a statistically significant age related decline in 

detected extent of arterial tree is shown. 

 

• A cerebral cortex segmentation algorithm for neonatal MRI. The 

segmentation of neonatal cortex is much more challenging than the 

segmentation of cortex in adults. The main reason is the inverted intensity 

contrast between grey matter (GM) and white matter (WM) that occurs 

when myelination is incomplete. This causes the misclassification of voxels, 

especially in voxels affected by partial volume effects, e.g. at the interface 

between GM and cerebrospinal fluid (CSF). A fully automatic cortical 

segmentation approach based on the expectation-maximization (EM) is 

proposed: Mislabeled voxels are detected using a knowledge-based 

approach and corrected by adjusting the local priors. Our results show that 
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the proposed algorithm corrects errors in the segmentation of both GM and 

WM compared to the classic EM algorithm.  

 

• A complete cortical reconstruction workflow for neonatal MRI. Although 

many approaches have been proposed for the cortical reconstruction in 

adults, to the best of our knowledge, none of them have been applied to 

neonates ranging from very premature to term equivalent age. This is partly 

due to the difficulties encountered in segmenting neonatal brain MRI. 

Based on the cortical segmentation developed for neonates, an implicit 

surface evolution technique is adapted for the reconstruction of the cortex 

in neonates. The performance of the method is investigated by performing a 

detailed landmark study. The results show that all three cortical surfaces 

(inner, central and outer) are reliably reconstructed with sub-voxel accuracy. 

The proposed cortical segmentation-reconstruction pipeline is applied to a 

large number of neonatal MR brain images for developing neonates (99 

preterm infants with GA from 27 to 49 weeks).  

 

• A cortical surface registration algorithm for aligning the cortical surface in 

longitudinal MRI. In the first step, two cortical surfaces are adaptively 

smoothed until their folding complexity is similar. In the second stage any 

residual misalignment of the cortex is corrected by performing a non-rigid 

surface registration using free-form deformations (FFDs). This method is 

able to obtain the direct correspondence of cortical surface features, which 

differs from previously published strategies in which cortical feature 

correspondence is obtained using an intermediate coordinate system, e.g. a 

plane or a sphere. The experiments demonstrate the ability to capture local 

changes and follow the growth of specific sulcus across gestational ages 

(GAs). 

 

The dissertation is organized as follows: After this introductory chapter in which 

the motivations and the problems for this work are described, Chapter 2 presents 
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the image analysis pipeline to extract and model cerebral vessel trees for 

developing neonates. Chapter 3 reviews the current state-of-the-art in cortical 

segmentation and reconstruction for adults, which forms the context for the 

following studies of neonatal cortex reconstruction in Chapter 4 and 5. Specifically, 

a cortex segmentation algorithm for neonatal MRI is presented in Chapter 4. Based 

on this method a reconstruction technique for the neonatal cortex is introduced in 

Chapter 5. A cortical surface registration algorithm is also presented in this chapter. 

The final chapter summarizes the work in this thesis and presents the conclusions. 

Potential future work in this area is also discussed here. 
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Chapter 2 

Extraction and Matching 
Cerebral Vasculature for 

Developing Neonates from MR 
Angiography Images 

2.1 Introduction 

Neonatal brain development proceeds rapidly in the 3rd trimester of pregnancy and 

is accompanied by fast growth of the cerebral vascular system. Imaging the 

neonatal cerebral vasculature is important for the identification of congenital 

cerebrovascular abnormalities and the investigation of anatomical and 

physiological characteristics not only during normal development but also in 

diseases such as perinatal stoke and neonatal encephalopathy.  

 

Both Magnetic Resonance Angiography (MRA) and ultrasound have been used for 

imaging of the neonatal cerebral vasculature. Although ultrasound has been the 

most widely used method for imaging the brain and vasculature of neonates 

(d'Orey et al., 1999; Robel-Tillig et al., 1999; Robel-Tillig et al., 2000; Seydel, 

2001; Pezzati et al., 2002), it lacks spatial resolution and is limited by the narrow 

imaging window due to the ossification of the fontanelles which is more 

problematic for the more mature infants. As a result, some vessels, e.g. the 

posterior cerebral arteries, are particularly difficult to insonate. In contrast to this, 

MRA can provide better spatial resolution and signal-to-noise ratio (SNR). MRA 
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can resolve fine anatomical details and allows the non-invasive study of the 

cerebral vascular architecture without the requirement of contrast injection. More 

importantly, recent technique advances in MRA have led to markedly improved 

image quality from MRA in neonates (Malamateniou et al., 2005; Malamateniou et 

al., 2006). This opens new possibilities for clinical research to study systematic 

differences in the vasculature of neonates and to follow growth and development in 

individual subjects.  The rapid evolution of neonatal cerebral vasculatures (Tarby 

and Volpe, 1982; Husain et al., 2000; Okahara et al., 2002; Anstrom et al., 2002; 

Reith and Shamdeen, 2003) and non-invasive nature of MRA suggests that serial 

studies could yield valuable information about both normal and abnormal vessel 

development. Current radiological practice generally relies on comparisons using 

2D maximum intensity projections (MIP) of 3D Time of Flight-MRA (TOF -MRA) 

images as well as direct visual inspection of the source images themselves. The 2D 

projections cannot provide quantitative morphological information about the 3D 

vasculature and inspection of the images does not facilitate thorough comparisons 

on where significant change has occurred (An example of 2D MIP can be seen in 

Figure 2.10). The development of 3D vessel analysis methods may enable the 

effective analysis and improved quantification of developing cerebral vasculature. 

The analysis of the vasculature in longitudinal studies requires accurate, automatic 

vascular segmentation and vessel tree composition, as well as the ability to 

determine detailed branch-by-branch correspondences over time. We have 

developed such tools and tested them on a cohort of neonatal subjects.  

 

Because blood vessel extraction from medical image data is a prerequisite for 

several clinical applications, it has been intensively studied during the past 15 years. 

Existing methods can broadly be divided into two categories: skeleton and non-

skeleton approaches. Skeleton based methods (Aylward et al., 1996; Frangi et al., 

1999; Niessen et al., 1999; Wink et al., 2000; Frangi et al., 2001; Aylward and 

Bullitt, 2002) explicitly extract vessel centerlines and represent results as discrete 

sets of points or parametric curves in 3D space. For example, Wink et al. (2000) 

proposes a fast vessel delineation technique and tests its performance on different 
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imaging modalities such as computerized tomography angiography (CTA), phase 

contrast (PC) MRA and contrast enhanced (CE) MRA. This method begins from a 

user supplied starting point. The next candidate point is estimated by making small 

steps towards a defined end point. The potential perpendicular vessel lumen plane 

is defined by a predetermined maximal vessel diameter. As the candidate point 

may not be the vessel centre, its position is optimized by maximizing a center 

likelihood measure defined from the local intensity gradient information. The 

tracking process stops if the end point is reached or no vessel centre can be found. 

This method is fast as only local information is used in vessel tracking; however, 

no vessel scale is considered to tune the algorithm parameters to fit both large and 

small vessels. On the other hand, Frangi et al. (1999, 2001) proposes a model based 

approach using the deformable contour technique. In this scheme, the vessel 

centerline is approximated by a B-spline curve. The deformation process is based 

on moving the control points of B-spline toward voxel points which have a high 

likelihood and lie along the central vessel axis. The required external force is 

defined from a vesselness filter (Frangi et al., 1998). This filter reaches its 

maximum at the symmetric centre of the vessel and explicitly takes into account 

information of vessel scale (its radius). Thus it is sensitive to vessels with a 

selected characteristic size. After the vessel centerline is extracted, another 

deformable model is used to find the vessel wall, where the initialization is 

achieved using a simple isosurface method. This vessel extraction method has been 

tested to model the carotid from TOF-MRA images. One drawback of this 

approach is the initial centerline provided as the starting point for the deformable 

B-spline curve has to be sufficiently close to the vessel centre, which makes it 

difficult to extract complex vasculatures for which it is difficult to provide a good 

initialization. Aylward et al. (1996) and Aylward and Bullitt (2002) propose 

another algorithm to track the vessel centerline. This method is based on the 

observation that vessel centerline often corresponds to the intensity ridge in the 3D 

TOF-MRA images. The vessel tracking starts from the seed point near the vessel 

centre and moves towards a local ridge point by minimizing a ridgeness function. 

As supplying the seed points is much easier than initializing a centerline, this 
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method, compared to Frangi et al. (1999), is more suitable for detection of complex 

vasculatures. We therefore adopted this approach and developed it further to model 

the neonatal cerebral vasculature by automating the extraction process. 

 

Non-skeleton based methods label all voxels belonging to the vasculature on a 

voxel-by-voxel basis. An extra skeletonization step is usually needed if vessel 

centerlines are required. A typical non-skeleton based method is the expectation-

maximization (EM) based algorithm, proposed in Wilson and Nobel (1997, 1999). 

In this scheme, the probability of observing intensities in TOF-MRA image is 

modeled by a mixture Gaussian model. The mixture model consists of two classes: 

arteries and background. An iterative EM algorithm is used to estimate the mean, 

variance and weights of the mixture model. Based on the estimated EM parameters, 

the lower threshold of vessel intensity is determined. All voxels with higher 

intensity values are classified as vessel points. This method is straightforward to 

use and has the potential to work on many bright-blood angiography images. 

However, as the contrast-to-noise ratio (CNR) can be lower for smaller vessels due 

to the slow blood flow in TOF-MRA, a single Gaussian distribution may not be 

sufficient to approximate the real intensity distribution of all vessels across 

different spatial scales.  

 

Masutani et al. (1995) proposes another non-skeleton based method employing 

four fundamental operators of mathematical morphology: dilation, erosion, opening 

and closing. In this approach, a series of morphological operations are preformed to 

achieve a single connected vasculature component. This method relies on the good 

CNR between vessels and background tissues, which may not be true for small 

vessels.  

 

There are other non-skeleton based methods, including the image moment-based 

segmentation (Luo et al., 1993), scale-space fuzzy connectedness techniques (Saha 

et al., 2000), geodesic active contours (Lorigo et al., 1999; Lorigo et al., 2000), and 

multi-scale vasculature modeling (Krissian et al., 1998; Krissian et al., 2000). The 
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comprehensive review of algorithms for vasculature extraction can be found in Suri 

et al. (2002a), Suri et al. (2002b), and Kirbas and Quek (2004). 

 

After vessel segments are extracted from MRA images, they need to be linked to 

form a tree which is the natural representation of human vasculature. Little 

attention has so far been paid to vessel tree formation, with most works focusing on 

vasculature segmentation and modeling. However, the accurate symbolic vessel 

tree representation is a key requirement for further vasculature analysis. In this 

chapter, we transformed the extracted vessel branches into a tree which is then 

matched to other trees to achieve both topological and geometrical correspondence. 

Such vasculature matching is distinct from vasculature registration. The latter aims 

to recover voxel-by-voxel correspondence, which means that any point in a given 

vessel branch in one image is mapped to its corresponding point in another image. 

However in neonates, voxel-by-voxel mapping is often impossible because of 

vasculature changes caused by brain development, so we have developed a vessel 

matching scheme to determine topological correspondence between different 

branches. Establishing branch-by-branch correspondence exploits the observation 

that in the developing brain the vasculature topology usually remains unchanged 

except for the addition of newly developing peripheral branches. 

 

There are relatively few other vessel tree matching methods in the literature. Some 

authors have applied graph matching methods (Tschirren et al., 2002; Tschirren et 

al., 2005) or subtree isomorphism (Pisupati et al., 1996) to object recognition and 

scene interpretation. Tree structures, however, are topologically different from 

graphs in that the former are oriented and any two nodes are connected with a 

unique path, which implies that tree matching algorithms are potentially simpler 

than graph matching. To the best of our knowledge, the only work on vessel tree 

matching was proposed by Arnaud et al. (2005). They presented a tree matching 

algorithm for intra-patient hepatic vasculature. The method calculates a matching 

measure using a linear combination of vessel radius, length and angle between two 

branches. Although good results were reported in CT hepatic images, the need to 
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estimate vessel radius is a potential impediment when using MRA data, since 

limited image resolution can make it difficult to precisely measure the radius of 

small vessels. 

 

In this chapter, we adopt a ridge detection based vessel extraction algorithm 

(Aylward et al., 1996; Aylward and Bullitt, 2002) to detect centerlines throughout 

cerebral vasculatures. We improve the original algorithm in several ways: First, we 

develop a seed generation algorithm to automate the extraction process and achieve 

the extraction of complete cerebral vasculature. To improve the efficiency of the 

vessel extraction seeds are only generated near vessels. Secondly, we develop an 

algorithm for the automatic tree composition from segmented vessel branches 

which ensures correct parent-child relationships. This serves as input for the tree 

matching that establishes branch-by-branch correspondences and so allows the 

pattern of vessel development in individual infants to be assessed and quantified. 

Finally, we demonstrate the utility of proposed methods in providing quantitative 

3D information and capturing neonatal vasculature development. 

 

The rest of this chapter is organized as follows: In section 2.2, we present the 

vessel extraction methods including the ridge detection, seed generation and 

optimal scale estimation. In section 2.3, we develop the algorithm to automatically 

match the cerebral vasculatures. Results and evaluation of applying both 

algorithms to clinical neonatal MRA-TOF images are presented in section 2.4. 

Also, in this section the proposed technique is further used to model the vessels 

from contrast-enhance MRA and adults TOF-MRA datasets, which further proves 

its applicability. Finally, section 2.5 discusses the results and section 2.6 provides 

some conclusions.  
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2.2 Cerebral vasculatures extraction 

The goal is to recover the 3D structure of blood vessels from MRA-TOF images. 

Because the fastest blood flow normally exists along the vessel centerline, voxels 

in this region are brightest. Using this knowledge as a-priori information, a vessel 

segment in MRA-TOF images can be approximated as a tubular object with highest 

intensity along its centerline. This high intensity centerline is also called an 

"intensity ridge". 

2.2.1 Intensity ridge 

Given a continuous image function ( )x
r

L , if the intensity value is considered as the 

height from zero, ridge points are those points where the image has a local 

maximum in the direction of the principal curvature of ( )x
r

L . Stated otherwise, 

ridge points are distinguished by the local extrema of principle curvatures. This 

definition of ridge is a so-called "height ridge". There are several other definitions 

of ridges in the literature (Haralick, 1983; Griffin and Colchester, 1995), but the 

height ridge definition is frequently used in image analysis because it is an intuitive 

property of digital images and relatively straightforward to compute. More details 

Figure 2.1. An intuitive example of an intensity ridge for a 2D image. The centerline of a single 
vessel corresponds to the ridge line in the 2D intensity space. 

(b) (a) 
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about height ridges and their computation can be found in Eberly (1996). As an 

example, Figure 2.1 shows an intuitive example of an intensity ridge in a 2D image. 

The centerline of a single vessel corresponds to the ridge line in the 2D intensity 

space. 

 

If we assume the continuous image function ( )x
r

L , ( )zyx ,,=xr  and its second 

order derivatives exist within an image area, the Hessian matrix for the 3D image 

at any point x
r

 is defined as: 
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Let 321 λλλ >> denote the eigenvalues of the Hessian matrix and 1v
r

, 2v
r

 and 3v
r

 

are the corresponding eigenvectors. Because the principal curvature directions are 

given by 1v
r

 and 2v
r

, the zero-crossing points of the image gradient in the principal 

curvature directions correspond to: 

01 =∇⋅ Lv
r

    (2.2) 

02 =∇⋅ Lv  

Because ridge points are the points with maximal local intensities (for bright 

vessels), the corresponding eigenvalues 1λ and 2λ should be negative: 

01 <λ      (2.3) 

02 <λ  

Points that satisfy (2.2) and (2.3) are defined as ridge points in the 3D intensity 

space (Eberly, 1996).  
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2.2.2 Interactive vessel detection by ridge traversal 

Ridge transversal as a method for extracting vessel centre lines has been originally 

presented in Aylward et al. (1996, 2002). The method starts from a user-supplied 

seed point near the vessel centre and a scale factor σ . The scale factor σ  is crucial 

for effective vessel extraction. The scale factor defines the width of a Gaussian 

kernel used to blur the image to suppress noise. The blurring of the image before 

the ridge detection also overcomes the problem of MR signal loss. For the TOF-

MRA imaging sequence, fast blood flow in some big vessels (e.g. carotid arteries) 

may cause MR signal loss due to intra-voxel dephasing (Haacke et al., 1999). In 

this case voxels near the centerline will appear dark in the image while after the 

Gaussian blurring, the correct intensity profile can be recovered (Figure 2.2). The 

Gaussian blurring here acts as a enhancement filter and creates the maximal 

responses at the vessel centerline. After the image is blurred, we use the cubic B-

spline as the interpolator to compute subvoxel intensity values and the Hessian 

matrix H . 

 

Figure 2.2.  (a) Due to signal loss in the carotid artery caused by fast blood flow, the intensity profile 
does not reach a peak at the vessel center. (b) By blurring the image using a Gaussian kernel, the 

correct intensity profile is recovered, which is very important for accurate vessel extraction. 

(b) After blurring 

(a) Before blurring 
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The user-supplied seed is moved to the centerline by minimizing a ridgeness 

function J  (equation 2.4). A Quasi-Newton minimization method (the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method) was used (Press et al., 1992). By 

viewing a 3D image as a 3D intensity surface in 4D, J  is minimal on the 1D 

height ridge points of the 3D surface (Aylward et al., 1996; Aylward and Bullitt, 

2002), as shown in Figure 2.3: 

0)()()( 2
2

2
1 ≈∇⋅+∇⋅= LLJ vvx

rrr
   (2.4) 

 

 

For an ideal bright tubular structure in a 3D image, the eigenvalues 

satisfy 321 0 λλλ ≈<≤ . The eigenvector 3vr  can be used to approximate the tangent 

direction and to define the local vessel orientation. Thus, the next ridge point ixr  is 

found by stepping in the direction 3vr  with a small traversal step size t  from the 

previous ridge point 1−ix
r

(Figure 2.4). Then, if TolJ i >)(x
r

, the Quasi-Newton 

optimization is reapplied to move ixr  to the ridge.  

J−

2v  1v

(b) 
2v  1v  

I  

(a) 

Figure 2.3. (a) The intensity profile of a vascular cross-section is shown. (b) The valley point of 
ridgeness function, J corresponds to the vessel center point. They are marked as black dots. 
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2.2.3 Seed generation 

Due to image noise and limited image resolution, more than one seed is normally 

required to extract an entire vessel branch. The number of seeds required depends 

on the image quality and the vessel size. If the SNR in the images is low or 

vascular abnormalities are included, hundreds of seeds may be required to extract 

the whole vasculature. The extraction process using manual seed identification will 

quickly become tedious. Also, the extraction results may be influenced by the 

variability in manual seed placement which limits reliability and reproducibility. 

Thus, we have developed a strategy to automatically localize seeds to extract whole 

vessel trees. This minimizes user interaction and reduces the work load for 

clinicians. 

 

The key requirement for the seed points is that they must be located within the 

vessel lumen so that the minimization of the ridgeness localizes the vessel centre. 

Thus, we need to generate a set of 3D points belonging to vessels. For this we use a 

0P

Figure 2.4. Diagram of ridge traversal. (a) The seed 0p  (green dot) is moved to the first ridge point 

1x by the minimization process. By stepping in the direction of local tubular v with a small step size 
β  and minimizing the cost function again, next ridge point 2x  can be found. By repeating this 

process, a whole vessel can be extracted, as shown in (b). 

0P

1P

3x

2P

v

2x

1x β

v

(a) (b) 
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method based on the Z-buffer Segmentation (ZBS) algorithm (Parker et al., 2007). 

The Z-buffer records the depth in the 3D image for every pixel in the MIP of that 

image. The Z-buffer is a computerized data visualization method and is generated 

by projecting the 3D dataset into a visualization plane where the projection value 

for every voxel is taken as the maximum intensity value along the ray traced from 

the viewpoint to the plane of projection). As shown in Figure 2.5, vessels appear as 

regions of very slow variation in the Z-buffer while the background exhibits rapid 

and large variation. This characteristic is used to differentiate vessels from 

background by defining a roughness χ  to quantify the local Z-buffer variation rate 

for each point in the MIP.  The roughness is defined as follows: 

( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

k
ijkijkj

pzi 2minχ    (2.5) 

where ijkz is the depth value at the thk pixel in the thj direction from the thi point in 

the Z-buffer. ijkp  is the predicted value of ijkz obtained by linear regression on 

depth values along the thj direction from the thi point. A total of four directions 

( 41L=j for horizontal, vertical and two diagonal) are used. Because vessels 

appear as oriented lines, ijkp along one direction should approximate ijkz well and 

(a) 

Figure 2.5.  (a) A Z-buffer image records the depth for every pixel in a MIP. Vessels appear as 
regions of very slow variation in the Z-buffer while the background exhibits rapid and large 

variation. This fact is indicated in (b) by focusing on the data within the red box. 

(b) 
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the corresponding roughness is small, while for non-vessel pixels all four 

approximations result in large residuals due to the inconsistency of the Z-buffer. 

All pixels with χ  smaller than a preset threshold κ  (empirically set to be 1.5 in all 

experiments) are selected and serve as 3D seeds for vessel extraction. 

 

To detect all possible vessels, MIPs in three orthogonal directions are used. This 

has proved to be very robust in our experiments, producing seeds covering all main 

vessels. However, thousands of seeds are normally produced, so we decimate these 

randomly, and use only 5%-10%, which is sufficient to extract the whole 

vasculature. As it is possible to obtain multiple seed points for a vessel segment, 

those seeds flowing into ridge points that have already been detected were ignored.  

2.2.4 Optimal scale selection 

Given the importance of proper scale factors discussed above, to complete the seed 

generation process, each seed should be given a correct scale factor which 

approximates the local vessel diameter.  In the context of vessel enhancement, 

many authors proposed local vessel size estimators based on the linear scale space 

theory and scale selection (Lorenz et al., 1997; Manniesing and Niessen, 2005). 

The multi-scale characteristic and linear scale selection originally proposed by 

Lindeberg (Lindeberg, 1998) ensures that different vessel diameters are treated 

equally, without favoring certain vessel diameters. 

 

We have used Frangi's multi-scale vessel enhancement filter (Frangi et al., 1998) as 

an estimator of the vessel diameters although other filters (Chapman and Parker, 

2005) may also work in this case. Frangi’s vessel enhancement filter assumes 

tubular vessels in 3D. Using the Hessian matrix of image intensity and following 

the same notation as before, we have 321 λλλ >>  and corresponding eigen-

vectors are 1v
r

, 2v
r  and 3vr . As vessels are bright tubular structures in a dark 

background, the local vessel direction is given by 3vr  and vessel voxels satisfy 
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03 ≈λ and 213 λλλ ≈<< . The pattern of eigenvalues is used to differentiate 

vessel structures from the background. 

 

The formulation of Frangi's vessel filter at the scale σ  is as follows: 

    (2.6) 

where 

1

2

λ
λ

=A  

12

3

λλ

λ
=B  

2
3

2
2

2
1 λλλ ++=S  

A  differentiates between plate and line like structures while B  accounts for blobs 

like structures. S  is defined as the second order structureness which separates 

vessels from background noise. 

 

The filter response is computed at different scales. The maximal response will be 

obtained when the scale δ  approximates the vessel size: 

[ ]
( )( )σνδ

σσσ maxmin ,
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∈
=optimal      (2.7) 

The optimal scale is computed for all 3D seeds. 

 

Seeds can be further refined by performing the ridgeness minimization process: 

Those seed points for which no ridge point can be found are abandoned for vessel 

extraction. This both decreases segmentation noise and increases efficiency of 

vessel segmentation. 
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2.2.5 Vessel tree composition 

The ridge detection method generates a set of disconnected vessel segments from 

which we can compose connected vessel trees using a modified minimum spanning 

tree algorithm (Bullitt et al., 2001). This method requires the user to define one 

segment as a root node and then the algorithm automatically calculates the spatial 

distance between all unattached vessel segments and the current tree. The vessel 

segment with the minimal distance is attached to its parent to extend the vessel tree 

and the process is repeated to build a complete tree with defined parent-child 

relationships for all connected vessel segments. This process is illustrated in Figure 

2.6. When adding a new branch, the parent-child pair can have one of four possible 

configurations (Figure 2.7).  Note the "X" connection (Figure 2.7(d)) is not 

permitted as it is inconsistent with the directed flow characteristics of human 

cerebral vasculature. The tree composition process continues until there are no 

unconnected segments left or the minimal spatial distance is too much larger than a 

threshold (normally 3~5 times of a voxel size). Due to the image noise and 

imperfections in vessel extraction, the errors can be found in the obtained tree 

structures. At this moment, we still rely on human operator to check all results and 

interactively correct all mistakes. As the final step of this tree composition, every 

branch from the root to the leaf node is allocated a unique ID. 

 

Root vessel 

Parent vessel 

Child vessel 

Figure 2.6. An unattached vessel must be allocated and attached to a proper parent vessel during the 
tree construction process. 
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2.3 Vasculature matching 

The output of the previous step is a cerebral vasculature tree, in which each branch 

is automatically assigned a label by which it can be identified. These annotated 

trees may in themselves be useful for characterizing vascular architecture in 

individuals at a given time point. However, to compare across time some form of 

vessel matching is helpful. The vessel matching algorithm proposed in this section 

finds branch-by-branch correspondences for follow-up studies of the same infant. 

 

We exploit average spatial distance between two vessel branches as a measure for 

determining branch-by-branch correspondences. This is based on the observation 

that if two vessel trees are geometrically registered, corresponding branches are 

spatially close while uncorresponding branches often sprawl out at different 

parent 

child 

parent 

child 

child

parent

child 
parent 

Figure 2.7. Four possible configurations of parent-child pairs when adding a new branch into the 
vessel tree.  Note the "X" connection (d) is not permitted as it is impossible for human cerebral 

vasculature. 

(a) (b) 

(c) 

(d)
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orientations. Therefore, two vessel trees can be matched by first placing them in an 

appropriate geometrical correspondence and then computing a cost function 

measuring the average spatial distance between pairs of vessel branches. The 

matching process starts from the roots of the two trees and finally stops when leaf 

branches are reached. It is clearly possible that, due to imperfect vessel extraction 

or changes in vasculature as a result of brain development, two or more branches in 

one tree need to be merged to match a branch in another tree due to the new-born 

vessels. Also, some vessel segments may not have a corresponding match. The 

output of this process records all pairs of corresponding branches and can include 

cases where segments are merged. Figure 2.8 givens an example of vasculature tree 

matching. These two middle cerebral artery trees are reconstructed from two TOF-

MRA images consecutively acquired for the same infant. 

 

 

 

Tree A 0 1 2 8 3 4 6 5 20 19 … 
Tree B 0 2 1 10 4 3 5 6 7 8 … 

Figure 2.8. An example of vasculature tree matching. The vessel tree matching, unlike registration, 
aims to recover the semantic correspondences between two vasculatures. The branch-to-branch 

correspondence can be represented by a matching form. 
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2.3.1 Vasculature registration 

In contrast to intensity-based registration of anatomical images, precise vasculature 

registration includes extra challenges resulting from low visibility of small vessels 

and non-overlap of sparse vascular structures. In fact precise registration may not 

be always possible due to changes in the vasculature over time. We therefore seek 

only to remove any global affine differences between the two vessel trees in order 

to bring them into approximate alignment. Provided robust alignment could be 

achieved, this approach was found to be sufficient to initialize vessel tree matching.  

 

We tested four different registration strategies. (a) Direct MRA-MRA image 

registration performed by maximizing the mutual information between source 

image pairs. (b) Extracted vessel trees registered using the iterative closest point 

(ICP) algorithm (Besl and Mckay, 1992) which is a popular method to register 3D 

point sets. (c) An improved ICP algorithm with ε -reciprocal correspondence 

applied to provide robustness for outliers (Pajdla and Gool, 1995). The details of 

ε -reciprocal correspondence are given in the next section. (d) An indirect 

registration strategy that combined anatomical information from T2 images 

routinely acquired in addition to the MRA data. Each MRA image is first registered 

to its T2 image by a rigid transformation rT . The two T2 images are then aligned 

by a multi-level extension of a free-form non-rigid registration algorithm (Rueckert 

et al., 1999) which deforms an object by manipulating an underlying mesh of 

control points and using cubic B-spline to interpolate intermediate locations.  

2.3.2 Cerebral vasculature matching 

The inputs to the vessel matching are two approximately registered vessel trees 

where each branch is labeled by a unique ID. The aim of vessel matching is to 

recover branch correspondence between two trees. The method starts from root 

nodes which are assumed to be matched by definition. In each iteration, subtrees of 

the current node are extracted. The subtree depth is determined by the maximal 
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possible length of matched paths, as multiple branches in one tree may correspond 

to one branch in the other tree. Note that due to possible neonatal vascular 

development and extraction imperfections, two or three branches in tree A may 

need to be merged and matched to one branch in tree B. Thus, a search depth P  is 

defined as the extracted subtree depth. Once two subtrees are extracted from the 

current node, a spatial distance function S  is computed for all possible matching 

pairs which should include all one-to-one matches and merged matches. Those 

matching pairs with minimal cost values are selected as correct matches. Once the 

correct match at the current level is obtained, the roots of subtrees for the next level 

are set to be leaf branches of current matching pairs. This process runs iteratively 

from root to leaf and stops when extracted subtrees only include leaf branches.  

 

The spatial distance function S  is defined as follows for two vessel segments 

( )11 tΓ  and ( )22 tΓ :  
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where 1t  and 2t  are the arc length parameterization of the two vessels and S  is the 

averaged 3D spatial distance between two segments. 1L  and 2L  denote vessel 

lengths in mm. 

 

Any residual misalignment between corresponding branches can be further reduced 

if subtrees extracted during the matching process are further registered. Our 

experiments show that the residual mismatches decreased when this piece-wise 

subtree registration is integrated into the matching process.  
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The ICP algorithm can be used to register subtrees. However, this method tends to 

converge to an incorrect result if mismatched point pairs dominate the closest point 

selection, which frequently occurred in our experiments. The reasons for this are: a) 

subtrees often include unmatched branches or newly formed segments which do 

not have correspondences in the other vessel tree, e.g. Figure 2.9(a); b) vessel trees 

are very sparse, which degrades the convexity of cost function and induces 

difficulties for local optimization methods such as the ICP algorithm; c) Subtree 

registration is more vulnerable to mismatched points than whole vasculature 

registration because there are fewer corresponding point pairs. To improve the 

registration, we need to identify mismatched point pairs and only count correct 

ones. As a solution, a robust extension of ICP algorithm (Pajdla and Gool, 1995) 

was used for registering subtrees. This method exploits the ε -reciprocal 

Figure 2.9.  An example of subtree registration: (a) Two subtrees are extracted and rendered in their 
original position found from global registration; (b) The ICP algorithm converges to an incorrect 
result when the partial trees are matched; (c) By eliminating the mismatched point pairs, the two 

subtrees are successfully registered; (d) The consistently decreasing cost of improved ICP algorithm 
is plotted. 
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correspondence: given a point P∈p
r

and the closest point M∈mr , mr  is back-

projected onto P  by finding the closest point P∈0pr . If ε>− 0pp rr , the pair ( )mp rr,  

is rejected. Because mismatched point pairs are gradually eliminated from the cost 

function, the algorithm is more robust. Figure 2.4 gives an example to show the 

performance of the improved ICP algorithm which is very robust in our 

experiments.   

 

To further deal with the effects of vasculature development and extraction errors, 

two matching criteria need to be added: 

 

 Peripheral vessels experience the most significant development and 

geometrical changes in the neonatal brain, matched leaf branches in two 

vessel trees may only have partial correspondence. Accordingly, only 

overlapped parts in two leaf branches are used to compute the spatial 

distance cost. 

 

 Inconsistencies (e.g. when two branches in one tree are matched to the same 

segment in another tree) may be detected from the matching results. 

Whenever this happens, there are matching errors in the previous level. In 

this case, the previously selected optimal solutions are replaced by the next 

best solutions. This feedback mechanism corrects mismatching and improves 

robustness. 

2.4 Results and evaluation 

We have applied the presented algorithms to extraction and matching of the 

cerebral vasculature using the MRA-TOF images. The accuracy and reliability of 

these algorithms were assessed and the matching results compared to the ground-

truth determined by manual matching all vascular trees.  
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All images were acquired on a 3T MR imaging system (Philips Intera) using a 6 

element sensitivity encoding (SENSE) array head coil. Imaging parameters were 

optimized for neonatal cerebral vasculature for better contrast and visibility of 

peripheral vessels (Malamateniou et al., 2005; Malamateniou et al., 2006): TR 

18ms, TE 3.5ms, flip angle 16 degrees, slice thickness 0.61 mm, FOV 160 mm and 

100 slices with scan matrix 288×288. All TOF images were interpolated to 

isotropic voxels (0.4mm3) using cubic spline interpolation and a centre region 

including vessels was selected for analysis.  

 

The proposed technique was implemented and tested on 51 subjects (18 preterm 

and 33 term-born neonates, mean gestational age at birth 36.2± 5.4 weeks). As an 

example, an image is shown in Figure 2.10. All scans were performed with the 

same imaging parameters. All infants were sedated or imaged during natural sleep.   

2.4.1 Seed generation and vasculature extraction 

Because effective seed generation is essential for exhaustive vascular segmentation, 

we evaluated the performance of the proposed seed generation method on MRA-

(a) (b) 

Figure 2.10.  MRA-TOF images: (a) a slice from the 3D image volume and (b) transversal MIP of 
this TOF image. 
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TOF images with different noise levels. Noise was added to a selected MRA image 

which presents the typical and reasonable image quality. Specifically, four variants 

of images were generated by adding Gaussian noise with standard deviation δ  of 

10, 20, 30 and 40 to data with a mean vessel intensity 145.0± 70.8 and mean signal 

from suppressed background 58.7 ± 7.2. Although the original image has good 

quality, the visibility of small vessels clearly decreases with the degradation of 

image quality. The 20=δ  data represents a case of low-quality image while 

40=δ  data challenges the method, as the corresponding contrast-to-noise ratio 

(CNR) drops by about 6 fold to 2.2 (the CNR is computed as 

( ) levelnoiseintensitybackgroudintensityvesselaverage ____ − ).  

 

Figure 2.11 shows the MIP of the original image and its 3D rendering with seeds 

(blue dots). Only seeds within the cerebral artery trees are shown. Seeds detected 

from peripheral arteries and veins which are not connected to the main cerebral 

vasculature network have been discarded. All five test images were processed with 

the same parameters (although relaxing some thresholds for low SNR images may 

improve results). The seeds are shown on the MIPs for all images in Figure 2.12. 

Due to the large number of seeds detected, only 20% randomly selected have been 

rendered. A multi-scale selection process was used to compute the optimal scales 

for the seeds generated from the images. The results are shown in Figure 2.13 and 

the corresponding extracted vessels are shown in Figure 2.14 as the transverse 

MIPs.  
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There are four remarks that can be found from these results. First, the seed 

generation method is able to produce seeds spreading over the cerebral vasculature 

for a wide range of vessel radii and in the presence of variable levels of noise. 

Second, the optimal scale computed for each seed by maximizing the multi-scale 

response function gives plausible indication of the vessel sizes, with generally 

decreasing values from proximal to distal branches (colour coding progressing 

from red to blue in Figure 2.13), proportional to the vessel scale. Although the 

optimal scale itself can not be treated as a precise estimate of the vessel radius, the 

extraction results in Figure 2.14 show that it is sufficient for the ridge detection. 

Third, after random selection there are enough seeds for whole vasculature 

extraction. In the example in Figure 2.13, 6000 seeds were randomly chosen from 

about 30,000 seeds originally generated and 4459 are finally used for vessel 

extraction, as those seed points from which no ridge point can be found are 

abandoned. Fourth, extraction results are found to be correct, with visible vessels 

extracted to form quite complete vascular trees. We quantify completeness as the 

ratio of the length of vessel trees segmented automatically and manually at each 

noise level. The mean is 93.2% ± 2.1% for all five extractions (the original image 

and four noisy ones).   

Figure 2.11.  (a) MIP of original MRA-TOF image with seeds overlapped. (b) Its 3D rendering 
showing the cerebral vasculature. The generated seeds spread over the whole cerebral vascular trees 

which is important for robust extraction. 

(a) (b) 
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To test the precision and consistency of vessel extraction, the longest branch in the 

left middle cerebral artery tree (LMCA) is extracted from the four noisy images 

(Figure 2.14(a-d)) and the original image (Figure 2.14(e)). The precision may be 

quantified by the averaged spatial distance, C , between the branch extracted from 

a noisy image and from the original image: 

   ( )∑
=

′−=
N

i
ii eTrepointnearest

N
C

1
,_1 pp    (2.9) 

Here Treepi ∈  is a vessel point in one extracted vessel tree. 

( )eTrepintnearest_po i ′,  is the nearest vessel point of ip in another tree. If two 

extractions for the same branch are highly consistent, the distance measure 

C should be close to zero. For these experiments the average distance between all 

extractions from noisy images and the original image are 0.25 ± 0.11mm. Given 

the reconstructed voxel size of this image is 0.4mm3, this result shows that 

subvoxel precision can be achieved.  

   

Based on the extracted vessel segments, a vessel tree can be defined. Four main 

cerebral artery trees are generated. During the automated vessel tree composition a 

distance threshold of 1mm was used. Occasionally, the tree composition can cause 

parent-child connection errors if two vessels are very close to each other. They are 

manually identified and corrected. The final patient-specific 3D vessel tree is 

shown in Figure 2.14(f) where the four main cerebral artery trees 

(anterior/posterior, left-middle/right-middle arteries) are differently colored. 

 

The explicit parent-child relationship can be recovered from the extracted 

vasculatures. The vessel tree composition method proposed in section 2.2.5 is 

applied to both left and right middle cerebral arteries of the vessel tree shown in 

Figure 2.14(f). The tree structures recovered are illustrated in Figure 2.15, where 

every vessel branch is detected with a unique ID number allocated. Therefore, for 

every branch node in the tree, its parent and children can be directly assessed.  
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We applied the propose technique to all neonatal TOF-MRA datasets. For all 

datasets three orthogonal MIPs were displayed with the extracted vessels overlaid 

on the MIP rendering. In general extracted vessel centerlines are accurately 

centered on the vessels and the segmentations obtained were complete and the 

vessel tips were extracted. Figure 2.16 shows the vasculature extraction results for 

developing neonates with different gestational ages. The process for each subject 

takes approximately 15min on a PC with one Pentium 4-3.0GHz processor and 

1GB memory. 

Figure 2.12.  Seeds are overlapped on the MIPs for 10=δ , 20, 30 and 40. More noise degrades 
the visibility of distal vessels, which causes the detectable seeds also to decrease. However, the 

algorithm allocated seed to the visible cerebral vasculature for all values ofδ  tested. 

(a) 10=δ  (b) 20=δ

(c) 30=δ  (d) 40=δ
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Figure 2.13.  Results of multi-scale seed selection. By maximizing a vesselness function, each seed is 
allocated an optimal scale (mm). In this example seeds are colour coded by detected vessel size from 
0.2mm to 2.6mm which covers the possible radius range of neonatal cerebral vessels. Although the 

minimal detectable radii of vessels are limited by the imaging system, the results show computed scales 
for distal vessels are small (colored in blue) while the carotid artery has larger scale (colored in red). 
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(a) 10=δ  

Figure 2.14.  (a-e) Vessel extraction with different noise levels. In all cases, the algorithm robustly extracted 
most visible cerebral vessel branches. (f) Four artery trees are composed from extracted vessel segments. These 

trees define a patient-specific model of cerebral vasculature. 

(b) 20=δ  (c) 30=δ  

(d) 40=δ  (e) original image (f) four artery trees 
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(a) Left MCA 

(b) Right MCA 
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(c) 3D rendering of both arterial trees 

Figure 2.15. Vessel tree composition. (a) Left middle cerebral artery tree; (b) Right middle 
cerebral artery tree; (c) A 3D rendering of both vessel trees with the TOF-MRA image. 
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GA: 34.29 weeks 

 

GA: 39.86 weeks 

 

GA: 29.86 weeks 

 

Figure 2.16. Vasculature extraction results for developing neonates with different gestational ages. 
Note that in the MIP images there are also disconnected vessels that a located caudal to the cerebral 

arteries– these are not part of the extracted trees 
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2.4.2 Vessel tortuosity measurement 

Based on the generated vessel trees, a quantification of the vessel morphology can 

be performed. To illustrate the applicability of proposed algorithm we demonstrate 

how the algorithm can be used to assess middle cerebral artery (MCA) tortuosity.  

 

A previous clinical study of term born and preterm infants imaged at term 

equivalent age showed that there is decreased tortuosity in the middle cerebral 

arteries of the preterm infants at term compared to the term born infants 

(Malamateniou et al., 2006). Here the tortuosity was manually measured using a 

distance metric (DM) which is defined as the ratio between the length along the 

vessel path and the distance between the start and end point of the selected vessel 

segment (Bullitt et al., 2003a; Bullitt et al., 2003b; Bullitt et al., 2004; Bullitt et al., 

2005a; Bullitt et al., 2005b). In Malamateniou et al. (2006a), a group of 24 

neonates, including 12 term born infants (GA: 40.3 ± 1.0 weeks) and 12 preterm 

infants (GA: 29.5 ± 2.5 weeks) was studied and 3D MRA-TOF images were 

acquired for all subjects. The starting point used was the origin of the MCA at the 

internal carotids and the end point was the first MCA trunk bifurcation point. 

Although the vessels exist in 3D space all measurements were taken from 

transversal MIPs. The tortuosity in both the left and right MCAs was found to be 

significantly decreased for preterm infants (1.17 ± 0.05 and 1.16 ± 0.05) compared 

to term infants (1.45± 0.08 and 1.48 ± 0.16). 

 

With the 3D structure reconstructed for cerebral vasculatures, we can perform a 

quantitative test in real 3D space. To compare with the previous study we 

computed the DM for a group of 5 preterm infants (GA: 29.4 ± 2.8) and 5 term 

ones (GA: 39.8 ± 1.5) for the MCA segments between the same landmarks, as 

shown in Figure 2.17. The left and right MCA for preterm infants have mean 

tortuosity of 1.06 ± 0.06 and 1.03 ± 0.03, respectively; for term born, these values 

are 1.36 ± 0.23 and 1.29 ± 0.14. The mean differences of DM values between term 
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and preterm infants for left and right MCA are 0.28 (95% CI: 0.07 – 0.69) and 0.18 

(95% CI: 0.08 – 0.69) respectively. In a summary, the computerized vessel 

tortuosity measurement is shown to agree with the previous clinical study, which 

demonstrates the applicability of the proposed vessel extraction method and its 

potential for clinical applications.  

 

2.4.3 Vessel matching 

We applied the proposed vessel matching algorithm to a group of 4 preterm 

neonates that were each scanned twice at different ages (first scan: ages 6-50 days, 

mean 22.8 days; second scan: ages 41-90 days, mean 70.3 days). The left and right 

middle cerebral artery trees were extracted for all subjects and used for vessel 

matching. Successful vessel extraction was carried out for all 4 subjects and 8 pairs 

of artery trees were correctly composed. The parent-child connection errors (total 6 

locations for the eight trees) in the generated vessel trees were manually corrected.  

 

All vessel trees were first registered using each of the four approaches previously 

described (direct registration of source TOF-MRA data, indirect registration using 

L
DDM =

L 
D 

Figure 2.17.  An illustration of MCA tortuosity measurement. The distance metric (DM) is defined 
as the sum of distances between adjacent 3D points along the actual vessel path divided by the 

length of the straight path between the first and last 3D points – since the vessel centreline has been 
parameterised in 3D this whole process is fully automatic. 
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T2 weighted images and two variants of registration of the composed vessel trees 

themselves) to remove global spatial displacements. To evaluate the performance 

of different registration strategies, corresponding bifurcation points are manually 

selected for all tree pairs and their mean residual displacements (MRD) after 

registration used as a statistic for assessing registration. MRD is defined as: 

( )∑
=

−=
N

i
ii ingcorrespond

N
MRD

1

1 pp   (2.10) 

where ip  is a branch bifurcation point in one tree and its corresponding point in 

another tree is ( )iingcorrespond p .  

Figure 2.18 summarizes the registration results. All four registration methods 

(section 2.3.1) decreased residual displacements compared to the case where no 

registration is performed, indicating that the tree pairs were being brought into 

improved alignment. An illustration of vascular registration is given in Figure 2.19. 

Figure 2.18. Summary of vessel tree registration results. Four registration strategies are used to 
register 8 pairs of vessel trees and the mean residual displacements are shown here. 
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Here (a) and (b) shows an example of extracted middle cerebral artery trees 

overlaid on original MIPs. The performance of vasculature registration is shown in 

(c) and (d). Three methods (direct, indirect and ICP) gave comparable residual 

displacements while the improved ICP method gave the lowest value (MRD: 

1.34mm). This is expected as the improved ICP method eliminates most 

mismatched point pairs from the optimization.  

 

Clearly, the positive contribution of the subtree registration is determined by its 

robustness. If the subtree registration is incorrect, the tree matching will lead to 

higher errors. The proposed subtree registration method was tested on a total of 68 

subtree pairs extracted from the 8 pairs of vasculature trees. After these subtrees 

were registered, the branch-to-branch correspondence is established by performing 

the proposed tree matching method. If the matching results agree with the ground-

truth which is manually established by the author, the registration is defined to be 

successful. Table 2.1 reports the numbers of failures with different combinations of 

global/subtree registration strategies. The improved ICP algorithm clearly increases 

the success rate of subtree registration. Moreover, despite the performance 

fluctuation of different global registration strategies, the results of subtree 

registration are similar for the improved ICP algorithm. In our experiments, the 

different global vasculature registration techniques had little influence on matching 

results. This can be explained by the fact that all registration methods are able to 

roughly align vessel trees and provide sufficiently good initial estimates for the 

subtree registration to reach an optimal minimum. It is the subtree registration 

which offsets the fluctuations in initial registration and provides robustness for 

vessel matching.  

 

The results of vessel matching for all 8 pairs of artery trees are summarized in 

Table 2.2. The improved ICP algorithm is exploited here for the subtree 

registration. In this case subtree registration does have a positive effect, reducing 

the number of incorrectly matched branches. In the case of vessel pair 8, the 

subtree registration reduced the number of errors from 8 out of 11 to 2 out of 11 
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branches. A total of 146 vessel segments are matched with correct results in 95.2% 

of cases. In general the errors that still remained after use of subtree registration 

occurred at the tip vessels. This may be because the self correcting feedback based 

on the consistency of the next subtree is not available for leaf branches. The 

robustness of the results for the main arterial branches suggests that the proposed 

matching algorithm is capable of establishing reliable branch-by-branch 

correspondence for neonatal follow-up studies. 

2.4.4 Other applications 

Although the focus of this chapter is the modeling of the vasculature in developing 

neonates, the proposed method can also be used in other applications. In this 

section, we report the experimental results for two vasculature modeling 

applications. 

2.4.4.1 Decline in macroscopic cerebral vasculature with age 

It is well-known that human brain size decrease with advance into middle and old 

age and that this process is accelerated by some dementias and structural MRI has 

proved to be a sensitive method for detecting this loss in volume (Fox and Schott, 

2004). Also, although vascular disease increases in the aging brain this is generally 

detected on anatomical MRI rather than direct observation of the vasculature 

through MR angiography (MRA). While it is well known that both perfusion and 

blood velocity in major arteries decline with old age (Farkas and Luiten, 2001), the 

general pattern of macroscopic cerebral vascular change with age has not, to our 

knowledge, been a subject of previous study. In section 2.2, we have developed an 

automated computerized technique to extract information about the centre lines of 

vessels detected by time of flight MRA (TOF-MRA). In this section this 

methodology is applied to study the length of arteries detected in TOF-MRA in 40 

subjects aged from 21-70 years to explore the impact of age on the extent of the 

detected vessels. 
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Figure 2.19.  (a) and (b) show two left middle cerebral artery trees are extracted and overlapped on the 
MIPs. Vessel trees are visualized in (c) and (d) with a constant radius of 0.2mm. This infant was 
scanned at the age of 7 days and 63 days. (c) Before registration, significant misalignment can be 
observed for the two composed vessel trees. (d) The vascular registration using the improved ICP 

algorithm effectively decreases the misalignment between the two vessel trees, which is necessary for 
correct branch matching. Local misalignment can be further reduced after the subtree registration.

(a) (b)

(c) (d) 
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       Table 2.1 
         Summary of subtree registration results reporting branch matching errors for different combinations 
         of global and subtree registration strategies. Table entries are total errors for all vessel trees. 
  

                 Global registration 
 
 
Subtree registration 

Direct TOF 
registration 

Indirect 
registration ICP Improved 

ICP 

No subtree registration 14 15 21 22 
Original ICP 14 13 17 17 

Improved ICP 10 8 8 8 

     Table 2.2 
 Summary of vessel matching results on 8 pairs of artery trees (the numbers before and after the slash 
 shows the amount of mismatches and total manually established matches) 
 
 

Vessel trees pairs 1 2 3 4 5 6 7 8 
No subtree registration 2/23 1/23 1/30 5/25 1/12 1/13 1/9 8/11 

With subtree  registration 0/23 1/23 1/30 2/25 0/12 0/13 1/9 2/11 
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All TOF-MRA datasets were acquired as part of the Information eXtraction from 

Images (IXI) cohort of normal adult subjects (www.ixi.org.uk). The IXI database 

contains brain MR images from 550 normal subjects between the age of 20 and 80 

years. The brain MR images acquired include standard anatomical T1 weighted 

volumes (Magnetization Prepared RApid Gradient Echo, MP-RAGE) and dual 

echo (proton density and T2 weighted) fast spin echo images acquired with 

overlapping slices to produce a densely sampled "pseudo-volume". In addition 

diffusion tensor MR and the TOF-MRA images were also acquired for each subject. 

All TOF-MRA images we used here were acquired in a 3T Philips Intera system 

(Best, Holland) with a standard 6 channel head array coil. The MR sequence 

parameters were as follows: multi-slab 3D TOF field echo sequence: TR 16.62 /TE 

5.75ms, FOV 240mm, matrix 512 × 512 × 100, flip angle 15°, voxel size 

0.47× 0.47× 0.8mm3. 

 

TOF-MRA images of 20 males and 20 females were randomly selected from the 

whole data cohort and processed to extract whole cerebral vasculatures. The mean 

age for males is 39.5±12.4 (24 to 60 yrs) and 43.1±16.6 (21 to 70yrs) for females. 

All images were first interpolated to isotropic voxels (0.47mm3) using cubic B-

spline before any image processing. The vessel tracking method was then applied 

to extract the whole cerebral vasculature for every subject. The extracted vessel 

center-lines were then manually checked and if necessary more seeds were 

provided manually to ensure that any remaining unsegmented peripheral vessels 

were included. The tolerance for minimizing J  was 1.0e-4 and κ  is 1.5 for all 

subjects. 

 

The total extracted vessel length was then calculated in mm. Brain volumes for all 

subjects were also measured from the T2w images acquired in the same scan 

session as the TOF datasets. A dimensionless normalized vasculature length (NVL) 

was computed for each subject by dividing the total length of vessels by a 

characteristic brain length taken as the cube root of brain volume. 
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Figure 2.20 shows a representative example of an extracted vessel tree. Visual 

inspection confirmed that the extracted vasculatures are precisely centered on the 

vessels and are virtually complete including tip branches. Figure 2.21 shows the 

measured normalized vasculature length (NVL) versus age for all subjects. There is 

a clear decline in NVL with age in both men and women and this was found to be 

consistent with a linear trend (correlation coefficient 5111.0=r , 0008.0=p ). 

Linear trend lines were fitted independently for each gender and these both show 

consistent slopes of -0.13 with the same offset projected back to zero of ~37.8. 

This slope represents a decline in NVL of ~0.3% per year and was not consistent 

with zero change (95% CI: -0.20 to -0.06).  

Figure 2.20.  An example of extracted cerebral vasculature. A female aged at 47 years was scanned 
to acquire the 3D TOF-MRA image. Note that there are peripheral vessels in the MIP images that are 

not part of the cerebral arterial tree and therefore excluded from the segmentation.. 
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This study shows a linear decline in detected vessel extent with age during the 

whole of adult life. A parallel pattern of decline occurs in brain volumes, with an 

initial rate of 0-0.2%/yr from 30-50yrs increasing to 0.3-0.5% /yr by age 70-80yrs 

(Fox and Schott, 2004). Although we normalized to brain volume, our 

segmentation was not designed to be precise enough to be sensitive to this rate of 

normal tissue loss.  In considering this result it is important to be aware that TOF-

MRA is a velocity dependent method and that the NVL represents only the extent 

of those vessels that could be detected in the images. There may be several reasons 

why the detected vessel length could decline. These include reductions in vessel 

diameter of the distal branches so that they are no longer adequately resolved in the 

images and/or reductions in flow rates that lead to a progressive loss of visibility of 

vessels in older subjects. Thus although the results are unequivocal, their 

significance and origin remains to be further investigated.  

2.4.4.2 Vessel extraction and stenosis quantification for Contrast-
Enhanced MR Angiography (CE-MRA)  

Three dimensional Contrast-Enhanced MR Angiography (3D CE-MRA) has 

become a clinically accepted technique for vascular imaging. With the injection of 
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Figure 2.21. The measured normalized vasculature length (NVL) versus age for all subjects. 
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T1 shortening contrast agent, such as gadolinium-diethylene-triamine penta-acetic 

acid (Gd-DTPA), CE-MRA can provide 3D angiograms of excellent contrast and 

minimal flow-related artifacts. With new imaging sequences and parallel imaging 

techniques, it has been successfully used in imaging renal, pulmonary and 

peripheral vessels (Reith and Shamdeen, 2003; Bullitt et al., 2003a; Bullitt et al., 

2005b). However, although state-of-art clinical scanners can routinely generate 

high-quality 3D CE-MRA images analysis and clinical diagnosis generally relies 

on MIP processing as in other types of MRA. Clearly, 3D vessel image analysis 

methods could play a role in many clinical applications, such as stenosis 

quantification, vascular morphology comparison and identification of blood supply 

in surgery planning.  

 

The proposed vasculature modeling framework has been adapted to automatically 

extract vessels from the 3D CE-MRA datasets. Automatic tracking starts from the 

seed generation process that works on MIPs of the CE-MRA data. A multi-scale 

seed selection step is used to estimate the vessel radius for each seed. All selected 

seeds are then used for 3D ridge detection algorithm to track the whole vessel tree.  

 
In order to estimate vessel stenosis precisely in CE-MRA images an improved 

vessel radius estimator is required. Some approaches based on edge detectors have 

been presented for the diameter estimation of coronary from high resolution DSA 

images (Reith and Shamdeen, 2003; Shechter et al., 2003; Shechter et al., 2006). 

Although very precise, these methods mainly work in 2D and are not easily 

extended to handle tortuous 3D vessels. Other methods exploit multi-scale criteria 

(Aylward et al., 1996). These multi-scale methods usually assume a circular cross-

section whose radius is proportional to an optimal scale. This value is estimated by 

optimizing a vesselness response. Although these methods can work in 3D, they 

tend to over-estimate the radius of vessels near the bifurcation points as well as 

when two vessels are very close. Also, due to the variable morphology of 

vasculature, the vessel shape in the cross-sectional plane may deviate from a circle, 

which causes large errors in model-based methods (see Figure 2.22(a-b)).   
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The method we have developed is based on the detection of local gradient maxima. 

The vessel centerline is first smoothed using an approximating spline and 

orthogonal cross-sectional images are generated using B-spline interpolation. From 

the vessel centre points in these planes, a number of rays are cast. The rays are 

terminated if the vessel border is reached. We use the existence of a local gradient 

maximum to identify the vessel border. To make the gradient computation robust, 

the image is smoothed at the scale δ  and image gradients are evaluated using B-

spline. A total of N  rays are generated each with corresponding border points 

NiPi K1, = , the equivalent radius r  is then computed from the area A of vessel 

lumen approximated by the polygon NPPP L21 : πAr = . 

 

This simple gradient-based vessel border detector will still cause over-estimation 

near the bifurcation points where the assumption that vessels are circular does not 

hold. As shown in Figure 2.22(a-b), the detected vessel border for a bifurcation 

point degrades and the radius is over-estimated. Because these incorrect border 

points present as abrupt deviation from overall shape, they can be detected and 

smoothed out by a low-order polynomial approximation. A low-order polynomial 

(order 1 or 2) is fitted to the N successive border points and the residual is denoted 

by E : 

( ) ( )( )∑
=

++++ −=
N

i
jNjjiji Zyy

N
jE

1

2
21 ,,,1 PPPP L    (2.11) 
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where ( )jijiji PyPx +++ = ,P  denotes the ( )stji + border point. iZy is the low-order 

polynomial approximation value for the sti  point. The approximation is performed 

on the N successive border points jNjj +++ PPP ,,, 21 L . The residual E  is computed 

for every border point and those points with their residual larger than a threshold 

are replaced by the linear interpolation of adjacent low residual points. Figure 

2.22(c) shows the residual curve for the bifurcation point and Figure 2.22(d) 

presents the vessel border after outliers are successfully removed. The residual 

threshold here is empirically selected as 0.05. With the border correction of low-

(a) (b) 

0 5 10 15 20 25 30 35 40
0  

0.05

0.2

0.4

0.6

0.8

(c) (d) 
residual

rays 

Figure 2.22. Radius estimation based on the detection of gradient maximum and low-order 
polynomial approximation. (a: a bifurcation point) and (b: two adjacent vessels) show two examples 
where the vessel shapes deviate from a circle. The simple gradient-based detection results in over-

estimation of radius. (c) shows the residual E of the vessel border in (a). A threshold 0.05 is used to 
identify the outlier. (d) presents the vessel borders in (a) after outliers are successfully removed. 
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order polynomial approximation, the over-estimation near the bifurcation point is 

clearly suppressed. Furthermore, it is shown that similar improvement can be 

obtained when two vessels are adjacent.  

 

The method has been tested on 4 data sets. All images were acquired at a 3T MR 

imaging system (Philips Intera) using a 6 element sense torso coil. A Gadopentetic 

acid (Gd-DTPA) contrast agent (Magnevist, Schering, Berlin, Germany) 

administered at 4ml/sec has been applied in all cases. The following imaging 

parameters were used: TR 4.1ms, TE 1.2ms, flip angle 18 degrees, scan matrix 

256×215×55, voxel size 1.0×1.0×1.0mm3. The first-pass image is subtracted from 

off-peak data to generate vessel image. If significant motion is observed between 

the two acquisitions, image registration may be used to align the data sets before 

the subtraction. However in our experiments, we found that all data sets are largely 

free from motion artifacts. 

 

The typical performance of the proposed method is indicated in Figure 2.23. For 

quantitative validation, we quantified the segmentation completeness (ability to 

extract all visible vessel branches), and consistency (spatial distance error between 

different extractions) of the proposed algorithm. The radius estimation method is 

further evaluated on both patients with stenosis and normal volunteers. 

(a) (b) 

Figure 2.23. (a) Extracted vessels are overlapped on the MIP. Overall segmentation is quite 
exhaustive as even tip vessels are included in the results. (b) A 3D rendering of vessel tree. 
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The completeness of segmentation denotes the ability to extract all visible vessel 

branches from the image. An automatic algorithm with high completeness is able 

to robustly segment vessels with different scales and cope with the fluctuation of 

noise level and local contrast. We quantify the completeness by computing a 

statistic LMLAC = . LA  is the total length of vessel tree automatically extracted. 

LM  is the total length of the manual segmentation of the same image. All visible 

vessels belonging to the peripheral vessel tree are segmented. The completeness 

statistic is reported in Table 2.3 for all subjects. The mean completeness is 

%96.12.93 ± . In all tests, our method is able to segment all main vessels and most 

distal branches, which is consistent with the initial visual inspection. 

 

The precision and consistency of vessel extraction is also quantified by the 

averaged spatial distance between the branches from noisy image and original 

image (equation 2.9). The distance measures are computed between all manual 

segmented trees and the automatic results and quantitative results are reported in 

Table 2.3. The mean distance is 0.118396.0 ± mm and its upper bound is 

552.0 mm. Given the image resolution of this image is 1.0 mm3, this result shows 

that reproducibility is to within one voxel. 

         

A further test for the radius estimation is performed. Both a healthy volunteer and a 

patient with bilateral popliteal artery stenosis are scanned. The results of vessel 

extraction and radius estimation are reported in Figure 2.24. For both subjects, the 

estimated radii indicate the expected gradual variation from root to tip. The overall 

tendency agrees with the visual inspection of MIPs. However, due to the limited 

            Table 2.3 
            Quantitative results of peripheral vessel tree tracking. 
 

 Case1 Case2 Case3 Case4 

Completeness C (%) 94.0 91.4 91.8 95.6 

Distance D (mm) 31.155.0 ±  00.141.0 ±  62.034.0 ± 55.028.0 ±  
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spatial resolution of our CE-MRA datasets, the vessel radii still show discernible 

fluctuation. Smoothing is usually required to suppress the fluctuation and compute 

the mean radius to quantify stenosis. The mean relative stenosis is quantified by the 

ratio 
radiusnormal

radiusnarrowdradiusnormal
_

__ − which is 8.3% and 13.0% for the left and 

right popliteal arteries in the patient (see arrows in Figure 2.24a). 

Figure 2.24. A patient with bilateral popliteal artery stenosis and a healthy volunteer were scanned, 
their bilateral popliteal arteries were extracted and the vessel radius as a function of position 

determined. (a) Patient: in the stenosed regions (arrows) the estimated radii can be used to quantify 
degree of stenosis. (b) The radius variation from the healthy volunteer agrees with the visual 

inspection of MIP. 

(a) Patient with bilateral popliteal artery stenosis 
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2.5 Discussion 

In this chapter we have presented a methodology for automatically extracting and 

matching the cerebral vasculature from MRA-TOF images. The extraction step 

consists of automatic seed generation, optimal scale estimation and a ridge 

traversal algorithm. Even when the SNR is low the method is able to provide seed 

points across the whole vessel tree allowing the extraction of most visible vessels. 

The consistency of the vessel extraction in the presence of noise was demonstrated 

by computing the averaged spatial distance between the same branches extracted 

from a data set as random noise was progressively added. The extractions remained 

consistent within sub-voxel precision. The completely automatic extraction 

algorithm has been tested on a group of 51 neonates and in all cases relatively 

complete segmentation was achieved.  

 

A tree matching algorithm is proposed for use in serial studies of neonates, to allow 

vasculatures to be compared in the presence of growth and development. The tree 

matching algorithm is able to recover branch-by-branch correspondences and so 

can highlight newly-developed vessel segments. A prerequisite step for vessel 

matching is the approximate alignment of the vasculatures. Four vasculature 

registration strategies were tested for this purpose. All methods were equally 

effective as pre-processing steps, although the improved ICP algorithm achieved 

the best overall spatial correspondence as judged by mean spatial distance between 

vessel points. The most accurate tree matching results were achieved with sub-tree 

registration and an iterative approach that recursively corrected vessel 

correspondences as each level was tested. This produced virtually error free results, 

with the few remaining incorrect assignments occurring at leaf branches.  

 

Several aspects of the proposed methods should be noted: The use of more seed 

points improves completeness of vessel extraction, since increased seed density 
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increases the chance of obtaining complete vasculatures. However, this will 

degrade the processing speed. A good compromise should simultaneously provide 

completeness of the vessel tree as well as efficiency. Although we can remove 

seeds far from vessel centerlines, there are still some redundancies. The current 

random selection strategy is unbiased, but may not guarantee optimal efficiency.  

 

Although the indirect registration combining non-rigid registration to align brain 

anatomy is not superior in our experiments, it may be helpful if the time difference 

between two scans becomes larger, because more new branches emerge and the 

deformation of existing branches will become larger.  

 

The present work has focused on serial studies in which the vascular topology of 

existing vessel trees remains essentially unaltered. Inter-subject comparisons are 

another area of great interest and pose extra challenges because of topological 

difference between vascular trees. Non-rigid registration will be required and is 

likely to be successful for aligning the main cerebral arteries, but complete 

vasculature correspondences may not be possible by image registration because of 

topological differences between vessel trees in different subjects. In fact the 

definition of corresponding branches between subjects is ambiguous and it is not 

clear what a proper definition should be. On a coarse scale vessel trees can be 

matched by dividing them into separate arterial trees, e.g. Anterior Cerebral Artery 

(ACA) and Posterior Cerebral Artery (PCA), but on a fine scale the 

correspondence is likely to be ambiguous. 

2.6 Conclusion 

In conclusion, automated and reliable methods for extraction of cerebral arteries 

from MRA-TOF images and for construction of arterial trees with all branches 

labeled according to their connectivity have been developed. These have been 

tested on images of neonates, but still have wide applicability to cerebral 
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angiography in general. A vessel matching algorithm for comparing cerebral 

vasculatures in single subjects across time has been developed and shown to be 

both accurate and robust when compared to the ground truth specified by manual 

labeling of vessels. These methods are now being applied to the study of neonates 

to explore the effect of prematurity. 
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Chapter 3 

Review of Cortex Reconstruction 
and Registration 

Effective cerebral cortical analysis plays an important role in many neuroscience 

studies. The accurate reconstruction of the cortical surface has a number of 

applications in neuroimaging, including visual inspection of cortical folding 

patterns, cortical morphometry and functional brain mapping across different 

subjects and populations (Carman et al., 1995; Thompson et al., 1998; Fischl et al., 

1999a; Van et al., 2001b; Rettmann et al., 2006; Gilmore et al., 2007). Also, the 

automated cortical reconstruction enables the extraction of quantitative information 

about the cortical surface such as volume (Kim et al., 2000), surface area 

(Magnotta et al., 1999; Kapellou et al., 2006), thickness (Smith et al., 1982; Fischl 

and Dale, 2000; Kruggel et al., 2003; Yezzi, Jr. and Prince, 2003; Martinussen et 

al., 2005; Shaw et al., 2006; Han et al., 2006), sulcal depth (Manceaux-Demiau et 

al., 1998; Barkovich et al., 2002; Kochunov et al., 2005; Fornito et al., 2007) and 

curvature (Batchelor et al., 2002).  

 

Anatomical magnetic resonance (MR) imaging techniques, e.g. T1 weighted (T1w) 

and T2 weighted (T2w) imaging sequences, which are nowadays routinely used in 

the clinical setting, can reliably provide high-resolution images of the human brain 

with good white matter (WM) and gray matter (GM) contrast and sufficient signal-

to-noise ratio (SNR), as shown in Figure 3.1 which presents examples of T2w 

images for neonates at 27 and 40 weeks gestational age (GA) and T1w images for a 

child at 1 year old and an adult. These images demonstrated the potential for 
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developing algorithms used for the reconstruction of the cortical surface at 

different ages.  

 

More importantly, automatic tools are necessary for cortical morphometry. As 

pointed out in Dale et al. (1999), many measures of cortical morphometry, e.g. 

cortical thickness, main curvature and local orientation of specific sulcus, require 

an explicit geometrical representation of the cortical surfaces. Measuring these 

attributes directly from 2D image slices is either error-prone or not possible.  

 

Figure 3.1. Examples of MR cerebral anatomy images with different ages. 

(a) T2w, 27 weeks (b) T2w, 40 weeks 

(c) T1w, 1 year (d) T1w, 30 years 
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The accurate and detailed manual delineation of cortical gray matter from high-

resolution MR anatomical images is very labour-intensive and suffers from low 

level of inter-operator reproducibility. Even more problematic is the precise 

localization of central cortical surfaces because of the lack of clear anatomical 

clues. Another motivation for automated cortical surface reconstruction is the 

human brain mapping which aims to normalize the cortical functional or 

morphometric data into a standardized 3D space. Computing an explicit cortical 

representation is a crucial first step for this brain mapping process. Cortical 

normalization or registration procedures can then be applied to build standardized 

cortical maps.  

 

The cortex by itself is a thin layer of gray matter with the average thickness 

between 1 and 5 mm (von Economo, 1929; Zilles, 1990; Griffin, 1994; Edwards et 

al., 2001; Beatty, 2001; Martinussen et al., 2005). Figure 3.2 taken from Han et al. 

(2004) shows a schematic diagram of the outer, central and inner cortical surfaces 

bounded by the cerebrospinal fluid (CSF) and WM. The boundary between the 

CSF and cortical GM forms the outer surface (also called the pial surface). The 

boundary between the GM and WM is defined as the inner cortical surface. The 

Figure 3.2. A drawing taken from (Han et al., 2004c) to illustrate the basic cerebral cortical anatomy 
and the definition of three cortical surfaces. 
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central cortical surface is geometrically defined as the equidistant surface between 

the inner and outer surfaces. 

 

Automatic cortical reconstruction from MR images is a challenging task. First of 

all, because the cerebral cortex is highly folded in the 3D space, discrete surface 

representations such as polygonal meshes require a large number of triangles to 

generate a detailed approximation of cortical surfaces with sufficient precision, 

Figure 3.3 An adult T1w image with its segmentation. The renderings of outer and inner cortical 
surfaces show visible imperfections caused by the image noise. 
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which places a significant computational burden on memory requirements and 

processing time, compared to less complex anatomical structures like the thalamus 

or the ventricles. The complex cortical shape and its inter-subject variability also 

prevent the effective use of approaches based on statistical shape modelling, e.g. 

active shape models or active appearance models (often referred as ASM and AAM, 

(Cootes and Taylor, 1992; Cootes et al., 2001; Cootes and Taylor, 2004)).  

 

A common problem undermining the cortex reconstruction is the image noise 

which often causes errors in the segmentation of cortical GM. These errors can be 

visible as holes and handles on the 3D rendering of segmented cortical GM (see 

Figure 3.3).  

 

Another important issue that complicates the cortical surface segmentation and 

reconstruction is the MR intensity inhomogeneity. This phenomenon is usually 

characterized as a slow intensity variation within the same tissue class over the 

spatial domain of the image. Figure 3.5 shows a T1w slice with the MR intensity 

inhomogeneity highlighted by presenting the bias field estimated. The intensity 

inhomogeneity is caused by a combination of poor radio frequency (RF) coil 

uniformity, static field deviation, eddy currents and variations in the interaction 

between the patient and the RF system. Although the studies have shown that 

image intensity variation of up to 30% may not influence the visual interpretation 

of image content (Meyer et al., 1995; Guillemaud and Brady, 1997), it can pose 

serious problems for automated segmentation algorithms, in particular for cortical 

GM segmentation.  

 

The precision of the reconstructed cortical surfaces is further limited by the so-

called partial volume effect. Partial volume effect is caused by the mixing of 

different tissues in a single voxel. As the image resolution is finite and limited in 

MR brain images, this effect always appears at tissue boundaries. As an example, 

partial volume effects are particularly intrusive in sulci where CSF is present. In 

this case the gray matter of sulcus banks can be very close and the little CSF within 
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the sulcus often shows different intensity compared to its typical level due to the 

partial volume effect. This effect is more problematic for neonatal MR because the 

brains of infants are considerably smaller. More seriously, the consequences of 

mixing tissues within a voxel are very different for neonatal MRI than normal 

adults, as the neonatal WM is not fully myelinated and the GM-WM contrast is 

inverted compared to adults. In the next chapter, we will present a detailed analysis 

of cerebral tissue contrast in neonatal MR images and propose an automatic cortex 

segmentation that functions in the presence of these inverted tissue contrast 

properties. 

 

This chapter aims to present a comprehensive review of published methodology 

work for cortical segmentation and reconstruction of adult MRI, which will form 

the context for following neonatal cortex studies. It is worth mentioning that, to the 

best of our knowledge, none of these published methods have been applied to 

successfully reconstructing cortical surface models from neonatal MRI. This is 

partly due to the difficulties to segment the cortical gray matter from neonatal MRI. 

For example, although the T1w imaging of adults can reliably generate images 

with sufficient WM/GM contrast, it is not the best contrast for neonates 

(Rutherford, 2002). On the other hand, although none of these techniques has 

proven its applicability for neonatal applications, in the next two chapters we will 

show the basic reconstruction workflow summarized from adult methods is 

valuable and does motivate our studies for neonates. 

 

This chapter is organized as follows: Section 3.1 describes a cortex reconstruction 

workflow summarizing the basic procedure. Existing image pre-processing 

methods for cortex reconstruction are reviewed in section 3.2, including brain 

extraction and bias correction. Cortex segmentation and corresponding surface 

reconstruction techniques are discussed in section 3.3. In the last section, cortical 

surface registration techniques are reviewed. 
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3.1 Cortex reconstruction pipeline 

Given the significant interests in automated cortex reconstruction, a number of 

different approaches have been published in the literature. The majority of them 

consist of a sequence of image processing steps.  

 

Figure 3.4 presents a cortex reconstruction pipeline which can be found in most 

methods published in the literature. The first step of cortical surface construction is 

the so-called ‘skull-stripping’ of the original MR images. The purpose of this step 

is to remove the extra-cerebral tissues, including skull and scalp and other non-

brain tissues. The cerebellum and brain stem are often removed in this step as

Raw MR images 

Brain extraction/skull 
stripping 

 
Bias correction 

 
Brain segmentation 

 
Cortical reconstruction

Figure 3.4. A flow diagram to show the general cortical reconstruction workflow. 

Pre-processing 

Cortical surfaces 
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 they are not part of the cortical anatomy. Afterwards the MR intensity 

inhomogeneity needs to be corrected. A segmentation step is next used to identify 

cortical gray matter within the brain volume. The most common approach of brain 

segmentation is based on tissue classification and aims to assign every voxel within 

the brain to a tissue class. The topic of brain segmentation for adult MR images has 

been extensively studied during the past decade and many approaches have been 

developed and carefully validated. After the segmentation step a separate step is 

required for surface reconstruction. This step converts the binary cortical volume 

generated by the brain segmentation into an explicit geometrical representation (a 

triangle mesh is often used), including multiple lobes (frontal, occipital, temporal 

and parietal), gyri and sulci. An accurate representation should be consistent with 

the true 3D geometry of sulci and gyri and show no bias of reconstruction errors 

for either cortical lobe. 

 

To give an overall explanation, Table 3.1 summarizes different cortical 

reconstruction approaches by dividing the whole procedure into image pre-

processing, segmentation and surface recovery. The following sections will 

describe every step in detail.  

3.2 Image pre-processing 

Effective image pre-processing often eases the reconstruction of cerebral cortex. 

Generally there are two tasks in the pre-processing step: skull stripping and bias 

correction. These two terms are also referred to as brain extraction and 

inhomogeneity correction. For the brain extraction, the removal of bone, fat, skin 

(basically the skull and scalp) and deep gray matter will simplify the process to 

model the cerebral cortical surface by reducing the number of tissue classes 

involved in the cortical segmentation. The aim of bias correction is to correct the 

MR inhomogeneity which can deteriorate the cortical segmentation by causing 

tissue intensities deviating from their typical levels. 
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3.2.1. Brain extraction 

Both interactive and fully automated brain extraction approaches have been 

presented and integrated into the cortex reconstruction workflow. Specifically, a 

semiautomatic brain extraction is proposed in Xu et al. (1999) using a software 

package developed by Davatzikos and Miller (Goldszal et al., 1998). This image-

processing system was originally designed to perform qualitative and quantitative 

volumetric analysis of brain images by interactively drawing the region-of-interest 

(ROI). The removal of extracranial tissues is accomplished by a sequential 

application of morphological operators, thresholding, seeding, region growing, and 

manual editing (Xu et al., 1999; Tosun et al., 2006). Generally, a 3-D 

morphological erosion operator is first used to detach the brain tissue from the 

surrounding dura. The more detailed manual delineation of brain tissues is then 

achieved using a 3D region growing method. The binary mask obtained can be 

smoothed with mathematical morphology operators. A set of manual editing tools 

are provided to edit out the cerebellum and brain stem, to extract the sagittal sinus, 

and to remove portions of the dura left. The averaging processing time is 5 to 10 

minutes, which significantly increases the workload for clinicians, compared to a 

fully automated solution. However, the approach is more robust to images of low 

quality as well as to a large variety of brain shapes. Also, the semiautomatic 

approach will work on MR images with different contrast patterns such as proton-

density (PD) and T2w images. The same software is also used in Han et al. (2004) 

and Tosun et al. (2006), where they added more interaction to identify the mid 

sagittal plane. 

 

Compared to the interactive methods, the fully automated brain extraction attracts 

more interests as it is easy to use. Dale et al. (1999) presents a skull stripping 

method based on the deformable template. In this scheme, all MR brain images are 

first normalized into a standardized coordinate system using the automated 

Talairach registration procedure developed by the Montreal Neurological Institute 

(Talairach and Tournoux, 1988; Collins and Neelin, 1994). A tessellated ellipsoidal 
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template is then deformed into the shape of inner surface of the skull. The internal 

force constraining the smoothness is based on the mean curvature of the deformed 

ellipsoid. The image based external force is designed to gradually diminish if the 

template is deformed into the CSF which has low intensity values in T1w images. 

The authors simply fixed the intensity threshold for CSF to be 40, which clearly 

limits its applicability for different image acquisition parameters.  

 

Another automated brain extraction method is based on label propagation using 

image registration. It is proposed in MacDonald et al. (2000) and its further 

extended version in Kim et al. (2005), where the T1w MR images are 

automatically registered to a template in the standardized Talairach space 

(Talairach and Tournoux, 1988; Evans et al., 1992; Collins and Neelin, 1994). 

During the registration cross-correlation is used as image similarity measure and 

each image is transformed to match the shape of the template brain using an affine 

transformation. A 3D stereotaxic brain mask which is manually established on the 

template brain is used to remove all extracranial voxels. 

 

Shattuck and Leahy (2002) develops a cortical reconstruction and visualization 

system called BrainSuite. The skull-stripping here is achieved using the popular 

Brain Surface Extractor (BSE) algorithm originally presented in Sandor and Leahy 

(1997). This method starts by applying an anisotropic diffusion filter (Gerig et al., 

1992) to smooth the continuous image areas while preserving the tissue boundaries. 

This edge-preserving filter favors the edge detector by suppressing the image noise. 

The classic Marr Hildreth edge detector (Marr and Hildreth, 1980) is used to 

produce a binary edge image which is then used to define the brain mask. As the 

brain is not guaranteed to be completely separated from the skull in the binary edge 

image, a sequence of morphological operators are used to break any remaining 

attachments. Finally, a morphological closing operation is used to fill small holes. 

The obtained brain mask is used to exclude the extracranial voxels from cerebral 

tissues. 
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Some authors present the reconstruction workflows where no explicit brain 

extraction is required. For example, Zeng et al. (1999) proposes a coupled-surfaces 

propagation technique to reconstruct the inner and outer cortical surfaces 

simultaneously. The surface deformation starts from 3D seed points within the WM 

and stops at the WM-GM and GM-CSF boundary. Thus, no skull stripping is 

required in this framework. Another reconstruction procedure requiring less image 

pre-processing is presented in Joshi et al. (1999). In this approach the inner cortices 

of macaques are reconstructed from the cyrosection images. The brains of 

macaques have been detached from the skull and dura before any image acquisition, 

so no brain extraction is needed.  

 

Besides those used in the cortex reconstruction more skull stripping methods have 

been developed. Specifically, in the early stage of brain image analysis, manual 

brain extraction is used to exclude the extracranial tissues. Depending on the level 

of detail required to delineate the brain surface and the interactive software used, 

this process can take between 15min to 2 hours (Goldszal et al., 1998; Xu et al., 

1999; Fischl et al., 1999a; MacDonald et al., 2000; Richard, 2000; Yoon et al., 

2001). The first attempt to automate the differentiation of brain/non-brain tissues is 

based on thresholding and morphological operators: Hohne and Hanson (1992) 

proposed a method based on thresholding the brain image to exclude very bright 

parts, e.g. eyeballs and scalp and dark parts, e.g. skull and air, as tissues with 

medium intensities mostly correspond to the brain. A more sophisticated 

thresholding strategy is presented in Lemieux et al. (1999). In this method, a 

number of morphology steps are applied and user input is provided to supervise the 

brain extraction. The thin connection between brain mask and non-brain parts is 

removed manually. Generally, these thresholding-based approaches are error-prone 

and difficult to achieve the high degree of automation. The selection of low and 

high thresholds has a strong influence on final output. Tuning the method to fit 

different imaging sequences is very challenging.   
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More automation comes from approaches based on deformable models. Cox R. 

(1999) and Ward (1999) propose a pre-segmentation based on a Gaussian mixture 

model on every 2D slice. The obtained binary mask is smoothed by fitting a 

deformable surface model. The idea of using a deformable model to perform brain 

extraction is further extended in Smith (2002). They proposed a popular brain 

extraction method called Brain Extraction Tool (BET). BET first finds the lower 

and upper intensity values for the image. As these thresholds are used to 

differentiate the brain from the air, they can be easily selected. The centroid of the 

binary head image is then recorded and the rough size of the head is estimated. A 

triangular tessellation of a sphere is initialized at the centroid with its radius set to 

half of the estimated head radius. The smoothness of the brain mask is achieved by 

only allowing vertices to move along the direction which will make the mask more 

like a sphere. Unlike the definition of external force in Dale et al. (1999), the 

threshold for low intensity CSF and skull is not fixed, but determined locally by 

sampling the intensities along the normal direction of every vertex. The BET 

algorithm has been tested on 45 MR images taken from 15 different scanners from 

6 different manufacturers. Four different MR sequences (T1w, T2w, PD and echo 

planar imaging (EPI)) are involved. The automatic extraction results are compared 

with the manually established ground-truth, which suggests that the average 

performance of BET is superior to Brain Surface Extractor and the thresholding-

morphology method proposed in Cox R. (1999). However, although BET is widely 

accepted by the research community and reasonably accurate in routine uses, 

Boesen K. et al. (2004) reported a comparison study between BET and brain label 

propagation using image registration provided by Statistical Parametric Mapping 

v.2 (SPM2) (Ashburner and Friston, 2000). The percentage for misclassified 

tissues for BET is 4.6% while it is only 2.5% for registration based approaches. 

The registration based brain extraction however requires a proper brain template 

with accurate manual labelling while approaches like BET and BSE do not require 

any pre-segmentation or templates. 
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3.2.2. Inhomogeneity correction 

The majority of inhomogeneity correction methods used in the cortex 

reconstruction is based on explicitly estimating and eliminating the local variation 

of image intensity. As the first example in this category, Dale et al. (1999) employs 

a simple intensity inhomogeneity correction strategy to normalize the intensity 

levels for the high-resolution T1w MR images. It is based on the assumption that 

for every axial 2D slice, the tissue class with the highest intensity level is the WM.  

This method only employs slices in the central brain region and computes a 

histogram for each slice. The resulting histograms are smoothed with a Gaussian 

kernel to suppress the influences of image noise. The mean WM intensity level for 

every 2D slice is identified using a peak-finding algorithm. The WM voxels from 

all 2D slices are selected as control points for inhomogeneity correction if their 

intensity levels are within the top 15% of all voxels in the image. The histogram 

peaks for every 2D slices are adjusted to a mean value and the gain coefficient for 

every control point is computed. To decide the gain coefficients for all other voxels, 

a voronoi diagram is built. The gain coefficient for a voxel is assigned as the value 

of the nearest control point. The procedure is typically iterated 5-10 times. This 

inhomogeneity correction method simply assumes constant WM intensity levels 

throughout the brain volume and does not consider the intra-tissue class intensity 

variation at all. However this variation is much more noticeable in neonatal brains 

because of the mix of myelinated and unmyelinated white matter.  

 

Another ad-hoc bias correction protocol is proposed in Zeng et al. (1999). This 

method requires significant user interaction. Specifically, the tissue intensities are 

manually measured throughout the image domain for both GM and WM. Their 

mean values are computed and used to compute the average inhomogeneity. This 

approach can be very time-consuming to estimate a detailed bias field.  
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Figure 3.5 An illustration of bias 
correction using the N3 algorithm. 
(a) A T1w slice that exhibits the 
intensity inhomogeneity. (b) The 
slice after N3 correction. (c) The 
estimated bias field and its 3D 
rendering (d). 
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In the cortical reconstruction approaches by MacDonald et al. (2000) and Kim et al. 

(2005), the image inhomogeneity is corrected using a popular and robust bias 

correction algorithm, called N3 (Nonparametric Nonuniform intensity 

Normalization) proposed in Sled et al. (1998). This method neither relies on prior 

knowledge of tissue class distribution nor on any explicit image segmentation. It 

assumes the occurrence of bias field widens the intensity distribution of a tissue 

class. To correct the intensity inhomogeneity, the N3 method iteratively sharpens 

the image histogram by removing the spatial bias field from the image. As the 

method assumes that the observed image signal is obtained by multiplying the real 

image signal with the estimated bias field, a logarithmic transformation is first used 

to separate the real signal and bias field. The histogram of the log-transformed 

image is estimated and sharpened by de-convolution with a Gaussian kernel. The 

resulting intensity distribution is an estimate of real log-transformed image 

intensities. An intensity mapping can be estimated to match the original histogram 

to the sharpened one. After applying this intensity mapping, an estimate of bias 

field can be computed by dividing the sharpened image by the original. The bias 

field is then smoothed using B-spline. This whole process is performed iteratively 

until the change of estimated bias field is smaller than a preset threshold. Two 

parameters are required for the N3 algorithm: the initial probability distribution of 

the bias field and the smoothness ratio controlling the precision of B-spline 

representation. Sled et al. (1998) shows that the performance of the bias correction 

is robust to different initial parameters. Figure 3.5 shows an example of intensity 

inhomogeneity correction using N3. 

 

The bias correction in the BrainSuite (Shattuck and Leahy, 2002) is based on the 

estimation of local intensity changes throughout the image domain. The 

probabilities of tissue intensity are modelled by a Gaussian mixture model. First, a 

global estimate of the tissue means and variances is obtained by automatic analysis 

of the histogram of the skull-stripped brain. The centroids of particular peaks of the 

histogram are computed as the means for WM, GM and CSF. The image domain is 

uniformly divided by defining a lattice of control points. For every control point, 
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its local histogram is computed. Similar to the N3 method, a tri-cubic B-spline is 

used to interpolate the intensity inhomogeneity coefficient at every control point 

and provide an estimated value for any point in the image. A drawback of this 

method is that intra-tissue intensity variation is ignored. Also, because B-spline 

only provides local support, a dense control point lattice has to be used to maintain 

the sufficient precision for interpolating the bias coefficients. 

 

Unlike the explicit bias correction mentioned above, a compound strategy is used 

in Xu et al. (1999) and further in Han et al. (2004) and Tosun et al. (2006). These 

authors propose an algorithm called the adaptive fuzzy C-means (AFCM) brain 

segmentation combining the tissue classification with the estimation and removal 

of smooth bias fields, which eases the pre-processing from adding an extra 

inhomogeneity correction step. More details will be given in the next section. 

 

While there has been intensive used in the cortical reconstruction application, the 

intensity inhomogeneity correction itself has been actively investigated and a 

number of different methods have been proposed in the literature. Some of them 

are based on the specialized image acquisition protocols (Narayana et al., 1988; 

Thulborn et al., 1993; Stollberger and Wach, 1996; Samson et al., 2006). Other 

methods estimate the bias field based on the images acquired for a homogenous 

phantom (Axel et al., 1987; Tincher et al., 1993; Wicks et al., 1993). The main 

disadvantage of these two approaches is the extra requirement of specific image 

acquisitions or phantoms, which limits their applicability in routine clinical setting. 

The methods based on the homogeneity of phantoms may also have difficulty in 

removing the intensity bias caused by electromagnetic properties of the subjects in 

the scanner (Sled and Pike, 1998a; Sled and Pike, 1998b).  

 

The methods more suitable for the image analysis applications estimate the 

inhomogeneity fields directly from the image data (e.g. the N3 method). In addition 

to those used in the cortical reconstruction, some others use the spatial or harmonic 

filtering to remove the bias field (Haselgrove and Prammer, 1986; Axel et al., 1987; 
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Brey and Narayana, 1988; Narayana and Borthakur, 1995). Approaches in this 

category try to estimate and suppress the frequency spectrum of smooth bias field. 

The disadvantage of harmonic filtering is the assumption that the frequency 

spectrum of the bias field can be separable from image signal, which does not hold 

when there are extended regions of uniform tissue such as WM. Approaches 

relying on user interaction also have been developed for bias correction. Dawant et 

al. (1993) proposes to estimate the bias field from intensity values at a set of 

manually selected WM locations. The whole bias field is obtained using thin-plate 

spline interpolation. The manual initialization of this method can be avoided if a 

roughly accurate pre-segmentation is provided. Meyer et al. (1995) present another 

method that requires initial segmentation. This approach uses polynomials to 

approximate the bias fields and the coefficients of polynomials are estimated from 

the segmented WM.  

 

Several other methods combine bias correction and brain segmentation: One 

example is the adaptive fuzzy C-means (AFCM) brain segmentation (Xu et al., 

1999; Tosun et al., 2004a; Han et al., 2004). Other examples include the 

Expectation-Maximation (EM) segmentation developed by Wells et al. (1996), and 

its enhanced version proposed by Van Leemput et al. (1998, 1999a). Wells et al. 

(1996) models the distribution of bias field as a M-dimensional (M is the number 

of voxels) zero-mean Gaussian probability density function. A residual image is 

obtained and updated during the EM iteration by computing the differences 

between local voxel intensity and global mean. The classification errors are 

assumed to be caused by the bias fields. The bias field is computed using a low-

pass filter which is convolved with the residual image. In the later paper (Van 

Leemput et al., 1999a), however, a parameter model is used to describe the smooth 

bias field. The inhomogeneity coefficients are modelled by a linear combination of 

polynomial basis functions. The polynomial functions are fitted to the same 

residual images using a weighted least-square approximation. The parameter model 

and EM parameters (means and variances) are iteratively updated until the 

parameter changes are less than a preset threshold or the maximal number of 
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iterations is reached. In general, these data-driven methods are easier to implement 

and offer more flexibility. Their performances on MR T1w or T2w images are 

often satisfied given the higher SNR provided by modern 1.5T or 3T MR scanners.  

3.3 Cortex segmentation and surface 
reconstruction 

Most cortical reconstruction pipelines have an explicit segmentation step to 

generate a detailed gray matter map before applying a parametric or implicit 

surface evolution scheme (Davatzikos and Bryan, 1996; Dale et al., 1999; Xu et al., 

1999; Zeng et al., 1999; Joshi et al., 1999; Fischl et al., 1999a; MacDonald et al., 

2000; Goldenberg et al., 2002; Han et al., 2004; Kim et al., 2005). Other techniques 

(Zeng et al., 1999; Goldenberg et al., 2002; Xu et al., 2006) combine the cortical 

segmentation with the surface reconstruction as a single image processing step. 

Although both strategies can generate faithful representations of cortical surfaces 

(at least for the inner cortex), they differ in the way the surface evolution is 

performed. For the methods separating the segmentation and reconstruction, the 

outputs of cortical segmentation are used to define external forces which drive the 

deformation of parametric or implicit surfaces. On the other hand, the coupled 

approaches define the external forces by enhancing the cortical boundary features. 

Edge detectors or other filters are normally applied to the MR brain images before 

the surface evolution.  

3.3.1. Explicit cortex segmentation and reconstruction 

The method presented in Davatzikos and Bryan (1996) is one of the first attempts 

to employ an explicit segmentation before surface reconstruction. Their brain 

segmentation algorithm is semiautomatic. A human operator is required to 

manually place seed points throughout the WM and cortical GM to guide a region 

growing process. Due to the intra-tissue intensity variation and image noise, a 

significant amount of manual editing is necessary to optimize the binary cortex 
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labels obtained from the region growing. The segmentation output is transformed 

to a mass function, which is defined within the cortex binary volume and represents 

the confidence that a point belongs to the cortex. An external force is defined as a 

centre-of-mass force which drives the surface towards the geometric centre of the 

cortical volume and vanishes when the mass function reaches its local maxima near 

the central cortex. The deformable surface is initialized as a sphere surrounding the 

cortical volume and it shrinks towards the centre-of-mass. The drawback of this 

method is the lack of ability to go deep into the sulci as the initial surface is too far 

from the correct cortical surface. Thus the segmentation often does not preserve the 

shapes of sulci. This method was applied to 80 T1w adult MR datasets, but no 

numerical validation was provided to quantify the surface reconstruction errors. 

 

Joshi et al. (1999) aims to reconstruct the cortex from the macaque cryosectional 

images. The WM/GM segmentation is achieved using a maximum likelihood 

classifier. Two different approaches are proposed in Joshi et al. (1999) to 

approximate the histogram of 3D macaque brains. The first employs the Gaussian 

mixture model to match the histogram. The means and variances of multiple 

Gaussian functions are computed using the standard EM algorithm. To cope with 

the local image noise and intensity variation, the histograms are estimated locally 

within the neighbourhood of each voxel. As the initial means and variances can be 

reliably obtained from the global histogram (only GM and WM are presented in 

their images), the Gaussian mixture model can be solved automatically. The 

authors however point out the parametric Gaussian functions may not give the best 

segmentation and the results can be improved by replacing the Gaussian functions 

with general histograms directly measured from the image. To obtain these 

empirical histograms, two sets of voxels are manually selected for both GM and 

WM. The histograms estimated from these points cannot be described in a closed 

form, so their amplitudes, shifts and scales are numerically solved in the M-step 

during the EM iteration. Although the later approach clearly improves the 

segmentation according to the validation, it still is a semiautomatic solution. 

However, compared to Davatzikos and Bryan (1996), less user interaction is 
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required. Once the WM segmentation is generated, an isosurface generation 

algorithm proposed in Gueziec and Hummel (1995) is used. Compared to the 

standard method like marching cubes (Lorensen and Cline, 1987), this isosurface 

generation approach is based on the tetrahedral decomposition and avoids 

generating surfaces with holes on them. The inner cortical surface is then 

decimated by removing some edges and vertexes while preserving the overall 

shape. The authors propose to remove the vertices in the low curvature region and 

edges which are relatively small in length. The surface is finally smoothed by 

locally fitting quadratic patches. Besides its semiautomatic segmentation, the 

authors point out that a time-consuming manual editing is required to correct the 

small imperfections on the reconstructed surfaces, which can be due to the lack of 

smoothing constraints during the surface generation. The method is applied to 

macaque cryosectional images as well as to the Visible Human dataset, but no 

quantitative validation is reported. 

 

In the work published by Dale et al. (1999), the cortical local geometric 

information is combined into the tissue segmentation process. The approach aims 

to develop an accurate WM segmentation and exploits the observation that cortical 

surfaces are smooth with finite curvature everywhere. This means that the local 

shape has the laminar structure. The segmentation makes use of this information by 

detecting a local plane with the least in-plane intensity variance. The intensity 

information in this plane is used to optimize the classification on the tissue 

boundary. The segmentation process first labels all voxels as WM if their 

intensities fall in the preset range. For every WM voxel labelled in this step, its 

neighbourhood is checked and those with inconsistent labels are selected as 

ambiguous voxels. For every ambiguous voxel, the authors propose to compute the 

plane-of-least-variance by calculating the intensity variances within different 

planes distributed uniformly over the unit sphere. An order statistic filtering is 

performed to decide the plane-of-least-variance. The previous tissue classification 

is changed if more than 60% of the in-plane voxels are labelled differently. After 

segmentation, the largest connected component is selected as the WM volume and 
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small holes are filled using a morphological operator. The advantage of this 

segmentation method is the combination of local cortical geometrical information 

with the intensity based tissue classification. A disadvantage of the proposed 

approach is the fact that the WM thresholds have to be manually adjusted for 

images with different noise levels and intensity variation. To obtain the inner 

cortical surface, an isosurface algorithm is used on the region labelled as WM.  

Unlike the approach in Joshi et al. (1999), an explicit surface smoothing is applied 

to regularize the initial tessellation. The smoothing is achieved using a parametric 

deformable model. The internal energy is defined by integrating the surface 

deformation along the normal and tangential directions. The image-based external 

force is defined as ( ) ( )( )
2
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x  where the V  is the number of vertices and 

( )iT  is the target intensity value for the thi  vertex. This value is estimated locally 

for all WM boundary voxels. To reconstruct the pial surface, the authors propose to 

set a global threshold T  which is sufficiently low compared to mean intensity of 

GM. Any self-intersections during the surface deformation are detected and 

removed. The proposed method is applied to 24 subjects, but only visual inspection 

is used to verify the accuracy of reconstructed surfaces. The proposed method is 

now implemented as a part of the freely available cortical analysis software 

package FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).  

 

The semiautomatic segmentation and parameter selection was quickly replaced by 

the fully automatic fuzzy segmentation. The latter is more powerful as it retains 

more information compared to hard segmentation by estimating the possibility that 

two or more tissue classes occur within a single voxel (this possibility is also called 

as membership function). For cortical reconstruction, fuzzy segmentation improves 

the precision of reconstructed surface by allowing segmentation with sub-voxel 

accuracy. In addition it is more robust towards image noise, as small intensity 

changes only change the segmentation by some fractional degree, but not alter the 

entire classification of a voxel.  
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Xu et al. (1999) achieves the fully automated fuzzy cortical segmentation using a 

technique called adaptive fuzzy C-means (AFCM) algorithm (Pham and Prince, 

1996). The AFCM algorithm is based on the simultaneous estimation of 

membership functions for each tissue class, the mean intensity of each class and the 

intensity inhomogeneity field. No explicit bias correction is therefore required in 

this framework. Let ( )xy  be the image intensity at a voxel x , M  be the total 

number of image voxels, ( )xku  be the membership function at x  for the tissue 

class k , kc  be the global intensity centroid of class k , and ( )xg  be the bias field. 

The input of this fuzzy segmentation is a set of initial centroids kc , Nk ,,1L=  

where N  is the total number of tissue classes. The initial bias field ( )xg  is set to 

identity over the image domain. To maintain the smoothness of the bias field, the 

following cost function is minimized during the segmentation: 
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where 1D  and 2D  are first and second-order finite difference operators and the 

symbol ∗  denotes a discrete convolution. The first term in the above equation 

minimizes the differences between the estimated tissue intensity ( ) ki cg x  and 

observed values ( )iy x . The differences are weighted by the membership function 

and integrated over the whole image domain. The second term serves as a 

regularizer to constrain the bias field to be spatially smooth and slowly varying. 

This cost function can be minimized by computing the derivative with respect to 

the bias field. In each iteration, the membership function ( )xku  and class centroid 

kc  are updated using the Bayes rule and the new bias field is updated by 

minimizing AFCMJ . A clear advantage of this segmentation method is its 

unsupervised nature. Neither training data nor the manual seeding or editing is 

required.  
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Based on the cortical segmentation, the GM/WM boundary is reconstructed by 

applying an isosurface algorithm to the WM membership function. The obtained 

surfaces are smoothed using a median filter. The smoothed WM surface is used as 

the starting point for a parametric deformation model. The internal force is defined 

as the weighted sum of first and second-order difference for all surface vertices, 

which constrains the surface to be smooth. The external force driving the surface 

towards the central cortical surface is derived from the GM membership function. 

The gradient vector flow (GVF) proposed in Xu and Prince (1998) is used to 

generate an external force field pushing the surface towards the central layer of 

GM. To speedup the convergence of the surface deformation, another constrained 

pressure force is added to the external force. It is defined as 

( ) ( ) ( ) 12 −+= xxx GMWM uuC . This force diminishes within the cortex, but is 

positive in WM and negative in CSF. The positive force will push the surface 

outward from WM to cortex while the negative force will push the surface back 

from CSF toward the cortex. The method was applied to six subjects as well as the 

simulated brain data. A landmark validation was performed to test the precision of 

the surface reconstruction. The average reconstruction errors are within 1-2mm. 

The main advantage of this method is its capability of recovering the central 

cortical surface and good performances in capturing deep sulci. This is partly due 

to the use of the GVF external force field during the surface deformation. Also, its 

cortical reconstruction process is fully automated and does not require any manual 

interaction. 

 

 MacDonald et al. (2000) presents a multiple parametric surface deformation 

technique, called anatomical segmentation using proximities (ASP). This method 

recovers both the inner and outer surfaces simultaneously while explicitly 

preventing self-intersections. The deformation starts from two concentric ellipsoids 

which are simultaneously deformed to approximate the outer and inner cortical 

surfaces. The external force is defined as the distance of a vertex on the deforming 

surface to the nearest cortex boundary in the direction of the local surface normal. 

The regularization forces, similar to the internal forces in Dale et al. (1999), consist 
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of two terms: One imposes constraints on the minimal distance between two 

adjacent vertexes. The other term imposes constraints on the surface bending. The 

authors propose two new ideas to explicitly prohibit self-intersections which can 

occur within deformed single surface or between inner and outer surfaces. The self-

proximity term is added to enforce a minimal distance between two nonadjacent 

polygons in a surface. Similarly, a vertex-vertex minimal distance is used to 

impose the minimal distance constraint between inner and outer surfaces. A 

conjugate gradient approach (Press et al., 1992) is used to minimize the cost 

function. To avoid local optima, a multi-scale mesh deformation technique is used. 

The technique has been tested on 150 normal subjects. For every subject, the T1w, 

T2w and PD images were acquired. The multi-channel brain images are segmented 

using a neural network based classification algorithm (Zijdenbos et al., 1993). As 

all cortical surfaces are created from the same initial ellipsoid, vertex-to-vertex 

correspondences are maintained across subjects. This simultaneously establishes 

the cortical correspondences across different brains, although the authors 

acknowledge that the resulting correspondences may not be realistic. No validation 

is performed to quantify the reconstruction errors, but all datasets are visually 

reviewed to judge the success of the proposed technique. A drawback of this 

technique is the minimal cortical thickness constraint has to be specified explicitly.  

 

Kim et al. (2005) avoid the minimal thickness constraint in MacDonald et al. 

(2000). They first generate the inner cortical surface using the ASP technique and 

expand it to recover the pial surface. The neural network based brain segmentation 

in MacDonald et al. (2000) is replaced by a k-nearest neighbour (k-NN) 

segmentation technique. This method automatically labels the brain volume to four 

tissue classes (background, CSF, WM and GM).  An intensity homogeneity spatial 

prior is combined into the k-NN classifier to reduce the influences of random noise 

(Cocosco et al., 2003). The key improvement of this algorithm, compared to the 

ASP, is the introduction of a skeletonization of the CSF membership image. All 

voxels classified to include the CSF tissue are binarized to 1 and all others are 0. 

The obtained CSF volume are skeletonized and added to the external force to refine 
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the reconstruction of outer surface. The authors report the geometry of deep sulci is 

much better recovered. The algorithm is applied to 70 paediatric brains with tight 

gyri. No manual ground-truth is used for evaluation. 

 

The BrainSuite system proposed in Shattuck and Leahy (2002) performs brain 

segmentation with a Gibbs prior. The prior probability favors continuous tissue 

classification while penalizes dissimilar tissue types. A Gaussian mixture model is 

used to compute the data likelihood for all tissue classes. The means and variances 

of each Gaussian are updated using the iterated conditional modes (ICM) algorithm. 

Unlike most cerebral tissue classification methods, the BrainSuite uses six tissue 

classes, i.e. WM, GM, CSF, CSF/GM, GM/WM and CSF/background. After 

segmentation, the WM is binarized. The Marching Cubes isosurface algorithm 

(Lorensen and Cline, 1987) is applied to the WM volume to generate a geometrical 

representation of the inner cortical surface. Similar to Joshi et al. (1999), no 

smoothness constraints are imposed during the surface generation; but, the 

BrainSuite uses a Topological Constraint Algorithm (TCA) (Shattuck and Leahy, 

2001) to correct the topological errors on the WM volume before surface extraction 

using Marching Cubes. The TCA is an iterative approach which decomposes the 

WM region into a graph representation and removes all handles until the WM 

surface is topologically equivalent to a sphere. This system is validated using the 

BrainWeb phantom (Cocosco et al., 1997; Collins et al., 1998) and 20 real images. 

The main drawback of BrainSuite is the lack of smoothness constraints during the 

surface generation; thus, the generated surface is often not smooth.  

 

An implicit surface evolution based cortical reconstruction framework is proposed 

in Han et al. (2004). Unlike in parametric deformable models where the surface 

geometry is explicitly represented as polygon meshes, the implicit surface is 

defined by the zero level-set of a higher dimensional spatial scalar function. In Han 

et al. (2004), automated cortical segmentation is achieved by improving the 

adaptive fuzzy C-means (AFCM) algorithm used in Pham and Prince (1996) and 

Xu et al. (1999). A new term with the similar effects to the Gibbs prior in Shattuck 



3.3    Cortex segmentation and surface reconstruction 106 

 

et al. (2001) is added to the AFCM equation. The tolerance of the cortical 

segmentation to image noise is improved (Pham and Prince, 1999). A novel step 

called anatomically consistent GM enhancement (ACE) is developed in Han et al. 

(2004) to enable the deformed cortical surface to capture deep sulci. The effect of 

this ACE step is similar to the CSF skeletonization in Kim et al. (2005). The 

evolution of the implicit surfaces is driven by the signed pressure forces derived 

from the membership functions. A nested surface deformation process is applied to 

reconstruct the inner, outer and central surfaces. This method is further validated in 

Tosun et al. (2006), where about 300 T1 volumes are processed and 60 landmarks 

are picked for central cortex with the average error being 0.51mm. A total of 420 

landmarks are selected from inner and outer surfaces. The average error is reported 

to be 0.46mm. The reported processing time on a regular desktop is less than 25 

minutes, while the reconstruction step takes ~10 minutes. More technical details 

about this approach will be described in Chapter 5, where we adopt it to reconstruct 

cortical surfaces for neonatal MRI and present a detailed quantitative validation.  

3.3.2. Compound approaches 

Although the majority of cortical reconstruction methods rely on an explicit 

segmentation step to obtain a detailed GM segmentation, some authors (Zeng et al., 

1999; Goldenberg et al., 2002; Xu et al., 2006) propose to directly reconstruct 

cortical surfaces from the original MR images. No segmentation is required in 

these approaches, while the tissue boundaries are often enhanced and serve as the 

image-based force to drive a surface evolution. 

 

Zeng et al. (1999) present a cortical reconstruction method based on a coupled-

surfaces propagation algorithm. The authors propose not to segment the cortical 

gray matter before surface reconstruction, but instead compute a tissue boundary 

likelihood as the pressure force for surface evolution. The tissue boundary 

likelihood measures the probability of a voxel lying on the boundary between two 

tissue classes. For a voxel x , given a possible boundary with the normal direction 
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θ
r

, its neighbourhood is divided into parts 1R  and 2R , the tissue boundary 

likelihood is defined as ( ) ( ) ( )TissueBRpTissueARppAB ∈⋅∈= 21θ
r

. The 

probability distributions of GM and WM are modelled as Gaussian functions and 

the optimal mean and variance and normal direction are computed to maximize 

( )θrABp . The proposed surface reconstruction is based on the assumption that the 

cortical layer has a nearly constant thickness. This assumption and the idea of 

coupling inner and outer cortical evolution are also employed in MacDonald et al. 

(2000), where two polygon meshes are deformed simultaneously to approximate 

the inner and outer surfaces. Zeng et al. (1999) however makes use of two coupled 

implicit surfaces which are deformed by solving a level-set equation. Both surfaces 

are initialized as concentric spherical surfaces; afterwards each surface propagates 

along its outward normal direction and stops at the desired tissue boundary. The 

evolution of each surface is only driven by image-based information if the distance 

between inner and outer cortex lies in a preset range (1.5–5.5mm).  Unlike 

MacDonald et al. (2000) where only a minimal thickness constraint is applied, 

Zeng et al. (1999) explicitly set both minimal and maximal thicknesses. To 

speedup the level-set evolution, the authors implement a level-set algorithm using 

the narrow-band technique (Adalsteinsson and Sethian, 1995) which only updates 

the level-set function near the current propagating fronts. The proposed method is 

tested on both simulated brain datasets and 20 normal T1w images. Although the 

authors report a mean overlap ratio between automatically generated cortex volume 

and manual segmentation being 0.657 for all 20 images, no validation is performed 

to directly quantify the precision of reconstructed inner and outer surfaces.  

 

The coupled-surface propagation principle proposed in Zeng et al. (1999) is further 

formalized as an energy minimization problem using a variational geometric 

framework by Goldenberg et al. (2002), where the ordinary Euler scheme to solve 

the level-set equation is replaced by a fast geodesic active contours approach 

(Weickert et al., 1998; Goldenberg et al., 2001). Again, the narrow-band algorithm 

is exploited to speedup the surface deformation and the same tissue boundary 



3.3    Cortex segmentation and surface reconstruction 108 

 

likelihood functions are used as the pressure forces. Note that both methods require 

a minimal amount of user interaction for the initialization of the cortical surfaces as 

concentric spheres within the WM area of the brain. 

 

Xu et al. (2006) propose a cortical reconstruction method which is not based on a 

parametric deformation model or implicit surface evolution. A particle system is 

employed to achieve a mesh-free cortical reconstruction. In this framework, the 

continuous cortical surface is represented by an unstructured point cloud uniformly 

sampled from an initial geometric mesh. Adaptive refinement is used to insert new 

nodes in the high curvature regions. Self-intersections are avoided by tracing the 

movement of every particle point. To transform the point cloud to a geometric 

mesh, the authors propose to construct a geodesic Voronoi diagram from the 

particle system. An image-based force to drive the particle system to approach the 

GM boundaries is defined using the gradient vector flow (GVF) field. Unlike in Xu 

et al. (1999), where the cortical membership function is used, the authors simply 

use the image gradient to derive the GVF field. This algorithm is applied to 21 

normal subjects with the available manual segmentation. The ground-truth surfaces 

are obtained by applying the Marching Cubes algorithm to manual segmentation of 

the cortex. The mean distance between the cortical surfaces generated from the 

particle system and manual segmentation is 0.96 to 0.99mm for the outer surface 

and 1.24 to 1.29mm for the inner surface. As a huge amount of particles (~70,000 

or more) are required to approximate the highly folded cortical surfaces, the 

proposed method is quite time-consuming (~1.5 hours), compared to the implicit 

surface evolution in Han et al. (2004) (~10 minutes). Another limitation of this 

method is its inability to reconstruct the central cortical surface, as the image-based 

forces are derived from image gradient and gray matter threshold.  

 

So far we have presented a comprehensive review of cortical reconstruction 

algorithms in the literature. As a whole, both parametric and geometric deformable 

models have been used for this purpose. Parametric deformable models (Dale et al., 

1999; MacDonald et al., 2000; Xu et al., 1999) transform the segmentation results 
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into a surface tessellation and deform the mesh with a self-intersection check and 

surface regularization. Geometric deformable models (or Implicit surface evolution) 

(Zeng et al., 1999; Goldenberg et al., 2002; Han et al., 2004) use an implicit 

representation of the cortex and deform the cortical surface by solving a level-set 

equation. An explicit triangulation of cortical surfaces can be obtained using 

isosurface algorithms (Lorensen et al., 1987; Han et al., 2003). It should be noted 

that both strategies can generate appropriate cortical surfaces if the segmentation of 

cortical gray matter is satisfactory. 

3.4 Cortical surface registration 

Cortical surface registration is an important step beyond the segmentation and 

reconstruction which aims to estimate an accurate spatial transformation to 

establish the anatomical and/or functional correspondence across multiple cortical 

surfaces. An effective cortical registration can have many different applications, 

including automatic sulci/gyri labelling and quantification (Le et al., 1999; Tosun 

et al., 2004b), enhanced visualization of specific cortical regions (Huppertz et al., 

2007; Van and Dierker, 2007), quantitative structural and functional comparison of 

human cerebral cortex (Van and Drury, 1997; Joshi et al., 1999), brain mapping 

(Toga and Mazziotta, 2000) and neurosurgical planning (Nakajima et al., 1997; 

Murphy et al., 2001b; Miga et al., 2003). For many of these applications the 

generation of average cortical maps or atlases in a standardized coordinate system 

in such a way that stable anatomical features, i.e. the major sulci and gyri, are 

mapped to the same coordinates is very important (Fischl et al., 1999a; Fischl et al., 

1999b; Van et al., 2001b; Tosun et al., 2004b; Van and Dierker, 2007). These 

standardized cortical surfaces can be derived for different populations, e.g. normal 

subjects in terms of age, gender, handedness or life style (e.g. smokers or non-

smokers). A cortical map can also be built for patients with diseases such as 

Alzheimer’s (Thompson et al., 1998; Lerch et al., 2006), schizophrenia (Staal et al., 

2000; Gogtay et al., 2003), dyslexia (Schultz et al., 1994) and panic disorder 
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(Vythilingam et al., 2000). Another interest is the ability to quantify cortical 

evolution in neonates whose cortical folding patterns change dramatically within 

the third trimester (Huppi et al., 1998; O'Shea et al., 2005; Kapellou et al., 2006). 

Cortical morphometric information, e.g. thickness, curvature, surface types (gyri or 

sulci) and sulcal depth can be averaged and presented using average maps, which 

will enable the comparisons across different subjects, different population and 

different ages.  

 

In general, intensity-based image registration methods can be used to align the 

cerebral cortex. These approaches try to find the best deformation so that a voxel 

based similarity measure such as cross correlation or mutual information is 

optimized (Hajnal, 2001). An early attempt to normalize the cerebral brain as well 

as cortical gray matter has been proposed by Talairach and Tournoux (1988) and 

Collins and Neelin (1994). Here all brains are transformed into a standardized 

Talairach coordinate system. However, its ability to align the main anatomical 

features of the cortex is very limited because the simple transformation model is 

used and misalignment errors are on the order of several centimetres (Thompson et 

al., 1997; Van and Drury, 1997). To achieve a better brain alignment, more 

complex transformation models are usually required. Most non-rigid registration 

approaches (Bajcsy and Kovacic, 1989; Christensen et al., 1996; Thirion, 1998; 

Rueckert et al., 1999) model the image transformation with a large number of 

degrees of freedom (DOF), allowing high-dimensional volumetric deformations to 

accommodate complex anatomical variations. Unfortunately, these methods often 

fail to align the cortical structures sufficiently well or lead to an unrealistic 

transformation such that a point on the cortical surface in one brain may not lie on 

the cortex of another brain (Fischl et al., 1999a) due to the lack of an explicit 

representation to constrain the deformation of cortical surfaces, as only image 

intensity information is used.   
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To tackle this problem, several improvements have been proposed. The basic idea 

of these approaches is to make explicit use of the extracted cortical surfaces to 

constrain the registration process. Most approaches employ the cortical surface 

within a surface registration framework (Davatzikos and Bryan, 1996; Van and 

Drury, 1997; Fischl et al., 1999a; Fischl et al., 1999b; MacDonald et al., 2000; Van 

et al., 2001a; Van et al., 2001b; Liu et al., 2004a; Tosun et al., 2004b; Tosun and 

Prince, 2005). Moreover, some of them (Van and Drury, 1997; Fischl et al., 1999a; 

Fischl et al., 1999b; Van et al., 2001a; Van et al., 2001b; Tosun et al., 2004b; 

Tosun and Prince, 2005) require mapping the cortex into an intermediate space 

such as sphere or hemisphere.  

 

Specifically, Davatzikos (1997) extracts the outer cortical surface using a 

parametric surface model and proposes a two-step approach to compute a 3D 

elastic transformation that anatomically aligns corresponding regions. To improve 

the robustness and extend the capture range for large cortical variations, the authors 

first propose to simplify the pial surface to exclude small sulci and gyri. A uniform 

stretching or shrinking is computed to match the overall shapes of two cortical 

surfaces. Second, to match the small sulci and gyri, a curvature map is used to 

quantify the distribution of maximum, minimum and Gaussian curvatures. An 

external force which deforms one cortical surface to match the other minimizes the 

squared difference between the two curvature maps. Although this multi-scale 

approach offers better alignment of detailed sulci and gyri, the authors fail to 

provide any quantitative results to validate the accuracy of sulci mapping. Liu et al. 

(2004b) further enhances the surface registration in Davatzikos (1997) by 

performing a volumetric registration before the surface registration. The extracted 

cortical surface is used in the volumetric registration to help alignment of gyri. For 

every vertex on the cortical surface, the authors extract an attribute vector 

consisting of local edge information and geometric invariant moments. This 

attribute vector is used as an extra constraint besides image intensity.  
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Fischl et al. (1999a, 1999b) aims to develop a surface coordinate system to achieve 

the inter-subject averaging and comparison. They first inflate the cortical surface to 

determine its large-scale folding pattern and map the surface onto a sphere by 

minimizing the metric distortion of the cortical surface. The metric distortion, 

designed to preserve the local areas and lengths, is a linear combination of two 

statistics: the differences of spatial distance between vertices and the differences of 

triangle area before and after inflation. Once the inflated representation is obtained, 

the alignment is carried out by minimizing the mean squared difference of surface 

convexity between the average and individual flattened cortical surfaces. The 

convexity measure reflects the large-scale geometry of the surface and is more 

robust to noise than the mean curvature. The main drawback of employing a sphere 

as the intermediate coordinate for cortical registration is that the inflation process 

tends to smooth out the detailed folding patterns and the mapping from the original 

surface to a sphere may lead to some geometrical distortion. 

 

The idea of combining cortical inflation and registration is also adopted in Tosun et 

al. (2004b) and Tosun and Prince (2005). They apply a conformal mapping 

(Angenent et al., 1999; Gu et al., 2003; Gu et al., 2004) to establish the spherical 

coordinates on a cortical surface. Compared to the parametric surface inflation 

approaches (Sereno et al., 1996; Fischl et al., 1999a; Timsari and Leahy, 2000), the 

conformal mapping is more computationally efficient and can preserve relative 

angles, local shape and connectivity of the adjacent triangles. The authors suggest 

it can provide a spherical mapping with less geometrical distortions. As the 

conformal mapping is sensitive to the details of cortical surface triangulation, the 

authors propose to partially inflate the cortical surfaces before mapping them onto 

a sphere. The alignment of corresponding main sulci is achieved by rigidly 

registering the partially inflated cortex. A modified iterated closest point (ICP) 

algorithm is used for this purpose, where the closet point of a vertex is computed as 

its closet projection point on the triangle mesh, not from the triangle vertices. Once 

two cortical surfaces are rigidly registered, they are mapped to the spherical 
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representations where the main anatomical features are largely aligned. This 

technique is used to build an atlas of sulci from 35 subjects. For each subject, four 

sulcal regions (central sulcus, superior frontal sulcus, cingulated sulcus and parieto-

occipital sulcus) are manually labelled. As a rigid transformation is not sufficient to 

capture the large variation of local cortical folding patterns, the registration is 

improved by adding an additional optical flow based non-rigid registration (Tosun 

and Prince, 2005). The feature maps used for registration are the shape index and a 

curvedness measure. The shape index is positive for gyri and negative for sulci, 

specifying the local geometry of the cortical folding. The curvedness measure 

quantifies the local curvature of cortical shape. The optical flow based registration 

is defined on the spherical coordinate and aims to find a dense transformation to 

align the two feature maps. The optical flow field is estimated by iteratively 

solving an Euler-Lagrange equation. This method is used to build an atlas of sulci 

from 32 subjects. The authors show that with the combination of optical flow based 

non-rigid registration, an improved atlas can be generated. Similar to Fischl et al. 

(1999a, 1999b), this method can still lead to geometrical distortions of cortical 

features. As the optical-flow based registration is performed on the spherical 

representation, it may not be able to achieve detailed cortical correspondence of the 

secondary sulci, as all fine-grained details have been smoothed out before the 

mapping.  

 

The cortical surface visualization and analysis software, SureFit and Caret 

(http://brainvis.wustl.edu/SureFit/), developed and validated in Van Essen and 

Drury (1997) and Van et al. (2001a, 2001b), also performs the cortical alignment. 

This system is able to perform surface based analysis and cortex normalization by 

mapping the cortex to a sphere or flat plane. The approach requires a user-defined 

north point to determine a polar coordinate. The spherical map or flat map is 

generated and the polar coordinates are used to localize every 3D point on the 

cortical surface. The software allows the source map (sphere or flat plane) to be 

deformed to the atlas map while constrained by explicitly designated landmarks. 
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The alignment of sphere representation is achieved using an algorithm based on 

landmark-constrained smoothing and morphing and the flat plane registration is 

performed by estimating a 2D diffeomorphic transformation.  

 

Compared to surface-based approaches, several researchers propose to use specific 

anatomical features to guide the registration process. For example, Thompson and 

Toga (1996) models the cortical alignment as an elastic warping process. This 

approach first extracts the cortical surface using an active surface method, but only 

parts of the cortical surface are used for surface warping. For each hemisphere, 6 

main sulci surfaces are selected to represent the internal cortex. In parallel, 4 

meshes jointly representing the lateral ventricles are also used. The sulci or 

ventricular correspondences between two subjects are manually established. A 

deformation map is computed based on this information and interpolated to cover 

the whole brain area. In Thompson et al. (2000), the same feature based surface 

registration approach is used to align 36 major external fissures and sulci. The 

deformation fields obtained for multiple sulci are averaged and combined to build 

the probability atlas for these 36 anatomical features. The authors estimate the 

anatomical variability for a specific sulcus by computing the root mean square 

(r.m.s.) magnitude of 3D displacement vectors. As only part of the cortical surface 

is used to constrain the deformation computation, this method tends to misalign 

gyrification features that were not included in the alignment process. Chui et al., 

(1999) presents an interactive approach. In this work, spatial points near the main 

sulci are manually selected. A robust point matching algorithm is then used to 

register the point sets and estimate an affine transformation between the cortical 

surfaces. Wang et al. (2003) develops an automated scheme using the mesh-

refinement technique. The density of a point cloud is gradually increased and more 

details are aligned. They propose to select points with higher curvature throughout 

the whole cortex surface. The point correspondence between the template and a 

new cortical surface is established by combining the information about vertex 

distance, local surface orientation and folding pattern. More recently, Miga et al. 



3.5    Summary 115 

 

(2003) uses the manually extracted main sulci for image-guided neurosurgery. The 

sulci features from the pre-operative MR images are identified and aligned to the 

optical brain surface images acquired during the surgery.  

 

These feature-based methods are computationally more efficient and are able to 

correct the global deformation between two cortical surfaces. However, as they fail 

to provide correspondences for the whole cortex, it can be difficult to only use 

them to analyze whole cortical variability or to build population specific cortical 

atlases; instead, they can serve as a preliminary step for more detailed surface 

registration.   

 

Despite the variant approaches published in the literature, they mainly focus on the 

cross-sectional studies for adults and have not been applied to tracking the fast 

development of neonatal cortical surfaces. To address this deficit, in Chapter 5 we 

develop a surface based cortical registration approach and apply it to exploring this 

intact topic.  

3.5 Summary 

In this chapter we have reviewed the state-of-the-art cortical reconstruction and 

registration with emphasis on cortical segmentation and surface reconstruction. The 

latest reconstruction approaches, e.g. the implicit evolution proposed in Han et al. 

(2004), are able to build a detailed representation for inner, central and outer 

cortical surfaces. These geometrically accurate surfaces serve as the basis for 

surface-based cortex registration. Different cortical registration algorithms have 

been developed and population specific cortical atlases have been successfully built.  

 

Despite the success of reconstructing and normalizing cortical surfaces in MR 

images obtained from adults, none of these approaches, to the best of our 
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knowledge, have been applied to neonatal cerebral MR images. Therefore, within 

the next two chapters, we will present a complete cortical segmentation, 

reconstruction and registration approach and validate its effectiveness on the large 

group of neonates from very preterm to term-equivalent age.  
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Chapter 4 

Automatic Cortical Segmentation 
of Neonatal MRI 

4.1 Introduction 

Neonatal brain development proceeds rapidly in the 3rd trimester of pregnancy. 

Infants born preterm appear to be vulnerable to disruption of these developmental 

processes, and are at high risk of cognitive and behavioral impairment during 

childhood and adolescence (McCormick et al., 1992; McCormick et al., 1996; 

Hack et al., 2002; Marlow et al., 2005). Abnormal development of the cerebral 

cortex and cortical connectivity has been suggested as a major neurological 

correlate of neurodevelopmental abnormalities following preterm birth (Peterson et 

al., 2000; Isaacs et al., 2001; Peterson et al., 2003). Clinical studies have shown 

reduced cortical growth, decreased thalamic volume and diffuse white matter (WM) 

abnormalities in preterm infants at term equivalent age (Woodward et al., 2006; 

Boardman et al., 2006; Counsell et al., 2006; Kapellou et al., 2006). The detailed 

morphometric analysis of brain growth is an active research area which seeks to 

understand the nature of these neurodevelopmental abnormalities.  

 

Ajayi-Obe et al. (2000) and Kapellou et al. (2006) have manually traced the cortex 

to measure its surface area and volume from multiple 2D slices. However, the 

manual segmentation is tedious and time consuming. The reproducibility is even 

more problematic if the human operator is less experienced or if the image contrast 

between WM and GM is deteriorated by artifacts. As a result, a robust, 
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accurate and automatic 3D segmentation of the developing cortex is an essential 

prerequisite for quantitative cortical analysis.  

4.2 Challenges of automatic cortical segmentation 
in neonatal MRI 

The reliable automatic segmentation and reconstruction of cortex would facilitate 

the quantification of neonatal brain development; however, several specific 

characteristics of the brain during this period of development have hindered 

automated morphometric analysis. A key difference between the neonatal and adult 

brain is that the WM/GM contrast on both T1 weighted and T2 weighted MR 

images is usually reversed. This is caused by the increased water content of the 

cerebral structures and the presence of largely unmyelinated WM. In the neonatal 

T2w images (Figure 4.1(a-c)), most of the white matter in brains of new-borns is 

not myelinated and appears brighter than gray matter (in adult T2w, the gray matter 

is brighter). In T1w images (Figure 4.1(d)), neonatal white matter is darker and 

gray matter is brighter. For the very premature infants (Figure 4.1(a)), almost all 

white matter is not myelinated. As the brain of infants matures more white matter 

is becoming myelinated thus producing a similar contrast to the adult brain (as 

shown in Figure 4.1(b-c)). During the first two years of life the WM/GM contrast 

keeps changing as various processes such as cortical organization and myelination 

of the WM tracts cause progressive changes in the T1 and T2 relaxation times. By 

the age of ca. 2 years, the myelination process is nearly complete and the contrast 

on MR images is similar to that of adult brains (see Rutherford (2002)). For the 

sake of simplicity and since the majority of WM in neonatal brains is non-

myelinated, we refer to non-myelinated WM in the remainder of the chapters as 

WM.  

 

The inverted GM/WM contrast will lead to mislabeled voxels at the interface 

between the cerebrospinal fluid (CSF) and GM. Because CSF has the highest 
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Figure 4.1.  The same neonate (GA at birth: 27.86w) was scanned at three times with the GA being 
(a) 29.86, (b) 34.29 and (c-d) 39.86 weeks. (a-c) are T2w images and (d) is the corresponding T1w 

image to (c). It can be seen that most white matter in neonatal brains are not myelinated and the 
gray-white matter contrast is inverted. The dashed arrow points to the myelinated white matter. 
When the infant is very premature, no white matter is myelinated. As the baby becomes mature, 

more white matter is becoming myelinated. 

(a) (b) 

(c) (d) 
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intensity in neonatal T2w images and the image resolution of neonatal MRI is 

limited, many voxels between CSF and GM will be subject to partial volume 

effects and thus have similar intensities to WM (Figure 4.2(a)). These voxels are 

brighter than GM and darker than CSF and can be incorrectly classified as WM by 

conventional intensity-based segmentation approaches which ignore partial volume 

effects. The same problem occurs in neonatal T1w images. In this case, CSF is the 

darkest and GM is the brightest; thus voxels at the interface between CSF and GM 

will have intensities similar to those of WM (Figure 4.2(b)). In the following we 

refer to these voxels as mislabeled partial volume voxels (MLPV) since the 

mislabeling is primarily a consequence of the mixing of tissues in a voxel (partial 

volume). In T1w/T2w images of adult brains, partial volume effects also occur but 

these do not lead to similar MLPV because the WM is fully myelinated and has the 

highest/lowest intensity respectively. 

 

As mentioned previously the brain segmentation is usually preceded by a brain 

extraction step which aims to exclude non-brain tissue. If the brain extraction does 

not exclude all non-brain tissues, there will be another source of MLPV at the CSF-

non-brain tissue boundary. Because CSF has high signal intensity in T2w images 

and non-brain tissues generally have low signal intensity, there are voxels on the 

intermediate boundary having similar intensities to both GM and WM. In T1w 

images, CSF has low signal intensity and scalp has high signal intensity, so that 

similar MLPV can appear. This latter type of MLPV can also occur in adult brain 

MR images. 
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b i f

non-brain CSF GM WM

Neonatal T1w 
WM 

MLPV 

(a)  

Figure 4.2. Representative coronal MRI slices of neonates and adults showing the different contrast patterns. 
(a) T2w and (b) T1w images for a neonate (GA at scan 39.86 weeks). Due to the inverted GM-WM contrast, 

many voxels on the CSF-GM boundary have the similar intensities to WM. If the brain is not properly 
extracted, partial volume voxels will also appear between the non-brain tissues and CSF. For the purpose of 

comparison, an enlarged coronal T1w slice of an adult (male, 40 years) is shown in (c). (d) From top to 
bottom, the relative intensity levels of non-brain tissue, CSF, GM and WM for neonatal T1w, T2w and adult 

T1w MRI are demonstrated as bar charts. Note that the intensity levels of partial volumes in adult T1w do 
not overlap the characteristic intensity of any pure tissue classes, which is not true for neonates.

(b) 

(c) 
non-brain CSF GM WM

Adult T1w 

n o n b r a i n c s f g m w m

non-brain CSF GM WM

Neonatal T2w 
WM/GM
MLPV 

WM 
MLPV 

(d) 
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(a) GA 27w 

(b) GA 36.29w 

(c) GA 39.86w 

(d) GA 44.29w 

(e) 1 year old  

Figure 4.3. (a-d) MR T2w images of developing neonates from very premature to term equivalent age. The 
relative gray-white matter contrast presented in T2w images can keep decreasing, as neonates become more 

mature. (e) A T1w image of a 1-year old infant. The gray-white matter contrast is now adult-like. 
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Besides the problem of MLPV at the CSF/GM interface which is unique to 

neonatal MRI, there are some other problems which make the task of neonatal 

cortical segmentation challenging: 

• Lower contrast-to-noise ratio (CNR) in neonatal MRI: Due to the insufficient 

T1 differences between neonatal GM and WM neonatal T1 images have 

typically less GM/WM contrast than in adult T1 images (Jones et al., 2004). 

Moreover, the scanning time is frequently limited by the fact that infants move 

periodically when in natural sleep or even when sedated, which reduces the 

CNR and produces artifacts. Thus even though neonatal T2w images usually 

show sharper cortical surfaces, the CNR can be as low as the half of an adult 

brain (Prastawa et al., 2005). 

438 

 900 
Diffuse high signal 

intensity injury 

Non-myelinated WM 
769 

Cortical GM 
438 

Figure 4.4. A transverse T2w image of a premature neonate (GA at birth: 27w; GA at scan: 34w). 
Intensity variability in the WM caused by there being a mixture of myelinated and unmyelinated 

tissue is compounded by the effects of diffuse WM injury (excessively bright areas in WM) which is 
a common in infants born pre-term. 
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• Age dependent gray-white contrast: As the neonatal brain matures the GM/WM 

contrast in T2w images changes. WM gradually becomes darker and finally has 

lower intensity than the GM (in T1w images, WM finally becomes brighter 

than GM). At some time-point of this myelination process (approx. GA of 45-

50 weeks GA), GM and WM can have similar intensities. Figure 4.3 illustrates 

this process with examples of neonatal MR images from very preterm to term 

equivalent age and beyond. 

• Tissue signal heterogeneity: Especially WM in neonatal MRI shows significant 

intra-class intensity variability. This is caused by the combined effects of RF 

inhomogeneity when using higher field strength scanners (e.g. 3T) and 

biological properties of brain tissues. For the preterm neonates, there are often 

diffuse high signal intensities in WM which are recognized as a common form 

of brain damage (Maalouf et al., 1999; Counsell et al., 2006). An example of 

this is shown in Figure 4.4. 

• Rapid evolution of cortical geometry: Besides the special intensity and contrast 

characteristics, the shape of the neonatal cortex is rapidly developing and 

folding. It can pose problems for segmentation methods which rely on a-priori 

information in form of probabilistic atlases or shape models since the precise 

non-rigid registration of cortical surfaces is becoming more challenging and 

large deformations are required for good matching. Also, a single atlas or shape 

model may not be sufficient to characterise the variability of the cortical 

geometry at different stages of development.  

4.3 Neonatal cortex segmentation in the literature 

The automatic segmentation of the adult brain in MRI based on tissue classification 

has been intensively studied. Several segmentation algorithms have been developed 

and applied to both normal subjects and subjects with pathology. Most methods 

developed for this purpose are based on analyzing voxel intensities using statistical 

techniques. Specifically, methods based on the Expectation-Maximization (EM) 
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algorithm (Wells et al., 1996; Van Leemput et al., 1998; Van Leemput et al., 1999a; 

Van Leemput et al., 1999b; Ashburner, 2000), fuzzy C-means (Pham and Prince, 

1996; Pham and Prince, 1999), k-nearest neighbor and template matching 

(Warfield, 1996; Warfield et al., 2000), support vector machines (Karp and Vigário, 

2004), neural networks (Powell et al., 2006) and the graph cuts algorithm (Zhuang 

et al., 2007) have been proposed by different researchers.  

 

Unfortunately, compared to the comprehensive literature for adults, there are fewer 

studies on segmentation of neonatal brain MRI. As the first example, semi-

automated methods have been proposed by Peterson et al. (2000) and Nishida et al. 

(2007). In these schemes, voxels throughout the cerebral area are manually 

sampled and the typical intensity value for every tissue class is estimated. The 

image segmentation is achieved by thresholding. Manual editing is often required 

to complete the segmentation and correct all errors. Clearly, these semi-automated 

approaches require extensive human interventions. Also, the thresholding assumes 

the less noticeable inter-tissue intensity variability, which generally is not true for 

neonates.  

 

Another approach which requires some manual interaction is proposed by 

Weisenfeld et al. (2006), where a probabilistic atlas is generated using the affine 

registration of 20 neonates all scanned at approximate GA of ~42 weeks. A human 

operator is required to select a set of voxels which represent the intensity of every 

tissue class. The prior probability is obtained by registering a new image to the 

atlas. The segmentation is achieved using a k-nearest neighbour classifier (k-NN) 

originally proposed in Warfield (1996) and Warfield et al. (2000). A Markov 

Random Field (MRF) extension is developed and combined with the k-NN 

classifier to improve the robustness to image noise. In this scheme, the neonatal 

brain is classified into 6 classes (cortical GM, myelinated and non-myelinated WM, 

CSF, basal ganglia and extra-cerebral tissue). The algorithm has been tested on a 

total of 5 subjects. A manual segmentation is used to evaluate the method. The 
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mean Dice similarity ratio (Dice, 1945; Warfield, 1996) between manual and 

automated segmentation is 0.75 for cortical GM and 0.69 for non-myelinated WM. 

 

This k-NN based segmentation method has been used to study the abnormal 

cerebral structures related to preterm birth (Inder et al., 2003; Inder et al., 2005) 

and to quantify the diffuse WM injury (Murphy et al., 2001a). The authors also use 

this technique to investigate the relationship between regional cerebral changes and 

various perinatal risk facts (Thompson et al., 2007).  

 

Prastawa et al. (Prastawa et al., 2005) proposed another atlas-based approach for 

neonatal brain segmentation. They generate a probabilistic atlas by manually 

segmenting the MR images of three subjects. A tissue classification is achieved 

using the expectation-maximization (EM) scheme proposed by Van Leemput et al. 

(1998, 1999a), where the bias field is explicitly parameterized as a linear 

combination of polynomial basis functions. Both polynomial functions and EM 

parameters (means and variances) are iteratively updated. Again, affine registration 

is used to register the atlas to each subject. A robust graph clustering method 

(Cocosco et al., 2003) which is able to prune data outliers, is integrated into this 

scheme, providing better initial parameter estimates for every tissue class. In the 

final step the EM segmentation is refined with the non-parametric kernel density 

estimation. A Parzen window method (Parzen, 1962) is used after applying the EM 

algorithm, producing the final segmentation. This method has been tested on 4 

neonates. The neonatal brain is segmented into four classes (Myelinated WM, non-

myelinated WM, GM and CSF).  The reported overlapping ratio against the ground 

truth (Dice similarity ratio) is between 0.63-0.81 depending on the structure and 

subjects. Gilmore et al. (2007) from the same group has recently reported the 

segmentation results of 70 term born neonates to show regional growth patterns, 

sexual dimorphism and cerebral asymmetry.  
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As previously published methods are essentially derived from related algorithms 

for adults, they are generally not optimal for the segmentation of the neonatal 

cortex. First, the MLPV problem on the CSF-GM boundary is not explicitly tackled 

in any of the previously published methods. Although the use of a probabilistic 

atlas can provide prior knowledge, the registration between the atlas and new 

subjects may not be perfect, especially when only affine transformations are used. 

Although previous methods are able to consistently segment most of the cerebral 

structures, there are noticeable MLPV visible in the segmentation results, as shown 

in Figure 4.5. Clearly, the MLPV problem in neonatal segmentation has not been 

solved by these methods. Secondly, the previous methods are essentially global 

schemes, meaning that the probability density estimators (either parametric or non-

parametric) are used to estimate the distribution of tissue classes throughout the 

whole brain. However, if the intra-class intensity variability, especially in WM is 

significant, we have observed that the local segmentation of the cortical GM-WM 

boundary may be suboptimal. Thirdly, the evaluation of previously published 

methods is rather limited. To the best of our knowledge none of these methods has 

been tested on datasets ranging from very premature neonates to neonates at term 

equivalent age. However, applicability to a wide range of ages is essential if these 

Figure 4.5.  Neonatal segmentation from Weisenfeld et al. (2006). (a) The initial k-NN 
segmentation; (b) The segmentation is improved by combining the probabilistic atlas and MRF 
extension; (c) As highlighted by the arrows, MLPV are clearly visible where the CSF and GM 

voxels are misclassified as WM due to the inverted GM/WM contrast (colour code: WM = Red, GM 
= Grey, CSF = blue). 

 

(a) (b) (c) 
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approaches are to be used to measure brain development and to quantify any 

abnormalities related to premature birth. Finally, the construction of a neonatal 

brain atlas usually requires the segmentation of a large set of representative 

datasets. However, due to the rapid brain development between 25 weeks GA and 

45 weeks GA, many different atlases are required to capture the anatomical 

changes during the whole period of neonatal cerebral development. As a result, it is 

a highly challenging task to build brain atlases for developing neonates. 

4.4 Neonatal cortex segmentation with MLPV 
removal 

The focus of this work is the segmentation and reconstruction of the neonatal 

cortex in subjects over a wide age range from very premature (e.g. GA ~ 27 weeks) 

to beyond term using information from MR images. T2w images have been 

selected as the source data as they have superior CNR compared to T1w images in 

this GA group; however the methods developed are not essentially limited to T2w 

images. An EM-MRF scheme is adopted to perform the tissue classification. The 

key contribution is a modification of the EM-MRF scheme which allows the 

detection and removal of MLPV. We introduce a knowledge-based approach to 

identify and reduce MLPV after every iteration of the EM algorithm. To deal with 

the WM intensity variability, we split the brain into several regions after the global 

segmentation. This segmentation algorithm has been quantitatively evaluated on 25 

subjects with GA ranging from 27 weeks to 45 weeks.  

   

As the focus of this work is the cerebral cortex, we decided not to explicitly 

segment subcortical GM, myelinated WM, the corpus callosum and cerebellum. 

While the contrast between myelinated WM and adjacent deep GM (thalamus and 

basal ganglia) is relatively small, our experiments show that for the GA range from 

~27 to 45 weeks the intensities of T2w MRI alone can consistently provide 

sufficient gray-white contrast for differentiating cortical GM from WM.  
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In conclusion, the proposed method aims to segment of cortical GM, non-

myelinated WM, CSF and non-brain tissues. Subcortical GM, myelinated WM, 

corpus callosum and cerebellum are masked off before performing the 

segmentation.  

 

An overview of the proposed algorithm is shown in Figure 4.6.  The following 

sections describe the algorithm in detail. 

4.4.1 Brain extraction and removal of central deep tissues 

As the first step of the segmentation process, we use label propagation via image 

registration to achieve brain extraction and removal of central deep tissues, as these 

tissues are not relevant for the segmentation of the cortex and their signal 

intensities are similar to those of cortical GM. The label propagation is 

implemented as an atlas-based segmentation process. To deal with the fact that 

neonatal brains are rapidly developing, multiple atlases are used to facilitate the 

registration and thus the atlas-based segmentation (see Section 4.6 for more details). 

Briefly, the subjects used for evaluation were separated into three groups according 

to their gestational age and one subject was randomly selected as the atlas for each 

group. The brain stem, cerebellum, deep GM (including basal ganglia and thalamus) 

and corpus callosum were manually labeled in these three subjects. For every 

testing image, the brain extraction and skull-stripping was achieved using the Brain 

Extraction Tool (Smith, 2002). These three atlas images are then non-rigidly 

aligned to each subject and the labels of central deep tissues are propagated into 

this subject's coordinate system. A binary mask of the cerebral tissues of the atlas 

brain is also non-rigidly warped to the subject's coordinate system to achieve the 

skull-stripping. The non-rigid registration algorithm used here is based on the 

multi-level free-form deformations (FFD) (Rueckert et al., 1999; Schnabel et al., 

2001), where the deformations are represented by a 3D tensor product B-Spline 
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and the non-rigid transformation is computed by moving the control points of the 

FFD to maximize the normalized mutual information between the images. 

 

 

Atlas based brain extraction 
and deep GM removal
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4.4.2 Expectation-Maximization (EM) algorithm for tissue 
classification 

The EM algorithm is a general statistical technique to estimate missing information 

based on observed data. It was originally presented in a general form by Dempster 

et al. (1977). In the context of brain segmentation, the observations are the image 

intensities, the missing data are the class labels for every voxel and the parameters 

of the class likelihood probabilities. The intensity inhomogeneity or bias fields 

which can cause noticeable misclassification are often modelled and estimated by 

extending the standard EM method. Wells et al. (1996) proposed an EM algorithm 

in which the probability density function (PDF) of every tissue class is modelled by 

a Gaussian distribution and the bias field is modelled by a zero mean Gaussian 

prior probability density. Van Leemput et al. (1999a) suggested integrating a 

probabilistic atlas into this framework to provide spatially varying prior 

probabilities at every voxel. The bias field in this work is represented as a linear 

combination of smooth basis functions. 

 

The EM algorithm consists of an expectation step (E-step) which performs the 

classification and a maximization step (M-step) which updates the parameter 

estimation. Assuming a Gaussian distribution and given the initial parameters ( )0
kμ  

and ( )0
kσ , the algorithm iteratively maximizes the data likelihood and updates the 

tissue classification.  

E-step:  ( ) ( ) ( )
( )i

i
i xp

kpriorkxp
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Figure 4.7.  An illustration of Expectation-Maximization (EM) algorithm. (a) The data probability is 
the weighted summation of prior probability and class likelihood probability. Posterior probability is 

computed from data probability, class likelihood probability and prior knowledge. (b) The EM 
iteration consists of an E-step where the posterior probability is computed and a M-step where the 

parameters of Gaussian distribution are optimized. 
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Here ix  is the intensity of a voxel i  and ( )kprior  is the prior probability for tissue 

class k . ( )kxp i  is the class likelihood probability which is a Gaussian distribution. 

The corresponding class posterior probabilities ( )ixkp  are computed in the E-step. 

An illustration of the EM algorithm is shown in Figure 4.7. 

 

The EM algorithm requires an initial estimate of tissue class parameters which can 

be computed from the prior probabilities. Probabilistic atlases are often used for 

this purpose. They act as the prior ( )ixkp  to predict the probability of a voxel ix  

belonging to the tissue class k  and combine spatial information about different 

tissues into the EM algorithm. However, the large anatomical changes that occur in 

the neonatal period preclude the use of a single standard atlas, especially in the 

cortical regions, for the full age range in this study. We initialized the EM 

algorithm by performing a k-means clustering to generate an initial segmentation 

for each subject that is then slightly blurred by a Gaussian kernel 

Figure 4.8.  An illustration to show the performance of k-means segmentation. This intensity-based 
classifier causes lots of mislabeled partial volume voxels on the WM/GM and WM/CSF boundaries.
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( voxelsize×= 5.1σ ) and normalized to simulate an atlas. Figure 4.8 shows the 

performance of k-means segmentation. Note the MLPV are noticeable on the 

GM/WM and WM/CSF boundaries. Our experience has shown that there is 

sufficient contrast between cortical GM and WM in T2w images of neonates to 

successfully achieve GM-WM segmentation. 

4.4.3 MLPV detection and removal 

The EM algorithm in its original form will wrongly classify partial volume voxels 

on the CSF-GM boundary in neonatal MR Images. An example illustrating this 

problem in the case of a T2w image is given in Figure 4.9(a-b): Many voxels on 

the CSF-GM boundary are incorrectly classified as WM.  A similar problem occurs 

at the CSF-nonbrain tissue boundary because CSF is the brightest and non-brain 

tissue is darkest. 

 

These errors are partly caused by the voxel-wise tissue classification used in the 

EM scheme, since the posterior probability of a voxel only depends on the signal 

intensity and prior probability. Thus, no information about spatial homogeneity is 

used in this segmentation scheme. Markov Random Fields (MRFs) are commonly 

used to constrain the spatial homogeneity of the tissue labelling. Elfadel and Picard 

(1994) has exploited the MRF to impose a spatial homogeneity constraint on image 

segmentation. The exact calculation of the MRF posterior is not practically feasible 

(Van Leemput et al., 1999a) and mean field theory (Langan et al., 1992; Zhang, 

1992) is often used to provide an approximation as it is a minimum variance Bayes 

estimator of the true MRF (Li, 1995). A widely used algorithm for brain MRI 

segmentation proposed by Van Leemput et al. (1999a) uses MRF with constraints 

to avoid over smoothing effects in fine brain structures. 

 

Specifically, the tissue class k  is assumed to be a realization of a random process 

and the Hammersley-Clifford theorem states that this random field can be 
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described as a Gibbs Random Field (Li, 1995). Its configuration obeys the Gibbs 

distribution: 

( ) ( )( )
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−
=

k
mrf

mrf

kU
kU

kf
Φ

Φ
Φ

exp
exp

   (4.4) 

where ( )ΦkUmrf  is an energy function and Φ represent the MRF parameters. The 

prior probability that a voxel belongs to a tissue type depends on the tissue type of 

its neighbors. 

 

We exploit a first-order neighborhood system, i.e., the six nearest neighbors on the 

3D image grid are used. Given a voxel i , its neighborhood is defined by 

{ }btewsn
i iiiiii ,,,,,=Ν  where wsn iii ,, and ei are four neighbors in the imaging plane 

and ti and bi are the nearest voxels out of the imaging plane. Following the Potts 

model (Ising, 1925), the MRF energy function at voxel i  is: 

( ) i
t
iimrf xkU GgzΦ =,    (4.5) 

ki ez =  

btewsn iiiiiii zzzzzzg +++++=  

where ki ez =  is a unit vector with the thk component being one and ig  counts for 

every tissue class k  the number of neighbouring voxels belonging to k . The 

matrix G is the so-called tissue class compatibility matrix. The ( )nm,  element in 

G  denotes the contribution of a neighbor voxel belonging to class n  to the energy 

function ( )Φ,imrf xmU . The tissue class compatibility matrix G  is estimated using 

a least square fitting procedure (Li, 1995; Van Leemput et al., 1999a).  
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It is worthwhile to discuss the performance of the EM-MRF scheme on MLPV 

removal. Note that the matrix G  is estimated globally and determines the 

computation of the MRF energy function (equation 4.5) for a specific voxel by 

combining the tissue class information of its first-order neighbors. The introduction 

of the MRF energy function and tissue class compatibility matrix enhances the 

classic EM scheme by removing the isolated partial volumes; however, the EM-

MRF scheme alone is not sufficient to remove the MLPV in neonatal brain MRI. 

The reason for this is the fact that there are a large number of voxels on the 

CSF/GM boundary which can be misclassified. If two MLPV are neighboring each 

other, one can prohibit the other from being corrected by contributing to its energy 

function via the tissue class compatibility matrix. Therefore, to allow the removal 

of MLPV we have developed a knowledge based approach to improve the EM-

MRF scheme. For this purpose we use the knowledge that WM MLPV typically 

appear on the CSF-GM boundary for neonatal T1w and T2w images. If a voxel is 

classified as WM and within its first order neighbourhood there are CSF and GM 

voxels simultaneously, this voxel is likely to be a partial volume voxel. The same 

detection rule can be used for WM and GM MLPV on the CSF-nonbrain tissue 

boundary in neonatal T2w images.  

 

Mean field theory is used to compute the optimal parameters. The update equation 

4.1 is kept unchanged while the prior probability is now computed from both atlas 

prior ( )iatlas xkp  and MRF prior ( )imrf xkp . 

( ) ( ) ( )
( )i

ii
i xp

xkpriorkxp
xkp

⋅
=     (4.6) 

( ) ( ) ( )
( ) ( )( )∑

=

⋅

⋅
= K

j
imrfiatlas

imrfiatlas
i

xjpxjp

xkpxkp
xkprior

1

 

( ) ( )( )
( )( )∑

=

−

−
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j
imrf

imrf
imrf

xjU

xkU
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Φ
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The voxels which are labelled as MLPV after each EM step can be relabelled by 

adjusting the prior probabilities to favor more appropriate tissue classes. If a voxel 

ix  is likely to be incorrectly classified as WM on the CSF-GM boundary, the prior 

probability ( )iatlas xwmp  should be decreased. Because the sum of prior probability 

of all tissue classes should always be one, the expected tissue classes can be 

favoured by increasing their prior probabilities. Specifically, the following rules are 

used to adjust ( )iatlas xwmp : 

( )( ) ( )( )i
m

atlasi
m

atlas xwmpxwmp λ=+1 , 10 << λ   (4.7) 

( )( ) ( )( ) ( )
( )( )

( )( ) ( )( )⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−+=+

i
m
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m

atlas

i
m

atlas
i

m
atlasi

m
atlas xgmpxCSFp

xwmp
xCSFpxCSFp λ111  

( )( ) ( )( ) ( )
( )( )

( )( ) ( )( )⎟
⎟
⎠

⎞
⎜
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⎝

⎛

+
−+=+

i
m

atlasi
m

atlas

i
m

atlas
i

m
atlasi

m
atlas xgmpxCSFp

xwmp
xgmpxgmp λ111  

The final classification of ix  will be determined by both the priors for CSF and GM 

and the signal intensity (influencing the class likelihood ( )kxp ). As a result, the 

original two-step classification (EM-MRF) is transformed into a three-step (EM-

MRF-MLPV) process. Figure 4.9(c-d) indicates the segmentation results after the 

MLPV removal step is integrated into the EM algorithm. As more iterations are 

preformed, fewer misclassifications are observed in the resulting segmentation. 

The algorithm is stopped either when the parameters converge (the relative changes 

of mean and variance between two consecutive iterations are smaller than 1%) or a 

maximum number of iterations is reached (35 iterations in our experiments). The 

parameter λ  in equation 4.7 influences the speed of convergence, but we have 

found that the final segmentation results are relatively insensitive to its value. As a 

result we set λ  to be 0.5 for all experiments. 

 

The MLPV removal strategy can be extended to refine the classification of CSF 

voxels in sulci. Because of the limited image resolution, the CSF voxels in some 

sulci may be mislabeled as WM (Figure 4.9(e-f)). These mislabeled CSF voxels are 

detected by performing a connected component labeling on the WM volume after 
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each iteration. Small unconnected WM components are identified if they are much 

smaller in volume than the largest component. The first-order neighborhood of 

every small component is checked. If the component is included within CSF and/or 

GM, it is suspected to be CSF and the prior probabilities are then adjusted. Figure 

4.9(g-h) shows the detection and classification of CSF voxels in sulci. The 

misclassification is gradually corrected and the CSF voxels are properly segmented. 

4.4.4 Local segmentation by brain splitting 

Neonatal brain MR images typically exhibit higher intra-tissue intensity variability 

mainly due to the immaturity of developing brain tissues. The effects of intensity 

variability cannot be totally eliminated by inhomogeneity (bias field) correction 

and so its influences on tissue classification cannot be ignored. 

 

On the other hand, the EM algorithm described in the previous section is 

essentially a global scheme, which means that a tissue class throughout the image 

is modelled by as a single Gaussian distribution.  Global schemes often show 

limited performance if the intensity variability is significant. Figure 4.10 gives an 

example to illustrate this imperfection. The coronal slice in Figure 4.10(a) shows 

substantial intensity variability in both GM and WM, although boundaries between 

these tissues are clearly visible to human observers. The intensity variability, 

although not very noticeable to the naked eye, can be highlighted if different 

thresholds are used to extract cortical GM. In the case shown, the global 

segmentation oversegments the inferior-left area and undersegments the anterior-

left area. 

 

Since the tissue boundaries are visible, a local segmentation technique should be 

able to improve the results. This can be achieved if the brain is parcellated into 

multiple regions and a separate set of Gaussians is used to estimate the tissue class 

parameters in each region; that is, only voxels within in one region are used to 

estimate Gaussian parameters for that region. We have not found it necessary to 
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use overlapping regions or blending regional parameters, to ensure reliable 

segmentation at region boundaries although this is an option.  

 

A reasonable parcellation of the brain should balance the ability of PDF estimation 

to tackle local intensity variability and the segmentation stability to noise. If the 

brain is parcellated into too few regions and each one contains a large number of 

voxels, the local PDF estimation will be more robust, but the resulting 

segmentation tends to miss small details. The use of a larger number of smaller 

regions strengthens the ability to capture local intensity differences, but may suffer 

from lack of robustness.  

 

To perform the brain parcellation, we assemble a 4D vector ( )Izyxd ,,,=
r

 of all 

GM and WM voxels which have been labelled by the global segmentation step, as 

these two tissues have the most intensity variability. ( )zyx ,,  is the 3D coordinate 

of a voxel and I  is its intensity. A k-means clustering is performed on the 4D 

vectors and the coordinates of clustering centres are used to define a Voronoi 

tessellation on the brain space. The motivation for adding intensity I  to the feature 

vector is to prevent the regions with consistent local intensity from being split. The 

k-means algorithm is initialized by the centroids of large voxel groups. To avoid 

the convergence to local minima, the clustering process is repeated 10 times with 

random perturbations added to the initial centres. The maximal magnitude of 

perturbation along each axis is set to be 10% of the length of bounding box 

enclosing the initial centres. The maximal perturbation for intensities is 10% of 

mean WM intensity. Figure 4.10f-g shows the Voronoi regions obtained for one 

subject. The number of Voronoi regions is empirically determined, with 7 regions 

providing good performance in our experiments.  

 

The segmentation step is finally performed independently on every Voronoi region, 

initialized by the output of a global segmentation. As a result, the over-

segmentation of cortical GM is corrected (Figure 4.10(e)). In our experience the 
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intensity-spatial clustering usually generates a nearly uniform splitting for a brain 

mainly due to the spherical shape of the brain.  

(a)  (b) (c)  

(d)  

Figure 4.10.  (a) A typical T2w image has substantial 
intensity variability in WM, which degrades the 

segmentation. (b) A threshold of 450 is sufficient to 
segment cortical GM in the top-left part, but results in 
clear under-segmentation in the bottom-left area. (c) 

Increasing the threshold to 510 causes over-segmentation 
in the top-left area. (d) This intra-class intensity 

variability leads to segmentation errors if a global EM 
scheme is used (arrows indicate imperfections of 

segmentation). (f) The segmentation is improved by 
performing a regional segmentation to refine the output of 

the global method. The computed Voronoi regions that 
were used in (e) are shown in (f) and (g). 

(f)  

(g)  

(e) 
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4.5 Experimental approaches 

4.5.1 Selection of subjects 

We applied our method to 25 pre-term subjects selected from a large longitudinal 

MR study of cerebral development of pre-term and term-born neonates. The pre-

term infants were recruited from the Neonatal Intensive Care Unit at Hammersmith 

Hospital, and term-born control infants were recruited from the postnatal wards. 

Infants with congenital anomalies, metabolic disease or congenital infections were 

excluded and there were no focal lesions in the brains studied. The median GA at 

birth for these neonates was 28.86 (range 24–40) week and the median GA at scan 

was 34.86 (range 27–44) week. The median birth weight was 871g (range 370–

1,606 g). All studies were conducted with approval from Hammersmith Hospital 

Research Ethics Committee and the infants were scanned following written 

parental consent. Preterm infants born at <32 weeks gestation were scanned from 

within the first week of life to term equivalent age at varying gestations.  

4.5.2 Image acquisition 

MR images were acquired on a 3T Philips Intera system (Best, Holland) using a 

standard 6 head channel array coil. Preterm infants were sedated with chloral 

hydrate and a trained neonatologist was present throughout scanning. Term born 

controls were fed, swaddled and the examination was carried out in natural sleep. 

All infants were monitored with pulse oximetry and electrocardiography. Ear 

protection, consisting of silicon-based dental putty individually moulded and fitted 

into the external ear and mini-muffs (Natus Medical, San Carlos, CA) was used to 

achieve approximately 30 dB sound attenuation. The infant’s position was 

stabilized using a suction-evacuated pillow.  
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The MR sequence parameters were as follows: Multi-slice T2-weighted fast spin 

echo images composed into 3D pseudo volumes by prescribing an overlapping 

slice geometry were acquired with TR=1712/TE=160ms, FOV=220mm, matrix 

224× 224, flip angle 90°, slice thickness 2mm with 50% slice overlap and SENSE 

factor 1 with intensity normalized to a body coil image. All T2 weighted images 

were acquired in the transverse plane. The acquisition produces voxels at 

approximately 1mm spacing in all 3 orthogonal directions and the resulting T2 

images were interpolated to isotropic 0.86mm3 voxels using cubic B-spline 

interpolation. T1-weighted images were also acquired using a MPRAGE sequence 

for all neonates. However, the contrast between cortical GM and WM/CSF is less 

pronounced on T1w images. Therefore, we have only used T2w images in this 

study. As RF inhomogeneity is more pronounce in high field MR scanners, a bias 

correction procedure is performed for all images using the N3 software (Sled et al., 

1998) prior to the application of segmentation algorithm. 

4.5.3 Comparison with manual segmentations 

To quantitatively evaluate the segmentation results, the author first manually 

segmented three orthogonal slices for every subject. A radiologist then checked all 

manual segmenation and corrected any errors. A manual segmentation of the whole 

cortex in 3D was not attempted due to the complexity of the structure and the large 

number of partial volume voxels. The overlap ratio between the automatic and 

manual segmentation is quantified by the Dice similarity coefficient (DSC) (Dice, 

1945). For two segmented regions A  and B , the DSC is defined 

as:
BA

BA
DSC

+

×
=

I2
. A DSC of zero means complete dissimilarity and a value of 

one means perfect overlap. DSC measures above 0.7 are usually regarded as a 

satisfactory level of agreement between two independent segmentations (Zijdenbos 

et al., 1994).   
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To further evaluate the performance of EM-MRF-MLPV scheme, the number of 

false positives (FP) and false negatives (FN) between the automatic and manual 

segmentation are also computed. FP is defined as the percentage area of automatic 

segmentation that is not labeled manually and FN is defined as the percentage area 

of manual segmentation that is not labeled by the automatic approach. We also 

estimate the segmentation errors along the tissue boundary by calculating the 

boundary segmentation errors which is defined as the mean minimal distances 

between two contours extracted from automated and manual segmentation. 

4.6 Results and evaluation 

Label propagation is used to segment deep structures and exclude them from 

further analysis. As there are noticeable developments in the neonatal brains during 

the GA range from ~27 to 45 weeks, to aid the initial non-rigid registration used for 

label propagation, we empirically divided the 25 neonates into three groups 

according to their gestational age: ~27 – 34 weeks (simple brains, 9 subjects), 34 – 

39 weeks (medium brains, 6 subjects) and 39 – 45 weeks (complex brains, 10 

subjects), as the GA is positively correlated with increasing cortical complexity. 

One image was selected as an atlas for each group and the subcortical GM, 

myelinated WM, corpus callosum and cerebellum were manually segmented. The 

atlas image was registered to all other images in its group using the multi-level 

FFDs based non-rigid registration algorithm (Rueckert et al., 1999; Schnabel et al., 

2001). Parameters for the non-rigid registration were as follows: 4 levels of FFDs, 

control point spacing: 20mm, 10mm, 5mm and 2.5mm for each level, gradient 

descent optimization and normalized mutual information as the similarity measure. 

 

The atlas images were only used for the purpose of label propagation, and still 

segmented for performance evaluation. Figure 4.11 shows typical results of label 

propagation to exclude tissues in four infants spanning the age range. The contours 

of the propagated masks are overlaid on transverse and sagittal views. All subjects 
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were visually assessed for label accuracy and the label propagation strategy shows 

good performance in all three GA groups.  

 
Figure 4.12 illustrates the improvements produced by the MLPV removal step and 

local segmentation for a typical subject. A T2w coronal view of a preterm infant at 

term equivalent age whose images display significant WM intensity variability is 

shown in Figure 4.12(a). When only the global Gaussian mixture model and two-

step EM method is used, a substantial number of MLPV voxels can be seen on the 

CSF-GM and CSF-non brain tissue boundaries (Figure 4.12(b)). These voxels are 

assigned to the correct tissue class labels after the MLPV removal step is integrated 

into the EM iteration (Figure 4.12(c)). The segmentation of the inner cortical 

surface is improved when the brain splitting strategy is used, as shown in Figure 

4.12(d).  

 

Results of the automatic segmentation of a number of neonates at different 

gestational ages are presented in Figure 4.13. Visual inspection of these results 

shows that cortical GM is reasonably well segmented. Partial volume voxels on the 

CSF-GM and CSF-non-brain boundaries are successfully removed. The majority of 

 

Figure 4.11. Results of label propagation to exclude the deep GM and corpus callosum. From left to 
right, the gestational ages at scan are 29.86, 34.14, 39.86 and 44 weeks. 
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CSF voxels in sulci are correctly classified. Table 4.1 summarizes the results of the 

comparison with the manual segmentation. The mean DSC values for cortical GM 

and WM for each GA group are presented, for the case where four classes are used: 

GM, WM, CSF and non-brain background. The WM results exclude the corpus 

callosum and any WM within the region of deep GM removed by the initial label 

propagation step. The EM-MRF-MLPV scheme significantly improves the DSC 

measures of cortical GM and WM compared to the EM-MRF method when no 

Figure 4.12. An illustration to show the effects of refining the segmentation. (a) A coronal slice from a 
neonate scanned at 44 weeks. (b) When only the two-step EM method is used, voxels at the CSF-GM 
and CSF-nonbrain boundaries are classified as WM – i.e. they are mislabeled (MLPV effect, arrows). 
(c) This is successfully corrected if the MLPV removal step is integrated. (d) Refining the result using 

regional segmentation further improves the GM-WM delineation (e.g. at arrow). 

(c) (d) 

(a) (b) 
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MLPV removal step is performed (for GM: 43.13=t , 0.0001<P ; for WM: 

90.4=t , 0.0001<P ; paired t-test). The performance of the EM-MRF-MLPV 

scheme is further improved by the proposed local segmentation scheme (for GM: 

07.7=t , 0.0001<P ; for WM: 35.5=t , 0.0001<P ). This improvement is more 

noticeable in preterm infants with non cystic WM disease who have diffuse 

excessive high signal intensity injury (DEHSI) on T2W images. Furthermore, for 

the simple brain group, the intra-tissue class intensity variability is even more 

pronounced and we found that dividing the WM of these very premature infants 

into two tissue classes can improve the segmentation. A total of five classes (WM 

modeled by two Gaussian distributions) were therefore used. The second row in 

Table 4.1 summarizes the corresponding DSC values. Compared to the results with 

four tissue classes (the first row in Table 4.1), the improvement for GM are 

significant (for GM: 65.5=t , 0.0005=P ; for WM: 34.2=t , 0.0472=P ). The 

Figure 4.14. An example of intra-rater reproducibility test. The same subject is manually segmented 
twice by the same human operator. Good reproducibility is observed. 
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mean DSC of all 25 subjects is 0.758 ± 0.037 for GM and 0.794 ± 0.078 for WM. 

The overall performance is good to excellent compared to the manual labeling as 

neonates become more mature. This supports the statement that neonatal T2w MRI 

can consistently provide sufficient GM/WM contrast for intensity based 

segmentation in neonates from a very premature age to term-equivalent age. 

 

Table 4.2 reports the false positive and false negative errors using the three step 

EM scheme. Both FP and FN are low, showing a good agreement between 

automatic and manual segmentation. The boundary segmentation errors of cortical 

GM are reported in Table 4.3. The overall boundary errors are smaller than 1 voxel. 

Less than 10% of the GM boundaries show errors greater than 2 voxel, which 

indicates that large errors are not common. 

 

Reasonable intra- and inter-rater reproducibility is important for assessing the 

results of the automatic segmentation. For the estimation of the intra-rater 

variability, the same rater was asked to redo the segmentation of cortical GM on 

the same three orthogonal slices in 6 selected neonates. The time interval between 

two manual segmentations was four weeks. Table 4.4 lists the DSC values for these 

6 neonates. An example of this intra-rater reproducibility test is given in Figure 

4.14. The mean DSC is 0.874 ± 0.034, which suggests that the differences between 

two manual segmentations are relatively small and the intra-rater reliability is high.  

 

As for the inter-rater reproducibility, two independent observers had interactively 

marked the cortical and thalamic areas on every slice of 10 preterm infants in two 

of our previous studies. The variation between measured cortical surface area, 

volume and thalamic volume assessed by the different raters was less than 3% 

(Srinivasan et al., 2006; Kapellou et al., 2006). Prastawa et al. (2005) also reported 

good inter-rater reproducibility where the mean DSC values between two operators 

were 0.755 for GM and 0.758 for non-myelinated WM respectively.  
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4.7 Discussion 

We have presented a fully automatic segmentation algorithm for neonatal brain 

MRI with emphasis on the classification of cortical GM. After studying the 

intensity characteristics of both T1w and T2w MRI of developing brains from early 

premature to term equivalent age we identified the phenomenon of mislabelled 

partial volumes (MLPV) at CSF-GM interfaces, caused by the inverted GM-WM 

contrast, as a key source of errors in cortical segmentation. To address this problem 

we extended the classical EM-MRF scheme with a MLPV removal step. Our 

experiments show that this extension plays an important role in achieving accurate 

segmentation of cortical surfaces in neonates. Initial spatial priors for tissue class 

were obtained directly from the MR images of each infant using a k-means 

clustering. This method was adopted as there are no suitable probabilistic atlases 

available for neonatal brains and the rapid pace of development during this period 

of life undermines the use of a single atlas for the whole age range.  The intensity 

variability in WM in neonates can also be a challenge for global intensity-based 

segmentation methods. We therefore adopted an approach in which the brain is 

subdivided into a few Voronoi regions, each of which is segmented using the EM-

MRF-MLPV approach. Our method has been evaluated on T2w images from 25 

neonates with a wide range of gestational age (from GA ~27w to 45w), and the 

contribution of each algorithmic step has been demonstrated. The segmentation 

results have been validated against manual segmentation of selected orthogonal 

slices using the DSC similarity measure and verified by visual inspection. DSC 

scores of 0.758 ± 0.037 for GM and 0.794 ± 0.078 for WM confirm reliable and 

accurate segmentation for both preterm and term-born subjects.  

 

It is worth mentioning that even if an atlas were available, relying solely on the 

atlas may not be sufficient to eliminate all MLPV. There are a couple of reasons for 

this. First, the non-rigid registration between atlas and images may not be perfect 
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throughout the images, especially in the cortical regions. Second, the final posterior 

is determined by the combination of prior and class likelihood. The former is 

derived from the atlas while the latter is evaluated from the voxel intensity. As the 

MLPV voxels on the GM-CSF boundary can have exactly the same intensity levels 

as the WM, even a prior from an atlas may not be sufficient to guarantee the 

correct classification. Thus, the explicit MLPV removal step is necessary. This 

statement is supported by the illustration in Figure 4.15. Here the simple template 

is non-rigidly registered to a T2w image of a very premature baby using the FFD 

based approach (Rueckert et al., 1999) and usually the non-rigid registration will 

give even worse performance for more complex brains. 

(a)  (b) 

(c)  

Figure 4.15. An illustration of the 
necessity of integrating a MLPV 

removal step.  (a) A transverse slice 
from a neonatal T2w image (GA: 

29.86 weeks at scan). (b) A warped 
simple template with a non-rigid 

registration (FFD based approach) is 
used to initialize the EM scheme. 

There are still discernible MLPV that 
remain on the CSF-GM boundary. 
(c) The three-step EM method can 

remove MLPV.  
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Several algorithms have been proposed to address the problem of partial volume 

effects in the segmentation of images. These approaches are focused on the adult 

brain. The first approach was proposed by Santago P. and Gage (1993), who 

assumes a uniform prior probability for non-pure tissues and derives the intensity 

distribution of partial volumes by minimizing the distance between an image 

histogram and a model. Other approaches (e.g. Choi et al. (1991), Nocera L. and 

Gee (1997)) employ Markov Random Fields (MRF) to impose spatial smooth 

variations of tissue mixing proportions and a maximum a posterior (MAP) 

estimation is commonly computed for PV segmentation. A recent work by Van 

Leemput et al. (2003) presents a uniform framework for PV segmentation. This 

method assumes that an additional downsampling step is performed to cause partial 

volumes and estimates the mixing proportions to maximize the data likelihood. 

There is no heuristic assumption for the prior distribution of mix proportions. Very 

promising results have been reported for these PV segmentation algorithms applied 

to adult T1w MRI. However, they implicitly rely on the fact that the intensity 

levels of partial volumes in adult T1w images do not predominantly overlap the 

characteristic intensity of any pure tissue class (Figure 4.1(d)), which is not true for 

neonatal MRI due to the inverted gray-white matter contrast. Having corrected 

MLPV explicitly, these and more conventionally appearing PV (for example at the 

GM-WM boundary) could be further dissected using methods similar to the 

established PV segmentation for adult MRI. However, pilot experiments with our 

data showed that given the spatial resolution of our T2w imaging protocol this 

refinement did not appear to enhance the segmentation and so we decided not to 

explicitly estimate the mixing proportions. 

 

The current implementation exploits a label propagation strategy to automatically 

identify deep GM and myelinated WM. This process enables the segmentation of 

cortical GM and non-myelinated WM. The detailed delineation of deep central 

tissues, such as the thalamus and basal ganglia, may not be possible with current 

methods because of insufficient intensity contrast in these regions. Since these 
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structures show less variability between subjects than the cortex, a solution may be 

to use registration based label propagation methods possibly with the aid of 

additional spatial prior information from a probability atlas to refine the 

segmentation. Automated segmentation of deep brain structures in the neonatal 

brain remains a significant challenge, but if it can be achieved reliably, its use in 

combination with the current cortical approach could provide fully automated 

segmentation of the complete brain, so facilitating studies of complete cerebral 

circuits. 

 

There is no established gold standard for the evaluation of neonatal brain 

segmentations. In this chapter, we performed a limited evaluation using three 

orthogonal slices, which were intended to be representative for each subject. For 

adults a reliable gold standard for segmentation evaluation has been established 

based on simulated brain datasets (Cocosco et al., 1997; Collins et al., 1998). 

Development of analogous models or the use of standard datasets and manual 

segmentation of neonatal brains would be required to achieve a similar level of 

comprehensive evaluation of segmentation algorithms for neonatal MRI. 

4.8 Summary 

This chapter has presented an automatic cortex segmentation algorithm which 

detects and corrects mislabelled partial volume voxels. The inverted GM/WM 

contrast in neonatal MR images has been investigated to highlight the occurrence 

of mislabelled partial volume voxels, which is unique for developing neonates. The 

MLPV makes intensity-based tissue classification more difficult as a large amount 

of voxels on the WM/CSF boundary will be misclassified. To avoid these errors, 

the classic EM algorithm is modified and a knowledge-based partial volume 

removal step is added. The new three-step EM method is able to correct errors in 

the segmentation of both GM and WM compared to the classic EM scheme. 

Quantitative validation against manual segmentation demonstrates good 
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performance (the mean Dice value: 0.758 ± 0.037 for GM and 0.794 ± 0.078 for 

WM). The segmentation has been tested on 25 neonates with the gestational ages 

ranging from ~27 to 45 weeks. 

 

In conclusion, by identifying the MLPV phenomenon associated with the specific 

signal properties of MR images of the brain in neonates of varying gestational ages, 

we have developed and evaluated segmentation methods designed specifically to 

extract the cortical GM. The resulting methods are effective for segmentation of 

cortical GM over a wide range of GA. This serves as a starting point for effective 

cortical reconstruction, which will be the theme of the next chapter.  
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Chapter 5 

Cortical Reconstruction and 
Registration of neonatal MRI 

5.1 Introduction 

Cortical surface reconstruction is a step which immediately follows the 

segmentation technique described in the previous chapter and aims to accurately 

localize and represent the three cortical surfaces (inner, central and outer). As 

discussed in chapter 3, the reconstruction of cortical surfaces from MR images is a 

challenging task, due to the thin curved shape of cortical surface, the intensity 

inhomogeneity, limited image resolution and partial volume effects. Furthermore, 

the occurrence of noise in the MR images often causes errors in the cortical GM 

segmentation. This in turn leads to imperfections on the geometric mesh of cortex, 

as shown in Figure 3.3. As a result, an explicit surface reconstruction step is 

required which suppresses the influence of image noise and removes the 

imperfections in the cortical surface geometry. This will enable the morphometric 

quantification of the cortical geometry and allow tasks like human brain 

normalization and functional mapping to be carried out. 

 

In chapter 3, the state-of-art of cortical surface reconstruction for adults has been 

reviewed. Several authors have proposed algorithms to reconstruct the cortical 

surfaces from the results of a segmentation step. Both parametric and geometric 

deformable models have been used for this purpose. Parametric deformable models 

(Dale et al., 1999; Xu et al., 1999; MacDonald et al., 2000) transform the 
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segmentation results into surface tessellation and deform the surface with self-

intersection check and smooth regularization. On the other hand geometric 

deformable models (Zeng et al., 1999; Goldenberg et al., 2002; Han et al., 2004) 

use the implicit representation of cortex and deform the cortical surface by solving 

the level-set equation. An explicit triangulation of cortical surfaces can be obtained 

using isosurface algorithms such as the marching cubes algorithm (Lorensen and 

Cline, 1987; Han et al., 2003). In the end both parametric and geometric strategies 

can generate accurate and topologically correct cortical surfaces if the 

segmentation of cortical gray matter is satisfactory.  

 

To the best of our knowledge none of these techniques previously reported have 

been applied to neonates ranging from very premature to term equivalent age, 

which is partly due to the difficulties encountered in segmenting neonatal brain 

MRI. In last chapter, we have developed an adaptive knowledge-based cortical GM 

segmentation algorithm for neonatal MRI. We have shown that this algorithm 

achieves good-to-excellent GM segmentation results by explicitly removing the 

mislabelled partial volume voxels, which opens up the opportunity to achieve the 

good cortical surface reconstruction for neonates.  

 

In this chapter, we adopt an implicit surface evolution technique originally 

developed for adults (Han et al., 2004) to neonatal cortex reconstruction. Its 

performance is quantitatively evaluated by performing a detailed landmark study. 

In addition we develop a cortical surface registration technique that establishes 

direct correspondence between cortical surfaces across different gestational ages 

and subjects. The performance of this technique is evaluated by quantifying the 

established correspondences of main cortical features across multiple time-points 

in single individuals as well as between different subjects.  

 

To further evaluate the cortical segmentation-reconstruction pipeline for neonates 

(shown in Figure 4.6), we have collected a large number of MR brain images of 

neonates at different gestational ages (99 preterm infants with GA from 27 to 49 
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weeks). The proposed segmentation-reconstruction pipeline has been applied to 

these images and cortical surfaces have been successfully reconstructed for all 

subjects. Automated cortical morphometric quantification is achieved based on 

successful reconstruction and a number of different geometrical quantities are 

computed and analyzed to characterize the development and growth of the cortex.  

 

The remainder of this chapter is organized as follows: In section 5.2, the cortical 

reconstruction algorithm based on implicit surface evolution is presented. The 

cortical surface registration algorithm is the topic of section 5.3. Section 5.4 

describes the experimental setup for the evaluation of these techniques. The 

automated quantification of cortical morphology for the large number of preterm 

infants is reported in section 5.5. The final two sections 5.6 and 5.7 discuss the 

methodology and validation protocol and summarize the chapter. 

5.2 Cortex reconstruction using implicit surface 
evolution 

To reconstruct the cortex from the probabilistic tissue classification, an implicit 

surface evolution based cortical reconstruction framework is employed, which is 

originally developed in Han et al. (2004). Compared to other approaches for the 

reconstruction of the cerebral cortex, this implicit surface evolution approach has 

several advantages: First, it has the ability to reconstruct the inner, central and 

outer surfaces, while most other methods cannot easily recover the central cortical 

surface. Secondly, the approach explicitly includes a step which aims to improve 

the recovery of deep sulci. This step modifies the initial GM segmentation to create 

a thin, digital separation between sulcal banks. This is especially useful for MR of 

more mature neonates, since in general younger brains tend to have more tightly 

packed sulci compared to adults, which makes the recovery of deep sulci more 

difficult for neonates. Moreover, this method has been carefully validated in Tosun 
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et al. (2006). Finally, the computation time for the surface reconstruction is 

~10mins, which is acceptable for routine use. 

 

The level-set framework (Osher and Fedkiw, 2003; Sethian, 2007) is the key 

technique of this cortex reconstruction approach. The main feature of the level-set 

based surface representation is that the surface is defined by the zero level-set of a 

higher dimensional spatial scalar function ( )t,xrφ  (Figure 5.1). This avoids the need 

to represent the surface using a triangle or polygon mesh as is common in 

parametric surface representations. The embedded surface will be propagated with 

the temporal evolution of level set function ( )t,x
r

φ . To maintain the precision of 

numerical solution, φ  is chosen to be the signed distance function of the surface, 

which means the value at a spatial point equals the closest distance from this point 

to the surface with the negative value inside and positive outside (Osher and 

Fedkiw, 2003; Sethian, 2007).  

 

In general, the level set function can be evaluated by solving a set of time-

dependent Hamilton-Jacobi partial differential equations (HJ-PDE) (Osher and 

Fedkiw, 2003; Ian Mitchell, 2005; Sethian, 2007). Actually, as a strategy to 

simulate the dynamic implicit surfaces in image processing and computer vision, 

this HJ-PDE has been used in many other fields, such as fluid and combustion 

simulation, control, robotics, dynamic programming, mesh generation and financial 

mathematics (Adalsteinsson et al., 1997; Kimmel and Sethian, 1998; Adalsteinsson 

and Sethian, 2002; Sethian and Smereka, 2003; Wilkening et al., 2004; Hogea et al., 

2005; Sethian, 2007).  

 

A general time-dependent Hamilton-Jacobi equation, defined on fixed and 

structured lattice (image grid), has the following form: 

( ) ( ) 0,,,,, =∇+ xxxx φφφφ tHtt
rr     (5.1) 

subject to the initial condition ( ) ( )xx rr
0, φφ =t  when 0=t  
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Here ( )tt ,xrφ  is the partial derivative of φ  with respect to the time variable t . φ∇  

is the gradient of φ  with respect to the spatial coordinate xr . xxφ  is the second 

order derivative of φ  with respect to xr . If the dimension is higher than 1D, xxφ  is 

the Hessian matrix. The general Hamilton-Jacobi term is defined as 

( )xxx φφφ ,,,, ∇tH r . As suggested by its form, a fully general function H  can be a 

function of spatial coordinate xr , time t  or function value φ . It can even be 

nonlinear and can depend on the gradient and Hessian matrix of φ .  

 
The numerical approximation to the general function H  can be difficult. 

Fortunately, in the context of image processing and surface evolution, several 

Figure 5.1. An example of implicit surface representation. The star shape is represented by the 
zero-isocontour of a level-set function which is negative inside and positive outside. 
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special cases of H  are frequently sufficient, as shown in equation 5.2. As a result, 

the general form of level-set equation (5.1) can be simplified as: 

( )
( ) ( )
( ) ( ) ( )
( ) ( )

( )( ) ( )( )1,0,
,,

,,,

,,
,0

−∇+

∇⋅+

∇−

∇+

=

tsign
tt

tttxb

tta
tt

xx
xxv

xx

xx
x

rr

rrr

rrr

rr

r

φφ
φ

φκ

φ
φ

   (5.2) 

A HJ-PDE for surface evolution usually has the time derivative and at least one of 

the other four terms.  

 

The key step to implement the level-set equation (5.2) is to compute a numerical 

approximation to the time derivative and spatial derivatives (the last four items). 

As suggested in Osher and Fedkiw (2003) and Sethian (2007), a simple central 

difference scheme often fails to provide the sufficient numerical stability, which 

forces a tiny time step to be used and causes very slow convergence. As a result, 

approximation techniques with high-order precision have been proposed to 

improve the computation of time and spatial derivative of ( )t,xrφ  (Shu and Osher, 

1988; Shu and Osher, 1989; Osher and Fedkiw, 2003).  

 

The time derivative ( )tt ,xrφ  is usually approximated with a general Euler forward 

time difference, which provides first order of accuracy, as Osher and Fedkiw (2003) 

has suggested that the level-set equation is more sensitive to the precision of spatial 

terms, while the temporal truncation errors produce less deterioration of the final 

solution. However, more precision can still be achieved using the explicit total 

variation diminishing Runge-Kutta integration scheme (TVD-RK) (Shu and Osher, 

1988; Shu and Osher, 1989). The second-order accurate TVD-RK scheme is most 

frequently used as a replacement for the simple Euler forward time difference if 

necessary. In this scheme, an Euler step is first taken to advance the solution to 

time tt Δ+  to compute ( )tt Δ+,xrφ : 
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( ) ( ) ( ) 0,,
=+

Δ
−Δ+ tH

t
ttt xx

rr
φφ    (5.3) 

Then a second Euler step is performed to compute ( )tt Δ+ 2,xrφ : 

( ) ( ) ( ) 0,2,
=Δ++

Δ
Δ+−Δ+ ttH

t
tttt xx rr

φφ   (5.4) 

An averaging step leads to the improved estimation of ( )tt Δ+,xrφ : 

( ) ( ) ( )ttttt Δ++=Δ+ 2,
2
1,

2
1, xxx

rrr
φφφ   (5.5) 

This TVD-RK scheme guarantees no oscillations are produced as a side-effect of 

high-order temporal discretization (Osher and Fedkiw, 2003). 

 

The spatial term ( ) ( )tta ,, xx rr
φ∇  provides the surface motion along the normal 

direction ( )t,xrφ∇ . ( )ta ,xr  is the external force field which is application specific. 

For cortical reconstruction, ( )ta ,xr  is defined from the output of segmentation (see 

section 5.2.1 for details). The approximation of ( )t,xrφ∇  can be achieved using the 

upwind finite difference scheme (Chen et al., 1997; Osher and Fedkiw, 2003) or 

essentially nonoscillatory scheme (ENO) (Shu and Osher, 1988; Osher and Sethian, 

1988; Shu and Osher, 1989; Osher and Shu, 1991). The former analyzes the 

directions of the external force and propagation of truncation errors and simply 

picks the forward or backward difference to minimize the error propagation. The 

extra computational costs from the upwind finite difference scheme are less 

significant, but the analysis of error propagation can be complicated. The latter 

improves the precision by replacing the simple linear interpolant with smoothing 

polynomials, which is straightforward to implement but computationally more 

expensive. More details of the numerical solution and the theory of level set can be 

found in Osher and Fedkiw (2003). As an example, Figure 5.2 illustrates the 

motion along the normal direction. 
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The term ( ) ( ) ( )tttxb ,,, xx rrr φκ ∇−  works as a smoothing term in the surface 

evolution. With the positive speed ( )txb ,r , the direction of evolution will be 

opposite to the outer surface normal, which means the surface is gradually 

smoothed (Figure 5.3). The curvature item ( )t,xrκ  can be approximated by the 

central difference while the approximation of ( )t,xrφ∇  can be achieved using the 

upwind finite difference scheme or ENO. 

 

The term ( ) ( )tt ,, xxv rrr
φ∇⋅  denotes the motion along a external force field (actually 

( ) ( )tta ,, xx rr
φ∇  is a special case of ( ) ( )tt ,, xxv rrr

φ∇⋅ ). Again, the upwind finite 

difference scheme or ENO is used to compute ( )t,xrφ∇ . 
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Figure 5.2. An illustration to show the surface motion along the normal direction.  
As more iteration is performed, the curve gradually expanded. 
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The last term ( )( ) ( )( )1,0, −∇ tsign xx rr
φφ  is used to reinitialize the level set function 

to be a signed distance function, which is necessary to maintain the numerical 

precision and ease the distance computation. The corresponding equation is also 

called the “reinitialization equation”: 

( ) ( )( ) ( )( )1,0,,0 −∇+= tsigntt xxx rrr
φφφ   (5.6) 

As the ( )t,xrφ  can gradually deviate from its original nature of a signed distance 

function during the surface evolution, the reinitialization is generally performed as 

a helper step after a couple of level set iteration to transform the ( )t,xrφ  back to a 

signed distance function. 

 

Some geometric measures are easy to evaluate using the implicit surface 

representation. For example, the unit normal of embedded surface can be computed 

as: 
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Figure 5.3.  An illustration to show the curve motion driven by mean curvature. Compared to the 
previous example, there is progressive decrease in the mean curvature without expansion of the total

area enclosed. 
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φ
φ

∇
∇

=N
r

    (5.7) 

The curvature is defined as the divergence of the normal: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇
∇

⋅∇=⋅∇=
φ
φκ Nx

rr t,    (5.8) 

which can be estimated using the second-order finite difference scheme. 

 

In the applications to deform the 3D surfaces, every lattice point in the image 

domain needs to update in every time step. Therefore, the related computational 

complexity is ( )3nO , which may prohibit the effective surface propagation in the 

large images. The so-called “narrow-band” speedup strategy (Adalsteinsson and 

Sethian, 1995; Sethian, 1996) has been developed to decrease the computational 

costs. The key idea in this method is to build an adaptive strip around the zero-level 

set fronts. The update is only performed in this thin band of neighboring points, not 

in the whole image domain. Although the programming complexity is increased,  

Adalsteinsson and Sethian (1995) has shown the speedup is significant (~10 times, 

depending on the nature of problem) and the precision lost is generally acceptable 

for many applications. 

5.2.1 Cortex reconstruction using level-set evolution 

Starting from the probabilistic tissue classification obtained via the automated 

segmentation algorithm, the inner, central and outer cortical surfaces are 

reconstructed, thus enabling quantification of cortical changes during the early 

phases of brain development. 

 

The movement of the cortical surface can be determined by motion in the normal 

direction and the curvature and the equation (5.2) can be rewritten as  

    ( ) ( ) ( ) ( )ttttaat ,,,,0 xxxx
rrrr

φκωφωφ κ ∇⋅−∇⋅+=   (5.9) 
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The weights aω  and κω are empirically selected to differentially emphasize the 

motion along the normal direction and surface smoothness caused by the curvature 

term. 

 

The numerical solution of equation (5.9) can be obtained using the numerically 

stable finite difference method, either upwind scheme or ENO. Specifically, if the 

first-order forward time derivative is used, the above equation is resolved by 

computing the level set function for next time step tt Δ+ :  

( ) ( ) ( ) ( )( )ttttat attt ,,,, xxxx
rrrr

φκωφωφφ κ ∇⋅−∇⋅⋅Δ+=Δ+   (5.10) 

The level set function for the inner surface is initialized by the signed distance 

function corresponding to the binary segmentation of WM and its evolution stops 

when the probability of white matter voxels reaches ~0.5. This is achieved by 

defining the signed pressure ( )xrinnera  for the inner surface to be as follows (Figure 

5.4): 

     ( ) ( ) 12 −= xx rr
WMinner Pa    (5.11) 

Figure 5.4.  Surface evolution force for the inner cortex. The force is positive inside the WM, 
expanding the cortical surface while negative outside, shrinking the surface. The evolution will stop 

around the 0.5-isosurface.
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When the WM posterior probability is less than 0.5, the ( )x
r

innera  is negative, 

pushing the surface to move inwards. When the surface is within the WM, the 

( )xrWMP  is ~1. The ( )xrinnera  is positive and moves the surface outward. A small 

curvature force is required to constrain the smoothness of the surface. Han et al. 

(2004) found the weights aω  and κω   for determining the motion of the signed 

pressure curves by normal direction and mean curvature to be 1 and 0.02 

respectively. The same values are found to be appropriate for the reconstruction of 

the neonatal cortex.  

 

The outer cortical surface is obtained by evolving the level-set function initialized 

from the inner cortical surface with the signed pressure function defined as 

    ( ) ( ) ( )( ) 12 −+= xxx rrr
GMWMoutter PPa     (5.12) 

This definition removes the ambiguity with the inner 0.5-isosurface of ( )xrGMP , as 

the desired surface is also given by the isosurface of  ( ) ( )xx rr
GMWM PP + . This force 

will cause the surface to expand if inside the GM or WM and to contract if in the 

CSF. The same curvature force is also used to maintain the smoothness. An 

example of the signed pressure function for outer cortex is shown in Figure 5.5(b). 

 

Unlike the method in Han et al. (2004), we exploit a simple approach to compute 

the level-set function corresponding to the central surface: given that the obtained 

level-set functions innerφ and outerφ  for the inner and outer surfaces are signed 

distance functions, the central surface  is defined to be equidistant from the inner 

and outer surfaces; thus, the level set function for central surface centralφ can be 

computed by outerinnercentral φφφ +=  because the level-set functions used are negative 

inside and positive outside. The central surface can be explicitly generated as the 

zero-level isosurface of centralφ . As innerφ and outerφ may deviate from signed distance 

functions during the level-set evolution, either the reinitialization equation or fast 

marching algorithm (Tsitsiklis, 1994; Tsitsiklis, 1995; Sethian, 1996; Sethian, 1999; 
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Sethian and Vladimirsky, 2000) needs to be used before computing the central 

surface.  

 
Because the level-set evolution may not conserve the surface topology, a topology 

preserving level-set approach (Han et al., 2003) is used for both inner and outer 

surfaces. This approach preserves the change of digital topology of initial surfaces 

during the evolution by detecting the so-called “non-simple points”. A “non-simple 

point” is prevented from inverting its sign if this change will modify the local 

topology, as the level-set function is negative inside and positive outside. The 

topology preserving level-set algorithm prevents two sulcal banks from merging 

into each other and thus maintains sulci and reclassifies the probability of GM at 

Figure 5.5.  An illustration of topology preserving level-set to enhance the shape recovery of deep 
sulci. The first row: Original level-set scheme allows the topology change of embedded shape, which 

can cause the incorrect merging of two sulcal banks. Second row: With the topology preserving 
constraint, two sulcal banks will not merge as this will change the essential topology. Third row: 

During the surface evolution of the topology preserving level-set, the non-simple points are detected 
(colored in red). The sign of these points are kept unchanged to preserve the topology. Points with 

their sign changed during this iteration are marked in green. Note the sign inversion of a spatial point 
means the level-set front passes this position. 
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the sulcal regions, as illustrated in Figure 5.5, which favors the reconstruction of 

very thin sulci. 

 

The proper surface nesting is achieved by constraining outerinner φφ > . As the level 

set function is negative inside and positive outside, the lower value of outerφ  means 

the outer cortex always include the inner cortex.  

 

Cortical reconstruction algorithms for adults often assume that the topology of the 

cortical surface is equivalent to a sphere, and an explicit topology correction step 

may be used during the reconstruction (Goldenberg et al., 2002; Shattuck and 

Leahy, 2002; Han et al., 2004). However, since to the best of our knowledge the 

topology of the cortical surfaces at different gestational ages in developing 

neonates is not well documented, we have only preserved the topology of the input 

binary segmentation without imposing any prior assumptions. If a spherical 

topology is required, existing topology correction methods (Han et al., 2001; 

Shattuck and Leahy, 2001; Fischl et al., 2001; Kriegeskorte and Goebel, 2001; Han 

et al., 2002; Ségonne et al., 2005; Chen and Wagenknecht, 2006) can be applied in 

a straightforward way. 

5.2.2 Automatic sulcus enhancement 

As shown in Figure 5.6(a-b), the segmentation often fails to identify CSF correctly 

within tight sulci in neonatal brain. The most common cause for this is the 

insufficient image resolution compared to the small size of neonatal brain and 

partial volume averaging at voxels in the deep sulci.  On the other hand, the CSF 

layer within a sulcus which is often thin in neonatal brains may not even be present 

in the “back-to-back” sulcal regions. As a result, the external force for outer cortex 

defined in equation 5.12 can cause large inaccuracies for both outer and central 

cortical reconstruction (as the inner cortex is defined by the WM boundary, its 

reconstruction is less error-prone).  
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To address these difficulties, Han et al. (2004) has proposed to add an automatic 

sulcus enhancement step into the reconstruction pipeline. The idea is to modify the 

initial cortical GM segmentation to create a thin strip of CSF between two sulcal 

banks. This thin strip can be defined by the exterior skeleton of the inner cortical 

surface. Once the skeleton is identified, the fuzzy GM membership of voxels 

belonging to the skeleton can be reduced. This leads to the relabelling of the 

Figure 5.6. Signed pressure force 
for the outer cortical surface. (a) 

A axial slice overlaid by the 
contour of inner cortex, which 
serves as the starting point to 

recover the outer cortex. (b) The 
signed pressure force for outer 
surface. Note most of the deep 

sulci are not seen. (c) The 
enhanced signed pressure force 
shows the clear improvement in 

the deep sulcal region. 

(a)  (b) 

(c)  
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corresponding voxels as CSF. Note this method is essentially based on a-prior 

relating to the geometrical shape of sulci. 

 

The level-set framework is used to evaluate the exterior distance function ( )x
rD  to 

the inner cortex. The level set function remains a signed distance function as it is 

evolved for each time step and the following equation is solved to compute the 

( )x
rD : 

    ( ) ( ) ( )tDFtDt ,,0 xxx
rrr

∇+=    (5.13) 

where ( ) innerD φ=xr  at 0=t  and ( )x
rF  is a spatially varying speed function. This 

equation causes the inner cortex to expand along its normal under the force of 

( )x
rF . If ( )x

rF  is unity at every point in the image domain, then ( )x
rD  is 

guaranteed to be the Euclidean distance. 

 

In the sulci where there is evidence for CSF, the evolution of ( )x
rD  should stop 

within the CSF and this can be achieved by defining the force so it is reduced in 

these regions: 

    ( ) ( )xx rr
CSFPF 9.01−=     (5.14) 

Using this force definition, the moving front will slow down within the CSF and 

the skeleton estimated will be shifted towards the CSF. When there is no CSF,  

( )x
rF  will be unity and the gyral banks will be equally split along their skeleton. 

 

The localization of skeletal points from the distance ( )x
rD  equals to the detection 

the so-called “shocks” point of equation 5.13. At those shock points, the surfaces 

from two sulcal banks will merge and the gradient of ( )x
rD  will be small (as the 

( )x
rD  is the distance to the nearest sulcal bank). As a result, the value of 

( ) ( )tDF ,xx
rr

∇  will be much smaller than unity on the shocks. To maximize the 

numerical feature of shock points, ( )tD ,x
r

∇  needs to be estimated using the 
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central finite difference operator. As proposed in Han et al. (2004), the following 

criteria are used to identify the set of skeleton points S : 

   ( ) ( ){ }TDFS ≤= xxx
rrr  

    ( ) 0>xrinnerφ      (5.15) 

where the threshold T  is empirically set to be 0.8. The second equation constrains 

the skeleton points to lie outside of the inner cortex. 

 

With the identification of potential sulcal skeleton, related GM membership can be 

modified: 

   ( ) ( ) ( ) ( )xxxx
rrrr

GMGM PDFP =  if skeleton∈x
r   (5.16) 

For all other points, the  ( )xrGMP  remains unchanged. 

 

Figure 5.6(c) shows the performance of this sulcal enhancement process. In the 

cases where no CSF is present in the initial segmentation, the distance estimation 

and shock detection identify the skeleton. The corresponding GM membership 

function is modified to favor the shape recovery. 

5.3 Cortical registration for developing neonates 

Clinical studies have shown delayed cortical folding and white matter (WM) 

related macro- and micro-structural changes in preterm infants at term equivalent 

age (Counsell and Boardman, 2005; Kapellou et al., 2006). By analyzing changes 

in the neonatal cortex during the early phases of brain development, it may be 

possible to detect precursors of cerebral abnormalities prior to term equivalent age, 

which would allow treatment options to be tested during the neonatal period. Also, 

the rapid anatomical and functional evolution of the neonatal cortex itself is poorly 

understood by evolutionary biologists and neuroscientists. Cortical development 

during the third trimester of pregnancy is extensive with noticeable increase in 

cortical folding. In addition there is significant cortical variability across infants. 
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Thus, the precise localization and tracking of principal anatomical features, i.e. 

central sulcus and sylvian fissure, is difficult.  

 

As reviewed in Chapter 3, several researchers have presented algorithms to unfold 

and align the cerebral cortex in cross-sectional studies in adulthood (Carman et al., 

1995; Fischl et al., 1999a; Fischl et al., 1999b; Tosun et al., 2004b; Tosun and 

Prince, 2005). Methods based on cortex unfolding aim to inflate the highly folded 

surfaces and map the whole cortex (or hemisphere) to some standard 

representations like a flat surface or a sphere. The inflation process is normally 

regularized by ensuring that several constraints, like rigidity between neighbouring 

points, or the minimum distortion of local area and angle during the unfolding 

procedure. The alignment of corresponding anatomical features is partly achieved 

by identifying these features manually and then normalizing the spherical 

representation into a standard coordinate space. This requirement of maintaining 

strict point correspondences was relaxed by Tosun et al. (2004b). They applied a 

rigid surface registration to remove global misalignment between two cortical 

surfaces before applying a conformal mapping to transform them to a spherical 

representation. Although some measurements, such as surface area and distance 

can be computed with the spherical coordinate normalized by a rigid body 

transformation, this representation tends to smooth out fine-grain details of the 

complex cortical anatomy. However, in the developing brain, specific sulci can 

experience significant morphometric changes during the third trimester of 

pregnancy. Also, a global rigid body transformation clearly is not able to capture 

local non-rigid deformations occurring as a result of growth. Instead a non-rigid 

registration procedure is required to follow the growth of specific sulci across 

gestational ages (GAs). 

 

The aim of cortical surface registration in the developing brain is to develop a 

methodology which is able to track and quantify cortical development in neonates 

across different gestational ages and subjects. To enable the tracking of cortical 

development we have developed a cortical registration algorithm, which consists of 
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two stages: In the first stage the cortical surfaces are smoothed. For longitudinal 

surface registration the more complex cortical surface is progressively smoothed 

until it is maximally similar to the less complex cortex. For cross-sectional surface 

registration, both surfaces are smoothed until they are similar to each other. In the 

second stage any residual misalignment of the cortex is corrected by performing a 

non-rigid surface registration using free-form deformations (FFDs) (Rueckert, 

2007). We have performed a quantitative evaluation of the cortical registration by 

propagating sulci across multiple gestational ages and computing the overlap ratios 

with a manually established ground-truth labelling of cortical sulci. 

5.3.1 Adaptive surface relaxation 

Surface relaxation has been originally designed to smooth reconstructed polygon 

surfaces and to reduce artifacts which often appear as abrupt or stair-step artefacts 

in meshes. The relaxation process is also helpful for improving visualization 

(Drury et al., 1996; MacDonald et al., 2000). To facilitate any non-rigid surface 

registration, we here employ surface relaxation prior to the surface registration to 

inflate the more complex cortex.  

 

One iteration step of this relaxation process is defined as follows (Drury et al., 

1996; Timsari and Leahy, 2000; Tosun et al., 2004b): 

    ( ) i
t

i
t

i
t vvv ⋅+⋅−=+ λλ11     (5.17) 

Here i
tv is the position of vertex i  at the iteration t . [ ]1,0∈λ  is a pre-defined 

smoothing factor. i
tv is the average vertex position of all polygons sharing vertex i : 

     

∑∑ ∈
∈

⋅=
i

i

Nj
jj

Nj
j

i
t A

A
Cv 1

    (5.18) 

where jN  is the set of polygons using the vertex i . jA and jC are the surface area 

and centre of polygon j . Note this surface relaxation process maintains point-to-
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point correspondences, which makes the propagation of labelled cortical features 

from the original surface to its smoothed version possible. 

  

It is necessary to define a stopping criterion for the surface relaxation, so that the 

cortical folding complexity of the more complex surface is comparable to the 

folding complexity seen at the earlier gestational age. We have tested various 

cortical folding measures. In this thesis we have decided to use a criterion that is 

based on the computation of the intrinsic curvature index (ICI) and mean curvature 

L2 norm (MLN).  Both measures are dimensionless and measure different aspects 

of cortical folding complexity. The former is originally defined in Van Essen and 

Drury (1997), measuring the local intrinsic convexity of surface. The MLN is the 

L2 norm of the mean curvature of cortical surfaces which takes a minimum value 

for a sphere and is called bending energy (Batchelor et al., 2002). 

    ∫ +
=

S
dAKICI    

∫=
S

dAHMLN 2     (5.19) 

Here S  is the whole cortical surface. K  and H  are Gaussian and mean curvature. 

+
K  equals K  if 0>K  and otherwise it is zero. Both measures are computed and 

integrated over the whole cortical surface S . The surface relaxation will stop when 

both ICI and MLN of inflated surface fall below the corresponding values for the 

less mature cortex. An illustration of this surface relaxation is given in Figure 5.7.  

5.3.2 Non-rigid surface registration based on free-form 
deformations (FFDs) 

After smoothing of the cortical surfaces any residual misalignment is corrected 

using a non-rigid surface registration algorithm. We use an algorithm based on 

free-form deformations (FFDs) which is a powerful tool for modelling 3-D 

deformable objects (Lee et al., 1996). The basic idea of this scheme is to deform an 

object by manipulating an underlying mesh of control points. The resulting 
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deformation controls the shape of the 3-D object and remains as a C2 continuous 

transformation, which smoothly deforms the cortical surfaces.  

 

To define a FFD for a cortical surface S , we define the spatial domain occupied by 

this surface as follows: ( ){ }ZzYyXxzyxS ≤≤≤≤≤≤=Ω 0,0,0,,  and sφ denotes 

a zyx nnn ××  grid of control points i,j,kφ . The spacing between adjacent control 

points is uniform in all coordinate directions. The deformation of a vertex 

( )zyxi ,,=v  is represented as the 3D tensor of the 1-D cubic B-spline (Lee et al., 

1996; Rueckert et al., 1999): 

( ) ( ) ( ) nm,kl,ji
l m n

nmlilocal φwBvBuB +++
= = =
∑∑∑=

3

0

3

0

3

0
)(vT  (5.20) 

where ⎣ ⎦ 1/ −= xnxi , ⎣ ⎦ 1/ −= ynyj , ⎣ ⎦ 1/ −= znzk , ⎣ ⎦xx nxnxu // −= , 

⎣ ⎦yy nynyv // −=  and ⎣ ⎦zz nznzw // −= . lB  represents the l-th basis function of 

the B-spline. The basis functions of cubic B-spline have limited support. Therefore 

changing a control point in the grid affects only a 4×4×4 region around that control 

point. Surface registration is achieved by specifically moving the control points to 

minimize a cost function. The cost function which we try to minimize is the 

average symmetric spatial distance f : 

( )( ) ( )∑∑
==

−+−=
WS N

j
jj

W

N

i
localii

S
local N

T
N

f
1

2
1

2
,1,1),,( SwwWvvTWS ll

(5.21) 

where S  and W  are two cortical surfaces which are being registered. SN is the 

number of vertexes in surface S . WN is the number of vertexes in surface W . For 

every vertex Sv ∈i , ( )( )WTv locali ,l  defines the closest vertex of iv on the 

transformed surface ( )WTlocal . Similarly, for every vertex ( )Ww localj T∈ , ( )Sw ,il  

defines the closest vertex of jw on the surface S . The purpose of adding the 

second term is to force the registration of deep sulci. To ensure that the spatial 

transformation defined by the FFD is smooth, the standard second order 
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regularization penalty should be minimized (Wahba, 1990). This penalty is added 

to the surface similarity to produce the final cost function. 

 

5.4 Experimental approaches 

5.4.1 Landmark validation for cortical surface 
reconstruction 

The quantitative measurement of cortical reconstruction accuracy is difficult in 

neonatal MRI because of the lack of a ground-truth cortical surface. In the case of 

adults, simulated MRI images and datasets with manual segmentation have been 

used to validate cortex reconstructions (Zeng et al., 1999; Goldenberg et al., 2002; 

Kim et al., 2005). As no segmentation is available, landmark studies are often 

Figure 5.7. An illustration of cortex surface relaxation and non-rigid registration for a longitudinal 
study. A neonate was scanned three times. The inner cortical surface of the first scan (GA: 29.86 
weeks) is shown in (c). The cerebral cortex has undergone noticeable development by the scan at 

term equivalent age (GA: 39.86 weeks), as shown in (a). The inflated surface after adaptive 
relaxation is shown in (b), where the cortical folding complexity is substantially decreased. Non-

rigid surface registration is performed to align the less mature cortex (c) and inflated surface (b). The 
deformed surface of (c) is shown in (d). (e) renders (b) and (d) together. The zigzag pattern shows 

these two surfaces are spatially very close. 

 (a)  (b)  

 (e) 

 (c)  (d)  

2: Register 

Rendering 

1: Inflate 

3: Deform 

Rendering 
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performed. In these studies an experienced operator delineates landmark points on 

the inner/central/outer surfaces (Han et al., 2004; Tosun et al., 2006). We have 

adopted this approach using 10 subjects selected randomly, including infants from 

very premature to term equivalent ages. For each subject a neurologist marked 80 

landmark points located on the inner interface and 80 on the outer. These 

landmarks were placed directly in the source grey scale images and spatially 

distributed to cover the whole cortical area, with 20 points on each surface in each 

cortical lobe (frontal, temporal, occipital and parietal lobe). Surface reconstruction 

errors (SRE) were defined as the minimum distance between a given landmark and 

the corresponding reconstructed surface. The distance is negative if the landmark is 

inside the surface and positive if outside. 

5.4.2 Sulcus mapping and cortical lobe labeling 

To quantitatively evaluate the accuracy of the proposed cortical registration method, 

the main anatomical features on the cortical surfaces are manually marked by an 

experienced neonatologist. The manual labelling of one cortex can then be mapped 

to a second cortical surface and generate an automatic sulcus mapping via the non-

rigid deformation. The overlap between automatic labelling and the manually 

established ground-truth were computed as a quantitative measurement of 

registration performance. Both true positive (TP) and false positive (FP) errors are 

computed. TP is computed as the percentage area of the manual labelling that is 

accurately labelled by the automatic mapping. FP is defined as the percentage area 

of the automatic labelling that is not labelled manually.  

 

The central sulcus is selected and manually labelled for further validation. This 

sulcal region, defined as the buried cortex surrounding the sulcal spaces, is 

identified in both hemispheres. For the longitudinal studies, these sulci can be 

reliably tracked throughout the different gestational ages, which makes them good 

candidates to track the development of neonatal cortices. 
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For the inter-subject cortical registration, establishing the correspondence between 

corresponding main sulci is difficult due to the large inter-cortical variability. We 

therefore decided to perform some preliminary testing to validate the global 

applicability of the proposed registration approach by automatic propagation of the 

four cortical lobes from a template cortex to new subjects. Specially, the four lobes 

(frontal, parietal, occipital and temporal) were manually labelled in each template 

brain of the three neonatal groups (simple, medium and complex, as suggested in 

section 4.6). The Bayer and Altman atlas was used in the construction of the 

templates (Bayer and Altman, 2004; Bayer and Altman, 2005). All manual 

segmentations were initially performed in the sagittal plane and then checked in the 

other two orthogonal orientations (coronal and axial). For the frontal lobe, the 

anterior edge of the central sulcus is identified as the posterior-superior border. The 

parietal lobe is bounded by the body and splenium of the corpus collosum and the 

lateral ventricles inferior-medially. The parieto-occipital fissure is identified as the 

posterior border and separates this lobe from the occipital lobe. After the other 

three lobes are identified, the temporal lobe was constructed by subtracting these 

templates from the rest of the cerebral hemispheres where already the basal ganglia 

and brainstem had masked out by label propagation. The insular cortex is included 

as part of the temporal lobe. 

 

Figure 5.8.  The manually labeled temporal lobe area for the complex template. For the template of 
every GA group, all four lobes are manually segmented and the cerebral tissues are split into four 

regions accordingly. 
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As an example, Figure 5.8 shows the manually labelled temporal lobe for the 

complex template (GA: 40 weeks), where the whole hemisphere is split into four 

lobes accordingly and so is the cortical surface. The 3D renderings of the four 

lobes partition for all three templates are shown in Figure 5.9. For all following 

inter-subject cortical registration, these three templates are used.   

 

Given the manually labelled sulci or cortical lobes on a template cortex and the 

result of the cortical surface registration, a simple thresholding strategy is used to 

propagate these cortical labels to a new cortex.  We define a distance threshold  T  

to be the spatial size of a voxel in the image (e.g. 0.86mm in all tests). For a 

triangle vertex 1pr  on one surface 1S , a point 2pr  on surface 2S  corresponding to 

1pr  should satisfy the following criterion: 

     Tpp ss <−
21

rr      (5.22) 

where s
ipr  is the corresponding point to ipr  on the smoothed iS , 2,1=i . After 

mapping all vertices belonging to a template ROI to the new surface, the 

propagated ROI can be obtained by excluding all other triangles having no 

intersections with mapped vertices. 

 
Figure 5.9.  The 3D renderings of the four lobes partition for all three templates. 
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5.5 Results and evaluation 

5.5.1 Cortex surface reconstruction 

 After automatic segmentation of the cortical GM and WM, an implicit cortical 

surface reconstruction was performed for all 25 subjects (these are the same 

subjects used in Chapter 4). To evaluate the performance of the method we visually 

inspected the reconstructed surfaces and examined contours of intersection 

between the reconstructed cortical surfaces and 2D anatomical slices. The inner, 

Figure 5.10. Three reconstructed surfaces displayed on coronal slices of T2w MRIs of neonates of 
varying GA. Top left 29.86w, top right 34.39 w, bottom left 39.86w, bottom right detail of 39.86w.
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central and outer cortical surfaces were successfully reconstructed for all subjects. 

As an example, Figure 5.10 shows the 2D intersection contours of the inner, central 

and outer cortical surfaces for neonates over a representative range of GA. The 

corresponding 3D surfaces are presented in Figure 5.11. The colours on the 

surfaces indicate the mean curvature of the surfaces.  

 

The results of landmark validation are reported in Table 5.1.  For both the inner 

and outer cortical surfaces, the mean absolute distance errors are less than 1 voxel 

(<0.86mm), with less than 5% of all landmark points having an error of more than 

2 voxels. This illustrates that the overall reconstruction has sub-voxel accuracy for 

both the inner and outer surfaces. No systematic patterns were observed in the 

anatomical distribution of these errors, which may indicate that reconstruction 

errors are fairly uniformly distributed in the cerebral space. More detailed studies 

are ongoing to quantify reconstruction errors in specific cortical regions. 
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5.5.2 Longitudinal cortex registration and sulcus 
mapping 

We applied the cortical registration method to 15 images acquired from 5 neonates. 

These infants are selected from a longitudinal MR study of cerebral development 

of premature neonates. Every subject has had three longitudinal MR scans. The 

initial scans were performed between 27 weeks and 33 weeks gestational age. The 

second scans were performed at a mean GA of 35 weeks and the final images were 

acquired at the term equivalent age (mean of 41 weeks).  

 

 (a)  (b)  

 (c)  (d)  

Figure 5.12. Automatic sulcus labelling via non-rigid cortical registration for a neonate scanned 
three times. (a) The inner cortex of the second scan (GA: 33.86 weeks); (b) the cortex at term 

equivalent age (GA: 39.86 weeks). Their central sulci have been manually labelled. (c) Global affine 
transformation does not transform the central sulcus between the time points, while (d) non-rigid 

surface registration captures the local evolution. 
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MR images were acquired on a 3T Philips Intera system (Best, Holland) with the 

same MR sequence parameters as described in section 4.5. After acquisition, the 

T2 images were segmented using the algorithm described in section 4.5 and the 

inner cortical surfaces were reconstructed and used for registration.  

 

Figure 5.7 shows an example of the surface relaxation and cortical registration 

results between longitudinal scans. The more mature cortex is smoothed until its 

folding complexity is comparable to the less mature cortex. When working with the 

registration between two later scans (scans of 35 weeks and 41 weeks) where 

folding patterns are becoming more complex, we found that inflating ~35 weeks 

surfaces can improve the registration. Those cortical surfaces were therefore 

smoothed until their ICI and MLN decreased by 15%. The cortical surfaces at ~41 

weeks were then inflated to match folding measurements from previous time points. 

 

We have performed cortical registration between consecutive time points for all 

subjects. Also, we have registered the cortical surface at the first time point directly 

to the cortical surface at the last time point (term-equivalent age) which is more 

challenging due to the significant cortical development taking place during this 

time interval.  

 

To quantify the ability of the proposed registration method to localize and track the 

main anatomical features of the cortex, an experienced neonatologist was asked to 

manually label the central sulci on all 15 cortical surfaces. Following cortical 

registration, the native manual segmentations can be compared to those propagated 

from other cortical reconstructions. Figure 5.12 gives an illustration of this 

automatic sulcus labelling. Note that a significant amount of non-rigid deformation 

is required to map the sulcus extracted from less mature cortices to later scans. This 

deformation itself can be used to describe the local evolution of the cortex over 

time, which may not be explicitly represented using spherical mapping. 
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The overlap between automated results and manually established ground-truth 

were computed and both true positive (TP) and false positive (FP) errors are 

estimated. Table 5.2 summarizes the results. In all cases, the cortical registration 

with surface inflation shows the best performance. It is also clear that performing 

just global affine transformation is not sufficient for automated sulcus mapping. 

Direct non-rigid surface registration shows higher error rates possibly because the 

more folds a cortical surface presents, the more local optima the surface similarity 

can have. 

 

Once we have obtained a cortical registration, we can simulate the cortical 

development process using the resulting transformation. Figure 5.13 shows an 

example in which a less mature cortex (GA: 27 weeks) gradually morphs into a 

mature one (GA: 35 weeks). As the proposed registration method is able to 

establish the direct surface correspondence, sulcal development can be described 

by interpolating the spatial trajectory between corresponding vertices on the 

cortical surface meshes. For every triangle vertex on the less mature cortex, its 

deformation vector is computed via the FFD estimated during the registration. A 

simple linear interpolation is then used to obtain the intermediate surface at 

multiple time steps. Although no guarantee can be made that this interpolation 

process agrees with the true brain development, a visually plausible evolution is 

obtained, which suggests the established cortical surface correspondence is 

reasonable and consistent with multiple cortical features. 

    Table 5.2 
Mean overlap ratios of central sulcus mapping for intra-subject studies. 

1st  to 2nd 2nd to 3rd 1st to 3rd  
Affine    IM NR NR+I Affine IM NR NR+I Affine IM NR NR+I

TP 0.16 0.81 0.73 0.97 0.20 0.77 0.71 0.91 0.07 0.31 0.41 0.72 
FP 0.76 0.15 0.14 0.12 0.71 0.25 0.08 0.11 0.87 0.71 0.41 0.27 
• 1st  to 2nd: mapping central sulcus from the first scan to the second scan; 2nd to  

3rd and 1st to 3rd are similarly defined; 
• Affine: global affine transformation; IM: intensity based non-rigid registration;  

NR: only non-rigid surface registration; NR+I: non-rigid surface registration  
with adaptive surface inflation. 
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5.5.3 Inter-subject testing 

Using the same data as for section 5.5.2, each cortex is registered to its 

corresponding template (simple 27 weeks, medium 35 weeks and complex 40 

weeks). The labels of central sulcus are propagated from the template and 

compared to the manual segmentation. The true positive (TP) and false positive 

(FP) errors are computed. Table 5.3 lists the results. As with the intra-subject cases, 

the cortical registration with surface inflation shows the best performance. In both 

inter- and intra-subject experiments the intensity based non-rigid registration shows 

limited performance to align the cortical surfaces. The reason for the poor 

performance of the intensity-based registration compare to the surface-based 

registration is the intensity-based registration uses no explicit knowledge about the 

cortical surface. Figure 5.14 illustrates this phenomenon. Although the intensity-

based registration has largely matched the image intensities, the resulting 

deformation field shows unrealistic deformation on the cortical surfaces, which 

supports the idea that the surface based approaches are necessary in this scenario. 

  

The four lobe mapping has been performed between the manually labelled 

templates and target subjects. As mentioned in section 4.6, a total of three 

templates are used to divide the subjects into three groups that together span the 

full gestational range. Each subject is registered to its template designated 

according to gestational age and complexity of cortical folding. In this way an 

    Table 5.3 
Mean overlap ratios of central sulcus mapping for inter-subject studies. 

Simple Medium Complex  Affine    IM NR NR+I Affine IM NR NR+I Affine IM NR NR+I
TP 0.26 0.73 0.67 0.97 0.09 0.65 0.59 0.80 0.05 0.36 0.32 0.59 
FP 0.65 0.21 0.27 0.13 0.84 0.21 0.24 0.15 0.89 0.46 0.48 0.34 
• 1st  to 2nd: mapping central sulcus from the first scan to the second scan; 2nd to  

3rd and 1st to 3rd are similarly defined; 
• Affine: global affine transformation; IM: intensity based non-rigid registration;  

NR: only non-rigid surface registration; NR+I: non-rigid surface registration  
with adaptive surface inflation. 
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automated cortical parcellation is achieved for each subject. Figure 5.15 shows the 

four lobe labelling results for neonates with different gestational ages. The 

performance of the cortical parcellation has been visually reviewed by an 

experienced neonatolo gist to prove its success in all tested cases. No substantial 

errors in parcellation were found (i.e. there were no cases where the cortical lobe 

boundaries were located in incorrect cortical areas).   The labels of central sulcus 

are also propagated to each cortical surface. The central sulcus is also shown in 

Figure 5.15. 

 

  

 

(c) 

(a) (b) 

Figure 5.14. An illustration to show the limited performance of intensity based non-rigid registration 
to align the cortical surfaces. Compared to the situation without registration (a), the intensity based 
approach has largely registered two brains (b); however, the warped cortical surface can show clear 

unrealistic deformation (c). 
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5.5.4 Cortical morphological quantification for 
developing neonates 

To further evaluate the proposed approach, we have collected a large number of 

MR brain images from neonates at different ages. The proposed segmentation-

reconstruction framework was applied to this large group and cortical surfaces 

were generated. Results for all subjects are visually reviewed to ensure the success.  

5.5.4.1 Data acquisition 

Preterm infants were recruited from the Neonatal Intensive Care Unit at 

Hammersmith Hospital. None of the infants had congenital anomalies, metabolic 

disease or congenital infections or other pathological brain lesions, which is 

confirmed by our radiologists. The cohort consisted of 99 T2w images acquired 

Figure 5.15. Cortical parcellation and labeling of the central sulcus mapping. The gestational ages at 
scan for these neonates are (a) 29 weeks, (b) 32.29 weeks, (c) 38.29 weeks and (d) 42.71 weeks. All 
parcellation and labelling results are automatically generated by propagating the manual labelling in 

variant templates. 

(a)  (b)  

(c)  (d)  
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from 82 preterm infants born before ~34 weeks gestation. Preterm infants who 

weigh less than 1 kg were not sedated during the scan. Preterm infants, who weigh 

above 1 kg, were sedated with chloral hydrate 30-50mg/kg. All infants were 

stabilized using suction-evacuated pillows to reduce motion. The median 

gestational age at birth of these preterm infants was 28.44 weeks (range: 23.43 -

34.29 weeks). They had a median birth weight of 1.075 kg (range: 0.55 - 2.12 kg) 

and a median head circumference at birth of 25.5 cm (range: 23.5 - 27.1 cm). These 

infants were scanned between 27.14 weeks and 49.86 weeks post menstrual age 

(the distribution of GA at scan is shown in Figure 5.16). The median weight and 

head circumference at scan were 1.65 kg (range: 0.54 - 5.3 kg) and 29.7 cm (range 

22.1 - 39.1 cm) respectively.  

 
Automated cortical surface reconstruction was achieved using the proposed 

segmentation and reconstruction approach. Although no quantitative validation has 

been attempted due to the lack of ground-truth and time limitations, an experienced 

neonatologist has reviewed all segmentation and reconstruction results. 

Figure 5.16. The distribution of GA at scan for all images in the cohort. 
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5.5.4.2 Cortical morphometric statistics 

A number of different statistics have been computed and analyzed to explore the 

essential evolution patterns of developing cortex (Note some of these statistics 

have been applied to quantifying the cortex in Batchelor et al. (2002)). 

 

Cortical thickness (TH): The thickness of the cortex is evaluated as the sum of 

signed distance functions of the inner and outer surfaces. The reinitialization 

equation (equation 5.6) is applied to both inner and outer level set function before 

computing the thickness measure. 

 

Cortical surface area (SA): The cortical surface is represented as a triangular 

mesh. The surface area of this triangular mesh is computed to estimate the cortical 

surface area. The inner cortical surface is used since it preserves the shape of deep 

sulci well.  

 

Cerebral volume (BV): The cerebral volume is calculated from the total brain 

mask after excluding CSF (including ventricles) and non-brain voxels. 

 

Cortical volume (CV): The cortical volume is quantified as the spatial volume 

occupied by voxels between inner and outer surfaces. It is computed by counting 

the number of voxels which are positive in inner level set function and negative in 

outer level set function. 

 

Mean curvature (MC): The mean of two principle curvatures mink and maxk  are 

computed at each vertex. The principle curvatures are computed from the 

embedded implicit function, which is an advantage of the level set method (Osher 

and Fedkiw, 2003; Sethian, 2007).  

 

Convexity ratio (CR): The convexity ratio is defined as the ratio between the 

cortical surface area and the surface area of its convex hull. This measure is 
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dimensionless and invariant to surface orientation and scale. The convexity ratio is 

minimal for convex shapes. 

 

Isoperimetric ratio (IPR): The isoperimetric ratio is another scale-invariant 

measure, calculated by division of the cortical surface area by cortical volume to 

the power of 2/3. It is a dimensionless measure, reaching the minimum for a sphere. 

 

CR and IPR are zero-order measures of folding complexity of cortical surface.  

Both measures increase for more complex surfaces. 

5.5.4.3  Cortical thickness 

The mean cortical thickness is 1.64 mm with a range of 1.27-2.02 mm for all 

subjects, which agrees with the reported regular range of cortical thickness (1-

5mm). The thickness is slowly increasing with the gestational age at scan 

(averaging ~0.01 mm per week). This tendency is found to be statistically related to 

gestational age ( 0.4214=r , 0001.0<P ). 

 

 
Figure 5.17. Mean cortical thickness during development of the whole cohort. 
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5.5.4.4 Cerebral volume, surface area and cortical volume 

The cerebral volume (BV), surface area (SA) and cortical volume (CV) are plotted 

against the gestational age at scan in Figure 5.16. The absolute increase of these 

measures with GA can be observed. The mean cerebral volume is 229 cm3, 

increasing from 82 cm3 to 452 cm3 for the whole cohort. The surface area ranges 

from 144 cm2 to 933 cm2 (mean SA: 455 cm2) and the cortical volume from 27 ml 

to 204 ml (mean CV: 86 ml) (Figure 5.18). All three measures are found to 

significantly increase with the gestational age (linear regression, BV: 0.9261=r , 

0001.0<P ; SA: 0.9302=r , 0001.0<P ; and CV: 0.9363=r , 0001.0<P  ).  

5.5.4.5 Scaling relationship 

The relationship between cortical surface area and volume can be expressed as a 

scaling relationship. Ideally, for a sphere the surface area s and volume v follow a 

scaling relation with the form of akvs =  where α = 2/3 is a scaling exponent and k 

is a constant. Transforming to log coordinates, we obtain cvs += loglog α  where 

c = log k.  

 

In the case of developing brain, the surface area becomes relatively larger as the 

brain grows. It might be expected to find a scaling relationship between SA and 

CV, but with a larger value of α compared to that of a sphere. The value α can be 

estimated by plotting a scatter graph of log s against log v and determining whether 

the data lie approximately on a straight line.  

 

Indeed the log-log plot of surface area versus cerebral volume is quite linear 

(Figure 5.19). The scaling exponent for the SA to BV is 1.14 (95% CI: 1.10 to 1.18) 

and for the SA to CV, the exponent is 0.89 (95% CI: 0.85 to 0.93).  
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Figure 5.18. Cerebral volume, surface area and cortical volume in preterm infants  
with and without lesions during development.  
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Figure 5.19. Scaling relationships in preterm infants including subjects with and without lesions 
during development. (a) Log-log plot of the cortical surface area (SA) against the total brain volume 
(BV). The regression equation is ( ) ( ) 1085.0ln143.1ln −×= BVSA . (b) Similar plot of the SA to CV. 

The linear regression equation is ( ) ( ) 172.2ln8896.0ln +×= CVSA . 

(a) 

(b) 
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5.5.4.6 Mean curvature, Convexity ratio and Isoperimetric ratio 

These three measures (MC, CR and IPR) quantify the complexity of cortical 

folding pattern. As expected, the mean curvature increases with the gestational age 

at scan (Figure 5.20). The mean curvature rises from 0.33-1.2 mm-1. The overall 

increase is significantly related to the GA ( 0.9189=r , 0001.0<P ), while the 

tendency starts to slow down after ~40 weeks. 
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Figure 5.20. Mean curvature during development of the whole cohort. The mean curvature of the 
whole cohort of preterm infants increases with the gestation age. 

 
The convexity ratio is given by the ratio of the cortical surface area and convex 

hull surface area. We have also observed a significant increase in CR with GA at 

scan as shown in Figure 5.21 ( 0.9072 =r , 0001.0<P ). 

 

The CR also tails off by ~40 weeks which agrees with the finding of mean 

curvature. This may suggest the increase of surface area begins to slow down at 

that stage.  

 

The isoperimetric ratio ranges from 13-29 for all subjects. The isoperimetric ratio 

is rising until approx. 36 to 40 weeks (Figure 5.22), suggesting that at the early 

stage the increase in cortical area is much faster compared to the volume increase 



5.5    Results and evaluation 202 
 

 

and while the infants are more mature, the cortex tends to become thicker, not to 

develop more folds. 

 

5.5.4.7 Regional variations in cortical morphology 

We have applied cortical parcellation to all subjects and the regional cortical 

volume, surface area are calculated. As expected, all four regions increase in 
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Figure 5.22. Isoperimetric ratio during development of the whole cohort. The rapid increase in IPR 
with gestational age at scan occurs until ~36 weeks. 

Figure 5.21. Convexity ratio during development of the whole cohort. Clear increase in convexity 
ratio of the whole cohort of preterm infants with gestational age at scan till 40 weeks is depicted. 
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volume and area with GA, while the differences during the development of these 

cortical regions can be viewed in Figure 5.23.  
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(a) 

Figure 5.23. Regional cortical morphology of the whole cohort during development. (a) The frontal 
lobe shows increased SA compared to all other regions and the occipital is significantly reduced 

compared to the other lobes. (b) Cortical volumes show similar pattern although the temporal and 
parietal lobes are not significantly reduced compared to frontal lobe volume. 
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5.6 Discussion 

In this chapter we have developed a method for cortical surface reconstruction 

using implicit surface evolution. This level-set based framework is able to generate 

a complete cortical surface representation, including the inner, central and outer 

surfaces of the cortex. The precision of the resulting extracted surfaces has been 

verified by direct comparison with manually positioned landmark points and found 

to be in agreement to within ~1 voxel for each of the inner and outer cortical 

boundaries. The cortical reconstruction has been applied to perform a preliminary 

quantitative study of different cortical morphological parameters on a large group 

of preterm infants with different gestational ages. The results of this preliminary 

analysis show systematic trends, which in themselves provide a form of validation 

of the method. The scaling laws found relating cortical surface to brain volume are 

in accord with previous work showing that surface area/volume growth in the brain 

during this period of development obeys an allometric scaling law of 

approximately 1.29 (Kapellou et al., 2006), while there is only marginal increase in 

cortical thickness.  

 

Although the overall performance of the method is good, the precision of 

reconstructed outer cortex can be problematic in deep sulci. This is mainly due to 

the insufficient image resolution and tight sulci in the immature brains. The current 

solution integrated into the reconstruction pipeline is based on the detection of 

exterior inner cortical skeleton. If there are no clues of CSF, this method tends to 

split the gyral banks equally. Although this is a reasonable assumption without 

other image clues, the equidistant skeleton may not in fact agree with the real 

anatomical configuration of deep sulci. On the other hand, as the numerical scheme 

used to solve the level-set equation can only capture the features which are not 

smaller than 2 or 3 voxels, the very thin sulci generated by the skeleton 

enhancement may not be sufficient to stop the level-set front. This problem can be 
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partially solved by over-sampling the images; however this leads to higher 

computational costs. Due to the essential ambiguity for the outer cortical surface in 

the deep sulci from neonatal brain MR images, the inner cortical surface is used for 

further surface registration and cortex morphometry quantification. 

 

The less than perfect recovery of deep sulci is related to thickness measures which 

are always affected by the CNR and spatial resolution. This might explain the 

limited increase of measured cortical thickness (TH) with increasing GA. It is 

worth mentioning that any validation of the TH measures requires careful post-

mortem and 3D normal neonatal correlations. In the current study, we have 

emphasised global thickness measurements. However, regional variations in 

thickness within individual gyri and sulci may be more biologically interesting as 

they may give insight into the different cortical layers and in turn their functional 

significance when coupled with functional MR imaging (fMRI) data, which is one 

of the topics for our further exploration. 

 

On the other hand, we have shown that with the effective cortical segmentation-

reconstruction workflow developed, it is possible to perform automated neonatal 

cortical morphometry. Indeed these computerized techniques ease the workload for 

the human operator and even outperform the experts as many statistics can not be 

measured from manually labelled 2D slices, e.g. mean curvature and more 

complicated second-order statistics, i.e. MLN and ICI.  

 

In this chapter we have also developed a cortical registration approach, which has 

the ability to track neonatal cortical development. This is of great importance in 

studying brain evolution in the early phase of human life. Unlike the methods 

based on spherical mapping or other intermediate coordinate transformation, the 

proposed algorithm aims to establish a direct point-to-point correspondence across 

different cortical surfaces. An adaptive surface inflation step is introduced to 

smooth out the less significant sulci and gyri. A quantitative validation of cortical 

registration is achieved by computing the overlap ratio between the automatically 
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labelled main sulci and manually established ground-truth. The direct nature of the 

proposed surface registration method allows the recovery of the cortical 

development trajectory.  

  

The evaluation results in this chapter show that the non-rigid registration achieves 

better performance if the cortical surfaces are partially inflated. We hypothesize 

that partial inflation reduces the likelihood of the algorithm stopping in local 

optima of the surface similarity measure. This aids the registration performance. 

However, the inflation may smooth out the secondary sulci and other smaller 

features, which can limit the non-rigid surface deformation to only capture 

significant remaining features. This might be reduced by designing a knowledge-

based surface similarity measure based on sulcus shape. Improving the surface 

initialization method may also reduce the degree of inflation needed for effective 

non-rigid registration. In the future we would like to apply this type of registration 

technique to both fetal and neonatal brains at different gestational ages in order to 

develop atlases of normal cortical growth patterns so that temporal events in altered 

cortical development of preterm infants can be identified. 

5.7 Summary 

In this chapter we developed a technique for neonatal cortical reconstruction by 

integrating the implicit surface evolution technique. A comprehensive landmark 

study is performed to evaluate the surface reconstruction. Isotropic reconstruction 

errors are less than 1 voxel. A cortical registration technique is also developed. We 

have shown the proposed strategy has the potentials to map the main sulcal features 

and cortical lobe labelling across multiple cerebral coordinate systems, which will 

favor the automated cortical tracking during the early phase of life. 

 

This framework, to the best of our knowledge, is the first to successfully 

reconstruct cortical surface models from neonatal MRI. This serves as a starting 
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point for both longitudinal and cross-sectional studies of cortical morphology in the 

developing brain. 
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Chapter 6 

Conclusion and Outlook 

6.1 General conclusion 

The main objective of this dissertation has been the development and validation of 

computerized techniques to model the cerebral anatomies in neonates.  Specifically, 

we have focused on the following two challenges: 

 

• Cortical segmentation and reconstruction of neonatal MRI. A complete 

cortex reconstruction framework has been developed to reconstruct the 

inner, central and outer cortical surfaces for neonates over a large range of 

gestational ages. This neonatal cortical reconstruction framework, to the 

best of our knowledge, is the first to successfully reconstruct cortical 

surface models from neonatal MRI. The key part of this framework is the 

automatic cortex segmentation algorithm which detects and corrects for 

mislabelled partial volume voxels that are a specific feature of neonatal 

MRI data because of the different contrast between GM and WM as 

compared to the adult pattern. An implicit surface evolution technique is 

employed to reconstruct the cortical surface based on the improved cortical 

GM segmentation. A comprehensive landmark study is performed to 

evaluate its accuracy. In addition a cortical registration technique is 

developed. The proposed strategy is capable of mapping main sulcal and 

cortical lobe labels across multiple cerebral coordinates, which makes the 

automated cortex tracking during the early phase of life feasible. 
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• Cerebral vasculature extraction and modelling of neonatal MRI. A 

methodology is presented for automatically extracting and matching 

cerebral vasculatures from MRA-TOF images. Its performance has been 

tested in neonates at various gestational ages. The extraction step consists 

of automatic seed generation, optimal scale estimation and a ridge 

transversal algorithm. Even when the SNR is low the proposed method is 

able to provide seeds covering the whole vessel tree allowing extraction of 

most visible vessels. The consistency of the vessel extraction in the 

presence of noise has been demonstrated by computing the averaged spatial 

distance between extracted vessel trees for different levels of noise. A 

vessel tree matching algorithm is developed for use in longitudinal studies. 

This allows the vasculatures of neonates at different ages to be compared in 

the presence of growth and development. The resulting tree matching 

algorithm is able to recover branch-by-branch correspondences and can 

highlight newly-developed vessel segments. With the computerized 

vasculature modelling in hand, 3D vessel morphology quantification can be 

performed. In the preliminary experiment, reduced tortuosity of middle 

cerebral artery (MCA) in pre-term infants has been demonstrated. This 

finding agrees with a previous clinical study, supporting the clinical 

applicability of proposed techniques.  

 

The most difficulty of effectively validating proposed algorithms is related to the 

lack of ground-truth. In this dissertation, both quantitative and qualitative 

validations are performed. The former relies on the manually established ground-

truth and the later is mainly based on visual inspection. Since the proposed 

techniques appear to generate good results in the initial experiments, they have 

been made accessible to all clinicians in our institute. It is hoped that routine use of 

proposed algorithms will help to enhance their clinical applicability and finally 

lead to a highly effective solution. 
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6.2 Future work 

There are a number of interesting questions raised by the work presented in this 

dissertation, involving both the methodology development and clinical applications.  

 

As for the methodology development, an unsolved challenge is to develop a spatio-

temporal model of the human cerebral cortex during the early phase of brain 

development. The resulting spatio-temporal model will allow the proper 

parameterization of the cortical shape and patterns in terms of space and time. 

Once such a model is constructed, it is possible to compare the cortical surface of 

an individual subject with a population average, to predict the cortical development 

and to correlate cortical development with neuro-cognitive abilities. The 

construction of this model requires the accurate segmentation and reconstruction of 

the cortical surfaces for neonates with a range of gestational ages. It also requires 

effective cortical registration across subjects and gestational ages. Both of these 

challenges have been addressed in this dissertation. The next step is to apply the 

proposed technique to a representative large dataset and study the proper biological 

or mathematical models to combine the inter-subject variability of cortical 

development. The output will be a 4D cortical growth-map for neonates. A proper 

cortical growth interpolation scheme needs to be developed and validated to 

generate the growth between those time points at which the growth map is defined.  

 

The idea to build the spatio-temporal cortical model can be extended to cover the 

whole cerebral area, which requires the effective delineation of central deep 

structures, e.g. thalamus and basal ganglia. As no published attempts to segment 

those tissues exist, more studies are required. The main difficulty in achieving a 

good segmentation of central deep tissues is the presence of partially myelinated 

WM. Although no mislabelled partial volume voxels appear, the contrast between 

myelinated WM and thalamus is far from satisfactory. This may prohibit intensity-

based segmentation methods from being effective. However, as has been shown in 

chapter 4, non-rigid registration can perform well in these tissues because of less 
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curved geometrical shape and lower inter-subject variability. We propose to 

segment the subcortical regions using the label propagation based techniques which 

rely on the registration between the target image and a group of templates. For 

every template, the different tissue classes have been manually segmented and the 

labels are propagated into the new subject using the non-rigid registration. 

Normally a voting strategy is required to combine the information from multiple 

templates.  

 

The work presented in this dissertation also enables clinical applications to study 

the neonatal brain development and quantify the influences of different pathologies. 

Among them is the subject of automated cortical morphometry. Although we have 

shown the automated cortical morphometric analysis is possible given the proposed 

segmentation-reconstruction workflow, no detailed studies have been performed to 

track the global or regional morphometric changes across different GA or 

pathological groups. With the help of cortical registration and mapping approaches, 

the morphometric quantification can be extended to track the changes for a specific 

cortical lobe or sulcal region, which present a clear improvement compared to the 

global measurement. 

 

Both cerebral cortical surfaces and vasculatures can be extracted for a specific 

subject, which offers the unique opportunity to relate both anatomies. Although 

existing clinical studies have shown the preterm birth can delay the development of 

cortical surface and cause the less curved cerebral arteries, it is still unclear which 

phenomenon dominates the brain development. Also, it is expected that less curved 

arteries are correlated with delayed cortical development. This suspicion will need 

to be further examined as well. 

 

The interactive stimulation between methodology development and clinical 

investigation will make benefits for both sides. We believe that the work presented 

in this dissertation will open new opportunities for researches of both developing 
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human brain and computational anatomy modelling, and will serve as a starting 

point for more novel studies. 
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