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Abstract

The objective of this thesis is the development of automatic methods to measure the changes in

volume and growth of brain structures in prematurely born infants. Automatic tools for accu-

rate tissue quantification from magnetic resonance images can provide means for understanding

how the neurodevelopmental effects of the premature birth, such as cognitive, neurological or

behavioural impairment, are related to underlying changes in brain anatomy. Understanding

these changes forms a basis for development of suitable treatments to improve the outcomes of

premature birth.

In this thesis we focus on the segmentation of brain structures from magnetic resonance images

during early childhood. Most of the current brain segmentation techniques have been focused

on the segmentation of adult or neonatal brains. As a result of rapid development, the brain

anatomy during early childhood differs from anatomy of both adult and neonatal brains and

therefore requires adaptations of available techniques to produce good results.

To address the issue of anatomical differences of the brain during early childhood compared

to other age-groups, population-specific deformable and probabilistic atlases are introduced. A

method for generation of population-specific prior information in form of a probabilistic atlas

is proposed and used to enhance existing segmentation algorithms.

The evaluation of registration-based and intensity-based approaches shows the techniques to

be complementary in the quality of automatic segmentation in different parts of the brain. We

propose a novel robust segmentation method combining the advantages of both approaches. The

method is based on multiple label propagation using B-spline non-rigid registration followed by

EM segmentation.

Intensity inhomogeneity is a shading artefact resulting from the acquisition process, which

significantly affects modern high resolution MR data acquired at higher magnetic field strengths.

A novel template based method focused on correcting the intensity inhomogeneity in data

acquired at higher magnetic field strengths is therefore proposed.

The proposed segmentation method combined with proposed intensity inhomogeneity correction

method offers a robust tool for quantification of volumes and growth of brain structures during

early childhood. The tool have been applied to 67 T1-weigted images of subject at one and
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two years of age.
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Chapter 1

Introduction

A normal pregnancy usually lasts between 38 to 42 weeks and babies born within this period

are referred to as full-term infants. Premature birth, defined as a delivery of a baby before

37 completed weeks of pregnancy, affects 5-7% of all children [86]. Over the last 20-30 years,

developments in neonatal medicine improved the outcomes of prematurely born infants. How-

ever, the effects of premature birth still extend into later life [55], most likely as a result of the

profound effect of premature birth on brain development.

The objective of this thesis is the development of automatic methods to measure the changes in

volume and growth of brain structures in prematurely born infants as well as in full-term infants.

Automatic tools for accurate tissue quantification can provide the means for understanding

how the neurodevelopmental effects of the premature birth are related to underlying changes in

brain anatomy [1]. Understanding these changes forms a basis for the development of suitable

treatments to improve the outcomes of premature birth.

1.1 Brain development in prematurely born children

Approximately 40% of survivors of premature birth suffer cognitive, neurological or behavioral

impairment. About 12% of extremely premature infants (born before 28 weeks of gestation)

develop cerebral palsy and 50% have some form of disability at 6 years of age [55].
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In comparison to term born infants, preterm infants at term have reduced cortical and subcor-

tical grey matter volume, enlarged fluid-filled spaces and white matter abnormalities [51], [43],

see fig. 1.1.

(a) (b)

Figure 1.1: (a) T2-weighted MRI of an infant born at 26 weeks, imaged at 40 weeks gestational
age; (b) T2-weighted MRI of an infant born and imaged at 40 weeks gestational age. The black
arrow in (a) points to a large area filled with cerebro-spinal fluid in prematurely born infant,
while in full-term infant this space is filled with brain tissue, see the black arrow in (b).

The major predictors of altered cerebral volumes are gestational age at birth and the presence

of cerebral white matter injury. Infants with significantly reduced cortical and subcortical

grey matter volumes and increased cerebro-spinal fluid volume at term-equivalent age exhibit

moderate to severe neurodevelopmental disability at one year of age [42]. Other studies have

correlated reductions in tissue volume during adolescence with neurocognitive and behavioural

problems [79], [2], [60]. While the neural correlates for cerebral palsy are well described [88],

the cerebral abnormalities underlying more subtle problems such as minor motor impairment

or inattention remain unclear.

To improve the neurodevelopmental outcome in prematurely born children, it is crucial to
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understand the nature of brain abnormalities that underlie these disabilities, as well as factors

(such as white matter injury) involved in pathological development. Imaging of the developing

brain therefore plays a key role in measuring and visualizing these brain abnormalities.

1.2 Imaging of the developing brain

Magnetic resonance (MR) imaging is a non-invasive medical imaging technique providing high

resolution 3D volumetric data with high intensity contrast between soft tissues. It is therefore

very well suited for analyzing human brain anatomy. MR imaging uses a powerful magnetic

field to align the nuclear magnetization of hydrogen atoms in water in the body. A sequence of

magnetic fields systematically alters the alignment of this magnetization, causing the hydrogen

nuclei to produce a rotating magnetic field detectable by the scanner. MR imaging can be used

to image not only the anatomy of the brain, but also the vasculature as well as microstructure

of brain tissues. For example, diffusion tensor MR imaging is used to visualize white matter

tracts and MR angiography detects the blood flow in the brain.

Magnetic fields, unlike X-rays used in computer tomography or gamma rays in positron emis-

sion tomography, are not harmful to living cells, making MR imaging a non-invasive technique,

suitable for imaging neonates and children. Cranial ultrasonography is another non-invasive

technique suitable for soft tissue widely used in neonatal imaging. However, ultrasound waves

are poorly conducted through the bones and therefore cranial ultrasonography cannot be per-

formed once the fontanel (gaps between the bones of the cranium) has been closed, usually

between ages 3 months and one year. Unlike in MR imaging, the resolution and contrast be-

tween soft tissues provided by cranial ultrasonography are not sufficient for detecting subtle

changes in brain anatomy correlated with neurocognitive and behavioral impairment.

MR imaging allows the distinction of different tissue types in the brain, e.g. white matter (WM),

grey matter (GM) and cerebro-spinal fluid (CSF), based on their intestines. In T1-weighted

MR images (MRI) the intensity distributions of the tissues in the normal adult brain are as

follows: WM has the highest intensity, GM has a medium intensity and CSF has the lowest
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intensity (see fig. 1.2, bottom row). In T2-weighted MR images the intensity distributions are

inverted with CSF having the highest intensity and WM the lowest intensity.

The appearance of fetal and neonatal brains in MRI differs significantly from a mature adult

brain. Fetal and neonatal T1-weighted MRI are characterized by an inverted contrast of WM

and GM (see fig. 1.2, top row). As the brain matures, the darker intensities of WM present in

the MRI of the fetal brain gradually increase, eventually exhibiting a bright intensity pattern on

T1-weighted MRI. This is caused by a decrease in both T1 and T2 times as the water content

decreases and myelin sheath forms around the WM tracts. Myelin is an insulating layer made

up of protein and fatty substances that allows rapid and efficient transmission of impulses along

the nerve cells. The process of myelination, or formation of the myelin, starts before birth and

is most rapid during the first two or three years of life. Myelination appears to occur earliest

in the tracts connecting the cerebellum and brainstem, which can be already identified at the

age of three months. By the age of one year, all major white matter tracts including the corpus

callosum, subcortical white matter, and the internal capsule are well defined. However, the

refined configuration of the adult brain is not attained until early adolescence [40], [71]. As a

result, WM and GM of very young children can be very difficult to distinguish in MRI, due to

age and location dependent WM/GM contrast.

By the age of one or two years the process of myelination is almost complete and the tissue

contrast is very similar to the contrast in the adult brain (see fig. 1.2, second and third row).

Compared to neonates, the cortical folding has increased resulting in a more complicated shape

of WM and cortical GM than in neonates. Even though tissue contrast is already adult-like,

brain structures in young children have different shapes and sizes [94]. Also, the smaller size of

the brains structures together with the limited resolution of MRI result in an increased number

of voxels containing two or more tissue classes, causing mixing of tissue intensities.
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Figure 1.2: T1-weighted MR images of developing brain from top to bottom: baby at birth,
one year old child, two year old child and adult.
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1.3 Challenges in segmenting brain MRI

Even though the three basic tissue classes are mostly visually distinguishable on MRI, the

automatic segmentation of the brain tissues is a non-trivial problem. In addition to the fact

that intrinsic properties of brain tissues (e.g. relaxation times T1, T2) result in within-tissue

variation of intensities, MRI are also corrupted by artefacts during the image acquisition, such

as patient motion and noise, or mixing of intensities due to more than one tissue present at the

voxel, often referred to as partial volume effect (PVE). Perhaps the most challenging artefact is

the intensity inhomogeneity, also called the bias field. The bias field is a smooth low-frequency

multiplicative artefact caused by inhomogeneity of magnetic field during scanning process,

altering intensities across the image [74], [75].

1.3.1 Intensity distribution in brain MRI

If we neglect the influence of the bias field, the histogram of brain MRI, after removing the

background voxels, will have three main peaks corresponding to the three main tissue classes,

see fig. 1.3. If we also neglect within tissue intensity variation (which is a reasonable assumption

if regions such as the cortical area of the adult brain are being segmented), then the intensities

inside the brain can be considered to be a piecewise constant function, corrupted by Rician noise

and PVE. In practice the problem is often simplified by assuming the Gaussian distribution

for the noise, as it is a good approximation of the Rice distribution if the mean intensity is

not close to zero. PVE causes the tissue intensity distributions to diverge from a Gaussian

distribution, as can be seen from the histogram in fig. 1.3.

The situation is more complicated for neonatal images where the within-tissue intensity vari-

ability cannot be neglected due to the process of myelination. The inverted WM/GM contrast

of the neonatal T1 MRI (see fig. 1.2, top row) can be seen on histogram in fig. 1.4.
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Figure 1.3: Histogram of a bias-corrected 1T T1-weighted MRI of a brain of a two year old child.
Histograms of the tissue classes are based on manual segmentation. GM and CSF distributions
slightly differ from Gaussian due to partial volume effect and presence of other tissues, such as
vessels, in CSF.

Figure 1.4: Histogram of 1T T1-weighted MRI of a neonatal brain with inverted WM/GM
contrast due to large proportion of non-myelinated WM

1.3.2 Intensity inhomogeneity

The degree of inhomogeneity of the magnetic field during scanning strongly depends on strength

of the magnet used, see fig. 1.5. Data scanned at 0.5T exhibit virtually no bias field and

consequently, this artefact can be simply neglected. These days MRI are usually acquired on

scanners with a magnetic field strength between 1 and 3T producing an inhomogeneity strong

enough to cause problems for intensity-based segmentation algorithms.
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Currently, the state-of-the-art magnetic field strength for new MR scanners is 3T, as the higher

magnetic field allows acquiring higher resolution images with better contrast in shorter scan-

ning time. Therefore developing good quality bias correction techniques becomes even more

important than before.

1.4 Contribution of the thesis

The main goal of the work presented in this thesis is to provide a robust segmentation tool for

measuring volumes of brain structures in prematurely born children, so that underlying changes

in anatomy resulting from impaired brain development can be identified and eventually treated.

To achieve this, robust segmentation techniques during different stages of brain development

are required.

Brain MRI segmentation techniques have been intensively researched in last decade (see the

following chapter for more details) and the results of this extensive work form the basis for

development of new tools. However, most of this research has been focused on adult brains.

Recently, some techniques developed specially for neonatal segmentation have been proposed

(e.g. [67], [97]). The work presented in this thesis is focused on the segmentation of the brain

during early childhood, which differs from both previously mentioned categories. Possible

adaptations of current state-of-the-art methods for this problem will therefore be investigated

alongside with proposing novel solutions. An important aspect of this thesis is the segmentation

of subcortical GM structures, as it has been shown that changes occur in this area as a result

of premature birth [13].

The contributions in this thesis can be summarized as follows:

1. Population specific atlases are develped to improve the performance of existing tools for

segmentation of adult brains on images of brain during early childhood.

2. A novel robust method combining registration-based and intensity-based segmentation

approaches is developed. The method outperforms both state-of-the-art approaches.
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3. A novel algorithm is proposed to correct MRI with strong bias field.

4. The novel segmentation and bias correction methods are applied to segment the brain

structures in children at the age of 1 to 2 years. These automatic segmentations provide

the basis for the quantification of volumes of the brain structures and assessment of their

growth.

1.5 Outline of the thesis

The remainder of this thesis is organized as follows: The second chapter provides a general

review of segmentation techniques. Intensity-based and registration-based segmentation ap-

proaches for brain MRI are described in detail. The third chapter reviews advanced bias correc-

tion techniques. Chapter 4 compares the performance of intensity-based and registration-based

approaches for the task of brain MRI segmentation during early childhood. The influence of

prior information on the resulting segmentation is investigated and a method for creating prior

probabilistic atlases for brains during early childhood is developed. A novel robust segmenta-

tion method combining intensity- and registration-based approaches is proposed and shown to

outperform both of the investigated state-of-the arts methods. The proposed method is then

used to calculate volume and growth of brain structures form one to two years of age. Chapter

5 presents a novel template-based bias correction method specially developed for correction of

strong intensity inhomogeneity. In chapter 6 we will apply the novel bias correction method to

MRI scanned at the field strength of 3T. The new method enables the segmentation approaches

described in chapter 4 to produce excellent segmentation results on these challenging datasets.

The chapter 7 summarizes the contributions and results presented in this thesis and discusses

the directions for the future work.
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(a) (b) (c)

Figure 1.5: T1-weighted MRI scanned at different magnetic field strengths: (a) 0.5T with
virtually no bias; (b) 1T with slightly visible bias; (c) 3T with strong bias. First row: original
image; second row: corrected image; third row: bias field; fourth row: histogram of the original
image; fifth row: histogram of the corrected image.



Chapter 2

Segmentation methods for brain MRI

2.1 Analysis of brain MRI

In the previous chapter we described the challenges for the automatic quantification of brain

structures in MRI of the developing brain. In this chapter we will describe registration-based

and intensity-based methods for the segmentation of brain structures and tissues which serve

as a basis for calculating features such as their volumes and/or shapes.

In registration-based methods, often referred to as atlas-based segmentation methods, a de-

formable atlas is elastically warped to an image and the tissue or anatomical labels are then

transferred. The main advantage of these methods is possibility to propagate any brain struc-

ture available in the atlas without any additional cost. The performance of the registration-

based methods is directly dependent on quality of the registration used.

In contrast, intensity-based methods classify intensities of individual voxels usually only into

WM, GM and CSF. A more detailed classification is not possible, unless spatial priors are

included in classification process, as the intensity profiles of different brain structures overlap.

Even separation of the three main tissue classes based on intensity itself requires incorporating

tools for dealing with artefacts in MRI, such as noise, intensity inhomogeneity, partial volume,

as well as overlap in intensities of brain and non-brain tissue and natural within tissue intensity

43
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variation.

Brain atlases play crucial role in developing reliable segmentation tools. A deformable atlas is

a labelled anatomical template of the brain, which can be non-rigidly aligned with the image

to be segmented [16]. The intensity-based segmentation methods can be enhanced with prior

knowledge of brain anatomy in form of a probabilistic atlas consisting of a template image and a

set of probability maps for each tissue class. Each probability map contains prior probabilities

of a tissue class occurring at each location. Probabilistic atlases are usually created by averaging

large number of aligned manual segmentations [33], [56]. Probabilistic atlases can be affinely

or non-rigidly aligned with the image to be segmented.

In addition to registration-based and intensity-based methods, there are a number of alternative

brain segmentation approaches. These approaches include surface-based methods, such as

level sets and active contour/deformable models [38], [98], active shape models [22] and active

appearance models [21]. Active shape models [22] search to match a shape model defined by

landmarks and constrained by learning the modes of variation to the features such as edges

identified in the image. Active appearance models [21] seek to find the best match for the

model of the texture and shape of the object in the image. Both of these approaches can be

combined to improve the robustness of the resulting segmentation [61]. These methods require

prior training of the model as well as landmark placing and finding correspondences, which is

a difficult problem. Moreover, the models cannot change topology and are used mainly for the

segmentation of structures with simple topology. Closer description of these methods is out of

scope of this thesis.

2.2 Registration-based segmentation

Image registration involves finding the deformation or transformation of images so that the

corresponding features are brought into spatial alignment. If a segmentation is available for

one of those images, the registration process can serve as segmentation process, transferring

the segmentation from one image to another. The original segmentation is then referred to as
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deformable atlas and is usually obtained using one or more manual segmentations.

The alignment of the images is usually initialized using global linear registration, which can

be rigid or affine [37]. A rigid transformation is a 6-parameter transformation composed of

translation and rotation. If scaling and skewing is allowed, we obtain a 12-parameter affine

transformation. A rigid registration is sufficient for the alignment of images of the same sub-

ject (intrasubject registration) if the object of interest does not deform. This is a reasonable

assumption for images of the brain if these are acquired at the same stage of brain development.

However, if the task is to match images belonging to either different subjects (intersubject reg-

istration) or the same subject at different stages of brain development (e.g. growth in children,

changes related to ageing, or atrophy due to disease), a non-rigid registration of the images is

required to obtain satisfactory results.

2.2.1 Image registration

The registration problem seeks to find an alignment of a source image IS and a target image

IT to maximize their similarity. An image I is a function I : R3 → R, which defines intensity

values for each location in three dimensional Euclidian space. The alignment of the images can

then be defined as a transformation TIT→IS
: R3 → R3, u = TIT→IS

(v) (or shorter notation T )

which maps a point v in target image IT to its corresponding point u in source image IS. In

mathematical notation, the aim is to find a transformation T , which maximizes a similarity

measure Csim:

T̂ = arg max
T

Csim(IT , IS ◦ T )

where IS ◦ T is defined by IS ◦ T (v) = IS(T (v)).

Registration methods are not constrained to matching voxel intensities. Methods exist to

match surfaces and points (landmarks) in the images. However, surface-based and point-based

registration methods are out of scope of this thesis.
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2.2.2 Similarity measures

There are different similarity measures available. The most simple way of defining such a

measure is to use sum of square differences. Let us denote (t1, ..., tn), ti = IT (vi) the n voxels

of the target image IT , and (s1, ..., sn), si = IS(T (vi)) the n voxels of the aligned source image

IS ◦ T . Then the sum of squared differences similarity measure can be expressed as

CSSD = − 1

n

n∑
i=1

(ti − si)
2

This measure assumes that the images have the same intensity distributions and is therefore

suitable only when the same image acquisition protocol has been used.

If this assumption is relaxed to deal with linear changes of the intensities in the two images,

the cross-correlation can be used as a similarity measure:

CCC =

∑n
i=1(ti − t̄)(si − s̄)√∑n

i=1(ti − t̄)2
∑n

i=1(si − s̄)2

where t̄ denotes the mean voxels intensity in the source and target images.

When different image acquisition parameters or even different image modalities are used to

generate the target and source image, the intensity relationship is generally not linear. In these

cases it is possible to use an information-theoretical approach: The entropy H of the image IT

can be calculated

H(IT ) = −
∑
t∈I

P (t) log P (t)

where I is the set of intensity values occurring in image IT . The probability P (t) denotes the

probability of observing intensity t in image IT and can be estimated from the histogram of the

image. Other methods for estimating this probability distribution include techniques such as

Parzen windowing [92]. Similarly, the joint entropy H of images IT and IS can be calculated

as

H(IT , IS) = −
∑

(t,s)∈I′
P (t, s) log P (t, s).
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Here P (t, s) is the joint probability of observing intensity t in the target image and intensity s at

the corresponding location in the source image. Again, this joint probability can be estimated

from the joint histogram of images IT and IS.

Using these definitions, a similarity measure called mutual information

CMI = H(IT ) + H(IS)−H(IT , IS)

can be defined [92], [53]. A modified version of this similarity measure which is more robust to

variations in image overlap and field of view is normalized mutual information [82]:

CNMI(IT , IR) =
H(IT ) + H(IR)

H(IT , IR)

2.2.3 Rigid and affine registration

In the most simple case, the transformation T belongs to the space of affine transformations

defined as follows: 

u1

u2

u3

1


=



a11 a12 a13 a14

a21 a22 a23 a14

a31 a32 a33 a14

0 0 0 1





v1

v2

v3

1


where u = (u1, u2, u3) and v = (v1, v2, v3). The matrix representing the affine transformation

can be decomposed to



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1





s1 0 0 0

0 s2 0 0

0 0 s3 0

0 0 0 1





1 k1 k2 0

0 1 k3 0

0 0 1 0

0 0 0 1


where R = (rij)ij is an orthogonal rotation matrix, which can be represented by three Euler

angles, (t1, t2, t3)
T is a translation vector, si are the scaling parameters and ki are the skew-
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ing parameters. An affine transformation has 12 degrees of freedom (DOF) corresponding to

translation, rotation, scaling and skewing parameters, while rigid transformation has 6 DOF

consisting rotation and translation parameters, while scaling and skewing is not allowed, re-

sulting in s1 = s2 = s3 = 1 and k1 = k2 = k3 = 0.

The aim of the registration algorithm is to find these 12 or 6 parameters, depending on type of

registration required. To do this, optimization methods, such as gradient descent or Powell’s

method can be used [68]. Difficulties can arise because these optimization methods find only

local maxima. To improve chances of finding global maxima, a multi-resolution framework is

often employed. The optimal parameters are first found for a sub-sampled image and refined for

higher resolution at the next level. One such algorithm based on normalized mutual information

and gradient descent optimization was developed by Studholme et al. [82]. Another example

of an affine registration method is FLIRT [45], [44]. This robust method is based on correlation

ratio similarity measure and Powell’s optimization.

2.2.4 Non-rigid registration

The non-rigid registration algorithms are typically based either on physical models for transfor-

mation (such as elastic [73] or fluid deformation models [17], [25], [26]), or a linear combination

of smooth basis functions [6] or free-form deformations [70]. A general review of registration

techniques can be found in [100], [23].

One such technique, which uses a combination of discrete cosine transforms, was developed

by Ashburner et al. [6] to align brain images of different subject to a space defined by a

template image. The registration based on this deformation model is rather coarse and therefore

not suitable when precise alignment of images is required, such as when registration-based

segmentation is being performed. This algorithm is relatively quick and inexpensive and is

used as a preprocessing step for different brain image analysis procedures, such as intensity-

based segmentation [4], [7]. The similarity metric used in this algorithm is CSSD and the

transformations parameters are found using a Gauss-Newton optimization. The algorithm

works only on assumption that the images have the same intensity distribution. The algorithm
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also incorporates an a prior constraint on the deformation in form of ”membrane energy”. This

registration method is implemented in software package SPM99 and SPM2 [77].

2.2.5 B-spline non-rigid registration

An example of a free-form deformation based non-rigid registration is the B-spline registration

algorithm by Rueckert et al. [70].

Let us denote Tθ,φ the non-rigid transformation modelled as a sum of a global affine transforma-

tion Aθ given by 12 parameters θ and a local non-linear transformation Bφ defined by control

points φ:

Tθ,φ(v) = Aθ(v) + Bφ(v)

The local component Bφ is represented using uniform tensor-product 3D cubic B-splines, defined

as

Bφ(v) =
3∑

p=0

3∑
q=0

3∑
r=0

Bp(t1)Bq(t2)Br(t3)Φi1+p,i2+q,i3+r

where Φi,j,k are B-spline control points defined on regular L1 × L2 × L3 lattice with spacing of

δ1, δ2, δ3 along each dimension and B0, ..., B3 are cubic B-spline basis functions:

B0(t) =
1

6
(1− t)3

B1(t) =
1

6
(3t3 − 6t2 + 4)

B2(t) =
1

6
(−3t3 + 3t2 + 3t + 1)

B3(t) =
1

6
t3
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Parameters t1, t2, t3 are defined as t1 = v1/δ1 − i1, t2 = v2/δ2 − i2, t3 = v3/δ3 − i3 where

v = (v1, v2, v3) and indexes i1 = bv1/δ1c, i2 = bv2/δ2c, i3 = bv3/δ3c. To constrain the local

transformation to be smooth, the following penalty term can be introduced:

Csmooth(T ) =
1

V

∫ X1

0

∫ X2

0

∫ X3

0

[(
∂2T
∂v2

1

)2

+

(
∂2T
∂v2

2

)2

+

(
∂2T
∂v2

3

)2

+

(
∂2T
∂v1v2

)2

+

(
∂2T
∂v2v3

)2

+

(
∂2T
∂v1v3

)2
]

du1 du2 du3 (2.1)

where V denotes the volume of the image domain {(v1, v2, v3)|0 ≤ v1 < X1, 0 ≤ v2 < X2, 0 ≤

v3 < X3} and Xi = δi(Li − 1).

The similarity measure used for this non-rigid registration is normalized mutual information

CNMI [82]. The overall cost function C consists of the similarity measure and the regularization

term and can be expressed as follows:

C(θ, φ) = −Csim(IT , IS ◦ Tθ,φ) + λCsmooth(Bφ)

Note that the regularization term is always zero for affine transformation and therefore Csmooth(Tθ,φ) =

Csmooth(Bφ). The weighting parameter λ provides the tradeoff between the image alignment

and smoothness of the transformation.

When minimizing the cost function C, the algorithm first proceeds by optimizing the global

affine transformation before the local B-spline transformation is optimized. The optimization

method used is based on gradient descent. The registration is performed in multiresolution

framework. The resolution of the B-spline transformation is refined by halving the spacing

between the B-spline control points and consequently inserting new B-spline control points.

The algorithm can be summarized as follows:

Non-rigid registration by Rueckert et al.

Calculate optimal affine transformation parameters θ̂ by maximizing normalized mutual infor-
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mation:

θ̂ = arg max
θ

CNMI(IT , IS ◦ Aθ)

Initialize B-spline control points φ

For each resolution level r

Calculate the gradient vector of cost function C with respect to φ at current estimate φ(r,0)

∇C =
∂C(θ̂, φ)

∂φ

∣∣∣∣∣
φ=φ(r,0)

while ‖∇C‖ > ε do

Recalculate the control points

φ(r,m+1) = φ(r,m) + δ
∇C

‖∇C‖

Recalculate the gradient ∇C

end while

Increase the control point resolution by subdividing from φ(r,m+1) to φ(r+1,0)

Increase image resolution

end for

An example of a non-rigid registration of brain MRI using this algorithm is shown in fig. 2.1c,f.

2.2.6 B-spline registration-based segmentation

It this thesis we use the B-spline based registration by Rueckert et al. to perform the registration-

based segmentation. This method has been shown to be especially suitable for registration-

based segmentation because of its flexibility and accuracy compared to other registration meth-

ods [24]. Let SX be the segmentation of a template image X. A new image Y can be segmented
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: Comparison of different types of registrations. Top row: the source image with
iso-contours registered to target image with (a) rigid registration; (b) affine registration; (c)
non-rigid registration [70]. Bottom row: The target image with overlayed iso-contours of source
image registered with (d) rigid registration; (e) affine registration; (f) non-rigid registration [70].

by transferring the segmentation from the template image using non-rigid registration. Let

Srbs(Y ) denote registration-based segmentation of Y . Then

Srbs(Y ) = SX ◦ TY →X (2.2)

The robustness of registration-based segmentation can be improved if a number of segmented

images or atlases are used. This was shown by Heckemann et al. [39] where manual segmenta-

tion from 29 images X1, .., X29 were transferred by non-rigid registration [70] to target image
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Y and the vote rule for decision fusion was used to obtain the final segmentation:

Srbs−multi(Y (v)) = arg max
l
‖{i|SRi

(TY →Xi
(v)) = l}‖

where ‖.‖ denotes the number of elements in a set. With this multiple label propagation,

Gousias et al. [36] segmented 33 brain MRI of two year old children into 83 regions interests,

using 30 manual segmentations of adult brains. Validation results show very high similarity

index (SI) despite the differences in the shape and size between adult and child brains. However,

this method is dependent on having a number of high-quality atlases, which might not always

be available in practice.

2.3 Intensity-based methods

Intensity-based methods are used to classify individual voxels in brain MRI based on their

intensity. Three main tissue classes, WM, GM and CSF, can be distinguished based on intensity.

The intensity based classification methods make use of standard classifiers, such as a Gaussian

Mixture Model (GMM), C-means or k-NN [31]. These methods will be described in more detail

in the following sections. However, in order to obtain satisfactory results using these techniques,

the following procedures are usually carried out:

Brain extraction: Non-brain tissues such as fat, skull, or neck have intensities overlapping

with intensities of brain tissues. Therefore, the brain has to be extracted before intensity-based

methods can be used.

Bias correction: The bias field, which causes intensity inhomogeneity, has to be calculated

and image intensities have to be corrected to achieve homogeneous intensities within tissue

classes.

In addition, several constraints are usually integrated into intensity-based segmentation algo-

rithms:
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Prior information: Misclassifications due to overlaps in tissue intensity distributions can be

reduced by incorporating prior knowledge of the brain anatomy. Spatial prior information can

also reduce the impact of noise.

Neighbourhood information: Incorporating neighbourhood information helps to give pref-

erence to spatially homogenous regions in the resulting segmentation and therefore reduces the

impact of noise and misclassifications due to PVE.

In the remainder of this section we describe methods based on C-means clustering and k-NN

clustering. The methods based on the Expectation-Maximization framework (GMM and its

extensions) will be presented in detail in the next section, as they form the basis for our work.

Subsequent sections of this chapter describe incorporating prior information, neighbourhood

information and brain extraction into intensity-based methods. The bias correction step will

not be addressed in this chapter, as it will be described in detail in chapter 3.

In the following sections Y will denote the observed image consisting of n voxels, with intensities

Y = (y1, ..., yn). Our aim is to classify voxels into K clusters, representing the main tissue

classes, based on their intensity.

2.3.1 C-means clustering

Let vk be a centroid of cluster k and uik the membership, or a degree of belonging of location i

to class k, with
∑K

k=1 uik = 1. Fuzzy C-means clustering [32] iteratively optimizes the objective

function

F =
n∑

i=1

K∑
k=1

(uik)
q‖yi − vk‖2

using the following algorithm:

Fuzzy C-means clustering

Initialize centroids v0
k

Iterate between following two steps:
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1. Calculate class membership for each voxel:

u
(m)
ik =

‖yi − v
(m−1)
k ‖−

2
q−1∑K

k=1 ‖yi − v
(m−1)
k ‖−

2
q−1

2. Recalculate centroids:

v
(m)
k =

∑n
i=1(u

(m)
jk )qyi∑n

i=1(u
(m)
jk )q

until

max
ik

‖u(m)
ik − u

(m−1)
ik ‖ < ε

In the previous algorithm m denotes the number of iterations and ‖.‖ the Euclidian distance.

The parameter q defines the degree of fuzziness. For q = 1 algorithm reduces to K-means

clustering [52]. The value most often used in practice is q = 2. In this case the membership

value is proportional to inverse of distance from the class centroid.

The use of C-means clustering for brain segmentation was first proposed by Pham and Prince

[63]. The clustering is initialized by finding the three centroids from the image histogram. The

probability density function (PDF) of the image intensities is non-parametrically estimated

using a Gaussian kernel. The width of the kernel is the smallest value for which exactly

three local maxima of the estimated PDF are found. The advantage of this method is that

it is fully automatic and fast. It also corrects the bias field during the iterative segmentation

process. However, it does not provide any mechanism for incorporating prior information into

the segmentation process. The brain has to be extracted in pre-processing step in order to

produce good results.

2.3.2 kNN classification

The k-Nearest Neighbour (kNN) classification rule is a technique for non-parametric supervised

pattern classification. The classifier is supervised, which means that it requires a set of patterns

with known classification for training. Unlike C-means classification, it is especially suitable if
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a large number of training data is available.

Given a training data set P consisting of M prototype patterns - vectors of dimension D, and

corresponding correct classification of each prototype into one of the K classes, the unknown

pattern vector v is classified as class j if the largest number of the k closest prototypes are

from class j. The D-dimensional pattern vectors are called features, the D-dimensional feature

domain is called the feature space and the constant k can be chosen to suit the particular

problem. The distance measure d has to be defined in the feature space to be able to calculate

the distance between patterns and choose the k nearest prototype patterns for each new pattern

to be classified.

The most widely used distance measure is the Euclidian distance measure

(d(v,p))2 =
D∑

f=1

(vf − pf )
2

where d is the distance, vf is the value of the pattern vector v in feature f , pf is the value of

the prototype vector p in feature f .

Let lp denote the label assigned to each prototype p ∈ P and l1, ..., ln the labelling of image

Y . Let Pi denote the set of k closest prototypes to a voxel at location i and feature vector vi.

Then the kNN classification of the image is defined as follows:

kNN classification

1. For each location i find set Pi of k nearest prototypes to voxel with feature vector vi:

Pi ⊂ P, ‖Pi‖ = k,∀p ∈ P : (d(p,vi) < max
p′∈Pi

d(p′,vi)) ⇒ (p ∈ Pi)

2. Calculate the labelling of image Y

li = arg max
l
‖{lp = l|p ∈ Pi}‖
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The features for the kNN classifier should be chosen so that they provide the best possible

contrast between the classes. For brain MRI the most obvious features are the image intensities

yi for each voxel.

The k-NN classification approach was adapted for brain MRI segmentation by Warfield et al.

[90]. In addition to image intensities, Warfield used spatial localization of brain structures

(classes) in form of a non-rigidly registered template as an additional feature to enhance the

classification process. The segmentation is then calculated in an iterative process by interleaving

the segmentation refinement with updating the non-rigid alignment to the template. This

procedure requires manual selection of large number of training samples for each tissue class

to train the kNN classifier. The method is therefore not fully automatic and results depend on

particular choice of the training set.

kNN classification by Warfield et al.

1. For each tissue class j manually select the prototypes to train the classifier to recognize

tissue intensity PDF

2. Align deformable atlas with the image

3. Repeat for a fixed number of iterations

a. Identify intensity and spatial features for each voxel using current alignment of the atlas

b. Update the labelling using kNN classification

c. Update the non-rigid alignment of deformable template with current labelling of the image
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Cocosco et al. [18] developed a method for the robust selection of training samples to make

the kNN classification process fully automatic. In his method, the feature vector consist only

of voxel intensities of multichannel MRI. Firstly, a probabilistic atlas (see fig. 2.3) is affinely

aligned with the image and samples with high prior probabilities are chosen for each class.

A minimum spanning tree (MST) is then constructed in feature space. The training samples

are then selected by pruning procedure: long edges in the MST in feature space are removed

until there are four distinct clusters; samples with initial labelling consistent with the result

of pruning are used as a training set. The final segmentation is then obtained using the kNN

classification. This method is reported to deal well with anatomies which differ from the

probabilistic atlas. However, it does not deal with the problem of natural intensity variation

within each tissue class. Both methods require the bias to be corrected in a pre-processing step.

2.3.3 Entropy minimisation

Another approach, proposed by Tasdizen et al. [85], is to minimize the entropy associated with

a set of K tissue PDFs. This results in an iterative segmentation process which interleaves

the non-parametric estimation of PDF for intensity of each tissue class with estimation of a

hard segmentation. In the segmentation step each voxel is labelled with the class with highest

probability. The method is made more robust by estimating a 7-dimensional PDF of each tissue

class for a 7-neighbourhood rather single voxel intensities.

Let Ni denote the random variable for the 7-neigbourhood of the voxel i and ni the vector of

voxel intensities in the neighbourhood Ni. Let P (Ni = ni|Zi = k) be the PDF of observing

the neighbourhood Ni given that the center voxel i has been assigned tissue label k. Then the

entropy H to be minimized is defined as:

H = −
K∑

k=1

∫
IRm

P (N = n|Z = k) log P (N = n|Z = k)dn

where integration is performed over a domain IRm of the random vector n. The minimization

can be achieved by following algorithm:
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Entropy minimization by Tasdizen et al

Initialize segmentation (z1, ...zn) by creating the hard segmentation from affinely aligned prob-

abilistic atlas.

Repeat

1. Estimate the PDF for each tissue using Parzen windowing and the current segmentation

estimate:

P (m)(Ni = ni|Zi = k) =
1

|A(m−1)
ik |

∑
j∈A

(m−1)
ik

G(n,ni, σ)

where A
(m−1)
ik is a randomly chosen set of voxels assigned to tissue k at iteration (m− 1)

and G(n,ni, σ) is 7-dimensional Gaussian distribution with mean ni and variance σ.

2. Update segmentation by assigning each voxel i to the class with highest likelihood

z
(m)
i = argmax

k
P (m)(Ni = ni|Zi = k)

until

H(m−1) −H(m)

H(m)
< ε

H(m) = −
K∑

k=1

1

T
(m)
k

∑
∀i:z

(m)
i =k

log P (m)(N = n|Z = k)

where T
(m)
k denotes the number of voxels classified as belonging to tissue k and H(m) is an

approximation of entropy H.

The obvious advantage of this method is robustness to noise and no bias towards a parametric

model of the intensity distribution. A bias field estimation can be also interleaved with the

segmentation process. The method can be used to estimate spatially variable non-parametric

tissue PDFs, by choosing the random samples A
(m−1)
ik from a Gaussian distribution centered at

location i. For a spatially constant PDF a global sample set A
(m−1)
k can be formed. The main

disadvantage is the slow computational speed.
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2.4 EM-based segmentation

One of the most successful and widely used brain segmentation approaches was first proposed

over a decade ago when Wells et al. [93] used Bayesian model to estimate segmentation and bias

field through the EM algorithm [28]. Different variations of EM-based segmentation methods

have been successfully implemented in several software packages used in the medical imag-

ing community (EMS:[47], [48]; SPM: [4], [7]; FAST: [99]; FreeSurfer: [35]; 3DSlicer: [93],

[65];). All these methods implement a segmentation and bias correction in the EM framework.

They also include various additional improvements, such as non-rigid alignment of atlas [7],

including neighbourhood information in form of Markov Random Fields (MRF) [99], [48] and

partial volume estimation [46], [49]. The general framework for EM-based segmentation can be

summarized as follows:

EM approach for brain segmentation

E-step:

Estimate the soft segmentation given the current estimate of model parameters. This may in-

clude the use of neighbourhood statistics in form of a MRF as well as partial volume estimation.

M-step:

Estimate the model parameters which can consist of a combination of the following steps:

1. Estimate the intensity distribution parameters for each tissue class.

2. Estimate the bias correction parameters.

3. Estimate the registration parameters for alignment of probabilistic atlas with the image.

This section gives a thorough theoretical background for EM-based segmentation, as the bias

correction algorithm proposed in chapter 5 directly builds on this framework.
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2.4.1 Optimization criteria

Let y = (y1, ..., yn) denote the vector of intensities in the image Y consisting of n voxels. Then

the image function Y can be viewed as a random variable with realization y. Let us also assume

that we have a model of the image Y , represented with parameters Φ. These parameters could

include bias field and/or intensity distribution parameters.

In the Bayesian probabilistic framework, as proposed by Wells [93] and later adapted by Zhang

[99] and Pohl [65], the Maximum A Posteriori (MAP) criteria is optimized to find the segmen-

tation of brain MRI:

Φ̂ = arg max
i

P (Φ|Y ) (2.3)

Maximum likelihood (ML) is an alternative probabilistic optimization criteria used by Van

Leemput [47]:

Φ̂ = arg max
i

P (Y |Φ) (2.4)

The term P (Y |Φ) is called the likelihood. The relationship between both criteria can be seen if

Bayes’ theorem is used:

P (Φ|Y ) =
P (Y |Φ)P (Φ)

P (Y )

The criteria is optimized with respect to parameters Φ, so P (Y ) acts as a constant. It has

therefore no influence on equation 2.3 and the MAP criteria is equivalent to

Φ̂ = arg max
i

P (Y |Φ)P (Φ) (2.5)

It is now clear that MAP is closely related to ML. Unlike ML, MAP contains a regulariza-

tion term P (Φ), also called the prior probability. This term enables us to incorporate prior

information for model parameters Φ.

To simplify the problem, independence of the voxels is usually assumed [93], [47], [7], [65]. The

random variable Y representing the image intensities can be viewed as n-dimensional random

variable Y = (Y1, ..., Yn). Each voxel intensity yi is a realization of random variable Yi. The

assumption that random variables Y1, ..., Yn are independent allows us to express the likelihood
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as follows:

P (Y |Φ) =
n∏

i=1

P (Yi|Φ)

As we can see from this equation, calculating the likelihood in practice means multiplying a

large number of non-negative numbers smaller than one and consequently the resulting value is

too small for practical purposes. It is more convenient to work with log-likelihood because the

product is transformed to a sum. The logarithmic function log(x) is increasing and continuous

and therefore the solution of eq. 2.4 can be found as maximum of the log-likelihood L(Φ):

L(Φ) = log P (Y |Φ) (2.6)

The log-likelihood of the observed image L(Φ) is a suitable objective function for the segmen-

tation problem and can be further expressed as

L(Φ) = log
n∏

i=1

P (Yi|Φ) =
n∑

i=1

log P (Yi|Φ)

The alternative objective function LMAP (Φ) based on MAP principle is suitable when con-

straints need to be imposed on the parameter space and can be expressed as:

LMAP (Φ) = log P (Y |Φ)P (Φ) = L(Φ) + log P (Φ) (2.7)

2.4.2 Probabilistic framework for image segmentation

Segmenting the image Y means separating the n voxels into K classes, or in other words,

assigning a label from the set {1, 2, ..., K} to each voxel. Let z = (z1, ..., zn) be the unknown

labeling of the image Y . Then Z = (Z1, ..., Zn) is a n-dimensional random variable and each

label zi is a realization of random variable Zi. Now we can introduce the segmentation Z into

the optimization criteria using the total probability theorem [57]:
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P (Yi|Φ) =
K∑

k=1

P (Yi|Zi = k, Φ)P (Zi = k|Φ) (2.8)

The relationship between the image Y and the unknown segmentation Z can be expressed using

Bayes’ theorem:

P (Zi = k|Yi, Φ) =
P (Yi|Zi = k, Φ)P (Zi = k|Φ)

P (Yi|Φ)
(2.9)

The posteriors P (Zi = k|Yi, Φ) are an estimate of the segmentation inferred from the image

Y and model parameters Φ, while the likelihood P (Yi = yi|Zi = k, Φ) is the probability of

obtaining the voxel intensity yi from estimated segmentation and model parameters. Priors

P (Zi = k|Φ) can be used to incorporate knowledge obtained from training data and P (Yi|Φ) is

a normalizing constant, as given by equation 2.8.

The objective function L(Φ) can now be written as

L(Φ) =
n∑

i=1

log
K∑

k=1

P (Yi|Zi = k, Φ)P (Zi = k|Φ) (2.10)

2.4.3 Optimization via Expectation Maximization

The expectation maximization algorithm (EM) [28] is a general technique for finding maximum

likelihood parameter estimates in problems with incomplete data and is therefore suitable

for solving segmentation problems. In case of the segmentation problem, the incomplete or

observed data are voxel intensities Y and unknown segmentation Z constitutes hidden data.

The combined data (Y, Z) are called the complete data.

The complete log-likelihood is the log-likelihood from the complete data Y, Z

Lc(Φ) = log P (Y, Z|Φ)

The log-likelihood L(Φ) = log P (Y |Φ) based on the incomplete data Y is also called incomplete
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log-likelihood. The expectation maximization algorithm searches for a maximum likelihood

estimate of the parameters Φ through maximizing the estimate of complete log-likelihood.

Definition of the EM algorithm

Iterate between expectation step (E-step) and maximization step (M-step) until conver-

gence:

E-step: Calculate a function Q(Φ|Φ(m)) based on current parameter estimate Φ(m):

Q(Φ|Φ(m)) = EZ(Lc(Φ)|Y, Φ(m)) = EZ(log P (Y, Z|Φ)|Y, Φ(m))

M-step: Find parameters Φ(m+1) that maximize the function Q(Φ|Φ(m))

Φ(m+1) = argmax
Φ

Q(Φ|Φ(m))

The expected value of the complete log-likelihood EZ(log P (Y, Z|Φ)|Y, Φ(m)) is the conditional

expected value defined as follows:

EA(f(A)|B) =
∑
∀a

P (A = a|B)f(a)

Here a is assumed to be a realization of a discrete random variable A and B is another random

variable.

The function Q(Φ|Φ(m)) represents the expected value of log-likelihood from the complete data

X and defines a lower bound to the log-likelihood L(Φ) (eq. 2.6). Maximizing the lower bound

leads to increasing of the log-likelihood L(Φ). The lower bound is tightened to L(Φ) at every

iteration until its maximum converges to a local maximum of the log-likelihood [58]. The

sufficient conditions for convergence to maximum likelihood estimate can be found in [28] and

[95].
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2.4.4 Segmentation via EM

The EM algorithm can be used to solve the segmentation problem. If the independence of voxel

intensities and labels is assumed, the complete log-likelihood can be further expressed as:

Lc(Φ) = log P (Y, Z|Φ) = log P (Y |Z, Φ) + log P (Z|Φ) =

=
n∑

i=1

log P (Yi|Zi, Φ) +
n∑

i=1

log P (Zi|Φ) =

=
n∑

i=1

log P (Yi|Zi, Φ)P (Zi|Φ) =
n∑

i=1

log P (Yi, Zi|Φ)

To be able to calculate the expected value over Z we need to amend the definition of the

hidden data. Instead of simply assigning the label k we will now consider Zi to take values

from the set of k-dimensional unit vectors {e1, ..., eK} where Zi = ek = (0, ..., 0, 1, 0, ..., 0)

means that ith voxel belongs to tissue k. Let us denote zi = (zi1, ..., ziK). Then for zi = ek

log P (Yi = yi, Zi = ek|Φ) can be expressed as
∑K

j=1 zij log P (Yi = yi, Zi = ej|Φ) and the

complete log likelihood becomes:

Lc(Φ) =
n∑

i=1

K∑
j=1

zij log P (yi, Zi = ej|Φ) =
n∑

i=1

zT
i V(yi|Φ)

where vector V(yi|Φ) = (log P (yi, Zi = e1|Φ), ..., log P (yi, Zi = eK |Φ)) is now constant in

variable zi. We can now calculate the function Q(Φ|Φ(m)):

Q(Φ|Φ(m)) = EZ(Lc(Φ)|y, Φ(m)) = EZ(
n∑

i=1

zT
i V(yi|Φ)|y, Φ(m)) =

=
n∑

i=1

E(zi|y, Φ(m))TV(yi|Φ)

According to the definition of the conditional expected value E(zi|y, Φ(m)), this can be further

expressed as

E(zi|y, Φ(m)) =
K∑

j=1

P (Zi = ej|yi, Φ
(m))ej =

K∑
j=1

p
(m+1)
ij ej
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where p
(m+1)
ij = P (Zi = ej|yi, Φ

(m)) is a soft assignment of voxel i to tissue j at (m + 1)st

iteration. Finally, the function Q(Φ|Φ(m)) can be expressed as

Q(Φ|Φ(m)) =
n∑

i=1

K∑
j=1

p
(m+1)
ij log P (yi, Zi = ej|Φ) =

=
n∑

i=1

K∑
j=1

p
(m+1)
ij log P (yi|Zi = ej, Φ) +

n∑
i=1

K∑
j=1

p
(m+1)
ij log P (Zi = ej|Φ)

It is now obvious that for the segmentation problem, calculating of Q(Φ|Φ(m)) in the E-step is

equivalent to calculating soft assignment according to Bayes rule (eq. 2.9) and that the M-step

maximizes the resulting expression for Q(Φ|Φ(m)). In many cases the M-step can be performed

by direct partial differentiation resulting in a system of linear equation. The EM algorithm for

image segmentation can be summarized as follows:

Segmentation via EM

E-step:

Calculate the probability maps (soft segmentation) p
(m+1)
j = {pij, i = 1, ..., n}, j = 1, ..., K

given the observed voxel intensities y and parameter estimate Φ(m):

p
(m+1)
ij =

P (yi|Zi = ej, Φ
(m))P (Zi = ej|Φ(m))∑K

k=1 P (yi|Zi = ek, Φ(m))P (Zi = ek|Φ(m))

M-step:

Estimate the parameters Φ(m+1) based on probability maps p
(m+1)
j and the observed voxel

intensities y

Φ(m+1) = argmax
Φ

Q(Φ, Φ(m))

Q(Φ, Φ(m)) =
n∑

i=1

K∑
j=1

p
(m+1)
ij (log p(yi|Zi = ej, Φ) + log p(Zi = ej|Φ))
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2.4.5 Mixture of Gaussians as a model for MR image intensities

The classical model for the segmentation of brain MRI assumes that the intensity distribution

of each tissue class is Gaussian. The M-step of the EM algorithm simplifies further if a Gaussian

distribution is assumed for the likelihood of observing intensity yi for a given tissue class k:

P (yi|Zi = ek, Φ) = G(yi, µk, σk) =
1√

2πσk

e
(y−µk)2

2σ2
k

The likelihood of observing intensity yi can then be expressed using the total probability the-

orem:

P (yi|Φ) =
K∑

k=1

G(yi, µk, σk)P (Zi = ek|Φ)

This assumption leads to significant simplification of the lower bound Q(Φ, Φ(m)):

Q(Φ, Φ(m)) =
n∑

i=1

K∑
j=1

p
(m+1)
ij

(
(yi − µk)

2

2σk

− log
√

2πσk + log p(Zi = ej|Φ)

)

If we further assume that the prior probability that the voxel i belongs to tissue class k is

spatially constant

p(Zi = ek|Φ) = ck

we obtain the widely used Gaussian mixture model (GMM). The equation for the likelihood of

observing intensity yi simplifies as follows:

P (yi|Φ) =
K∑

k=1

G(yi, µk, σk)ck

The parameters Φ represent unknown means µk and variances σk of the Gaussian PDFs for the

intensities of each tissue class, as well as the mixture coefficients ck

Φ = γ ≡ (µ1, σ1, c1, ..., µK , σK , cK)
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The task of finding the parameters Φ of Gaussian mixture model can be intuitively described

as fitting the Gaussians to the image histogram (fig. 2.2).

Figure 2.2: Gaussian mixture model - fitting the mixture of Gaussians to the normalized image
histogram.

The intensity distribution parameters can now be found by optimizing the maximum likelihood:

Φ̂ = arg max
Φ

n∑
i=1

log
K∑

k=1

G(yi, µk, σk)ck

This can be done via the EM algorithm. The lower bound becomes:

Q(Φ, Φ(m)) =
n∑

i=1

K∑
j=1

p
(m+1)
ij (

(yi − µk)
2

2σk

− log
√

2πσk + log ck)

The updating equations for parameters µk, σk, ck in M-step can now be obtained by setting the

partial derivatives of Q in µk, σk and ck to zero.

Gaussian mixture model estimation via the EM algorithm

E-step:

p
(m+1)
ij =

G(yi, µ
(m)
j , σ

(m)
j )c

(m)
j∑K

k=1 G(yi, µ
(m)
k , σ

(m)
k )c

(m)
k
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M-step:

µ
(m+1)
j =

∑n
i=1 yip

(m+1)
ij∑n

i=1 p
(m+1)
ij

(σ
(m+1)
j )2 =

∑n
i=1(yi − µ

(m+1)
j )2p

(m+1)
ij∑n

i=1 p
(m+1)
ij

c
(m+1)
j =

1

n

n∑
i=1

p
(m+1)
ij

2.5 Prior information for EM-based segmentation

2.5.1 Probabilistic atlases

Any automatic segmentation of brain MRI should be robust and precise in order to be practi-

cally and clinically usable. It is therefore desired to improve the accuracy and robustness of the

segmentation methods by using prior knowledge of the brain anatomy. In case of EM-based

methods a probabilistic atlas is often used to initialize and constrain the segmentation process.

The standard probabilistic atlas consists of a template and three tissue probability maps for

WM, GM and CSF [33], see fig. 2.3. It is obtained by aligning a number of segmented subjects

followed by averaging of anatomical images to obtain the anatomical template and averaging

the segmentation to obtain the tissue probability maps. The probabilistic atlas then describes

the anatomical variability of the brain.

(a) (b) (c) (d)

Figure 2.3: The MNI probabilistic atlas [33]: (a) the template; brain tissue prior probability
maps: (b) WM; (c) GM; (d) CSF.
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The probabilistic atlas which is most commonly used in intensity-based algorithms is the

MNI305 atlas from Montreal Neurological Institute [33]. This atlas was created from 305

subjects by linear alignment into Talairach coordinate system [84]. Later, the International

Consortium for Brain Mapping has affinely registered 152 scans to the MNI305 atlas to create

the ICBM152 probabilistic atlas [56]. The probability maps of the ICBM152 atlas are shown

in fig. 2.4.

Figure 2.4: Probability maps from ICBM152 probabilistic atlas [56]. From left to right: GM,
WM and CSF.

2.5.2 Aligning the probabilistic atlas

Before a probabilistic atlas can be used as a prior knowledge, it has to be registered with the

image to be segmented. An aligned probabilistic atlas can be used as a good initial estimate

of the segmentation, which is especially important for EM-based methods, as EM algorithm is

guaranteed to converge to local, not global, maxima. In addition, most EM-based methods,

[48], [4], [7], [65] use the probabilistic atlas to constrain the segmentation process as well.

Therefore the correct alignment of the probabilistic atlas is crucial for a successful and accurate

segmentation.

The traditional way of aligning the probabilistic atlas with the image is to register the anatom-

ical template with the image to be segmented. Unfortunately, an affine alignment may not be

sufficient if the brain anatomy in question differs from the average atlas anatomy significantly.

Pohl et al. therefore suggest aligning the atlas using non-rigid registration [66]. However, in
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their later work Pohl reports difficulties in registering anatomical template with the image to be

segmented using standard registration methods [64]. D’Agostino developed a special similarity

measure for registering probabilistic maps directly to the new image [27]. Recently, several

methods have been developed which aim to overcome this problem by iteratively refining the

segmentation and non-rigid registration of the probabilistic atlas at the same time. Ashburner

developed a method for simultaneous segmentation, bias correction and non-rigid registration

of a probabilistic atlas [7]. This approach has been proven to be successful in practice and is

part of the software package SPM5.

2.5.3 Incorporating the probabilistic brain atlas into EM segmenta-

tion

Let us denote patlas
ij the probability that ith voxel belongs to jth tissue class. We can initialize

the EM algorithm in the E-step of the first iteration with prior information from the atlas as

follows:

p0
ij = patlas

ij

After initialisation, the GMM can be used to calculate the segmentation. However, the classic

GMM does not produce satisfactory results for the brain segmentation. Even if non-brain

tissues are extracted in pre-processing step and only three brain tissues are left in the image,

the noise will affect the resulting segmentation. Therefore the GMM works well only on high-

contrast images with low levels of noise. A more robust algorithm can be obtained if the

probabilistic atlas is used not only to initialize but also spatially constrain the segmentation

process. Consequently, the voxels are classified using not only on intensity information but also

information about their spatial position.

Van Leemput et al. ([48], [47]) proposed an approach which amends the GMM by using the

atlas as prior information at each iteration. The prior information is fixed and does not change:

p(Zi = ej|Φ) = patlas
ij
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With this assumption the updating equations for the modified GMM resulting from EM opti-

mization become:

EM segmentation by Van Leemput

E-step:

p
(m+1)
ij =

G(yi, µ
(m)
j , σ

(m)
j )patlas

ij∑K
k=1 G(yi, µ

(m)
k , σ

(m)
k )patlas

ik

M-step:

µ
(m+1)
j =

∑n
i=1 yip

(m+1)
ij∑n

i=1 p
(m+1)
ij

(σ
(m+1)
j )2 =

∑n
i=1(yi − µ

(m+1)
j )2p

(m+1)
ij∑n

i=1 p
(m+1)
ij

In the GMM the mixture weights ck are changed at each iteration to reflect the proportion

of the image volume classified as the kth tissue type. In Van Leemput’s model these weights

are derived from the atlas, but they vary with the position of the voxel. Ashburner et al. [4]

combines both approaches:

EM segmentation by Ashburner (SPM99)

E-step:

p
(m+1)
ij =

G(yi, µ
(m)
j , σ

(m)
j )c

(m)
ij∑K

k=1 G(yi, µ
(m)
k , σ

(m)
k )c

(m)
ik

M-step:

µ
(m+1)
j =

∑n
i=1 yip

(m+1)
ij∑n

i=1 p
(m+1)
ij

(σ
(m+1)
j )2 =

∑n
i=1(yi − µ

(m+1)
j )2p

(m+1)
ij∑n

i=1 p
(m+1)
ij

c
(m+1)
ij =

patlas
ij

∑n
l=1 p

(m+1)
lj∑n

l=1 patlas
lj
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Very often multi-spectral brain MR images are available, such as T1-weighted, T2-weighted and

PD images. When correctly aligned, multi-spectral information can enhance the segmentation

process and reduce the impact of artefacts such as noise or bias fields.

Let yi = (yi1, ..., yiR) denote the image intensities of R different channels of a multi-spectral

MR image. Let us denote µk = (µk1, ..., µkR) where µkr denotes the mean intensity of the kth

tissue in channel r and Σk the covariance matrix for all the channels of kth tissue class. We will

assume a multivariate Gaussian mixture PDF for the image, in parallel with the single channel

version:

G(yi, µk,Σk) =
1

√
2π

R|Σk|
1
2

e−
1
2
(yi−µk)T Σ−1

k (yi−µk)

Van Leemput et al.([48], [47]) describes the multi-channel version of their algorithm:

Multichannel EM segmentation by Van Leemput et al.

E-step:

p
(m+1)
ij =

G(yi, µ
(m)
j ,Σ

(m)
j )patlas

ij∑K
k=1 G(yi, µ

(m)
k ,Σ

(m)
k )patlas

ik

M-step:

µ
(m+1)
jr =

∑n
i=1 yirp

(m+1)
ij∑n

i=1 p
(m+1)
ij

(Σ
(m+1)
j )2

rs =

∑n
i=1(yir − µ

(m+1)
jr )(yis − µ

(m+1)
js )p

(m+1)
ij∑n

i=1 p
(m+1)
ij

2.5.4 Prior information for segmentation of brain structures

EM-based methods are traditionally used to segment brain into WM, GM and CSF because the

boundaries of this tissues mostly correspond to intensity boundaries visible on MRI. However, if

a prior probabilistic atlas is created for other anatomical structures, such as thalamus, caudate,

putamen or cerebellum, this approach can be extended to segment more brain structures. The
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probability maps for different structures can be created by averaging a number of affinely

aligned manual segmentation in the same way as done for the three tissue classes. The main

difficulty in segmenting different subcortical structures lies in the lack of intensity contrast

between those structures and therefore the segmentation becomes crucially dependent on the

correct alignment of the atlas with the image to be segmented. Pohl [64] reports that non-rigid

registration has too many degrees of freedom to correctly align the subcortical grey matter

brain structures. In his work he suggested the use of a structure-dependent, partially affine

registration.

Fischl [35] takes the idea of using prior information further and creates a probabilistic atlas not

only for the spatial location of the structures but also for the relative position of neighbouring

structures. Let vi be a location of a voxel with intensity yi and Ni denote the 6-neighbourhood

of vi. Let vj be a location of a voxel in 6-neighbourhood Ni. Let I1, ..., IM denote training

images with attached segmentations S1, ..., SM . Let patlas
jl|ik denote the probability that tissue l is

present at location vj given that tissue k is present at location vi. These values are calculated

from the aligned manual segmentations S1, ..., SM using following equation:

patlas
jl|ik =

‖{a|Sa(vj) = l ∧ Sa(vi) = k}‖
‖{a|Sa(vi) = k}‖

The aim is to find the MAP estimate of anisotropic (dependent on direction) MRF segmentation

z = {z1, ..., zn}. As it is not tractable to directly solve this problem, the approximate solution

is iteratively calculated using Iterated Conditional Modes [10], until the segmentation does not

change anymore:

z
(m+1)
i = arg max

k
G(yi, µk, σk)p

atlas
ik

∏
j;vj∈Ni

patlas

jz
(m)
i |ik

In this method [35], Fischl et al. include spatially varying means and variances for the PDF

of each structure in the prior probabilistic atlas. However, this can be problematic to do in

practice, as these parameters will vary with the image acquisition protocol.
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2.5.5 Including neighbourhood information in EM-based segmenta-

tion

In previous section we showed how including neighbourhood information in the probabilistic

atlas can enhance the segmentation of the brain into structures. In a similar fashion, the

neighbourhood information can be used to eliminate the influence of noise and PVE on the

resulting segmentation, as proposed by Van Leemput [48], and later also Zhang [99].

To achieve this, the EM-based segmentation by Van Leemput from section 2.5.3 can be adapted.

Instead of using prior information from an aligned probabilistic atlas patlas
ik , a prior dependent

on the labelling of neighbouring voxels pik|lNi
is introduced. Here lNi

denotes a labelling of

voxels in the neighbourhood Ni. The E-step in the EM algorithm then changes to:

p
(m+1)
ik =

G(yi, µ
(m)
k , σ

(m)
k )p

(m+1)
ik|lNi∑K

j=1 G(yi, µ
(m)
j , σ

(m)
j )p

(m+1)
ij|lNi

The calculation of prior p
(m+1)
ik|lNi

can be achieved using the Markov Random Field (MRF) frame-

work. A random field Z = (z1, ..., zn) is a Markov Random Field if

P (zi = k|{z1, ..., zn} \ zi) = P (zi = k|Ni) = pik|lNi

According to the Hammersley-Clifford theorem [9], an MRF can equivalently be characterized

by a Gibbs distribution

pik|lNi
=

e
−uik|lNi∑K

j=1 e
−uij|lNi

where uik|lNi
are energy functions. Van Leemput [48] suggests the following calculation of the

energy functions:

u
(m+1)
ik|lNi

=
∑
j∈Ni

K∑
l=1

h
(m+1)
kl p

(m)
jk

where hkl are elements of a K ×K neighbourhood matrix H, with K denoting the number of
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tissues. Van Leemput et al. [48] finds a least square fit of H using the current approximation

of the soft segmentation, which results in extra step within the E-step of EM algorithm. A

different approach was adopted by Zhang et al. [99], who uses ICM [10] to estimate the hard

segmentation followed by calculating the neighborhood probabilities. Unlike Fischl [35], Van

Leemput [48] and Zhang [99] use an isotropic, or direction independent, MRF.

Using MRFs reduces the impact of noise on resulting segmentation and makes the segmentation

algorithms more robust. It also helps avoid misclassifications due to partial volume effect - e.g.

voxels on the boundary of WM and CSF in T1-weighted images can be misclassified as GM, as

they have the same intensities.

Van Leemput et al. [48] suggested the use of both – the neighbourhood information and prior

from the probabilistic atlas – to update the soft segmentation as:

p
(m+1)
ik =

G(yi, µ
(m)
k , σ

(m)
k )patlas

ik p
(m+1)
ik|lNi∑K

j=1 G(yi, µ
(m)
j , σ

(m)
j )patlas

ij p
(m+1)
ij|lNi

2.6 Brain extraction

Brain extraction is a segmentation of the head MRI into brain and non-brain tissues. Since

the intensities of brain and non-brain tissues overlap, an intensity-based brain extraction is not

possible and spatial information must be integrated. The simplest method for brain extraction

is to use prior information. A deformable template can be registered with an image and non-

brain tissue is then removed by transferring the brain mask from the template, e.g. in [97].

Alternatively, the probabilistic atlas can be used as a spatial prior for one or several tissue classes

for non-brain tissue during intensity-based segmentation, for example in [47]. Brain extraction

using a probabilistic atlas is usually not very accurate and can cause misclassifications around

the brain boundary.

An alternative method for extracting the brain is BET (brain extraction tool) [76], which is

part of the publicly available software package FSL. This method finds the centre of gravity of
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the brain and then inflates a sphere until the brain boundary is found. It has been proven to

work in practice on good-quality T1 and T2 weighted images of the brain.

2.7 Segmentation of brain MRI during early childhood

To our knowledge there has been very little research published on the segmentation of brain

MRI during early childhood. Even though by one or two years of age the brain is already similar

to the adult brain, there are still significant differences is shape, size and appearance of the

anatomical structures. Wilke et al. [94] point out that the anatomy of 5-18 year old children’s

brains differs from adult brains. Consequently, probabilistic atlases based on adult brains are

not suitable as prior information for the segmentation of pediatric brains. Wilke et al. created

new pediatric probabilistic atlases by segmenting pediatric brain MRI using SPM99 [77]. The

segmentations were then averaged to obtain the probability maps for WM, GM, CSF as well

as a brain mask. The resulting atlases [62] are publicly available. Recently, Gousias et al. [36]

showed, that excellent segmentations of two year old brains can be achieved by multiple label

propagation of manual segmentations from adult brains, using B-spline non-rigid registration

by Rueckert et al. [70].

Several researchers attempted to develop specialized methods for neonatal segmentation. The

semi-automatic kNN-based method by Warfield et al. [90] (see sec. 2.3.2) has been applied

to adult as well as neonatal brain images. This method requires a deformable atlas. Zöllei in

her thesis [101] shows that an unbiased population-specific probabilistic atlas created by non-

rigid group-wise registration from population of pre-term children can significantly improve

results of this method on neonatal images of pre-term subjects. Another method for group-

wise construction of population-specific atlases have been proposed by Bhatia et al. [12], [11].

Prastawa et al. [67] combined several methods for the segmentation of adult brain MRI into a

neonatal segmentation algorithm. The algorithm is initialized with a quasi-probabilistic atlas

derived from a single subject manual segmentation. The initial tissue intensity distribution is

then estimated by a procedure inspired by Cocosco [18] and used to initialize the EM-based
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segmentation and bias correction by Van Leemput [47]. The resulting segmentation serves as an

input to MST-based method by Cocosco [18] (see sec. 2.3.2), which identifies samples to estimate

non-parametric tissue intensity distributions by Parzen windowing. The final segmentation is

calculated using non-parametric intensity distributions and prior probabilities from the atlas.

The semi-automatic method by Weisenfeld et al. [91] estimates the intensity distributions of

six tissue types (non-myelinated WM, myelinated WM, cortical GM, basal ganglia (subcortical

GM), CSF and extra-cerebral tissue) from an interactively labelled training set of samples.

The segmentation is then calculated via Maximum Likelihood estimation. The method uses an

unbiased probabilistic atlas created by non-rigid group-wise registration by Zöllei [101].

In his method for the cortical segmentation of neonatal brains, Xue et al. [97] address the

difficulties in segmenting neonatal brains directly. First, the brain is extracted and subcortical

tissues removed by registration-based label propagation by Rueckert [70]. Next, an EM-based

segmentation algorithm is used to obtain the segmentation of cortex. Since the neonatal brain

is rapidly developing, it is not possible to create a suitable probabilistic atlas for all neonatal

images. A quasi probabilistic atlas is therefore created for each subject by k-means clustering

and blurring. The EM segmentation by Van Leemput [48] is then performed. A MRF is used

to avoid misclassifications on the CSF-GM boundary, where voxels exhibit the same intensities

as in WM, due to the reversed GM/WM contrast. Instead of estimating tissue intensity dis-

tributions for the whole brain, the within-tissue intensity variability is addressed by splitting

the brain into homogeneous regions using a 4D k-means algorithm, in with features consists of

the voxel position and voxel intensity. The intensity distributions are then estimated for each

region separately throughout the segmentation process.
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2.8 Comparison of registration-based and intensity-based

approaches

Intensity-based and registration-based methods are often complementary in succeeding or fail-

ing in certain areas of the brain. While intensity-based methods are flexible enough to segment

complicated cortical WM and GM regions, registration-based techniques are limited by the

type of transformation and the degrees of freedom of the transformation used and therefore

often not flexible enough to capture complex cortical folding.

On the other hand, the natural tissue intensity variation in different areas of the brain as well

as overlaps in intensity distributions of different tissue classes are a significant source of error

in intensity-based methods. An automatic segmentation cannot match the performance of a

human expert unless guided by prior information. The correct alignment of prior information

with image is difficult to achieve as well.

In addition, Fischl et al. [35] point out that different central brain structures have different

intensity distributions. Subcortical GM is characterized by brighter intensities than cortical

GM, and is therefore likely to be misclassified as WM. Ren et al. [69] reports such misclassifi-

cation in adult brain using the EM-based segmentation method FAST [99]. However, non-rigid

registration-based label propagation [70] succeeds in this area of the brain [24].

2.9 Conclusion

In this chapter we described several state-of-the-art methods for segmentation of brain MRI.

We compared registration-based and intensity-based approaches. To develop a suitable method

for segmenting the brain MRI during early childhood, we aim to combine the two approaches

so that we can use the advantages of both. The performance of the methods presented in this

chapter will only be satisfactory if intensity inhomogeneity of MRI has been corrected. The

following chapter describes and compares various bias correction methods.
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Bias correction of brain MRI

3.1 Intensity inhomogeneity

The bias field is a low-frequency spatially varying shading artifact causing a slow variation of

intensities in MRI within tissue of the same physical properties. It arises from variations in the

sensitivity of the reception coil, spatial inhomogeneity of the excitation field and the interaction

between the human body and the magnetic field [75], [74], [20]. This problem substantially

affects MRI acquired with modern high-field MR scanners (3T and higher).

The results of intensity-based segmentation methods can be severely affected by this intensity

inhomogeneity of the MRI. Various methods have therefore been proposed to correct the dis-

torted intensities in MRI. The inhomogeneity is usually modelled as low frequency multiplicative

field [93], [75], [63], [54], [81], [50].

If the intensities of MRI are logarithmically transformed, the multiplicative bias field becomes

additive. Formally, the additive property of the bias field can be expressed as follows: Let

T = (t1, ..., tn) be the observed intensities of the original image and T ′ = (t′1, ..., t
′
n) the ideal

intensities. Let B = (b1, ..., bn) denote the bias field. Then the degradation effect at each voxel

can be expressed as

ti = t′ibi

80
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Let Y = (y1, ..., yn) and Y ′ = (y′1, ..., y
′
n) denote respectively the log-transformed observed and

ideal intensities. The logarithmic transformation changes the multiplicative bias field to an

additive bias field:

yi = y′i + bi (3.1)

Even though most state-of-the-art bias correction methods rely on this simple multiplicative

model to represent the bias field, there are limitations to the correctness of this model. The

model is consistent with the variations arising form the sensitivity of the receiver coil, however,

non-uniformity due to induced currents and spatial inhomogeneity of the excitation field depend

on the geometry and electromagnetic properties of the subject as well as the pulse sequence

and coil polarization [75], resulting in a more complicated relationship between the true and

measured intensities in MRI. In spite of these difficulties, the multiplicative low-frequency model

is widely used in practice to model the distortions of intensities in MRI.

3.2 Bias correction methods

The low-frequency nature of the bias field can be exploited to estimate this artefact. The earliest

methods proposed to correct the bias field are based on low-pass filtering [15], [19]. However,

these approaches also remove the low-frequency component of the true image data and as a

result additional artifacts can be introduced in the image. In contrast, early surface fitting

methods depended on the manual labelling of WM voxels which were then used to reconstruct

the bias field in form of a parametric surface. The disadvantage of this approach is the need

for manual interaction. The surface fitting methods can be made fully automatic, if they are

interleaved with automatic segmentation of brain tissues, e.g. in [5], [63], [83], [47]. Low pass

filtering can be also improved if coupled with segmentation [93]. Other approaches include

maximizing the high-frequency content of the image [75], minimization of the image entropy

[54], or fitting of the histogram of the local neighbourhood to global histogram of the image

[72]. Relatively recently, bias correction methods based on the use of a registered template

image have emerged [50], [81]. Some of these methods are reviewed in detail in the following
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sections.

3.2.1 C-means clustering

Pham and Prince [63] integrated the bias field correction step into their C-means segmentation

method. The bias field is estimated at each iteration of the segmentation and C-means clustering

is performed for the current estimate of the intensity-corrected image. There is no explicit prior

model for the bias field, but the objective function is extended to include a regularization term

which imposes smoothness on the bias field:

F =
n∑

i=1

K∑
k=1

(uik)
q‖yi − bivk‖2 + λ1

n∑
i=1

3∑
j=1

(∆j ∗B)2
i + λ2

n∑
i=1

3∑
j=1

3∑
k=1

(∆j ∗∆k ∗B)2
i

Here uik denotes the membership function and ∆j denotes the finite difference operator along jth

dimension of the image. (∆j ∗ B)i refers to the ith voxel of the image obtained by convolution

of bias field B with the kernel ∆j. Minimizing this objective function results in extra bias

correction step in the C-means classification algorithm, see section 2.3.1.

3.2.2 N3 method

N3 [75] is a non-parametric bias correction method, developed by Sled et al. to correct the

bias field in pre-processing step. In contrast to previous method no segmentation is performed

during the bias correction.

The additive nature of the bias field in the logarithmically transformed image

y = y′ + b

results in the following relationship for intensity distributions:

Py(y) = Py′(y) ∗ Pb(y) =

∫
Pb(y − b)Py′(b)db
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The non-uniformity distribution Pb can be viewed as blurring of the ideal intensity distribution

Py′ . The distribution Py′ can be therefore found by sharpening the measured distribution Py.

Sled et al. proposes to achieve this by iteratively deconvolving narrow Gaussian distributions

from the intensity distribution of the image corrupted by the bias field. Given the distribution

Pb and the measured distribution Py, the distribution Py′ can be obtained by deconvolution as

follows:

P̃y′ =
P̃ ∗

b

|P̃b|2 + Z2
P̃y

where P̃ denotes the Fourier transform of P , ∗ denotes the complex conjugate and Z is a

constant. The bias corrected image intensities are then estimated as

E(y′|y) =

∫
y′Pb(y − y′)Py′(y

′)dy′∫
Pb(y − y′)Py′(y′)dy′

The bias field is estimated by

b = y − E(y′|y)

followed by smoothing, which is achieved by fitting a regularized B-spline surface.

An implementation of N3 is publicly available and widely used especially on MRI data with

weaker bias fields.

3.2.3 Entropy minimization

A similar idea of sharpening the intensity distribution of the image has been used by Mangin

[54]. Since the bias field blurs the distribution of each tissue class, it consequently increases

the entropy of the intensity distribution of the image. The aim of the method is therefore

to find a smooth multiplicative field that minimizes the entropy of the corrected image. The

optimal bias field is then found by minimizing a functional F consisting of the entropy of the

corrected image, a regularization term to impose smoothness on the bias field and a quadratic

term penalizing the difference of means of the original and corrected images:

F = λ1H(Î ′) + λ2Csmooth + λ3(µ(I)− µ(Î ′))2
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Here I denotes the original image without logarithmic transformation of the intensities, Î ′

denotes the current estimate of corrected image, H is the entropy estimated from normalized

image histogram, and µ(I) denotes image mean. The smoothness constraint Csmooth represents

the membrane energy

Csmooth =
∑

i

∑
j,vj∈Ni

(log bi − log bj)
2

where vi denotes the spatial position of a voxel, bi the bias at the position vi and Ni denotes

the 6-neighbourhood of the voxel vi.

The functional is optimized using a fast annealing schedule. During the optimization only

a piecewise linear function is used to approximate the bias field. The final estimate is then

modelled using a cubic spline representation.

3.3 Bias field estimation via EM

The estimation of the bias field via the EM algorithm was first proposed by Wells et al. [93]

as a part of the segmentation algorithm. If estimates of the segmentation and tissue intensity

distributions are available an estimate of the bias corrected image can be calculated and the bias

field is then obtained from the difference of the log-transformed real and estimated image. This

section describes the EM-based bias correction [93] and different variations of this algorithm as

proposed by [47], [7] and [65].

3.3.1 Parametric bias field estimation via the ML principle

Thanks to the additive nature of the model (eq. 3.1), the bias field estimation can be easily

incorporated into the EM segmentation algorithm (sec. 2.5.3). The likelihood of observing a

voxel intensity yi in the presence of the bias field can be expressed as

P (yi|Zi = ek, γ, β) = G(yi − bi, µk, σk)
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The low frequency characteristics of the bias field B can be modelled as a linear combination

of smooth basis functions Ψl(v)

bi =
L∑

l=1

dlΨl(vi)

where vi denotes the 3D position of voxel i and β ≡ d = (d1, ..., dL) denotes the bias field

parameters. The basis functions can be polynomials, splines or any other smooth functions.

The maximum likelihood estimate of the bias field parameters d can be found by setting the

partial derivative of the lower bound Q(Φ, Φ(m)) to zero:

∂

∂dj

(Q(Φ, Φ(m))) = 0

This approach was taken by Van Leemput et al. in [47]:

EM segmentation with bias field correction by Van Leemput

E-step:

p
(m+1)
ij =

G(yi −
∑L

l=1 d
(m)
l Ψl(vi), µ

(m)
j , σ

(m)
j )patlas

ij∑K
k=1 G(yi −

∑L
l=1 d

(m)
l Ψl(vi), µ

(m)
k , σ

(m)
k )patlas

ik

M-step:

1. Gaussian distribution parameters estimation

µ
(m+1)
j =

∑n
i=1(yi −

∑L
l=1 d

(m)
l Ψl(vi))p

(m+1)
ij∑n

i=1 p
(m+1)
ij

(σ
(m+1)
j )2 =

∑n
i=1(yi −

∑L
l=1 d

(m)
l Ψl(vi)− µ

(m+1)
j )2p

(m+1)
ij∑n

i=1 p
(m+1)
ij

2. Bias correction

(d(m+1))T = (FTW(m+1)F)−1FTW(m+1)R(m+1) (3.2)
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F =



Ψ1(v1) Ψ2(v1) . . . ΨL(v1)

Ψ1(v2) Ψ2(v2) ΨL(v2)

. . .

. . .

. . .

Ψ1(vn) Ψ2(vn) . . . ΨL(vn)



W(m+1) =



∑K
k=1 w

(m+1)
1k 0 . . . 0

0
∑K

k=1 w
(m+1)
2k 0

. . .

. . .

. . .

0 0 . . .
∑K

k=1 w
(m+1)
nk


w

(m+1)
ik =

p
(m+1)
ik

(σ
(m+1)
k )2

ỹ
(m+1)
i =

∑K
k=1 w

(m+1)
ik µ

(m+1)
ik∑K

k=1 w
(m+1)
ik

R =



y1 − ỹ
(m+1)
1

.

.

.

yn − ỹ
(m+1)
n



The bias correction step can be interpreted as follows: The estimated soft segmentation and

Gaussian distribution parameters can be used to reconstruct the image estimate Ỹ = (ỹ1, ..., ỹn)

which is not corrupted by the bias field. When subtracted from the observed image, the residual

image R is calculated. From the residual image the bias field is estimated. The matrix F

represents the discretized geometry of the bias field and W is an inverse covariance matrix.
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The ML estimation of B-spline control points d results in a weighted least squares estimate

of d from the residual image R with weights on the diagonal of the matrix W and modified

normal equations:

FTW(m+1)F(d(m+1))T = FTW(m+1)R(m+1)

3.3.2 Non-parametric bias field estimation via MAP principle

The bias field can be also estimated in the EM framework using the MAP principle, as proposed

by Wells et al. [93]. In this method the Gaussian distribution parameters are assumed to be

known (they are estimated from the histogram in a preprocessing step) and the EM algorithm

is only used to estimate the bias field. As the MAP criteria is closely related to the ML criteria

(eq. 2.5, 2.7), there exists a lower bound QMAP (Φ, Φ(m)) to LMAP (Φ) (eq. 2.7), as shown in

[64]:

QMAP (Φ, Φ(m)) = Q(Φ, Φ(m)) + log P (Φ)

In Wells’ method [93] the parameters Φ directly represent the bias field B: Φ ≡ β ≡ B =

(b1, ..., bn). The prior term for the parameters log P (Φ) is included in the optimisation function,

and therefore a n-dimensional zero mean Gaussian distribution

P (Φ) = P (B) = G(B,0,ΣB)

can be assumed for the bias field, thus eliminating the need for the parametric model. The

equation for the bias field estimation step will then become

(B(m+1))T = (W(m+1) + Σ−1
B )−1W(m+1)R(m+1)

This equation differs from (eq. 3.2) by including the smoothness constraint Σ−1
B and setting F

to an identity matrix, as no parametric model for the bias field is assumed.
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Let us further define the weighted residual image R̄(m+1)

R̄(m+1) = W(m+1)R(m+1)

which means that

R̄
(m+1)
i =

K∑
k=1

p
(m+1)
ik (yi − µ

(m+1)
k )

σ
(m+1)
k

The bias field estimation step can be then simplified to

(B(m+1))T = HR̄(m+1)

where H is a linear operator defined by:

H ≡ (W(m+1) + Σ−1
B )−1

In practice the linear operator H can be approximated by a linear low-pass filter. Wells et al.

uses the following efficient implementation which incorporates the weights into the low-pass

filtering:

b
(m+1)
i =

[FR̄(m+1)]i
[FW(m+1)1]i

(3.3)

where F is a low-pass filter and 1 = (1, ..., 1)T .

3.4 Simultaneous segmentation, registration and bias cor-

rection

The correct alignment of the prior information in form of probabilistic atlases with the im-

age to be segmented is crucial for successful intensity-based segmentation. Recently developed

methods aim to achieve better registration of these probabilistic atlases to the image by grad-

ually refining the registration during segmentation process. In the following, the registration

parameters will be denoted as α, the bias field parameters as β, the means and variances of the
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Gaussian intensity distribution as γ, the image intensities as Y and the segmentation as Z.

3.4.1 Incorporating the registration of the probabilistic atlas into

the EM segmentation algorithm

The registration of a probabilistic atlas can be incorporated into the EM framework. Pohl et

al. [65] extends Wells’ MAP segmentation and bias correction framework (described in section

3.3.2) to include the registration parameters as unknowns which must be estimated during the

segmentation. In this method the Gaussian distribution parameters are assumed to be known

and unknown parameters Φ = (β, α) consist of the bias field parameters β and the registration

parameters α. The aim is to maximize MAP of both sets of parameters (β, α):

(β̂, α̂) = arg max
β,α

P (β, α|Y )

It has been shown in [64] that this can be optimized in the EM framework through iterative

maximization of the lower bound:

(β(m+1), α(m+1)) = arg max
β,α

EZ(log P (β, α, Z|Y )|Y, β(m), α(m))

The expression log P (β, α, Z|Y ) can be decomposed into

log P (β, α, Z|Y ) = log P (Y |Z, β, α)) + log P (α|Z, β)+

+ log P (β|Z) + log P (Z)− log P (Y )

The likelihood of observing the image Y given segmentation Z and bias field β does not depend

on the registration of the prior information α. We can also assume that the registration α does

not depend on the bias field β and can be fully inferred from the segmentation Z. In addition,

the bias field β does not depend on segmentation Z. The last two terms are constant in

parameters (β, α) and therefore can be omitted in the maximization process. This results in
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the following simplification:

(β(m+1), α(m+1)) = arg max
β,α

EZ(log P (Y |Z, β) + log P (α|Z) + log P (β)|Y, β(m), α(m))

Similar to function Q(Φ, Φ(m)) in section 2.4.4, this equation can be rewritten as:

(β(m+1), α(m+1)) = arg max
β,α

n∑
i=1

K∑
j=1

p
(m+1)
ij (log(P (Y |Zi = ej, β))+

+ log P (α|Zi = ej) + log P (β))

The terms in this expression are always dependent either on α or β, but never on both, so the

bias field and registration parameters can be estimated separately. If we further observe that

maximizing log P (α|Z) is equivalent to maximizing log P (Z|α) + log P (α), we can see that the

segmentation can be achieved by following algorithm:

Simultaneous segmentation and registration by Pohl et al.

E-step:

p
(m+1)
ij =

P (yi|Zi = ej, β
(m))P (Zi = ej|α(m))∑K

k=1 P (yi|Zi = ek, β(m))P (Zi = ek|α(m))

M-step:

α(m+1) = argmax
α

n∑
i=1

K∑
j=1

p
(m+1)
ij log P (Zi = ej|α) + log P (α)

β(m+1) = argmax
β

n∑
i=1

K∑
j=1

p
(m+1)
ij (log P (yi|Zi = ej, β) + log P (β))

The estimation of the bias field parameters β is described in section 3.3.2. The registration

parameters can represent any kind of registration - rigid, affine or non-rigid. Note, that the

expression P (Zi = ej|α) represents the prior probability values from the registered probabilistic
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atlas and P (α) the prior constraints for registration. To find the registration parameters α,

numerical optimization methods have to be employed as it is usually not possible to find a

closed-form expression for the registration estimation step.

3.4.2 Minimization of objective function using iterated conditional

modes

Instead of optimizing all parameters in the EM framework, Ashburner [7] uses Iterated Condi-

tional Modes (ICM)[10] to unify segmentation, registration and bias correction in a probabilistic

framework.

The task is to optimize a global objective function F :

(α, β, γ) = arg max
α,β,γ

log P (Y, α, β|γ) = arg max
α,β,γ

F (α, β, γ)

where α are the registration parameters, β the bias field parameters and γ the Gaussian mixture

parameters. The ICM optimization can be described as follows:

Iterated Conditional Modes for simultaneous segmentation, registration and bias

correction

Repeat until convergence:

Segmentation step:

Hold α and β constant, and maximize F with respect to γ

Bias correction step:

Hold γ and α constant, and maximize F with respect to β

Deformation of the probabilistic atlas:

Hold γ and β constant, and maximize F with respect to α

end
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The objective function F is modelled in a similar fashion as in approaches from previous

sections. However, the original image intensities, rather than log-transformed intensities, are

used. Maximization of the objective function can be expressed as follows:

(α, β, γ) = arg max
α,β,γ

F (α, β, γ) = arg max
α,β,γ

log P (Y, α, β|γ) =

= arg max
α,β,γ

log(P (Y |α, β, γ) + log P (α) + log P (β))

The terms log P (α) and log P (β) enable the incorporation of prior constraints on the registration

and bias field parameters. Both are defined using a Gaussian distribution: P (α) = G(α,0,Cα)

and P (β) = G(β,0,Cβ).

The term log P (Y |α, β, γ) is the log-likelihood and can be expressed by eq. 2.10. Priors P (zi =

ek|α, β, γ) are a combination of mixture coefficients ck and prior probabilities from the registered

probabilistic atlas patlas
ik (α):

P (zi = ek|α, β, γ) = P (zi = ek|α, γ) =
ckp

atlas
ik (α)∑K

j=1 patlas
ij (α)

The likelihood log P (yi|zi = ek, α, β, γ) represents the intensity distribution of tissue class k

and is modelled by Gaussian PDF, extended by including the bias field ρi(β) in the model:

P (yi|zi = ek, α, β, γ) = P (yi|zi = ek, β, γ) =
1√

2 pi σk

ρi(β)

exp(
(y − µk

ρi(β)
)2

2( σk

ρi(β)
)2

)

Optionally, the model for the intensity distribution of a tissue class can be extended to mixture

of Gaussian PDFs, so that the distribution is not restricted to Gaussian shape.

The resulting objective function F is maximized using ICM. The segmentation step is performed

by the EM algorithm, while the registration and bias correction step are optimized using a

Levenberg-Marquardt scheme

θ(m+1) = θ(m) −
(

∂2F

∂θ2
+ λI

)−1(
∂F

∂θ

)
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which requires the calculation of first and second derivatives of F with respect to the parameters

α and β. The parameter λ regulates stability versus speed of convergence of the scheme.

This framework for the simultaneous segmentation, registration and bias correction has been

implemented in publicly available software package SPM5 [78]. The advantage of this imple-

mentation is that non-rigid registration of the probabilistic atlas is performed, thus improving

the accuracy of the segmentation and reconstruction of the corrected image, and consequently

robustness of the bias correction. The method is suitable for segmentation and bias correction

of MRI data with strong bias field.

3.5 Template-based bias correction

The majority of bias correction methods rely on the assumption that either tissue intensities

fall within a discrete set of classes, or that the intensity distribution should be most peaked

when tissue intensities have been corrected. However, the underlying cell structure of different

brain regions induces a variation of the observed intensities in MRI, especially in subcortical

structures such as thalamus. In addition, brain tissues are known to exhibit intensity changes

due to illness and aging [81].

The development of accurate registration methods for brain MRI offers an alternative approach

to correcting the intensity inhomogeneity, which may overcome the previously mentioned prob-

lems. If an image corrupted by a bias field can be correctly aligned with a template image

without bias field, it can help to separate the anatomically induced intensity variation from the

variation imposed by the acquisition process.

Lewis et al. [50] proposed such a template-based bias correction technique to correct differential

intensity inhomogeneity in longitudinal studies. The technique removes the difference of the

bias fields of a pair of images to enable their further comparison. Longitudinal studies deal with

the same patient scanned at different time points, so only a rigid registration is required. In

addition, the MRI data is assumed to be obtained by the same imaging protocol, and therefore
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no intensity matching is required. The assumed model for the image formation is

y = y′b + n

where n denotes the noise. The log-transformed intensity differences of images X and Y then

become

log(y)− log(x) = log

(
y′by − ny

x′bx − nx

)
=

= log(y′)− log(x′) + log(by)− log(bx) + log

(
1 +

ny

yby

)
− log

(
1 +

nx

xbx

)
The last two terms represent the original additive noise of the system. log(y′)−log(x′) represent

the difference of the true intensities of the image, and given that the images come from the same

subject, the difference contains only residual registration error and therefore will have only small

scale structure in a scale space sense. The term log(by)− log(bx) represents the differential bias

field which is assumed to be dominant at larger scales compared to other contributing factors.

If a median filter is applied to this differential image, it will remove the Gaussian noise as well

as small-scale structure, if a suitable size of a filtering kernel is chosen. Therefore

log by − log bx ≈ median(log y − log x)

resulting in

by

bx

≈ exp(median(log y − log x))

Studholme et al. [81] proposes a similar technique for inter-subject bias correction of scans

acquired by the same imaging protocol. First, a template image is chosen and WM is manually

segmented. The WM intensities are then fitted with a B-spline, to extrapolate the estimate of

intensity inhomogeneity to other regions of the brain.

The bias corrected template is then aligned with the image by B-spline non-rigid registration

by Rueckert [70]. In the next step, both the aligned template and the image to be corrected are

smoothed with Gaussian kernel. Let T denote the transformation from image Y to template

X. Let M be a binary mask for identification of brain volume and G an isotropic Gaussian
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filter. Then both image and template can be filtered as follows:

Xg(v) =

∑
u∈U M(v − u)G(v − u, σ)X(T (v))∑

u∈U M(v − u)G(v − u, σ)

Yg(v) =

∑
u∈U M(v − u)G(v − u, σ)Y (v)∑

u∈U M(v − u)G(v − u, σ)

where Yg and Xg denote the blurred image and template, respectively, and U is the domain of

the discretized and truncated zero-mean Gaussian kernel. The bias field can then be estimated

as

b(v) =
Yg(v)

Xg(v)

and image Y can be corrected by

Y ′(v) =
Y (v)

b(v)

The standard deviation σ of the Gaussian kernel was experimentally estimated by calculating

the root mean square intensity difference (RMS) between the automatically corrected image Y ′

and manually corrected image Y ′
m:

RMS =

√√√√ 1

n

n∑
i=1

(Y ′(vi)− Y ′
m(vi))2

The best results were achieved with approximately Gaussian with σ = 20mm at FWHM.

3.6 Comparison of the methods

There have been numerous techniques for correction of bias field proposed in literature, however,

the number of comparative studies is relatively small. Recent reviews of different bias correction

methods [41], [8] point to the study by Arnold et al. [3] as the most comprehensive recent

comparative study. According to this study, the N3 algorithm [75] exhibits the most stable

performance, outperforming most of the other techniques under most circumstances. On the

other hand, the good performance of EM-based bias correction techniques becomes unstable
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if only small bias field is present. It has to be noted though, that the EM-based technique

evaluated in this study is the one implemented in SPM99 [5] and that a new version in SPM5

[7] has been developed in the meantime. Both reviews conclude that none of the methods can be

considered the best under all conditions, but N3 method performs consistently well under most

circumstances. In contrast, Studholme reports, that his template-based method [81] performs

better than N3 if a suitable filtering kernel width is chosen.

There is a lack of studies in literature comparing the recent bias correction methods, such as

template-based bias correction or simultaneous segmentation, registration and bias correction.

In addition, recent trend in MR acquisition is to use stronger magnetic fields, such as 3T,

usually resulting in stronger bias fields than in earlier MRI. Due to these developments in MR

technology, new studies are needed to offer up-to-date comparison of performance of current

bias correction methods the recently acquired data. The promising approaches suitable for bias

correction of MRI with stronger bias fields include methods based on simultaneous segmenta-

tion, registration and bias-correction, such as SPM5 [7] or the template-based bias correction

based on non-rigid registration, such as the one by Studholme [81].

3.7 Conclusion

In this chapter we described the most important state-of-the-art bias correction methods. The

correction of intensity inhomogeneity is an important step for the efficient segmentation and

registration of brain MRI. In line with the conclusions of the comparative studies of bias cor-

rection methods we will use N3 method for images with lower field strengths. However, in

our experiments, N3 did not prove efficient on MRI exhibiting very strong bias field, such as

3T images scanned with an MP-RAGE imaging sequence [14]. We will therefore develop a

novel robust template based bias correction method efficient for correcting these challenging

datasets.



Chapter 4

Segmentation of brain MRI during

early childhood

4.1 Introduction

The aim of this chapter is the development of segmentation tools for MRI of the brain dur-

ing early childhood. A novel method for the segmentation of brain structures combining

registration-based and EM-based approaches is proposed. The evaluation of the proposed

method shows consistent results superior to both, registration-based and EM-based approaches.

The method is applied for the quantification of volumes and growth of brain structures at one

and two years of age.

First, we aim to adapt state-of-the-art methods for the segmentation of adult brain MRI to

MRI during early childhood. To achieve this, the non-rigid registration by Rueckert et al. [70]

is chosen to perform registration-based segmentation in sec. 4.2. To implement an intensity-

based approach, the EM-based segmentation by Van Leemput et al. [48] is chosen and adapted

in section 4.3. We will show that prior information created specifically for this age-group is

necessary to achieve good segmentation results. Therefore, a method for creating population-

specific probabilistic atlases will be proposed.

97
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Second, the registration-based and EM-based approach are combined in a novel method de-

scribed in sec. 4.4. The robustness of this method is achieved by combining multiple registration-

based label propagation to create a subject-specific atlas which is then used as prior information

by the subsequent EM-based segmentation.

Sec. 4.5 compares the registration-based, EM-based and our proposed combined approach. We

demonstrate that the registration-based segmentation performs better in the subcortical area of

the brain while the intensity-based segmentation tends to be very successful in the cortical area.

Our proposed combined method exploits the advantages of both approaches and consequently

outperform them.

Finally, we will demonstrate the robustness of the proposed segmentation method for the quan-

tification of the volumes and growth of brain structures during early childhood.

In this chapter we focus on the segmentation of images with negligible or weak bias field so

that the issue of bias correction does not need to be addressed directly. The development

of segmentation tools for the brain MRI in the presence of strong bias fields is the focus of

chapters 5 and 6.

4.1.1 Datasets

The data used in this chapter are T1-weighted brain MRI acquired using a 1.0T HPQ system

(Philips Medical Systems), TR/TE=23ms/6ms, flip angle = 30 degrees. The images were

reconstructed with voxels dimensions 1.6×1.035×1.035 mm3. The images exhibit only a weak

bias field, see fig. 1.5b and 4.1a, which does not affect the visual evaluation of the images,

however is strong enough to cause problems for any intensity-based segmentation algorithm.

Subjects were imaged at one and two years of age (36 scans at one year and 33 scans at two

years). Out of these 69 scans 32 belong to 16 subjects scanned at both time-points. One of the

subjects with scans at the age of one and two was randomly chosen as the reference subject.

The remaining 15 subjects with scans at both time-points were used to calculate volumes and

growth of brain structures in sec 4.6. All subjects excluding the reference subject (35 scans



4.1. Introduction 99

at one year and 32 scans at two years of age) were used as training images to create the

population-specific and subject-specific atlases.

4.1.2 Pre-processing

To prepare the data for further processing, we performed the following pre-processing steps:

First, the orientation of the data was aligned with orientation of MNI305 probabilistic atlas [33]

using only a 90◦ and 180◦ rotation. To avoid the need for resampling, a sequence of reflections

equivalent to the rotations needed was used to rearrange the voxels.

Next, the background voxels were removed with following procedure: The image is segmented

into background and non-background voxels using a Gaussian Mixture Model (see sec. 2.4.5).

To avoid removing the voxels inside the head, the segmentation is followed by a series of

dilations and erosions of the non-background tissue to close the surface of the head. Then, a

region-growing procedure starting at the eight corners of the image is used to find all the voxels

outside the head. Removing the background voxels is vital for speeding up all the segmentation

methods. This procedure is different from brain extraction, such as the one performed by

BET [76], as we aim to keep the skull in the images. The skull is an important feature

for achieving good registration results at the brain boundary. The result of this background

removal procedure is illustrated in fig. 4.1. Finally, after background removal, the intensities of

the remaining voxels are bias corrected using the N3 method [75].

(a) (b) (c)

Figure 4.1: Removing background voxels: (a) MRI of a two year old child; (b) image with
adjusted contrast to show the background noise; (c) final results of the background removal
procedure.
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4.1.3 Brain tissues vs. brain structures

The standard probabilistic atlases, such as MNI305 [33], ICBM152 [56] and CCHMC5-9 [94],

consist of probability maps for the three main brain tissues - WM, GM and CSF. In the reminder

of these thesis, the segmentation into these three tissue classes will be referred segmentation of

brain tissues.

However, when the development of the brain in prematurely born children is quantified, it is

especially important to obtain measurements of subcortical structures, as changes occur in the

development of these structures as a result of premature birth [13]. Therefore our deformable

and probabilistic atlases will be created for the following 11 structures: CSF, cortex, caudate,

putamen, substantia nigra, cerebellar GM, thalamus, pallidum, brainstem, WM and cerebellar

WM. The segmentation of the brain into these 11 structures will be referred to as segmentation

of brain structures.

When comparing the segmentation methods proposed in this thesis with segmentation algo-

rithms which use standard probabilistic atlases, we will merge the 11 structures to the three

brain tissue classes as shown in table 4.1:

Brain tissues Brain structures
WM WM, brainstem, cerebellar WM
GM cortex, cerebellar GM, caudate, putamen, nigra, thalamus, pallidum
CSF CSF

Table 4.1: Correspondence between brain tissues and brain structures.

4.1.4 Manual segmentation of the reference subject

Creating new population-specific deformable and probabilistic atlases requires a large number

of manual segmentations. However, this is often difficult to achieve in practice. The manual

segmentation of a whole brain MRI is very laborious and costly, requiring several full working

days or even weeks of an experienced human rater.

To develop the segmentation tools for brain MRI during early childhood, we were able to obtain
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one manual segmentation of the reference subject scanned at two years of age, containing

11 segmented structures: CSF, cortex, caudate, putamen, substantia nigra, cerebellar GM,

thalamus, pallidum, brainstem, WM and cerebellar WM, see fig. 4.2. The segmentation contains

elements from the discrete set of labels {0, 1, ..., 11} with 0 denoting the non-brain tissue and

background voxels.

Figure 4.2: Manual segmentation of brain structures for the two years old reference subject
contains these 11 structures: CSF, cortex, caudate, putamen, substantia nigra, cerebellar GM,
thalamus, pallidum, brainstem, WM and cerebellar WM.

This manual segmentation will be used as a deformable atlas, as described in sec. 2.2, to segment

the brain MRI at two years of age. In the following sections we will also propose methods for

creating population-specific and subject-specific probabilistic atlases using only a single manual

segmentation.

4.1.5 Evaluation using manual segmentations

To evaluate the algorithms for the segmentation of brain structures proposed later in this

chapter, we need additional manual segmentations of several subjects. Four more two years old

subjects were therefore partially segmented, with the WM and cortical GM being segmented

on 6-8 slices, and a complete segmentation of caudate and thalamus.

The results of the automatic segmentation methods will be evaluated throughout this chapter
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against these four manual segmentations using the Dice metric [29]

D =
2 ∗ |Tgt ∩ Tseg|
|Tgt|+ |Tseg|

(4.1)

where Tgt and Tseg denote the set of samples of a given tissue type of the ground truth (in our

evaluation the manual segmentation) and the automatic segmentation, respectively.

This measure of accuracy can be also described in terms of true/false positives/negatives.

For each structure l, the true positives (TP) are voxels labelled as belonging to the structure

l in both the manual and automatic segmentation, the false positives (FP) are labelled as

structure l in automatic, but not in manual segmentation, the false negatives (FN) are labelled

as structure l in manual, but not in automatic segmentation, and finally the true negatives

(TN) do not belong to structure l neither in the manual nor in automatic segmentation. Given

these definitions, the Dice metric can be equivalently expressed as

D =
2 ∗ |TP|

2 ∗ |TP|+ |FP|+ |FN|

When evaluating the segmentation using standard probabilistic atlases, only the three brain

tissue classes are classified by the automatic segmentation. Consequently, the performance of

the method in subcortical GM structures cannot be measured using Dice metric. However,

we can evaluate the proportion of the subcortical GM structure in the manual segmentation

classified as GM in automatic segmentation. Let T sGM
gt denote the set of voxels belonging to

a subcortical GM structure in the manual segmentation and TGM
seg the set of voxels belonging

to GM in the automatic segmentation. The automatic segmentation of the subcortical GM

structure is not known, therefore the following metric is used to evaluate the performance of

the automatic segmentation:

D′ =
|T sGM

gt ∩ TGM
seg |

|T sGM
gt |

(4.2)

which is equivalent to

D′ =
|TP|

|TP|+ |FN|

This measure is used because the number of false positives is not known. The measure D′ is
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often referred to as sensitivity of the method.

To provide the ground truth for evaluation of the algorithms for segmentation of brain tissues,

the brain structure segmentations of cortex and cortical WM were manually adjusted to include

all WM and GM tissue, respectively.

4.2 Registration-based segmentation

In this section we investigate the performance of the registration-based segmentation for brain

MRI during early childhood. Our registration method of choice, the non-rigid registration by

Rueckert et al. [70] described in sec. 2.2.5, uses a highly flexible hierarchical B-spline model for

modelling local deformations, which allows detailed inter-subject matching of the brain MRI

and is therefore especially suitable for registration-based segmentation of the brain.

4.2.1 Deformable atlas and registration-based segmentation

The manual segmentation of the brain structures of a two year old reference subject is used

as a deformable atlas. Let us denote the reference subject X and manual segmentation of

the reference subject SX . The non-rigid alignment of the image to be segmented Y with the

reference image X is denoted TY →X .

The registration-based segmentation of image Y , denoted Srbs(Y ) can be obtained by eq. 2.2

using nearest neighbour interpolation:

Srbs(Y )(vi) = SX(round(TY →X(vi)))

where round(u) is a function finding the closest voxel to the location u. In our experience,

better results can be obtained if the binary label map for each structure l

SX,l(ui) =

 1 if SX(ui) = l

0 if SX(ui) 6= l
(4.3)
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is transformed and resampled using linear interpolation. The label for each voxel is then

calculated by choosing the structure with the highest value:

Srbs(Y )(vi) = max
l

Slin
X,l(TY →X(vi))

where function Slin
X,l denotes the linear interpolation of image SX,l.

4.2.2 Non-rigid registration

Our aim is to find a highly accurate alignment of two brain MRI to achieve a good registration-

based segmentation. The images have already been transformed to the same orientation in the

pre-processing step and background voxels have been removed.

During the registration process, background voxels are ignored. This helps to reduce computa-

tional complexity and ignores intensities outside the head when evaluating the image similarity.

However, this also means that the boundaries of the head are not necessarily well matched dur-

ing the registration process. Therefore we do not ignore background voxels which are close to

the head. This is achieved by extending the binary head mask using four dilations.

To initialize the alignment, an affine registration algorithm [82] is used. This registration uses

normalized mutual information as a similarity measure. The affine registration is performed

via gradient descend optimization at three resolution levels with isotropic voxels of size 6.4mm,

3.2mm and 1.6mm.

After affine registration, a non-rigid registration is performed at four resolution levels, with

B-spline control point spacings of 20mm, 10mm, 5mm and 2.5mm. At each resolution, the

image is first blurred and then subsampled to avoid local minima and optimize the speed

of the algorithm. The quality and speed of the non-rigid registration depends on various

parameters used at each resolution level: voxel size, kernel size of Gaussian blurring represented

by standard deviation and step size when performing gradient descent. These parameters need

to be determined to provide an optimal tradeoff between the quality and speed of registration-
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based segmentation.

The optimization at each resolution level starts by subdividing the B-spline transformation from

previous level to halve the control point spacing. The gradient descent optimization is then

performed four times with the step size for the finite difference approximation of the gradient

halved every time.

4.2.3 Optimizing registration parameters

Our aim is to find the optimal tradeoff between the speed and the performance of the registration-

based segmentation. If low resolution images are used at levels with larger control point spac-

ings, the computations at these levels can be speeded up from hours to minutes without affecting

the final results. We have compared four different strategies for the choice of the parameters.

The four sets of parameters are shown in table 4.2. The agreement of registration-based segmen-

tations with manual segmentations obtained when using those sets of parameters and measured

with Dice metric (eq. 4.1) are shown in table 4.3.

The results in table 4.3 show, that downsampling the images in the first two resolution levels

does not affect the segmentation results. Downsampling the first two resolution levels reduces

the time needed for performing the registration by 30-40%. Additionally, a step size of 8mm

seems to produce good results. This finding suggests, that to obtain high quality registration of

two brains, relatively large deformations are required even at the finest control point resolution

to reflect the complexity of cortical folding. The final choice of registration parameters in shown

in table 4.4.

4.3 EM-based segmentation

The EM algorithm is the most widely used framework for intensity-based segmentation of

brain MRI. There are many variants of the EM-based segmentation framework. We chose

the segmentation algorithm proposed by Van Leemput et al. [48] and as described in section



106 Chapter 4. Segmentation of brain MRI during early childhood

Parameter set #1
control point spacing image resolution image blurring finite difference step size

20 full 0 8
10 full 0 8
5 full 0 8

2.5 full 0 8
Parameter set #2
control point spacing image resolution image blurring finite difference step size

20 full 0 4
10 full 0 4
5 full 0 4

2.5 full 0 4
Parameter set #3
control point spacing image resolution image blurring finite difference step size

20 3 1.5 8
10 2 1 4
5 full 0.5 2

2.5 full 0 1
Parameter set #4
control point spacing image resolution image blurring finite difference step size

20 3 1.5 8
10 2 1 8
5 full 0.5 8

2.5 full 0 8

Table 4.2: Parameters for the non-rigid registration. All sizes are given in millimeters.

Parameter set WM Cortex Caudate Thalamus Time
#1 0.83 ± 0.02 0.85 ± 0.01 0.86 ± 0.04 0.89 ± 0.01 11h
#2 0.82 ± 0.02 0.84 ± 0.01 0.86 ± 0.05 0.89 ± 0.01 10h
#3 0.76 ± 0.02 0.80 ± 0.01 0.82 ± 0.09 0.88 ± 0.02 6h
#4 0.83 ± 0.02 0.85 ± 0.01 0.86 ± 0.04 0.89 ± 0.01 7h

Table 4.3: Agreement of the manual segmentation with the results of the registration-based
segmentation with different parameters given in table 4.2 as measured with the Dice overlap
metric. The last column shows the approximate running times of the registration algorithm.

control point spacing image resolution image blurring finite difference step size
20 3 1.5 8
10 2 1 8
5 full 0.5 8

2.5 full 0 8

Table 4.4: Parameters for non-rigid registration. All sizes are given in millimeters.
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2.5.3. The original method incorporates bias correction and a MRF to include neighbourhood

information, however, we will omit both, since in our case the images have been bias corrected

in the pre-processing step by N3 method [75] and have good contrast-to-noise ratio. The

EM segmentation algorithm proposed by Van Leemput et al. [48] is suitable for our purpose

because it automatically estimates the means and variances of the Gaussian tissue PDF during

the segmentation process, unlike the method by Wells [93], which requires prior knowledge of

these parameters. To achieve the best possible performance of the EM segmentation method,

the brain volumes in all images are extracted using the Brain Extraction Tool (BET) [76],

before the segmentation algorithm is executed.

4.3.1 Probabilistic atlas

The EM segmentation algorithm requires a probabilistic atlas to be registered by affine regis-

tration in the pre-processing step. The atlas commonly used for this purpose is the MNI305

probabilistic atlas [33] created from 305 brain MRI of healthy young adults acquired on a 1.5T

MR scanner and aligned with a 9-parameter transformation (three rotations, three translations

and three scalings), see fig. 4.3b.

As we are trying to segment brain MRI during early childhood, we have also tested the EM

segmentation with the CCHMC5-9 probabilistic atlas [94], created from 49 brain MRI of chil-

dren between five and nine years of age acquired on a 3T MR scanner. To create this atlas

Wilke et al. aligned all the images into stereotaxic space with a 12-parameter affine transfor-

mation and segmented the images with SPM99 [4] using the MNI305 probabilistic atlas. A

new probabilistic atlas was then created by averaging the resulting segmentations. The images

were then segmented a second time using the newly obtained probabilistic atlas, to provide

segmentation which is less biased towards prior information corresponding to anatomy of an

adult brain. The segmentations obtained at the second pass were then averaged to create the

CCHMC5-9 probabilistic atlas, see fig. 4.3c.

We use both atlases to segment the brain MRI during early childhood into four tissue classes -

WM, GM, CSF and non-brain tissue. In our preliminary experiments we found that when either
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of these two atlases is used as a prior, the EM algorithm significantly overestimates WM in the

central structures of the brain, see fig. 4.3e and f. A significant number of voxels are misclassi-

fied, for example in the thalamus, which is characterized by higher intensities on T1-weighted

MRI than cortical GM. The intensity histogram calculated from a manual segmentation of a

brain MRI of a two year old child (fig. 4.4) shows that the intensity distribution within the

thalamus overlaps with the intensity distributions of WM and GM. A correct segmentation of

this structure based on intensity alone is thus impossible. Instead prior information from a

probabilistic atlas must be used to segment this structure correctly. However, the anatomy of

the adult brain differs from the brain during early childhood in this area. The internal capsule,

which lies between subcortical GM structures, is thinner in young children than in adults, see

the annotation in fig. 4.3a and d, and therefore the amount of WM in this area is overesti-

mated (fig. 4.3e), if a probabilistic atlas derived from adult brains is used. Similarly, the prior

information from the pediatric atlas CCHMC5-9 [94] resembles the anatomy of the adult brain,

rather than anatomy of the brain during early childhood and thus leads to similar problems

(fig. 4.3f).

4.3.2 Creating a population-specific atlas for EM segmentation

To be able to segment the subcortical GM correctly, we have developed a technique to create a

probabilistic atlas specifically for a population of subjects. When creating population-specific

atlases, the major challenge is obtaining a sufficient number of manual segmentations since

the manual delineation of the images is an extremely time-consuming process. Our method

uses a single manual segmentation of a reference subject and a group of training images from

a given population to build a population-specific probabilistic atlas, making the creation of

probabilistic atlases for different age groups practically achievable.

To obtain good segmentations for a group of training subjects, we use a non-rigid registration-

based segmentation instead of manual delineation. The results in table 4.3 show, that if suitable

parameters are used, this method can produce a good quality segmentation for subcortical GM

structures, where the brain during early childhood differs from the adult brain.



4.3. EM-based segmentation 109

(a) (b) (c)

(d) (e) (f)

Figure 4.3: The anatomies of the brain in adulthood and during early childhood differ signifi-
cantly in the subcortical area, with the internal capsule being larger in adults than in children:
(a) the adult brain; (b) the MNI305 brain atlas (WM probability map); (c) the CCHMC5-9
brain atlas (WM probability map); (d) the brain of a two year old child; (e) misclassification
of subcortical GM in a two year old child when the MNI305 atlas is used; (f) misclassification
of subcortical GM in a two year old child when the CCHMC5-9 atlas is used.

Let us consider the binary images of the manual segmentations of each structure SX,1, ..., SX,K

for the reference image X, as defined by eq. 4.3. Let us denote the group of training images

{X1, ..., Xq} and the non-rigid transformations of the reference subject to the training images

as TXi→X , i = 1, ..., q. Then the registration-based segmentations of the training images using

the manual segmentation of the reference image can be defined as

Srbs(Xi, l) = Slin
X,l ◦ TXi→X (4.4)
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Figure 4.4: Histogram of the tissue intensity distributions for WM, GM and thalamus (a
subcortical GM structure) based on a manual segmentation of brain MRI of a two year old
child. The intensity distribution of the thalamus overlaps with those of WM and GM.

where Slin
X,l denotes the linear interpolation of the binary segmentation SX,l. Once all the

training images have been segmented, a probabilistic atlas can be created by aligning the

training images with the affine registration to the space of the reference subject and averaging

the segmentations. It is important to use only the global affine registration in this step to

preserve the variation in shape of the brain structures. Let denote patlas
l the probabilistic atlas

for structure l and AX→Xi
the affine transformation of a training image Xi to reference image

X. Then, in mathematical notation, the construction of the probabilistic atlas can be written

as

patlas
l (ui) =

1

q

q∑
i=1

Slin
X,l(TXi→X(AX→Xi

(ui)))

or in shorter notation

patlas
l =

1

q

q∑
i=1

Slin
X,l ◦ TXi→X ◦ AX→Xi

(4.5)

An overview of the proposed method is shown in Fig. 4.5.

The probabilistic atlas transformed to the space of the image to be segmented Y using an affine

transformation AY →X serves then as the prior information patlas
l (Y ) for EM-based segmentation

of the image Y :

patlas
l (Y ) = patlas

l ◦ AY →X
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Figure 4.5: Creating a population-specific atlas: A single manual segmentation of a reference
subject is transferred to a population of training subjects via non-rigid registration. All seg-
mentations are then aligned to the reference subject via affine registration and averaged.

Creating a good probabilistic atlas unbiased to the reference subject requires a good registration-

based segmentation of the training images. In addition, the speed of these registrations is not

crucial, as they are performed only once. We therefore choose the parameters given in table 4.4

for the registrations TXi→X , as derived in section 4.2.

4.3.3 Improvement of EM brain tissue segmentation using

population-specific probabilistic atlas

Standard probabilistic atlases such as the MNI305 and CCHMC5-9 contain only probability

maps for WM, GM, CSF and the brainmask. For comparison with these atlases we first created

a population-specific atlas containing only these four probability maps. The atlas was created

using the manually segmented two year old reference image and another 35 two year old subjects

were used as training images described in sec. 4.1.1. The population-specific probabilistic atlas

for two year old children was created using eq. 4.5. The probability map for WM is shown in

fig. 4.6e. The white arrows points to internal capsule, showing one of the main differences of

this population-specific atlas compared to the other two atlases, see fig. 4.6f,g. Fig. 4.7 shows
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a substantial reduction of the misclassification of voxels in the thalamus when the population-

specific atlas is used to perform EM segmentation of a two year old subject. This improvement

reflects the prior information from the probabilistic atlases shown in fig. 4.8. The segmentations

of the whole axial slice are compared in fig. 4.6f-h. Even though there are visible differences

in the area of the internal capsule, the overall performance of the EM segmentation using the

different probabilistic atlases appears rather similar.

The quantitative evaluation (see table 4.5) confirms the conclusions obtained by visual inspec-

tions of the images. The overall improvement of Dice overlap in the segmentation of WM

and GM when using the population-specific atlas is only 0.02 - 0.03 compared MNI305 atlas,

an only 0.01 compared to the CCHMC5-9 atlas. To highlight the more substantial improve-

ment in subcortical area, we measured the proportion of volumes of caudate and thalamus that

was classified as GM (eq. 4.2), as there are no automatic segmentations available for these

structures (table 4.6). When the population-specific atlas was used, the fraction of volume of

caudate segmented as GM increased by 0.07 compared to MNI305 atlas and 0.02 compared to

CCHMC5-9 atlas, while improvement in thalamus is 0.31 and 0.22 respectively. The difference

in performance in the caudate and thalamus is expected, as the caudate has relatively homoge-

neous intensity profile, while the voxel intensities in the thalamus vary greatly based on spatial

location.

Atlas WM GM
MNI305 0.84 ± 0.01 0.87 ± 0.01
CCHMC5-9 0.86 ± 0.01 0.88 ± 0.01
Population-specific 0.87 ± 0.02 0.89 ± 0.01

Table 4.5: Agreement of the manual segmentations with the results of the EM segmentation
into WM, GM and CSF using different probabilistic atlases measured with Dice metric.

Atlas Caudate Thalamus
MNI305 0.84 ± 0.05 0.51 ± 0.03
CCHMC5-9 0.89 ± 0.03 0.60 ± 0.04
Population-specific 0.91 ± 0.03 0.82 ± 0.02

Table 4.6: The proportion of subcortical GM structures caudate and thalamus classified as GM
using EM segmentation into WM, GM and CSF with different probabilistic atlases.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4.6: Comparison of the EM segmentations with different probabilistic atlases. (a) MRI of
a two year old child. (b) Manual segmentation. WM probability maps for different probabilistic
atlases: (c) MNI305 atlas; (d) CCHMC5-9 atlas; (e) population-specific atlas for the age of two
years. EM segmentation into WM, GM and CSF using: (f) MNI305 atlas; (g) CCHMC5-
9 atlas; (h) population-specific atlas for the age of two years. The arrow points at internal
capsule showing different widths depending on the probabilistic atlas used.
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(a) (b)

(c) (d) (e)

Figure 4.7: The amount of misclassification in the thalamus depends on the type of the proba-
bilistic atlas used. (a) MRI of a two year old child. (b) Manual segmentation. EM segmentation
using (c) MNI305 atlas; (d) CCHMC5-9 atlas; (e) population-specific atlas for the age of two
years.

(a) (b) (c)

Figure 4.8: Comparison of different probabilistic atlases for the area of the brain shown in
fig. 4.7. The probability maps for WM (the first row) and GM (the second row). (a) MNI305
atlas; (b) CCHMC5-9 atlas; (c) population-specific atlas for the of age two years.
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4.3.4 EM segmentation of brain structures

The advantage of our method for creating probabilistic atlases is that any number of structures

present in the manual segmentation of the reference subject can be used for the construction

of the probabilistic atlas. In our case, the manual segmentation of a two year old subject was

used to create a population-specific probabilistic atlas for the age of two years, containing 11

brain structures, as mentioned in sec. 4.1.4.

The results of the EM segmentation of these brain structures are shown in fig. 4.9b. For

comparison, the segmentation of brain tissues is shown in fig. 4.9c.

(a) (b) (c)

Figure 4.9: Segmentation of a brain MRI of a two year old child: (a) the original MRI; (b)
EM-based segmentation into 11 anatomical structures; (c) EM-based segmentation into three
tissue classes.

The EM segmentation of the brain structures with the population-specific atlas for the age of

two years was evaluated on four manual segmentations using the Dice metric, as described in

sec. 4.1.5. The results are shown in table 4.7. We compared the segmentation with and without

extracting the brain volume using BET [76] before the segmentation process. The results show,

that using BET improves the segmentation results, especially for cortical GM. If the brain

is not extracted prior to the segmentation process, many misclassifications occur around the

boundary of the brain due to presence of non-brain tissue with intensities similar to GM.
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method WM Cortex Caudate Thalamus
EM without BET 0.87 ± 0.02 0.87 ± 0.02 0.85 ± 0.04 0.86 ± 0.01
EM with BET 0.87 ± 0.02 0.89 ± 0.01 0.85 ± 0.04 0.87 ± 0.01

Table 4.7: Agreement of the manual segmentation with the results of the EM segmentation of
brain structures using a population-specific atlas for the age of two years measured with Dice
metric.

4.4 Combination of registration-based and EM-based seg-

mentation

In the previous sections we described the registration-based and EM-based segmentation ap-

proaches using the population-specific deformable or probabilistic atlases. The registration-

based approach performs well in the subcortical area of the brain, where shapes of the brain

structures are relatively simple and the variability of the shapes is relatively small. In the

cortical area, where WM and GM have complex shapes and there is no obvious one-to-one

correspondence between two brains, the registration is rather error-prone and the EM-based

segmentation is more suited. In contrast, the affine registration of a probabilistic atlas with

an image is rarely sufficient to provide a good alignment between subcortical structures due

to local shape differences, thus misguiding the segmentation process. The combination of both

approaches is therefore desirable to produce results superior to both segmentation methods.

In this section we propose a novel algorithm for segmentation of brain MRI using a combina-

tion of registration-based and EM-based approaches: Instead of creating a probabilistic atlas

in the space of the reference subject, a subject-specific atlas is created for each new subject,

providing prior information with a high degree of agreement with the anatomy of the brain to

be segmented.

4.4.1 Creating a subject-specific atlas for EM segmentation

In line with the previous sections, let us denote the segmented reference image X and the

corresponding manual segmentation SX . The training images X1, ..., Xq are segmented us-

ing registration-based segmentation, producing segmentations Srbs(Xi), i = 1, ..., q. To provide
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prior information adjusted to the anatomy of a subject better than affinely registered probabilis-

tic atlas, we propose to register the training images directly to the new image using non-rigid

registration denoted TY →Xi
. The segmentations are then averaged to produce a subject-specific

probabilistic atlas. This can be written in mathematical notation

patlas
l (Y )(vi) =

1

q

q∑
j=1

Slin
X,l(TXi→X(TY →Xi

(vi)))

or in shorter notation

patlas
l (Y ) =

1

q

q∑
j=1

Slin
X,l ◦ TXi→X ◦ TY →Xi

(4.6)

The resulting subject-specific probabilistic atlas can be used as a prior for EM-based segmenta-

tion without any further alignment, as opposed to population-specific atlas created in previous

section. A schematic overview of this approach is shown in fig. 4.10.

Figure 4.10: Creation of a subject-specific atlas: A manual segmentation of a reference subject
is transferred to a population of subjects by non-rigid registration. All the segmentations are
then aligned with the new subject to be segmented using non-rigid registration. In the final
step the resulting registrations are averaged to create a subject-specific probabilistic atlas.
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4.4.2 Multiple registration of training images to a new subject

When calculating the transformations TXi→X the speed of the registration is not crucial as

these registrations are performed only once. Thus, we have used the set of parameters shown in

table 4.4. However, the non-rigid registrations TY →Xi
have to be performed for each new subject

Y and therefore computational speed is an issue which must be considered. We hypothesized

that these registrations do not have to be performed with a high degree of accuracy as they only

serve to create a probabilistic atlas and the EM segmentation will be used to capture details of

the brain anatomy.

Let us define the precision of the subject specific atlas as the final B-spline control point spac-

ing of registrations TY →Xi
. To find the optimal trade-off between speed and accuracy of the

combined method, three subject specific atlases with different precisions were created for each

subject:

Precision 10mm: The registrations TY →Xi
are performed with the first two resolution

levels from table 4.4, 20mm and 10mm.

Precision 5mm: The registrations TY →Xi
are performed with the first three resolution

levels from table 4.4, 20mm, 10mm and 5mm.

Precision 2.5mm: The registrations TY →Xi
are performed with all resolution levels from

table 4.4, 20mm, 10mm, 5mm and 2.5mm.

The subject-specific atlases were created using one reference subject (sec. 4.1.4) and 35 training

images (sec. 4.1.1) using eq. 4.6. The resulting atlases were then used as a prior probabilis-

tic atlas for EM-based segmentation proposed by Van Leemput [48] and presented in section

2.5.3. The evaluation results on four manual segmentations are shown in table 4.8. The eval-

uation results confirm that the performance of the method drops only marginally if the final

control point spacing for registrations TY →Xi
is reduced from 2.5mm to 10mm. However, the

computational speed increases sharply, speeding each registration TY →Xi
from several hours to

only about 30 minutes. The cluster computing system Condor available at the Department of
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Atlas precision WM Cortex Caudate Thalamus Time
10mm 0.87 ± 0.02 0.89 ± 0.01 0.87 ± 0.02 0.88 ± 0.01 0.5h
5mm 0.88 ± 0.02 0.89 ± 0.01 0.87 ± 0.02 0.88 ± 0.01 2.5h
2.5mm 0.88 ± 0.02 0.90 ± 0.01 0.87 ± 0.02 0.88 ± 0.01 7h

Table 4.8: Agreement of the manual segmentations with the results of the combined registration-
based and EM-based segmentation with different levels of precision of the subject-specific proba-
bilistic atlas measured with Dice metric. The last column shows an example of the approximate
running times for registration of a training image to the image to be segmented.

Computing, Imperial College London, was used to calculate all 35 registrations at the same

time, making the algorithm computationally efficient enough to be practically usable. Our final

choice of parameters for the registrations TY →Xi
is shown in table 4.9.

control point spacing image resolution image blurring finite difference step size
20 3 1.5 8
10 2 1 8

Table 4.9: Parameters for the non-rigid registrations during the second step of the creation of
the subject-specific atlases. All sizes are given in millimeters.

4.4.3 Algorithm for combined registration-based and EM-based seg-

mentation

In previous sections we proposed a method for creating a subject-specific probabilistic atlas

and found the optimal registration parameters for efficient performance of the number of regis-

tration involved. Such subject-specific probabilistic atlas forms a suitable prior for EM-based

segmentation, resulting in robust segmentation algorithm:

Combination of registration-based and EM-based segmentation

Calculate the registration-based segmentations Srbs(Xi, l) of training images X1, ..., Xq using a

manual segmentation SX of the reference subject X and B-spline non-rigid registrations TXi→X

with parameters in table 4.4:

Srbs(Xi, l) = Slin
X,l ◦ TXi→X

where Slin
X,l is a linear interpolation of a binary manual segmentation of structure l in the
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reference image X.

For each new subject Y :

1. Transfer the registration-based segmentations Srbs(Xi, l) of the training images X1, ..., Xq

to image Y using the non-rigid registrations TY →Xi
with parameters in table 4.9 and

calculate the subject-specific atlas patlas
l (Y ) as follows:

patlas
l (Y ) =

1

q

q∑
i=1

Srbs(Xi, l) ◦ TY →Xi

2. Perform EM segmentation as described in sec. 2.5.3 using subject-specific probabilistic

atlas created in step 1.

3. Calculate the hard segmentation for each voxel by choosing the label of the tissue with

highest posterior probability.

Examples of the segmentations using the subject-specific probabilistic atlases as well as the

probability maps for those atlases are shown in fig. 4.11.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.11: Comparison of EM-based and combined segmentations of brain structures: (a) EM
segmentation with population-specific atlas; (b) Combined segmentation with subject-specific
atlas with precision 10mm; (c) Combined segmentation with subject-specific atlas with precision
5mm; (d) Combined segmentation with subject-specific atlas with precision 2.5mm. Probability
maps for WM in (e) population-specific atlas created with affine registration; (f) subject-specific
atlas created with 10mm non-rigid registration; (g) subject-specific atlas created with 5mm
non-rigid registration; (h) subject-specific atlas created with 2.5mm non-rigid registration.
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4.5 Comparison of the methods

In this section we compare the performance of the three methods for the segmentation of the

brain structures:

1. Registration-based segmentation with parameters from table 4.4 (sec. 4.2).

2. EM-based segmentation with population-specific atlas for two years of age, with the brain

extracted by BET in the pre-processing step (sec. 4.3).

3. Combined registration-based and EM-based segmentation with the subject-specific atlas

with precision 10mm (sec. 4.4).

In previous sections, all three methods were evaluated by measuring the agreement with the

manual segmentations of four two year old subject using the Dice metric. In this section

we summarize the evaluation results in table 4.10. The comparison shows that the aim of

exploiting advantages of both, registration-based and EM-based segmentation, was achieved in

the combined segmentation method. This method matches the performance of the EM-based

segmentation in WM and GM, while performance in subcortical structures is comparable to

registration-based segmentation, thus rendering the combined method superior to both original

approaches.

Method WM Cortex Caudate Thalamus
Registration-based 0.83 ± 0.02 0.85 ± 0.01 0.86 ± 0.04 0.89 ± 0.01
EM-based 0.87 ± 0.02 0.89 ± 0.01 0.85 ± 0.04 0.87 ± 0.01
Combined 0.87 ± 0.02 0.89 ± 0.01 0.87 ± 0.02 0.88 ± 0.01

Table 4.10: Overlap between manual and automatic segmentation of different segmentation
methods on four two year old subjects measured with Dice metric.

The advantages of the combined method can be also observed visually, see fig. 4.12. The

black arrows highlights details in the image where the three segmentation methods perform

differently. The small detail in the cortical area of the brain, the thin WM structures and

small CSF-filled spaces, are mostly undetected by registration-based segmentation, improved

by EM segmentation and best detected by combined segmentation. The boundary between
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cortex and cerebellum, as well as the substantia nigra, is incorrectly delineated by the EM

segmentation, as the affine registration of the probabilistic atlas is not flexible enough to align

all smaller structures correctly. The registration-based and combined segmentations detect the

boundaries of both structures correctly.

(a) (b)

(c) (d)

Figure 4.12: (a) Brain MRI of a two year old child. Automatic segmentation of brain structures
using the three segmentation methods: (b) Registration-based segmentation; (c) EM-based
segmentation; (d) Combined segmentation.
The arrows from top to bottom: 1. small CSF-filled space fails to be segmented by Registration-
based segmentation (b), improved segmentation by EM segmentation (c), well delineated by
combined segmentation. 2. Thin plate of WM fails to be segmented by registration-based
segmentation (b), improved segmentation by EM segmentation (c), well delineated by combined
segmentation. 3. Substantia nigra approximately delineated by registration-based segmentation
(b), failed segmentation by EM segmentation (c), well delineated by combined segmentation. 4.
Boundary of the cerebellum correctly delineated by registration-based segmentation (b), failed
segmentation by EM segmentation (c), correctly delineated by combined segmentation.
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As mentioned before, the EM-based segmentation is sensitive to the correct alignment of the

probabilistic atlas. If only affine registration is used to align the probabilistic atlas to the

image, the EM-based segmentation can fail if the shapes of the brain structures are significantly

different from those in the probabilistic atlas. An example of a brain severely affected by

focal lesions is shown in fig. 4.13. The EM segmentation completely fails to delineate the

brain structures in this image (fig. 4.13c). However, the registration-based segmentation can

accommodate for differences in brain shape and performs better (see fig. 4.13b). The same is

true for the combined segmentation, see fig. 4.13d. Since the subject-specific atlas is produced

by non-rigid registration it can better adapt to differences in the shape of the brains.

(a) (b)

(c) (d)

Figure 4.13: (a) Brain MRI of a two year old child severely affected by focal lesions. Automatic
segmentation of brain structures using the three segmentation methods: (b) Registration-based
segmentation; (c) EM-based segmentation; (d) Combined segmentation. The EM-based seg-
mentation with an affinely aligned probabilistic atlas fails to adapt to the enlarged CSF-filled
space.
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4.6 Calculating volume and growth of brain structures

during early childhood

In this section we demonstrate how the automatic segmentation methods can be used to de-

termine the growth of brain structures during early childhood. To do this, brain MRI of 15

subjects with MR scans both at the age of one and two years were analyzed.

To calculate the volumes and growth of 10 structures (excluding CSF), the combined registration-

based and EM-based segmentation (sec. 4.4) was used, as it was shown to perform best during

the evaluation in the previous section. The subject-specific atlases at two years were calculated

using 35 training images of brain MRI at two years of age and one manual segmentation of

the two years old reference subject. The reference subject was also scanned at one year of age

and the manual segmentation was transferred to this earlier scan using non-rigid registration.

We assumed that the registration of the same brain at different time-points would yield better

results than the registration of the brains of different subjects. A registration-based segmen-

tation of the reference subject at one year of age was then used to create the subject-specific

atlases for scans of the 15 subjects at one year of age using 32 training images of the brain

scanned at one year of age (see description of the data in sec. 4.1.1).

4.6.1 Measuring volumes of brain structures

The volumes of the brain structures were calculated by counting the number of voxels with

the given label and multiplying by the volume of a voxel, 1.6×1.035×1.035 = 1.714mm3. The

resulting volumes are shown in tables 4.11 and 4.12. The average volumes of the brain structures

obtained from the 15 subjects are shown in fig. 4.14 and 4.16. When all the volumes are

corrected for overall brain volume, the resulting values can be interpreted as percentage of the

brain volume. The mean relative sizes of the brain structures are shown in fig. 4.15 and 4.17.
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Subject Cortex Caudate Putamen Nigra Crb GM Thalamus Pallidum Brainstem WM Crb WM

1 537.20 6.07 7.91 0.77 77.73 10.05 2.26 11.66 150.40 10.66
2 546.10 5.73 8.34 0.79 81.70 10.16 2.25 11.55 145.90 11.27
3 577.40 4.34 7.12 0.79 75.76 9.58 2.05 12.04 165.90 9.155
4 617.20 5.96 8.33 0.82 97.16 10.91 2.22 12.82 174.20 13.34
5 601.50 4.94 8.15 0.85 101.60 10.27 2.16 14.04 172.20 12.78
6 607.50 5.33 8.07 0.79 89.74 10.42 2.57 13.58 182.40 12.03
7 670.90 6.78 10.24 0.86 102.50 11.55 2.71 14.99 179.50 12.63
8 593.80 4.43 7.91 0.77 83.33 9.85 2.26 12.46 181.30 10.13
9 642.70 5.55 8.51 0.85 89.70 10.40 2.35 13.09 180.60 11.69

10 554.20 4.78 7.55 0.62 54.83 8.62 1.94 8.67 138.60 5.34
11 653.40 5.90 9.43 0.84 100.80 11.99 2.45 14.27 194.40 13.24
12 696.20 7.08 10.24 0.88 117.70 12.99 2.79 15.94 212.10 16.28
13 633.90 7.04 10.39 0.90 92.63 11.58 2.70 14.60 195.50 12.56
14 659.20 7.18 10.59 0.86 101.30 11.48 2.65 13.85 193.60 14.45
15 576.60 6.44 9.41 0.83 90.60 10.04 2.51 12.27 173.70 11.36

mean 611.19 5.84 8.81 0.81 90.47 10.66 2.39 13.06 176.02 11.80
std dev 47.91 0.95 1.14 0.07 14.79 1.10 0.26 1.76 19.86 2.48

Table 4.11: Volumes of the brain structures at the age of one year given in cm3.

Subject Cortex Caudate Putamen Nigra Crb GM Thalamus Pallidum Brainstem WM Crb WM

1 620.70 7.23 8.85 0.87 92.27 11.66 2.59 14.11 207.50 13.40
2 620.30 6.77 9.60 0.86 96.11 11.69 2.79 14.17 206.90 13.22
3 615.10 4.43 7.40 0.86 84.05 10.31 2.24 13.64 192.30 10.12
4 689.80 6.71 9.67 0.93 113.40 12.35 2.75 16.14 240.40 15.19
5 646.20 5.58 9.17 0.99 112.80 11.23 2.55 16.81 225.20 15.18
6 662.80 6.01 9.22 0.92 100.60 11.49 3.02 16.10 240.90 14.24
7 744.40 7.55 10.65 0.98 116.60 12.92 2.81 18.21 240.70 14.38
8 653.70 4.76 8.53 0.85 88.84 11.11 2.62 14.61 233.40 12.25
9 699.70 6.25 9.84 0.87 98.58 11.77 2.88 15.05 247.40 13.60

10 604.30 5.43 8.20 0.68 59.95 9.61 2.23 10.23 190.50 6.71
11 723.80 6.87 10.80 0.99 115.10 13.77 3.00 17.08 262.00 16.31
12 780.70 7.97 11.48 1.07 135.90 14.42 3.59 19.54 296.70 19.40
13 710.30 8.15 11.76 1.06 107.40 12.92 3.41 17.98 261.20 14.20
14 730.60 8.15 12.41 0.99 119.60 12.83 3.34 17.03 257.50 17.42
15 629.00 7.33 9.86 0.95 99.57 11.04 2.79 14.20 227.10 13.43

mean 675.43 6.61 9.83 0.92 102.72 11.94 2.84 15.66 235.31 13.94
std dev 54.52 1.18 1.38 0.10 17.98 1.28 0.39 2.30 28.65 2.95

Table 4.12: Volumes of the brain structures at the age of two years given in cm3.



4.6. Calculating volume and growth of brain structures during early childhood 127

Figure 4.14: Mean volumes of brain structures at one and two years. The error bars are showing
the standard deviation.

Figure 4.15: Relative mean volumes of brain structures at one and two years, given as the
percentage of the whole brain volume. The error bars are showing the standard deviation.
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Figure 4.16: Mean volumes of brain structures at one and two years. The error bars are showing
the standard deviation.

Figure 4.17: Relative mean volumes of brain structures at one and two years, given as the
percentage of the whole brain volume. The error bars are showing the standard deviation.
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4.6.2 Measuring growth of brain structures

The growth of the brain structures between one and two years of age was calculated for each of

the 15 subjects by dividing the volume at two years by the volume at one year. These growth

factors are shown in table 4.13. Average growth factors for each structure are shown in fig. 4.18.

Subject Cortex Caudate Putamen Nigra Crb GM Thalamus Pallidum Brainstem WM Crb WM

1 1.16 1.19 1.12 1.13 1.19 1.16 1.15 1.21 1.38 1.26
2 1.14 1.18 1.15 1.09 1.18 1.15 1.24 1.23 1.42 1.17
3 1.07 1.02 1.04 1.10 1.11 1.08 1.09 1.13 1.16 1.11
4 1.12 1.13 1.16 1.13 1.17 1.13 1.24 1.26 1.38 1.14
5 1.07 1.13 1.12 1.17 1.11 1.09 1.18 1.20 1.31 1.19
6 1.09 1.13 1.14 1.16 1.12 1.10 1.18 1.19 1.32 1.18
7 1.11 1.11 1.04 1.14 1.14 1.12 1.04 1.21 1.34 1.14
8 1.10 1.08 1.08 1.10 1.07 1.13 1.16 1.17 1.29 1.21
9 1.09 1.13 1.16 1.03 1.10 1.13 1.23 1.15 1.37 1.16

10 1.09 1.14 1.09 1.10 1.09 1.11 1.15 1.18 1.37 1.24
11 1.11 1.17 1.15 1.18 1.14 1.15 1.22 1.20 1.35 1.23
12 1.12 1.13 1.12 1.22 1.15 1.11 1.29 1.23 1.40 1.19
13 1.12 1.16 1.13 1.18 1.16 1.12 1.26 1.23 1.34 1.13
14 1.11 1.14 1.17 1.14 1.18 1.12 1.26 1.23 1.33 1.21
15 1.09 1.14 1.05 1.15 1.10 1.10 1.11 1.16 1.31 1.18

mean 1.11 1.13 1.11 1.13 1.13 1.12 1.19 1.20 1.34 1.18
std dev 0.02 0.04 0.05 0.05 0.04 0.02 0.07 0.04 0.06 0.04

Table 4.13: Growth factors between the age of one and two years.

Figure 4.18: Mean growth factors from one to two years for brain structures. The error bars
are showing the standard deviation.
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4.6.3 Measuring growth of brain tissues

The growth of WM and GM tissue volumes for all 15 subjects is shown in fig. 4.19, with the age

at the time of the scan on the horizontal axis and the volume of WM and GM on the vertical

axis. The values for the WM and GM volumes from the same subject are drawn with a line to

visualize the growth. The WM tissue is composed of WM, cerebellar WM and brainstem, while

GM tissue is composed of cortex, cerebellar GM and five subcortical GM structures (caudate,

putamen, substantia nigra, thalamus and pallidum), as previously presented in table 4.1.

Figure 4.19: Changes in the volume of WM and GM between the age of one and two years.

The average growth factors for WM and GM are shown in table 4.14 and compared with

results of the study by Aljabar et al. [1], who computed the average growth factors of WM

and GM from one to two years from 29 subjects using deformation-based morphometry and

EM-segmentation with a population-specific atlas.
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method WM GM
Combined segmentation 1.32 ± 0.06 1.11 ± 0.02
EM segmentation (Aljabar) 1.28 ± 0.05 1.12 ± 0.03
Deformation-based morphometry (Aljabar) 1.26 ± 0.05 1.11 ± 0.03

Table 4.14: Mean growth factors for WM and GM between one and two years estimated by
combined segmentation and compared to the results obtained by Aljabar et al. [1] using EM
segmentation with a population-specific probabilistic atlas and deformation based morphome-
try.

Finally, the relative volume of WM and GM is shown in fig. 4.20 as a function of the age at

the time of the scan. The linear trend lines for the relative volumes are calculated using linear

regression, showing the increase of the proportion of WM and decrease of the proportion of

GM between ages one to two years.

Figure 4.20: Relative volumes of WM and GM tissues shown as a function of age. The per-
centage of WM shows a growing trend, while the percentage of GM is decreasing between ages
one and two years.
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4.7 Discussion

In this chapter we examined registration-based and intensity-based approaches for the segmen-

tation of brain MRI of one and two year old children. We also proposed a novel segmentation

method which combines the advantages of these two approaches. In the proposed method, the

registration-based segmentation is used to transfer a manual segmentation of a reference sub-

ject to a set of training images and these segmentations are then transferred to a new subject

using non-rigid registration and averaged. The resulting subject-specific probabilistic atlas is

in precise alignment with the new image thanks to the flexibility of the non-rigid registration

and robustness of multiple-registration approach. The boundaries of the structures are then

refined using EM-based segmentation.

To develop robust tools for the segmentation of brain MRI during early childhood, we selected

the non-rigid registration algorithm proposed by Rueckert [70] and the EM-based segmentation

algorithm by Van Leemput [47]. However, the findings presented in this chapter as well as

developed methodology could be generalized to other similar registration and intensity-based

segmentation techniques.

In sec. 4.5 we concluded, that in registration-based segmentation the incorrect matching of

cortical WM and GM remains a consistent source of errors. In his comparative study, Crum

et al. [24] conclude that all tested non-rigid registration approaches struggled to match small

structures with complicated shapes correctly. In particular the large inter-subject variability

of the cortical anatomy remains a severe challenge for registration algorithms. In this study,

the non-rigid registration based on B-splines [70] outperforms other approaches such as fluid

registration in cortical regions of the brain.

In sec. 4.3.1 we have shown that intensity-based segmentation is prone to classification errors

in subcortical region. The reason for this stems from the theoretical model adopted in current

intensity-based approaches: The intensities within each tissue class are considered to be ho-

mogeneous and only corrupted by Gaussian noise. In practice, the tissue intensity is spatially

variable in some areas, especially in the central brain structures, as illustrated in fig. 4.21.
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Classification errors resulting from the variation of the intensity pattern within WM and GM

were reported by [69] where the brain MRI of adults were segmented using FAST [99]. We

observed similar misclassifications in the brain MRI during early childhood in our experiments.

The classification error in these approaches often depends on the quality of alignment of the

probabilistic atlas and the correction of the intensity inhomogeneity.

Figure 4.21: Normalized histograms brain structures. The intensities are brighter for subcortical
GM structures (caudate, putamen, thalamus, pallidum) as well as subcortical WM structure
corpus callosum, compared to cortical GM and WM, respectively.

When the probabilistic atlas is registered using affine alignment, classification errors will occur

in subjects which differ from the average anatomy. It has been suggested to use non-rigid align-

ment of the probabilistic atlas to solve this problem [66], [7]. Unfortunately, if the flexibility of

the registration increases, the potential for registration errors increases as well. Even though

SPM5 [7] uses non-rigid alignment of probabilistic atlas of the adult brain, it misclassifies the

central brain structures in young children similarly to EMS [47] (see fig. 4.22c). In spite of

the fact that the non-rigid alignment of the probabilistic atlas does not seem to solve the mis-

classifications in subcortical GM, it is still necessary when dealing with anatomy substantially

different from the anatomy in the atlas. This is therefore a promising area for future develop-

ments for segmentation algorithms of brain MRI. However, fig. 4.22c suggests that it might be

still necessary to use population-specific atlases to guide the segmentation process correctly.

In our novel combined registration-based and EM-based segmentation method, we successfully

addressed the causes of misclassification in standard state-of-the-art segmentation approaches.

To address the issue of intensity variation within brain structures, we proposed a method for
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(a) (b) (c)

Figure 4.22: (a) The original MR image of a two year old child. Segmentation of WM: (b)
EM with population-specific atlas; (c) SPM5 [7] with non-rigidly aligned standard adult atlas;
Parts of thalamus and pallidum are misclassified as WM (e.g. in the region in black circle).

creating spatial prior corresponding very well the new subject anatomy, referred to as subject-

specific atlas. As the subject-specific atlas is created using multiple non-rigid registrations

with the new subject, robust non-rigid alignment of the prior with the image is achieved. The

final EM segmentation step ensures a good quality classification of the complicated cortical

structures based on intensity. These attributes render it as potentially suitable tool for robust

evaluation of growth patterns during early childhood as we demonstrated in the growth study

presented in sec. 4.6.

4.8 Conclusion

The aim of this chapter was to develop a robust tool for segmentation of brain images during

early childhood. We developed a novel algorithm based on combination of two state-of-the-

art approaches, B-spline registration-based and EM-based segmentation. The usability of the

method was demonstrated by calculating volumes and growth of brain structures during early

childhood.

The limitations of this study include the limited number of manual segmentations of the brain

MRI during early childhood used in the evaluation. We used only four images of brain at
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two years of age segmented in 6-8 slices to evaluate the methods. However, the results of this

evaluation were consistent and confirmed by visual inspection of larger number of subject, as

well as consistent volume and growth measurements.

In this chapter we did not address the issue of intensity inhomogeneity. However, the quality

of bias correction affects the quality of segmentation results, especially for the modern MRI

scanned at higher field strengths. Chapters 5 and 6 therefore address this issue in more detail.



Chapter 5

Intensity inhomogeneity correction of

brain MR images

5.1 Processing brain MRI in presence of strong intensity

inhomogeneity

In the previous chapter we have developed a methodology for the segmentation of brain MRI

during early childhood. We have shown that this methodology can be used to assess the mor-

phology of the brain during early childhood as well as changes or growth during this phase of

brain development. The data used in the previous chapter was acquired using a MR scanner

with a relatively low field strength (1 Tesla). In these datasets the effect of intensity inho-

mogeneity is relatively weak and can be corrected using standard techniques such as N3 [75].

However, MR scanners with higher field strength are becoming increasingly widespread and

the effect of intensity inhomogeneity becomes much stronger at higher field strength. The data

used in this chapter have been acquired using a 3 Tesla MR scanner which is now the standard

scanner for imaging the brain during early childhood at Hammersmith Hospital. In these im-

ages the contrast resulting from the slowly varying bias field is larger than the contrast between

tissue classes. In our experience, such strong intensity inhomogeneity cannot be appropriately

136
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corrected using methods such as N3 [75].

A good intensity inhomogeneity correction is essential for obtaining an accurate segmentation.

Since the amount of intensity inhomogeneity across different tissue classes directly correlates

with the performance of intensity-based segmentation methods, such segmentation methods

can be used to asses the performance of different intensity inhomogeneity correction methods.

Figure 5.1 shows the effect of strong intensity inhomogeneity on intensity-based segmentation

methods such as the EM-based segmentation described in the previous chapter.

(a) (b)

Figure 5.1: A EM-based segmentation algorithm yields poor results in the presence of strong
intensity inhomogeneity: (a) a segmentation of an image with strong intensity inhomogeneity;
(b) an improved segmentation after the intensity inhomogeneity has been corrected. The arrows
point at some of the locations where the segmentation has been improved after intensity inho-
mogeneity correction. The bias field has been corrected with a novel template-based method
described later in this chapter.

The presence of intensity inhomogeneity does not only have a detrimental effect on the image

segmentation. For example, voxel-based similarity measures for non-rigid registration are also

sensitive to intensity inhomogeneity. Whereas the registration algorithm of Rueckert et al. [70]

performs very well on images with weak intensity inhomogeneity, it often fails on images with

strong intensity inhomogeneity as it is guided by the gradient of the bias field rather than by

intensity gradients resulting from the brain anatomy. Figure 5.2 shows the effect of the strong

intensity inhomogeneity on the non-rigid registration algorithm.

In this chapter we will develop a novel template-based intensity inhomogeneity correction

method. The proposed method assumes that a template image without bias is available. First,
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the template image not containing any bias field is aligned with the image to be corrected. To

avoid misregistration due to the bias field, we align the template and the image only with affine

registration. The voxel pairs in both images are then classified as inliers or outliers, depending

whether they are likely to belong to the same tissue type. The classification is performed within

the EM framework and interleaved with the estimation of the bias field. Voxel pairs with higher

probabilities of belonging to the same tissue are assigned higher weights during the bias field

estimation.

When estimating the bias field, the key property that helps to distinguish influence of the

bias field form other artefacts in the MRI is its low-frequency nature. The low frequency of

the B-spline model for the bias field can be ensured in two different ways: An intrinsic low-

frequency nature of the model can be achieved using large B-spline control points spacing,

which is equivalent to small number of B-spline control points. This is similar to approach

proposed by Van Leemput [47], who uses polynomial basis functions (see sec. 3.3.1) to model

the bias field. Alternatively, the extrinsic low-frequency nature can be modelled by imposing a

smoothness constraint on the bias field during optimization process. In this way more B-spline

control points can be used while preserving the low-frequency nature of the bias field, making

the model less biased towards the shape of the basis functions. This approach is similar to the

bias field model in SPM5 [7], see section 3.4.2, which uses discrete cosine basis functions.

The advantage of the proposed method is that a closed-form solution for the bias field estimation

can be obtained if all the image intensities have been logarithmically transformed, thanks to

using B-spline as the model for bias field. Moreover, the template-based bias correction can be

used in conjunction with image registration, thus producing a registration algorithm which is

robust even in the presence of strong intensity inhomogeneity.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Non-rigid registration yields poor results in the presence of strong intensity in-
homogeneity: (a) a target image with strong intensity inhomogeneity; (b) a source image
with iso-contours; (c) the target image with strong intensity inhomogeneity with overlayed
iso-contours of the source image registered by non-rigid registration without bias correction;
(d) the source image registered by non-rigid registration without bias correction; (e) the bias
corrected target image with overlayed iso-contours of the source image registered by non-rigid
registration after bias correction; (f) the source image registered by non-rigid registration after
bias correction. Note the boundaries of subcortical structures (see the arrow): Misaligned in
(c); Correctly aligned in (e). The B-spline control point spacing at the final resolution level of
non-rigid registration is 5 mm. The bias field has been corrected with a novel template-based
method described later in this chapter.
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5.2 Template-based bias correction

Let Y be an image with intensity inhomogeneity and X a template image with no intensity

inhomogeneity aligned with the image Y . Let us assume that image X and intensity inho-

mogeneity corrected image Y ′ have the same underlying intensity distribution. Later, we will

describe a method for matching the image intensity distributions using linear regression if this

assumption is not fulfilled. Let us further assume that the intensities of both images X and

Y have been logarithmically transformed. Then Y = Y ′ + β, where β represents the bias field

which causes the intensity inhomogeneity.

Let vi ∈ V denote the location of a voxel in both of the aligned images X and Y with intensities

xi = X(vi) and yi = Y (vi). Similarly, let us denote y′i = Y ′(vi) and bi = β(vi).

A key property of the bias field is its low frequency characteristics. Let B be a linear low-pass

function, such that B(β) = β and B(X) = B(Y ′). The consequence of the first property is,

that the function B does not remove low frequencies contained in the bias field. If we assume,

that the registration error and anatomical variation of the images X and Y is contained in

the higher frequencies, then those can be removed by applying function B, as indicated by the

second property. Now the bias field can be expressed as

β = B(β) = B(Y − Y ′) = B(Y )− B(Y ′) = B(Y )− B(X) = B(Y −X)

The bias field can be therefore obtained by low-pass filtering of the difference image Y −X.

5.3 B-spline model for the bias field

The B-spline function of a degree n is a Cn−1 continuous function with L − 1 polynomial

segments of degree n. Each point S(u) of the B-spline function S is a linear combination of

L + n− 1 control points d−bn−1
2

c, ..., dL+bn
2
c−1 given by
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S(u) =

L+bn
2
c−1∑

i=−bn−1
2

c

diN n
i (u)

where N n
−bn−1

2
c(u), ...,N n

L+bn
2
c−1(u) are the B-spline basis functions defined over a sequence

of L + 2n − 2 knots u−n+1, ..., uL+n−2. The function S(u) is defined over < u0, uL−1 >. The

general definition of the B-spline basis functions can be found in [34]. If the knots are evenly

distributed, for example ui = i, the B-spline function is referred to as uniform B-spline.

In practice uniform cubic B-splines (of a degree n = 3) are most often used because of their

increased flexibility compared to quadratic and linear B-splines and because of their compu-

tational simplicity compared to higher-order B-splines. Let us define a uniform cubic B-spline

S3(u) with control points d−1, ..., dL and knot sequence ui = i, i = −2, ..., L + 1 by

S3(u) =
L∑

i=−1

diNi(u)

where u ∈< 0, L− 1 > and basis functions Ni(u) = N 3
i (u) given by

Ni(u) =



1
6
(−t3 + 3t2 − 3t + 1) for i = l − 1

1
6
(3t3 − 3t2 + 4) for i = l

1
6
(−3t3 + 3t2 + 3t + 1) for i = l + 1

1
6
t3 for i = l + 2

where l = buc and t = u− l.

The 1D B-spline functions can be easily extended to higher dimensions. In MRI, the bias field

must be defined as a function in 3D and can be therefore modelled as a 3D tensor-product
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B-spline function:

S3(u1, u2, u3) =

L1∑
j=−1

L2∑
k=−1

L3∑
l=−1

djklNj(u1)Nk(u2)Nl(u3)

Without any loss of generality the theory in the following sections only deals with 1D B-

splines. If a bijective function I: N3 → N is defined to order the 3D indices (j, k, l) in one

dimension, and 1D B-spline basis function Ni(u) is replaced by its 3D counterpart NI(j,k,l)(u) =

Nj(u1)Nk(u2)Nl(u3), where u = (u1, u2, u3), we obtain the following:

S3(u) =
L′∑
i=0

diNi(u)

where i = I(j, k, l) and L′ = (L1 + 2)(L2 + 2)(L3 + 2).

5.4 Bias field estimation by weighted least squares

Assuming that the image Y with the bias and template image X without the bias have been

registered and the intensities have been matched, the bias field can be estimated from the

difference image Y −X via a least square fit of a B-spline function. Let R = (r1, ..., rn) be the

data to be approximated by a B-spline function S(u) =
∑L

i=−1 diNi(u) and let d = (d−1, ..., dL)

denote a vector of B-spline control points. Then the least square approximation of the data

R by a B-spline function S(u) can be obtained by minimizing the sum of square differences

between the data points and the function:

d̂ = arg min
d

n∑
i=1

(ri − S(vi))
2

where vi represents the location of data point ri. This objective function can be minimized by

setting its first partial derivatives in d−1, ..., dL to zero. The resulting system of linear equations

can be written in the matrix form. Let N be the n×(L+2) matrix with elements Nij = Nj(vi).
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The least square solution can be calculated as follows:

d = (NTN)−1NT R

A significant disadvantage of least square fitting is the sensitivity to outliers. The larger the

distance of the outlier from the estimated function, the larger its influence will be on the

resulting fit. To address this problem, robust statistics in the form of weighted least squares

fitting [30] can be used to obtain more robust results. In the weighted least square fitting the

objective function is modified as follows:

d̂ = arg min
d

N∑
i=1

wi(ri − S(vi))
2

where w1, ..., wn are called weights. Let W denote a n × n matrix with elements Wii = wi

and Wik = 0 for i 6= k. Then the weighted least square fit can be calculated as follows:

d = (NTWN)−1NTWR

Using the control points resulting from the least square fit, the bias field is determined as

follows: bi =
∑L

j=−1 djNj(vi). This can be rewritten in the matrix form:

β = Nd = N(NTWN)−1NTWR

Let us define the linear low-pass function B as follows:

B(R) = N(NTWN)−1NTWR

We now show that we defined a suitable low-pass function, as required in section 5.2: B is a

linear function, as it is in the form B(R) = MR, where M represents a matrix, so obviously
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B(aA + bB) = M(aA + bB) = aMA + bMB = aB(A) + bB(B). It also holds that B(β) = β:

B(β) = N(NTWN)−1NTWβ

= N(NTWN)−1NTWNd = Nd = β

The last property of the low-pass function B that should hold is the ability remove the frequen-

cies encoding the difference between the image and the template B(Y ′) = B(X):

B(Y ′) = B(Y − β) = B(Y )−B(β) = B(Y )− β = B(Y )−B(Y −X) = B(Y − Y + X) = B(X)

In practice we do not have any exact way how to determine which frequencies in the difference

images result from the corruption of the bias field and which are the result of the imperfect

alignment or residual anatomical differences between the image and the template. We will

therefore experimentally determine the exact model for the bias field in chapter 6.

Determining suitable weights for the least-squares estimation of the bias field is a crucial re-

quirement for obtaining good results. Ideally, we would like to assign low weights to voxels likely

to be misaligned and higher weights to voxels where the same anatomy or tissue is present. In

the following section we will demonstrate how the weights can be estimated in a probabilistic

framework using the EM algorithm. An example of the proposed template-based intensity in-

homogeneity correction using least square fitting and weighted least square fitting is shown in

fig. 5.3.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Template-based intensity inhomogeneity correction using least square fitting: (a)
the original MRI with intensity inhomogeneity; (b) the MRI after intensity inhomogeneity
correction with least square fitting; (c) the MRI after intensity inhomogeneity correction with
weighted least square fitting; (d) the intensity difference between the original MRI and the
template MRI; (e) the bias field obtained by least square fitting; (f) the bias field obtained by
weighted least square fitting with the weights calculated to reduce the influence of the outliers.
The control point spacing in the B-spline model used is approximately 30mm and a smoothness
constraint (explained later in this chapter) with a weighting coefficient 2.5 is also applied during
both, least-square and weighted least-square fit.
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5.5 Outlier estimation

If the image Y and template image X were perfectly aligned, the difference image Y −X would

consist only of bias field and noise, assuming that the intensity distributions of the images X

and Y ′ have been correctly matched. However, in practice the alignment is never perfect. If the

corresponding voxels in the location of alignment error contain different tissues, the intensity

difference does not correspond only to bias field, but also the intensity difference between the

tissue classes. Those voxels are therefore labelled as outliers.

The problem of estimating outliers can be viewed as a classification problem. In general, large

positive and negative values in the difference image Y ′−X are likely to correspond to misaligned

voxels (outliers). Differences in intensities due to the presence of the bias field are in general

smaller and will be iteratively removed during estimation process. Correctly aligned voxels,

also referred to as inliers, will produce values close to zero. The PDF of the intensities in the

difference image Y ′ −X can be therefore modelled as a mixture of two zero-mean Gaussians,

one with a smaller variance σ0 modelling the correctly aligned voxels, or inliers, and the other

one with a larger variance σ1 for the misaligned voxels, or outliers. This simple model helps

to avoid the classification of different tissue classes and thus keep the algorithm simple and

generally applicable. It would be possible to extend the model to include the tissue class PDFs

and resulting intensity characteristics of the difference image.

The inliers and the outliers in the difference image can be classified within the EM framework

while simultaneously estimating the bias field. This is done by optimizing maximum likelihood:

(γ̂, β̂) = arg max
γ,β

log P (Y −X|γ, β)

where γ denotes the Gaussian mixture parameters (σ0, σ1, c0, c1). As there is no prior infor-

mation available for spatial position or volume of outliers and inliers, we assume a spatially

constant prior for each tissue class P (zi = k) = ck. The log-likelihood can be expressed as

follows:

log P (Y −X|γ, β) =
n∑

i=1

log
1∑

k=0

ckG(yi − xi − bi, 0, σk)
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Using the EM algorithm the maximum likelihood can be optimized in two steps:

E-step:

p̂ik =
ĉkG(yi − xi − b̂i, 0, σ̂k)∑

l ĉlG(yi − xi − b̂i, 0, σ̂l)

M-step:

(γ̂, β̂) = arg max
γ,β

n∑
i=1

1∑
k=0

p̂ik(log ck + log G(yi − xi − bi, 0, σk)) (5.1)

where ˆ denotes the current estimate. Equation 5.1 can be split into two separate equations:

The first equation

(ĉ0, ĉ1) = arg max
c0,c1

n∑
i=1

1∑
k=0

p̂ik log ck

yields

ĉk =
n∑

i=1

p̂ik

n

The objective function in the second equation

(σ̂0, σ̂1, β̂) = arg max
σ0,σ1,β

n∑
i=1

1∑
k=0

p̂ik log G(yi − xi − bi, 0, σk)

can be further expressed as

−n log
√

2π −
1∑

k=0

log σk

n∑
i=1

p̂ik −
1

2

n∑
i=1

(
1∑

k=0

p̂ik

σ2
k

)(yi − xi − bi)
2

The estimation of (σ0, σ1) cannot be separated from the estimation of the bias field β. We

will therefore use the current estimate of the parameters to keep the problem computationally

tractable. (σ0, σ1) can be thus obtained by

(σ̂0, σ̂1) = arg max
σ0,σ1

(−
1∑

k=0

log σk

n∑
i=1

p̂ik −
1

2

n∑
i=1

(
1∑

k=0

p̂ik

σ2
k

)(yi − xi − b̂i)
2)
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which results in

σ̂k =

∑n
i=1 p̂ik(yi − xi − b̂i)

2∑n
i=1 p̂ik

Similarly, the bias field β can be estimated from

β̂ = arg max
β

(−1

2

n∑
i=1

(
1∑

k=0

p̂ik

σ̂k
2 )(yi − xi − bi)

2)

and this is equivalent to the weighted least square fit

β̂ = arg min
β

n∑
i=1

wi(yi − xi − bi)
2 (5.2)

with the weights

wi =
1∑

k=0

p̂ik

σ̂k
2

The bias field can then be estimated as shown in the previous section:

β̂ = N(NTWN)−1NTW(Y −X)

Fig. 5.4 shows how the weights are assigned to voxels of the difference image Y ′−X depending

on their intensities. The histogram of the image is approximated as a mixture of two zero-mean

Gaussians:

P (y′i − xi|γ, β) = c0G(y′i − xi, 0, σ0) + c1G(y′i − xi, 0, σ1)

and the weights can be calculated as a function of the intensities y′i − xi and parameters γ:

wi = w(y′i − xi) =

1
σ2
0
c0G(y′i − xi, 0, σ0) + 1

σ2
1
c1G(y′i − xi, 0, σ1)

c0G(y′i − xi, 0, σ0) + c1G(y′i − xi, 0, σ1)

During the entire estimation we assume σ0 < σ1 and consequently w(y′−x) represents a suitable

weight function suppressing the influence of the outliers on the resulting bias field estimation.

The results of the estimation of the bias field with weighted least square fit and various B-

spline control point spacings are shown in fig. 5.5. While a control point spacing of 150mm

produces a too smooth bias field estimate and the corrected image still contains visible residual
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Figure 5.4: The weight function: The x-axis represents the intensities of the difference image
Y ′ − X. The function shown in grey is the estimated intensity distribution P (y′ − x|γ, β) of
the image Y ′ − X rescaled to < 0, 1

σ2
0

>. The function shown in black is the weight function

w(y′ − x). Both functions have been calculated using parameters σ1 = 3σ0, c0 = 0.6, and
c1 = 0.4.

bias, a control point spacing between 70mm and 40mm produces a visually more plausible

bias correction. Control point spacings below 40mm produce bias fields containing higher

frequencies, introducing new intensity inhomogeneities into the corrected image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: The influence of the B-spline control point spacing on the weighted least square fit:
(a) the original image; The corrected image and the corresponding bias field obtained with the
B- spline control point spacing: (b) 150mm; (c) 75mm; (d) 50mm; (e) 40mm; (f) 30mm; (g)
25mm; (h) 20mm.
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5.6 Smoothness constraint for B-spline functions

The model for the bias field should consist of low frequency components, but at the same

time it should have enough flexibility to model bias fields realistically. Rather than enforcing

a low frequency bias field implicitly by using B-splines with a large control point spacing, it

may be better to use a smaller control point spacing for the bias field model. However, this

may lead to bias fields which are not smooth enough. Therefore we have decided to add an

explicit smoothness constraint such as the one minimizing the bending energy introduced in

section 2.2.5 (equation 2.1). The general form of such penalty term has been described by

Wahba [89]. This quantity is a measure of the smoothness of a transformation representing the

3D counterpart of 2D bending energy of a thin plate of metal. The additional advantage of

using uniform B-splines as the model for the bias field is that this expression can be calculated

exactly.

Let us denote the six terms of the smoothness constraint Cabc:

C200 =

∫ X1

0

∫ X2

0

∫ X3

0

(
∂2S(v1

δ1
, v2

δ2
, v3

δ3
)

∂v2
1

)2

dv1dv2dv3

C020 =

∫ X1

0

∫ X2

0

∫ X3

0

(
∂2S(v1

δ1
, v2

δ2
, v3

δ3
)

∂v2
2

)2

dv1dv2dv3

C002 =

∫ X1

0

∫ X2

0

∫ X3

0

(
∂2S(v1

δ1
, v2

δ2
, v3

δ3
)

∂v2
3

)2

dv1dv2dv3

C110 =

∫ X1

0

∫ X2

0

∫ X3

0

(
∂2S(v1

δ1
, v2

δ2
, v3

δ3
)

∂v1∂v2

)2

dv1dv2dv3

C101 =

∫ X1

0

∫ X2

0

∫ X3

0

(
∂2S(v1

δ1
, v2

δ2
, v3

δ3
)

∂v1∂v3

)2

dv1dv2dv3

C011 =

∫ X1

0

∫ X2

0

∫ X3

0

(
∂2S(v1

δ1
, v2

δ2
, v3

δ3
)

∂v2∂v3

)2

dv1dv2dv3
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The smoothness constraint Csmooth is then

Csmooth =
1

V
(C200 + C020 + C002 + C110 + C101 + C011)

V = X1X2X3

Note, that S(v1

δ1
, v2

δ2
, v3

δ3
) denotes a reparametrized bias field function with domain < 0, X1 >

× < 0, X2 > × < 0, X3 >, while the original parameters ui = vi

δi
run over domain < 0, L1 >

× < 0, L2 > × < 0, L3 >.

To calculate the smoothness constraint, we need to compute the first and second derivatives of

the B-spline functions. The first derivative of a B-spline function can be expressed as

∂

∂u

L∑
i=−1

diNi(u) =
L∑

i=0

(di − di−1)N 2
i (u)

N 2
i (u) =



1
2
(t2 − 2t + 1) for i = l

1
2
(−2t2 + 2t + 1) for i = l + 1

1
2
t2 for i = l + 2

with l = buc and t = u − l, where N 2
i (u) is a B-spline basis function of the second degree.

Similarly, the second derivative of a B-spline function can be expressed as

∂2

∂u2

L∑
i=−1

diNi(u) =
L−1∑
i=0

(di+1 − 2di + di−1)N 1
i (u)

N 1
i (u) =


1− t for i = l

t for i = l + 1

with l = buc and t = u− l, where N 1
i (u) is a B-spline basis function of the first degree.
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If the B-spline functions are reparametrized with v = δu, the following holds:

∂

∂v

L∑
i=−1

diNi(
v

δ
) =

1

δ

L∑
i=0

(di − di−1)N 2
i (

v

δ
)

∂2

∂v2

L∑
i=−1

diNi(
v

δ
) =

1

δ2

L−1∑
i=0

(di+1 − 2di + di−1)N 1
i (

v

δ
)

Let us define

∆0
i = di

∆1
i = di − di−1

∆2
i = ∆1

i+1 −∆1
i = di+1 − 2di + di−1

This can be easily extended into 3D:

∆000
ijk = dijk

∆100
ijk = dijk − di−1,j,k

∆200
ijk = ∆100

i+1,j,k −∆100
ijk = di+1,j,k − 2dijk + di−1,j,k

∆110
ijk = ∆010

i,j,k −∆010
i−1,j,k = dijk − di,j−1,k − di−1,j,k + di−1,j−1,k

and similarly for all the other permutations (a, b, c) in ∆abc
ijk , where (a + b + c) ≤ 2. Let us

further define matrices Ha, a = 1, 2, 3 with elements ha
ij:

h3
ij =

∫ L−1

0
N 3

i (u)N 3
j (u)du, i, j = −1, ..., L

h2
ij =

∫ L−1

0
N 2

i (u)N 2
j (u)du, i, j = 0, ..., L

h1
ij =

∫ L−1

0
N 1

i (u)N 1
j (u)du, i, j = 0, ..., L− 1

Again, the reparametrization results in ha
ij(v) = δha

ij. Given the previous definitions, each term

of the smoothness constraint can be expressed as

C200 = δ1δ2δ3
δ4
1

∑L1−1
i1=0

∑L2

i2=−1

∑L3

i3=−1

∑L1−1
j1=0

∑L2

j2=−1

∑L3

j3=−1 ∆200
i1i2i3

∆200
j1j2j3

h1
i1j1

h3
i2j2

h3
i3j3

C110 = δ1δ2δ3
δ2
1δ2

2

∑L1

i1=0

∑L2

i2=0

∑L3

i3=−1

∑L1

j1=0

∑L2

j2=0

∑L3

j3=−1 ∆110
i1i2i3

∆110
j1j2j3

h2
i1j1

h2
i2j2

h3
i3j3

and so on. The exact calculation of ha
ij in the matrices H1, H2, H3 can be easily implemented,

as it involves the integration of a product of two polynomials. The matrices for L = 5 are listed
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below:

H1 =
1

6



2 1 0 0 0

1 4 1 0 0

0 1 4 1 0

0 0 1 4 1

0 0 0 1 2



H2 =
1

120



6 13 1 0 0 0

13 60 26 1 0 0

1 26 66 26 1 0

0 1 26 66 26 1

0 0 1 26 60 13

0 0 0 1 13 6



H3 =
1

5040



20 129 60 1 0 0 0

129 1208 1062 120 1 0 0

60 1062 2369 1191 120 1 0

1 120 1191 2416 1191 120 1

0 1 120 1191 2369 1062 60

0 0 1 120 1062 1208 129

0 0 0 1 60 129 20



To simplify the notation, let us rewrite the smoothness constraint in matrix form: First of all,

let us define matrices Habc with elements

Habc
I(i1i2i3),I(j1j2j3) = ha

i1j1
hb

i2j2
hc

i3j3

and matrix ∆abc so that

eI(i1i2i3)∆
abcd = ∆abc

i1i2i3

where ei is a unit vector with value 1 at ith position and zeros elsewhere and I is a bijec-
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tive function defining an ordering of the 3D indices in one dimension. Then the smoothness

constraint can be rewritten in the matrix form as:

Csmooth = dTHd (5.3)

where H is defined as

H =
δ1δ2δ3

V

(
1

δ4
1

(∆200)TH133∆200 +
1

δ4
2

(∆020)TH313∆020 +
1

δ4
3

(∆003)TH331∆002

+
1

δ2
1δ

2
2

(∆110)TH223 Delta110 +
1

δ2
1δ

2
3

(∆101)TH232 Delta101 +
1

δ2
2δ

2
3

(∆011)TH322 Delta011

)

5.7 Incorporating the smoothness constraint into the bias

field estimation

The smoothness constraint can be incorporated into the EM algorithm through the MAP

principle:

(γ̂, β̂) = arg max
γ,β

log P (γ, β|Y −X) = arg max
γ,β

log P (Y −X|γ, β)P (γ, β)

We do not assume any prior for the parameters γ, so P (γ, β) = P (β). We can constrain the

shape of the bias field by employing the smoothness constraint for the B-spline control points:

P (β) = P (d) = G(d, 0,
1

λ
H−1) =

1

(2π)
L+2

2 | 1
λ
H−1|

exp (−λ

2
dTHd)

where G is a multivariate Gaussian distribution with zero mean and covariance matrix 1
λ
H−1.

Note, that the B-spline function is defined in 1D for notational simplicity and the theory can

be easily extended to 3D as demonstrated in sec. 5.3.

The prior P (β) is correctly defined only if matrix H is regular and the inverse H−1 exists.

However, the smoothness matrix H, as defined in previous section, is singular. The theoretical

model can therefore be amended to define the Gaussian distribution for a vector d′ of L′ + 2
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suitable linear combinations of control points d, with covariance matrix 1
λ
(H′)−1 so that H′ is

a regular matrix and dTHd = (d′)TH′d′:

P (β) = P (d′) = G(d′, 0,
1

λ
H′−1) =

1

(2π)
L′+2

2 | 1
λ
H′−1|

exp (−λ

2
d′TH′d′)

Maximizing log P (β) is equivalent to minimizing λ
2
d′TH′d′ = λ

2
dTHd and the whole objective

function for finding the parameters β can then be written, using the eq. 5.2, as

β̂ = arg min
β

(
n∑

i=1

wi(yi − xi − bi)
2 + λdTHd

)

Setting the first partial derivatives in each dj to zero results in the following system of equations:

d̂ = (NTWN + 2λH)−1NTW(Y −X) (5.4)

β̂ = Nd̂

The influence of the smoothness constraint and the weighting coefficient λ on the results is

demonstrated in fig. 5.6.

5.8 Implementing the bias field estimation

Care needs to be taken when implementing the bias field estimation algorithm as defined in

equation 5.4: Not all the voxels in brain MRI are suitable for the estimation of the bias

field. For example, the air outside the head tends to have intensity values that are close to

zero and as the bias field is multiplicative, the change in the intensity of these background

voxels is negligible. Consequently, the noise has a higher magnitude than the bias field in this

location and including these background voxels introduces numerical problems into the bias

field estimation algorithm. We have therefore decided to exclude background voxels from the

bias field estimation. Unfortunately, this often results in the matrix NTWN being singular.

The matrix NTWN + 2λH is also not guaranteed to be regular. Therefore, we use singular
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(a) (b) (c) (d)

Figure 5.6: The influence of the smoothness constraint on the weighted least square fit with a
B-spline control point spacing of 15mm. The corrected image and the corresponding bias field
with the weighting coefficient: (a) λ = 0; (b) λ = 0.15; (c) λ = 1.5; (d) λ = 15.

value decomposition [68] to calculate the solution of the expression below:

(NTWN + 2λH)d̂ = NTW(Y −X)

The process can be made more numerically stable if we impose boundary conditions for the

B-spline function. We opt for linear boundary conditions given by equations

d−1 = 2d0 − d1

dL = 2dL−1 − dL−2

in the 1D case. This condition ensures, that the three control points d−1, d0, d1, as well as

dL−2, dL−1, dL lie on a straight line. Consequently, the B-spline curve begins and ends in control

points d0 and dL−1 and in the proximity of those points resembles a straight line.

The 3D cubic B-spline with linear boundary conditions is defined by control points dijk,
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i, j, k = 0, ..., L− 1 and remaining control points are determined using recurrent application of

the following equations:

d−1,j,k = 2d0,j,k − d1,j,k

di,−1,k = 2di,0,k − di,1,k

di,j,−1 = 2di,j,0 − di,j,1

dL,j,k = 2dL−1,j,k − dL−2,j,k

di,L,k = 2di,L−1,k − di,L−2,k

di,j,L = 2di,j,L−1 − di,j,L−2

For example, the control point D−1,−1,−1 can be determined as follows:

d−1,−1,−1 = 2d0,−1,−1 − d1,−1,−1

= 2(2d0,0,−1 − d0,1,−1)− (2d1,0,−1 − d1,1,−1)

= 2(2(2d0,0,0 − d0,0,1)− (2d0,1,0 − d0,1,1))

−(2(2d1,0,0 − d1,0,1)− (2d1,1,0 − d1,1,1))

= 8d0,0,0 − 4(d1,0,0 + d0,1,0 + d0,0,1)

+2(d1,1,0 + d1,0,1 + d0,1,1)− d1,1,1

Additionally, the calculation of the full matrix NTWN at each iteration is computationally

expensive and we therefore often subsample the image to a lower resolution for the purposes of

estimating the bias field.

The calculation of the smoothness matrix can also take a significant amount of computing

time, depending on the number of control points involved. Fortunately, this matrix can be

pre-calculated and remains the same unless the number or position of the control points is

changed. We therefore pre-calculate this matrix only once.
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5.9 Intensity matching

In the previous sections we had assumed that images X and Y have the same underlying

intensity distributions. However, this is usually not the case in practical applications. Therefore

the intensity distribution of the template image X has to be adjusted to match the intensity

distribution of the image Y before the bias correction can be performed. The simplest way

to perform this intensity matching is to use linear regression. In general, different imaging

protocols result in non-linear relationships of the tissue intensities in MRI and therefore the

linear regression cannot produce exact matching. However, a good approximation can still be

achieved, as the pairs of voxels of the aligned images are mostly present in two clusters centered

around mean WM and GM intensities, see fig. 5.7 d, e.

Let X = (x1, ..., xn) and Y = (y1, ..., yn) be the intensities of the registered images X and Y .

We are trying to find a linear intensity transformation ι from the image X to the image Y in

form

y = ι(x) = ax + b

The objective function for a least square fit is

(â, b̂) = arg min
a,b

n∑
i=0

(yi − axi − b)2

A better solution, as shown in fig. 5.7, can be obtained by minimizing the least square error in

both images x and y:

(â, b̂) = arg min
a,b

n∑
i=0

((yi − ati − b)2 + (xi − ti)
2) (5.5)

ti = arg min
t

((yi − at− b)2 + (xi − t)2) (5.6)

These two equations minimize the sum of square distances of the intensity pair (xi, yi) from the

line y = ax + b. Setting the derivative in t of the objective function in eq. 5.6 to zero results in

ti =
xi + ayi − ab

a2 + 1
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and eq. 5.5 becomes

(â, b̂) = arg min
a,b

1

a2 + 1

n∑
i=0

(yi − axi − b)2 (5.7)

Setting the first derivative in b of the objective function in eq. 5.7 to zero results in

b = E(Y )− aE(X) (5.8)

where E is the expected value defined as

E(X) =
1

n

n∑
i=1

xi

If we further define the variance and covariance

V ar(X) =
1

n

n∑
i=1

(xi − E(X))2

Cov(X, Y ) =
1

n

n∑
i=1

(xi − E(X))(yi − E(Y ))

then equations 5.7 and 5.8 yield

â = arg min
a

1

a2 + 1
(a2V ar(X)− 2aCov(X, Y ) + V ar(Y ))

The differentiation of this objective function gives the solution

a+,− =
V ar(Y )− V ar(X)±

√
(V ar(Y )− V ar(X))2 + 4Cov(XY )2

2Cov(XY )
(5.9)

where a = a+ if Cov(XY ) > 0 and a = a− if Cov(XY ) < 0.

An important property of this solution to be taken into account is its sensitivity to any scaling

of the image intensities

ι(X) 6= ι(cX)

where c is a constant. This means, that rescaling the intensities of the template image X

will result in different intensity matched template. To tackle this problem, we can scale the
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template image X before the matching to have the same mean and variance as image Y . This

results in considerable simplification of the equation 5.9. Given the re-scaled image X ′, so that

E(X ′) = E(Y ) and V ar(X ′) = V ar(Y ), the solution to the least square problem eq. 5.7 will

become

a =

 1 if Cov(X ′Y ) > 0

−1 if Cov(X ′Y ) < 0

b = E(Y )(1− a)

To obtain the final solution, the image X ′ needs to be found. Let us assume X ′ = rX + s.

Then

E(X ′) = rE(X) + s = E(Y )

V ar(X ′) = r2V ar(X)

From this it follows that X ′ =
√

V ar(Y )
V ar(X)

(X−E(X))+E(Y ) and the final intensity transformation

ι will become

ι(X) =


√

V ar(Y )
V ar(X)

(X − E(X)) + E(Y ) if Cov(XY ) > 0

−
√

V ar(Y )
V ar(X)

(X − E(X)) + E(Y ) if Cov(XY ) < 0

Fig. 5.7 shows the improvement of this simple method for matching means and variances of the

images over the linear regression in coordinate y.
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(a) (b) (c)

(d) (e)

Figure 5.7: Intensity matching: (a) original image; (b) reference image transformed by least
square fitting in both coordinates x and y; (c) reference image transformed by least square
fitting only in coordinate y results in poorer match. 2D intensity histogram of aligned image
and reference image with linear transformation obtained by: (d) linear regression in both
coordinates; (e) linear regression in coordinate y. The linear transformation obtained by linear
regression in both coordinates (d) provides more precise fit.
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5.10 Template-based bias correction algorithm

In this section we will summarize the intensity inhomogeneity correction algorithm which we

have developed in this chapter. Unlike in the previous sections, here X and Y denote the

images in original position and with original intensities, before any alignment or the logarithmic

transformation was performed.

When calculating the bias field in the EM framework, logarithmically transformed intensities

of template image X and image to be segmented Y need to be used. However, the logarith-

mic transformation reduces the contrast between higher intensities (usually GM and WM in

T1-weighted images), thus making the registration and matching less sensitive to GM/WM con-

trast. Registration and intensity matching are therefore better performed with original image

intensities.

Template-based bias correction

Register the template image X to the image Y = (y1, ..., yn), yi = Y (vi) using transformation

α = TY →X by maximizing normalized mutual information to obtain the aligned template αX =

X ◦ TY →X where αX(vi) = X(TY →X(vn)).

Find the linear transformation ι to match the intensity of aligned template image αX and the

image Y to obtain intensity matched aligned template X ′ = ι(αX), x′i = X ′(vi) = ι(αX(vi)):

x′i =


√

V ar(Y )
V ar(αX)

(αX(vi)− E(αX)) + E(Y ) if Cov(αXY ) > 0

−
√

V ar(Y )
V ar(αX)

(αX(vi)− E(αX)) + E(Y ) if Cov(αXY ) < 0
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Initialize:

m = 0

c
(0)
k = 0.5, k = 0, 1

σ
(0)
0 = 0.25V ar(log Y − log X ′)

σ
(0)
1 = 4V ar(log Y − log X ′)

w
(0)
i = 1, i = 1, ..., n

b
(0)
i = 0, i = 1, ..., n

Repeat

m = m + 1

p
(m)
ik =

c
(m−1)
k G(log yi − log x′i − b

(m−1)
i , 0, σ

(m−1)
k )∑

l c
(m−1)
l G(log yi − log x′i − b

(m−1)
i , 0, σ

(m−1)
l )

, i = 1, ..., n, k = 0, 1

c
(m)
k =

n∑
i=1

p
(m)
ik

n
, k = 0, 1

σ
(m)
k =

∑n
i=1 p

(m)
ik (log yi − log x′i − b

(m−1)
i )2∑n

i=1 p
(m)
ik

, k = 0, 1

w
(m)
i =

1∑
k=0

p
(m)
ik

(σ
(m)
k )2

, i = 1, ..., n

d(m) = (NTW(m)N + 2λH)−1NTW(m)(log Y − log X ′),

b
(m)
i =

L∑
j=−1

d
(m)
j Nj(vi), i = 1, ..., n

L(m) = −
n∑

i=0

log
1∑

k=0

c
(m)
k G(log yi − log x′i − b

(m)
i , 0, σ

(m)
k ) + λ(d(m))THd(m)

until L(m−1)−L(m)

L(m) < 0.001

Calculate the bias corrected image Y ′, y′i = Y ′(vi) = yie
−bi
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5.11 Conclusion

In the presence of strong bias field, both segmentation and registration techniques often fail

due to the distortion of the image intensities resulting from this artefact. While intensity-based

tissue classification is disrupted by blurring between the intensity distributions, registration of

the two images can be guided by the gradient of the bias field rather then intensity features

resulting from the anatomy of the brain.

In this chapter we described a novel template-based algorithm for bias correction of brain MRI.

The advantage of this algorithm is its ability to deal with strong bias fields. In addition, the

bias field is calculated by comparing the image with a template image without bias, thus the

technique is not biased towards any simplified theoretical model of brain tissue intensities. The

method can be used as a preprocessing step for tissue classification. It is also ideal to be used

in conjunction with image registration, as the bias field is estimated by comparing the image

to be corrected with the registered template image. Another advantage of the method is that

it does not require precise registration of the images thanks to the outlier detection and use of

weighted least squares to estimate the bias field.

To achieve good bias correction results, a suitable B-spline control point spacing and weighting

coefficient λ have to be experimentally determined. Chapter 6 deals with the practical appli-

cation of this bias correction method to enhance segmentation and registration of MRI with

strong intensity inhomogeneity.



Chapter 6

Intensity inhomogeneity correction and

segmentation of brain MRI

The aim of this chapter is to develop an optimal strategy for the segmentation of brain MRI

during early childhood using the segmentation techniques developed in chapter 4 and the in-

tensity inhomogeneity correction technique developed in chapter 5. In particular we will focus

on data acquired on a 3T MR scanner in which the intensity inhomogeneity is far more severe

than in data acquired on a 1T MR scanner used in chapter 4.

This chapter is organized as follows: First, the optimal parameters for the template based bias

correction are determined. Secondly, the three segmentation methods described in chapter 4

(registration-based segmentation, EM-based segmentation with population-specific atlas and

combined registration-based and EM-based segmentation) combined with the template-based

bias correction are evaluated and compared. Finally, we demonstrate the application of the

novel combined segmentation method in conjunction with the novel template bias correction

method for volumetric measurements of brain structures.

166
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6.1 Data and Materials

The images segmented in this chapter are T1-weighted MRI of 35 two years old subjects

with three of the subject scanned also at one year of age. The images were acquired on a

Phillips 3T scanner using MP RAGE imaging sequence [14] and reconstructed with voxel size

0.8×0.8×0.8 mm3. Imaging at higher magnetic field strengths, such as 3T, enables images to

be acquired with higher resolution. However, it also results in significant increase of intensity

inhomogeneity.

Four of those images (three images of two year old children and one image of an one year old

child) were manually segmented, including a complete manual segmentation of the caudate

and thalamus, and a partial manual segmentation of WM and GM on 7-8 slices. The perfor-

mance of the automated segmentation methods is measured by agreement with these manual

segmentations using the Dice metric [29].

The image used as a template for the bias correction as well as the deformable atlas for the

registration based segmentation and the combined registration-based and EM-based segmenta-

tion in this chapter is the one introduced in chapter 4: It consists of a 1T brain MRI of a two

year old child after bias correction with N3 [75] and a manual segmentation of 11 structures.

The probabilistic atlases used for the EM-based segmentation are the population-specific atlases

at one year and two years of age, constructed from 1T images as described in chapter 4.

6.2 Determining the parameters for template-based bias

correction

There is a large range of possible values for the parameters of the template-based bias correction

algorithm described in the previous chapter. These parameters include the B-spline control

point spacing for modelling the bias bield and the weighting parameter λ for the penalty term

which controls the smoothness of the bias field. The optimal values may depend on the shape
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and frequency of the bias field as well as the level of misregistration between template image

and image to be corrected. A fundamental difficulty arises from the fact that the ground

truth for the bias corrected image is not known. Therefore we will pursue an approach which

measures the performance of the bias correction method by its influence on the performance of

the subsequent registration-based and EM-based segmentation methods.

In the following, we will use the number of control points L as a parameter rather than control

point spacing. Note, that the number of control points for a bias field represented with cubic

B-splines is denoted as (L1+2)×(L2+2)×(L3+2). If the boundary conditions are applied, the

number of control points reduces to L1×L2×L3. We set the number of control points to equal

in all directions L = L1 = L2 = L3, as this simplifies the calculations. However, in general the

number of control points in different directions may vary. The relationship between the number

of control points L in one dimension and the corresponding B-spline control spacing is shown

in table 6.1.

L 2 3 4 5 6 7 9 12
spacing in mm - x 129 64 43 32 26 21 16 12
spacing in mm - y 189 94 63 47 38 31 23 17
spacing in mm - z 144 72 48 36 29 24 18 13

Table 6.1: Conversion table between a number of control points L at each dimension and
B-spline control point spacing of the model for bias field.

To perform the template-based bias correction, both images are subsampled to a resolution of

3×3×3 mm3. This reduces the run-time of the bias correction algorithm from approximately

1h to several minutes.

6.2.1 Estimating parameter λ

To initialize our search for the optimal parameters, we aim to obtain an approximate estimate

of optimal weighting coefficient λ for the smoothness constraint. In this experiment we used

the simplest alignment of the template image in form of a rigid registration and a B-spline

control point spacing of approximately 30 mm (6× 6× 6 mesh of B-spline control points with
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L = 6, δ1 = 26, δ2 = 38, δ3 = 29 ). The values of λ to be tested were determined as follows:

λ = 100, 102, 104, 106, 108.

First, the template image is registered to the four test images. All test images are then corrected

using the different values of λ. Secondly, the EM-based segmentation and the registration-based

segmentation are carried out on all four bias-corrected images. The non-rigid registration is

optimized for speed and is performed at three different resolutions levels with the parameters

shown in table 6.2.

Control ponint spacing image resolution blurring finite difference step size
20mm 3r 2r 8r
10mm 2r r 4r
5mm r 0.5r 2r

Table 6.2: Parameters of the non-rigid registration: The columns of the table are the B-
spline control point spacing at a given level of registration, resolution of the subsampled image,
standard deviation of Gaussian blurring used before subsampling and length of steps when
optimizing the the non-rigid transformation. r denotes the largest dimension of a voxel in mm,
in either the target or source image.

The results are evaluated on four manual segmentations to determine the value of λ resulting

in the best performance of those two segmentation methods. The results are shown at fig. 6.1.

The segmentation agreement measured by the Dice metric [29] shows increases in performance

until λ reaches value 104. If λ is further increased, the performance of segmentation methods

sharply drops.

It is important to note, that the smoothness constraint as defined in eq. 5.3 depends on the

parameterization of the B-spline model for the bias field. As a result, the optimal value of λ

varies with the units in which we measure the control point spacing δ1, δ2, δ3. In other words,

working in millimeters would yield a different value of λ than working in centimeters. Therefore

if we want to find the generally applicable values for parameter λ, we have to demonstrate this

dependence of λ on the units used for B-spline control point spacing.

To understand this dependence, we can determine how the value of λ has to change if we

multiply the size of the image at each dimension by a constant c while keeping the original

number of control points fixed. The new size of the image in dimension i is X ′
i = cXi and
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Figure 6.1: Segmentation results following template-based bias correction using different values
of λ. All images were bias corrected with L = 6, corresponding to control point spacing of
approximately 30 mm. The value of λ is shown on the horizontal axis. The agreement with
the manual segmentation as calculated by the Dice metric is shown on the vertical axis.
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consequently the new control point spacing is δ′i = cδi since the relationship Xi = (Li − 1)δi

holds. Let v′i be the new parameterization of the bias field, with v′i = cvi. The objective

function is in the form:

log P (β, γ|Y ) = log P (Y |β, γ) + λCsmooth

With the change of the parameterization the smoothness constraint Csmooth will change to

C ′
smooth and consequently the weighting coefficient λ has to change to preserve the same weight-

ing in the objective function. Therefore:

λCsmooth = λ′C ′
smooth

Let us denote
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Obviously

C ′
smooth =

1

c4
Csmooth

and consequently

λ′ = λ
Csmooth

C ′
smooth

= c4λ

Practically, this means, that if we change units from millimeters to centimeters, resulting in

c = 0.1, then λcm = λmm10−4. We determined that the optimal λ when working in millimeters

is around value 104. Changing units to centimeters would bring optimal value of λ around 1,

which is a good user-friendly option. From now on, we will therefore assume that we are working

in centimeters, which is equivalent to working in millimeters with the objective function:

log P (β, γ|Y ) = log P (Y |β, γ) + 104λCsmooth

.

6.2.2 Two-dimensional search for the parameters λ and L

The performance of the bias correction was also calculated for other numbers of B-spline control

points with L = 3, 6, 9. Fig. 6.2 shows the influence of the bias correction parameters L and

λ on registration-based segmentation. Similarly, fig. 6.3 shows the influence of bias correction

parameters L and λ on EM-based segmentation. These results show improvement of the seg-

mentation results if L is increased from 3 to 6. However, further increases of L do not seem to

produce any consistent improvement.

To choose the optimal value of λ we refined our search by testing values closer to the optimal

value λ = 1 as determined in the previous section. Tested values were λ = 0.1, 0.5, 1, 2, 3, 5, 10, 20.

The figures 6.2 and 6.3 show that the performance of both segmentation methods drops when λ

reaches a value of 5, except for a marginal increase in the cortical overlap in the EM segmenta-

tion. We will concentrate of values of λ = 0.1, 0.5, 1, 2, 3 for which we have performed a slower

and more accurate registration-based segmentation using the parameters shown in table 6.3.
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Control point spacing image resolution blurring finite difference step size
20mm 4r 2r 10r
10mm 2r r 5r
5mm r 0.5r 2.5r
2mm - - 2.5r

Table 6.3: Parameters for the registration at four resolution levels. The columns of the table are
B-spline control point spacing at a given resolution level, resolution of the subsampled image,
variance of Gaussian blurring used before subsampling and the step size of the finite difference
approximation of the derivatives during the optimization of the transformation. r denotes the
largest dimension of a voxel in mm, in either target or source image.

Figure 6.2: Registration-based segmentation using the parameters from table 6.2. Before seg-
mentation the images were bias corrected with parameters λ shown on horizontal axis and L
shown as a series of graphs. The template was registered with the images for the purposes of bias
correction with a control point spacing 5mm. The agreement with the manual segmentation as
calculated by the Dice metric is shown on vertical axis.
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Figure 6.3: EM-based segmentation. Before segmentation the images were bias corrected with
parameters λ shown on horizontal axis and L shown as a series of graphs. The template was
registered with the images for the purposes of bias correction with a control point spacing 5mm.
The agreement with the manual segmentation as calculated by the Dice metric is shown on
vertical axis.

The results in fig. 6.4 show that all values of λ in the range < 0.1, 3 > result in similar

performance. Fig. 6.5 shows the results for the EM-based segmentation already presented in

fig. 6.3, but in a form which is equivalent to fig. 6.4. The Dice overlap for cortex, caudate

and thalamus is best for values λ = 2, 3. The performance for WM slightly decreases with

increasing λ. However, the reason for this is not an improved bias correction. Fig. 6.6 shows

that for lower values of lambda, the centre of the brain is darker than the tissues close to the

cortex. Even though this is not a visually appealing result of the bias correction, it improves

the EM-based segmentation of WM close to the cortical region as shown in fig. 6.7. The
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inconsistent performance of the EM-based segmentation for caudate and thalamus with lower

values of lambda has a similar reason: Lower values of λ result in a darker centre of the brain

producing less contrast between WM and subcortical GM. The results therefore depend on the

quality of the registration of the probabilistic atlas rather than on the intensity patterns of

central brain structures.

To conclude, we observe, that the results of the EM-based segmentation are also influenced

by other factors, not only the homogeneity of intensities within each tissue class. In addition,

the registration-based segmentation has a relatively low sensitivity towards any residual bias

fields and therefore is not a good measure for fine-tuning of the parameter values for the

bias correction. However, the bias corrected images for values λ = 2, 3 and L = 6, 9 seem to

produce good segmentation results for both methods and are visually plausible. For our further

experiments we choose parameters λ = 2 and L = 6, even though there are other parameter

combinations which can produce comparable bias correction results.
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Figure 6.4: Registration-based segmentation with parameters from table 6.3. Before segmen-
tation the images were bias corrected with the parameters λ shown on the horizontal axis
and L shown as a series of graphs. The template was registered with the images for the pur-
poses of bias correction with a control point spacing of 5mm. The agreement with the manual
segmentation as calculated by the Dice metric is shown on the vertical axis.

Figure 6.5: EM-based segmentation. Before segmentation the images were bias corrected with
the parameters λ shown on the horizontal axis and L shown as a series of graphs. The template
was registered with the images for the purposes of bias correction with a control point spacing
of 5mm. The agreement with the manual segmentation as calculated by the Dice metric is
shown on the vertical axis.
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(a) (b)

Figure 6.6: The influence of the parameter λ on the bias correction. Values of λ = 0.1 results
in a darker centre of the brain compared to the tissue closer to the skull and less contrast in
the subcortical area than values λ = 3: (a) λ = 0.1; (b) λ = 3.

(a) (b)

Figure 6.7: The influence of the parameter λ on the EM-based segmentation of WM. First
row: Image with overlayed segmentation. Second row: Prior probability maps for WM with
overlayed segmentation. (a) λ = 0.1; (b) λ = 3. Value λ = 0.1 results in a brighter tissue
closer to the skull compared to the center of the brain. WM close to skull can be therefore
still recognized by EM segmentation due to very high intensity values, even though the prior
probabilities in the location are low. Examples pointed out by the arrows.
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6.3 Registration-based segmentation

In the previous section we have determined suitable parameters for the template-based bias

correction. Our parameters of choice were L = 6 for the number of B-spline control points for

the model of bias field in each dimension and λ = 2 as a weighting coefficient for the smoothness

constraint for the bias field. In this section, the registration parameters for 3T data will be

determined, similarly as in sec. 4.2 for 1T data. In addition, we will combine the non-rigid

registration and template-based bias correction to perform registration-based segmentation in

the presence of strong intensity inhomogeneity.

To find the optimal strategy for the coupling the registration-based segmentation with template-

based bias correction for MRI with strong bias fields, we need to determine the level of alignment

of the template image with the image to be corrected to achieve the best possible bias correction.

Moreover, it has to be investigated, whether performing bias correction several times during

registration process can improve the final outcome of the algorithm.

6.3.1 Determining the registration parameters

The parameters for the non-rigid registration providing an optimal trade-off between speed and

performance of the registration-based segmentation were determined similarly to sec. 4.2. We

tested four different strategies for the choice of the registration parameters given in table 6.4.

The non-rigid registrations using these four sets of parameters were performed to align the

1T bias corrected template image and the four manually segmented 3T images. After rigid

and affine alignment, the 3T images were intensity-corrected using the template-based bias

correction with parameters L = 6 and λ = 2. For simplicity, no bias correction was performed

after non-rigid alignment was started. In the next section we will investigate whether updating

of the bias field estimate during non-rigid alignment can improve the registration results.

The evaluation results for different parameter values are presented in table 6.5. The results

show that a constant step size of 8mm is necessary to achieve good alignment at all resolution

levels. However, subsampling to isotropic voxels sizes of 3.2 mm, 1.6 mm in resolution levels
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20 mm and 10 mm respectively, and subsampling to isotropic voxel sizes of 3.2 mm, 2.4 mm,

1.6mm in resolution levels 20 mm, 10 mm and 5 mm yields the same results at final control point

resolution of 2.5mm. Therefore the computational speed of the registration can be increased

without reducing the quality of the final alignment. In the remainder of the chapter, the

parameters given in table 6.6 will be used.

Parameter set #1
control point spacing image resolution image blurring finite difference step size

20 3.2 1.6 8
10 1.6 0.8 8
5 full 0.4 8

2.5 full 0 8

Parameter set #2
control point spacing image resolution image blurring finite difference step size

20 3.2 1.6 8
10 1.6 0.8 6.4
5 full 0.4 4.8

2.5 full 0 4

Parameter set #3
control point spacing image resolution image blurring finite difference step size

20 3.2 1.6 8
10 2.4 1.2 8
5 1.6 0.8 8

2.5 full 0 6.4

Parameter set #4
control point spacing image resolution image blurring finite difference step size

20 3.2 1.6 8
10 2.4 1.2 8
5 1.6 0.8 8

2.5 full 0 8

Table 6.4: Parameters for the non-rigid registration. All sizes are given in millimeters.

Parameter set WM Cortex Caudate Thalamus
#1 0.79 ± 0.03 0.83 ± 0.02 0.85 ± 0.02 0.90 ± 0.01
#2 0.77 ± 0.03 0.82 ± 0.01 0.84 ± 0.04 0.90 ± 0.01
#3 0.79 ± 0.03 0.83 ± 0.02 0.84 ± 0.04 0.90 ± 0.01
#4 0.79 ± 0.03 0.83 ± 0.02 0.86 ± 0.03 0.91 ± 0.01

Table 6.5: Agreement of the manual segmentation with the results of the registration-based
segmentation with different parameters given in table 6.4 as measured with the Dice overlap.
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control point spacing image resolution image blurring finite difference step size
20 3.2 1.6 8
10 2.4 1.2 8
5 1.6 0.8 8

2.5 full 0 8

Table 6.6: Optimal choice of parameters for non-rigid registration of 3T images. All sizes are
given in millimeters.

6.3.2 Interleaved versus sequential registration

Simultaneous algorithms for segmentation, registration and bias correction have been very

popular in recent years [7], [65], [96], following the idea, that if those processes are iterated at

the same time, better results can be achieved. We therefore investigated, whether simultaneous

registration and template-based bias correction would produce better results than a simple

sequential approach. Let Y denote the image containing a bias field and X the template image

with no bias. We tested the following two algorithms:

Sequential registration and bias correction

1. Register image Y with template image X with affine registration AY →X

2. Find bias corrected image Y ′ using template-based bias correction (sec. 5.10) with regis-

tered template αX = X ◦ AY →X

3. Register the corrected image Y ′ with the template image X with non-rigid registration

TY ′→X using the parameters in table 6.6 and initial affine alignment AY →X .

Interleaved registration and bias correction

1. Register image Y with template image X using affine registration AY →X

2. For each resolution level 20 mm, 10 mm, 5 mm and 2.5 mm and parameters in table 6.6

a. Find bias corrected image Y ′ using template-based bias correction (sec. 5.10) of

image Y with template αX aligned at previous level of registration
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b. Refine registration α = TY ′→X at current resolution level using latest corrected image

Y ′.

The comparison of these two algorithms on the four manually segmented images shows that the

sequential and interleaved algorithms produces registrations of the same quality, see table 6.7.

It seems that therefore there is no need for the simultaneous algorithm and that the simple

sequential approach is sufficient.

parameters WM Cortex Caudate Thalamus
sequential 0.79 ± 0.03 0.83 ± 0.02 0.86 ± 0.03 0.91 ± 0.01
interleaved 0.79 ± 0.03 0.83 ± 0.02 0.86 ± 0.03 0.91 ± 0.01

Table 6.7: Agreement of the manual segmentation with the results of the registration-based seg-
mentation obtained using interleaved and sequential registration and bias correction algorithm
as measured with the Dice overlap.

6.3.3 Registration-based segmentation algorithm in the presence of

strong intensity inhomogeneity

In the previous sections we found, that the simple sequential approach is sufficient for the

registration and bias correction of a pair of images. Thanks to the outlier detection within the

EM framework, the affine alignment of the template image X with the image Y is sufficient

for optimal bias correction. We also derived optimal parameters for the best trade-off between

speed and performance of registration-based segmentation. The strategy for the registration-

based segmentation in presence of strong bias fields can now be summarized as follows:

Registration-based segmentation and template-based bias correction

1. Given image Y containing a bias field and template image X, perform an affine registration

AY →X and find the corrected image Y ′ using template-based bias correction (sec. 5.10) with

the aligned template αX = X ◦ AY →X .

2. Find a non-rigid registration TY ′→X of images X and Y ′ using the parameters given in

table 6.6 and the initial affine alignment AY →X .
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3. Compute the registration-based segmentation Srbs(Y ) of the image Y using binary manual

segmentations SX,l of each structure l in the template image X using the following equation:

Srbs(Y )(vi) = max
l

Slin
X,l(TY ′→X(vi))

where Slin
X,l denotes the linear interpolation of image SX,l.

6.4 EM segmentation with a population-specific proba-

bilistic atlas

In chapter 4 we have assumed that the bias field was removed in the pre-processing step and

consequently, we were able to perform the EM segmentation with a population-specific atlas

without interleaving the bias field correction within the EM framework. In this section we

will investigate the best strategy for combining the EM segmentation with the template-based

bias correction to create an algorithm for EM-based segmentation in the presence of strong

bias fields. This algorithm forms an alternative to the simultaneous segmentation and bias

correction a proposed in [48] and [7].

6.4.1 Registration of template image during bias correction and EM

segmentation

If we are able to correct the images in the pre-processing step, the EM segmentation (sec-

tion 2.5.3) can be performed in the same way as is section 4.3. The aim of this section is

to find the optimal template-based bias correction algorithm to serve as a pre-processing bias

correction step for the EM segmentation. We already determined suitable parameters for the

proposed bias correction algorithm (L = 6 and λ = 2). In this section we would like to in-

vestigate whether the precision of the alignment of the template image with the image to be

corrected while correcting the bias, has any influence on the results of the EM segmentation.
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(a)

(b)

Figure 6.8: EM-based segmentation. The images were bias corrected with parameters L = 6
and λ = 2 after different registrations of the template images shown on the horizontal axis.
After bias correction, the population-specific probabilistic atlas was aligned (a) for each bias
corrected image separately; (b) using the same registration with image corrected after rigid
alignment with the template. The agreement of EM segmentation with manual segmentation
calculated by Dice metric is shown on the vertical axis.
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To find the influence of the precision of the alignment of the template image with the image

to be corrected during the bias correction on the resulting segmentation, the image Y was

corrected after the following levels of alignment α of the template image: rigid, affine, 20 mm,

10 mm, 5 mm and 2.5 mm alignment of the template image. Then, the EM segmentation was

performed on all versions of the bias corrected images Y ′
α.

We performed the following two experiments: First, the probabilistic atlas was affinely aligned

with each image Y ′
α separately, followed by EM segmentation with a population specific prob-

abilistic atlas as described in sec. 4.3.2. To eliminate the influence of the differences of the

probabilistic atlas alignment, in the second experiment we used the affine alignment of the

probabilistic atlas with image Y ′
rigid to perform the EM segmentation on all images Y ′

α. The

evaluations of both experiments on the four test images are shown in fig. 6.8.

The results of neither of these two experiments suggest that there is any advantage in improving

the alignment of the template image with the image Y during bias correction for the purposes

of the EM segmentation. Fig. 6.8a shows random variations in the performance of the method

which is caused by small differences in the affine alignment of the probabilistic atlas resulting

from small differences in the bias correction results with different alignments of template image

with image Y . This influence is eliminated if the same affine transformation of the probabilistic

atlas is used for all images Y ′
α, as shown in fig. 6.8b. Consequently it is revealed, that there is

no correlation between the level of alignment of the template image during bias correction and

performance of EM segmentation.

Therefore, in the following sections, the template based bias correction will be performed only

once, after affine alignment of the template with the image.

6.4.2 EM segmentation in the presence of strong intensity inhomo-

geneity

The EM segmentation algorithm with the population specific atlas can be summarized as

follows:
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EM segmentation and template-based bias correction

1. Given image Y containing a bias field and template image X, perform an affine registration

AY →X and find the corrected image Y ′ using template-based bias correction (sec. 5.10) with

the aligned template αX = X ◦ AY →X .

2. Find the optimal affine registration AY ′→A of the population-specific probabilistic atlas A

with the bias-corrected image Y ′.

3. For each structure l transform the probability maps patlas
l from the atlas A to the space of

image Y :

patlas
l (Y ) = AY ′→A(patlas

l )

4. Initialize the EM segmentation of Y ′ with the probability maps patlas
l (Y ) and calculate the

soft segmentations p
(m)
l where m is the last iteration of the EM algorithm (sec. 2.5.3).

5. Calculate a hard segmentation

Sem(Y )(vi) = max
l

pm
l (vi) = max

l
p

(m)
il

Experimental results for this algorithm are shown in table 6.8. To compare the results, the EM

algorithm with the population-specific atlas was also applied to the original images without

correcting the bias field, resulting in a significant drop in performance. Unlike in section 4.3,

the brain was not extracted with BET, as the performance of BET was very poor on the data

used in this chapter. This is probably caused by the poor contrast between GM and CSF.

method WM Cortex Caudate Thalamus
EM without bias correction 0.79 ± 0.02 0.80 ± 0.02 0.67 ± 0.17 0.82 ± 0.08
EM with bias correction 0.84 ± 0.02 0.83 ± 0.02 0.82 ± 0.03 0.88 ± 0.02

Table 6.8: Performance of EM segmentation with population-specific atlas on four subjects.
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6.5 Combined registration-based and EM-based segmen-

tation

The combined segmentation algorithm proposed in section 4.4 was also used to segment the

3T images in this chapter. Let X be the template image with attached binary manual seg-

mentations SX,l for each brain structure l and X1, ..., Xq the training images corrupted by a

bias field. Let Y be the image to be segmented corrupted by a strong bias field. Then the

combined registration-based a EM-based segmentation with template-based bias correction can

be summarized as follows:

Combined registration-based and EM-based segmentation with template-based

bias correction

1. For each training image Xi corrupted by a bias field, perform an affine registration AXi→X

with the template image X and find the corrected image X ′
i using the template-based bias

correction (sec. 5.10) with aligned template αX = X ◦ AXi→X .

2. Find the optimal non-rigid registrations TX′
i→X of images X and X ′

i using parameters given

in table 6.6 and initial affine alignment AXi→X .

3. Calculate the soft registration-based segmentations Slin
X,l ◦ TX′

i→X of the training images,

where Slin
X,l denotes linear interpolation of the binary image SX,l.

4. For each new image Y corrupted by a bias field

a. Perform affine registrations AY →X of the template image X with the image Y corrupted

by a bias field and find the corrected image Y ′ using the template-based bias correction

(sec. 5.10) with aligned template αX = X ◦ AY →X .

b. Peform registration-based segmentations TY ′→X′
i
of the corrected training images and the

corrected image Y ′, using parameters in table 6.9.

c. For each structure l calculate the probability maps pl(Y ) of subject specific atlas using
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equation

pl(Y ) =
1

q

q∑
i=1

Slin
X,l ◦ TX′

i→X ◦ TY ′→X′
i

d. Initialize the EM segmentation of Y ′ with the probability maps pl(Y ) and calculate the

soft segmentations p
(m)
l where m is the last iteration of EM algorithm (sec. 2.5.3).

e. Calculate the hard segmentation

Srbs−em(Y )(vi) = max
l

pm
l (vi) = max

l
p

(m)
il

control point spacing image resolution image blurring finite difference step size
20 3.2 1.6 8
10 2.4 1.2 8

Table 6.9: Registration parameters for creating subject-specific atlases for 3T images. All sizes
are given in millimeters.

This algorithm was performed using 35 training images of two year old children imaged using

a 3T scanner and one manually segmented template image of a two year-old child imaged with

a 1T scanner and corrected with N3 [75]. Experimental results on four manually segmented

images (three subjects scanned at two years and one subject scanned at one year) are shown in

table 6.10. For comparison the 35 1T training images used in chapter 4 were also used to create

subject specific atlases. These images were not corrected with template-based bias correction,

as they were corrected with N3 [75] before. The results show that slightly better results can be

obtain when 3T images instead of 1T images are used as training images.

method WM Cortex Caudate Thalamus
Combined 1T 0.84 ± 0.02 0.84 ± 0.02 0.83 ± 0.02 0.90 ± 0.01
Combined 3T 0.84 ± 0.02 0.84 ± 0.02 0.85 ± 0.02 0.91 ± 0.01

Table 6.10: Performance of EM segmentation with population-specific atlas on four 3T MRI
(three at the age of two years and one at the age of one year). Two different groups of training
images were used: 35 1T images corrected by N3 [75] (combined 1T) and 35 3T images corrected
by proposed template-based bias correction method (combined 3T).
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6.6 Comparison of the methods

In this section we compare the performance of the segmentation methods for brain MRI with

strong intensity inhomogeneity in a similar fashion to sec. 4.5. The following three methods for

the segmentation of brain structures are evaluated:

1. Registration-based segmentation, also called atlas-based segmentation using the parame-

ters in table 6.6, described in sec. 6.3.3.

2. EM-based segmentation with a population-specific atlas for two years of age, described

in sec. 6.4.2.

3. Combined registration-based and EM-based segmentation with a subject-specific atlas

with precision 10mm, described in sec. 6.5.

In previous sections, all three methods were validated by measuring the agreement with manual

segmentations of four 3T subjects containing strong intensity inhomogeneity (three subjects at

two years of age and one subject at one year of age) using the Dice overlap metric. The summary

of the results is shown in table 6.11. The improvement of the combined method, compared to

the registration-based and EM-based segmentation, is very similar to the improvement achieved

on 1T data in sec. 4.5. Again, the combined method matches the performance of the EM-based

segmentation in WM and GM, while performance in subcortical structures is comparable to

that of the registration-based segmentation, thus rendering the combined method superior to

both original approaches.

method WM Cortex Caudate Thalamus
Registration-based 0.79 ± 0.03 0.83 ± 0.02 0.86 ± 0.03 0.91 ± 0.01
EM-based 0.84 ± 0.02 0.83 ± 0.02 0.82 ± 0.03 0.88 ± 0.02
Combined 0.84 ± 0.02 0.84 ± 0.02 0.85 ± 0.02 0.91 ± 0.01

Table 6.11: Performance of different segmentation methods on brain MRI of three subjects at
two years of age and one subject at one year of age in the presence strong intensity inhomo-
geneity.

Fig. 6.9 shows a visual comparison of the results obtained using the three methods. While

the registration-based segmentation does not delineate all the boundaries precisely, it appears
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correct overall, see fig. 6.9b. The EM segmentation has a tendency to leave out small details

and incorrectly locate small structures, such as substantia nigra, misaligned in the probabilistic

atlas, see fig. 6.9c. The combined segmentation correctly delineates these boundaries. Moreover,

it is able to capture most of the small detail, see fig. 6.9d.

(a) (b)

(c) (d)

Figure 6.9: Comparison of segmentation methods on 3T data, sagittal view. (a) 3T MRI of
two years old child; (b) registration-based segmentation; (c) EM segmentation with population-
specific atlas; (d) Combined EM and registration based segmentation. Arrows from top to
bottom: 1. CSF space imprecisely delineated by registration-based segmentation, undetected
by EM segmentation, well delineated by combined segmentation. 2. Substantia nigra correctly
delineated by registration-based segmentation and combined segmentation, incorrectly by EM
segmentation. 3. Part of the brain not segmented by EM segmentation due to imprecise align-
ment of the probabilistic atlas, correctly delineated by combined segmentation, less precisely
by registration-based segmentation.
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Fig. 6.10 shows an example of the advantage of the subject-specific atlas over the population-

specific atlas: While CSF is undetected by the EM segmentation due to an insufficient prior

for CSF in this area, the combined segmentation can detect the CSF thanks to the prior

individually adapted particularly for this brain. Fig. 6.11 shows the probability maps for WM,

GM and CSF in the population-specific and subject-specific atlas.

(a) (b)

Figure 6.10: Comparison of EM segmentation with a population-specific atlas and combined
segmentation with a subject-specific atlas: Detail of the sagittal slice shown in fig. 6.9 demon-
strates how better prior information for CSF improves the segmentation: (a) EM segmentation
with population-specific probabilistic atlas; (b) combined segmentation with subject-specific
probabilistic atlas; (c) prior for CSF in population-specific atlas; (d) prior for CSF in subject-
specific atlas. Segmentation of CSF space fails with the EM segmentation due to insufficient
prior probability for CSF in the location, while the combined method classifies CSF in this area
correctly thanks to the more precise subject-specific atlas.
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(a) (b)

Figure 6.11: Comparison of EM segmentation with population-specific atlas and combined
segmentation with subject-specific atlas, coronal view. Segmentations shown in the first row.
Probability maps for WM (second row), GM (third row) and CSF (fourth row). (a) EM segmen-
tation with population-specific probabilistic atlas; (b) Combined segmentation with subject-
specific probabilistic atlas.
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6.7 Measuring volumes of brain structures

In this section we will demonstrate that the proposed combined EM-based and registration-

based segmentation method in conjunction with the template-based bias correction, as de-

scribed in sec. 6.5 is a suitable tool for robust calculation of volumes of brain structures at

two years of age for the MRI with strong bias field. We will compare the results the the

measurements obtained from 1T data in section 4.6.

The volumes of 9 brain structures (WM, GM, cerebellum, brainstem and five subcortical GM

structures - caudate, putamen, nigra, thalamus and pallidum ) were measured using the pro-

posed segmentation method combining registration-based and EM-based approaches (sec. 6.5).

CSF was excluded from the calculations and cerebellar WM and GM were merged together.

The volumes were measured on 35 subjects at two years of age scanned on a 3T MR scanner and

compared to measurements obtained from 15 two years old subjects scanned at 1T and calcu-

lated in section 4.6. The results are presented in table 6.12 and visualized in fig. 6.12 and 6.14.

The mean volumes obtained using 1T and 3T images show good agreement. The measurements

agree even better if adjusted for the size of the brain. The structure sizes expressed as percent-

age of the whole brain volume, here referred to as relative volumes, are presented in table 6.13

and visualized in fig. 6.13 and 6.15.

Cortex Caudate Putamen Nigra Cerebellum
1T 675 ± 55 6.61 ± 1.18 9.83 ± 1.38 0.92 ± 0.10 103 ± 18
3T 715 ± 68 7.02 ± 0.87 10.85 ± 0.90 0.93 ± 0.11 125 ± 10

Thalamus Pallidum Brainstem WM
1T 11.94 ± 1.28 2.84 ± 0.39 15.66 ± 2.30 235 ± 29
3T 12.90 ± 1.16 3.29 ± 0.29 16.94 ± 1.78 234 ± 30

Table 6.12: Mean volumes and standard deviation of brain structures calculated from 1T and
3T data. Results given in cm3



6.7. Measuring volumes of brain structures 193

Cortex Caudate Putamen Nigra cerebellum
1T 63.75 ± 1.57% 0.62 ± 0.09% 0.92 ± 0.07% 0.09 ± 0.01% 9.62 ± 1.01%
3T 63.55 ± 1.17% 0.62 ± 0.05% 0.97 ± 0.07% 0.08 ± 0.01% 11.11 ± 0.69%

Thalamus Pallidum Brainstem WM
1T 1.12 ± 0.04% 0.27 ± 0.02% 1.47 ± 0.11% 22.13 ± 0.84%
3T 1.15 ± 0.08% 0.29 ± 0.02% 1.51 ± 0.12% 20.71 ± 1.12%

Table 6.13: Mean relative volumes and standard deviation of brain structures calculated as a
percentage of the whole brain volume from 1T and 3T data.

Figure 6.12: Comparison of mean volumes of brain structures obtained from 3T and 1T data.

Figure 6.13: Comparison of mean relative volumes of brain structures obtained from 3T and
1T data.
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Figure 6.14: Comparison of mean volumes of brain structures obtained from 3T and 1T data.

Figure 6.15: Comparison of mean relative volumes of brain structures obtained from 3T and
1T data.

6.8 Discussion

In this chapter we have developed strategies for the segmentation of brain MRI during early

childhood in presence of strong intensity inhomogeneity using the combination of a novel

template-based bias correction method proposed in chapter 5 and the segmentation tools pro-

posed in chapter 4.
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The parameters for the novel template-based bias correction method were experimentally deter-

mined to correct brain MRI obtained on a 3T MR scanner using a MP-RAGE imaging sequence

[14]. These images exhibit by a very strong bias field characterized by central brightening of the

image [20]. We were able to obtain good automatic segmentation results for these challenging

images when the parameters L = 6 and λ = 2 were used. This was experimentally tested on

four manually segmented MRI. In addition our results have shown good agreement with volume

measurements of brain structures obtained from 3T and 1T images. However, we were not able

to validate the quality of bias correction directly, as there is no ground truth available for the

bias field.

The proposed bias correction method was applied to images obtained using the same imaging

sequence. Therefore, the question arises, whether the segmentation tools described in this

chapter are generally applicable. If the 1T images used in chapter 4 are bias corrected using

the bias correction parameters determined in this chapter, plausible results can be obtained

as shown in fig. 6.16, which compares the bias correction with N3 and our proposed method.

This suggests, that the method is stable in the presence of weak bias fields and there is no

need to change the parameters. We hypothesize, that the artefacts of the imperfect alignment

of template image with image to be segmented have a similar frequency given by size of the

brain and its anatomy, independent of the bias field. Therefore the constraints on the model

for the bias field do not need to be changed depending on the bias field strength and frequency.

However, more investigation has to be performed before the general applicability of the method

can be established.
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Figure 6.16: Bias correction of brain MRI of a two year old subject scanned at 1T magnetic
field strength. First row: the original image. Second row: Image corrected by N3 and the
estimated bias field. Third row: Image corrected by our proposed method and the estimated
bias field.
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6.9 Conclusion

The aim of this chapter was to develop tools for the robust segmentation of brain structures

during early childhood in the presence of strong intensity inhomogeneity. The segmentation

tools developed in chapter 4 were improved by including the novel robust template-based bias

correction method proposed in chapter 5. The bias field was modelled using 3D tensor product

B-spline. To model the low-frequency characteristic of the bias field, suitable constraints in

form of B-spline control point spacings and weighting coefficients for the smoothness constraint

representing the bending energy of the field were experimentally determined.

The novel segmentation method proposed in chapter 4 and the novel template-based bias cor-

rection method proposed in chapter 5 with parameters determined in chapter 6 were combined

to produce a segmentation tool robust to the variability in the shape of the brain as well as

the frequency and strength of the bias field. The volume measurements of brain structures in

50 subject at two years of age (15 scanned at 1T and 35 at 3T magnetic field strength) show

good consistency, rendering this tool suitable for quantifying changes in growth of WM and

GM tissues, as well as subcortical GM structures.
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Conclusion

This thesis has presented the development of segmentation tools for brain structures during

early childhood. Such tools are required to quantify the changes in brain development of

prematurely born children compared to full-term children. In this chapter we will summarize

the main contributions of this thesis. We will also discuss the limitations of the work presented

here and directions for future research.

7.1 Contribution

The contributions of these thesis can be divided into three main categories:

1. Development of tools for segmentation of brain structures during early child-

hood. To develop a robust method for segmentation of brain MRI we combined registration-

based and intensity-based approaches. The adaptations of available techniques have been

investigated and a novel tool combining both approaches has been proposed. Important

aspect of this methodology is ability to segment all the brain structures required by an

application as opposed to only the three main brain tissue classes classified by many

standard tools. The robustness of the method is achieved by multiple label propagation

using non-rigid registration to create prior information for intensity-based segmentation.

198
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2. Development of tools for bias correction of brain MRI. Currently, brain MRI

are usually acquired using scanners with higher magnetic field strengths, often resulting

in strong intensity inhomogeneity present in the image. To make the segmentation tool

robust to this artefact, a template-based bias correction technique has been developed.

The important advantage of this technique is ability to deal with strong bias field. In

addition, the bias field is calculated by comparing with a template image without bias,

thus the technique is not biased towards any simplified theoretical model of brain tissue

intensities. The optimal strategies for coupling of this bias correction technique with

segmentation tools were also proposed.

3. Application of the developed tools to quantification of volume and growth

of brain structures from one to two years of age. The quantitative analysis of

brain structure volumes and growth was performed using the novel segmentation tool

combining registration-based and intensity based approaches. The results for MRI of one

and two year old subjects with weak bias exhibited excellent agreement, thus confirming

the robustness of the tool. The the novel segmentation method has also been coupled

with the novel bias correction technique to obtain a segmentation tool robust to strong

bias field. The technique was applied to MRI of two years old subjects with strong bias

field, producing volume measurements consistent with measurements obtained from MRI

with weak bias field.

7.2 Discussion

The problem of the segmentation of brain MRI has been extensively studied by many researchers

in recent years. In spite of all this effort there is still the need for improvement before the

methods can be successfully adapted to different applications. An example of such application

demonstrated in our work is processing brain MRI during early childhood, such as at one or

two years of age.

While adapting the segmentation methods to this age-group, we developed novel methodology,
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which is not restricted for use on pediatric subjects. More evaluation needs to be performed

to determine, whether this methodology would outperform standard tools developed for adult

brains. However, we suspect that the methodology presented in this thesis would not be

sufficient to deal with special challenges in processing fetal and neonatal brain MRI, as those

images exhibit different intensity characteristics compared to children and adults as a result of

on-going development.

The recent trend in development of brain segmentation tools has been guided by the idea that

performing the segmentation, registration and bias correction simultaneously would improve

the performance of the segmentation methods. The evaluation presented in this thesis suggest

a surprising conclusion, that this is not necessarily so. During our experiments we observed

only marginal, if any improvement of interleaved compared to sequential approaches. On the

contrary to the common belief, our experiments seem to support the idea, that performing all

the processes separately can actually make the final approach more robust against converging

to suboptimal local extrema. An example of such event can be anticipated during simultaneous

segmentation and non-rigid registration of the probabilistic atlas in the subcortical region. The

brighter characteristics of the subcortical GM could be dealt with by shrinking the prior for GM

and extending prior for WM by non-rigid registration to fit the voxel intensities into Gaussian

intensity distributions for WM and GM. This would result in misclassification of subcortical

GM as WM. Separating this two processes can prevent convergence to such suboptimal solution.

7.3 Limitations and future work

There are many limitations of the current work that give opportunity for future research to im-

prove performance and robustness of the developed tools. The areas for potential improvement

can be categorized as follows:

1. Segmentation:

(a) Creating unbiased probabilistic atlases: Probabilistic atlases not biased to-

wards the reference subject could be developed by calculating the average brain
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[11]. The template image representing average brain anatomy rather than average

intensity image could be registered with the image to be segmented to provide ro-

bust non-rigid alignment of the resulting probabilistic atlas. This might remove the

need for multiple label propagation and thus improve the efficiency of the proposed

segmentation method.

(b) Partial volume estimation: The current segmentation tools usually fail to classify

the small detail due to complex cortical folding. The methods for partial volume

estimation, such as [72], [46], are therefore needed. The challenge in addressing

this problem lies in the fact, that small volumes of tissue are often coupled with

insufficient prior for their detection.

2. Bias correction:

(a) The B-spline model: The major drawback of using B-spline model for the bias

field is computational speed when estimating the bias field parameters. Subsampling

is therefore needed to obtain bias correction algorithm that finishes within a few

minutes. The estimation of B-spline control points could be made more efficient by

developing suitable filtering techniques which can incorporate weights, such as in

[93], [87].

(b) The EM framework: There are other frameworks commonly used in medical

imaging, such as information-theoretic approach [92], [54]. The evaluation of differ-

ent approaches is needed to determine which framework is the most suitable for the

task of estimating the bias field.

(c) The outlier detection: We used the weight function for estimating bias by weighted

B-splines resulting from the use of EM framework. However, it is possible, that more

suitable weight function could be estimated for the purpose of bias correction.

3. The evaluation:

(a) Validation of segmentation techniques: The major limitation of work presented

in these thesis is insufficient number of manually segmented subjects to obtain quan-
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titative measurements of overlap between manual and automatic segmentation. More

thorough validation of the methodology presented would be therefore desired.

(b) Protocol for manual segmentation: Another important limitation is the quality

of manual segmentations. It is a generally recognized problem that manual delin-

eation is an error-prone process. Many boundaries of brain structures are not visible

on MRI and protocol for manual segmentation is therefore needed to guide the hu-

man rater. In this thesis we did not perform any validation of the quality of manual

segmentations. In addition, no formal protocol for the manual delineation of the

brain structures was defined.

(c) Evaluation of bias correction technique: We were not able to validate the pro-

posed bias correction technique because of unavailability of the ground truth. The

exact evaluation of bias correction techniques can be performed only if measurements

of the bias field are obtained during the acquisition process [80], [59]. The compar-

ative study using images with measured bias field would be desirable to perform

thorough validation of the proposed bias correction technique.

4. The applications: The purpose of the application of the developed tools for calculating

of the volumes and growth of brain structures of one and two year old children presented

in this thesis is to demonstrate the potential usability of the method. However, the

proposed methodology can now be used for medical experiments to quantify the volumes

and growth of brain structures during early childhood on large number of subject and

between different populations of subject, to obtain statistically significant differences in

the brain development of the populations.

7.4 Summary

In this thesis we developed a tool for segmentation of brain structures from MRI during early

childhood. The proposed methodology is robust to variation in size and shape of brain struc-

tures as well as the type and strengths of the bias field present in the MRI. The main motiva-
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tion for the work presented in this thesis have been the need for quantification of changes in

development of the brain in premature children compared to full term children. The quanti-

tative measurements of volumes and growth of brain structures exhibit consistency suggesting

suitability of the tool for the research of the impact of premature birth on brain development.
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