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Abstract

Preterm birth affects around 5% of births in industrialised countries and its con-

sequences contribute to significant individual, medical and social problems. The

principle morbidity among survivors is neurological, resulting from the profound ef-

fect of preterm birth on the developing brain: half of all infants born at less than

25 weeks have neurodevelopmental impairment at 30 months of age, and in less im-

mature infants, neuropsychiatric problems are common in the teenage years. The

structural correlates of functional disorders are, however, poorly characterised.

This motivates the study of the growth of the preterm brain from birth through

infancy. However, difficulties in analysis arise due to the absence of a standard

anatomical template for either the neonatal or the infant brain. This thesis focuses

on the unbiased, average atlas construction for populations. Methods for groupwise

registration have been developed in order to create atlases representing the average

shape of a population. In addition, groupwise segmentation techniques have been

developed to segment a population of aligned subjects, in order to obtain probabilis-

tic atlases of a population. Finally, groupwise registration and segmentation have

been combined in order to obtain more accurate representations and segmentations

of the average shape.

Groupwise registration has been used to create average atlases of the preterm and

term-born neonate at term-equivalent age, and these atlases have been compared us-

ing deformation-based morphometry to determine quantitative differences between

the populations. Groupwise registration and segmentation have furthermore been

used to create average intensity and probabilistic segmentations of populations of

one- and two-year-old subjects. The growth occurring between these two time points

has also been quantified.
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Chapter 1

Introduction

Preterm birth is defined as the delivery of a baby before 37 completed weeks of ges-

tation (compared to 40 weeks for a full-term infant). In most industrialised coun-

tries, preterm birth typically occurs with an incidence of around 5-7% [250], and

its consequences contribute to significant individual, medical, social and economic

problems globally. Preterm birth is associated with long-term neurodevelopmental

impairment including cognitive and behavioral problems [157, 162].

Around 75% of all perinatal deaths are of infants born preterm [218], with most

morbidity and mortality occurring in very preterm (delivered before 32 weeks ges-

tation) and extremely preterm (delivered before 28 weeks gestation) infants. Over

the last 20-30 years, developments in neonatal medicine have improved the out-

comes of infants born preterm. However, the effects of preterm birth still extend

into later life, and it is a major cause of neurocognitive impairment in childhood

[1, 157]. This is likely to be due to the profound effect of preterm birth on the

developing brain. Figure 1.1 shows a magnetic resonance (MR) scan of an infant

born and imaged at 24 weeks, and imaged again at 40 weeks (term-equivalent age).

It can be seen that a huge amount of growth and increased complexity of structures

occurs between these two time-points. A comparison of a preterm and term-born

infant at term-equivalent age is shown in Figure 1.2. There is increased fluid-filled
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(a) (b)

Figure 1.1: T2 images of a preterm-born infant (a) at 24 weeks (b) at 40 weeks.

space surrounding the brain structures and reduced cortical folding [4, 209] in the

preterm. This shows that the exposure to an extra-uterine environment has affected

the growth of brain in the preterm infant.

The objective of this thesis is to develop computational techniques that can be

used to analyse the growth of the brain in infants born preterm. To do this, we

aim to create average representations of anatomy at various time-points through

infancy. These can be compared to the anatomy of term-born control subjects at

an equivalent age to determine differences between the groups, or to each other, to

analyse growth between time-points.

Advances in MR imaging techniques have made the non-invasive acquisition of

high-resolution three-dimensional (3D) images of the brain increasingly feasible.

By acquiring and analysing images from large populations of subjects, structural

and functional trends in the population can be determined. Central to the task

of structural analysis of a population is the concept of an anatomical atlas. This

specifies a standard coordinate system for analysis and defines typical or ”normal”
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(a) (b)

Figure 1.2: T2 images of (a) a preterm infant born at 26 weeks and imaged at 40
and (b) a term-born infant, born and imaged at 40 weeks.

anatomy for the group. Atlases can be constructed either from a carefully-chosen

individual (e.g. the Talairach atlas [234]), or from combining the scans of many

subjects (e.g. the MNI (Montreal Neurological Institute) atlas [80]). The formation

of a representative altas enables the comparison of individuals, the comparison of

groups of subjects, or the tracking of changes over time. This type of morphometric

analyis has been extensively used in the study of adult neurodegenerative disorders,

such as Alzheimer’s, Schizophrenia and autism [87, 86, 244, 8, 61, 258, 174].

However, unlike the case for adults, no standard anatomical atlas exists for the

neonatal or infant brain, either using an individual subject or the combination of

multiple subjects. This thesis focuses on the building of unbiased atlases of the

neonatal and infant brain and the subsequent analysis of these atlases (although the

techniques developed are applicable to any population). The aim is to use MR scans

of multiple individuals to gain information about the development of the brain of

infants born preterm. To do this, two methods of MR image analysis are developed:

1. Image registration: the geometric alignment of images such that equivalent
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features are brought into spatial correspondence.

2. Image segmentation: the automatic delineation of structures within an MR

scan.

The ability to achieve the above allows individual structures to be easily compared

across individuals, groups or time.

1.1 Neurodevelopmental outcome following preterm

birth

The EPICure study [261] of 283 infants provided a large-scale survey of infants born

extremely preterm, assessed at 30 weeks gestational age, and followed up at six

years of age when disabilities are better able to predict long-term impairment. At

30 weeks, it was found that 49% of survivors had impairment of one or more of neu-

romotor, mental, psychomotor, sensory or communication developmental domains,

with 23% meeting the criteria for severe disability. These infants were reassessed at

six years, with results compared to age-matched classmate controls. It was found

that 34% suffered from mild disabilities, indicated by neurological signs and mini-

mal functional impairment such as squints. 22% were classified as severely disabled

and dependent on care-givers. These children had IQs of more than three standard

deviations below the mean, sensorineural hearing loss and impaired visual function.

A further 12% of the population had disabling cerebral palsy [157]. Overall, 41% of

the children studied displayed cognitive deficits, compared to 1% of the classmate

controls.

Importantly, most impairment seen is neurological, with the cognitive domain more

frequently affected than neuromotor function, hearing or vision. Other studies glob-

ally have found similar results [73, 79, 121, 187]. Studies of very preterm infants have

also shown agreeing results on neurologically-based problems faced in adolescence
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and later life:

• Poor educational achievement and even school failure [101, 162, 210].

• Behavioural and social difficulties [90, 109].

• Attention problems including Attention Deficit Hyperactivity Disorder (ADHD)

[27, 33].

• Fine motor skill impairment [156].

1.2 Neonatal and infant brain imaging methods

To evaluate the effect of preterm birth on the developing brain, in-vivo images of the

brain of both term-born and preterm-born infants need to be obtained at various

time points. These are needed for clinical research purposes to more fully understand

how structures in both groups grow over time and the differences between the groups.

Additionally, imaging enables the evaluation of the efficacy of potential treatments

for damage caused by preterm delivery. Only the techniques applicable to neonatal

and child brain imaging are described in this section. A full description of general

medical imaging techniques is given in [229].

1.2.1 Cranial Ultrasonography (US)

Cranial ultrasonography (or ultrasound or sonography) for imaging the preterm

brain is routinely performed to detect complications associated with preterm birth.

It is one of the frequently-used imaging techniques due to the portability of the

apparatus (imaging can be performed at the patient’s bedside), the lack of use of

any ionising radiation, and because it is relatively inexpensive. Sonography is addi-

tionally commonly used for foetal monitoring.

Sonography involves the creation of ultrasound waves which are transmitted in pulses
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through the body. The reflection of these waves off tissue boundaries produces an

echo which can be received and processed to determine the distance of the tissue

from the transducer. By using a curvilinear array of transducers a 2D image of the

brain can be reconstructed. As sound waves cannot pass through bone, sonography

is only used for brain imaging in infants when the cranium is not fully formed. This

eliminates its use for tracking structural growth in later childhood.

US has been extensively used to assess preterm infants at birth and up to term-

equivalent age. It has proven a useful tool in the detection of haemorrhages and

ventriculomegaly (enlargement of ventricles) [67]. It has also been used to effectively

diagnose cystic periventricular leucomalacia (cPVL), which is manifested by focal

lesions or cysts in the periventricular white matter [248]. Cystic PVL is prevalent

in around 3-10% of very low birth weight infants. Its principal clinical correlate is

spastic diplegia (the most common form of cerebral palsy following preterm birth)

[222, 259]. However, its relatively low prevalence indicates that cPVL cannot be

solely responsible for the neurocognitive and behavioural impairments often seen in

survivors of preterm birth, and it has been shown to be a poor detector of such

impairments [189]. To detect the more subtle structural correlates of these therefore

requires a more sensitive image technology.

Figure 1.3(a) shows an example of an ultrasonography image, alongside comparable

anatomy obtained using magnetic resonance imaging (b).

1.2.2 Magnetic Resonance (MR)

Magnetic resonance imaging uses the quantum mechanical properties of hydrogen

protons, present in different tissues in different quantities (as water and fat). Nuclei

which have at least one unpaired proton, like the hydrogen proton, possess inherent

spins. Ordinarily, the random alignment of these spins means there is no net mag-
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(a) (b)

Figure 1.3: US image (a) and MR image (b) of comparable anatomy in a neonate.

netisation. When a radiofrequency (RF) pulse is applied to the protons, the spins

align and begin precessing in phase with each other, creating their own magnetic

field. The strength of the magnetic field produced is dependent on the frequency

and phase coherence of the spins, the greater the phase coherence, the stronger the

field. When the RF pulse is removed, the spins lose energy and return to their equi-

librium position. This loss of magnetisation is used to create an MR image. The

energy loss occurs through two main ways:

1. Spin-lattice interactions.

2. Spin-spin iterations.

Spin-lattice interactions involve an exchange of energy between the spins and their

surroundings. The results in the recovery of the longitudinal component of the

magnetisation after a time T1. Spins also interact with themselves in a more rapid

process than spin-lattice interactions, and this leads to a loss of phase coherence

amongst the spins. The time for the resulting loss in the transverse component of

the magnetisation is the T2 time. In general, T2 << T1. Different tissues have

different T1 and T2 time constants, for example, myelinated white matter has a

shorter T1 than grey matter. This means that in adult MR images, white matter

recovers faster, and therefore appears brighter than grey matter, in T1-weighted

images. In T2-weighted images of adult brains, grey matter is brighter than white
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matter.

In newborn infants, white matter is largely unmyelinated. Myelination is a pro-

cess whereby white matter fibres are covered in an insulating lipid sheath in order

to aid the transmission of neural impulses. Much of this develops after birth, com-

pleting by around the end of the second year [77]. This layer of lipids alters the MR

signal of white matter. At birth, the white matter to grey matter contrast is inverted

as compared to images of adult brains. Figure 1.4 shows T1- and T2-weighted MR

images of a neonate and a two-year-old infant showing inverted contrasts between

grey and white matter.

MR has been shown to have greater sensitivity than US at detecting subtle cerebral

abnormalities such as diffuse white matter abnormalities and small focal lesions. Ad-

ditionally, these studies have shown increased correspondence between IQ in later

life and predictions based on MR than with those made using US [249, 117, 148].

Previous serial MR studies have shown that early focal lesions frequently regress but

are superceded by local or global growth failure and diffuse white matter changes

(diffuse excessive high signal intensity - DEHSI - on T2-weighted images). Ac-

cording to [118, 149], abnormal white matter signal intensity is present in half to

two-thirds of preterms at term-equivalent age. MR has also detected enlargement

of the ventricular system and extra-cerebral space and immature gyral development

[118, 149].

1.2.3 Other imaging modalities

Other imaging techniques have been used to investigate the development of the

neonatal brain. However, the goal of these methods is to image features other than

tissue structure.
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(a) (b)

Figure 1.4: T1 (a) and T2-weighted (b) MR images of a neonate (top row), one-year-
old (middle row) and two-year-old (bottom row) infant, showing changing contrast
between white and grey matter as myelination develops.
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1.2.3.1 Diffusion Tensor Imaging (DTI)

Diffusion tensor imaging [135, 167, 235] uses MR to image the movement of water

through white matter in the brain, in order to image white matter tracts. Bipolar

magnetic field gradient pulses are applied which cause water molecules to diffuse

radomly through the tissue. The resulting image represents the probabilistic dis-

placement distribution of the water in each voxel. As white matter consists largely

of parallel axonal fibres, diffusion in the direction of the fibres is easier than in

the perpendicular direction. This anisotropy allows DTI to be used to image white

matter tracts in the brain. Although diffusion anisotropy is present even in unmyeli-

nated white matter, it has been shown that the degree of anisotropy increases with

increasing myelination. This has been used to assess brain maturation in children

and neonates [173, 268, 115, 208, 247, 232]. More recently, the use of DTI to inves-

tigate how white matter connectivity damage in preterm neonates correlates with

neurological impairment in later life, has been assessed in [56].

1.2.3.2 Magnetic Resonance Angiography (MRA)

Magnetic Resonance Angiography uses MR techniques to image blood flow through

arteries. Time-of-flight MRA [175] allows blood flow, and therefore arteries, to be

visualised without the use of any contrast agent. This has been used to show reduced

toruosity in the cerebral arteries preterm infants [154].

1.2.3.3 Near-infrared methods

Near-infrared spectroscopy (NIRS) is based on the varying ability of oxygenated and

deoxygenated blood (in particular haemoglobin) to absorb radiation at near-infrared

wavelengths. This has been used to measure cerebral oxygenation, haemoglobin con-

centration, cerebral blood volume and flow in newborn infants [35, 199, 78, 265]. By

acquiring reflectance measurements at multiple sites over the head, near-infrared can

be used as an imaging tool. Two main methods exist for this: optical topography
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and optical tomography.

In optical topography, the separation of the near-infrared source and detectors are

kept low in order to enable high signals to be acquired quickly. This allows for fast

(around 100ms) haemodynamic changes to be detected. Optical topography has

been used to study functional activation at sites within the infant cortex in response

to a variety of external stimuli [37, 110, 231, 134]. However, the small distance

between source and detector results in extreme sensitivity to changes occurring near

the surface of the head (such as in the cortex), and so limits its application as an

imaging tool for deeper brain regions.

Optical tomography [9] can instead be used to obtain 3D volume images of cerebral

oxygenation. By measuring the light transmitted between pairs of points on the

surface of the head, a 2D slice or 3D volume, representing the internal distribution

of light scatterers and absorbers, can be reconstructed. The use of large source-

detector distances, allows greater sensitivity to deep tissue responses. However, the

resulting increase in time required to obtain signals of adequate strength constrains

its use to the assessment of long-term oxygentation changes (occurring over hours

or days). Optical tomography has been used to obtain 2D scans used to identify

intercranial haemorrhage [201, 111, 112]. Methods for 3D reconstruction have been

developed in [10, 9]. These have been used to image blood volume and oxygenation,

and to detect interventricular haemorrhage, in the preterm brain [104, 16].

1.3 Neonatal and infant brain image analysis

The focus of this thesis is on the structural changes that occur to the preterm brain

and differences between term and preterm populations. In order to be able to detect

subtle abnormalities, and also to be able to relate scans of subject at varying time-

points at later ages, MR imaging is used. Methods for computational morphometry

24



[64, 14] exist for the analysis of adult brain images. However, the analysis of neonatal

and child brains poses additional difficulties:

1. There is a much larger variation of brain and skull shapes in neonates as shown

in Figure 4.6.

2. Cortical growth (as measured by surface area) increases logarithmically wih

respect to unit cerebral volume. Additionally, new structures arise [77], as

shown in Figures 1.1 and 1.4.

3. Myelination - the formation of an insulating layer on neurons forming white

matter - develops after birth at varying rates until around two years. This

changes the signal intensity of the white matter, despite the fact that the

underlying structure does not change [77].

4. Infant, and in particular neonatal, brain images have a lower contrast-to-noise

ratio than adult brain images. This is due to the absence of fully-developed

myelin on white matter, resulting in lower contrast between white and grey

matter. Additionally, the small size of infant brains and the short scanning

time contribute to overall low contrast-to-noise [194, 95].

5. Obtaining scans of control subjects is difficult. Parental consent for scanning

healthy, term-born infants is not always easy to obtain. Even when this is re-

ceived, the inability to sedate infants often results in increased motion artifacts

in images (see Figure 1.6).

6. To our knowledge, no standard anatomical or statistical atlases exist for these

populations.

This thesis is concerned solely with the processing of images once acquired, in order

to obtain information on neonatal and child brain development. Only images from

healthy individuals (with no cPVL) and without artifacts were used in the analysis.

The focus is on the construction of atlases representing the average image of a
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population, in order to reduce the impact of the high variance associated with this

particular group.

1.4 Contributions

The aim of the work in this thesis is to analyse the development of structures in the

brain of preterm-born infants. To do this, atlases representing average structure of

the brain of preterm infants are constructed at term-equivalent age, one year and two

years. This enables the comparison of average neuroanatomy of preterms to that of

term-born controls at equivalent age. Furthermore, the growth of structures over the

first two years can be analysed. To do this requires the construction of representative

atlases of each population. In particular, the construction of unbiased atlases is

desirable. In this thesis, it is proposed that the least biased atlas is one which

requires the least deformation from itself to all other subjects in the population.

The contributions form the work presented in Chapter 4-6:

• A novel, groupwise, non-rigid registration algorithm for average atlas construc-

tion is developed. This defines a common, average coordinate system for atlas

construction, such that the sum of deformations from this space to all subjects

is zero. To do this, a method of constrained optimization for non-rigid regis-

tration is developed. Additionally, similarity measures to assess the similarity

of a group of images are developed and compared. The algorithm is tested on

simulated 2D MR data and real 3D MR data. The algorithm does not require

the choice of any arbitrary reference subject.

• This groupwise non-rigid registration technique is then used to construct aver-

age neuroanatomical atlases of term-born and preterm infants at term-equivalent

age. These atlases are compared to determine quanititative differences between

the two groups. Additionally, average atlases of the brain of preterm infants

at one- and two-years-old are created (scans of one- and two-year old controls
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Figure 1.5: Sagittal slices of 16 neonatal subjects, showing variation is shape and
contrast.
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(a) (b)

Figure 1.6: Sagittal and axial slices of an MR image of a neonate corrupted by
motion artifacts.

are not available due to difficulty in recruiting volunteers), and the growth of

structures between these two timepoints is determined.

• A novel, groupwise segmentation algorithm is developed. This uses the align-

ment of multiple images in a common space to aid in the segmentation of

each subject in the group, as well as the segmentation of the average shape.

Furthermore, algorithms to combine the groupwise segmentation and regis-

tration are proposed, with the premise that the improvement of one leads to

the improvement of the other. Two methods are developed and evaluated: an

interleaved method of segmentation and an integrated method of combining

the registration into a Bayesian framework of segmentation. These methods

are evaluated on a simulated population of 2D MR data. Groupwise segment-

ation is used to segment a population of one-year-old preterm subjects, and a

population of two-year-old preterm subjects and to create representations of

the average shape of each population, as well as the average intensity, hard

and soft segmentations in this coordinate system.
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1.4.1 Overview of thesis

Chapters 2 and 3 contain the introductory and background material on this topic.

Chapter 2 reviews image registration techniques, with particular emphasis on brain

image analysis applications. In Chapter 3, methods of average atlas construction

are discussed. The subsequent chapters contain the methods developed in this the-

sis. Chapter 4 develops an algorithm for the groupwise non-rigid registration of

a population of subjects to their average shape, in order to construct an unbi-

ased, average anatomical atlas of the population. In Chapter 5, this algorithm

and deformation-based morphometry are used to determine the differences between

preterm and term-born infants at term-equivalent age. Average atlases of infants

born preterm at one and two years are also constructed, and the growth of structures

between these ages found. Chapter 6 develops a groupwise segmentation algorithm

for aligned images. Additionally, algorithms to combine groupwise segmentation

and groupwise registration for the simultaneous segmentation and registration of a

population of subjects, are presented. A summary of the work presented in this

thesis and potential future work is given in Chapter 7.
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Chapter 2

Image Registration

Image registration involves the deformation or transformation of images such that

corresponding features are brought into spatial alignment. In brain image analysis,

registration allows information from multiple sources to be combined in a common

frame of reference, in order to aid clinical interpretation. For example, by comparing

the scan of a subject aligned with a model or an atlas of anatomy, or with the scan

of another individual (inter-subject registration), shape and size differences between

subjects or populations can be found [64, 61, 8, 174]. Alternatively, images from

the same subject could be registered and compared (intra-subject registration). This

could be used to determine changes in anatomy occurring over time [87, 244, 242, 6].

Another use of intra-subject registration is in the fusion of scans obtained using

different imaging modalities. For example, combining MR with Computed Tomog-

raphy (CT) scans, has been used to assist in surgical planning [107, 108, 89], while

the fusion of MR with Positron Emission Tomography (PET) has been used in the

detection of tumours [34]. The clinical applications of brain image registration will

be discussed in detail at the end of this chapter.

The goal of image registration is to find the mapping T between a reference (also

referred to as target or template) image I1 and a source image I2 that maximises

the similarity between the images. The following are therefore necessary:
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1. Deformation, or transformation models which deform the source image to the

reference space.

2. Similarity measures to evaluate the similarity of the images when the mapping

is applied (these can be derived from features or intensities in the image).

3. Optimisation methods to select the transformation that gives the best similar-

ity.

This chapter reviews image registration techniques applicable to brain image reg-

istration. General surveys of image registration can be found in Fitzpatrick et al.

[84] and Maintz et al. [153].

2.1 Deformation models

The alignment of images requires finding the transformation (also known as defor-

mation or spatial mapping), that relates the position of features in one image (or

coordinate system), to the position of the corresponding features in the other image

(or coordinate system). Transformations can be modelled either with respect to

a Lagrangian frame of reference, which is fixed with respect to a given coordinate

system (such as an image), or in a Eulerian frame of reference which moves with the

deformation. While the latter is frequently used to model fluid deformations (which

will be discussed later in this section), most other deformation models adopt the

fixed, Lagrangian frame of reference. In this formulation, the transformation which

maps a position xI2 in image I2 to xI1 in image I1 is given by:

T : xI2 7→ xI1 = T(xI2) = xI1 (2.1)

where x = (x, y, z) represents a voxel location in the image. The intensity of posi-

tion of image I1 at x is denoted by I1(x).
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Transformation models can be broadly classified into two types: those that pre-

serve the straightness of lines (rigid and affine) and those that do not (non-linear or

non-rigid). Non-linear transformations allow for more detailed and localised defor-

mations, which is useful when the images show high levels of anatomical variability

between subjects.

2.1.1 Rigid transformations

Rigid transformations preserve distances and angles in the object to which they are

applied. They therefore only allow for rotations and translations. In 3D, this gives

six degrees of freedom: translations in x, y and z directions, and rotations about the

same three axes. The rigid body transformation is given by a rotation R followed

by a translation t, and maps point x = (x, y, z) to point x′ = (x′, y′, z′).

x′ = Rx + t (2.2)

where R = {rij} i, j ∈ {0, 1, 2} is the matrix describing the rotational component

of the transformation and t = (tx, ty, tz) is the vector describing the translational

component:
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For translation only, this simplifies to:
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For rotation of θ degrees around the x-axis only, the rigid transformation matrix

will be given by:

Trigid(x) =
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(2.5)

2.1.2 Affine transformations

Affine transformations add scaling and shearing to rigid transformations. Parallel

lines are maintained during the transformation:

x′ = Ax + t (2.6)
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(2.7)

where A = {aij} , i, j ∈ {0, 1, 2} gives the matrix describing the rotational, shear

and scale parameters of the transformation and t denotes the translational compo-

nent of the transformation.

Figure 2.1 shows examples of the deformation that can be obtained using rigid

and affine transformation models. Limited deformation can be obtained using these

models. Although they can be used to account for global differences in size and

shape, they cannot accurately describe local variation between subjects. Struc-

tures in human brains vary greatly between subjects, which makes rigid and affine

registration models insufficient for inter-subject registration. For more localised de-

formation, non-linear, or non-rigid transformation models need to be used. These

33



are described in the following sections. An overview of these methods can be found

in [102].

Figure 2.1: Examples of obtainable deformation using rigid and affine transformation
models.

2.1.3 Spline-based deformations

Spline-based registration techniques typically require a set of corresponding control

points or landmarks to be identified in both source and target images. These points

could represent corresponding anatomical features [31] and can be updated as the

registration proceeds [168]. Alternatively, the control points could be used only to

parameterise the transformation and can be equally spaced across the image to form

a regular grid, as in Davis [66], without corresponding to any anatomical landmark.

These are referred to as pseudo- or quasi -landmarks.

The location of the control point in the target image is mapped to the corresponding

point in the source image. Between these control points, splines are used to either

interpolate or approximate, giving a smoothly-varying displacement field. This in-
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terpolation condition can be written as:

T(φa) = φ′
a a = 1, ..., n (2.8)

where φa denotes the location of the control point a in the target image, and φ′
a

represents the location of the corresponding point in the source image.

The term spline originates from engineering where thin strips of metal or wood are

used to model ships and planes. In order to bend these strips into shape, weights are

applied at certain points along the metal. Image registration uses geometric splines

where the displacement of the control points corresponds to the applied weights in

engineering splines.

2.1.3.1 Thin-plate splines

Thin-plate splines were originally developed for the interpolation of scattered data

[74, 164]. They are based on radial-basis functions, that is, functions whose val-

ues depend solely on the distance from the origin. In terms of image registration,

the aim is to find a smooth function which interpolates between fixed control point

displacements, such that the bending energy of the spline is minimised. The defor-

mation is defined as a linear combination of n radial basis functions, U(r). For 3D

deformation, this is given by:

t(x, y, z) = α1 + α2x + α3y + α4z +
n
∑

a=1

waU(|φa − (x, y, z)|) (2.9)

The transformation can then be regarded as a combination of three separate thin-

plate spline functions, one for each coordinate:

T(x) = (t1, t2, t3)
T (2.10)
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Given this formulation, the coefficients α represent the affine component of the

transformation, and w represent the non-rigid component, which weights each ra-

dial basis function. This also gives 3n interpolation equations (Equation 2.8) and

3(n+4) unknown coefficients. An additional twelve equations are therefore required

to determine each of the coefficients uniquely. These equations are chosen to guar-

antee that the sum of all the non-rigid weighting coefficients is zero and that the

sum of their cross-products with the x, y and z locations of the control points is also

zero (this guarantees that the final term in Equation 2.9 contains only non-affine

terms) [30].

The radial basis function of the thin-plate spline is given by:

U(s) =















|s|2 log(|s|) in 2D

|s| in 3D

(2.11)

Thin-plate splines have been used for image registration in [96, 30, 31]. They also

allow additional constraints to be incorporated in the transformation model. For

example, rigid body constraints have been used in [142] and directional constraints

in [32].

2.1.3.2 B-splines (Free-form deformations)

Radial basis functions generally have infinite support. This means that every basis

function, and therefore every control point, contributes to the whole of the trans-

formation. This makes modelling local deformations difficult, and furthermore, pro-

hibits the use of very large numbers of control points due to the increased compu-

tational complexity. Free-form deformations (FFDs), developed by Sederberg and

Parry [214] for computer graphics applications, provide an alternative. FFDs de-

form an object by manipulating an underlying mesh of control points, producing a

smooth transformation. This requires a regular mesh of control points with uniform
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spacing. By using locally-controlled blending functions to smoothly approximate

the control point displacements, this produces an efficient, yet powerful tool for

modelling 3D deformable objects.

Let the spatial domain of an image volume be denoted by ΩI1 = {(x, y, z) | 0 ≤

x < X, 0 ≤ y < Y, 0 ≤ z < Z} and Φ denote a mesh of nx × ny × nz control

points φa,b,c, with uniform spacing δ. A point x = (x, y, z) is transformed to its new

location, x′ = (x′, y′, z′), using the following equation:

T(x) = x′ = x +
∑

l

∑

m

∑

n

bl,m,nφa+l,b+m,c+n (2.12)

where bl,m,n depends on the choice of the blending function. One such function is the

Bernstein polynomial. The deformation u(x, y, z) is given by the trivariate tensor

product of Bernstein polynomials:

u(x, y, z) =
3
∑

l=0

3
∑

m=0

3
∑

n=0

Bl,nB
(x)Bm,nB

(y)Bn,nB
(z)φa+l,b+m,c+n (2.13)

where

Bi,nB
(s) =

(nB

i

)

si(1 − s)nB−i (2.14)

where nB is the order of the polynomial. Bernstein polynomials have previously

been used to deform geometric models [214].

Another choice of function is the symmetric cubic B-spline [136, 137]. FFDs based

on B-splines have been used in a number of image registration problems [68, 81, 207].

The displacement field u given by the FFD can be expressed as the 3D tensor prod-

uct of 1D cubic B-splines [137]:

u(x, y, z) =
3
∑

l=0

3
∑

m=0

3
∑

n=0

Bl(u)Bm(v)Bn(w)φa+l,b+m,c+n (2.15)
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where a = ⌊ x
nx
⌋ − 1, b = ⌊ y

ny
⌋ − 1, c = ⌊ z

nz
⌋ − 1, u = x

nx
− ⌊ x

nx
⌋, v = y

ny
− ⌊ y

ny
⌋, w =

z
nz

− ⌊ z
nz
⌋ and where Bl represents the l-th basis function of the B-spline:

B0(u) = (1 − u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u + 1)/6

B3(u) = u3/6

B-splines are locally-controlled and have limited support. This means that changing

a control point φa,b,c only changes the transformation in the neighbourhood of that

point, making their use computationally efficient, even for large numbers of con-

trol points. While B-splines provide a smooth interpolation between control points,

the movement of the control points allows for folding and tearing of the overall

deformation, which may be unrealistic in medical image registration. Smoothness

regularisation terms may therefore have to be incorporated into the registration pro-

cess as in [207].

Rueckert et al. [207] introduced an overall transformation model which accounts

for both global and local deformations:

T(x′, y′, z′) = Tglobal(x, y, z) + Tlocal(x, y, z) (2.16)

where Tlocal(x, y, z) = u(x, y, z) represents the deformation obtained using an FFD

model based on B-splines (Equation 2.15). The global deformation is handled using

an affine transformation (as described in 2.1.2). This was initially developed to

model the non-rigid deformation of breast tissue [207] and has also been applied

to liver and brain image registration [213] as well as to cardiac image registration

[182]. Figure 2.2 shows an example of a source brain image being warped into target

space by deforming a grid of control points and using an FFD based on B-splines.
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(a) (b) (c)

Figure 2.2: Non-rigid registration of two images using FFD transformation based
on B-splines. (a): target image I1; (b): source image I2; (c): source image mapped
into target space using FFD based on B-splines.

In this example, the brain of the target image (a) was manually segmented so the

deformation only occurs within the brain area.

2.1.4 Physical models of deformation

2.1.4.1 Elastic deformation

Bajcsy et al. [18] proposed elastic registration techniques to match an atlas of the

brain with a CT image of a new subject. This method models the deformation

required to match two images as a physical process akin to the deformation of an

elastic material (such as rubber). In elastic materials, any applied external force is

counteracted by an internal force (a property of the material itself) which resists

change from the equilibrium state. When these two forces are equal, the deformation

stops. At equilibrium:

µ∇2u + (λ + µ)∇(∇ · u) + f = 0 (2.17)

where u represents the displacement field and f represents the applied force used

to drive the registration process. µ and λ are constants of elasticity (which can be

combined to give the Young’s modulus and Poisson’s ratio of a material).
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The applied force is commonly chosen to be the gradient of a similarity measure

between the two images. These similarity measures could be based on intensities

[18], intensity differences [39] or intensity features (for example curvature) [91]. Al-

ternatively, the difference in the anatomical structures themselves could be used to

drive the registration: [65] use the distance between the curves, and [241] use the

distance between the surfaces, of corresponding anatomies.

The partial differential equation in Equation 2.17 can be solved using finite dif-

ferences, giving a displacement field for each voxel. Alternatively, it might be more

efficient only to consider the voxels corresponding to the nodes of a finite element

model and interpolating between these nodes [91].

Davatzikos [63] has proposed an extension to the original method to allow for

spatially-varying elasticity parameters. This enables different anatomical structures

to deform by different amounts; more variable structures, such as brain ventricles,

are allowed to deform more freely than those which typically show less variation.

2.1.4.2 Fluid deformation

The amount of deformation obtained using elastic registration is proportional to

the force. For this reason elastic deformations cannot easily model highly localised

deformations. This has led to interest in fluid registration techniques which enable

large as well as local deformations (including corners) to be smoothly recovered.

Fluid motion is commonly described in an Eulerian frame of reference, that is, one

that moves with the motion of the fluid. Instead of using the displacement of the

deformation, the velocity of the fluid is therefore considered in the Navier-Stokes

equation:

µ∇2v + (λ + µ)∇(∇ · v) + f = 0 (2.18)
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This partial differential equation is similar to that for elastic deformation (Equation

2.17). However, here v = v (x, y, z) represents the velocity field and is solved at

each time step, and λ and µ represent coefficients of viscosity.

To solve equation 2.18, Christensen et al. [43] use successive over-relaxation (SOR)

[195]. However, this can be slow and computationally expensive. Bro-Nielsen et

al. [36] propose a faster alternative by using a convolution filter. However, this

requires that the viscosity is constant throughout, which is not always the case. As

in the case for elastic registration, spatially-varying models of viscosity have been

proposed [140], which allow for varying degrees of deformation among structures.

These require the use of the conventional numerical schemes, such as SOR, to solve

2.18.

2.1.4.3 Large Deformation Diffeomorphic Metric Mappings (LDDMMs)

A related registration technique proposed by Beg et al. [24] is the Large Defor-

mation Diffeomorphic Metric Mapping (LDDMM) method. The two images to be

registered are assumed to be connected via a geodesic flow, which is estimated using

a variational framework:

v̂ = argmin
v

∫ 1

0

‖Lvt‖2 dt +
1

σ2

∥

∥I1(T
−1) − I2

∥

∥

2

L2 (2.19)

where ‖Lvt‖ is an appropriate Sobolev norm on the velocity field vt and ‖·‖L2

denotes the squared-error norm for integrable functions and represents the difference

in similarity of the images. This method ensures that all mappings are smooth and

diffeomorphic. Additionally, in contrast to the fluid registration technique described

in the previous section, this mapping gives a metric on the length of the shortest

path connecting the two images:

inf

∫ 1

0

‖vt‖V dt (2.20)
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2.1.4.4 Optical flow and the demon’s algorithm

The demon’s algorithm, as described by Thirion [238], takes its name from the anal-

ogy to Maxwell’s demons from thermodynamics, which (contrary to the second law

of thermodynamics), aims to reduce the entropy of two substances by separating

them at a boundary of ”demons”. In relation to image registration, it is assumed

that for each point in a given object in image I2, it is possible to determine whether

it is inside or outside the boundary of the same object in image I1. The demons,

situated on the object boundary, then act to push points outside the boundary in-

side, and vice-versa.

Optical flow (Horn et al. [114]) can be thought of as a variant on the demon’s

algorithm. It was however, originally developed as a computer vision tool to recover

relative motion of objects between two frames of a temporal image sequence. Optical

flow represents the distribution of velocities of movement of brightness patterns in

an image, and is comparable to the equation of motion for an ideal, incompressible

fluid. The basic premise is that the intensity of a moving object is constant with

time. When using this for image registration, it means that a structure in one image

”moves” to form the structure in the next image, and should thus have the same

intensities. This means:

I1 (x, y, z, t) = I1 (x + δx, y + δy, z + δz, t + δt) (2.21)

Taylor’s expansion of the right hand side gives the equation for optical flow:

∂I1

∂x

dx

dt
+

∂I1

∂y

dy

dt
+

∂I1

∂z

dz

dt
+

∂I1

∂t
= 0 (2.22)

ignoring higher order terms. Rearranging (see [114] for full details), gives:

(

dx

dt
,
dy

dt
,
dz

dt

)

= − I1,t
√

I2
1,x + I2

1,y + I2
1,z

(2.23)

42



which represents the component of the movement in the direction of the bright-

ness gradient. However, if every point is allowed to move freely, determining these

velocities becomes infeasible. It is therefore necessary to incorporate additional

smoothness constraints (such as applying a Gaussian filter to each component), to

the formulation, as described in [238, 20].

This section has described a number of non-rigid registration techniques. The effi-

cacy of each technique depends on the underlying objects to be registered as well

as any computational constraints. Much research has been presented using the

above techniques with little consensus as to the ”best” method. However, for the

non-rigid alignment of intersubject infant and adult brain images, a model which

can efficiently model highly localised deformations is necessary. Additionally, the

performance of the registration method is dependent on the similarity metric and

optimisation procedure chosen. These will be discussed in the following sections.

2.2 Similarity metrics

The goal of image registration is to match one image (source) to a reference image

(target). The deformation models described previously warp the images concerned

until the alignment between the two images is maximised. To do this requires some

measure of the similarity between the two images. A full review of similarity measure

for image registration can be found in [102].

2.2.1 Point-based methods

Point-based similarity metrics rely upon having corresponding sets of points identi-

fied in target and source images. These points may be obtained by external objects

introduced to the image by rigid structures such as stereotactic frames placed around

the head, or by markers placed in the skin. Alternatively, internal markers based

on anatomical features visible in the images may be used. The internal points may
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be manually or, if they are clearly discernable, automatically located. For a set of

points {xp : p ∈ {0, 1...P}} in the target image and {yp : p ∈ {0, 1...P}} in the

source image, where P is the total number of points, the alignment of the images is

found by minimising the distance between the target points and transformed source

points:

S =
∑

p

w2
p ‖xp − T(yp)‖2 (2.24)

wp denotes a weighting term representing the degree of confidence with which the

point p has been located. For rigid transformations, a least-squares fitting approach

can be used to solve Equation 2.24 [12]. Additionally, methods for spline-based

transformations also exist [84].

2.2.2 Voxel-based metrics

These metrics look at differences between the voxel intensities at corresponding

locations in the two images. Given two images, a target I1 and a source I2, and a

transformation T, the overall similarity of these images is given by the sum of the

distances at each corresponding voxel location x over the image domain Ω. In the

following, I(x) denotes the image intensity of voxel location x in the target image,

and I2(T(x)) represents the intensity of voxel x in I2, transformed by transformation

T.

2.2.2.1 Cross-correlation (CC)

Cross-correlation was one of the earliest intensity-based measures used for image

registration [200]. The cross-correlation of two images is given by:

SCC =
∑

x∈Ω

I1(x) · I2(T(x)) (2.25)

This measure assumes a linear relationship between corresponding intensities in the

images, and so is sensitive to differences in brightness and constrast. To reduce this
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dependency, the normalised cross-correlation can be used:

∑

x∈Ω

(I1(x) − 〈I1(x)〉) · (I2(T(x)) − 〈I2(T(x))〉)
√

(I1(x) − 〈I1(x)〉)2 · (I2(T(x)) − 〈I2(T(x))〉)2
(2.26)

where 〈·〉 represents the mean intensity.

2.2.2.2 Sum-of-squared/absolute difference (SSD)

The sum-of-squared, or Euclidean, distance a between target and source image is

given by:
∑

x∈Ω

(I1(x) − I2(T(x)))2 (2.27)

when the voxels in both images have exactly the same intensities after the transfor-

mation has been applied, this value is at a minimum of zero. This similarity metric

assumes that the images will be identical when registered, except for Gaussian noise.

As with the cross-correlation metric, SSD can be strongly affected by a small number

of voxels having large intensity differences. A similar metric which is less sensitive

is the sum-of-absolute differences (SAD).

∑

x∈Ω

|I1(x) − I2(T(x))| (2.28)

2.2.3 Entropy-based metrics

The variability of intensities in MR images means that corresponding structures in

different images, need not have the same voxel intensities. Taking this into account,

entropy-based similarity metrics which use information from the whole image are

attractive. A survey of entropy-based registration can be found in [190].
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2.2.3.1 Joint Entropy (JE)

When considering how well two images are aligned, their joint entropy [226] can

be considered. For two images I and I2 with intensities i1(x) ∈ I1 and i2(x) ∈ I2

respectively, their joint entropy, H(I1, I2), is given by:

SJE(I1, I2) = H(I1, I2) = −
∑

i1∈I1,i2∈I2

p(i1, i2) log p(i1, i2) (2.29)

where p(i1, i2) represents the joint probability density funtion of the images I1 and

I2. It has been shown heuristically that as the images get better aligned, their JE

often decreases, indicating less disorder in the overlap. However, as shown in [49],

low values of JE can be found with very poor alignment. For example, if the images

are transformed in such a way that only background (and not anatomical structure)

is aligned, this will still result in a good JE.

2.2.3.2 Mutual Information (MI)

An alternative measure is mutual information (MI) [256, 49], which additionally

takes into account the individual entropies of the images. MI gives a measure of

how much information one variable gives about another (in this case, the variables

being the intensities in each image), instead of comparing intensities directly.

The marginal entropies are defined to be:

H(I1) = −
∑

i1∈I1

p(i1) log p(i1) (2.30)

H(I2) = −
∑

i2∈I2

p(i2) log p(i2) (2.31)

where p(i1) and p(i2) are the probabilities of voxels with intensities i1 and i2 oc-

curring in the corresponding image. Methods to estimate these probabilities will be

described in Section 2.2.3.4. The mutual information, which needs to be maximised,
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is then given by:

SMI(I1, I2) = H(I1) + H(I2) − H(I1, I2) =
∑

i1∈I1,i2∈I2

p(i1, i2) log
p(i1, i2)

p(i1) · p(i2)
(2.32)

As can be seen from Equation 2.32, minimising the joint entropy still increases the

mutual information. However, the addition of the marginal entropies for each indi-

vidual image penalises a reduction in the amount of information in each image. It

is therefore less sensitive to overlap than the joint entropy.

Equation 2.32 is equivalent to the Kullback-Leibler distance [132] between the prob-

ability distributions p(i1, i2) and p(i1)·p(i2). If I1 and I2 are completely independent,

then p(i1, i2) = p(i1) · p(i2) and SMI(I1, I2) = 0. Mutual information can therefore

be viewed as a measure of the dependence of two images: the more dependent, the

higher the value.

Additionally, MI can be written as:

SMI(I1, I2) = H(I1) + H(I2) − H(I1, I2)

= H(I1) − H(I1|I2)

= H(I2) − H(I2|I1) (2.33)

where H(I1|I2) is the conditional entropy defined as:

H(I1|I2) = −
∑

i1∈I1,i2∈I2

p(i1, i2) log p(i1|i2) (2.34)

This formulation interprets mutual information as the reduction in the uncertainty

of I1 (or I2), due to knowledge of I2 (or I1).
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2.2.3.3 Normalized Mutual Information (NMI)

Although MI has been shown to be less sensitive to overlap than JE, it is still not

invariant. In certain cases, a reduction in overlap still leads to an increase in mutual

information, yet also casuses an increase in misalignment. To tackle this overlap

problem, Studholme et al. [227] proposed an alternate measure, Normalised Mutual

Information (NMI):

SNMI(I1, I2) =
H(I1) + H(I2)

H(I1, I2)
(2.35)

which was shown to be invariant to image overlap. This has been used as a similarity

measure in [207].

2.2.3.4 Density estimation

Entropy-based similarity metrics require the ability to estimate probability density

functions of image intensities in the target and source images. Two methods to do

this are based on histograms and kernel-density estimators.

Histogram-based estimation. This provides a frequentist approach to density es-

timation and its simplicity has made it a popular choice for image registration

[49, 228, 227]. Histograms partition the range of image intensities of the target and

source images into distinct intervals, known as bins, of fixed width. A 2D histogram

of target and source bins is created. Each entry in the histogram corresponds to

the number of times an intensity in the target image coincides with an intensity

in the source image. The probability that a voxel lies within a particular range of

intensities is then simply the number of samples in the corresponding bin divided

by the total number of samples in the histogram.

Issues arise however, as to what width and number of bins to use. Too many

bins gives a spiky histogram, displaying structure that may not be present in the

original dataset, while also increasing computational requirements. Conversely, too
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few bins gives too smooth a distribution where the information lost may adversely

affect accuracy. Another problem is that the use of histograms gives discontinuities

at the edges of bins, which may not reflect the actual underlying distribution.

Kernel density estimation. The use of binning and sampling in the histogram ap-

proach can lead to errors in the estimation of the probability density function. An

alternative approach is through the use of kernel density estimators or Parzen win-

dows [237, 75]. The parzen window gives the PDF as:

p(x) =
1

n

N
∑

n=1

1

Nh
K

(x − xn)

h
(2.36)

where h is the bandwidth (a smoothing parameter) and K is the kernel. The selec-

tion of the bandwidth is non-trivial and depends on factors such as the sample size

and variance. A review of methods used to choose the bandwidth is given in [257].

The kernel is often chosen to be Gaussian [260, 256, 19, 212]:

K(x) =
1√

2πσ2
e−x2/2σ2

(2.37)

although exponentials [129] and splines [237] have also been used.

2.3 Optimisation

In order to find the transformation which maximises the similarity between images,

methods of optimisation are needed. A full description of optimisation methods

can be found in [147, 21]. The most appropriate methods are generally iterative

methods which improve the correspondence between the images at each iteration,

until a maximum is found. However, these methods generally can only find local

optima and require that the gradient of the function can be computed (that is, the

function should be smooth and differentiable). The type of optimisation method

depends to some extent on the shape of the search space of function; this is turn
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depends on the similarity metric chosen. For image registration based on mutual

information, a review of optimisation techniques can be found in [151].

2.3.1 Descent-based methods

The gradient of a function represents the direction of steepest descent (or ascent).

Steepest descent optimisation traverses the function in the direction of the gradient

of the function, until a local optimum is reached. At each iteration, the gradient

is found, and the search is moved in that direction. However, the steepest descent

direction is a local direction, and moving in this direction, while decreasing the value

of the function in this region, may overall not be moving in the best direction to

reach a minimum. For search spaces with two or more dimensions, this can lead to

a zig-zag path which can be slow to reach the optimum.

2.3.2 Conjugate direction methods

This method guarantees a quadratic function will converge in a finite number of

steps. In general, any function can be well-approximated by a quadratic function in

the region of an optimum point. The conjugate gradient method of optimisation is

similar to the method of steepest descent, but instead of moving in the direction of

the gradient, the search proceeds in the direction of the conjugate direction. This

direction is a linear combination of the previous search directions, together with

the new gradient at that point. This method is preferable for long, narrow-shaped

functions, where steepest descent methods take many iterations to converge. In

general it converges faster, although computing the conjugate direction is slightly

more complicated.

2.3.3 Hierarchical registration

In the particular case of non-linear registration, the number of degrees of the freedom

in the optimisation is usually very large, leading to a complex search space with
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many local optima. To account for this, hierarchical registrations are often used

[140]. These aim to reduce the number of degrees of freedom initially, and gradually

build up to the global optimum. This can be done by blurring or resampling the

images initially, or by using deformations which allow fewer degrees of freedom (for

example, by using a coarsley-spaced control point grid in [207]).

2.4 Applications of image registration to brain

image analysis

Image registration allows information from different sources to be combined and

compared, by bringing them into a common alignment. Its application to clinical

analysis falls into two broad categories: registration of images from the same subject

(intra-subject registration) and registration between images of different subjects

(inter-subject).

2.4.1 Intra-subject registration

2.4.1.1 Longitudinal studies: tracking growth and atrophy

The same subject can be imaged over time to track the growth or atrophy of anatom-

ical structures. For example, by non-rigidly registering MR scans of infants at 1-

and 2-years-old, growth of anatomical structures in the developing brain over this

time period have been analysed [6]. [242] map the development of the brain in

older children from 3-15 years. There have also been studies into the progression

of neurodegenerative diseases such as Alzheimer’s and Multiple Sclerosis, and their

associated responses to treatment. In [87, 244], changes in the size and structure

of brain anatomy in Alzheimer’s patients have been compared with normal aging

subjects over time. Registration-based methods to quantify Multiple Scelrosis lesion

volumes are developed in [267].
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2.4.1.2 Image fusion

Another use of intra-subject registration is to combine information from different

modality scans of the same subject [181, 188], taken at the same time (image fusion).

This could be used to aid in surgical planning. For example, scans from CT and MR

could be combined to give clear visualisation of the relative position of bone and soft

tissue, which is necessary in planning surgery of the skull base [107, 108, 89]. If the

scans have been taken at the same time and without any interventions, then rigid

registration may be sufficient to align the images (registration of bony structures

should be attainable with only rigid deformations, due to the physical constraints

of bone motion).

The registration of PET to MR/CT images can be used to combine information

about structure and function. PET and MR/CT scans can be aligned to determine

if structural abnormalities are likely to be caused by tumours or infarction.

Another use of image fusion is in radiotheraphy planning [196, 127, 126], where

radiation doses need to be calculated and beams need to be accurately located.

CT images enable geometrically accurate localisation of bony structures while also

providing electron density information needed for accurate calculation of radiation

doses. This information can be combined with MR images, which provide better

constrast between soft tissues, and therefore better visualisation of the tumour itself.

2.4.2 Inter-subject registration

2.4.2.1 Atlas construction and population comparison

The human brain is extremely variable in structure and this makes analysing individ-

ual subjects difficult. The development of brain atlases representing typical anatomy

are therefore a critical tool for brain image analysis. Subjects from a population

can be registered together to create an atlas for that population. If low-dimensional
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transformation models, such as rigid or affine models, are used, the variation of the

population is visible in the resulting atlas. If non-rigid transformations are used,

the population variation is instead encoded in the deformation fields, and the atlas

produced displays crisp anatomy. Individual subjects can then be registered to an

atlas to detect differences between structures in the subject and ”normal” anatomy.

Furthermore, the creation of atlases of different populations of subjects allows the

comparison of typical anatomies for each group. Often a test group of subjects is

compared to a group of controls or normals. For example, this has been used to

find volumetric differences in the brains of term-born and preterm-born neonates

[29] and to determine structural differences between males and females in an elderly

population [64]. Other work has used the comparison of atlases to analyse the neu-

roanatomical correlates of autism [174] and to ascertain structural abnormalities in

Alzheimer’s [8, 244] and Schizophrenia [61] patients.

2.4.2.2 Image segmentation

A further use of inter-subject registration is in the segmentation of structures in

brain images. Two commonly-used methods of segmentation are probabilistic seg-

mentation, using the Expectation-Maximisation (EM) algorithm [116, 138, 139], and

label propogation [105, 202, 203]. In EM-segmentation, an image can be non-rigidly

or affinely aligned to an atlas containing prior information on the segmentation of

tissue classes or structures to aid in its segmentation. Label propogation requires

an initial segmented image or atlas. The corresponding intensity image is then non-

rigidly registered to a new image to be segmented, and the labels are transferred. A

more detailed discussion of image segmentation is given in Chapter 6.

2.5 Summary

Image registration is an essential tool for brain image analysis, enabling the integra-

tion of information from multiple sources. It has been extensively used for medical
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research as well as for clinical diagnosis and surgical planning.

Two important aspects that need to be considered when registering images are

the type of transformation and the similarity measure used. The choice of these de-

pends on the data to be registered and the aim of the registration. For example, the

increased variation between subjects means that inter-subject registration requires

non-rigid transformation models, whereas rigid deformations may be sufficient for

intra-subject registration. If very large deformations are required, fluid registration

techniques may be considered. The similarity measure used depends on the images

being registered. If a simple relationship between images exists, then voxel-based

similarity metrics can be used. However, many brain images are highly variable both

in terms of anatomy and intensities and so entropy-based metrics may be favoured.

These metrics can be particularly useful for multi-modal registration.

Registration is key for the construction of anatomical or statistical atlases, which

can be used to measure, visualise and compare anatomy of subjects. Atlases con-

tain information about typical structures in populations of subjects and facilitate

the analysis and interpretation of images of individuals or populations. How to use

image registration to construct atlases is the subject of the next chapter.
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Chapter 3

Average Atlas Construction

Anatomical atlases, such as those of the brain, enable spatial characteristics such as

size and location of structures, or regions of functional activation, to be determined.

They are generally built from one or more representations of that anatomy and

should represent the typical structure or function of a given population. The complex

and highly variable nature of human brains means that atlases have an important

role to play in the analysis and interpretation of brain images. For example, atlases

of different populations can be compared to determine differences between these

populations [29]. Alternatively, comparison of a subject to an atlas representing the

normal anatomy for that subject’s population, allows the detection of abnormalities

and of potential disease. Furthermore, information available from an atlas, such as

segmentations or labels, can be transferred to new subjects [171].

3.1 Single subject atlases

The effective use of atlases requires a common coordinate system in which subjects

can be compared. Finding such a space has been a growing topic of research. The

earliest atlases, such as the Talairach atlas [233, 234], were constructed from single-

subject anatomical specimens and were aimed at the brain as a structure of interest.

The Talairach atlas is a highly detailed and richly labelled 3D dataset. However, the
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atlas was constructed by imaging the post-mortem brain of one 60-year old woman.

Additionally, only one hemisphere was imaged and lateral symmetry was assumed

(which is typically not the case in real brains). Although the Talairach atlas space is

often used as a standard coordinate system, the atlas is not representative of normal

brain structure.

3.2 Population atlases

Given that the anatomy of a single subject can never represent all the variation

in a population, there has been interest in developing population atlases, using

information from multiple subjects within a group. This form of atlas can be formed

using three methods: intensity-based, segmentation-based and deformation-based

approaches. It should be noted that there is a philosophical debate as to how

atlases should be constructed based on the homology [159] of human brains. The

”structure/function problem” described in [83] occurs as the same structure can

have different functions in different people, and, likewise, different structures can

have the same function. In this section we discuss methods of atlas construction

which only consider correspondences in anatomical structure. A detailed discussion

on the philosophical arguments of image registration, correspondence and homology

can be found in [60].

3.2.1 Intensity-based

Intensity-based atlases involve generating an ”average” representation of anatomy

by taking the voxel-wise average of scans of multiple subjects. An example of such

an atlas is the MNI305 atlas from the Montreal Neurological Institute [80]. This

is an atlas created by averaging 305 MR images, linearly aligned to the Talairach

space. The subjects used in this atlas were all right-handed and consisted of 239

male subjects and 66 female subjects, aged 19-28 years. Since then, the International

Consortium for Brain Mapping (ICBM) [3, 160, 161] has affinely registered a further
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(a) (b) (c)

Figure 3.1: Sagittal (a), axial (b) and coronal (c) slices of the ICBM152 atlas.

152 scans to the MNI305 atlas to produce another intensity-based probabilistic atlas

known as the ICBM152, shown in Figure 3.1. A further aim of the ICBM is to use a

much larger population (around 7000 subjects) from wide-ranging age, gender and

ethnic backgrounds to create probabilistic atlases of the human brain.

3.2.2 Segmentation-based

The images of the 305 affinely-aligned subjects used have additionally been seg-

mented into white matter (WM), grey matter (GM) and cerebro-spinal fluid (CSF),

to give spatial probabilities of the presence of each structure (priors) at each voxel.

An axial slice of these probabilistic atlases are shown in Figure 3.2. Other simi-

lar approaches [176, 180] have been used to create probabilistic atlases of smaller

structures within the brain, by affinely aligning and segmenting images of multiple

subjects into sub-volumes. An alternative method of probabilistic atlas construction

is the Maximum Probability estimate developed by Hammers et al. [103]. 20 sub-

jects have been individually segmented into 49 regions of interest and then aligned

with the MNI atlas space. Each voxel in atlas space is assigned to be the most

frequently encountered tissue class at that location (i.e.: the modal tissue class

encountered), creating a maximum probability atlas for the 49 tissue classes. An

example of such an atlas obtained using 20 labels is shown in Figure 3.3.
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(a) (b) (c)

Figure 3.2: Axial slices of white matter (a), grey matter (b) and CSF (c) priors
created by segmenting tissue classes in affinely-aligned subjects.

(a) (b) (c)

Figure 3.3: Sagittal (a), axial (b) and coronal (c) slices of a maximum probability
atlas using 20 labels.
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Figure 3.4: MNI Brainweb image of a single subject scanned 27 times. The images
have been co-registered and averaged to give a sharp atlas.

In addition to the MNI305, a single subject has been scanned by the MNI lab

27 times. These images have been co-registered and the average intensity image

found. The result is a very sharp, low noise atlas, shown in Figure 3.4, which has

been used to build realistic brain MR phantoms in [51].

The atlases created in the above studies will always be representative of the subjects

used to create them. In terms of medical image analysis, this is a problem if the

subject being studied is from a different population. For example, subtle or diffuse

changes due to disease, may be difficult to detect if the ”normal” population is it-

self highly variable. An atlas which corresponds more closely with the (undiseased)

population of the subject to be studied (for example, in terms of age), is therefore

desirable. Hill et al. [106] propose the development of dynamic brain atlases for

this. These are atlases which can be created on-demand, with particular attributes

(such as age, gender or disease classification), configured to the research question of

interest. The use of Grid technologies [205] to access distributed resources enable

such atlases to be created ’on-the-fly’ as required by clinical demands at the time.

However, the need for fast results means that only affine alignment is currently

feasible.

59



3.2.3 Deformation-based atlases

The linear alignment used in the constructions of probabilistic atlases is not sufficient

to account for all the variation in a population. This results in a blurred atlas when

a voxel-wise average is taken. For smaller structures such as gyri in the cortex,

this may lead to information being lost. To account for this, non-linear alignment

of the population is needed. In deformation-based methods of atlas construction

[29, 245, 246], non-rigid registration is used to match structures locally to the same

coordinate system. The resulting intensity atlas does not display much variation

and so structures are clearly defined with low noise. The variation in the population

is instead encoded in the deformation fields produced by the registration. These can

be analysed to find volumetric differences between subjects. However, an important

question of which coordinate system to construct a deformation-based atlas in, still

remains.

3.3 Image registration

Central to the task of atlas creation is image registration. This is needed to bring

subjects into common alignment in order to form the atlas. Typically, image regis-

tration is done pairwise: a single subject is chosen as a reference image, and this is

registered to all other subjects in the population. While it is possible for the sub-

jects to then be transformed to the average space (how to do this will be discussed

in Section 3.5), this method of registration has a number of issues associated with

it:

1. Inconsistency: registering image I1 to image I2 does not necessarily produce

the inverse transform to registering image I2 to image I1. This could be due to

errors in the registration process or to interpolation occurring in different im-

ages in each case. Also, it may not even be possible to represent the inverse of

the transformation in the required form, for example in B-Spline registration
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[207]. While pairwise methods for consistent registration have been developed

(and will be described in the following section), these require the transforma-

tion model used to be invertible. Additionally, when constructing an atlas of

the population, a reference subject still needs to be chosen. Any inferences

made from the registration (such as volume measurements), are therefore de-

pendent on this choice. Groupwise registration removes the need to choose a

reference at all, and the simultaneous nature of the registration means that

the order in which images are considered is irrelevant.

2. Bias: The atlas produced represents the anatomy of the chosen reference, and

this may not adequately reflect the population.

3. Distance: If the reference subject is at an extreme of the population, larger

deformations may be required. This may degrade the registration performance.

The choice of a suitable reference subject is therefore very important.

This motivates the development of template-free registration - where the reference

image is automatically selected or created. Consistent methods of registration also

need to be found to reduce the influence of the choice of reference image. The

remainder of this chapter discusses previous efforts to develop methods of atlas

construction which are less dependent on the choice of reference subject, and which

aim to construct the atlas in a coordinate system representative of its population.

3.4 Consistent pairwise registration

Increasing the consistency of pairwise image registration is an important step in

unbiased atlas construction. The aim here is to ensure that the order of registration

is not important and registering image I1 to image I2 will produce the inverse of the

transformation obtained when registering image I2 to image I1. The importance of

choosing one subject to be a reference target is therefore reduced.
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3.4.1 Inverse-consistent registration

An inverse consistent linear elastic image registration (ICLEIR) algorithm has been

developed by Christensen et al. [40, 133], which jointly estimates the forward and

reverse transformations between two images, while constraining these transforma-

tions to be inverses of each other. The forward transformation, T1,2 from template

image I1 to target image I2 and the reverse transformation, T2,1 from I2 to I1 are

estimated concurrently, subject to the constraint that T1,2 = T−1
2,1. This gives the

following symmetric cost function to be minimised:

S = σ

∫

Ω

|I1(T1,2(x)) − I2(x)|2 + |I2(T2,1(x)) − I1(x)|2dx

+ρ

∫

Ω

‖ℓu1,2(x)‖2 + ‖ℓu2,1(x)‖2dx + χ

∫

Ω

‖T1,2(x) − T−1
2,1(x)‖2dx (3.1)

where u1,2 = x−T1,2(x) represents the displacement field from image I1(x) to I2(x).

The first integral defines the cost of the cumulative squared error similarity between

the template image I1(T1,2(x)) and the target image I2(x) and the template image

I2(T2,1(x)) and the target image I1(x): minimising this minimises the difference

in intensities between the images. The second integral in Equation 3.1 is a regu-

larisation term, constraining the transformations with a linear elasticity constraint

given by: ℓu(x) = α∇2u(x) + β∇(∇ · u(x)) + γu(x); α, β, γ are constants. The

final integral in the above equation represents the inverse consistency constraint (or

inverse consistency error). The influence of each of these three terms is determined

by the weighting parameters σ, ρ and χ.

Johnson et al. [122] have additionally developed a similar inverse-consistent al-

gorithm to match landmarks. This has been combined with the intensity matching

to give an inverse-consistent algorithm based on the simultaneous matching of both

landmarks and intensities, with improved results. The work has been augmented

by Magnotta et al. [152] with the additional usage of segmentations to aid the
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performance of the registration.

3.4.2 Transitive inverse-consistent registration

An extension to the minimisation of the inverse-consistent registration error for com-

puting pairwise registrations between three subjects has been developed in [93]. This

work additionally aims to ensure registrations are transitive [41]. This means that

for pairwise registrations between images I1, I2 and I3, T1,2(x) = T13(T32(x)) (see

Figure 3.5). A cost function to achieve this is therefore included in the registration:

Ctrans =
3
∑

i=1

3
∑

j=1,j 6=i

3
∑

k=1,k 6=j 6=i

∫

Ω

‖Ti,k (Tkj(x))‖2 dx (3.2)

However, extending this idea beyond three images is not straightforward as with

increasing numbers of images, the number of pairwise registrations and the number

of paths between images increase significantly.

Figure 3.5: Transformations satisfy the transitivity property if Ti,j(x) =
Ti,k(Tk,j(x))∀x ∈ Ω and i 6= j 6= k.

3.4.3 Partitioning the transformation domain

Skrinjar et al. [217] have also developed a pairwise inverse-consistent algorithm

where the transfomation domain is partitioned into triangles. Affine transformations
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- which are fully invertable - are then applied over each of these triangles. Given

two images I1 and I2, the aim is to find the optimum transformation Topt and its

inverse, which maximise the normalised mutual information (NMI) of the first image

and the transformed second image, added to the NMI of the second image and the

transformed first image:

S = {SNMI (I1, I2(Topt(x))) + SNMI

(

I2, I1(T
−1
opt(x))

)

} (3.3)

While the methods previously described improve the consistency of registration be-

tween two images, they do not directly aid the construction of representative atlases,

as the choice of which coordinate system to produce this atlas is still undefined. The

methods described in the following sections aim to address this issue through either

the sequential pairwise or simultaneous registration of multiple subjects, in order to

create an atlas space representing the average shape of the population.

3.5 Average affine atlas construction

Methods have been developed to find the average affine shape of a population. Al-

though many studies [64, 243, 225] discount the global shape and size of brains

when determining volumetric changes occurring to specific structures, it can still

be important to find the average affine shape and size. For example, when investi-

gating growth of the developing brain in neonates, the global volumetric changes of

structures are just as important as local changes.

3.5.1 Geometric averaging of affine matrices

Aljabar et al. [6] have developed a method to average a group of affine transforma-

tions. An affine transformation consists of translations, rotations (rigid parameters),
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scalings and skews. As the translational and rotational differences between scans

are purely due to patient positioning in the scanner, and not due to anatomical

differences, it is not necessary to find the average of these.

A simple arithmetic mean is inappropriate for affine transformations. For exam-

ple, in an extreme case of one subject being scaled by a factor of 0.1, and another

subject being scaled by a factor of 10, over a common space, the arithmetic mean

would give an incorrect average scale factor of 5.05. Instead, the geometric mean

can be taken. The geometric mean of a set of nI numbers ai, i = 1...nI is the nIth

root of the product of the numbers:

(

nI
∏

i=1

) 1
nI

ai (3.4)

which in the example above, gives an average scale factor of 1. The geometric mean

has previously been used to average more general transformations [5] and for tensor

data [11]. Equation 3.4 can be rewritten using logarithmic identities to give the

geometric mean of a set of nI affine matrices A:

AGM = exp

(

1

nI

nI
∑

i=1

log(Ai)

)

(3.5)

In order to construct an atlas representing the average affine shape of the population,

pairwise affine registrations are performed to a chosen reference subject. The average

affine matrix is calculated, and the inverse of this is concatenated with each of the

individual transformations. This new transformation is applied to the corresponding

image. The affine transformation that warps each image, i, to the average affine

space is therefore given by:

Ai(ave) = Ai ◦ A−1
GM (3.6)

where Ai is the affine matrix obtained when registering subject i to a chosen refer-

ence subject, and A−1
GM is the inverse of the geometric mean affine transformation.
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(a) (b)

(c)

Figure 3.6: Finding the average affine space using geometric averaging of pairwise
affine registrations. (a): initial population; (b): calculating the mean transforma-
tion from individual registrations to an arbitrary reference; (c): mappings from the
population to mean shape.
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A schematic for this process is shown in Figure 3.6. This method of averaging affine

transformations was used in [6] to construct average atlases of the brain of one- and

two-year old infants, and to quantify the development of brain structures between

these ages.

3.5.2 Woods’s Matrix Averaging

In [262, 263], Woods et al. describe another method to find the affine average brain

image of a population, which has shape, size and orientation that are intermedi-

ate to those of the original population. The method is based on the fact that any

linear mapping between images can be broken down into an arbitrary number of

identical smaller linear transformations, by computing the required positive root of

the original transformation. These smaller transformations preserve the geometric

properties of the original transformation. For example, given two images, I1 and

I2, linearly registered to a common reference by transformations T1 and T2, the

direct linear transformation from I1 to I2 is given by T1 ◦ T−1
2 . The square root

of this transformation (obtained by taking the square root of the elements of the

transformation matrix) defines the mapping to a position halfway between the two

images: applying the same transformation to the intermediate image will complete

the mapping to I2. A third image, I3 (also registered to the same reference) can be

incorporated into the average by finding the direct transformation from the current

average atlas to I3. Since the original atlas should be weighted twice as heavily

as the new image, the cube root of the direct transformation is taken to obtain a

new average. This can be repeated for any number of initial transformations to a

common reference. This is shown diagrammatically in Figure 3.7.

Furthermore, this method of averaging can be extended to be used for reconcil-

ing differences among pairs of pairwise registrations in a set of images. All possible

pairwise registrations from each image to all other images are conducted. A matrix
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(a) (b)

(c) (d)

Figure 3.7: Finding the average affine space using Woods’s matrix averaging of
pairwise affine registrations. (a): initial population; (b): Calculating the average
of two images registered to common reference; (c): Calculating the average of the
third average and previous average space; (d) final average atlas.
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averaging and reconcilliation scheme is then used to find the average space. The

transformation that maps image I1 to I2 directly, is averaged with all the indirect

transformations that map image I1 to IX and image IX to I2. The original trans-

formation is then replaced with this average, and the process is repeated for all

subjects until a convergent, average transformation is found. This reconcilliation

scheme does, however, increase the computational complexity non-linearly. For ex-

ample, for a population of 10 subjects, 45 registrations are required, whereas for a

population of 20 subjects, 190 registrations are required.

The similarity metric used to evaluate the quality of the affine alignment is the

ratio image uniformity (RIU): for each voxel, the intensity in the transformed image

is divided by the intensity in the reference, forming a ratio image. The standard

deviation of this ratio image, normalised by its mean, is used as the cost function

which is optimised for each image, separately:

SRIU =

√

1
nΩ

∑

x∈Ω(rx − r̄)

r̄
(3.7)

where rx is the ratio of the intensity of the transformed image and the intensity

of the reference image at location x, and r̄ is the mean ratio for the image under

consideration.

This only produces an atlas in the average affine coordinate system. It is, how-

ever, computationally expensive, requiring nI(nI −1)/2 registrations for nI subjects

in the group.

3.5.3 Average affine construction using congealing

Zollei et al. [269] have developed an algorithm to affinely align a population of 3D

images to the central tendency of the population. To do this, they use a technique

formerly applied to hand-written digit recognition known as congealing. The aim
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is to find the transformation for each subject which minimises the total voxel-wise

entropy of the input image volumes when applied, and reduces the overall entropy

of the atlas image. The affine registration uses 12 parameters representing rotation,

scaling and skews, followed by translations.

The objective function to be minimised is given by:

S =

nI
∑

i=1

H(Ii(Ti(x))) (3.8)

where Ii(T(x)) represents the intensity of transformed location x in the space of im-

age i, and H(Ii(T(x))) represents the entropy of this voxel given the set of images I.

Given that groupwise registration often requires many images, it is time-consuming

to calculate this metric for every voxel location. Instead, stochastic sampling is used

to consider only a random sample of voxel locations. Approximating the expectation

to be the sample mean of the population, this gives an objective function of:

S = − 1

nI

nS
∑

j=1

nI
∑

i=1

log p(Ii(Ti(x))) (3.9)

where nS denotes the number of random sample locations. These are not held fixed

during the process, but are re-generated at every iteration of the algorithm.

To ensure that the atlas image is at the centre of the population, after each it-

eration, each current transformation is composed with the inverse of the mean of

the transformation matrices, in the same way as in Section 3.5.1.
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3.6 Pairwise nonrigid registration for average at-

las construction

As discussed in the previous chapter, affine registration is not enough to account

for the variation seen in brain images. Non-rigid registration is needed to align

structures more locally. Methods for average non-rigid atlas construction based on

existing methods of pairwise registration can be classified into two groups:

1. Post-processing of transformations, obtained using pairwise registration from

subjects in a population to a chosen reference image, to give an average trans-

formation. The inverse of the average transformation can be composed with

the original transformations to give transformations from the average shape to

each subject of the population. This is shown diagrammatically in Figure 3.6,

where the affine transformations can be replaced by non-rigid transformations.

2. Repeated registration to the current approximation of the average shape, each

time improving the consistency of the registration and the moving closer to

the actual average shape. These methods can additionally involve averaging

the transformations at each iteration to ensure that the atlas shape is indeed

the average of the population.

As these methods are still essentially pairwise, no new algorithms for simultaneous

registration or for multi-subject similarity assessment need to be developed.

3.6.1 Averaging transformations

Christensen et al. [42] extend the work by Miller et al. [169, 98] which defines the

average shape as that which has the minimum mean squared error to the rest of the

population. A subject from the population is chosen to be a reference image, and

this is registered to all other subjects in the population using the ICLEIR method

described in Section 3.4.1. These registrations are performed in an Eulerian frame

of reference which moves with the transformation. The registration of a target

71



reference I1 to a source I2 gives a transformation T1,2 in the coordinate system of

I2. The coordinate system is therefore different for different source images. However,

to compute their average, all transformations have to be in a common (Lagrangian)

coordinate system. This can be achieved by using the inverse transformation T−1
1,2 =

T2,1, since the same reference subject always used, and the registration is inverse

consistent. The average Lagrangian transformation from the reference coordinate

to the average coordinate system is then given by:

T−1
ref,ave(x) =

1

nI

nI
∑

i=1

T−1
ref,i(x) ∀x ∈ Ω (3.10)

An arithmetic mean is used since the parameterisation of the transformation is based

on displacements and not on explicit scaling.

Avants [17] and Beg [23] have separately proposed methods for averaging geodesic

flows. The approach taken in [23] relies on the conservation of the momentum of

flow. Given a set of transformations to a chosen subject, an average initial velocity

vector can be computed:

v̄0 =
1

nI

nI
∑

i

vi,0 (3.11)

This average velocity vector is propogated forward using the principle of the con-

servation of momentum to reach an average shape. The geodesic evolution guar-

antees that the transformation is diffeomorphic. This process can be iterated by

re-registering the subjects in the population to the new atlas and repeating the

procedure. The mean velocity calculated in Equation 3.11 is also used in [17]. Ad-

ditionally, the mapping of each subject to the average image is calculated such that:

∀i Ii(T
−1
i ) = Ī (3.12)

and the energy of the transformation, E(Ti), is minimal. The energy is given by

the sum of squared distances as defined by Equation 2.20, in Section 2.1.4.3. In the
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pairwise case, this ensures that the registrations are additionally inverse consistent

(proof of this is given in [17]).

A method for averaging FFDs, which has been used to construct an unbiased at-

las from 25 MR images of a population with schizophrenia, was developed in work

by Rueckert et al. [206]. To do this, conventional pairwise registration between a

chosen reference subject and each of the other subjects is used to create an initial

atlas, using a registration model based on global and local components. The global

transformation is represented by an affine transformation allowing for rotations,

translations, scaling and shearing. The local component allows more detailed defor-

mation to be obtained and uses a free-form deformation model based on B-splines.

A uniformly-spaced grid of control points is overlaid onto the reference subject. Dis-

placing the control points deforms the underlying image, which is interpolated using

B-splines:

T(x, y, z) =
3
∑

l=0

3
∑

m=0

3
∑

n=0

Bl(u)Bm(v)Bn(w)φa+l,b+m,c+n (3.13)

where a = ⌊ x
nx
⌋ − 1, b = ⌊ y

ny
⌋ − 1, c = ⌊ z

nz
⌋ − 1, u = x

nx
− ⌊ x

nx
⌋, v = y

ny
− ⌊ y

ny
⌋, w =

z
nz

− ⌊ z
nz
⌋ and where Bl represents the l-th basis function of the B-spline. To guide

the transformation, the model is optimised such that the similarity between the two

images is maximised. This similarity is determined by evaluating the normalised

mutual information of the two images:

SNMI =
H(I1) + H(I2)

H(I1, I2)
(3.14)

where H(IX) represents the marginal entropy of image IX and H(I1, I2) represents

the joint entropy of the two images. The transformation parameters are varied un-

til the NMI is maximised, using the steepest descent algorithm for unconstrained,

non-linear optimisation.

In this way, deformation fields are obtained which map each subject to the reference
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subject individually. An initial atlas, in the coordinate system of this reference,

is created by transforming each subject to this space, using these mappings. The

inverse of the mean of all the deformation fields is then used to transform the ini-

tial atlas into an atlas at the natural coordinate system of the population. If the

registration was perfect, this atlas would represent the average of the population

regardless of the initial reference chosen. In practice, however, although the bias is

greatly reduced, residual errors in the registration process can influence the average

deformation field, and thus also the final atlas produced.

As the transformations are parameterised on a grid of control points, where the

movement of the control points is small and constrained to be linear displacements,

the arithmetic mean of these displacements can be used. As the deformations are

linearly-dependent on the control point displacements (see Equation 3.13), taking

the mean of the displacements at each control point will give the mean deformation

field for the population.

However, it should be noted, that it is not trivial to invert a deformation field

represented by B-splines. One method to do this is to approximate the inverse trans-

formation using a numerical method such as the Newton-Raphson process [198].

3.6.2 Iterative pairwise registration to average shape

Guimond et al. [100] have worked on creating an atlas at the average of a population.

The registration method uses the demons algorithm [239], a variant of optical flow,

described in Section 2.1.4.4. To find the average atlas, the subjects in the population

are first registered to a chosen reference using a low-dimensional transformation to

account for global shape and intensity differences only. An atlas (model) is created

in the coordinate system of the chosen reference. Elastic registration is then used

to correct for residual differences, by registering each subject in turn to the atlas
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created. The inverse of the average elastic transformation is then used to create a

second atlas in the average space of the population. This new atlas is then used as

a reference for the next iteration when it is registered to all subjects of the pop-

ulation. The process of average atlas construction, followed by registration of this

atlas to the population of subjects, is repeated until the atlas converges. The atlas

created at each iteration therefore acts as the reference subject for the next iteration.

One potential source of errors with this is that elastic registration first takes place

using an affine atlas where the structures are not clearly defined. It is question-

able as to whether structural details could ever be recovered during the registration.

Also, this method still requires the initial choice of a reference subject, which may

influence the final atlas.

Kovacevic et al. [130] have also developed an iterative pairwise registration method

to align images in the average space. They first create an average affine atlas using

Woods’s matrix averaging and reconcilliation scheme described in Section 3.5.2. The

similarity metric used is also the ratio image uniformity. A non-rigid registration

is then used to individually register each subject in the population to the average

atlas produced after an affine alignment. This initially uses subsampled images with

lower resolution. The process is then repeated, with increasing image resolutions,

until convergence. To evaluate the similarity of the images at the non-rigid stage, a

similarity function based on the cross-correlation of image intensities is used. Each

transformation is then composed with the average of the inverse of all the transfor-

mations to centre the reference space at the average shape.

Unlike the work by Guimond, this method does not require any initial choice of

reference image. However, a similar potential problem is that the first stage of the

non-rigid registration involves registering a reference formed from an affine atlas

of the population. This could lack structural detail and might lead to information
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being lost at the start of the registration.

3.7 Groupwise non-rigid registration

The previously described work on non-rigid atlas construction involves pairwise reg-

istrations. In the methods which require an initial choice of reference, the final atlas

may still be biased by this choice. Although this is not a feature of the work by

Kovacevic et al., their method involves pairwise registration to the current best es-

timate of the atlas. The initial estimate of the average is an affinely-aligned atlas.

Although this estimate gets progressively sharper, it may still lack the structural

detail obtainable when registering two original intensity images. An additional issue

with some of the above methods is the need to accurately invert transformations; this

is not always possible. These problems motivate the development of pure groupwise

registration techniques, where all subjects in the population are considered simul-

taneously. The following methods are not biased by the choice of any particular

reference image.

3.7.1 Penalising displacement from average shape

The work by Studholme et al. [223, 224] simultaneously aligns the group of images

to a common space using high-dimensional non-rigid registration. A cost function

is optimized with the aim of maximising the similarity between the images, while

penalizing displacement of the reference space from the average shape.

From the reference space, xR, the displacement of each location to each subject

is given by ui(xR). The aim is to make the total displacement:

U(x) =

∥

∥

∥

∥

∥

∑

i∈1,...,N

ui(x)

∥

∥

∥

∥

∥

2

(3.15)
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have zero length. This is used as a penalty term in the optimization.

The groupwise similarity is evaluated using a local measure of self-information. For

each location x, the similarity is given by:

S(x) = − log p(i′1, i
′
2, ..., i

′
nI

) (3.16)

where i′· = I(Ti(x)) is the intensity of the transformed voxel. This is averaged over

the reference volume to give a measure of the overall average information. This

results in a very sparse, high dimensional distribution, making the probabilities

difficult to estimate: using a traditional histogram is computationally impractical.

Instead a two-step approach is used: the data is pre-clustered (binned) into a sparse

matrix type data structure and then the cluster count is evaluated. The clustering

stage is done in parallel, taking regular subregions of the image. The cluster count,

c(B), is evaluated using:

c(B) =
∑

x∈Ω

τ(B, I(x)) (3.17)

where τ() is an intensity kernel determining the contribution of a set of intensities

I = {i1, i2, ..., inI
} to the cluster centred at B = {b1, b2, ..., bnI

}.

Overall, this produces a cost function to be minimised:

C =

∫

x

S(x) + λ1

∫

x

U(x) + λ2

∫

x

R(x) (3.18)

where R(x) represents an regularising penalty term to ensure smoothness of the

transformations. λ1 and λ2 are constants which determine the influence of each of

the terms representing each geometric constraint.

The algorithm has been tested on a population of synthetically-generated deformed

spheres and on 32 adult brain MR images. However, the method requires explicitly
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choosing weighting parameters to specify the influence of the penalty terms and

thus how well the average shape constraint is satisfied: the final atlas therefore need

not necessarily be the average shape of the population. An additional issue is that

the similarity metric proposed does not scale linearly with increasing numbers of

subjects, making its use for large numbers of subjects computationally expensive.

3.7.2 Minimum message length

There has also been much work on groupwise diffeomorphic non-rigid registration

using bounded diffeomorphic deformations (warps) [158, 54], involving Minimum

Description Length (MDL) and Minimum Message Length (MML) similarity mea-

sures. These principles state that given data and a choice of models, the model which

gives the shortest description of the model plus the conditional description of the

data should be chosen. This description is given by the algorithmic, or Kolmogorov,

complexity, which can be shown to approximate entropy [58]. The difference be-

tween MDL and MML is that in MDL, data which are not of interest are contained

in the second part of the code, whereas in MML, these data are contained in the

first part of the code (the model). In its application to groupwise registration in

[158, 54], the MML is used to picked the ”best” reference subject from a population.

The MML is calculated using all but one of the images in the group in turn. The

length of the message required to transmit the left-out subject is then found (Equa-

tion 3.20). The reference subject is chosen to be the subject from the population

that minimises the MML. Pairwise registration to a selected reference is initially

carried out to obtain an initial estimate of deformations.

Leaving out each subject in turn, the similarity of the group is then calculated

using a sum-of-absolute-differences metric:

SSAD(i) =
∑

x∈Ω

|Ii(x) − Ī(x)|
wx

(3.19)
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where Ī(x) is the mean intensity at location x, excluding image i, and w(x) is the

mean absolute difference from the mean intensity at x.

The individual deformation of the omitted subject is then optimised to minimise

the message length of the group, defined by:

Ci(T) = − log P
(I)
i (Ii(Tref,i)) − λ log P

(S)
i (Ii(Tref,i)) (3.20)

where Ii(Tref,i) gives the image to be transmitted given the reference subject Iref

and the associated transformation Tref,i and P
(I)
i and P

(S)
i represent probability

density functions associated with shape and texture of the group, excluding exam-

ple i, and λ represents a weighting term to determine their relative influence.

The process is repeated for all subjects until all the deformations are updated,

and the results converge to select a reference subject from the population. The

method has been applied to 16 2D MR brain slices and 51 face images. Although

this method aims to optimize the correspondences between the group of images, it

still requires choosing one of the subjects to be a reference. The algorithm is also

computationally expensive for large numbers of 3D subjects, requiring multiple reg-

istrations between the population.

A further extension to this approach for groupwise registration is given in [252, 251].

These aim to minimise the total description length, L, of the problem given by:

Ltotal = Lref (R, Iref ) + Lparams + Lgroup + Lresiduals (3.21)

where Lref (R, Iref ) gives the length of the reference frame and reference image,

Lparams is the length of the parameters of the groupwise model, Lgroup is the encod-

ing of the groupwise model and Lresiduals is the encoding of the residuals. When
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transmitting a histogram of an image with nm voxels in the image having an in-

tensity of m, and occupied bins situated at mα, the associated probability is given

by: pm = nm

nΩ
. The description length for transmitting this image histogram is then

given by:

Lhist = −
∑

α

ln
mα

nh

+
∑

α

L(nmα
) −

∑

x

ln p(I(x)) (3.22)

where nh is the number of bins in the histogram.

3.7.3 Large deformation diffeomorphisms

Joshi et al. [123] have developed an algorithm for the simultaneous registration of

subjects using large deformation diffeomorphisms. This generates deformations, Ti,

which solve the Lagrangian ordinary differential equation:

d

dt
Ti(x, t) = vi(Ti(x, t), t); t ∈ [0, 1] (3.23)

This registration is inverse-consistent as the deformations are obtained by integrat-

ing velocity fields forward in time and the negative velocity fields backward in time.

In the case of large deformations using diffeomorphisms, a straightforward linear

averaging is inappropriate, as the addition of two diffeomorphisms is not necessarily

a diffeomorphism. Instead, the reference space is defined to be the space which min-

imises the sum-of-squared distances to each of the data points. For the non-rigid

case, the problem is to estimate the reference space, Î, that requires the minimum

amount of deformation, represented by the diffeomorphism T̂i(x), to transform itself

to the every subject, Ii in the population. If the deformations in the group S are

defined by the metric D, and an image dissimilarity metric given by E, then the

reference space is found by:

{T̂i, Î} = arg min
Ti∈S,I

nI
∑

i=1

E(Ii(Ti), I)2 + D(Te,Ti)
2 (3.24)
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where Te is the identity transformation, and:

D2(Te,T) = min
ν

∫ 1

0

∫

Σ

‖Lv(x, t)‖2dxdt (3.25)

subject to:

T(x) = xt

∫ 1

0

v(T(x, t), t)dt (3.26)

L represents a partial differential operator used to introduce a Sobolev norm. The

measure of dissimilarity used is the squared error dissimilarity:

nI
∑

i=1

E(Ii(Ti), I)2 =

nI
∑

i=1

∫

Ω

(

Ii(Ti(x)) − 1

nI

nI
∑

j=1

Ij(Ti(x))

)2

dx (3.27)

This effectively aims to minimise the dissimilarity between each image and the refer-

ence space, as well as to minimise the deformation required. It is symmetric because

T(x)−1 is calculated by integrating backward in time the negative of the velocity

field used to generate T(x). The minimiser is thus the same for both Tx) and

T(x)−1.

Overall, the deformations that optimise the problem solve:

T̂i = argmin

nI
∑

i=1

∫

Ω

[Ii(Ti(x)) − 1

nI

nI
∑

j=1

Ij(Ti(x))]2dx +

∫ 1

0

∫

Ω

‖Lvi(x, t)‖2dxdt

(3.28)

The algorithm has been applied to eight, intensity-adjusted, 3D MR brain images

of different subjects.

Lorenzen et al. [146] also use the large deformation diffeomorphism framework

for groupwise registration, but this time on probabilistic segmentations, k, of the

images instead of on the intensity images themselves. It can therefore also be used

for the registration of multi-modal images. This aims to find the representative atlas

class posterior p̂ that requires the minimum amount of energy to deform into all the
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other population posteriors pi. The distance between two probability mass functions

P and Q can be represented by the Kullback-Leibler divergence metric [132]:

DKL(P ||Q) =
∑

k

Pk log
Pk

Qk

(3.29)

The energy minimisation problem, corresponding to Equation 3.24, but now using

probability density functions, becomes:

{T̂i,p̂} = argmin

nI
∑

i=1

E(pi ◦ Ti, p) + D(Te,Ti)
2

{T̂i,p̂} = argmin

nI
∑

i=1

∫

Ω

DKL(pi(x)||pi(Ti(x)))dx +

∫ 1

0

∫

Ω

‖Lvi(x, t)‖2dxdt (3.30)

The PDF, p̂, which minimises the above function, is given by the normalised geo-

metric mean of the PDFs of the population:

p̂(kl(x)) =
(
∏nI

i=1 pi(Ti(kl(x))))
1

nI

∑

k (
∏nI

i=1 pi(Ti(kl(x))))
1

nI

(3.31)

giving the final minimsation problem of:

T̂i, = argmin

nI
∑

i=1

∫

Ω

DKL(p̂(x)||pi(Ti(x)))dx +

∫ 1

0

∫

Ω

‖Lvi(x, t)‖2dxdt (3.32)

This algorithm has been used to create an unbiased atlas of the brain of normal

two-year-olds, using MR images of five subjects. The posterior probabilities of

these subjects were derived from multi-modal (T1-weighted, T2-weighted and proton

density) scans, using the Expectation-Maximisation algorithm.

3.8 Summary

The ability to construct a representative anatomical atlas of a population is an im-

portant tool in medical image analysis, and is particularly useful for brain image
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analyis. There are many issues associated with ensuring this atlas is not biased to

an arbitrary member of the population. This has motivated the recent development

of groupwise registration methods and the construction of atlases at the average

coordinate system of the population. These techniques have been used to create

atlases representing the average global geometry, the average local geometry and

the average intensity of the population. The first two steps ensure crisp detail in the

atlas as corresponding structures are locally aligned, while the final step reduces the

noise in the atlas compared to the individual intensity images. Furthermore, non-

rigid registration allows the structural variation of the population to be encoded

within the deformation fields obtained.

However, groupwise registration presents new challenges, in addition to those ex-

isting in standard image registration. The aim of the work presented in this thesis

is to develop and use groupwise registration to construct unbiased atlases of given

populations of subjects. The methods should not require the choice of any arbitrary

subject from the population. To do this, it is necessary to develop non-rigid reg-

istration techniques that allow for the simultaneous warping of all subjects in the

population. Another area which needs to be considered is how to measure the sim-

ilarity of a group of images. Both these issues must be effectively addressed using

methods that are scalable with increasing numbers of subjects.

The work is closest to those developed in Section 3.7. However, in this work, it

is asserted that the most representative atlas is one which represents the geometri-

cal average shape of the population. Due to its ability to model complex variation

in subjects, a free-form deformation method of registration [207] is extended to al-

low for the simultaneous groupwise registration of a population of subjects to the

average shape of this population.
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Chapter 4

Groupwise Registration

The last chapter outlined the advantages of constructing an average atlas space

for a given population. Most previous work which uses non-rigid registration to

do this, has primarily involved the postprocessing of deformation fields produced

from pairwise registrations between subjects in the population. This often means

that a single reference subject still needs to be chosen initially, and this may still

bias the final model. Work on pure groupwise registration has mainly used only

affine deformations. The methods discussed in this chapter differ in that non-rigid

registration is used, acting on all subjects in the population simultaneously. The

registration itself is used to find the average shape: it is truly groupwise. In this

respect, it is most similar to the recent work by Lorenzen et al. [146]. They have

created a groupwise algorithm for the registration of soft (probabilistic) segmenta-

tions to an average space. However, the algorithms which will be described in this

chapter can be used to register intensity as well as segmented (both hard and soft)

images. Additionally, the deformation model used is different. Whereas Lorenzen

uses a fluid deformation model, the work here extends the B-spline algorithm, de-

veloped by Rueckert et al. [207] for pairwise registration (as described in Chapter 2).

The aim of this chapter is to develop an unbiased, groupwise, non-rigid registra-

tion algorithm which:
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1. Eliminates the need to choose any reference subject, thus removing any bias

from the construction.

2. Creates an atlas space representing the mean shape of the population, via the

deformation of all subjects in the population simultaneously.

The first problem encountered when doing this, is that it is not possible to know

what the average shape is beforehand. The average space can be defined as the

coordinate system which requires the least total deformation to each subject. It is

therefore the shape produced when the sum of all deformations is equal to zero. By

constraining the deformation to sum to zero, the average shape can be calculated

implicitly, (see Figure 4.1). To achieve the above aims, it is necessary to develop

Figure 4.1: Average atlas construction requires the sum of the deformations to equal
zero.

the following methods for multi-subject registration:

• Deformation (or transformation) models, d, describing how the reference

space maps to each subject in the population.

• A similarity metric, S, to determine how well-aligned the whole group of

transformed subjects is.

• A constrained optimisation strategy, aiming to find the set of deformations
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which maximise the similarity metric, while enforcing the constraint that the

deformations sum to zero.

These will be discussed in the sections following. The remainder of the chapter is

devoted to experiments, using these new methods, on synthetic and real MR data.

4.1 Transformation models

For n images, given a set of points in the spatial domain of a common reference

volume, Ωr, and a set of points in the spatial domain of each individual image

Ωi, i = 1...n, the goal of the registration is to find a set of transformations τ , each

of which maps any point xr in the reference space to a corresponding point xi in

image i: τ = {Ti : xr 7→ xi, i = 1...n}.

To do this, a registration algorithm based on global and local components is used.

For each image, i:

Ti(x, y, z) = Ti,global(x, y, z) + Ti,local(x, y, z) (4.1)

The global component of the transformation consists of differences in translations,

rotations, scalings and skews. The position and orientation of an image in the field

of view can vary even when the same patient is scanned, due to their position in the

scanner at the time. Differences in these do not therefore provide any information

on differences between subjects in terms of anatomy. To account for global skew

and scale differences, the log-averaging method of Aljabar et al. [6] as described

in Chapter 3, can be used. The local, non-rigid, component of the transformation

describes the detailed differences between brain shapes after affine transformation.

It is this part of the transformation which will be developed in this chapter. When

using multiple images, the number of degrees of freedom of the problem increases,

adding to the importance of a deformation model with local control. Additionally,
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because of the large complexity and variation between subjects of the human brain, a

free-form deformation (FFD) model based on B-splines is used. The FFD model is a

powerful tool for modelling 3D deformable objects, and has previously been applied

successfully to numerous medical image registration problems such as [207, 213].

In 3D, the FFD model embeds an nx × ny × nz mesh of uniformly-spaced con-

trol points φa,b,c onto each image. Manipulating the positions of these control points

deforms the underlying object, using the B-spline model described in Chapter 2. In-

creasing the resolution of the control point lattice increases the amount of localised

deformation that can be achieved. For the application to groupwise registration,

Ti,local is represented by a collection of FFDs, di, which are used to deform each

subject i to the common reference coordinate system. Each deformation field has

the same number and spacing of control points and can be written as the 3D tensor

product of 1D cubic B-splines:

di(x, y, z) =
3
∑

l=0

3
∑

m=0

3
∑

n=0

Bl(u)Bm(v)Bn(w)φi
a+l,b+m,c+n (4.2)

Moving a control point only deforms an area in a 4 × 4 × 4 vicinity of that control

point. The use of B-splines is therefore computationally efficient even with large

numbers of control points. Additionally, Equation 4.2 shows that the deformation

produced is linearly dependent on the displacement of the control points.

4.2 Multi-subject similarity

In order to determine how well a group of subjects is aligned, it is necessary to

define a measure of similarity between the n images. For groupwise registration

without a known reference image, this is not so straightforward, as pairwise metrics

discussed in Chapter 2 are not easily extendable: even if the formulation itself can

be extended, computational difficulties arise, as the dimensionality of the problem
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increases. This is sometimes known as the ”curse of dimensionality” [25].

4.2.1 Voxel intensity-based metrics

The simplest measure would be a measure of intensity differences from the mean

at each voxel location. The sample variance is a potential choice where differences

from the mean voxel intensity are summed over the image domain Ω. This has to

be normalised by the number of voxels nV in the image domain, giving:

SSV =

nI
∑

i=1

∑

x∈Ω

(

Ii(x) − Ī(x)
)2

nΩ

(4.3)

However, as with all intensity-based metrics, largely varying differences in intensity

through the group may adversely affect the above measure. Using this metric on

real MR data would therefore require normalisation of the intensities of the images.

This can be done using linear intensity correction where linear regression and outlier

detection can be used to find the line of best fit on a joint histogram of the intensities

of two images [100].

4.2.2 Entropy-based metrics

The variability of MR images means that corresponding structures in different im-

ages do not necessarily have the same intensities. Given this, entropy-based metrics

are an attractive measure of image similarity, as discussed in Chapter 2. These

require methods of estimating probability density functions (PDFs) using kernel

density estimators or histograms.

Kernel density estimators scale better with dimensionality [75]. However, in or-

der to achieve good scaling while maintaining accuracy, evaluating the density at

each stage is computationally expensive [97, 144]. Although such algorithms are

effective for estimating one-off densities of orders even up to 106, the need to repeat-

edly re-calculate densities in image registration, makes their use inefficient.
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When using histograms for two images, evaluating the PDFs requires the construc-

tion of a 2D histogram. The histogram bins represent ranges of intensities in the

two images. At each voxel location, the pair of corresponding intensities are added

to the appropriate bin. When the correspondence between the images is high, this

is represented by sharper peaks in the histogram.

Generalising Normalised Mutual Information (NMI) to nI images gives:

S =
1

H(I1, I2...InI
)

nI
∑

i=1

H(Ii) (4.4)

where H(Ii) represents the marginal entropy of image i and H(I1, I2, ...InI
) repre-

sents the joint entropy of all the images. Evaluating nI-dimensional NMI, would

therefore require an nI-dimensional histogram. Apart from the exponentially in-

creasing memory requirements, this also leads to increasing sparsity as the histogram

size becomes very much larger than the number of samples in the histogram. For

example given 10 images of size 256× 256× 256 and with 64 intensity bins, the his-

togram size will be 6410 = 260, but the number of samples will only be 2563 = 224.

The evaluation of such sparse histograms is computationally infeasible and so this

method cannot be used even for moderate numbers of subjects.

An alternative strategy would be to select one arbitrary image to act as an in-

tensity - but not as an anatomical - reference. The NMI of this reference image and

the other images can then be evaluated, with all images (including the reference)

warped into the atlas space, using:

SNMI(Iref , I) =
H(Iref ) + H(I)

H(Iref , I)
(4.5)
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where H(Iref ) denotes the marginal entropy of the intensity reference and H(Iref , I)

denotes the joint entropy of the reference and the group. All pairs of intensities,

comprising the voxel intensity in the reference and the corresponding intensity in

each other subject, could be added to the same joint histogram. A problem with

this method however, is that as the number of subjects increases, the effect of each

image on the overall similarity measure decreases (the gradient of the similarity for

a single image will be reduced as the overall change in the PDF of the histogram

will be reduced). This similarity measure may therefore not be strong enough to

accurately model small deformations.

Instead the sum of the values of NMI between the reference and each subject could

be used, i.e.:

SNMI(Iref , I) =
n
∑

i=1

(

H(Iref ) + H(Ii)

H(Iref , Ii)

)

(4.6)

where H(Ii) represents the marginal intensity of image i and H(Iref , Ii) denotes the

joint entropy between the chosen arbitrary image Iref and image Ii.

The above method still has the undesirable property that an arbitrary image needs

to be selected from the population. An alternative is to create an intensity reference

image using the average intensities of the population, given the current transfor-

mation. Once again, the similarity measure used is the sum of the NMI values of

individual histograms, constructed between reference and single subject:

SANMI =

nI
∑

i=1

(

H(Ī) + H(Ii)

H(Ī , Ii)

)

(4.7)

The reference image Ī, is the voxel-wise mean intensity of the group of images and

is updated at every iteration.
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4.2.3 Segmentation-based metrics

Mutual information is not a strictly additive measure and two equally-well-registered

pair of images may not have the same numerical value of MI or NMI, if their intensity

or noise profiles differ. This poses a particular problem for groupwise registration

where there will be variation in intensities among subjects. This motivates the

use of segmentation-based similarity metrics. A segmentation of an image divides

the voxels into labelled tissue classes or anatomical structures. Hard segmentations

label every voxel in a given structure with the same value. Soft, or probabilistic

segmentations assign, to each voxel, the probability of being each structure. Meth-

ods for segmentation include clustering algorithms such as the K-nearest neighbour

algorithm [85] or likelihood measures such as the Expectation-Maximisation (EM)

algorithm [70]. Examples of segmentation algorithms for brain image analysis can

be found in [116, 138, 139, 266] and are described in more detail in Chapter 6.

When working with hard segmentations, a label-consistency metric can be used,

which measures the overlap of segmentations:

SLC =

nI
∑

i=1

N(Ii ∩ Iref )

N(Ii ∪ Iref )
(4.8)

where N(Ii∩Iref ) represents the number of voxels in both image Ii and the reference

image having the same label and (Ii ∪ Iref ) is the total of the number of voxels la-

belled in Ii and the reference. The reference model is maximum probability estimate

[103, 105], created by assigning to each voxel the class representing the mode of the

group (i.e. the most commonly occuring class for that voxel).

A problem with registering hard segmentations is that it lacks sensitivity as large

regions are labelled homogeneously. If labelled regions span too many structures,

there is no way of determining how well individual structures are aligned within the

labelled area. For registration with hard segmentations to work well, many individ-
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ual structures would have to be labelled in each image, or the optimisation would

have to start at some initial solution close to the optimum. An alternative is to use

soft (probabilistic) segmentations. The relative entropy or Kullback-Leibler diver-

gence (DKL), [132, 58] is an information theory metric that represents the distance

between a model probability distribution, Q, and an observed data distribution P .

It can be regarded as the inefficiency of assuming a distribution of Q, when the

true distribution is P . It has recently been used as a similarity measure for image

registration in [44, 88] and in particular for groupwise registration by Lorenzen et

al. in [145, 146].

DKL(P ||Q) =
∑

k

P (k) log
P (k)

Q(k)
(4.9)

Given a set of nI images, probabilistic segmentations for each of nk tissue classes

can be obtained via a segmentation algorithm such as the EM algorithm [138, 139].

The model PDF for a single class is then the mean PDF of the group. The Kullback-

Leibler divergence between this reference model and each of the other images (ob-

served data) can then be calculated. As it is an additive measure, the overall sim-

ilarity is simply the sum of the distances between the model and each individual

PDF:

S =

nI
∑

i=1

∑

x∈Ω

nk
∑

k

pi,x,k log
pi,x,k

pref,x,k

(4.10)

where pi,x,k is the probability of voxel location x in image i being classified as tissue

class k, and:

pref,x,k =

∑

i pi,x,k

nI

(4.11)

The Kullback-Leibler divergence can be related to entropy measures as follows:

DKL(P ||Q) =
∑

k

P (k) log
P (k)

Q(k)
= −

∑

x

P (k) log Q(k) +
∑

k

P (k) log P (k) (4.12)

which is the difference between the cross-entropy of P and Q and the entropy of P .

DKL is always non-negative [58] and is equal to zero if and only if P=Q, i.e. the

assumed and actual probability density functions are exactly equal. The measure is
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not symmetric and so, in general, DKL(P ||Q) 6= DKL(Q||P ). However, since we are

trying to minimise the distance between the model and the individual subjects, and

not the distances between individual subjects, this asymmetry is acceptable as the

same model is used in each case.

4.3 Constrained optimisation: primal methods

Regardless of the metric used, a set of transformations needs to be found that

will maximise the similarity. However, in addition to this, it is not possible to

know what the average shape of the population is before the registration. The

average coordinate system represents the coordinate system that requires least total

deformation from itself to all other members of the population. The average space

is therefore calculated implicitly, by constraining the sum of all deformations, from

this space to each subject, to be equal to zero: Maximize: S(d)

Subject to:
nI
∑

i=1

di(x) = 0 ∀x ∈ Ω (4.13)

where the objective function S(d) denotes a measure of the similarity, such as those

given in the previous section. Since the deformation fields are linearly-dependent on

the control points displacements (Equation 4.2), this is equivalent to constraining

the sum of the displacements, d, of each control point φ, to be zero:

nI
∑

i=1

dφi = 0 ∀φ ∈ Φ (4.14)

A control point lattice is created for each subject. These control points are displaced,

deforming the underlying image, until the similarity between the group of images

is maximised, subject to the constraint being satisfied. This could be solved using

a number of optimisation schemes for constrained optimisation. However, as the

objective function is non-linear, but the constraints are linear equality constraints

(and are therefore all active throughout the process), primal methods [147, 22] are
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attractive methods to use. These methods are search methods where the original ob-

jective function is optimised by searching through regions in which the constraints

are always valid. Each solution generated by the process therefore increases the

objective function while always being feasible. Additionally, primal methods do

not require any particular structure of the initial function (e.g. convexity). In this

work, the Gradient Projection Method (Rosen) method is used to optimise the defor-

mations as this integrates well with the steepest descent method of unconstrained

optimisation used in [207] for registration. This enables registration to be easily

performed with or without the constraint according to the user requirements. Full

details of constrained optimisation techniques can be found in [147] and [22]. For

linear constraints, as in this formulation, convergence rates of these primal methods

are often very efficient [147].

Rosen’s Gradient Projection Method [204], is comparable to the method of steepest

descent for unconstrained optimization. For the simple case of a single, linear equal-

ity constraint, Gradient Projection is a suitable strategy. This projects the negative

of the objective function gradient onto the active constraints, by multiplying the

gradient by a projection matrix, P. The projection matrix is calculated by:

P = I − A(ATA)−1AT (4.15)

where A represents a vector containing the coefficients of each constraint and I is

the identity matrix. For each degree of freedom, a separate constraint such that

the sum of movements for each image sum to zero is needed. This gives a square P

matrix of side number of degrees of freedom × number of subjects. However, since

the constraints are simple and repeated, the matrix reduces to a block diagonal

matrix, and is thus computationally feasible. For example, in the case of two images

and four control points each with one degree of freedom (Figure 4.2), the problem

becomes:
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Figure 4.2: A grid of four control points, showing the displacements dφi for each
image i, at each control point φ.

Maximise: S(d)

Subject to:

d11 + d12 = 0

d21 + d22 = 0

d31 + d32 = 0

d41 + d42 = 0

The projection matrix then becomes:

P =
1
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−1 1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0
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(4.16)
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If there were three images, the projection matrix obtained from Equation 4.15 would

be:

P =
1

3



















2 −1 −1 0

−1 2 −1 0

−1 −1 2 0

0 0 0
. . .



















(4.17)

At each iteration, the directions of movement of the control points δ are found by

calculating the gradient g of the similarity function with respect to the control point

displacements. To satisfy the constraints, the gradient vector is then multiplied by

the projection matrix and then normalised. At this stage the method reduces to

steepest descent along the constraint.

δ = − Pg

‖Pg‖ (4.18)

4.3.1 Initial feasible solution

The Gradient Projection method of optimisation requires starting from a initial fea-

sible position on the constraint surface, such as zero displacement for all control

points and for all subjects. However, a more efficient method, would be to start

at a solution closer to an optimal solution. To do this, a pairwise registration can

be done first, as described in Chapter 3. The inverse of the mean of the pairwise

deformations can be calculated using a numerical scheme [198]. This can be con-

catenated with each of the initial pairwise transformations to obtain an initial set

of feasible deformations (T′
i, i ∈ {1...nI}) which sum to zero (see Figure: 4.3):

T′
i = Ti ◦ T̄−1 (4.19)

where
nI
∑

i=1

Ti ◦ T̄−1 = 0 (4.20)
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where T̄−1 is the inverse of the mean deformation field given by:

T̄ =

∑nI

i Ti

nI

(4.21)

Instead of starting the groupwise registration algorithm with deformation fields with

no initial deformation, the deformation fields calculated by Equation 4.19 can be

used as initial solutions to the algorithm, and updated using the methods described

in the previous section. This has the advantage that the initial solution can be

calculated from pairwise registrations. Each registration can therefore be run simul-

taneously on different computers (for example, by using Condor [143, 236]), thereby

saving overall processing time.

Figure 4.3: How an initial average can be calculated from pairwise registrations

4.4 Parallelisation of algorithm

Given the size and number of images, running the algorithm on a single processor can

take a long time. The largest bottleneck will be in the evaluation of the derivative of

the similarity measure for each control point [119]. A single 100×100×100 control

point grid already has 1000000×3 degrees of freedom, making groupwise registration

of multiple images very computationally expensive. Fortunately, the local nature

of the transformation means that the derivative of the similarity measure at each

control point is only affected by control points in a small neighbourhood around it

(see Section 4.1). This makes this part of the algorithm very suitable for parallelisa-
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tion: each region of control points can be handled separately by a different processor.

A Message-Passing Interface (MPI) [99] formulation has been used to distribute

the calculation of the derivative of the similarity metric across multiple computers.

For simplicity, all machines being used run the whole of the remainder of the code.

Further extensions to this would be to store the images across multiple machines,

increasing the number of images that could be simultaneously registered, as in [119],

and to parallelise the evaluation of the similarity metric, which forms the next largest

bottleneck.

4.5 Experiments

4.5.1 Synthetic Images

To test the algorithm, we have first created purely synthetic 3D images of a cube

and a sphere (shown in the diagrams only in 2D). We know that the average shape of

these shapes is in-between the pair. The results, obtained using the sample variance

similarity measure (Equation 4.3), are shown in Figure 4.4. As can be seen, the

final images are of the same expected shape, showing that the alignment has been

successful. Additionally, the deformation fields are shown. When the deformations

at each control point are added together for each control point spacing, deformation

fields with zero deformation are obtained, showing that the resulting shape does

represent the average of the group.

4.5.2 Artificially-deformed data

The groupwise registration algorithm and the similarity measures developed have

been tested on a dataset of simulated brain data. To create a population of sub-

jects, an initial image can be deformed by known deformation fields. If the total

deformation for each degree of freedom over all the deformation fields is equal to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Groupwise registration of a cube (top row) and sphere (second row).
(a) Initial images; (b),(c) images and deformation fields using grids of 10mm and
5mm control point spacings respectively; (d) final images; (e) initial difference image
(f),(g): total deformation field at 10mm and 5mm spacings respectively; (h): final
difference image.
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zero, the original image will represent the mean shape of the population. An ini-

tial set of 50 deformation grids was generated, each with a uniform control point

spacing of 10mm. At each corresponding control point across the 50 images, a ran-

dom displacement is applied such that the displacements across the images form

a Gaussian distribution with zero mean at that location. Within any given im-

age, the displacements at different control points are generated independently. The

average displacement at each control point can therefore be expected to be close

to, but not necessarily exactly, zero. Given the large number of images used, the

total displacement at each control point could therefore be quite high. To ensure

that the sum of the displacements at each control point do sum to exactly zero,

and therefore that the average of the population is the original image, a further 50

subjects were produced. For each existing deformation field, another is created to

have the negative of the existing displacement at each control point. This results

in a set of 100 deformation fields which have a total of zero displacement at each

control point. The inverse of each deformation was applied to a single 2D slice of

the MNI Brainweb image [51] (Figure 4.5) to produce a population of 100 subjects,

each of size 216×180 voxels (Figure 4.6), having a mean shape which is the original

image. The original MNI Brainweb image itself was not included in the population.

The reason for the use of the inverse transformation is that B-spline deformation

fields are themselves difficult to exactly invert. It is easier to transform an image

by the inverse of the deformation field using an iterative numerical scheme such as

Newton-Raphson [198], which gives accurate inversion given a smooth deformation.

By doing this, the deformation field needed to recover the MNI Brainweb image

for each subject is known. When assessing the performance of the registration, it

should be noted that there is inherent bias in that the deformation fields are defined

on the same grid as the registration, and the interpolation the same (B-spline) in

both cases. Additionally, all images have the same intensities and same levels of

noise. However, the aim of these experiments is to investigate the accuracy of each

groupwise similarity metric, and comparison with pairwise approaches, and in all
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cases, the same B-spline formulation is used for the registration.

The MNI Brainweb image also has ground truth segmentations for four tissue classes

- white matter (WM), grey matter (GM), cerebro-spinal fluid (CSF) and background

(BG) - as well as probabilistic segmentations for these same classes. These segmen-

tations were transformed to align with the new population in the same way as with

the intensity images. The resulting population was non-rigidly registered using the

groupwise registration approach described, using control point grids of 20mm, 10mm

and 5mm. The following similarity measures were tested:

• Sample variance (SV)

• Sum of NMI using the average intensity as a reference (ANMI)

• Kullback-Leibler divergence using known probabilistic segmentations of the

slice (KL)

• Label consistency using ground truth hard segmentations (LC)

Figure 4.5: Original MNI Brainweb slice

These measures were also compared to registration using a pairwise scheme. In the

pairwise case, one of the sample images was chosen to be a reference (in this case,

the first image shown in Figure 4.6), and was registered to all the subjects in the

population using 20mm and 10mm control point lattices. The same B-spline de-

formation model was used with a normalised mutual information similarity metric.
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Figure 4.6: The population of 100 artificially deformed subjects. The deformations
were produced by applying Gaussian random displacements to each control point
of a 10mm grid, with a maximum displacement of 21mm and mean displacement of
zero. At each control point, the displacements sum to zero over the population.
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The resulting atlases (in the coordinate system of the chosen reference), were trans-

formed by the inverse of the mean deformation field (using the numerical scheme

described in [198]), into a coordinate system which should, if the registration was

perfect, lie at the centre of the population (see Figure 4.3). This method of average

atlas construction was proposed by Rueckert et al. in [206]. In practice, however, er-

rors in the registration process are likely to occur. To account for these, the process

is then repeated using the average atlas, produced as above, as the new reference

subject [100]. This is re-registered to all subjects and a new average is then found

using the mean of the new deformation fields. This new average image then acts

as a reference for the next iteration. The results here show four iterations of this

process of calculating an average atlas and re-registering to this atlas. These are

denoted in the graphs by P (i = x) where x is the iteration number.

A sample of the original population and the final transformed subjects after various

registration techniques can be found in Figure 4.7. The final atlases created using

each method are compared to the MNI Brainweb average in Figure 4.8. This shows

how all the registration techniques transform the samples to shapes closer to the

average shape. Although it is difficult to distinguish from these images alone which

similarity measure is best, it can be seen from Figure 4.7 (where the individual

images shown are less similar to the Brainweb image, and the final atlas is more

blurry than using the other methods), that most groupwise techniques outperform

one iteration of the pairwise method. The exception to this, is when registering

using hard segmentations of the subjects, using the label consistency metric. This

may be because using hard segmentations lacks the sensitivity required for accurate

registration.

To analyse the results in more detail, two quantities are considered:

1. Accuracy : how well the registration recovers the average MNI Brainweb

shape for each image.
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Figure 4.7: Top row: five samples of the unregistered population and the atlas of
the whole population of 100 subjects (far right). Second row: the deformation fields
produced using groupwise registration (KL) for each image and the total deformation
field (far right). The same samples after groupwise registration with: Kullback-
Leibler (row 3), ANMI (row 4) and sample variance (row 5). The samples after
pairwise registration and transformation to average space (row 6). The images in
the far right column show the atlases of the population after registration using the
corresponding metric.
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(a) (b) (c) (d) (e)

Figure 4.8: Atlases after pairwise (a) and groupwise (using KL (b), ANMI (c), SV
(d) similarity metrics) registration. Far right: original Brainweb image representing
actual mean shape of population.

2. Consistency : how well-aligned the subjects in the group are with each other.

To determine (1), three measures have been computed. The sum-of-squared differ-

ences (SSD) between the voxel intensities in the MNI Brainweb image and in each

resulting image have been found:

SSD =
∑

x∈Ω

(Iref (x) − I(x))2

nΩ

(4.22)

The mean and standard deviations of the SSDs of the population, produced using

each similarity measure, are shown in Figure 4.9, together with the mean and stan-

dard deviation of the SSD between the original population and the MNI Brainweb

image.

The second measure looks at the overlap of the tissue classes of the MNI Brainweb

image and each transformed image. This is determined using the Dice similarity

metric [72]:

D =
2 × N(I ∩ Iref )

N(I ∪ Iref )
(4.23)

which is twice the ratio of the number of voxels correctly labelled to the total num-

ber of voxels with that label in both the reference and image under consideration.

The average Dice overlaps of the population for BG, CSF, GM and WM are shown

in Figure 4.10.
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Figure 4.9: The mean (histogram bar) and standard deviations (red error bars)
of the sum-of-squared differences between the transformed sources and the original
MNI Brainweb image for each similarity metric show the lowest error obtained using
Kullback-Leibler.
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Figure 4.10: Average Dice overlap measures between known segmentation and seg-
mentation in space found by groupwise registration using various similarity metrics.
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Finally, as each subject in the population was created by transforming the MNI

Brainweb image by the inverse of a known transformation, an exact registration

should recover the original deformation. The average absolute displacement error

for each voxel, x, has been computed for each similarity measure:

Error =
∑

x∈Ω

|dsimulated(x) − drecovered(x)|
nΩ

(4.24)

The results of these are shown in Figure 4.11. In the first iteration of the pairwise

method, a chosen subject acts as the reference image for the registration. For this

reason, the deformation fields produced by this iteration are not considered. In

subsequent iterations, the current average image is used as a reference image.
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Figure 4.11: Mean and standard deviation of absolute displacement error of each
voxel for each metric (mm).

These results show that the best-performing groupwise similarity metrics overall are

Normalised Mutual Information with an average intensity reference (ANMI), and

108



the Kullback-Leibler (KL) divergence, using soft segmentations of the population.

The results are comparable to those obtained after four iterations of the pairwise

averaging process. With the exception of the label consistency, all of the group-

wise similarity metrics outperform the results of using one iteration of the pairwise

averaging technique. Additionally, the groupwise measures show lower standard de-

viations of the SSD error than the pairwise metrics, showing the alignment is more

consistent.

To further assess the consistency of the registration, how well-registered the group,

as a whole, is considered. The more well-aligned a population is, the sharper the

resulting final atlas (a mean of the intensities of the individual transformed images)

should be. However, it is not easy to distinguish between the atlases in Figure

4.8 by visual inspection alone. The entropy, H(A) of each atlas has therefore been

computed:

H(A) = −
∑

x

p(A(x)) log p(A(x)) (4.25)

where p(A(x)) is the probability of the intensity of voxel x. As the atlas gets sharper,

the entropy of the atlas should decrease. The results are presented in Figure 4.12.

Overlap coefficients of the whole group have also been computed, as shown in Figure

4.13. These are found using the metric proposed by Zollei in [269], for each tissue

class:

Overlap =
N(I1 ∩ I2 ∩ ... ∩ InI

)

min (N(I1), N(I2), ..., N(InI
))

(4.26)

Here, the numerator represents the area of overlapping labels, and the denominator

represents the minimum input area for that label. This metric is fairly sensitive. For

example, for a group of 25 2D circles, each with radius 50 voxels, but displaced by

1 and 2 voxels in each x, y and xy direction from the origin, the overlap coefficient

already drops to 0.9. The Dice coefficient for the two most mis-registered samples of

the population is 0.98. For the relatively small structures of CSF and grey matter,
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Figure 4.12: Entropy of the final atlas created using the various similarity metrics
and the entropy of the original MNI Brainweb image and the atlas of the original
population.
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the overlaps of the original population, as computed by Equation 4.26, are 0.0013

and 0.0012 respectively. The obtained coefficients of around 0.2, after registration,

therefore represent a significant improvement in alignment.
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Figure 4.13: Groupwise overlaps of tissue classes

Groupwise accumulated overlaps based on fuzzy set theory, developed by Crum

et al. [59], have also been used to assess the registration:

Overlap =

∑

pairs

∑

labels

∑

voxels min(I1, I2)
∑

pairs

∑

labels

∑

voxels max(I1, I2)
(4.27)

where A and B are the segmentation values in a given pair of images for a given

voxel and label. For these experiments, only binary segmentation values are con-

sidered. This measure implicitly weights the effect of structures according to their

area or volume. In Figure 4.14, the results shown do not include the alignment of

the very large background class.
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Figure 4.14: Accumulated overlaps

The results above show a significant benefit of using groupwise registration over

a single iteration of the pairwise scheme for this data, regardless of the similarity

metric used. Using the Kullback-Leibler metric generally produces more consis-

tent registrations than even four iterations of the pairwise process. Additionally,

there appears to be no guarantee that increasing the number of pairwise iterations

increases the consistency of the registration.

4.5.3 Groupwise Computational Complexity

When registering many subjects simultaneously, it is important that the time taken

does not increase more than linearly with increasing numbers of subjects. The

areas of the registration process that could affect the optimisation are the number

of degrees of freedom of the problem and the calculation of the similarity metric.

The number of degrees of freedom increases in proportional to the total number
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of control points, and this increases linearly with the number of images used. The

similarity measures have also been designed to scale linearly with increasing numbers

of subjects. Figure 4.15 shows how the time taken for the registration to converge,

using 20mm and 10mm meshes, varies using increasing numbers of subjects, using

the sample variance metric. The images used were from the population above and

each image was of size 180× 216 voxels. The registrations were run on a 2GHz Intel

Pentium 4 processor.
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Figure 4.15: Time taken for convergence of groupwise algorithm, using SV similarity
measure, with increasing number of subjects

4.5.4 Real 3D Adult Data

The algorithm has also been tested on 3D, real, MR datasets. The results of these

do not necessarily follow easily from the 2D case above. First of all, the number

of degrees of freedom that parameterise the transformations (proportional to the

number of control points), increases significantly. This may make the search space
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for the optimisation more complicated and increase the presence of local maxima.

Additionally, the variable intensities of real data mean that the choice of similarity

metric becomes more of an issue. In this section, we investigate the performance of

the best-performing segmentation- and intensity-based similarity measures accord-

ing to the results in the 2D case.

Twelve subjects were taken from a population of 30 volunteers (15 male, 15 fe-

male) of ages ranging from 20-54 years (median age 30.5 years). The images used

are T1-weighted 3D volumes, acquired using a TE of 4.2ms and a TR of 15.5ms,

with a flip angle of 20◦. The scan data were resliced to create isotropic voxels of

0.9375 × 0.9375 × 0.9375mm, using windowed sinc interpolation. This dataset also

has hard segmentations of 83 tissue classes, obtained by manual segmentation by an

expert, using an extension of an existing protocol [103].

The images are first aligned affinely to the average space, using the method de-

scribed in [6] (Figure 4.16(a-c)). To speed up computation time, and to bypass any

local maxima far from a good solution, an initial pairwise estimate of the average

is found, using the method described in Section 4.3.1. The atlas of the population

after this stage of the registration is shown in Figure 4.16(d-f). This is then used

as starting solution to the various groupwise and pairwise measures. The following

similarity measures have been considered:

1. KL using probabilistic segmentations of each subject, obtained using the Expectation-

Maximisation algorithm.

2. ANMI.

3. Pairwise registration from average atlas (four iterations).

The final atlases are shown in Figure 4.16. Although it is hard to determine visual

differences between the atlases, it can be seen that the pairwise average deforma-

tion field is not zero, indicating that the atlas is not exactly at the average of the
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population. Additionally, the full groupwise registration is run on the same dataset,

but without using any initial solution to the non-rigid registration. For this, the

Kullback-Leibler similarity metric was used. The resulting atlas is shown in Figure

4.17.

The accumulated overlap as given by Crum (Equation 4.27), has been computed

for each metric over the 83 tissue classes. The results are shown in Figure 4.18. In

this, the background segmentation has been ignored due to its large size relative to

the other structures, and its consequently large effect on the measure. Figure 4.16

also shows the total deformation fields (formed by summing the displacement at each

control point over all images) produced using each method. The closer the deforma-

tion field is to a uniformly-spaced grid, the closer to the average shape the atlas is.

Once again, the best performing groupwise similarity metric is the Kullback-Leibler

divergence, which produces segmentation results close to those produced using four

iterations of the pairwise method of re-registering to the average atlas.

4.6 Summary

An unbiased, groupwise, non-rigid registration algorithm has been developed in this

chapter, which simultaneously registers a population of subjects to find the average

shape of the population. This algorithm does not require the a-priori selection of

any reference subject. The method has been tested on, and validated using, a popu-

lation of 100 2D images, created using known deformations, and on 12 3D, real MR

images. The algorithm scales linearly with increasing numbers of subjects.

Groupwise similarity metrics have been developed to assess the similarity of a group
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Figure 4.16: Top row: axial, coronal and sagittal sections of affinely-aligned 12 3D
adult subjects; (d)-(f) initial pairwise estimate (h)-(j) groupwise registration using
KL; (l)-(n) groupwise registration using ANMI (p)-(r) fourth iteration of pairwise
re-registration to average shape. Far right column: total deformation field (sagittal
section) using each similarity metric.
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(a) (b) (c) (d)

Figure 4.17: Atlases obtained using groupwise registration of 12 3D adult subject,
using the KL similarity metric without an initial estimate of the non-rigid transfor-
mation.
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Figure 4.18: Accumulated overlaps of real 3D MR data aligned using groupwise
registration. KL (full) represents the overlap obtained when running the groupwise
registration using the Kullback-Leibler divergence, without an initial solution.
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of images in the registration process. Methods based on image intensities (sam-

ple variance, (SV)), entropies (sum of NMI values using an average intensity image

(ANMI)), hard (label-consistency (LC)) and soft (Kullback-Leibler (KL)) segmen-

tations have been developed. It was found that using hard segmentations lacks the

sensitivity required for accurate groupwise, non-rigid registration. However, the re-

moval of intensity variations within tissue classes, and across subjects, did improve

the performance of the registration algorithm. The best-performing groupwise sim-

ilarity metric (in terms of both accuracy and consistency), was found to be the

Kullback-Leibler divergence for registering probabilistic segmentations. The use of

the ANMI metric was a viable alternative and can be used if soft segmentations

cannot be made available. Apart from the LC metric, all other groupwise metrics

outperformed a single iteration of the pairwise method of creating an average shape

(using the inverse of the mean deformations from a chosen reference). Additionally,

the low standard deviations of the results, low entropies of the final atlases and the

results of the groupwise overlaps, show improved consistency when using the group-

wise registration algorithm.

To conclude, the groupwise algorithm developed has been used to align popula-

tions to their average shape with promising results in terms of both accuracy and

consistency. In the next chapter, this algorithm is applied to populations of neonatal

and child brain images.
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Chapter 5

Neonatal Image Analysis

As seen in Chapter 1, the development of brain structures in infants born pre-

maturely proceeds differently to infants of the same age, developing in the uterus.

Given the significant neuropsychiatric and neurological issues that preterm-born in-

fants face in later life, it is important to be able to determine these differences,

in order to potentially treat any problems. Until fetal MR imaging becomes more

developed, the first point at which these two groups can be compared, is at term-

equivalent age (around 40 weeks). Additionally, it is also important to consider how

the brain continues to develop in the following years. The aims of this chapter are

to investigate:

1. How extrauterine development of preterm infants affects the growth of brain

structures up to term-equivalent age.

2. How the preterm brain continues to grow from from 1 to 2 years.

It is difficult to quantitatively map the growth of the brain between 40 weeks and

1 year because of the huge development of new structures in the brain and the in-

creased myelination, which alters the MR signal (as shown in Figure 5.1), without a

large number of intermediate scans. At present, there is not enough data available

for such a study. Additionally, comparison with normal subjects is challenging due

to the difficulty in acquiring parental approval for the scanning of healthy infants
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Examples of sagittal (top row) and axial (bottom row) sections through
the brain of infants born preterm at term-equivalent age (a,d), one-year (b,e) and
two-years (c,f).

and in obtaining the cooperation of young children without sedation. MR images of

term-born neonates and children are therefore susceptible to motion artifacts.

The aim of this chapter is to determine how volumes of brain structures differ

between populations. Only anatomical structures imaged through MR will be con-

sidered in this work, and not vasculature, tracts or functional development which

require the use of other imaging techniques. Groupwise registration is used to create

representative brain atlases of preterm and control infants at term-equivalent age.

Deformation-based morphometry (DBM) is then used to analyse volumetric differ-

ences between the two groups. Average atlases of preterm populations at 1 year and

2 years are also created, and the growth of structures during this phase is calculated

using DBM.
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5.1 Volumetric analysis

Segmentation-based volumetric analyses [92, 197, 240] involve the labelling of cor-

responding structures of interest in the atlas of each group or individual being com-

pared. The total volume of each structure for each atlas can then be calculated by

counting the number of voxels in the segmentation. This generally requires the prior

knowledge of which structures are particularly important, and the manual segment-

ation of these structures.

More recently, computational morphometry has been developed for automated, vol-

umetric analysis, without the need for a priori segmentation of regions of interest.

These methods fall broadly into two categories: those which compare the local

composition of brain tissue at each voxel after global shape differences have been

discounted (voxel-based morphometry), and those which assess differences in brain

shape, by non-rigidly aligning images into the same coordinate system (deformation-

based morphometry). Both methods examine the whole brain without the need for

any a-priori hypothesis about which structures are likely to change.

5.1.1 Voxel-based morphometry (VBM)

Voxel-based morphometry [264, 14, 211] involves comparing the concentrations of

tissue (e.g.: grey matter) on a voxel-wise basis. To do this, images are normalised

into the same global coordinate system using a 12 parameter affine transformation,

followed by a low-dimensional warping using basis functions [13]. This normalisation

does not aim to align corresponding features exactly, but only to correct for global

shape differences.

The normalised images are then partitioned into grey matter (GM), white mat-

ter (WM), cerebro-spinal fluid (CSF) and background classes using a clustering

algorithm for mixture models [14]. These are then smoothed by convolving with
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an isotropic Gaussian kernel. Each voxel in the smoothed image therefore contains

the average concentration of tissue from the neighbouring region determined by the

width of the kernel. Smoothing also renders the data more normally-distributed.

This allows for the use of parametric statistical techniques, such as the T-test, for

finding voxel-wise differences in tissue concentration, represented by the intensities

of the smoothed images.

VBM provides a framework for analysis of differences between groups, and can

be implemented using the standard SPM software [2]. However, the specific char-

acteristics of neonatal MR images pose particular challenges for VBM. The high

variation of size and shape of neonates means that low-dimensional normalisation

may not be sufficient to capture enough of the variation in the population. Ad-

ditionally, neonatal images are particularly susceptible to varying contrasts in the

same tissue type, between subjects and within the same image, due to the variable

development of myelination. This might confound methods, such as voxel-based

morphometry, which are based on the intensity difference between corresponding

voxel locations. Systematic differences in contrast can become statistically signif-

icant if large enough numbers of subjects are used. Finally, there are no existing

protocols to reliably classify neonatal cerebral tissue, as required by VBM.

5.1.2 Deformation-based morphometry (DBM)

Instead of analysing intensity differences between corresponding voxels, deformation-

based morphometry [64, 45] analyses the deformations required to warp one subject

non-linearly to the coordinate system of another. All the differences between the

two images are captured by the high-dimensional deformation field. DBM requires

no segmentation, either of regions-of-interest or tissue classes.

The Jacobian of a deformation field, obtained when warping a subject to a spec-
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ified coordinate system using image registration, is given by the gradient of the

deformation field:

|J(u)| =
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(5.1)

where ux, uy and uz represent the displacements in the x, y and z directions re-

spectively. By definition, the Jacobian of a deformation is the volume change of

the unit cube after the deformation is applied. By calculating the Jacobian of the

deformation field at each voxel, the volume change at each voxel can be found. For

example, in the case of an FFD model based on B-splines, the deformation is given

by:

u(x, y, z) =
3
∑

l=0

3
∑

m=0

3
∑

n=0

Bl(u)Bm(v)Bn(w)φa+l,b+m,c+n (5.2)

where a = ⌊ x
nx
⌋ − 1, b = ⌊ y

ny
⌋ − 1, c = ⌊ z

nz
⌋ − 1, u = x

nx
− ⌊ x

nx
⌋, v = y

ny
− ⌊ y

ny
⌋, w =

z
nz

− ⌊ z
nz
⌋ and where Bl represents the l-th basis function of the B-spline:

B0(s) = (1 − s)3/6

B1(s) = (3s3 − 6s2 + 4)/6

B2(s) = (−3s3 + 3s2 + 3s + 1)/6

B3(s) = s3/6

For example, the component of the Jacobian ∂ux

∂x
is given by:

∂ux

∂x
=

3
∑

m=0

3
∑

n=0

−(1 − u)2

2
Bm(v)Bn(w)φa,b+j,c+k

+
3
∑

m=0

3
∑

n=0

3u2 − 4u

2
Bm(v)Bn(w)φa+1,b+j,c+k

+
3
∑

m=0

3
∑

n=0

−3u2 + 2u + 1

2
Bm(v)Bn(w)φa+2,b+j,c+k

+
3
∑

m=0

3
∑

n=0

u2

2
Bm(v)Bn(w)φa+3,b+j,c+k (5.3)
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Other derivatives are calculated in a similar fashion. For each subject, the determi-

nant of the Jacobian at each voxel gives the volume change obtained when deforming

that subject into the space of the reference coordinate system. The value of this

determinant can be interpreted as in Table 5.1.

|J(u)| Local properties of deformation
= 1 No volume change
< 1 Local contraction
> 1 Local expansion
= ∞ Tearing
< 0 Folding

Table 5.1: Table showing how the value of the Jacobian indicates volume change
from source to reference.

The use of DBM therefore allows for the analysis of the whole brain without the

need for any prior hyphothesis or any tissue classification. As the analysis is done

on the deformation fields themselves, it is not dependent on intensity variations, but

requires an effective non-rigid registration from the reference coordinate system.

5.1.3 Data analysis

5.1.3.1 Effect size

The determinant of the Jacobian gives the absolute volume changes at each voxel,

relative to a specified template. However, it does not account in any way for the

variance of the group or give any statistically significant threshold. To assess which

changes are most consistent across a group, Cohen’s effect size [47] can be used,

which has previously been used to assess volumetric differences between populations

in [28, 64, 225]. This measures the standardised difference between the mean volume

changes of two groups, C and P , therefore accounting for the variance of volume

changes for each group:

ǫ(x) =
µC(x) − µP (x)

σC∪P (x)
(5.4)
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µC(x) and µP (x) represent the mean value of the determinant of the Jacobian across

each group, C and P , respectively, at voxel location x. σC∪P (x) represents the stan-

dard deviation of the Jacobian determinant of the pooled group at the same location.

In this formulation, a positive effect size means tissue expansion from group C to

group P ; conversely, a negative effective size means tissue contraction from group

C to group P .

Effect sizes can also be interpreted as the percentage overlap between the distri-

butions of the two groups (see Cohen [47]). The various percentage overlaps for

given effect size values can be found in Table 5.2. Cohen suggests that values of

ǫ(x) Overlap (%)
0.0 100.0
0.1 92.3
0.2 85.3
0.3 78.7
0.4 72.6
0.5 67.0
0.6 61.8
0.7 57.0
0.8 52.6
0.9 48.4
1.0 44.6
1.1 41.1
1.2 37.8
1.3 34.7
1.4 31.9
1.5 29.3

Table 5.2: Table showing how the percentage overlaps of two groups for different
effect size values.

effect size ≈ 0.8 can be considered to be ”large”, values ≈ 0.5 ”medium” and ≈ 0.2

”small”. However, these values do not necessarily translate directly to a level of

statistical significance.
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5.1.3.2 Standardised two sample t-test

The two-sample t-test allows the determination of statistically significant differences

across two groups. The t-value at each voxel is given by the formula:

t(x) =
µP (x) − µC(x)
√

σ2
P

(x)

nP
+

σ2
C

(x)

nC

(5.5)

which represents the difference in mean values (µ) divided by the standard error

of the two populations, P and C. σ2 represents the variance and N represents

the number of samples in one of the groups. A t-value of over some statistically-

significant threshold (p-value) indicates that the finding is more than that that

would be expected by chance alone. Generally, this threshold is set at p = 0.05.

However, since comparisons are made on a voxel-by-voxel basis, for an image of size

100×100×100, this represents 50000 false positives - a very large number in absolute

terms. One method to account for this is to use the Bonferroni correction [124].

Using this, when n tests are performed, the significance level is corrected to be p/n.

In practice with neuroimaging data, however, this has the effect of elminating true

as well as false positives [94]. An alternative method is to control the false discovery

rate (FDR) [94, 26]. This is the proportion of false positives among only those tests

which give a positive result.

5.2 Structural Differences at Term-Equivalent Age

Average atlases of a group of 16 preterm infants, scanned at term-equivalent age,

and a group of 16 controls, born and scanned at term, were created. The aim is

to analyse the differences between the two groups at this common time-point to

assess how exposure of the preterm infant to an extra-uterine environment affects

the development of brain structures.
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5.2.1 Subjects and image acquisition

5.2.1.1 Image acquisition

A 1.5 Tesla Eclipse MR system (Philips Medical Systems) was used to acquire high

resolution T1-weighted (TR=30ms, TE=4.5ms, flip angle=30◦), volume datasets in

contiguous sagittal slices (in-plane matrix size 256 × 256, field of view 25cm), and

with a voxel size of 1.0 × 1.0 × 1.6mm.

5.2.1.2 Population

Images of 16 control subjects and 16 preterm-born subjects were acquired using the

above protocols, and used in the groupwise experiments following. Preterm infants

were sedated during the acquisition using chloral hydrate. Control infants were

examined in natural sleep. All subjects were imaged at the same, term-equivalent

age for comparison. Infants with white matter brain injury were excluded from

the study. Table 5.3 shows the age ranges of the infants at birth and at the time

of the image acquisition. These images are shown in Figures 5.2 (controls) and

5.2 (preterms), after an initial affine alignment to the average space, for ease of

documentation.

Gestational Age (weeks) Controls Preterms
At birth:
Median 39.57 29.71
Range 36-41.86 24-34

At scan:
Median 40.14 40.43
Range 36.57-43.14 37-44.57

Table 5.3: Ages of population at birth and scan

5.2.2 Groupwise registration parameters

The groupwise registration algorithm was separately run on three populations:

1. The 16 control subjects
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Figure 5.2: Sagittal slices of 16 control subjects, after affine alignment to an average
space, showing variation is shape and contrast.
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Figure 5.3: Sagittal slices of 16 preterm subjects, after affine alignment to an average
space, showing variation is shape and contrast.
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2. The 16 preterm subjects

3. The combined group of 32 subjects

Pairwise registrations to a chosen arbitrary subject are first used to find the mean

deformation field. This is inverted and used to create an initial estimate of the aver-

age coordinate system as described in Chapter 3. A parallel (MPI) implementation

of the groupwise registration algorithm was then run using the sum of normalised

information scores between the average intensity image and each of the individual

subjects, using cluster of eight 3.06GHz Intel Xeon machines.

5.2.3 Results

5.2.3.1 Neonatal atlases at term-equivalent age

Groupwise atlases of groups of 16 control subjects and 16 preterm subjects have been

created using deformation grids of 2.5mm and are shown in Figure 5.4. Additionally,

also shown is the atlas formed when registering all 32 subjects simultaneously, form-

ing an atlas with a shape in between the two groups. The atlases show important

differences between the two populations at term-equivalent age:

1. Scaphocephalic brain shape in the preterm group. The elongated shape of the

preterm brain is probably due to the infant lying on a bed while the brain is

developing, compared to the term-born infants growing while supported in all

directions by amniotic fluid in the uterus.

2. Enlargement of the lateral ventricular system in preterm infants. Figures 5.4

(h) and (k) show that the fluid-filled ventricles are much larger in the preterm

group than in the control group. It is possible that this also corresponds to

lower tissue development in areas surrounding the ventricles. This is consistent

with previously reported findings in clinical studies [177, 131, 29].

3. Increased myelination in the control group. The internal capsule in Figure

5.4(i) (controls) is much more pronounced than in Figure 5.4(l) (preterms),
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.4: Atlases produced by groupwise registration showing sagittal, axial and
coronal sections of the total group of 32 subjects affinely aligned (a)-(c), and after
groupwise non-rigid registration (d)-(f); atlas produced using only 16 control sub-
jects (g)-(i); atlas produced using only 16 preterm subjects (j)-(l). Major differences
in ventricular size and myelination can be seen in (h),(k) and (i),(l), respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Determinant of Jacobians for controls (top row) and preterms (bottom
row) shown in the common coordinate system. The scale on the far left shows how
the colours vary for 0 ≤ |J| ≤ 2. Values < 1 indicate tissue contraction (shown
by colours from green to blue) and values > 1 indicate tissue expansion (shown by
colours from green to red).

showing that more myelination has occurred in the control group than in the

preterm group at the same equivalent age. This result has also been previously

reported in [253, 57].

One potential issue with the registration of the combined group of controls and

preterms, is that the average shape may not form a realistic brain shape. However,

in practice, this only happens if the two populations are very different from each

other; here the two groups are sufficiently similar for this not to be a problem.

5.2.3.2 Volumetric changes using DBM

The atlases in Figure 5.4 show qualitative differences between the two populations

and are particularly useful for visualising differences in brain shape and myelination.

In order to quantify volumetric differences, it is possible to register the atlases of
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the controls and preterms together, and analyse the resulting deformation field as

described in Section 5.1.2. However, as this involves registering only the average

atlases, it is not possible to perform any statistical significance testing on the volu-

metric changes obtained. Instead, the deformation fields obtained when registering

the entire population to their average coordinate system (shown in Figure 5.4(d-f))

are analysed. One caveat with this approach is that the inconsistency in myelination

across the population may adversely affect the alignment of the images, and so each

registration was checked visually. Figure 5.5 shows the volume changes for each

population, calculated by finding the average determinant of the Jacobian of these

deformation fields. The distribution of the effect size metric across the brain, again

in the overall average coordinate system, is shown in Figure 5.6. A large and posi-

tive effect size indicates a structure larger in the preterm group than in the control

group. Figures 5.5(d-f) and 5.6(g-i) show a volume increase in the posterior horns

of the lateral ventricles. This finding has also been described in previous studies

[166, 183]. Large, negative effect sizes show a reduction of volume in the preterm

group, compared to the controls. Figures 5.5(d-f) and 5.6(d-f) show noticable re-

duction in the volume of deep grey matter in an area corresponding to the basal

ganglia. This has also been suggested previously in [141]. However their use of

small selected patient groups with cystic white matter disease does not necessarily

extend to infants without the tissue damage. The finding does correspond to that

of Boardman et al. [29] who use deformation-based morphometry on a larger group

of subjects - which include the ones used in this study - using pairwise registrations

with a carefully-chosen reference subject. These same differences are also detected

using a T-test to compare the volume changes in the two groups (Figure 5.7), using

a significance level of 5% with correction for multiple comparisons to control the

false discovery rate using SPM [2].

Volume changes can also be seen outside the brain area. This is due to the dif-

ficultly in accurately and consistently segmenting neonatal brain images. The skull

133



and part of the neck were therefore also included in the registration process, in ad-

dition to a layer of air surrounding the skull. The registration deforms the images to

align the intensities of the surrounding air, thus producing the extraneous volume

changes outside the brain.

5.2.4 Standard deviations of volumetric changes

By registering to the average image, it is also possible to determine the standard

deviations of the volumetric change at each voxel, for each population:

σ =

√

1

nI

∑

Ω

(

V (x) − ¯V (x)
)2

(5.6)

where V (x) represents the volume change at voxel x. Figure 5.8 shows the variation

from the mean volume change in the average coordinate system of the combined

population. It can be seen that the preterm group shows larger variation, particu-

larly in the ventricles, while the basal ganglia area appears to have greater variation

in the control group. While this may represent biological variation, it is also an

area which is undergoing myelination in this age group. It is also possible that the

apparent variation is due to erroneous alignment of varying myelination. Figure 5.9

shows the standard deviation from the mean volume change in the average coordi-

nate system of each individual group. Once again, the preterm group (d-f) shows

greater variation than the control group (a-c), particularly towards the back of the

brain.

5.3 Growth Between 1 and 2 Years

As discussed in Chapter 1, preterm infants often suffer from neurological impair-

ments in later life. An important factor to consider in the analysis of injury to the

brain resulting from preterm birth, therefore, is how the brain continues to grow

into childhood. In this section, the growth between one and two years in analysed
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.6: Effect sizes shown in the common coordinate system. Top row: overall
distribution across the brain; middle row: areas where ǫ < −1 (showing tissue
contraction in the preterm group); bottom row: areas where ǫ > +1 (showing tissue
expansion in the preterm group).
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: Statistically significant differences between controls and preterms at
term-equivalent age. (a)-(c) areas smaller in the preterm group than the control
group; (d)-(f) areas larger in the preterm group than the constrol group.

(a) (b) (c)

(d) (e) (f)

Figure 5.8: Standard deviations of volumetric changes of control (top row) and
preterm (bottom row) populations in the average coordinate system of the combined
population.
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Standard deviations of volumetric changes in the average coordinate
system of each individual population, showing increased variation in preterm popu-
lation. Top row: controls. Bottom row: preterms.

by creating and comparing average atlases at these two time-points. The calcula-

tion of volumetric changes in infant growth additionally needs to account for overall

growth in brain size, as well as local changes. The average affine shape and size

of each group therefore also needs to be calculated. To do this, the log-averaging

technique developed in [6] and discussed in Chapter 3 was used. A chosen arbitrary

subject was affinely registered to the other subjects in the population. The inverse

of the log (geometric) average of these affine transformations was then calculated

using Equation 3.5, Chapter 3. For each subject, the transformation to the refer-

ence coordinate system was concatenated with the inverse of the average to give a

transformation to the average affine space. Groupwise non-rigid deformation fields

were then calculated in the same was as described in Section 5.2.2.

5.3.1 Subjects and image acquisition

18 preterm-born infants were scanned at one and two years of age. At birth, the

mean gestational age of the group was 27.7 weeks, with a standard deviation of 2.2
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weeks. The corrected gestational ages (the age corrected for gestational age at birth)

at scan were 54.0 weeks and 106.4 weeks with standard deviations of 5.8 weeks and

4.4 weeks respectively.

The images used here are T1-weighted MR volumes. The scans of seven sub-

jects were acquired using a Marconi 0.5T Apollo scanner (TR=23ms, TE=6ms, flip

angle=30◦), while the remaining subjects were scanned using a 1.0T HPQ system

(TR=23ms, TE=6ms, flip angle=35◦). The voxel dimensions were 1.0×1.0×1.6mm

in all cases.

5.3.2 Structural growth between 1 and 2 years

Average atlases of the one-year-old and two-year-old groups are shown in Figure

5.10. A visual comparison shows the increase in overall brain size.

The atlas of the two-year-olds has been used as a template and registered to the

atlas of the one-year-olds using conventional pairwise registration. The process of

finding the growth is shown schematically in Figure 5.11. This enables the volu-

metric changes that occur between the two ages to be determined, by calculating

the determinant of the resulting deformation field. The volume changes from 1 to

2 years is shown in Figure 5.10(g-i). Although, as expected, most areas increase in

volume, there are some areas (shown by the blue colouration) which actually shrink

during this time. Such areas include the parts of the ventricles. This is not surpris-

ing as these are essentially fluid-filled spaces. This correlates with a previous study

on seven preterm subjects scanned at one-year and two-years [6], with examples

of volume changes obtained shown in Figure 5.12. To obtain these growth maps,

the individual growth of each subject was found and averaged in a common space,

resulting in a less noisy volume change map. However, corresponding areas appear

to be changing in the same way.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.10: Comparison of average atlases of one- (a-c) and two-year-olds (d-f) and
growth maps (g-i) showing average volumetric changes between the two ages (shown
in the coordinate system of the two-year old atlas). Areas where |J| < 1 indicate
growth of tissue from one to two years. Areas where |J| > 1 indicate shrinking of
tissue from one to two years. The same population is used in each age group.

Figure 5.11: Mapping the growth between the one and two-year old populations.
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Figure 5.12: Growth between one and two years found by averaging growth of
individual subjects in common space [6].

5.4 Summary

Groupwise non-rigid registration has been used to create unbiased average atlases of

preterm and term-born infants at term-equivalent age. This has enabled the visual

comparison of these groups to detect general differences in size and shape and myeli-

nation. Additionally, deformation-based morphometry has been used to determine

volumetric differences between the groups. The results obtained are comparable

to those found in previous studies [6, 7] and are consistent with clinical outcomes.

The use of groupwise registration means that the results are not biased towards any

particular reference subject and the differences found can therefore be described as

typical for the populations being considered.

Average atlases of preterm infants scanned at one- and two-years-old have also

been created. This has allowed the growth of structures over this time period to

be determined. The vast changes that occur between term and one-year mean that

registration of subjects at these two time-points is infeasible. In order to track

growth of structures over this time period, it is necessary to obtain scans at many

intermediate time-points.

This work could be further extended to quantify the growth and differences in indi-

vidual structures. This requires the segmentation of structures or tissue classes in
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each atlas, or in images of individual subjects. However, automatic segmentation

for neonatal and child brain images is a difficult task due to the lack of prior at-

lases on these populations. The following chapter introduces methods to combine

groupwise registration to the average coordinate system with automated methods

of segmentation, in order to segment a population of subjects.
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Chapter 6

Combined Groupwise

Segmentation-Registration

6.1 Introduction

Image segmentation of MR images involves assigning, for each voxel in the image,

a label indicating to which tissue or structure that voxel belongs. For example,

in MR brain images, voxels can be separated into those representing white mat-

ter (WM), grey matter (GM) and cerebro-spinal fluid (CSF), or into more specific

anatomical structures such as the ventricles, thalamus, or caudate. Segmentation is

a crucial tool for medical image analysis. It allows for the quanitification of struc-

tural volumes, which can be used to analyse morphological differences over time or

between subjects. For example, in longitudinal studies, the changes in size of the

hippocampus of Alzheimer’s or Schizophrenia patients could be tracked, as in [61]

[8], or the growth of white and grey matter in neonatal infants could be measured

[6]. Alternatively, in cross-sectional studies, differences between control subjects

(such as term-born infants) and study subjects (such as pre-term born infants) can

be detected and quantified [29]. The ability to segment an image into GM, WM and
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CSF additionally assists in the 3D visualisation and morphometric analysis of the

cortex [128].

In this chapter a novel groupwise segmentation algorithm is developed to segment im-

ages of a population of subjects. This utilises the information provided by the group

when all images are aligned to the average space of the population. Additionally,

the groupwise segmentation algorithm is incorporated with the groupwise registra-

tion algorithm proposed in Chapter 4 to produce methods for combined groupwise

segmentation and registration.

6.1.1 Single image segmentation methods

MR image segmentation is still often done manually by a trained expert outlining

the structures of interest. This can be time-consuming and laborious. Moreover,

manual segmentations are difficult to reproduce and are prone to inter- and intra-

operator variability, potentially suffering from operator bias and fatigue. There is

therefore a need for automatic methods of segmentation.

Automatic segmentation, however, is rarely a trivial task. Methods such as thresh-

olding, which create binary partitions of the image intensities in order to classify

voxels, are often insufficient. This method labels all voxels with an intensity above

a certain threshold as one class, and all those below the threshold as another. This

may result in an estimate of the classes, but, the nature of MR images prevents

this from being an effective tool. In particular, the segmentation of MR images is

complicated by:

1. Low tissue contrast. The strength of MR magnets and the need to obtain scans

in reasonable times often results in low contrast between different tissues [266].

2. Intensity inhomogeneity (bias field). This results in ”shading” of the image

giving different intensity profiles in different regions of the image. This is
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primarily caused by inhomogeneities in the applied magnetic field during the

scan [219]. As these inhomogeneities are due in part to the shape of the

subject being scanned, it is not possible to use prior calibration to account for

these [46]. Techniques do exist to estimate and correct for the bias field. These

include the N3 (nonparametric, nonuniform intensity normalisation) algorithm

[220] which models the intensity nonuniformity as a smooth multiplicative

field. Such methods can additionally be built into the segmentation algorithm

[116, 15, 191].

3. Partial volumes. The limited spatial resolution of MR scanners means that a

single voxel sometimes represents tissues from more than one class [192].

4. Noise. The noise in MR images follows a Rician distribution [216], the shape of

which is dependent on the signal-to-noise (SNR) ratio. For high SNRs (above

three), the distribution approaches a Gaussian distribution [216] and, in prac-

tice, much research in image segmentation assumes a Gaussian distribution

for MR noise.

Many different methods have been used for medical image segmentation. A brief

description of some popular methods is given here. For a full review of such methods,

see [186].

6.1.1.1 Supervised and unsupervised classifiers

Classification techniques aim to partition the data (feature space) into known cate-

gories. In the case of MR image segmentation, this involves allocating, for each voxel

in an image, a label denoting the tissue class it represents. This is assigned depend-

ing of the distribution of the intensities of the original image. Classifiers fall into

two categories: unsupervised (which do not require training data) and supervised

(which require the model to be trained beforehand). Further details of classification

techniques can be found in [75].
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Clustering algorithms, such as the K-means and fuzzy c-means, algorithms are un-

supervised methods as they require no prior training of the model. However, they do

require an initial estimation of the segmentation or of the parameters of the model.

Starting with an initial estimate of the segmentation, the K-means algorithm [48]

iteratively computes the mean intensity for each tissue class. A voxel is labelled by

assigning it with the tissue class label with the closest mean. This gives a hard seg-

mentation. The fuzzy c-means clustering algorithm [185] applies the same technique

to soft segmentations.

In contrast, supervised classifiers require prior training of the model on similar,

manually-segmented, data. Non-parametric classifiers, such as Parzen windowing

or k-Nearest Neighbour (kNN), make no assumptions about the distribution of the

underlying data. The kNN algorithm [85] compares the intensity of the voxel to be

segmented with the k closest intensities from the training data. It then assigns the

most popular label of these neighbours to that voxel. Parzen windows [179] instead

perform the classification according to the majority vote within a predefined window

of voxels, centred on the voxel to be labelled.

An example of a supervised, parametric classifier is the maximum likelihood (ML),

or Bayes, classifier [82]. This assumes that the distribution of the underlying data

forms a finite mixture model (usually a mixture of Gaussians for MR brain images).

Each tissue class represents one of the components of the mixture. The aim is to

calculate the mixture and distribution parameters that lead to the highest proba-

bility of obtaining the image intensities. This method can be trained by estimating

parameters of the distribution for each mixture (tissue class) on pre-segmented sam-

ple images. For example, for a Gaussian mixture model, the mean and variance of

each Gaussian distribution, as well as the mixing parameters (which represent how

much of each mixture there is), could be estimated from training samples. This

method provides a soft, or probabilistic segmentation, and the hard labelling can be
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obtained by assigning to the voxel the class with the highest probability.

However, the ML problem can also be solved without the use of training data.

Instead, a good estimate of the initial probabilistic segmentation (known as a prior

model) can be used. This method has been adopted in many brain MR image seg-

mentation problems [138, 139, 116]. It is solved using an optimisation algorithm

known as the Expectation-Maximisation (EM) algorithm [70], which iteratively im-

proves the soft segmentation and the Gaussian parameters. This will be discussed

in more detail in Section 6.2.

6.1.1.2 Deformable models

Deformable models are based on physical models of elasticity. These are used for

segmentation by modelling image intensities (or their derivatives) as forces which

act on the deformable model. Segmentation occurs when forces acting on the model

are minimised or balanced. Deformable models fall into two categories: parametric

and geometric. Parametric models were introduced by Kass et al. in [125]; a survey

of these can be found in [163]. These use splines (or snakes) which are subjected to

internal, external and image forces - these forces give rise to a corresponding energy

of the spline. The aim is to guide the spline to the position of least energy, which

should occur at image boundaries. However, splines cannot easily handle changes in

topology (e.g.: region splitting and merging), and often need to be initialised close to

the boundary requiring segmentation. Additionally, the internal energy constraints

limit their geometric flexibility, thus reducing their effectiveness on more compli-

cated structures.

Geometric models such as level-set methods, developed in [215], address the prob-

lems of changing topology. These are based on the geometric evolution of fronts

with curvature-dependent speeds. The contour used for segmentation is embedded

as the zero level-set of a higher-dimensional function. The propagation of the con-
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tour is stopped in the region of image boundaries by an external force based on the

intensities of the image (for example, on the gradient of the image intensities [155]).

6.1.1.3 Active shape/appearance models (ASMs/AAMs)

Active shape models (ASMs) [55] are statistical models of shapes of objects which

iteratively deform to fit the shape of a new structure. A set of corresponding land-

marks are positioned along the contours of known segmentations of the same struc-

ture in different training examples. These are used to build statistical shape models

of the structure to be segmented. The statistical shape model is used to constrain

the ASM to vary only in ways seen in the training data. A model of appearance

around each landmark is also used to guide the segmentation. A simple example

of such a model is to assume that landmarks should lie along strong edges. An

extension to ASMs are active appearance models (AAMs) [53] which additionally

incorporate statistical models of intensity variation across a whole of the region of

interest, instead of just near modelled edges.

6.1.1.4 Atlas-based approaches

Atlas-based approaches [71, 50, 203, 105] essentially treat segmentation as a regis-

tration problem. A chosen reference, or atlas, image is manually segmented into the

required tissue classes. This image is then registered to the image that needs to be

segmented. When the images are aligned, the tissue labels can be transferred across

corresponding voxels to give a segmentation of the new image. By using a non-rigid

deformation field for the registration process, this additionally provides information

on volumetric changes for different structures between subjects.
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6.1.2 Segmentation and registration as complementary pro-

cesses

Chapter 4 showed how probabilistic (soft) segmentations of subjects can be used

to achieve groupwise registration of the population, with better results than when

using similarity metrics based on image intensities. This is one example where the

segmentation of an image helps in its registration. In general, segmentation helps

to identify anatomical structures even when the intensities within a given structure

may vary, and even when these intensities may be similar to those in a different

structure. If every structure (in, say, a brain image) could be accurately labelled,

this would greatly simplify the registration process.

However, it can also be argued that registration can contribute to solving the seg-

mentation problem. When images are aligned, there is more information about the

same structures available to guide the segmentation. This has been the motivation

behind multi-modal segmentation where images from the same subject, acquired at

the same time, but using different imaging modalities, are used to help the segment-

ation [254]. There has also been work produced showing how the alignment of prior

information about segmentation with the image to be segmented can improve the

segmentation [62, 191, 15].

If a perfect registration between a pre-existing labelled image and an image to be

segmentated exists, the labelling could be transferred directly to new image. This

method of atlas-based label propagation has been widely investigated in MR brain

image segmentation: a reference image is labelled (perhaps by manual deliniation

of the structures) and is registered to a new subject to be segmented. The labels

can then be transferred to this new image [105, 202, 230]. This technique is often

used to segment subjects from a similar population to the atlas. Rohlfing et al.

[202] showed that the segmentation can be improved by using a pre-labelled atlas
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which represents the average of the population to be segmented. In another recent

work, Heckemann et al. [105] showed that the accuracy of the segmentations can

be additionally improved by combining multiple segmentations using decision fusion.

It can be seen therefore that there is a link between segmentation and registration

and the improvement of one is likely to lead to an improvement in the other. Only

in recent years, however, have there been developments in methods to combine clas-

sification methods of segmentation with registration. Ashburner [15] and Pohl [191]

aim to segment an intensity image by integrating the registration of a probabilistic

prior atlas with the intensity image. The registration is considered to be a parameter

to be optimised to get the best segmentation, using the EM algorithm. However,

no attempt made to use segmentations to assist in the registration of images. This

is done in [38], where two images (a segmented target and a floating image) are

registered. The transformation between the two images is used to improve the seg-

mentation in the target space. In this chapter, we aim to simultaneously segment

and register a population of subjects, without the need for existing segmentations of

any of the subjects. The work is most similar in its aim to Petrovic et al. [184], which

provides a framework for registration, segmentation and modelling of a set of images.

The EM algorithm has been widely used for MR brain image segmentation [116] [138]

[254]. However, its use generally requires known tissue class priors. Commonly-used

priors are the MNI 305 priors [80] which have been formed by taking the voxel-wise

mean of hard segmentations of WM, GM and CSF of 305 affinely-aligned subjects.

Priors used should be representative of the population from which the subject to

be segmented is taken. Using unrepresentative priors will bias the segmentation to-

wards the priors, potentially resulting in errors in the final segmentation. However,

representative priors may not be easily obtained as they themseleves are created

from the segmentation of multiple subjects of the same population.

149



This chapter introduces a novel groupwise combined segmentation and registration

algorithm. The aim of this is to concurrently align to, and segment a population

of images in, the average coordinate system of the population. Information gained

from the alignment of multiple subjects is used to aid the segmentation of each

individual. The updated segmentations are then used to improve the alignment of

the group. At each iteration, an updated atlas of priors is created, representing

the population at that stage. By design, these prior atlases are already non-rigidly

aligned to the average shape of the population. Two methods are proposed here:

an interleaved method, which iterates between the segmentation and registration

processes, and an integrated method, which uses a Bayesian framework to combine

the registration parameters into the segmentation using a Maximum A-Posteriori

approach.

6.2 The Expectation-Maximisation (EM) algorithm

for brain MR image segmentation

As discussed previously, a commonly-used method for the segmentation of brain

MR images is the EM algorithm [70, 172]. This has been used successfully in

[138, 139, 116]. Additionally, recent work on joint segmentation and registration

has used EM or Bayesian type methods for segmentation [38, 15, 191]. The EM

algorithm is a parametric method which assumes that voxel intensities are indepen-

dent samples taken from a mixture of tissue classes. For the purposes of brain MR

image segmentation, each tissue class is represented by a Gaussian distribution (Fig-

ure 6.1), although the EM algorithm can be equally applied to other distributions.

For a given image, let Y be the collection of J voxels, each with intensity yj,

i.e. Y = {yj, j = 1, 2...J}. Assume we wish to segment this image into K tis-

sue classes and let lj ∈ {1, 2...K} be the tissue class to which voxel j belongs (its
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Figure 6.1: Intensity histograms of an axial slice of the MNI Brainweb image and
Gaussian distribution approximations for white matter, grey matter and CSF.

label). Each tissue class, k, can be assumed to be approximately Gaussian dis-

tributed, with mean instensity µj,k and variance σ2
j,k. These form the distribution

parameters θ = {µk, σ
2
k, k = 1, 2...K}. The overall image can be considered to be

a mixture of Gaussian distributions. The labelling of each voxel can be denoted by

a vector z of length K, where zk ∈ [0, 1]. When a voxel is labelled as belonging to

class l, zl = 1 and zk 6=l = 0 everywhere else. The probability that a voxel belongs

to class l can be represented by p(zl = 1) = πl.

The goal of image segmentation is to find, for each voxel, the tissue label l that

best explains the voxel intensity y (classification). This is also dependent on the

model parameters µk and σk chosen for each tissue class, k. However, the model

parameters are, in turn, best estimated when the tissue classification is known. This

suggests that an approach to iteratively update the model parameters and the tissue

classification would result in both better estimation and better classification. This

is achieved by the EM algorithm.
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The EM algorithm aims to maximise the likelihood of the model parameters (here

the mean and variance of the tissue classes) of a Gaussian mixture model, given

a set of observations (the image intensities). It provides an iterative solution to

maximum likelihood estimates for observations which form incomplete (or missing)

data. In terms of medical image segmentation, the observations are the intensities

of the voxels at each location, and the missing data are the tissue classes to which

these voxels belong. The EM algorithm essentially takes the expectation over the

missing data. The likelihood of the data set is given by:

P (Y|θ) (6.1)

This is maximised using the EM algorithm. First, the general theory of the EM

algorithm will be considered. Its application to the specific problem of MR image

segmentation follows.

6.2.1 General Theory of EM

The EM algorithm is an iterative approach to solving optimisation problems where

some hidden (or latent) variables are unknown. It is used to estimate parameters,

θ, of the model, given observations of the data, Y. The derivation of the algorithm

presented here is based on the lower-bound maximisation derivation by Dellaert [69]

and Minka [170]. The maximum a-posteriori (MAP) estimate aims to maximise the

posterior probability of the parameters, given the observations:

θ̂ = argmax
θ

P (θ|Y) (6.2)

There is, however, no analytical solution to this equation. However, incorporating

additional variables, Z, of the model, which are not yet known and cannot be directly

observed - hidden variables - makes the problem easier to solve. Marginalising over
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Z gives:

θ̂ = argmax
θ

∑

Z

P (θ,Z|Y) (6.3)

From the laws of conditional probability, the posterior is proportional to the joint

distribution, and this can be used instead:

θ̂ = argmax
θ

∑

Z

P (Y,Z,θ) (6.4)

Maximising this is equivalent to maximising the natural logarithm of the same func-

tion:

θ̂ = argmax
θ

log P (Y,θ) = argmax
θ

log
∑

Z

P (Y,Z,θ) (6.5)

However, this new term depends on taking the logarithm of a (potentially very large)

sum term. To make the computation more feasible, a lower bound of the function is

found. Finding and maximising this lower bound will maximise the original function

also. To do this, requires the use of an arbitrary probability function over the hidden

variables: w(t)(Z) where
∑

Z w(t)(Z) = 1.

θ̂ = argmax
θ

log
∑

Z

P (Y,Z,θ)

w(t)(Z)
· w(t)(Z)

= argmax
θ

log

(

Ew(t)(Z)

(

P (Y,Z,θ)

w(t)(Z)

))

(6.6)

where Ew(t)(Z) denotes the expectation. This is now in a form where Jensen’s in-

equality [150] can be exploited:

log Ew(t)(Z)

(

P (Y,Z,θ)

w(t)(Z)

)

≥ Ew(t)(Z) log

(

P (Y,Z,θ)

w(t)(Z)

)

= Q(θ; θ(t)) (6.7)

The right-hand-side of Equation 6.7 forms the lower bound of the objective function.

By maximising this, the function itself will eventually be maximised. In this format,

the log of sums has been transformed into the sum of logs which is much easier to
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work with. The lower bound of the objective function is therefore given by:

Q(θ; θ(t)) = Ew(t)(Z) log

(

P (Y,Z,θ)

w(t)(Z)

)

=
∑

Z

log
P (Y,Z,θ)

w(t)(Z)
· w(t)(Z) (6.8)

6.2.1.1 Expectation

The optimal bound, given by Q(θ; θ(t)), touches the objective function at the current

estimate θ(t). That is Q(θ; θ(t)) = log P (θ(t)|Y) at θ(t). It is therefore necessary to

find the w(t)(Z) which maximises the function:

Q(θ; θ(t)) =
∑

Z

w(t)(Z) log

(

P (Y,Z,θ(t))

w(t)(Z)

)

(6.9)

Adding a Lagrange multiplier, λ, to enforce the constraint that
∑

Z
w(t)(Z) = 1, and

rewriting gives an objective function of:

F = λ

(

1 −
∑

Z

w(t)(Z)

)

+
∑

Z

w(t)(Z) log P (Y,Z,θ(t)) −
∑

Z

w(t)(Z) log w(t)(Z)

(6.10)

Taking the derivative with respect to w(t)(Z) and solving gives:

w(t)(Z) =
P (Y,Z,θ(t))

∑

Z
P (Y,Z,θ(t))

= P (Z|Y,θ(t)) (6.11)

The optimal bound, occurring at θ(t) is therefore given by:

Q(θ; θ(t)) = E
Z|Y,θ

(t) log

(

P (Y,Z,θ)

P (Z|Y,θ(t))

)

= log P (Y,θ(t)) (6.12)

The function:

w = P (Z|Y,θ) (6.13)

represents the posterior probabilities of Z given the observations Y and the param-

eters θ. Finding the value of this function constitutes the Expectation step of the

EM algorithm.
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6.2.1.2 Maximisation

Once the lower bound of the function is found, it needs to be maximised. The

parameters at the next iteration are therefore given by:

θ(t+1) = argmax
θ

Q(θ; θ(t)) = Ew(t)(Z) log

(

P (Y,Z,θ)

w(t)(Z)

)

(6.14)

Rearranging using rules of conditional probabilities and dropping terms that do not

depend on θ gives, for the expected log-likelihood:

θ(t+1) = argmax
θ

Q(θ; θ(t)) = Ew(t)(Z) log

(

P (Y,Z|θ)P (θ)

w(t)(Z)

)

(6.15)

θ(t+1) = argmax
θ

Ew(t)(Z)

(

log P (Y,Z|θ(t)) + log P (θ)
)

(6.16)

Here P (θ) denotes the prior information of the probability of the parameters oc-

curring. Solving this step represents the maximisation of the lower bound of the

objective function - the Maximisation step. Alternatively, the bound can also be

maximised using the expected log-posterior:

θ(t+1) = argmax
θ

Q(θ; θ(t)) = Ew(t)(Z) log

(

P (θ|Y,Z)

w(t)(Z)

)

(6.17)

which leads to the same result.

6.2.1.3 Summary of EM algorithm

The aim of the EM algorithm is to find the optimal lower bound of the objective

function and then maximise this bound to maximise the function. This involves two

steps:

• Expectation: Calculate w(t) = P (Z|Y,θ(t)) using the current estimate of θ =

θ(t).

• Maximisation: Solve for θ(t+1) = argmaxθ log (P (Y|Z,θ) + log P (θ)).
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This converges to a local maximum of log P (Y|θ) and also maximises the log-

likelihood log P (θ|Y). A full proof of this is given in [70]. It should also be noted

that simply improving the lower bound will also lead to an improvement in the

solution. However, it will not maximise the function and so convergence will be

slower.

6.2.2 Gaussian Mixture Model

For the application to MR image segmentation, each tissue class, k, is modelled

as a Gaussian distribution, with µk and σ2
k representing the mean and variance,

respectively, of the intensities of each tissue class, k: θ = {µk, σ
2
k, k = 1, 2, ...K}.

The Gaussian distribution for a voxel j is then given by:

Gk(yj) = N (yj|µk, σk) =
1√

2πσ2
exp

[

−(yj − µk)
2

2σ2
k

]

(6.18)

for a single variable. For a multi-dimensional vector y, the multivariate Gaussian

distribution is given by:

Gk(yj) = N (yj|µk,Σk) =
1

√

(2π)n |Σk|
exp

(

−1

2
(yj − µk)

T Σ−1
k (yj − µk)

)

(6.19)

The overall image can then be regarded as a mixture of Gaussian distributions: a

linear combination of many single Gaussian distributions. The Gaussian density

of each tissue class forms one component of the mixture, with its own mean and

(co)variance. The overall probability density function of the intensity is therefore:

p(yj) =
∑

k

Gk(yj) · πj,k (6.20)

where πk denotes the mixing coefficients. These coefficients represent the prior

probability of a voxel being generated by the component k of the mixture.
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6.2.3 Incorporating tissue labelling

In addition to the tissue classes being modelled as Gaussian distributions with cer-

tain means and variances, each voxel in an image can be labelled as belonging to a

single tissue class, l. These tissue labels represent the hidden variables of the prob-

lem. Let the hidden variables Z be represented by a vector z of length K. When

a voxel is classified as being tissue class l, the value of the vector is zl = 1. Every-

where else, zk 6=l = 0. Therefore zk ∈ [0, 1] and
∑

k zk = 1. The mixing coefficients

represent the prior probability of one of these labels:

p(zk = 1) = πk (6.21)

where
∑

k πk = 1 and 0 ≤ πk ≤ 1. Assuming this is known, and that the tissue

labellings of the voxels are statistically independent, this gives the overall probability

density of the labelled image:

p(Z) =
∏

k

πzk

k (6.22)

Therefore:

p(y|zk = 1) = Gk(y) (6.23)

and

p(y|z) =
∏

k

N (y|µk,Σk)
zk =

∏

k

Gk(y)zk (6.24)

Noting that the value of zk = 1 if the label is k and zk = 0 elsewhere, this gives the

marginal distribution of y by summing over all possible labels:

p(y) =
∑

Z

p(y|z)p(z) =
∑

k

Gk(y) · πk (6.25)

Each of J voxel locations provides a different observation (the intensity of the voxel),

yj and has an associated, hidden (or unknown) vector z, indicating the tissue class

label of the voxel. Equation 6.25 is the mixture model. This models the intensi-

ties in the image as a mixture of Gaussian distributions, each weighted by a prior
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probability πk. How these probabilities are found for MR image segmentation are

discussed in Section 6.2.6.

6.2.4 Maximum Likelihood

The maximum likelihood problem, as related to MR image segmentation aims to

assign to each voxel j, a label, zjl = 1, indicating to which tissue class that voxel

belongs. The image is modelled as a mixture of Gaussians, given observations of

the image intensity, yj, at each voxel. To do this, the probability of the observa-

tions, given the image parameters is maximised. This is equivalent to maximising

the log of the likelihood function, summed over all the voxels (assuming statistical

independence of each voxels):

p(y|µ,Σ) =
∏

j

(

∑

k

Gk(y) · πk

)

(6.26)

log p(y|µ,Σ) =
∑

j

log

(

∑

k

Gk(y) · πk

)

(6.27)

Expectation step for Gaussian Mixture Model segmentation

Find the function:

Q(θj|θ(t)
j ) = E

[

log p(yj, zj|θj)|yj,θ
(t−1)

]

(6.28)

This results in a classification step equivalent to finding the posterior probabilities

for the data. By Bayes’s theorem, the posteriors are given by:

p(zl = 1|y) =
p(y|zl = 1)p(zl = 1)

∑

k p(y|zk = 1)p(zk = 1)
=

Gl(y) · πl
∑

k Gk(y) · πk

(6.29)

Maximisation step for Gaussian Mixture Model segmentation

It is now required to maximise the log-likelihood with respect to the model param-
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eters. Setting the derivative with respect to µk to zero gives:

∂

∂µk

(

∑

j

log

(

∑

k

p(yj|zj,k = 1,θj)

))

= 0 (6.30)

By differentiating and substituting in the Gaussian distribution, the value of µk that

maximises the log-likelihood can be found to be:

µ
(t+1)
k =

∑

j p(zj,k = 1|yj,θ
(t)
j ) · yj

∑

j p(zj,k = 1|yj,θ
(t)
j )

(6.31)

A similar approach can be taken to find the value of σ2
k which maximises the function:

(σ2
k)

(t+1) =

∑

j p(zj,k = 1|yj,θ
(t)
j ) · (yj − µ

(t)
k )2

∑

j p(zj,k = 1|yj,θ
(t)
j )

(6.32)

Since µk does not depend on σ2
k, calculating the mean before the variance is necessary

to maximise the objective function. This process improves both the classification

and the parameter estimates at every iteration, leading to an increase in the log-

likelihood.

6.2.5 Multi-channel EM

A set of aligned subjects can be viewed as a set of samples from the same underlying

distribution. The more samples present, the easier it should be to determine the

distribution. For example, it would be easier to manually segment an atlas formed

from a number of aligned subjects, than it would be to manually segment each of the

individual images. This has led to algorithms for multi-channel segmentation. For

example, Van Leemput et al. [139, 254] use the EM algorithm with more than one

input channel to segment adult brain images. These channels typically consist of two

or three images of the same subject, acquired using different imaging modalities, such

as T1-, T2- and proton-density (PD)-weighted MR. Here, the Gaussian distributions

of classes k become multivariate normals with mean µk and covariance matrix Σk.

159



(a) (b) (c)

Figure 6.2: The MNI 305 prior probability maps for white matter (a) grey matter
(b) and CSF (c).

These are updated in the EM algorithm as follows:

Gk(yj) =
1

√

(2π)n |Σk|
exp

(

−1

2
(yj − µk)

T Σ−1
k (yj − µk)

)

(6.33)

where

µk,c =

∑

j yj,cp(zj,k = 1|yj,θ)
∑

j p(zj,k = 1|yj,θ)
(6.34)

and

Σk,c1,c2 =

∑

j p(zj,k = 1|yj,θ) · (yj − µkc1)(yj − µkc2)
∑

j p(zj,k = 1|yj,θ)
(6.35)

for channels c1 and c2 and voxel location j.

6.2.6 Prior probability maps

The EM algorithm requires some knowledge of the probability of a voxel location

being a certain class - a prior probability for each class for each voxel. For adult

brain images, the MNI priors [80] for WM, GM, CSF and background (BG) are

often used (shown in Figure 6.2). These have been formed by taking the average of

segmentations of 305 affinely-aligned adult brain images segmented into the above

tissue classes. The use of so many subjects creates smooth priors for each tissue

class and aims to encapsulate the variation of most normal subjects.
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6.3 Atlas-to-image registration

In many implementations of the EM algorithm, priors, such as the MNI priors, are

first affinely-aligned to the subject to be segmented, in order to initialise the process

[138, 139, 2]. However, there is a large anatomical variation in the brains of different

subjects - the cortex in particular varies largely in shape from subject to subject, or

the subject may not represent normal pathology (e.g. larger ventricles are commonly

present in Alzheimer’s sufferers). For this reason, it would be preferable to use a prior

atlas created from a population of subjects which is representative of the subject to

be segmented. More representative priors should then lead to a better segmentation.

Recent methods have aimed to compensate for unrepresentative atlases by non-

rigidly aligning the prior atlas to the image to be segmented (instead of the more

commonly-used affine alignment). D’Agostino et al. [62] have proposed a method to

register a probabilistic atlas to an intensity image directly such that the likelihood

of the intensities, given the spatially-deformed prior model, is maximised. For this,

they develop an information-theoretic similarity measure. The similarity measure

between image intensities, Y , and class label probabilities L is given by:

S(Y, L) =
∑

k

∑

y

p(k, y) log
p(k, y)

p(k) · p(y)
(6.36)

where k indexes the different class labels and y represents the image intensity. This

can be calculated using histograms in a similar way to mutual information, each bin

being incremented by the probability of being that tissue class.

6.4 Combined segmentation and atlas-to-image reg-

istration

More recent work by Ashburner et al. [15] and Pohl et al. [191] aims to register

the subject to be segmented with the atlas, by incorporating the registration into
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a Bayesian framework for segmentation using the EM algorithm. The objective is

to find the registration that leads to a maximum log-likelihood (or expected log-

posterior) in the segmentation.

6.4.1 Ashburner et al. (2005)

Ashburner et al. [15] integrate the registration of an intensity image to tissue class

priors with the segmentation of that image. The segmentation is again modeled as

a mixture of Gaussians and an EM approach is used. Additionally, they incorporate

the bias field correction within the images. The overall aim of the method is then

to maximise:

P (Y,β, R|θ) (6.37)

where β represents the bias field parameters and R denotes the parameters of the

registration. This is equivalent to minimising:

S = − log P (Y,β, R|θ) (6.38)

where the mixture parameters are given by θ = {µk, σ
2
k, γk, k = 1, 2...K}. γk repre-

sents the prior probability of tissue k (which is dependent on the bias estimation).

Modelling the problem as a mixture of Gaussians, with the additional provision for

the bias field, ρ(β), gives:

S = −
∑

j

log

(

ρj(β)
∑

k

1
√

(2πσ2
k)

exp

(

−(ρj(β)yj − µk)
2

2σ2
k

)

· πj,k

)

(6.39)

Additionally, the priors used are spatially varying and these are to be deformed to

match the image as the algorithm progresses.

The mixture parameters are optimised within an EM framework while holding the

bias and deformation estimates fixed at their current ”best” solutions. The bias is

then optimised with the current mixture and deformation parameters fixed. The
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deformations are optimised by taking the analytical derivative of the cost function

(Equation 6.39) with respect to R and using the Gauss-Newton method [195]. The

deformation model used is a low-dimensional warping algorithm based on combina-

tions of basis functions [13].

6.4.2 Pohl et al. (2006)

Pohl et. [191] also propose a technique for combining segmentation with bias field

correction and the registration of a prior atlas. This solves the MAP estimation

problem of:

(θ(t+1), R(t+1)) = argmax
θ,R

log P (θ, R|Y) (6.40)

With the addition of tissue labelling, Z, indicating to which tissue class a voxel

belongs:

(θ(t+1), R(t+1)) = argmax
θ,R

log

(

∑

Z

P (θ, R,Z|Y)

)

(6.41)

The label map probabilities P(Z|Y,θ(t), R(t)) (where (θ(t), R(t)) are the estimates of

θ and R at the previous iteration), are now incorporated as in Section 6.2.

(θ(t+1), R(t+1)) = argmax
θ,R

log

(

∑

Z

P (θ, R,Z|Y) · P (Z|Y,θ(t), R(t))

P (Z|Y,θ(t), R(t))

)

= argmax
θ,R

log E
Z|Y,θ

(t)
,R(t)

P (θ, R,Z|Y)

P (Z|Y,θ(t), R(t))
(6.42)

This is now in a form which can be maximised using the EM algorithm by maximising

the lower bound of the above objective function:

(θ(t+1), R(t+1)) = argmax
θ,R

E
Z|Y,θ

(t)
,R(t)

(

log
P (θ, R,Z|Y)

P (Z|Y,θ(t), R(t))

)

(6.43)

The following assumptions are made:

• Stationary image intensities. Y is therefore independent of the registration,

R.
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• The registration, R and the Gaussian parameters, θ, are independent.

• The Gaussian parameters, θ, are independent of the labels, Z.

With these assumptions, and using Bayes’s and conditional probability rules, Equa-

tion 6.43 simplifies to:

(θ(t+1), R(t+1)) = argmax
θ,R

E
Z|Y,θ

(t)
,R(t)

(log P (Y|Z,θ) + log P (R|Z) + log P (θ))

(6.44)

Assuiming statistically independent voxels, this yields:

(θ(t+1), R(t+1)) = argmax
θ,R

∑

j

∑

k

P (Zk,j = 1|Y,θ(t), R(t)) ·

(log P (Yj|Zj,θj) + log P (R|Zj) + log P (θ)) (6.45)

The posterior probabilities are once again calculated in the Expectation step in the

same way as in the standard EM algorithm:

p(Zj,l = 1|Y,θ(t)R(t)) =
p(Yj|Zj,l = 1,θ) · P (Zj,l = 1|R)

P (Yj|θ(t)
j , R(t))

=
Gl(j) · πjl
∑

k Gk(j)πj,k

:= wj,l

(6.46)

The parameters θ and R updated in the maximisation step. Noting that each factor

in Equation 6.44 depends on either R or θ, but never both, this can be separated

into two independent equations:

R(t+1) = argmax
θ,R

∑

j

∑

k

P (Zj,l = 1|Y,θ(t), R(t)) · (P (Zj,k = 1, |R) + log P (R))

= argmax
θ,R

∑

j

∑

k

wj,k (log πj,k + log P (R)) (6.47)

θ(t+1) = argmax
θ,R

∑

j

∑

k

P (Zj,k = 1|Y,θ(t), R(t)) · (P (Y|Zk = 1,θ) + log P (θ))

= argmax
θ,R

∑

j

∑

k

wj,k (log Gk(j) + log P (θ)) (6.48)
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The Gaussian parameters are maximised using the standard method of solving

the analytical derivative of Equation 6.48 with respect to each parameter. Since

wj,k is fixed, maximising the registration paramters is equivalent to minimising the

Kullback-Leibler divergence between the posterior distribution wj,k and the prior

atlas πk, if no prior information about the registration exists (that is, P (R) = 0).

6.5 Simultaneous segmentation and registration

Although the previous work attempts to register an image with a prior atlas to

optimise the segmentation, it does not attempt to improve the registration between

images. However, registration and segmentation would appear to be complementary

processes. Segmentation allows ambiguous intensities to be defined as a certain class,

which should aid registration. If subjects are aligned, it should be easier to segment

the structures as there is more data available to make a decision.

6.5.1 Chen et al. (2004)

Chen et al. [38] pairwise register a target image, I1, to a source (or floating) image

I2, using both the image intensities and existing probabilistic segmentations. The

resulting transformation is then used to update the segmentation. When registered,

the two images can be taken to be two observations of the same underlying scene

(the segmentation), corrupted only by Gaussian noise, and therefore conditionally

independent.

An initial segmentation of each image is found, together with the Gaussian dis-

tribution parameters of each tissue class (this could use, for example, the standard

EM algorithm). The Gaussian parameters are held fixed throughout the process -

it is only the segmentation of the target image which is updated. The initial seg-

mentations are soft, or probabilistic, segmentations of each class, which is shown to

be less sensitive to noise than hard segmentations. An iterative scheme is developed
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which performs the following two steps:

1. Registration step: Set T̂ = argmax
T

P (T|ŵ, I1, I2)

2. Segmentation step: Set ŵ = argmaxw P (w|T̂, I1, I2)

where T indicates the current transformation and w represents the current soft

segmentation. A similarity measure based on the source intensities and target seg-

mentation is minimised during the registration step:

SREG = −
∑

j

log

(

∑

k

(

GI2,k(y
′
j) · ŵj,k

)

)

+ E(T ) (6.49)

where y′
j = I(T(j)) represents the intensity of the transformed voxel j, wj,k is the

segmentation probability of class k at voxel location j, E(T) is a regularisation term

used to ensure a smooth transformation model, and GI2,k(y) is given by:

GI2,k(y) =
1

√

2πσ2
I2,k

exp

[

−(yI2 − µI2,k)
2

2σ2
I2,k

]

(6.50)

with yI2 being the intensity of voxel j in image I2. To conduct the registration itself,

a B-spline transformation model is used as in [207].

The segmentation step then minimises:

SSEG = −
∑

j

log

(

∑

k

GI1,k(yj) · wj,k

)

−
∑

j

log

(

∑

k

GI2,k(y
′
j) · wj,k

)

+ E(p)

(6.51)

where E(p) is a Markov Random Field model used to ensure spatial continuity

between voxels, and GI1,k(yj) is the Gaussian of the target image for class k. This

energy term is optimised by minimising the analytical derivative with respect to

each pk, using the projected gradient descent algorithm to constrain
∑

k wk = 1.
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6.5.2 Petrovic et al. 2006

A framework for combined image registration, segmentation and modelling of a 2D

dataset is presented in [184]. This uses an iterative scheme to incrementally improve

each of these, with the addition of modelling of partial volumes in the segmentation.

The images are first warped to an initial affine reference space and initial estimates

of the segmentations for each image obtained. These are used to calculate the

most probable fraction fi,j,k1,k2 of each tissue in each voxel j (assuming at most two

different tissues, k1 and k2, per voxel) in each image i:

fi,j,k1,k2 = argmax
fi,j,k1,k2

pi,j,k1,k2(g|f) (6.52)

where pi,j,k(g) = N (µk, σ
2
k) is the distribution of pure tissue classes which follows a

Gaussian distribution, and:

pi,j,k1,k2(g|f) = N (fµk1 + (1 − f)µk2 , fσ2
k1

+ (1 − f)σ2
k2

) (6.53)

By estimating the fraction of each tissue type at each voxel for each image, recon-

structions of each normalised image can be obtained. These reconstructions are then

aligned to the current normalised population using an SSD intensity metric and a

deformation model as in [52]. Furthermore, the optimum number of tissue classes is

selected to be the one that results in a minimum description length of the modelled

training set. How the use of a set of images, as opposed to considering each image

individually, aids either the registration or the segmentation is not discussed in the

paper. Additionally, the results presented are only of 2D data.

6.6 Combined groupwise segmentation-registration

Many techniques for segmentation rely on combining prior segmentations of compa-

rable subjects. For example, [202, 105] have shown that fusing hard segmentations of
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many subjects can lead to the better segmentation of a new subject. Alternatively,

EM-based algorithms use prior atlases of affinely-aligned segmentations to aid in

the segmentation of a new subject. These methods all rely on having an existing

population of accurate hard segmentations. The problem of how to segment a new

population of subjects is compounded by the fact that segmentations from a repre-

sentative population may not exist. As discussed above, there has been a number of

recent works aimed at non-rigidly aligning a standard prior atlas (such as the MNI

set) with the intensity image to be segmented, in order to obtain priors which are

more specific to, but not necessarily more representative of, the image. The aim

of the work presented in the following sections is to build population-specific priors

by combining groupwise registration and segmentation, and to use these priors to

segment all individuals in the population. There are two aims for this section:

1. To use the population of aligned images to help in the segmentation process.

2. To use segmentations of the population to help in the registration process.

3. To create and use representative prior atlases that are non-rigidly aligned with

the population.

6.6.1 Registration-based groupwise segmentation

A groupwise segmentation algorithm is first developed to segment individual sub-

jects of a population, using information gained from the segmentation of the other

subjects in the group. These subjects are initially non-rigidly aligned to a common

average space of the population, so that corresponding voxel locations represent the

same structures. It is possible to use the multi-channel EM algorithm with multiple

aligned intensity images for segmentation of the common space. However, the need

to calculate multi-dimensional Gaussian distributions once again creates dimension-

ality problems for large numbers of images, due to increased sparsity of the data (see

Chapter 4). Instead of combining the intensities of individual images, we propose to

combine their probabilistic segmentations, thus removing the need to estimate any
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multi-dimensional functions.

In the algorithm presented here, the information provided by the other subjects

in the population is instead used to create models for the probability, πj,k, of a voxel

j being a tissue class k. The simplest method to do this would be to take the mean

of the individual posterior probability maps created at each iteration:

π
(t+1)
j,k =

∑

i p(zi,j,k = 1|yi,j,θi,j,k)

nI

=

∑

i wi,j,k

nI

(6.54)

However, if the population is small, or the original priors used are not unrepre-

sentative of the population, it may not be prudent to completely disgard all the

information from the initial priors. At each iteration, the model could be updated,

instead of being completely recalculated. For example, the following formulation for

updating the model could be used:

π
(t+1)
j,k = λ

(∑

i wi,j,k

nI

)

+ (1 − λ) π
(t)
j,k ∀j, k (6.55)

where λ is a weighting term which determines the influence of the previous model

and the mean of the current posteriors. The values of π
(t+1)
j,k need then to be nor-

malised such that
∑

k π
(t+1)
j,k = 1.

A standard EM iteration can then be performed in order to maximise the log-

likelihood function for each image, i ∈ {1, 2, ...I}, given this model:

Maximise:

Si =
∑

j

log

(

∑

k

Gi,k(yj) · πj,k

)

(6.56)

Optimising this function with respect to the model πj,k directly will simply aim to

increase all the prior probabilities subject constraint that
∑

k πj,k = 1. Using this

method, the increase of probabilities that should be increasing may not be reliably

achieved. Instead, the function is optimised by using a single iteration of the EM
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algorithm using the existing priors at first. At each subsequent EM iteration, a

new model is created using the current posterior probabilities found by the previous

iteration. The prior map for each tissue class therefore evolves with each iteration,

and should get more population-specific as the confidence of the segmentations of

the individual images improves. The full groupwise segmentation algorithm for a

set of images aligned to a common space is therefore as follows:

1. Create model of probabilities, πj,k, to be the mean of the tissue probabilities

at each voxel location for each individual image using Equations 6.54 or 6.55.

Initially, this model would require an input prior map for each image (for

example, the MNI priors). As the input images are aligned, the same priors

can be used for each image, resulting in an initial model equal to each of the

individual priors.

2. For each image, perform one iteration of the EM algorithm

(a) Parameter estimation: update Gaussian parameters and function based

on current individual posterior probabilities for each image, i:

µik =

∑

j p(zi,j,k = 1|yi,j,θi,j,k) · yi,j
∑

j p(zi,j,k = 1|yi,j,θi,j,k)
(6.57)

σ2
i,k =

∑

j p(zi,j,k = 1|yi,j,θi,j,k) · (yi,j − µi,k)
2

∑

j p(zi,j,k = 1|yi,j,θi,j,k)
(6.58)

Gi,k(j) =
1

√

2πσ2
i,k

· exp

(

−(yi,j − µi,k)
2

σ2
i,k

)

(6.59)

(b) Classification: update individual image probabilities based on new tissue

class parameters and new model:

p(zi,j,l = 1|yi,j,θi,j,l) =
Gi,l(j) · πj,l

∑

k=1 Gi,k(j) · πj,k

(6.60)

3. Repeat (1)-(2) as often as necessary.
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This creates, at each iteration, a model of priors for each class, specific to the popu-

lation being studied, and in the same coordinate system as all of the subjects. The

final segmentation can be transformed back into the image space using the inverse

of the transformation which warps the original image into the common coordinate

system.

6.6.2 Segmentation-based groupwise registration

The above algorithm requires the subjects to be aligned in the same common space,

and so can be expected to work better the more well-aligned the subjects are. It

also makes sense for this space to be as close to the individual subjects as possible

- the average space as defined in Chapter 4 is therefore used. As shown in the same

chapter, one of the best-performing methods in aligning a group of images to the

average coordinate system uses the Kullback-Leibler divergence similarity measure.

However, this in turn works best when accurate probabilistic segmentations of the

group are available: a better segmentation leads to a better alignment and a better

alignment leads to better segmentation. This suggests that combining the segment-

ation and registration processes together would be mutually beneficial.

The registration step proceeds as described in Chapter 4, using the Kullback-Leibler

similarity metric on the current posterior probability maps. The transformation is

found which minimises:

∑

i

∑

j

∑

k

p(zi,j,k = 1|yi,j,θi,j,k) log

(

p(zi,j,k = 1|yj,k,θi,j,k)

πj,k

)

(6.61)

where i is the image, j is the voxel and k is the tissue class index. For this, the

model used should be the most representative of the whole population. The mean

of the individual probabilities is therefore used:

πj,k =

∑

i p(zi,j,k = 1|yi,j,θi,j,k)

nI

(6.62)
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where nI is the number of images in the population.

6.6.3 Interleaved groupwise segmentation-registration

The segmentation and registration steps can be interleaved to give the full group-

wise, segmentation-registration algorithm. For each iteration, the segmentation is

estimated to give posterior probabilities for each image, p(zi,j,k = 1|yi,j,θi,j,k). These

soft segmentations are then used to estimate the transformations using groupwise

registration with the Kullback-Leibler divergence similarity measure. It should be

noted however, that it is not necessary to use groupwise registration for this. Im-

proving the pairwise registration using the Kullback-Leibler divergence, either to an

average shape or to a chosen individual subject, should also help to improve the

segmentation, as long as the alignment between subjects improves. Using a pairwise

algorithm would increase the number of subjects that could potentially be used in

this algorithm, which should in turn allow the creation of more representative priors.

6.6.4 A Bayesian approach to integrated groupwise segmentation-

registration

An alternative approach is through a combined Bayesian formulation where the

registration is modelled as one of the parameters of the segmentation, and solved

for in a similar way to the Gaussian parameters. For a given location in a given

image, the maximum a-posteriori (MAP) estimation is defined as follows:

(θ(t+1), R(t+1)) = argmax
θ,R

log

(

∑

Z

P (θ, R,Z|Y)

)

:= argmax
θ,R

f(θ, R,Z|Y) (6.63)

This aims to maximise the probability of the Gaussian parameters, θ, the registra-

tion parameters, R, and the tissue labelling, Z, given the image intensities, Y. This

is similar to the approach taken in [191]. However, the need to align all images to the

average shape means that the image intensities, the Gaussian parameters and the
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tissue labelling, all vary with the registration parameters. As shown in [191], and

using the lower bound maximisation method described in Section 6.2.1, Equation

6.63 is equivalent to:

(θ(t+1), R(t+1)) = argmax
θ,R

E
Z|Y,θ

(t)
,R(t)

(log P (Y|Z,θ, R) + log P (R|Z,θ) + log P (θ|Z))

(6.64)

where E
Z|Y,θ

(t)
,R(t)

denotes the expectation. Assuming the registration parameters

do not depend on the Gaussian parameters, and that the Gaussian parameters do

not depend on the tissue labelling, for statistically independent voxels, this yields:

(θ(t+1), R(t+1)) = argmax
θ,R

E
Z|Y,θ

(t)
,R(t)

(log P (Y|Z,θ, R) + log P (R|Z) + log P (θ))

=
∑

j

∑

k

p(zj,k = 1|yj,θ
(t), R(t)) · [log p(yj|zj,k = 1,θ, R) + log p(R|Z) + log p(θ)]

=
∑

j

∑

k

p(zj,k = 1|yj,θ
(t), R(t)) ·

[log p(yj|zj,k = 1,θ, R) + log p(zj,k = 1|R) + log p(R) + log p(θ)] (6.65)

Assuming uninformative priors for the registration and Gaussian parameters, this

gives a final problem of:

(θ(t+1), R(t+1)) = argmax
θ,R

f(θ, R,Z|Y)

= argmax
θ,R

∑

j

∑

k

p(zj,k = 1|yj,θ
(t), R(t)) · [log p(yj|zj,k = 1,θ, R) + log p(zj,k = 1|R)]

(6.66)

or

(θ(t+1), R(t+1)) = argmax
θ,R

∑

j

∑

k

w
(t)
j,k ·

[

log Gk(yj) + log π
(t)
j,k

]

(6.67)

This can also be solved using an EM framework. The expectation step calculates

the posterior probabilities, p(zj,k = 1|yj,θ
(t), R(t)), and the maximisation step finds

the values of θ and R which maximise the new log-likelihood function (Equation

6.66). However, it can be seen that Equation 6.66 depends on both θ and R. In
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this case, a variant of the EM algorithm, the Expectation Conditional Maximisation

(ECM) algorithm [165] can be used to calculate both the registration and segment-

ation parameters. The expectation step is the same as in Equation 6.29. In the

maximisation step, one of the parameters is held fixed, while the value of the other

which maximises the function is found. The new value of this parameter is then

fixed, and the value of the first parameter is found to maximise the function:

(θ(t+1)) = argmax
θ

f(θ, R,Z|Y)

(R(t+1)) = argmax
R

f(θ(t+1), R,Z|Y) (6.68)

Given this, [165] has proved that the following holds in the ECM:

f(θ(t+1), R) ≥ f(θ, R) (6.69)

f(θ(t+1), R(t+1)) ≥ f(θ(t+1), R) (6.70)

The parameters θ can be calculated as before, using Equations 6.31 and 6.32. The

update of the registration parameters uses Equation 6.67 as the objective function

to be maximised. This registration step can, again, either be done groupwise, to

ensure the co-ordinate system is at the centre of the population, or pairwise to the

current average estimate of the prior model.

6.6.5 Convergence criteria

At each iteration of both the groupwise segmentation and groupwise registrations

methods, the model of priors is updated. Although at each iteration the log-

likelihood (and therefore the theoretical segmentation) is improved for the model

used, the use of different models renders the overall aim of maximising the log-

likelihood for segmentation inappropriate. Instead, the optimum model needs be

found.

174



From a Bayesian point-of-view, the best prior model is the one which is most prob-

able given the data (the image intensities). For any given model Mx:

P (Mx|Y) ∝ P (Y|Mx) · P(Mx) (6.71)

The first term on the right-hand-side of the equation represents the model evidence.

This implicitly penalises the error involved in using the model to predict an image,

while the second term penalises complexity of the model. However, it is difficult to

calculate the model evidence term:

P (Y|Mx) =

∫

φ

P (Y|φ,Mx) · P (φ|Mx)dφ (6.72)

where φ denotes the parameters that characterise the model. In this case, these can

include the registration parameters and the posterior distributions. It is not feasible

to calculate this term for all possible parameters.

Instead, a more intuitive approach is used, since the model represents the mean

of the group of current segmentations. Given perfect segmentations, as the align-

ment of the images increases, the entropy of the model will decrease. Given per-

fect alignment, as the segmentation of each image converges, the entropy of the

model will also decrease. The lowest model entropy will always occur when the im-

ages are segmented with greatest confidence and perfectly aligned. The aim of the

segmentation-registration process is therefore to reduce the entropy of the model,

and the process is terminated when this converges. The entropy of the prior model,

M , at iteration t is given by:

H(M (t)) = −
∑

j

∑

k

π
(t)
j,k log π

(t)
j,k (6.73)

where πj,k gives the probability that voxel j is labelled as class k. This is equivalent

to stopping the process when the complexity of the model converges, following the
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principle of Occam’s razor, which states that a model should be the simplest possible

which fits the data.

6.6.6 Comparison of segmentation-registration methods

The interleaved and integrated approaches to combined groupwise segmentation-

registration are shown diagramatically in Figures 6.3 and 6.4 respectively.

Start

Stop

Transform segmentations to image space

Transform images to average space

Segmentation (EM iteration): 
(a) Update Gaussian parameters
(b) Update posterior probabilities

Entropy of M minimal?

Registration:
(a) Update alignment of images

Construct new M from
posteriors in average space

Construct prior model M from input priors
in average space

Unaligned images

Initial priors (eg: MNI)

Y

Initial registration estimate

N

Figure 6.3: Flowchart showing the interleaved segmentation-registration algorithm.

Although both methods use the same groupwise segmentation technique to cre-

ate increasingly specific and representative priors at every iteration, there are some

fundamental differences. The interleaved segmentation-registration method iterates

between:
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Start

Stop

Transform segmentations to image space

Transform images to average space

Expectation: 
Update posterior probabilities

Entropy of M minimal?

Conditional Maximisation:
(a) Update alignment of images

(b) Update Gaussian parameters

Construct new M from
posteriors in average space

Construct prior model M from input priors
in average space

Unaligned images

Initial priors (eg: MNI)

Y

Initial registration estimate

N

Figure 6.4: Flowchart showing the integrated (Bayesian) segmentation-registration
algorithm.
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1. Segmentation:

(a) Maximisation: calculate Gaussian parameters using Equations 6.31 and

6.32.

(b) Expectation: calculate posterior probabilities using Equation 6.29.

2. Registration: find the optimal transformation between the images by minimis-

ing Equation 6.61.

3. Repeat until convergence of entropy of prior model.

This has two aims: (a) to segment the images given the current alignment and (b)

to align a population of subjects to their average shape, given their segmentations.

However, it is not a specific requirement that improving the registration also im-

proves the segmentation at every step.

The integrated approach instead aims to find the registration that leads to the

best segmentation given the model. This consists of iterating between two steps (it

is possible to start with either):

1. Conditional Maximisation: maximise Equation 6.67 with respect to:

(a) Find the registration parameters which maximise Equation 6.67.

(b) Find the Gaussian parameters which maximise Equation 6.67, given the

updated registration parameters.

2. Expectation: calculate posterior probabilities using Equation 6.29.

3. Repeat until convergence of entropy of prior model.

However, improving the alignment of the group of images is not an explicit aim of

the integrated method. Rewriting the objective function for this method (Equation

6.67), for an image i, gives:

∑

j

∑

k

wi,j,k (log Gk(yj) · wi,j,k) − wi,j,k log

(

wi,j,k

πj,k

)

(6.74)
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The final term represents the KLD (Equation 6.61) between the posteriors and the

model. The registration step of the integrated method aims to maximise all of

Equation 6.74. However, as the first term depends only on the image under con-

sideration, its maximisation may conflict with the second term which drives the

alignment between images. It cannot, therefore, be expected that maximising the

objective function of the integrated method will result in markedly or consistently

improved registration between the images in the group.

In contrast, only the final term of Equation 6.74 is minimised in the registration

stage of the interleaved method. In the segmentation stage, the Gaussian param-

eters are then updated to maximise the first term, given the updated registration

(since only Gk(yj) is dependent on the Gaussian parameters). Updating the Gaus-

sian parameters after updating the registration allows them to compensate for any

reduction in the objective function caused by the change in registration.

6.7 Results

The algorithms above have been evaluated on synthetic 2D data and have also been

used to segment populations of real 3D MR data of 22 one-year-old and 22 two-

year-old preterm infants.

6.7.1 Artificially-deformed data

The same population of 2D synthetic data created in Chapter 4 has been used. The

transformations to the average space, as well as the segmentations of the original

images are therefore known. In addition, varying levels of Gaussian noise (with zero

mean and standard deviation ranging from 0-5) were applied across the population.
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6.7.1.1 Registration-based segmentation

First of all, it is necessary to test the premise that using the segmentations of a

group of aligned subjects is preferable to trying to segment a single image using

affinely-aligned priors. To do this, the sample population is transformed into the

average space by the actual, known deformations and the groupwise segmentation

algorithm is applied until convergence. For the initial input to the first iteration,

the MNI priors are used.

To assess the criteria for the termination of the segmentation process, the nega-

tive log-likelihood is plotted at each iteration in Figure 6.5. This shows a decrease

as the iterations increase. However, although the changes at later iterations become

relatively small, the value does not actually converge. The entropy of the model

is also plotted against the number of iterations in Figure 6.6. This converges after

the fifth iteration. The models of priors as the algorithm progresses are shown in

Figure 6.7. This shows how the models get sharper and more specific showing in-

creased confidence in the segmentations. However, it can also be seen that some

areas get increasingly misclassified, for example, there is a strong probability of ar-

eas surrounding the ventricles being grey matter, which is incorrect. These areas

are particularly prone to partial-volume effects. As the alignment of the images

increases, the misclassification of these areas becomes reinforced.

The segmentation results are compared to those obtained using the standard EM

algorithm on each individual subject, using affinely-aligned MNI priors. For this

population, the actual segmentations of all images in the population are known. To

evaluate the accuracy of the segmentations produced using the methods described,

the label consistency between the known and obtained segmentations are calculated

for each image, as in Equation 4.8, Chapter 4. This evaluates the overlap between

the segmentations. As can be seen from Figure 6.8, the groupwise segmentation algo-
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rithm of aligned subjects outperforms the traditional EM algorithm on this dataset.
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Figure 6.5: Evolution of log-likelihood with number of iterations for groupwise seg-
mentation of perfectly aligned population.

6.7.1.2 Groupwise Segmentation-Registration

In this section, the interleaved and integrated segmentation-registration approaches

are tested on the same dataset. An initial estimate of the registration is used (found

using the groupwise registration approach described in Chapter 4), and the MNI pri-

ors are used as the initial prior probability map for each tissue class. Samples from

the population together with their final segmentations using each method are shown

in Figure 6.9. These have been compared to the segmentations obtained using the

groupwise segmentation when all the images are already in the exact average space,

and also to the segmentations obtained using the standard EM algorithm with the

MNI priors. Additionally, the entropies of the prior models at each iteration are

shown in Figure 6.10 for each method. The label consistencies at each iteration
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Figure 6.6: Evolution of entropy of prior model with number of iterations showing
convergence at the fifth iteration for groupwise segmentation of a perfectly aligned
population.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 6.7: The evolution of prior models as the groupwise segmentation algorithm
proceeds for WM (top row), GM (middle row) and CSF (bottom row). From left to
right: the MNI priors, updated models at iterations 1, 3, 4 and 5 (convergence of
model entropy).
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Figure 6.8: Average label consistency results of 100 images with groupwise segment-
ation using the actual, known transformation compared with single-subject EM (full
lines). Average label consistency of final segmentation using groupwise segmentation
and single-subject EM (dotted lines).
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Method BG CSF GM WM

EM 0.976 0.779 0.871 0.922
Integrated 0.988 0.847 0.882 0.949
Interleaved 0.988 0.850 0.884 0.950
Groupwise 0.989 0.862 0.891 0.955

Table 6.1: Dice similarity results for each structure using each segmentation method.

and at the final point of the procedure are shown in Figure 6.11. Additionally,

the Dice metric [72], as described in Chapter 4, is used to assess the alignment of

each tissue class for each subject. These are shown in Table 6.1. The two group-

wise segmentation-registration methods perform comparably well, and show a slight

improvement on the accuracy of the segmentation over that of the standard EM

algorithm alone. The difference between these methods is particularly noticeable

for the CSF.

6.7.1.3 Effect on Registration

For the registration phase, both methods implemented groupwise registration with

the constraint that the sum of all deformations should be equal to zero enforced. The

average root-mean-squared (RMS) error of the displacements of the voxels is shown

in Figure 6.12. As expected, the interleaved segmentation performs much better as

maximising the alignment is a specific aim of this method. The integrated method

has to balance maximisation of population alignment with the maximisation of an

individual posterior to its segmentation. Comparing these results with Figure 4.11

of Chapter 4, it can be seen that interleaved method performs better than groupwise

registration methods described in that chapter.

6.7.2 Groupwise segmentation of 3D MR images of one- and

two-year-old infants born preterm

Populations of 22 preterm-born subjects imaged at one-year-old and again at two-

years-old were aligned to their average shape at each time point, using the inverse
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Figure 6.9: Sample images from the population (first column) and their respective
segmentations: using interleaved segmentation-registration (second column), inte-
grated segmentation-registration (third column), groupwise segmentation using the
actual transformation (fourth column) and using the standard EM algorithm (final
column).
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Figure 6.10: Evolution of entropies of prior models with number of iterations for
interleaved and integrated groupwise segmentation-registration up to convergence.

of the mean of pairwise transformations, as described in Section 1.3 of Chapter 5.

These populations consisted of all the subjects used in Chapter 5, plus an additional

four others. The groupwise segmentation algorithm was run on each of these aligned

populations until the entropy of the model of priors converged. In both cases, this

occurred after six iterations. Samples of the segmentations obtained of the one-

year-old population are shown in Figure 6.13, and of the two-years-old population

in Figure 6.14. The MNI 305 priors were used as an initial input to the segmentation

algorithm. After each iteration, the priors for the next iteration were recalculated

to be the mean of the current soft segmentations of the population (i.e.: λ = 1). No

update of the registration was used, however, this can easily be incorporated as in

the 2D case. The intensity atlas of each population aligned to its average shape is

shown in Figures 6.15 and 6.16, together with the WM, GM and CSF atlases and

maximum probability estimate of the segmentation of the average shape at conver-

gence. The evolution of the model of priors for the populations are shown in Figure
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Figure 6.11: Average label consistency at end of process for each segmentation
method.
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Figure 6.12: Average absolute voxel displacement error using the two groupwise
segmentation-registration methods indicating registration accuracy.
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6.17 and 6.18 for the one-year-old and two-year-old populations, respectively. The

volume of WM and GM in each atlas has been found, and the quantitative growth

of these tissues is given in Table 6.2.

WM GM

Volume at 1 year (cm3) 278 536
Volume at 2 years (cm3) 326 612
Volume change +17% +14%

Table 6.2: Volumes of WM and GM at one- and two-years.

Using these methods has enabled the construction of both intensity and proba-

bilistic tissue class atlases, as well as individual segmentations, of populations for

which no existing standard atlas currently exists (to the best of our knowledge), and

has allowed the quantification of volumetric differences between the groups.

6.7.3 Discussion

The groupwise segmentation and registration methods developed in this chapter and

in Chapter 4 have been used to create average intensity, hard and soft segmenta-

tions of populations, representing their average shape. Additionally, the groupwise

segmentation techniques have been used to segment the individual subjects of each

population in their original image space. The combination of segmentation and reg-

istration processes allows an improvement in one process to aid the progression of

the other.

On the simulated dataset, both combined segmentation-registration methods out-

perform the EM algorithm at segmentation of the original images, using the same

initial input priors. The best segmentation occurs when the images are perfectly

aligned, as obtained when the known transformations to the average space are ap-

plied. The integrated and interleaved segmentation-registration methods have a sim-

ilar performance in terms of segmentation. However, only the interleaved method,
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(a) (b) (c) (d) (e) (f)

Figure 6.13: Samples of segmentations of 3D MR subjects of 22 one-year-olds ob-
tained using groupwise segmentation.
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(a) (b) (c) (d) (e) (f)

Figure 6.14: Samples of segmentations of 3D MR subjects of 22 two-year-olds ob-
tained using groupwise segmentation.
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(a) (b) (c)

Figure 6.15: Average shape atlases of 22 one-year-olds. Top row: intensity atlas;
second row: maximum probability estimate of segmentation of average shape; rows
3-5: WM, GM and CSF atlases in average space at convergence of groupwise seg-
mentation algorithm.
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(a) (b) (c)

Figure 6.16: Average shape atlases of 22 two-year-olds. Top row: intensity atlas;
second row: maximum probability estimate of segmentation of average shape; rows
3-5: WM, GM and CSF atlases in average space at convergence of groupwise seg-
mentation algorithm.
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...

...
(a) (b) (c) (d) (e)

Figure 6.17: The evolution of prior models for the one-year-old population as the
algorithm proceeds for WM (top row), GM (middle row) and CSF (bottom row).
From left to right: the MNI priors, updated models at iterations 1-3 (b)-(d) and 6
(e) (convergence of model entropy).
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...
(a) (b) (c) (d) (e)

Figure 6.18: The evolution of prior models for the two-year-old population as the
algorithm proceeds for WM (top row), GM (middle row) and CSF (bottom row).
From left to right: the MNI priors, updated models at iterations 1-3 (b)-(d) and 6
(e) (convergence of model entropy).
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which explicitly aims to maximise the registration improves the alignment of the

images. The registration using this method outperforms that of any of the group-

wise registration techniques described in Chapter 4 when starting with an initial

approximation to the solution.

The groupwise segmentation algorithm has also been used to create average shape

maximum probability and soft (probabilistic) segmentations of populations of 22

one-year-olds and 22 two-year-olds. The individual subjects of each population

were also segmented. No update of the registration was used, although given the

results on the simulated dataset, improving the registration is likely to lead to an

improvement in the segmentations also.

The method of segmenting individual images in an average co-ordinate system makes

sense if the transformation from the average space to the image space is known, and

the inverse transformation from the average space to the image space can also be

found. For the B-spline registration method, the inverse on a transformation can

be calculated using a numerical scheme. However, errors in the inversion can occur

if there is folding in the mesh generated by the registration. Any errors in the in-

version process are likely to adversely affect the segmentation quality. Additionally,

the segmentation quality is still dependent on the segmentation method used. In

this chapter a simple EM algorithm was used. There are many possible extensions

of the segmentation method that could increase the capability of segmenting MR

images. The incorporation of image inhomogenieties (bias field correction) could be

included within the Bayesian framework for segmentation, as in [191, 15, 116]. Ad-

ditionally, the finite mixture model could be augmented by the inclusion of spatial

information (as in [38]), through the use of Markov Random Fields (MRF), which

model the brain tissue types as piecewise constant. This would use information from

neighbouring voxels to estimate the probability of a given voxel being a given tissue

class.
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Methods to create more representative models could also be developed. Given the

fact that different subjects will be registered to different extents, models specific

to each image could be produced. For example, a given subject’s model could be

weighted to favour the probabilities given by subjects which are closer in alignment

with that subject (these may not necessarily the best-registered subjects in the pop-

ulation). Furthermore, preference could be given to probabilities which are more

certain. This could be done by weighting the effect of each model by the inverse

of its entropy. This would help to alleviate the partial-voluming effects shown in

Figure 6.7.

The segmentation methods developed in this chapter still require an initial esti-

mate of the soft segmentation. In the experiments performed, the MNI 305 priors

were used. However, this choice may bias the segmentation results, particularly

when using the MNI 305 priors, created from segmentations of adult brain images,

as the initial prior for child brain segmentation. Unbiased methods of creating ini-

tial estimates of the segmentation (such as unsupervised classifiers or deformable

models described in Section 6.1.1), could therefore to be considered instead.
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Chapter 7

Conclusions

This thesis has developed groupwise registration and segmentation methods for the

construction of probabilistic and intensity-based atlases, representing the average

shape of a population. Groupwise registration is used to determine the average

shape of the population. This is taken to be the shape that requires least deforma-

tion from itself to other members of the population. By simultaneously registering

all subjects in a population, the need to choose a reference subject has been elimi-

nated from the registration procedure, thus removing any potential bias caused by

this choice. Groupwise segmentation is used to determine the probabilistic segmen-

tations of average shape atlases. Furthermore, by combining the segmentation with

the registration, more accurate representations of shape and structure have been

obtained.

The methods developed have been used to analyse the structure of the brain of

preterm-born infants at varying time-points in their infancy. There is much clinical

interest in studying this population due to the profound effect that preterm birth

has on the developing brain and its significant long-term consequences. The infant

brain displays vast changes in shape over the first few years of life. However, no

standard intensity-based or probabilistic templates currently exist for either preterm

or term-born infants, to the best of our knowledge.
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The groupwise registration and segmentation techniques have been used to create

anatomical atlases at term, one-year and two-years. At term, the intensity-based

atlas of preterms has been compared to an atlas of term-born controls and quan-

titative differences between the two groups determined. Intensity-based and prob-

abilistic atlases have additionally been constructed for the populations of one- and

two-year-olds. This has enabled the growth of structures over this time period to

be analysed and quantified.

7.1 Contributions

Chapter 4 developed a novel, unbiased, groupwise non-rigid registration algorithm

for atlas construction. This involved the introduction of a constrained non-linear

optimisation technique to constrain the sum of all deformations to be zero, and

hence to constrain the atlas space to be the average of the population. Eliminating

the need to choose a reference image in the registration process, eliminates the bias

in the algorithm. Various metrics to assess the similarity of a group of images have

been developed and evaluated. The methods have been tested on simulated 2D MR

datasets and on real 3D adult MR data.

Chapter 5 applied the groupwise registration technique to construct average struc-

tural atlases of preterm and term-born neonates at term-equivalent age. This has

enabled to visual comparison of the differences in size, shape and degree of myeli-

nation present in both groups. Additionally, deformation-based morphometry has

been used to quantify volumetric differences between the two groups. The same

methods have been applied to construct average atlases of 1- and 2-year old popula-

tions of preterm subjects and to analyse the growth of individual structures between

these time-points.
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Chapter 6 introduced novel methods for the segmentation of a population of im-

ages. Given an aligned population, a groupwise segmentation algorithm has been

developed. Furthermore, the groupwise segmentation and groupwise registration al-

gorithms have been combined to simultaneously segment and register a population

of images. These methods have been evaluated on simulated MR data, showing

that the combination of the two methods is benefits both. Average segmentations

of the average shape of a population of one-year-olds and a population of two-year-

olds have been created for white matter, grey matter and cerebro-spinal fluid tissue

classes. Individual segmentations of all subjects of the population in their native

space are also obtained.

7.2 Limitations and Future work

There are many interesting avenues to explore in extending this work, both in terms

of algorithm development and in the application to neonatal image analysis.

7.2.1 Algorithm development

In constructing an average atlas of a population, the more subjects included, the

more representative of the population the atlas should be. However, there are a num-

ber of limitations associated with processing very large amounts of data. Firstly, the

memory requirements and processing times required may increase beyond that which

can be handled on a single processor. An MPI implementation of the groupwise reg-

istration algorithm was developed in Chapter 4. However, this only distributes the

processing of the algorithm and not the distribution of the actual data. Fortunately,

due to the local control of B-splines, the registration technique developed is very

suitable to parallelisation. Regions of images can be processed independently, and

therefore stored across machines. However, as more images are used, the alignment

of these images becomes more difficult due to the need to calculate the similarity

of multiple images and the increased complexity of the search space. Optimisation
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methods more suited to very large datasets and which are less sensitive to local

optima, such as stochastic methods [221], could therefore be explored. Additionally,

with increasing numbers of images, the registration of a single image becomes less

important, which may result in some individual images being poorly registered.

An alternative is to try to reduce the computational complexity of the problem.

One method for doing this is to use adaptive mesh refinement in the registration

process [178]. Instead of uniformly subdividing the control point mesh at each level

of the registration, localised measure of Mutual Information are used to determine

the areas which require further deformation. Extra control points are only added

in such areas. This process is repeated to adaptively refine the mesh, thus reducing

the number of degrees of freedom.

The current method of creating the average atlas involves finding the arithmetic

mean of the deformations. However, if outliers exist in the population, this mean

could be unrepresentative. Robust statistics such as M-estimators [113] could be

used instead. These aim to minimise a function corresponding to distances between

the population, where very large distances are penalised. This would reduce the

sensitivity of the final atlas to outliers.

When analysing growth, it is not always convenient to obtain enough intermediate

scans for the growth to be small enough to be accurately captured via B-spline de-

formation fields. The use of registration methods that allow for larger deformations,

such as geodesic flows [24], could additionally be investigated. These algorithms

have the added benefit of providing a metric on the distance between the subjects

being registered, and therefore could provide a metric on brain development.

The segmentation algorithm used in this thesis is based on a simple implemen-

tation of the EM algorithm. There are many methods which have been developed
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to work within an EM framework to improve the segmentation of real MR data and

these could be incorporated into the algorithm described. These include methods

for bias field correction [191, 15, 138], correction for partial volume effects [255, 76]

and the use of neighbourhood information such as Markov random fields [38, 266]

to aid segmentation. The current segmentation technique additionally still relies on

the MNI 305 priors, albeit only for a single iteration. However, bias caused by this

may still propagate through the segmentation as the algorithm proceeds. The use

of unsupervised classifiers such as mixture models [75] could instead be investigated

for the initial prior estimate.

7.2.2 Neonatal image anaylsis

The first time-point that preterm and term-born infants can be compared at is at

term-equivalent age. However, by this time, large differences between the two groups

are already significant. It would be beneficial to be able to understand why and

when changes occur at earlier time-points, in order to potentially treat the preterm

infant. This requires the comparison of the brain of preterm infants that of the

fetus. However, obtaining usable fetal MR scans is difficult due to the movement

of the fetus. Reconstruction of the scans is therefore needed to account for mo-

tion. This has been developed in [120]. Figure 7.1 shows a reconstructed image of a

fetal brain at 33 weeks, compared with a preterm infant at the same equivalent age.

The interleaved groupwise registration and segmentation methods need to be used

to analyse larger populations of data in order to obtain more accurate and more rep-

resentative atlases of the populations. These can then be quantitively compared. It

would, however, be necessary to obtain more intermediate scans between term and

one-year due to the large amount of growth that occurs during this time. Tracking

changes after two-years would also be interesting as the effects of preterm birth are

known to extend into childhood and adolescence.
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(a) (b)

Figure 7.1: Reconstructed fetal MR compared with preterm MR at equivalent age
(33 weeks).

The shape variation of the populations could also be analysed. For example, us-

ing statistical modelling techniques such as principal components analysis (PCA)

[55], which has previously been employed to detect shape differences between the

hippocampus of normal subjects and those with depression [193].

7.3 Summary

This thesis has developed groupwise registration, groupwise segmentation and com-

bined methods to create atlases representing the average shape and tissue struc-

tures of populations of neonates and infants. Intensity-based atlases have been

constructed for populations of preterm and term-born neonates at term equivalent

age. For populations of one- and two-year-old subjects, both intensity-based and

probabilistic atlases have been constructed. These are populations for which no stan-

dard anatomical atlas currently exists, to the best of our knowledge. The atlases

constructed have been used to quantify differences between preterm and term-born

neonates at term equivalent age, and also to quantify the growth of structures be-
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tween one- and two-years.
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