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Abstract

3D Face Recognition is one of the most active biometric research areas and its ap-

plications range from security, content tagging, facial reconstruction to human-computer

interaction. One of the challenges in face recognition in general, is the fact that the face is

a complex three-dimensional structure and its appearance is affected by factors such as the

viewing angle, the illumination and facial expressions. In this work 3D face recognition

techniques are presented using surface registration in an effort to minimize the influence

of these factors on face recognition.

Initially the facial surfaces are registered to each other using a variant of the Iterative

Closest Point (ICP) algorithm and the 3D distance between them is used as a similarity

metric for performing face recognition. 2D intensity values of the surface texture are also

used in a combined metric and their effect under various poses and facial expressions is

analyzed.

Furthermore, we describe a point registration technique using manually landmarked

data. Free-form deformation is used to establish dense point correspondence between all

faces and a base mesh. Once correspondence is established principal component anal-

ysis is used to generate face models for face recognition. This technique is compared

with an ICP-based technique in which dense correspondence is established after the au-

tomatic rigid surface registration of the faces. The evaluation and comparison of the two

techniques is done by comparing the face recognition results as well as the compactness,

specificity and generalization ability of the two models.

Additionally, we examine the use of surface free-form registration for establishing

more uniform correspondences between the faces.

In the final chapter we examine which parts of the face contribute the most to its recog-

nition. We implement an eigenfeatures approach for comparing manually segmented

anatomical components of the face. Moreover, we propose a method for automatically

optimizing the model using information about the variability within the population.
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Chapter 1

Introduction

The survival of an individual in a socially complex world depends greatly on his/her

ability to read information about the age, sex, race, identity and current psychological

state of another person based on that person’s face. The face is controlled by multiple

muscles, which are responsible for a wide range of facial expressions and movements. By

manipulating these facial muscles (Figure 1.1) one is able to communicate a vast array of

emotions that facilitate cooperation with other individuals. Furthermore, given our weak

sense of smell as a species, our ability to identify people from their face has proven to be

a particularly useful skill. Friend or foe can be distinguished with remarkable robustness

without conscious effort.

Face recognition research using automatic or semiautomatic techniques was started in

the 1960s and especially in the last two decades, with the wide availability of powerful

computers, it has received significant attention from the research community. Various

conferences dealing with face recognition emerged during the 1990s (AVBPA, AFGR)

and several databases and testing protocols were established (FERET, FRVT, XM2VTS

etc.) [228]. One of the reasons for this research interest is the wide range of possible

applications for face recognition systems.

There are currently automatic systems that perform well when the face images are

captured under uniform and controlled conditions. For a system, however, to be a viable

solution it needs to meet many challenges (see Section 1.3).
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Figure 1.1: The facial muscles (from [77]).

There are various alternative biometric techniques that perform very well today, like

fingerprint analysis and iris scans, but these methods require the participants to cooper-

ate and follow a relatively strict data acquisition protocol. In a face recognition scenario

participants are not necessarily required to cooperate or even be aware of being scanned

and identified, which makes face recognition a less intrusive and potentially more effec-

tive identification technique. Finally, the public’s perception of the face as a biometric

modality is more positive compared to the other modalities [90].

1.1 Motivation

Correct identification of an individual based on their face would make many aspects of our

life a lot simpler. First of all, in terms of the need to identify oneself, it would minimize

the number of information one must carry or remember for one’s day-to-day survival in

the modern world. For example, it might be possible in the future to move in and out of
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a country without requiring a passport and voting might not require registration. Further-

more, in terms of protecting information, logging on to a network or a computer would be

automated while access to a database or one’s personal files would not require a password.

When it comes to law enforcement and security applications, trained policemen would not

have to go through thousands of hours of CCTV footage in order to identify suspects as

a real-time identification system processing footage from various locations would be able

to spot wanted persons and notify police of their whereabouts. Finally, the use of face

recognition technology could be used for content tagging. Some online services already

offer to tag member’s pictures based on the identity of the subject portrayed using face

recognition technology [166].

Progress made in face recognition would also provide important techniques for other

disciplines and applications. Some statistical face models can already identify certain ge-

netic syndromes which subtly affect the face [85]. In addition a model that can simulate

the aging of a person [147] can be useful in the search for people who have been missing

for many years. Finally, research in this area would also lead to advances in facial ex-

pression recognition which could have profound effects on human-computer-interaction.

It is for these reasons that face recognition is such an inter-disciplinary research area with

scientists from various fields contributing to the literature, from psychophysics and psy-

chology, to mathematics and computer science.

Another reason for the growing interest in face recognition has been the emergence of

affordable hardware, such as digital photography and video, which have made the goals

of such research more feasible. Affordable systems that capture the 3D geometry of a

surface, like the one used in our study and presented later in the thesis, make 3D face

recognition a “tolerable” research interest, which combined with cheap computing power

makes the intense calculations involved in surface processing realistic. Finally, the field

of face recognition has inherited a wealth of algorithmic tools that had been traditionally

developed for other disciplines, such as medical imaging, something which has allowed

research to move forward relatively fast.
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Figure 1.2: Exploring the limits of the human face recognition ability. Harmon and
Julesz [86] used images like this to establish the amount of information that is necessary
for successful face recognition.

1.2 Face recognition by the brain

The human brain is extremely good at classifying faces by identity even under adverse

conditions such as low resolution or low illumination. Harmon and Julesz [86] showed

that participants were able to identify people from images even when the latter contain

only 16 × 16 pixels (Figure 1.2). The group of images participants had to identify, how-

ever, were of familiar faces which later research suggested is a significant experimental

parameter, because the brain is performing particularly well with known faces [36]. De-

spite its great skill at recognizing faces one of the brain’s drawbacks is its limitation as to

the total number of faces it can recall and the even smaller number of familiar faces that it

can recognize under extreme conditions. Furthermore, given that the brain is made up of

interconnected systems, it is natural that one system can interfere with the functioning of

another. A typical example is when a witness to a crime has particular difficulty recalling

the characteristics of the perpetrator’s face. The stressful situation affects the witness’

ability to “store” the face in his memory.

Given the elusive nature of the “mind”, scientists often try to draw conclusions about
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its underlying mechanisms by studying cases where the brain fails, often surprisingly, to

perform a task. This kind of phenomena are often examined in depth in order to settle

some of the most prominent debates in human face recognition research.

1.2.1 Face recognition as a dedicated brain process

Some evidence shows that face perception is a dedicated process in the brain, with a

specialized region committed to it [16, 55, 66, 67]. The evidence for this comes from

many sources. First of all, humans can remember faces much more easily than other

objects [55]. The human brain can distinguish from memory hundreds of faces from each

other, which it is unable to do for the vast majority of object classes. Furthermore, a

rare disorder, prosopagnosia, caused by injury indicates that face recognition might be a

special higher level process in the brain. Patients with prosopagnosia can not recognize

familiar people from their faces, but have no problem spotting a face when asked to locate

one in an image. They are able to describe the individual characteristics of a face and

of other objects and suffer from no other profound agnosia, yet are unable to “unify” the

information and make the identification [177].

Some researchers [102] have shown that newborns prefer images with face-like pat-

terns, suggesting that humans are “pre-wired” for providing specialized treatment to faces,

but their findings are not universally accepted [185]. Another evidence that faces receive

specialized processing in the brain comes again from Burton and Wilson [36]. They con-

ducted an experiment to show the effects of familiarity on identifying faces from poor

quality CCTV video. After demonstrating that the group which outperformed the others

was the one that was familiar with the subjects in the video, they occluded the faces of the

people portrayed in order to see how much information comes from body posture and gait.

In line with what was predicted the recognition rates were reduced dramatically. Despite

the face being only a small part of the body, the subjects were able to extract significantly

more cues as to the identity of the people in the video by seeing the face, which implies

that the latter might be processed differently.
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It is important to note that despite the aforementioned research suggesting that face

recognition is a dedicated process, some researchers have shown that it is possible that

other classes of objects might also be processed by the same neural circuits. For example

Gauthieret al. [68] discuss an alternative hypothesis according to which face recognition

is performed by mechanisms specialized for processing any object class in which an in-

dividual has expertise. Functional neuroimaging methods have been employed to see the

response of face-selective areas to other stimuli in which the subject is an expert. Indeed

these areas respond similarly suggesting that they might be specializing in more than just

faces.

On the other hand, Xuet al. [220] recently reported that certain magnetoencephalo-

graphic responses do not occur for other classes of objects in which the participants had

expertise. In particular, the authors study the effects on the face-selective M170, a com-

ponent that occurs170ms after the stimulus has been displayed and has been associated

with the identification of individual faces. Other objects, such as cars, in which the partic-

ipants had expertise, did not elicit a higher M170 response compared to control subjects.

In a parallel experiment the M170 response was correlated with successful face identifi-

cation but not with successful car identification by the car experts, prompting the authors

to conclude that the early face processing mechanisms associated with the M170 are in-

volved in face identification and not in the identification of just any object of expertise.

Some researchers proposed a distributed neural system in which different face process-

ing mechanisms are found in three different core brain areas, as well as four other areas

that extend the system to related tasks [87]. In conclusion, the anatomical seat of face

recognition circuitry, or whether such a specialized system even exists, is a matter of on-

going debate, but the fact that faces are processed differently than most physical objects

is widely accepted.
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1.2.2 Holistic versus feature-based processing

Researchers have also tried to analyze the way the brain encodes faces for identification. It

has been suggested that both holistic and feature information is crucial for recognition [30,

32]. It has been shown, for example, that dependence on global descriptors is reduced if

dominant local features are present and vice versa.

The importance of the global configuration of facial features was demonstrated in

Yin [224] where an inverted face was shown to be hard to recognize despite the size and

shape of individual features remaining intact. This was later on famously demonstrated

by the Thatcher illusion [200]. This sensitivity to orientation is not displayed when recog-

nizing other mono-oriented objects such as airplanes or houses and a significant amount

of research has focused on the reasons behind this.

Further insights into how the brain encodes a face is provided by studying facial com-

posites created by police based on witnesses accounts. In most cases the witness has to

select the most appropriate facial features from a set, which, as is generally acknowl-

edged, leads to poor images. The individual features might be accurately portrayed but

the faces have only a “generic likeness” to the actual person they depict. The “global

signature” of the face is difficult to capture with a feature-based approach. The perfor-

mance of such systems is often so poor that it has prompted police to declare that the

image demonstrates not what the suspect looks like but what the suspect doesnot look

like. In other words it should be used not to incriminate people based on their likeness but

to exonerate them based on their dissimilarity. Finally, Younget al. [225] and Robins and

McKone [168] have shown that even though the top and bottom half of two faces might

be enough for identifying the individual, combining the two makes the task significantly

more difficult (Figure 1.3). It was suggested, in this case, that the holistic processing of

the face affects the processing of the features on the two halves.

Trying to identify the components of the face that most assist in identification, Shep-

herdet al.[184] have shown that the upper part of the face is more useful for face recogni-

tion than the bottom part. Taking a step further, Sadret al. [178] showed that sometimes
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Figure 1.3: Subjects found it much harder to identify the people depicted in the top and
bottom half in the aligned images (left) than in the unaligned (right). This suggests that
holistic processing of the face disrupts on some level the processing based on the available
features of the two halves. Face A is Bill Clinton and Face B is George W. Bush.

individual features such as eyes can provide enough cues for identification. Sinha and

Poggio [187] split the face to its internal features (mouth, nose, eyes etc.) and its external

ones (hairline, facial shape etc.) and showed that both contribute to our ability to recog-

nize faces. When only the internal features are used the recognition rates are significantly

worse than when the whole face is used. Furthermore, when the order of these inter-

nal features is rearranged the recognition rate drops further. Other studies have reached

the same conclusions with regards to internal versus external features [30]. Schyns and

Oliva [146] developed a technique where they superimpose the low spatial frequency

components of an image on the high spatial frequency ones of another (coarse scale ver-

sus fine details). Faces are produced which if viewed from a close distance look like one

person but if viewed from a greater distance another person is identified. In the local (in-

ternal) features domain, it seems that some features are more important than others. For

example, the hair, eyebrows, mouth and face outline seem to be particularly instrumental

for recognition [184, 30, 178].

1.2.3 On computational parallelisms

An interesting observation robustly demonstrated in the literature is that not all faces are

equally easy to recognize. Distinctive faces (big ears, hooked nose etc.) are easier to rec-

ognize than faces with few distinguishing characteristics [122]. Valentine [208] suggests
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Figure 1.4: O’Tooleet al. demonstrated that caricatures of the human face (right) are
more easily identified than the original representation of the face (left) (from [147]).

that this might be because humans compare faces to a representation for an average face

(prototype) stored in their brain. In other words humans store relative and not absolute

information about the face. Under this interpretation faces in the extremes of the faces-

pace distribution are easier to recognize because they are not surrounded by as many other

possible candidates as a relatively average face would. Computational models such as the

ones that useprincipal component analysis(PCA) [206], discussed later in the thesis,

work along the same principles as the prototype theory for face recognition. A faces-

pace of reduced dimensionality is created and all faces become samples in that facespace.

Computational techniques based on creating such a facespace have been shown to vali-

date the predictions made by the hypothetical mental facespace found in Valentine [208]

and referred to above. For example, exaggerating the facial characteristics by manipu-

lating the facial parameters in such a facespace using a model as in O’Tooleet al. [148]

confirmed that a caricatured face is more easily recognized by the brain than a face which

depicts the exact proportions of the facial features. At the same time, faces generated

between the face in question and the average, called anti-caricatures, have proven more

difficult to identify than the original face, demonstrating that indeed distinctiveness of a

face affects its recognition. If one assumes that the average face stored in the brain is

tuned to a particular population then a person in Africa will not have the same facial pro-

totype as a European. This might explain why people often report difficulty distinguishing

persons of a different race from each other.



1.3 Challenges for face recognition 29

The study of the way the brain performs object recognition can provide some insight

into how a machine-driven face recognition system should work. Conversely, psychol-

ogists must not draw conclusions without considering some of the computational possi-

bilities. This does not mean however that there must necessarily be a link between the

biological workings of the human visual system and an engineer’s implementation. Nev-

ertheless it is important to consider some of the challenges for face recognition which an

agent, whether human or machine must overcome in order to successfully identify a face.

1.3 Challenges for face recognition

The face is a three-dimensional object which contains shape as well as texture (pigment)

information. Unsurprisingly, systems that use these types of information, whether it is

the human brain or a machine, are affected. Broadly speaking, the obstacles that a face

recognition system must overcome are differences in appearance due to variations in illu-

mination, viewing angle, facial expressions, occlusion and changes due to time.

Using 2D images for face recognition, pixel intensities represent all the information

that is available and therefore, any algorithm needs to cope with variation due to illumi-

nation explicitly. Figure 1.5 shows such an example. The human brain seems also to be

affected by illumination in performing face recognition tasks [92]. Johnstonet al. [103]

report that familiar faces were more difficult to recognize when lit from below than when

lit from above and Hillet al. [91] demonstrate that matching facial surfaces to an iden-

tity is more difficult when the surfaces were lit from different directions. Furthermore,

Bruce and Langton [33] reported that showing the images in photographic negatives had

a detrimental effect on the identification of familiar faces and Liuet al. [125] demon-

strated later on that the effects of negation are linked to the direction of lighting in the

non-negated images. One explanation for these findings is that dramatic illumination or

pigmentation changes interfere with the shape-from-shading processes involved in con-

structing representations of faces. If the brain reconstructs 3D shape from 2D images, it

remains a question why face recognition by humans remains viewpoint-dependent to the
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Figure 1.5: The effects of illumination, a challenge for face recognition systems.

Figure 1.6: The effects of pose.

extend that it is.

The difference between two images of the same subject photographed from differ-

ent angles is greater than the differences between two images of different subjects pho-

tographed from the same angle (Figure 1.6). Bruce [29] found recognition rates for unfa-

miliar faces dropping significantly when there was a difference in viewpoint between the

training and test set. More recently, however, there has been debate about whether object

recognition is viewpoint-dependent or not [197]. Generally speaking the brain is good at

generalizing from one viewpoint to another as long as the change in angle is not extreme.

For example, matching a profile viewpoint to a frontal image is poor, though matching

of a three-quarter view to a frontal remains very good [92]. There have been suggestions

that the brain might be storing a view-specific prototype abstraction of a face in order to

deal with varying views [31]. Interpolation-based models [161], for example, support the

idea that the brain identifies faces across different views by interpolating to the closest

previously seen view of the face.

The challenges involving the face do not include only viewpoint variation which af-

fects any rigid body. The face is a dynamic non-rigid structure that changes shape due to
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Figure 1.7: The effects of emotional expressions on the facial surface.

the muscles pulling the soft tissue and bones. Figure 1.7 shows the face changing due to

the subject smiling. The modeling of dynamic objects introduces a type of problem that

is different from the aforementioned ones as the face manifests itself as a nonrigid object.

Neurophysiological studies have suggested that facial expression recognition happens in

parallel to face identification [30]. Some case studies in prosopagnostic patients show that

they are able to recognize expressions even though identifying the actor remains a near-

impossible task. Similarly, patients who suffer fromorganic brain syndromeperform very

poorly in analyzing expressions but have no problems in performing face recognition.

The shape of the face also changes due to aging and lifestyle choices people make.

The skin becomes less elastic and more loose with age, the lip and hair-line often recedes,

the skin color changes, people gain or lose weight, grow a beard, change hairstyle etc.

Figure 1.8 shows three people over a time course of many years. The pictures were taken

at two-year intervals from 1978 until 2004.

Finally, occlusion is a problem related to some of the above challenges and it involves

cases when parts of the face are hidden from view. This can be for a number of reasons

such as parts of the face itself (i.e. nose) hiding other parts when the image is taken from

certain angles, or because the subject grew a beard, is wearing glasses or a hat.

The hypothesis throughout this work is that using 3D data, rather than 2D intensity

images, would provide a lot more redundancy in order to deal with many of the traditional

challenges for face recognition more effectively.
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Figure 1.8: The effects of time on the face. The images were collected at two-year inter-
vals from 1978 until 2004 (adapted from [72]).

1.4 Contributions

In this work we propose several novel 3D face recognition algorithms.

The first algorithm is a geometric technique where the average distance between cor-

responding surface points on the two faces is used as a similarity measure. To achieve

that, an automatic rigid surface registration is used to align 3D faces to each other and

compensate for pose differences. The technique achieves good results for frontal and

non-frontal faces as well as faces with facial expressions. Furthermore, the relationship

between pose, expression and illumination is investigated by fusing 3D and 2D informa-

tion in a combined metric that results in further improvements in recognition under certain

conditions.

In contrast to the geometric nature of the first algorithm, the second algorithm is

based on the construction of a 3D statistical face model for recognition. For this pur-

pose we propose several techniques for model construction: The first model-construction

technique is employing landmarks to align features of the face together using non-rigid

point-based registration. This method is compared and contrasted against another tech-

nique, which employs an automatic rigid surface registration using the ICP algorithm to

align the facial surfaces to each other. Both techniques are shown to be strong classifiers



1.5 Structure of the thesis 33

under various recognition benchmarks. We also propose a modelling technique, which

extends the rigid surface registration to a non-rigid surface registration in order to im-

prove the point-correspondence across faces. Finally, a fourth technique is proposed in

which a uniform synthetic surface (a sphere) is used to resample the surfaces to create

point-correspondence across surfaces with even less noise. We explore the performance

of the resulting models for face recognition. We also investigate the generic quality of the

resulting models in terms of compactness, specificity and generalization ability.

We also propose a novel 3D eigenfeatures technique which involves the semi-automatic

segmentation of faces. We investigate which parts of the face contribute most to classifi-

cation. Furthermore, we combine different regions of the face into a single model which

yields better recognition rates than the standard statistical face model. The scores from

the recognition of individual features of the face are combined by classifier fusion leading

to improved results. Finally, we examine the between- and within-class variability of 3D

face databases. We show how statistical face models can be improved by reducing the

amount of within variability in the model.

1.5 Structure of the thesis

Chapter 2 reviews the state of the art in machine face recognition focusing in particular

on the area of 3D face recognition.

Chapter 3 describes the concept of surface registration and presents some of their appli-

cations.

Chapter 4 proposes and evaluates a face recognition technique based on a variant of the

iterative closest point (ICP) surface registration algorithm [12]. The residual 3D

distance between two faces after registration is used as a metric for assessing their

similarity. 2D intensity values of the surface texture are also used in a combined

metric and their effect under various poses and facial expressions is analyzed and

discussed.
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Chapter 5 describes a face recognition techniques based on principal component anal-

ysis which is used to construct a 3D statistical face model for classification. A

technique for the construction of statistical shape models based on registration of

manually landmarked 3D faces is introduced. An alternative technique based au-

tomatic rigid surface registration of 3D faces is also introduced. Both techniques

are evaluated by comparing their respective face recognition rates as well as the

compactness, specificity and generalization ability of the models they generate.

Chapter 6 presents an extension to the model-building techniques of Chapter 5. Auto-

matic non-rigid surface registration is used create a more uniform dense correspon-

dence between faces, which is shown to further increase the recognition rates.

Chapter 7 proposes an eigenfeatures approach for performing 3D face recognition by

dividing the face into facial regions and using these regions to perform classification

both individually and via classifier fusion. Furthermore, the within- and between-

class variability of the face across the population is computed. Based on these

measures areas of high variability are removed from the 3D face data in order to

create optimized statistical models.

Chapter 8 describes the contributions of this work and proposes extensions and improve-

ments of the presented techniques.



Chapter 2

Review of Machine Face Recognition

Heraclitus famously stated that“one can not step into the same river twice”meaning that

everything in the world is continuously changing. This entails that scenes in the real world

never repeat themselves in full detail. The challenge for a vision system is to bridge the

differences between various scenes and to detect similarities despite variation within the

class of objects. The human face is one of the many classes for which the identification

problem is studied. Machine face recognition involves the automatic identification of a

person from an input image or sequence of images achieved by comparing facial features

in that input image to images stored in a face database. Recognizing a face can easily

be broken down into a list of sub-problems. First of all, a machine would have to de-

tect a face from an image, normalize it (correct for illumination, size, pose etc.), extract

facial features and finally perform the identification against all faces in the database. Fig-

ure 2.1 shows such a processing pipeline. For identity-based classification to take place

the aforementioned subtasks need to be addressed. Isolating these tasks is also necessary

for tackling one problem at a time. Perhaps more importantly, this modularity encouraged

collaboration between different research groups which have similar subtask requirements

such as, for example, face detection and segmentation which is a common requirement

for facial expression recognition as well as face identification.

In this chapter a brief outline of research in 2D face recognition is given, followed

by a more extensive examination of techniques used for 3D data. For the purposes of
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Figure 2.1: A face recognition pipeline (adapted from [119]).

this review the focus is going to be on the subtask of face recognition even though some

of the methods reviewed here include automatic face detection and feature extraction.

The sections that follow introduce some performance measures in order to examine these

techniques and evaluate their results.

2.1 Performance measures

The performance of a biometric system can be described based on how well it performs

three basic tasks;verification, open-set identificationandclosed-set identification[82].

In order to measure performance, the dataset, whether that is fingerprints, faces or any

other biometric sample, can be divided into three sets of images. The first one is the set

of images of the people that are known to the system, which form the database and are

referred to as thegalleryG. The other two datasets are theprobesets which are presented

to the system for verification or identification. Probe setPG contains different biometric

samples of the same subjects as the ones contained in the gallery while probe setPN
contains samples of people not in the gallery. Subjects inPG are also known asclients

while subjects inPN are known asimposters.

2.1.1 Open-set identification

Open-set identification is when the system has to decide if a probepj is in gallery setG or

not. When a biometric sample,pj, is presented all samples inG are compared to it. When
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pj is compared to a gallery samplegi it produces a similarity scoresij, which is called a

matchscore if pj andgi belong to the same person andnonmatchscore if they belong to

different people. All similarity scores are ranked with the most similar (greatest score) at

the top. A certain rank is denoted by rank(pj) = n which means that a probe face is the

nth largest score.

There are two performance statistics associated with open-set identification, thecor-

rect detection and identification rateand thefalse alarm rate. Initially, it is assumed that

probepj is a probe which has a corresponding unique biometric sampleg∗ in G (i.e.,

pj ∈ PG) and their similarity score iss∗j. Probepj is considered correctly detected and

identified if it is top ranked (rank(pj) = 1) and the similarity score is greater than thresh-

old τ (s∗j ≥ τ ). The correct detection and identification ratePDI for thresholdτ is the

percentage of probes inPG that are correctly detected and identified and it is denoted by:

PDI(τ, 1) =
|{pj : rank(pj) = 1, and s∗j ≥ τ}|

|PG| (2.1)

In other words, it measures, the frequency with which clients are correctly identified as

clients.

Sometimes, the general open-set identification case is reported, which examines the

topn matches between a probe and a gallery. In this case, a probe is considered correctly

identified if the correct match is above the operating threshold and its rank isn or less.

The detection and identification rate at rankn is defined as:

PDI(τ, n) =
|{pj : rank(pj) ≤ n, ands∗j ≥ τ}|

|PG| (2.2)

which is plotted along three axes: detection and identification rate, false acceptance rate

and rank.

The second performance measure related to the open-set identification is the false

alarm ratePFA which measures the number of times the top match is not inPG and the

similarity score is above the operating threshold. In this case it is assumed thatpj is in
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Figure 2.2: examples of a correct match, a failed match and a false alarm based on thresh-
old τ all of which are associated withPDI andPFA.

PN (i.e., pj ∈ PN ) and a false alarm occurs when the top match’s score is greater than

τ [82]:

max
i

sij ≥ τ (2.3)

The false alarm ratePFA reflects the fraction of probes inPN that are falsely thought of

as being inPG and is computed by:

PFA(τ) =
|{pj : maxi sij ≥ τ}|

|PN | (2.4)

Using the client/imposter terminology,PFA measures the frequency with which imposters

are thought to be clients. Figure 2.2 shows examples of a correct match, a failed match

and a false alarm based on thresholdτ , all of which are associated withPDI andPFA.

Naturally, the false alarm ratePFA is correlated with the detection and identification rate

PDI . As the threshold is loweredPFA goes down (fewer imposters are taken for clients).

At the same time however, making the criteria stricter decreases the detection and identifi-

cation ratePDI . By varying the threshold and measuring the two rates,PFA andPDI , one

can plot this trade-off curve on areceiver operator characteristic(ROC) [111]. Figure 2.3

shows the two extreme cases along with a typical scenario.
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Figure 2.3: The best case, worst case and typical case scenario of an ROC curve.

2.1.2 Closed-set identification

The term closed-set identification is used when all probes belong to someone in the gallery

setG and therefore the question asked is which gallery samples resemble the probe more

closely. In other words the similarity scores between a probepj and all faces inG are

sorted and the question is whether the correct match is in the topn matches. The cumula-

tive count is calculated by:

C(n) = |{pj : rank(pj) ≤ n}| (2.5)

The closed-set identification rate for rankn, PI(n) is the fraction of probes at rankn or

lower and it is described by:

PI(n) =
|C(n)|
|PG| (2.6)

2.1.3 Verification

The final performance measure reported is the verification rate. In a typical scenario the

person claims to be a specific person in the gallery. The system will then compare the
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person’s biometric sample with the gallery sample and based on a threshold will accept

or reject the person’s claim. There are two protocols for calculating the verification rate.

The first one is called the round robin protocol in which both probe setsPG andPN are

joined in one probe setP. All scores between probe and gallery set are computed and the

match scores are used to calculate the verification rate:

PV (τ) =
|{pj : sij ≥ τ, id(gi) = id(pj)}|

|P| (2.7)

while all nonmatch scores are used to calculate the false acceptance rate:

PFA(τ) =
|{sij : sij ≥ τ and id(gi) 6= id(pj)}|

(|P| − 1)|G| (2.8)

This protocol is sometimes criticized for joining the two probe sets. Critics argue that in

order to correctly assess the effectiveness of an algorithm one needs to use true (unseen)

imposters. In the round robin protocol, mentioned above, all subjects in the probe set

have a biometric sample in the gallery set too- they are not true imposters. An alternative

solution is called the true imposter protocol in which there are still two probe sets,PG and

PN . The verification rate is computed from the match scores between the gallery andPG:

PV (τ) =
|{pj : sij ≥ τ, id(gi) = id(pj)}|

|PG| (2.9)

and the false alarm rate from all the nonmatch scores between the gallery andPN :

PFA(τ) =
|{sij : sij ≥ τ}|

|PN ||G| (2.10)

2.2 Face recognition in 2D

The problem of face recognition from intensity images is the problem of identifying a

three-dimensional object from its two-dimensional projection. Face recognition appeared

in the engineering literature in the 1960s [21] but serious efforts in automatic face recog-
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nition research started in the early 1970s. The first works published dealt with the prob-

lem by measuring the distances between facial features in order to perform classifica-

tion [106, 108]. Research remained relatively dormant during the 1980s but was revived

during the early 1990s with a particular interest in making face recognition systems fully

automatic. A face recognition system is often very complex as more than one technique

can be used and it is therefore sometimes difficult to classify it into a category.

A brief historical overview of 2D face recognition methods is necessary to provide

the historical foundations for many of the techniques that are nowadays used in 3D face

recognition. In the next sections 2D techniques are divided into feature-based, holistic

and hybrid methods. This is in line with the psychological models discussed in Chap-

ter 1, which also recognized the importance of global and local features as well as their

combination.

2.2.1 Feature-based approaches

Feature-based or structural techniques were used early on in face recognition and involve

methods that try to extract information about a subset of the total information that the im-

age offered, usually involving anatomical landmarks. Kelly [108] used distances between

features, while in his seminal work Kanade [106] used distances and angles between

anatomically distinct features such as eye corners, nostrils and mouth to identify an indi-

vidual. Many years later Coxet al. [49] introduced a mixture-distance technique in which

each face is represented by a collection of thirty manually measured distances. Con-

ducting experiments on a database of 685 people the authors managed to achieve95%

rank 1 recognition, while a simple nearest neighbor search in Euclidean space yielded

84%. Nefian and Hayes [143] as well as Samaria [179] did not attempt to find the exact

location of facial features, but instead implemented a method based onhidden Markov

models(HMM), using strips of pixels across the forehead, eye, mouth, etc. Finally, a par-

ticularly successful system in structural matching methods has been the graph matching

system [145, 216] using thedynamic link architecture[35]. Gabor wavelets are the build-
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ing blocks of the face representation in these graph matching methods. Local features

are represented by wavelet coefficients for different scales and rotations based on fixed

wavelet bases (called jets), which are particularly robust to illumination change, transla-

tion, rotation, distortion and scaling. After the facial features have been located, only jets

visible in both faces are used when comparing a set.

All of the above techniques depend on careful landmarking of the faces (whether auto-

matic or manual) in order to accurately measure differences between faces, as the authors

themselves readily admit [145]. Given that up to today there are no reliable enough meth-

ods to landmark the face automatically, these techniques have serious limitations. Fur-

thermore, particularly in earlier techniques, which simply measured geometric distances

between anatomical features, some parts of the textural information is discarded and the

focus is placed on specific features. The holistic approaches presented in the next section

are trying to explicitly exploit the information in the global appearance of the face.

2.2.2 Holistic approaches

Early techniques [106, 21] focused on detecting individual features and exploiting the re-

lationship between these features. However, research in how humans perform face recog-

nition has shown that the use of these features and their relationship is not enough to

account for the face recognition ability of humans [205]. Ruderman [173] showed that

images of the natural world are easily distinguished from images generated randomly by

a computer because of their particular structure. Furthermore, naturally occurring objects

such as faces are much more structurally regular than man-made objects groups [201].

This structural regularity implies that there is a great amount of redundancy in the human

face that could potentially be exploited in order to describe a face with fewer parameters.

In intensity images the dimensionality of the space depends on the number of pixels in

the input, while in 3D data it depends on the number of points on the surface. Expressing

the faces in a pixel-by-pixel or point-by-point basis is not only unnecessarily dense but

also computationally very expensive.
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Kirby and Sirovich [110, 188] presented a technique for a low dimensional recon-

struction of the face using theKarhunen-Lóeve procedure(KL). The dimensions of the

pixel-space are reduced to a small set in which images are linear combinations of basis

vectors calledeigenpictures. By projecting each face onto each eigenpicture a parameter

(weight) is obtained for each dimension which can be used to describe the face. After

Kirby and Sirovich showed that it is possible to reduce the dimensionality of the face

using the KL procedure many techniques sprung up using this type of projection in order

to perform classification. Motivated by the aforementioned achievement, Turk and Pent-

land [205] used principal component analysis (PCA), a technique closely related to the

KL expansion, to encode the face into a set of weights and used these weights to compare

the similarity between faces. Instead on focusing on local characteristics, theeigenfaces

technique processes the faces holistically and the global features it encodes might not

be the same as a human observer’s notion of features that are pivotal for identification.

The approach presented in Turk and Pentland [205] takes a training set of imagesΓ1, Γ2,

Γ3,...,ΓM and calculates the average of the set by:

Γ =
1

M

M∑
n=1

Γn (2.11)

A vector of differences from the mean,γi, is given by:

γi = Γi − Γ (2.12)

PCA is used on this set of vectors seeking a set ofM orthonormal vectorsun and their

associated eigenvaluesλk which best describe the data distribution. The vectorsuk and

scalarsλk are the eigenvectors and eigenvalues of the covariance matrixC given by:

C =
1

M

M∑
n=1

γnγ
T
n (2.13)

which can be represented asC = AAT whereA = [γ1γ2...γM ]. Using intensity images

of sizeN × N pixels,C becomes computationally prohibitively expensive since it is of
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Figure 2.4: Examples of the principal components of a 2D face image population
(from [83]).

sizeN2 × N2. Since the number of data points is less than the dimension of the space

(M ≤ N2) there are onlyM−1 meaningful eigenvectors and thus one could solve for the

N2 eigenvectors by first solving for the eigenvalues of anM ×M matrixL = AT A and

then taking linear combination of the resulting vectors. With the calculation cost greatly

reduced, the eigenvectors are ranked according to the degree to which they characterized

the variation among the images. Out ofM components theM ′ most significant ones are

heuristically selected and retained. A new faceΓnew is then projected into thefacespace

by:

βk = uT
k (Γnew − Γ) (2.14)

wherek = 1, ...M ′. In other words every face is described by a vector of weightsβT =

[β1, β2, ...βM ′ ] that describes how much each of the principal eigenfaces contributes to

describe the input face image. An example of 2D eigenfaces can be seen in Figure 2.4.

The vector of each face projected on the facespace was used to compare a faceβA to face

βB by computing the Euclidean distance between them:

dE(βA,βB) = ||βA − βB|| (2.15)

The search for the closest match in a face recognition scenario involves finding the face
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that minimizesdE. The logic of the eigenface approach and the reason it works better

than simply comparing pixel intensities is that it uses a model that contains prior shape

information. The former simply compares pixels treats all bit of information equally

and does not take advantage of the high degree or regularity associated with the face.

Furthermore, a simple pixel-to-pixel comparison of two images does not easily allow for

meaningful conclusions about the way that the objects are different. A comparison of the

principal components of two faces, however, can lead to conclusions about nature of the

differences between two faces if what knows what the specific components encode.In

the original publication of Turk and Pentland a database of 2,500 faces (16 subject) was

used, which contained subjects digitized under three head orientations, three head sizes

and three lighting conditions. That system managed to achieve96% rank 1 classification

rate averaged over lighting variation,85% under orientation variation and64% under head

size variation [206].

Moghaddam and Pentland [139] extended the eigenface technique to a Bayesian ap-

proach. Two classes were defined, one representing the intrapersonal variation between

an individual’s image (VI) and another class representing the interpersonal variation due

to different identity (VE). Given an intensity difference between two images∆ = Γ1 −
Γ2 (assuming that both classes have a Gaussian distribution), two probability functions

P (∆|VI) and P (∆|VE) were calculated. An image belongs to the same individual if

P (∆|VI) > P (∆|VE). A comparative study [157] of many face recognition techniques

reported a significant improvement in tests using this method over the traditional nearest

neighbor classification of Turk and Pentland. Li and Lu [120] presented a different way

of making decisions in an eigenspace. At least two prototype images are projected into

the facespace (under different illumination or pose). A line passes through the two images

and forms afeature line(FL) as in Figure 2.5. An input image is identified with a corre-

sponding class, based on the distance between thefeature pointof the image and the FL

of the prototype images. In comparative tests using four well-known databases this tech-

nique returned40% error rates across varying illuminations and poses, compared to the

60% standard eigenfaces technique [205].Despite these improvements, in the chapters
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Figure 2.5: Two projections of facesx1 andx2 have a line pass through them forming
a feature line (FL). An input image is associated with a corresponding class, based on
the distance between the feature point of the image and the FL of the prototype images
(from [120]).

that follow, the standard nearest neighbour classification will be used. That is for two rea-

sons. Firstly, the latter is a more popular way of performing classification in PCA-based

approaches and will therefore make comparisons between techniques more valid. More

importantly, however, the method above needs at least three images; two for the gallery

set and one to probe with. The experiments presented in later chapters were performed

using only two images; one for the gallery set and one for the probe set.

Another way to compensate for pose differences within the subject class is the ap-

proach of Princeet al. [162]. They proposed a mapping from a traditional feature space

to a space constructed so that each feature vector is associated with an individual regard-

less of pose. Based on this, they introduce some observation features that are particularly

good for face classification across large pose variations. Combined with a probabilistic

distance metric their experiments on the FERET database yield higher recognition rates

than other contemporary methods.

Linear Discriminant Analysis (LDA) is another dimensionality reduction technique

for dealing with an M-class problem and has been used extensively [9, 57, 194, 226, 227].

It is often called Fisher’s Linear Discriminant to which it is closely related. PCA tries to

maximize the scatter between all classes making no distinction between variation due to

identity or illumination. Belhumeur [9] tried to avoid that by using LDA which creates

such a reduced-dimensionality space where the ratio of the between- and within-class

scatter is maximized. In other words, when using PCA the facespace is constructed so

that the faceobject is represented “optimally” while when using LDA, a discriminant
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subspace is created to “optimally” distinguish faces ofdifferentpeople. This could poten-

tially make classification more effective as the within-class variation is taken into account.

Figure 2.6 demonstrates the effect of Fisher’s linear discriminant analysis compared to a

PCA-generated space. Since the number of pixels in images is larger than the number of

images in the training set it is possible for the within-class scatter of the projected samples

to be zero. To avoid this problem PCA is first carried out on the data (Wpca) to reduce

the dimensions of the dataset and Fisher’s linear discriminantWfld [61] is then applied

obtaining an optimal facespaceWopt by:

Wopt = WfldWpca (2.16)

Comparative studies show that this technique, known asfisherfacesproduces lower error

rates than a space generated using only PCA [9]. In conclusion, these linear techniques

avoid the pitfalls associated with the early geometric feature-based techniques, yet are

not accurate enough to deal with nonlinearity in face modeling. For that reason these

linear techniques have been extended to using nonlinear kernel techniques such as kernel

PCA[181] and kernel LDA [138]. These generally perform better on the training data but

may perform worse in unseen faces due to their flexibility and possible over-fitting to the

training set.

Another derivative of PCA that has been used, is theindependent components anal-

ysis (ICA) which utilizes higher order statistics to achieve greater classification power

than PCA [8]. ICA effectively separates a multivariate signal into additive subcompo-

nents on the assumption that the non-Gaussian source signals are mutually statistically

independent.

Support vector machines(SVM) are another way in which the classification problem

has been dealt with. Given that one wants to classify points in a multidimensional space,

one is interested in splitting them by a hyperplane that separates the data points, with

the maximum distance to the closest data point from both classes. Phillips [158] used an

SVM-based algorithm on a difficult set of images from the FERET database and compared
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Figure 2.6: A comparison of the subspaces created with PCA and Fisher’s linear discrim-
inant (from [9]).

it to a PCA-based one (400 images, 200 subjects). The rank 1 rate for SVM was77−78%

versus54% for PCA. For verification, the equal error rate was7% for SVM and13% for

PCA. Finally, neural networks have also been used in the holistic approach, the idea

being that greater generalization can be achieved through learning. Linet al. [124] used

a probabilistic desision-basedneural network while Liu and Wechsler used theevolution

pursuitmethod [126].

2.2.3 Hybrid approaches

As discussed in Chapter 1 the human brain is affected by both global and local features

for identifying faces. Based on that, Pentlandet al. [154] used PCA on the whole face

in combination with a modular technique which involved the generation of “eigeneyes”,

“eigennose” and “eigenmouth”. This modular representation yields higher recognition

rates and provides a more robust statistical model in lower dimensions of the eigenspace,

but when the combined set is used the improvement is marginal. It was argued, imitating

the brain once again, that it might be optimal to assign weights to local and global features

in order to shift between them depending on the amount of gross variations that are present

in the input images. The authors hypothesize that the potential advantage of the modular
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representation is that it can overcome some of the shortcomings of the standard eigenface

approach. For example, the latter can be fooled by gross variations in the input image

such as facial hair, glasses, etc.

Local feature analysis (LFA) is another technique that has been proposed in order to

describe objects in a low-dimensional space in terms of the local feature characteristics

and their positions [153]. A more robust system could be built by estimating eigenfaces

that have large eigenvalues, while for higher-order eigenmodes LFA might be more ap-

propriate.

Statistical model-based techniques for intensity images have also proven popular. A

flexible appearance model-based method for automatic face recognition was proposed by

Lanitis et al. [113] who used both shape and greylevel information (texture). Anac-

tive shape model(ASM), which iteratively deforms to fit an unseen example was used

to describe shape. Initially the ASM is trained using PCA on the coordinates of selected

landmark points of the training set. In order to perform classification, discriminant anal-

ysis is used in order to separate interclass from within-class shape variation, caused by

small changes in orientation and facial expression. Using the mean model shape, PCA

is used again to construct a global shape-free model (Figure 2.7). To further strengthen

this method, local greylevel models are constructed on the shape model points using sim-

ple local profiles perpendicular to the shape boundary. When given an input image all

three types of information, shape parameters, shape-free global image parameters and the

extracted profiles on model points, are used for classification by computing the nearest

neighbor in a Mahalanobis space. Using 10 images to train and 13 images from each of

the 30 subjects arank 1rate of92% for 10 normal images was reached and48% for the

three remaining more challenging ones. A similar approach for modeling appearance has

been developed by Jones and Poggio [104] calledmultidimensional morphable model. A

3D extension of the aforementioned models is the3D morphable model[18, 20, 94],

which is based on similar principles. Its application has been in 2D face recognition, but

since a 3D model is constructed this work is going to be reviewed in more detail in the

next section.
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(a) Shape modes (b) Appearance modes

Figure 2.7: The first two principal modes of shape (a) and appearance (b). The face in the
middle of each mode shows the mean (from [53]).

2.3 From 2D to 3D face recognition

2D face recognition is a much older research area than 3D face recognition research and

broadly speaking, presently the former still outperforms the latter.Three-dimensional

techniques might in the future take over classical ones, because 3D data offers a wealth

of information that 2D images do not.The next section examines some of the inherent

differences between 2D and 3D face recognition.

2.3.1 Advantages and disadvantages of 3D face recognition

As previously discussed, 2D images are sensitive to illumination changes. The light col-

lected from a face is a function of the geometry of the face, albedo, the properties of the

light source and even the specification of the capturing equipment. Given this complexity,

it is difficult to develop statistical models taking all these variations into account. Train-

ing over different illumination scenarios as well as normalization of 2D images has been

used, but with limited success. In 3D images, variations in illumination are irrelevant as

the captured shape remains intact [89]. Another factor affecting comparability has been

variation in pose. Effort has been put into transforming an image into a canonical posi-

tion [109] but this relies on accurate landmark placement and does not tackle the issue of

occlusion. Moreover, this particular task is nearly impossible due to the projective nature

of 2D images. Li and Lu [121] proposed an alternative design using a SVM-based multi-

view face detection and recognition framework, which stores and models different views
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of the face. Many face detectors are employed, which are trained on specific views. The

appropriate one is chosen using support vector regression and this helps improve the ac-

curacy and reduce the computations required. This framework, however, requires a large

number of data from many views to be collected. Statistical models [47] have addressed

the pose variation problem but have not completely solved it.One of the most promising

techniques has been presented more recently by Blanzet al. [17]. They used their 3D

morphable model to estimate the 3D shape of novel faces from the non-frontal 2D input

images and to generate frontal views of the reconstructed faces. These frontal views are

then used for recognition instead of the original non-frontal ones. Using five images of 87

subjects they managed to reach rank 1 rates of85.6% for non-frontal views (more on the

3D morphable model in Section 2.4.3). Higher rates of up to92% are reached in Gross

et al. [79] using Eigen Light-Fields on near-profile images of the CMU PIE and FERET

databases. Prince and Elder [163] proposed a generative model that creates a one-to-many

mapping from and ideal identity-space to the observed (input) space. In the ideal iden-

tity space the representation for each individual does not vary with pose. Using seven

different poses for each of the 320 individuals they extracted from the FERET database

(220 for training, 100 for testing) they managed to reach rank 1 rates of100% for a22.5◦.

Performance at67.5◦ is at94% and at90◦ 86% correct first choice matches. Both of the

latter techniques, however, require the algorithm to be trained across an array of poses for

each subject.Pose variation in a 3D data scenario can be minimized (if not rendered irrel-

evant) depending on the pre-processing or capturing method used. Another fundamental

problem with 2D sensors, which is also related to pose, is that the physical dimensions of

the face are unknown. The size in this case is a function of the distance from the sensor

and it is therefore imperative for all 2D systems, independently of the technique is used,

to standardize the faces before processing them. In 3D images the physical dimensions of

the face are known and are inherently encoded in the data.

Apart from overcoming the above shortcomings of 2D data, 3D images are better at

capturing surface-based events and more appropriate to describe certain properties of the

face that 2D images can not. Traditional 2D-based face recognition focuses on high-
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contrast areas of the face such as eyes, mouth, nose and face boundary because low con-

trast areas such as the jaw boundary and cheeks are difficult to describe from intensity

images [75]. 3D images, on the other hand, make no distinction between high- and low-

contrast areas.

3D face recognition, however, is not without its problems. Illumination, for example,

may not be an issue during the processing of 3D data, but it is still a problem during

capturing. Depending on the sensor technology used, oily parts of the face with high re-

flectance may introduce artifacts under certain lighting on the surface (Figure 2.8). The

overall quality of 3D data collected using a range camera is perhaps not as reliable as 2D

intensity data, because 3D sensor technology is currently not as mature as 2D sensors.

Another disadvantage of 3D face recognition techniques is the cost of the hardware. 3D

capturing equipment is getting cheaper and more widely available but its price most often

can not be compared to a high resolution digital camera. Moreover, the current compu-

tational cost of processing 3D data is higher than for 2D data. The processing involved

makes a lot of the 3D techniques impractical for real-time environments. Both of the

above hardware issues are problems today, but given the trend in pricing, one can ex-

pect the capturing and computational hardware to become an increasingly smaller cost. A

more important disadvantage of 3D capturing technology is the fact that capturing 3D data

requires cooperation from a subject. As mentioned above, lens or laser-based scanners re-

quire the subject to be at a certain distance from the sensor. Furthermore, a laser scanner

requires a few seconds of complete immobility, while a traditional camera can capture

images from far away with no cooperation from the subjects. A final disadvantage of 3D

technology is data related. There are still not as many publicly available, high-quality

3D face databases as for 2D data and moreover, the vast 2D legacy databases build by

law-enforcement agencies world-wide could be rendered unusable if 3D scans become

a standard biometric modality. It is partly because of this 3D data shortage, especially

in the early stages of 3D face research, that a lot of researchers reported very promising

identification rates, which drop sharply when applied to larger databases.
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Figure 2.8: 3D data capture errors due to illumination. The image on the left is captured
with light that is appropriate for the sensor used while the image on the right was captured
when an additional studio spotlight was used (from [24]).

2.4 An overview of 3D face recognition

The earliest research in 3D face recognition was presented in 1989 [38], but for most of

the 1990s there was little work done in the area. By the end of the last decade interest in

3D face recognition was revived and has increased rapidly since then. In the sections that

follow, an overview of relevant research in techniques using 3D data is presented. Once

again, many approaches are difficult to classify as they often combine many techniques. In

this review the techniques have been broadly divided into three categories: surface-based,

statistical and model-based approaches. Within each category an attempt was made to

group similar techniques together, rather than to report findings in simple chronological

order.

2.4.1 Surface-based approaches

Surface-based approaches are approaches that describe faces by explicitly using the sur-

face geometry, whether by relying on local or global curvature, profile lines or distance-

based metrics.

2.4.1.1 Local methods

More specifically,local surface-based methods are methods where local features such as

eyes, nose and mouth are extracted from each face and their respective characteristics
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compared.

With the availability of 3D data a lot of researchers early on tried to harness the dis-

criminatory power in curvature information. Lee and Milios [115] tried to match similar

local, facial characteristics together in order to perform comparisons. Facial features cor-

respond to convex regions of the face scan and based on the sign of the mean and Gaussian

curvature anExtended Gaussian Image(EGI) is created for each region. An EGI is a 1-1

mapping between all points in a feature region and points on the unit sphere with the same

normals. By correlating the EGIs of regions a similarity metric is established, which is

used in concurrence with a graph matching algorithm with relational constraints to es-

tablish optimal correspondence between convex regions. This proposal is able, up to a

certain extent, to deal with facial expressions, but is insensitive to change in object size.

The reason for this improvement in dealing with facial expressions is because convex re-

gions of the face that this technique uses, do not change as much as other regions between

facial expressions [115]. The authors did not report face recognition results. Years later

Gordon [75] used the surface curvature in order to segment the face into its features. The

features are defined in terms of a high level set of relationships of depth and curvature

values and the extraction is implemented as a constrained search on the surface. For each

pointp on the surface, a curve is formed by intersecting the surface and the normal plane

in a tangent directiont. The curvature of this planar curve is the normal curvatureκn

at pointp in the directiont. The principal curvatures,Kmax andKmin, are defined by

the maximum and minimum normal curvatures at each point. The Gaussian curvature

K at each point is then defined by the productKmaxKmin and the mean curvatureH by

(Kmax + Kmin)/2. Using these curvature maps features such as eyelids and noses are

extracted and each face is represented by a vector of feature descriptors. The comparison

to another face takes place in that feature space and as long as the features are correctly

detected and there is no variation due to facial expressions, the descriptors belonging to

the same person are very similar allowing for good classification by identity. Using three

views of eight faces, rank 1 rates between80% and 100% were reported. Morenoet

al. [141] also used three-dimensional descriptors to compare facial surfaces. Once again,
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using the signs of the mean and Gaussian curvatures, the facial features with pronounced

curvature are segmented. Eighty-six non-independent features from the segmented re-

gions are then obtained and for each image a feature vector is created. Using the Fisher

coefficient [84] the 35 more powerful descriptors out of the whole set of 86 are selected

and the authors managed to achieve rank 1 rates of78% and92% in rank 5 experiments

on datasets of 60 individuals which included small rotations and facial expressions. The

great difference between rank 1 and rank 5 rates is not surprising since it is much eas-

ier for the correct match to be in one of the five most similar matches. A further use of

curves for local feature analysis was proposed by Leeet al. [118] who extracted three

curvatures, eight invariant feature points and their relative features using the geometric

characteristics of the face. By relative features the authors refer to the distances and the

ratios between feature points and the angles between feature points extracted previously.

Using two classification techniques, a feature-based SVM and a depth-baseddynamic

programming(DP), Leeet al. reported rank 1 rates of96% using100 subjects.

Another locally-oriented technique is based on usingpoint signatures, an attempt to

describe complex free-form surfaces, such as the face. It was proposed by Chua and

Jarvis [45] as a form of representation of the structural neighborhood of a point in a more

complete manner than just using its 3D coordinates. These point signatures could then

be used for surface comparisons by matching the signatures of data points of a “sensed”

surface to the signatures of data points representing the model’s surface. Figure 2.9 shows

some example point signatures for various types of surfaces. Point signatures like these

are used in a later publication by Chuaet al. [44] for comparing faces. Firstly these

signatures are employed for rigidly registering the faces to each other and then they are

used for face-to-face comparisons. In order to make the algorithm more robust to variation

due to facial expressions the part of the face that is particularly non-rigid (mouth and

chin) is automatically discarded and just the rigid parts (forehead, eyes, nose) are used for

comparison (Figure 2.10).

Extracted shape features from 3D feature points and texture features from 2D feature

points are first projected into their own subspace using PCA.
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Figure 2.9: Point signature examples: (a) peak, (b) ridge, (c) saddle, (d) pit, (e) valley, (f)
roof edge (from [45]).

Figure 2.10: Removing the non-rigid part of the face to perform surface-based recognition
(from [44]).
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Point signatures were also used in Wanget al. [213] but previous work was extended

by fusing extracted 3D shape and 2D texture features. In the 2D domain Gabor filter

responses are used to get feature points. Both the 2D and 3D features are projected into

their own subspaces using PCA.The two vectors are then normalized to form a combined

vector to represent each facial image. The classification is done using SVM and adecision

directed acyclic graph(DDAG) and the rank 1 rate involving 50 people with various

facial expressions taken from different viewpoints exceeded90%. What is notable is that

the recognition rate using this combined feature vector is significantly higher when using

either modality by itself.

A hybrid technique using both local and global information was developed by Xuet

al. [219]. A scattered 3D point cloud is first represented with a regular mesh using hier-

archical mesh fitting.Then local shape variation information, in the form ofGaussian-

Hermite momentsalong with a 3D mesh representing the whole facial surface, is used

to describe the individual. Both global (surface mesh) and local (Gaussian-Hermite mo-

ments) information is encoded as a combined vector in a low-dimensional PCA space and

matching is based on minimum distance in that space.It was noted that variation near the

mouth, nose and eyes is particularly important for characterizing the individual. Using

30 faces Xuet al. demonstrated that taking into account the local shape variation can

improve the rank 1 rate allowing it to reach92%. These rates, however, decrease to72%

when 120 faces are used. This sharp difference in score is discussed later in this chapter

were the importance of using large enough datasets for testing and evaluation is discussed.

2.4.1.2 Global methods

Global surface-based methods are considered methods that use the whole face as the input

to a recognition system. The earliest method that uses both global and local features is the

one presented by Cartouxet al.[38]. In that work the face’s plane of bilateral symmetry is

located by segmenting the range image based on the principal curvature. This plane is then

used to align the faces to each other in order to compare facial profiles extracted as well

as the whole surface using the distance between them as a similarity metric. Conducting
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experiments on a limited 5-person database,100% rank 1 rate was reached.

Similarly to Lee and Milios [115], Tanakaet al. [196] represent the face based on

the analysis of maximum and minimum principal curvatures and their directions. But

contrary to the former, this technique does not require face feature extraction or surface

segmentation. Each face is represented as an EGI by mapping the curvatures at each sur-

face point onto two unit spheres, representing ridge and valley lines respectively. Fisher’s

spherical correlation is then employed on the EGIs of faces to evaluate the similarity be-

tween faces.100% rank 1 rates are reached on 37 subjects. EGIs are also used in Wong

et al. [217] to summarize surface normal orientation statistics. The authors recognized

the inadequacies of the original EGI representation in distinguishing between subtly dif-

ferent classes of head models and instead used genetic optimization algorithms to search

for an optimal transformation for these surface normal orientations. The transformed dis-

tributions for these random variables are then used as the modified classifier input. Two

classification methods based on minimum distance were also suggested, which had to be

trained, initially, to maximize correct classification before they could be tried on test data.

This technique was tried on a dataset of five subjects and a rank 1 rate of80.08% was

achieved. On experiments using synthetic data, however, when the set is increased from

6 to 21 subjects there is a decrease of10% in the recognition rate.

Various distance-based techniques have also produced good results. TheHausdorf

distancehas been used extensively for measuring the similarity between two sets of

points [172]. It is a general measurement and it can be applied to a variety of problems.

TheundirectedHausdorff distance between two point setsA andB is defined as:

H(A,B) = max(h(A,B), h(B, A)) (2.17)

whereh(A, B) represents thedirectedHausdorff distance:

h(A,B) = max
a∈A

min
b∈B

||a− b|| (2.18)
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and ||x|| is a norm. However, if the surfaces are very close to each other,h(A,B) and

h(B, A) are small, which results inH(A,B) being small. To tackle this issue Ackermann

and Bunke [1] used thepartial Hausdorff distance defined as:

HLK(A,B) = max(hL(A,B), hK(B,A)) (2.19)

where only theL andK closest points in setsA andB respectively are taken into consid-

eration. The directed partial Hausdorff distance in this case is:

hL(A,B) = Lth
a∈Amin

b∈B
||a− b|| (2.20)

whereL is theLth ranked distance from any point inA to B, where distances are ranked

in increasing order. Before comparing one face to another, the faces had to be aligned to

each other. To do that a plane is fitted into a given set of data and is rotated around thex−
andy−axis until it becomes parallel to the focal plane of the camera. The 3D version of

the partial Hausdorff distance is used to measure the similarity between probe and gallery

images. This method was applied on 240 images (10 images for each of the 24 people)

and rank 1 rates of up to100% were achieved. Panet al. [150] use a priori knowledge

about the structure of the face and its features, such as the prominence of the nose, to

align the input data with a face stored in the database by minimizing the partial directed

Hausdorff distance and solving forT :

min
T

hL(A, T (B)) (2.21)

whereT is a transformation group (translation, rotation, scaling). After the faces are

aligned the directed partial Hausforff distance is used as a similarity metric once again

and on a database of 30 individuals an equal error rate (EER) as low as3.24% was re-

ported. For comparative reasons an approach using PCA was also implemented and the

best EER achieved was5%. Lee and Shim [117] used adepth-weightedHausdorff dis-

tance combined with the surface curvature information in order to measure the similarity
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between faces. This version of the Hausdorf distance reports rank 1 rates of up to98%

while the traditional implementation of the Hausdorff distance yields below90% in ex-

periments on a database of 42 people. Further optimizations of the Hausdorff distance

approach have been proposed such as in Russet al.[176] where a way to reduce the space

and time complexity of the search for the closest match was proposed by modifying the

standard 3D formulation of the Hausdorff matching algorithm to operate on a 2D range

image.

Medioniet al.[135] used theiterative closest point algorithm(ICP) (see Section 3.2.2)

to register two surfaces and to generate a distance map based on the distances between

pairs of points. Comparison of these maps yielded a recognition rate of90% using 100

subjects. What is also interesting is that instead of using a structured light sensor for

data collection a passive sensor is used, illustrating theireligibility as a hardware option.

A passive sensor is a system in which two cameras with known geometric relationship

collect images from the subject, the system finds correspondences between the two im-

ages and the 3D location of the points can be calculated. In our 2004 publication [151] a

face recognition technique was introduced and evaluated, which uses the iterative closest

point algorithm to register two facial surfaces and calculate their similarity. The simi-

larity between faces is computed by measuring the average point-to-point distance from

one surface to the other. Furthermore, the differences in texture intensity between sets of

corresponding points is included in the metric (see Chapter 4). A similar technique was

presented a year later by Maureret al.[133] using a more complex score fusion technique.

Lu et al.[127] extended our method on two levels. The authors made the rigid registration

more robust by introducing a coarse initial rigid registration step by performing automatic

detection of a few easily locatable landmark points. A finer surface registration is then

performed usinghybrid ICP. In the surface evaluation stage the same metrics are used as

in our publication (surface+texture), but the shape index at each point is also compared.

The shape index has been derived from the maximum and minimum local curvature. In

experiments using 18 faces that included some semi-profile faces and some with facial

expressions, a rank 1 rate of92% was achieved. In 2005, Lu and Jain [128] proposed a
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Figure 2.11: Examples of displacement vectors generated between facial surfaces of the
same subject (bottom) and of different subjects (top) (adapted from [128]).

model in which after rigidly registering the surfaces using ICP, thin plate splines (TPS)

are used to estimate the non-rigid transformation from one surface to another. In order

to make the classification more robust, the intra- and inter-subject variation in deforma-

tion using a small training set are measured and compared to each other. This provided

a general scheme to distinguish deformations due to identity from deformations due to

facial expressions. Figure 2.11 shows the inter- and intra-subject deformation when a

smiling face is compared to neutral ones. These deformation fields are fused with the

average point-to-point distance map and SVM is used to perform the classification. Using

a 100-person dataset with neutral and smiling data Lu and Jain found that most of the in-

correct identifications are due to smiling. After non-rigid deformation these are reduced

substantially and89% rank 1 rates were reached using 3D data and91% using 3D+2D.

Another sub-family of techniques employed is the one using profiles extracted from

the face. In early work by Nagamineet al. [142] five feature points are used to align

the range data to each other. Curves of intersections, called “sections”, which were con-

sidered important for recognition are then extracted across the central region of the face.

These were the horizontal plane across the eyes, the vertical plane splitting the face in half

and a cylindrical section around the nose (Figure 2.12). The range data along each section

forms a feature vector which can then be compared to other vectors using the Euclidean
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Figure 2.12: Curves of intersections used for feature-based recognition (from [142]).

distance. Rank 1 rates of up to100% were reported using this technique on 16 subjects

with 10 images per subject. This technique, however, is reliant on good landmark selec-

tion for the initial dataset alignment. The authors underline that “correct” registration of

the datasets is pivotal for achieving good recognition rates.

More recently Beumier and Acheroy [13] employed vertical profiles of 3D models.

The central profile and an average of the two lateral profiles are used (Figure 2.13) for

comparisons, both of which are extracted automatically from the surface. After align-

ing the profiles to each other the similarity between them is calculated by measuring

the average nearest neighbor distance and an error rate of9% on a dataset of 30 peo-

ple was reported. This technique was extented further by using 2D information [14]. A

weighted sum of four classifiers (2 shape profiles, 2 texture profiles) is used for classifi-

cation. The coefficients of this linear combination are estimated using Fisher’s method,

which searches for the hyperplane that best separates client and imposter scores. The

error rate with the fused scores was reduced to1.4% using 27 faces, which was signif-

icantly better than either modality by itself. Others have used a different set of profiles

to reach similar conclusions. Wuet al. [218] used the central profile and twohorizontal

crossing profiles across the nose and the forehead. Profiles in the sensed data are aligned

to the database data by using an automatic technique minimizing the partial Hausdorff

distance which is also used as a similarity metric. Using the same dataset as Beumier and

Acheroy [13, 14], an error rate between1.1% and5.5% was achieved.
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Figure 2.13: Vertical profile lines used for recognition. The central profile is used along
with the average of two lateral profiles (from [13]).

Figure 2.14: Horizontal profile lines used for recognition (from [218]).
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2.4.2 Statistical approaches

PCA-based techniques are widely used for 2D facial images. More recently, PCA-based

techniques have also been applied to 3D data. Mavridiset al. [134] presented a technique

using PCA for face recognition, but it was only in a publication a year later [203] that PCA

is used to evaluate three modalities of face recognition: color, depth and a combination

of color and depth. Using 40 subjects, a rank 1 rate of almost99% was achieved with

the multi-modal algorithm performing significantly better than 3D or 2D alone. In a later

publication Tsalakanidouet al. usedembeddedhidden Markov models (EHMM) instead

of eigenfaces in order to combine depth and intensity images. This approach resulted in

an error rate between7% and9%[202].

Hesheret al. [89] also presented a method using PCA. One of the reoccurring issues

discussed later in this thesis is the need, when using PCA, to align the data “correctly”.

Hesheret al. achieve this by converting the 3D data to 2D depth maps, thus simplifying

the problem computationally and using a feature line on the nose to perform rigid regis-

tration. What they then assume is that pixels on the 2D images with the same index value

correspond to each other. The depth maps are later trimmed by fitting an ellipse around

them, thus reducing the effects of noise on PCA classification. In their paper the gallery

used contained six images for each of the 37 subjects. This is known to improve the re-

sults significantly. The authors explored the effects that the gallery and testing size have

on the recognition rates by manipulating these parameters across experiments. The best

rank 1 rate achieved was90% using the largest number of training samples (185) and 37

images for testing.In contrast using 37 images for training (1 for each of the 37 subjects)

and 185 for testing reduced the rank 1 rates to83%.

Changet al. [39] presented a very extensive study of PCA-based face recognition us-

ing 2D and 3D facial data. Once again the range images collected are converted into depth

maps which are normalized for pose using manually selected landmarks. Experiments are

conducted to evaluate the effects of reducing the spatial and depth resolution of images

giving insights into the sensor accuracy level needed to meet the requirements of face
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recognition tasks.Their results with 3D and 2D data provide a valuable insight into the

fidelity of depth representation that is required for face recognition. Their experiments in-

dicate that 2D-based techniques are less sensitive to a degradation in quality while 3D are

more sensitive. Starting with an initial130× 150 2D image they got89% using the whole

image in 2D. The rank 1 rates were reduced only marginally until the image was reduced

to 25% of its original size when they dropped to79%. On the other hand using130× 150

3D range images the rank 1 rate dropped to61% when the image was reduced to35% of

the original size. The authors warn the reader, however, not to jump to conclusion about

this disparity in sensitivity between 2D and 3D images until the 3D capture technology

matures enough.What is also important in this study, is that the extensive database of

676 probes used, includes images of people that are taken over many weeks, introducing

variability due to time, which is generally absent from 3D datasets. Multimodal rank 1

recognition using nearest neighbor reached99% while 3D and 2D reached94% and89%

respectively.

Just as with 2D data, LDA has also been applied to 3D data. Gökberk et al. [71]

made use of various approaches to 3D face recognition on the same dataset. ICP-based

point cloud representations, normal-based representations, PCA and LDA-based depth

map techniques and profile-based approaches are compared. The LDA-based technique

performs best, but point cloud and normal-based classifiers came close seconds. It was

also concluded that PCA-based techniques are sensitive to alignment issues. LDA is

not so sensitive since it takes into account within-class variability, which also includes

registration errors (see Section 2.2.2). Three classifiers are finally combined (normal-

based, LDA-based, profile-based) using nonlinear rank-sum method, and rank 1 rates of

99.07% were reported while using the LDA-based classifier by itself achieved96.27%.

Some of the more interesting variations of statistical approaches have been developed

in an effort to minimize the effects of facial expressions. Empirical observations show that

facial expressions can be modeled as length-preserving (isometric) transformations which

do not stretch or tear the face and thus preserve the surface metric. Schwartzet al. used

multidimensional scaling(MDS) to flatten complex surfaces of the brain onto a plane in
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Figure 2.15: A hand undergoing an isometric transformation converting the geodesic dis-
tance between points into Euclidean. Despite the differences in the hand gestures the
geodesic distances between the two points after the transformations remain similar [28].

order to study their functional architecture [182]. Zigelmanet al. [229] and Grossman

et al. [81] extended these ideas to texture and voxel-based cortex flattening. Elad and

Kimmel [54] introduced a generalization of this approach in the field of object recogni-

tion. Figure 2.15 shows a hand undergoing isometric transformations which convert the

geodesic distance between points into Euclidean. Under the assumption that the geodesic

distance between parts of the face changes very little due to facial expression Bronsteinet

al. [27, 28] applied this to facial surfaces so that they are invariant to isometric deforma-

tions. It is noted that deformations due to facial expressions can be modeled as isometries

while maintaining the intrinsic geometric properties of the face intact. Figure 2.16 shows

three faces of the same person with strong facial expressions. Nevertheless, the canonical

representations of the facial surfaces do not appear to change significantly. All images

in the database are flattened as shown in Figure 2.17 and the flattened texture together

with the canonical image are used with PCA on a database of 30 participants reaching

100% recognition rates. Furthermore, the authors claimed that using this technique, it

was possible to distinguish between identical twins as well.

A similar technique involving the mapping of a 3D facial surface to an isomorphic

planar space was proposed by Panet al. [149]. The authors claimed that this mapping

scheme transforming data “from 3D spatial space to an isomorphic planar space provides

a trade-off among different features of the surface while trying to preserve them”. This

approach is more flexible and adaptive than the Bronstein solution. Aregion of interest

(ROI) from the face is initially extracted by detecting the facial bilateral symmetry plane
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Figure 2.16: Faces with strong facial expressions (top) and their canonical forms (bottom).
Notice how despite the apparent change in the 3D structure the canonical forms of the
faces remain remarkably similar [28].

Figure 2.17: Texture mapping of the facial surface (A), in canonical form (B), the resulting
flattened texture (C), and the canonical image (D) [27].
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Figure 2.18: The nose is automatically detected as the vertex on the central profile curve
with the maximum distance to the line through both ends of the curve. The region of
interest is extracted using a sphere on the nose tip (from [149]).

Figure 2.19: After the region of interest (ROI) is extracted using a sphere placed on the
nose tip, the mapped ROI (left) is generated along with the mapped relative depth image
(right) (from [149]).

and finding the nose tip as in Figure 2.18 (top). A reference plane is then built through

the nose tip for calculating the relative depth values (Figure 2.18 (bottom)). The ROI is

triangulated and parameterized into an isomorphic 2D planar circle, trying to preserve

the geometric properties of the face (Figure 2.19). The depth values at each point are

mapped on the planar circle and PCA is performed on it. It is claimed that this technique

is insensitive to pose variation and95% rank 1 rates is reported,5% more than the baseline

PCA technique it was compared to.

Generally speaking, PCA is a powerful technique for dimensionality reduction of the

feature space. It has been noted, however, that the performance of this technique dete-

riorates with a larger database as it starts getting affected by outliers which appear more

often as the database size increases. In order to deal with a skewed facespace some re-
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searchers have focused on optimizing the reduced dimensionality projection. Srivastavaet

al. [192] used PCA,independent component analysis(ICA), Fisher’s discriminant analy-

sis(FDA) and other techniques for classification with the primary aim to find the optimal

k-dimensional subspaces ofRn wheren is the size of the images used andk is the desired

dimensionality of the feature space.In other words, they used an optimal component

analysis in order to learn the subspace (i.e. a stochastic optimization algorithm) to find a

subspace that maximizes the performance of the classifier on the training image set.This

way, the problem is reduced to an optimization task and once the optimal projection is

found the recognition rates are significantly higher than the ones obtained from an non-

optimized feature space. Using nearest neighbor classification on a “optimal” PCA-space

increased the face recognition (rank 1) to99% from 77% in a sub-optimal facespace. Sim-

ilar increases are also observed using the other statistical methods. However, this tech-

nique requires a significant amount of computation since there is no closed-form solution

to the optimization problem dealt with.

2.4.3 Model-based approaches

Blanz and Vetter [19] proposed a technique that uses a statistical 3D model of the face,

based on high resolution laser scans. This 3D model is employed to assist face recognition

of 2D images. This 3D representation of a face tries to accurately model the illumination

and pose variation and separate these from the variation caused from the face itself due to

identity and facial expression. In theory this would make a face recognition method more

robust to pose and illumination changes. The goal is to be able to use this statistical 3D

model to synthesize a 2D image of the face that is as similar as possible to the input image.

The parameters of the synthetic face can then be used for identifying the individual.

The work involving the 3D morphable model can be divided in two parts; generating

the statistical model and morphing it to fit the input data. As discussed in Chapter 5 in

more detail, establishing good correspondence between features is important for creating

good models. Past techniques ( [50, 113, 211]) build a statistical face model from separate
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shape and texture vector spaces.

Instead of using pixel intensities from 2D images, Blanz and Vetter used 3D data to

extract shape information and build statistical models. This image synthesis method is

based on the assumption that 3D object classes are linear and that this linearity extends to

2D projections of 3D objects [210]. The linear shape model is extended from a feature-

based representation to full images of the objects and is in principle very similar to the

active shape model of Cooteset al. [48].

For building the 3D morphable model, 200 face scans consisting of 70,000 points

were used. The data is stored in cylindrical coordinates relative to a vertical axis. The

scanner measures the radiusr and the red, green and blue components of the surface

texture (RGB) in angular stepsφ and vertical stepsh. The head is parameterized as a

cylindrical representation:

I(h, φ) = [r(h, φ), R(h, φ), G(h, φ), B(h, φ)] (2.22)

At the core of the model-building process lies the dense correspondence calculation using

optical flow to find the dense vector fieldv(h, φ) = [∆h(h, φ), ∆φ(h, φ)] so that all points

in two face scans,I 1(h, φ) andI 2(h+∆h, φ+∆φ) correspond to each other. The pairing

of points is achieved by minimizing the following cost function:

E =
∑

h,φ∈R

||vh
∂I(h, φ)

∂h
+ vφ

∂I(h, φ)

∂φ
+ ∆I ||2 (2.23)

which is a modified version of a typical optical flow algorithm. In eq. 2.23I is normalized

by:

||I ||2 = wrr
2 + wRR2 + wGG2 + wBB2 (2.24)

The weights,wr, wR, wG, wB are chosen heuristically to compensate for the variation of

different components and to control the overall weighting of texture and shape informa-

tion. After correspondence has been established, PCA is performed on the shape and

texture vectors. Using the resulting model it is possible to generate novel faces as a lin-
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ear combination of the shape and texture principal components. In order to generate a

larger variety of different faces these linear combinations of shape and texture are com-

puted separately for different areas of the face. These areas are defined on the reference

face manually once and are then propagated across all scans, given that the correspon-

dence is established. These areas are the eyes, the nose, the mouth, and the surrounding

area. The algorithm then manipulates the global shape and appearance parameters and

the parameters of the segmented regions separately, enabling it greater flexibility.

The second part of this work involves the calculation of the shape and appearance

parameters that fit the 2D projection of the 3D model on the 2D input image (Figure 2.20).

The algorithm requires the 2D coordinates of seven facial features for initialization in

order to reduce the size of the search space. Figure 2.21 shows some examples of fitting.

After fitting is achieved, every 2D face in a database can be described by the shape and

texture parameters(α,β) of the 3D morphable model in a unified vectorc which contains

99 heuristically chosen parameters that were deemed most relevant for describing facial

variation of the statistical model.

c =

[
α1

σS,1

, ...,
α99

σS,99

,
β1

σT,1

, ...,
β99

σT,99

]
(2.25)

The similarity between two faces can then be computed by comparing their combined

vectorsc1 andc2. Blanz et al. [18] used a gallery of 68 subjects illuminated from the

same direction which was queried with 4,420 images of the same subjects in 3 poses

under 22 different illumination directions. Using images that the model fitted to correctly

(80% of all images) a92.8% recognition rate (rank 1) was reached despite such extreme

variations in pose and illumination. When those with poor model fits were included82.6%

were correctly identified.

Two disadvantages of the above system are its computational cost, which was in the

order of minutes per image, and the need for manually placed landmarks to initialize

the pose of the 3D morphable model. To tackle these, Huanget al. [94] implemented a

component-based technique using the 3D morphable model of Blanz and Vetter [19] and
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Figure 2.20: Generating synthetic images by manipulating the parameters of a 3D mor-
phable model (from [19]).

Figure 2.21: Examples of synthesized faces using the 3D morphable model. The top row
shows the input images, the middle row the fitting of the synthetic 2D face image on the
original input image while the bottom row shows a different rendering of the input images
using the morphable model (from [20]).
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Figure 2.22: Component-based face recognition using the 3D morphable model. The
image on the right shows the 2D components extracted from the face that are related to
each other via a geometrical model and used for classification (from [94]).

the component-based detection and recognition of Heiseleet al. [88]. The component-

based method of Heiseleet al. decomposes a face into the set of anatomical facial features

which are related to each other via a geometrical model. In order to train such a model

one needs a large number of images. The 3D morphable model of Blanz and Vetter is

used to synthesize arbitrary images under varying pose and illumination. Using three

images of each person in the gallery a 3D face model is computed and synthetic images

are generated in order to train both the features detector and the classifier. Ten facial

components are extracted for each face (Figure 2.22) and are combined into a single

vector which is trained by a SVM classifier. Using a testing set of 10 subjects with 200

images per subject across various poses it was possible to reach88% rank 1 rate for the

component-based technique which was significantly higher than the global method. It

was also possible to bring up the processing speed to four faces per second.

Ansariet al. [4, 5] presented a much simpler model generation using just a selection

of points on a 2D image rather than the whole face. This technique involves the automatic

extraction of feature points from a frontal and profile view of intensity images and using

these features to deform a 3D generic face model in order to obtain a 3D face structure

for each person.Procrustes analysisis used in order to globally minimize the distance

between the features of the 3D model and the 2D points obtained from the images. After

the global transformation is completed a local deformation around the feature vertices is

performed in order to create a more realistic 3D representation of each person. Figure 2.23
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Figure 2.23: A generic model used for modeling distances between global and local fea-
tures of the face (from [4, 5])..

shows the global deformation vertices (left) and the local ones (right). The coordinates

of these 29 feature points are used for distance-based comparisons to other faces. The

database model that has the largest number of vertices close to the test model is returned

as a match. The algorithm was tested on 26 faces and96.2% of the people were classified

correctly. The automatic recognition of feature points is a positive thing but it is doubtful

if higher rates are possible using only a limited set of feature points.

Similar work has been done by other groups on developing 3D models for the face,

but contrary to the 3D morphable model mentioned above, Ansariet al. [4, 5] do not

use the generic model as a “bridge”. In other words the model is not employed in order

to generate multiple 2D images across many views and illuminations to assist with 2D

recognition of images. Instead, it is used for comparisons to other 3D faces.

Lu et al. [129] attempted to develop a face recognition system that is also more robust

to differences in lighting and facial appearance. For that purpose a model is constructed,

integrating several scans from different viewpoints (Figure 2.24). Keeping a more “com-

plete” model in the face database allows them to perform more thorough comparisons

with a sensed face that needs identification. This technique integrates shape matching

with a constrained appearance-based method. Because 3D sensed models from various

view points are used and fully automatic registration is problematic with dramatically dif-

ferent surfaces, landmark points are used to help the initial alignment. Further improve-

ments in surface matching are achieved using a hybrid ICP implementation and a mean
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Figure 2.24: Using different surface scans to create a more complete gallery face scan
(from [129]).

Figure 2.25: Cropped synthesized training samples for discriminant subspace analysis.
Some of the images synthesized were ones with lighting changes in order to make the
recognition more robust (from [129]).

point-to-point distance is used as a similarity metric. The top 30 matches from the sur-

face classification are retained and the 3D model is utilized to synthesize training samples

with facial appearance variations on which a discriminant subspace analysis is performed

(Figure 2.25). The two scores of the matching components, the ICP and LDA score, are

combined in a weighted sum to make the final decision. A98% rank 1 rate is reported for

the combined metric, but this drops to91% when faces with emotional expressions are

included in the population. The authors are exploring the possibility of using AAMs in

order to model variation due to expression and aging and not just illumination.

Passaliset al. [152] described another approach for 3D face recognition using an an-

notated face model (AFM). The model is built based on an average 3D mesh constructed

using statistical data. Anatomical landmarks are then placed on its vertices. Different

areas of the face are annotated as seen in Figure 2.26. The AFM is registered to each

input mesh and fitted onto it by using ICP for the global registration and solving afinite

element methodapproximation to compute the local deformation. A deformation image
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Figure 2.26: The AFM model with anatomical landmarks (left) and the segmented anno-
tated areas (right)from [152].

Figure 2.27: Using infra-red information in conjunction to 2D/3D (from [105]).

encoding the shape information of the AFM is generated and compressed using wavelet

transform. The metadata extracted from it constitutes its biometric signature which dur-

ing enrollment is stored in the database. During testing, a gallery signature is compared

to a probe one. Using 446 subjects in the database and 3,541 different data of the same

subjects to probe the database, a90% rank 1 rate is achieved. Kakadiariset al. [105] used

the same model in combination with information from both visible spectrum and thermal

infrared sensors in a combined metric and it was possible to further improve the scores

(Figure 2.27). Others researchers have also used thermal data in addition to 2D and/or 3D

data but are not explicitly reviewed in this chapter as its focus is on different techniques,

rather than new modalities.

In Blanzet al. [18] both the gallery and the probe set consist of intensity images and

the 3D morphable model, as discussed above, assists in 2D-to-2D matching. In Luet

al. [129] and Passaliset al. [152] the gallery and probes are 3D images and recognition

involves explicit 3D-to-3D matching. Yin and Yourst [223] explored a scenario that is

somewhere in between. In this work the comparison between faces is taking place in 3D



2.5 Conclusions 77

Figure 2.28: The 3D model and the texture patches used for comparisons from[223].

space having extracted the necessary geometry from frontal and profile view 2D intensity

images and videos. This technique is fully automatic and works by initially using profile

face analysis to recover feature points and obtain the curve of the facial outline. This

helps the locating of the specific features in the next step as well as to adjust for pose

and orientation. The facial features are then identified and their shape is estimated and

modeled by the generic 3D model. The location of the 3D vertices are then used in

combination with a weighted difference between texture patches around facial features.

The authors report a rank3 rate of91.2%. No subspace analysis is carried out.

2.5 Conclusions

2.5.1 Issues in comparative evaluation

The comparison of different techniques based on their evaluation scores is very problem-

atic and perilous to say the least. A major reason for that is that most researchers, report

experimental results based on different datasets. The size of the datasets varies a lot and as

Xu et al. [219] demonstrated it can significantly affect the performance of an algorithm.

For example,96.1% rank 1 recognition rate was reached using a 30-person dataset but

that decreased to72.4% when 120 datasets were used. Other researchers have reported

similar but less dramatic decreases in performance [40]. It is also for that reason that

early experiments in the field reported100% rank 1 rates. Nowadays, with the increasing



2.5 Conclusions 78

Table 2.1: Overview Of Techniques
Method Modality Reference Number of

subjects
Dataset size Core matching

algorithm
Reported
performance

Surface-based Approaches
Local Methods
EGI 3D Lee & Milios[115] 6 6 Correlation N/A
Feature Vector 3D Gordon[75] 26 train 8

test
26 train 24
test

Closest vector 80-100%

Feature Vector 3D Morenoet al.[141] 60 420 Closest vector 78%
Feature Vector 3D Leeet al.[118] 100 200 SVM 96%
Point set 3D Chuaet al.[44] 6 24 Point signature 100%
Feature Vector 2D+3D Wanget al.[213] 50 300 SVM, DDAG > 90%

Point set +feature
vector

3D Xu et al.[219]
30 /
120

720 Min. distance
96% /
72%

Global Methods
Profile+surface 3D Cartouxet al.[38] 5 18 Min. distance 100%
EGI 3D Tanakaet al.[196] 37 37 Correlation 100%
EGI 3D Wonget al.[217] 5 n/a Min. Distance

+Evolutionary
optimization

80.08%

Point set 3D Ackermann & Bunke[1] 24 240 Hausdorff
distance

100%

Point set /
range image

3D Panet al.[150] 30 360
Hausdorff /
PCA

3-5%EER /
5-7%EER

Range+curvature 3D Lee & Shim[117] 42 84 Weighted
Hausforff

98%

Point set 3D+2D Luet al.[127] 10 63 ICP 96%
Point set 3D+2D Lu & Jain[128] 100 196 probes ICP+TPS 91%
Point set 3D Medioniet al.[135] 100 700 ICP 91%
Surface mesh 3D+2D Maureret al.[133] 466 4,007 ICP+Neven 87% verification

at0.01 FAR
Multiple profiles 3D Nagamineet al.[142] 16 160 Closest vector 100%
Multiple profiles 3D+2D Beumier & Acheroy[14] 27 gallery,

29 probes
81 gallery,
87 probes

Min. distance 1.4% EER

Multiple profiles 3D Wuet al.[218] 30 90 Min. distance 1.1-5.5% EER
Statistical Approaches

Range images 3D+2D Tsalakanidouet al.[203] 40 80 PCA
99% 3D+2D /
93% 3D only

Range images 3D+2D Tsalakanidouet al.[202] 50 3,000 EHMM 4% EER
Range images 3D Hesheret al.[89] 37 222 PCA 90%

Range images 3D Changet al.[39] 200 (275
train)

951 PCA
99% 3D+2D /
93% 3D only

Various 3D G̈okberket al.[71] 106 579 Various 99%
Point set 3D+2D Bronsteinet al.[27], 30 220 “canonical

forms”
100%

“Isomorphic”
range image

3D Panet al.[149] 276 943 PCA 95%, 3% EER

Model-based Approaches
2D for testing,
3D for training

2D+3D Blanzet al.[18] 68 4,420 3D Morphable
Model

92.8% when
correctly fit

2D for testing,
3D for training

2D+3D Huanget al.[94] 10 200 Component-
based 3D
Morphable
Model

88%

Feature points
extr. from 2D

3D Ansariet al.[4, 5] 26 104 Generic model 96%

Point set 3D+2D Luet al.[129] 100 598 ICP+LDA 96%
2D probes, 3D
gallery

3D+2D Yin & Yourst[223] 60 240 Flexible model 91.2% rank3

Surface mesh 3D Passaliset al.[152] 446 4,007 Deformable
model

90%
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availability of 3D data it is expected that these scores would drop.

The actual type and size of data is also different from publication to publication. Some

range images have a high number of points, such as the ones taken with laser scanners

while others, like the ones taken with structured light, are particularly poor compared to

the former. When it comes to multimodal techniques, the 2D data used may be color or

greylevel images. Another factor is the heterogeneity of the data. Some report results

based on neutral frontal images, which is the best case scenario in face recognition. Oth-

ers, on the other hand, use databases containing faces under varying illumination, with

facial expressions, with glasses, facial hair and even collected over a period of months.

It is difficult therefore to compare a technique, which uses data with a lot of extraneous

variables, to a technique which uses a more limited data collection protocol. Addition-

ally, some databases contain more than one sample image per subject, which can affect

the evaluation scores. As previously stated that generally improves the ability of the algo-

rithm to identify faces especially when one exploits the relationship between the intra- and

inter-subject variability. Moreover, the statistics reported by many researchers can also in-

hibit any attempt to compare methodologies. Most report rank 1 rate while others report

rank 5 rate, which are impossible to compare. As previously stated, it is known that a rank

5 score can be dramatically different from a rank 1. Finally, differences in experimental

design make a comparative evaluation of current techniques particularly difficult. For ex-

ample, some groups separate the data into a training set and a testing set while others use

the same population for both stages. A few researchers, such as Gökberket al. [71] con-

ducted experiments using many available techniques under identical conditions in order

to be able to safely draw conclusions based on the strengths of each technique.

Differences in the dataset and experimental setup may also be the reason that re-

searchers report contradictory findings. Godilet al.[69] used PCA on 3D and 2D data and

found that a combined metric performs significantly better than any single modality, but it

was noted that the 2D modality performs slightly better than 3D. Changet al. [41] reach

a similar conclusion, which contradicts other publications [39, 133]. The improved score

of the combined modalities is also questionable as it might be a result of using two image
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samples to represent each person. Changet al. again tried to study the effect of using two

image samples. It was found that using PCA with a 3D scan and a 2D image combined,

yields 95% rank 1 rate while 3D and 2D alone yield89% and 91% respectively [41].

When the same experiment was conducted using two 2D images a93% rank 1 rate was

reached which suggests that at least half of the improved performance is due to having

more than one sample per person irrespective of its modality (3D scan or 2D intensity

image). The standardized evaluations discussed in Section 2.5.2 are an attempt to deal

with these differences in experimental design and conditions in order to enable compar-

isons between various techniques. The literature examined seems to be divided between

proponents of 2D and 3D analysis. Some researchers believe that 3D data is presently

a more powerful discriminant [39, 133] while others believe the opposite [202, 95].The

balance of opinions might change as more time and money is invested in developing more

acccurate and affordable 3D sensors and the use of 3D data becomes more widespread.

2.5.2 The FERET and FRVT 2002 evaluations

There is a need to compare the strength of each technique in a controlled setting where

they would be subjected to the same evaluation protocol on a large dataset. This need for

objective evaluation prompted the design of the FERET and FRVT 2002 evaluation pro-

tocols (and the upcoming FRVT 2006) [159, 160]. Both protocols followed the principles

of biometric evaluation laid down by Phillipset al. [160].

A requirement of the latter is that all evaluations are to be designed and administered

by people that have no affiliation to the participants being tested. This ensures that the

test is not going to favor one participant over another. Secondly, the data on which the

participants are going to be benchmarked on, is not disclosed before the evaluation. If

the participants are tested on known data there is the risk that the algorithms will be

tuned to a particular dataset. Thirdly, the details of the evaluation test design, protocol,

methodology and a representative example of the test data have to be published. This

will allow other groups to assess and repeat the evaluation in their own setting. Finally,
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the evaluation should not be too hard or too easy. Very high or very low recognition

results will make the assessment of the capabilities of the systems and the comparison

between them very difficult. In an ideal evaluation the performance scores are spread

widely so that the strengths and weaknesses of each approach can be observed. By seeing

differences in performance of each algorithm across experiments one can assess which

problems are solved and which still pose challenges. In order to achieve a good spread in

the performance, different levels of image difficulty are presented as input. Faces included

in the aforementioned protocols contained variations in illumination, location with respect

to camera, different levels of background complexity and some were taken in sessions on

different dates.

Additionally, there are three rules governing the evaluation protocols. The input to the

algorithms is separated in two groups. The target setT and the query setQ. The galleries

and probe sets are constructed from these two groups and according to the first rule, all

the similarities between each faceti in the target set andqj in the probe must be calculated

and returned in a similarity matrix. This way detailed statistics can be computed for all

algorithms. Furthermore, multiple biometric samples of each person are placed in both

the target and query set and each sample is unique. Finally, training must be completed

before the evaluation in order to ensure that each algorithm does not have gallery-specific

information during the evaluation. The FERET evaluations were conducted three times,

in 1994, 1995 and 1996 on a database of faces collected in 15 sessions between 1993 and

1996. Each session lasted between one and two days and the setup did not change within

each session. Each subject was photographed in sets containing 5-11 images which in-

cluded two frontal viewsfa andfb. The latter also contained a different facial expression.

For 200 individuals a third frontal set was collectedfc and the remaining sets were non-

frontal images, such as full, half and quarter profiles. By 1996 the database contained

1,564 sets of images totaling 14,126. That meant that it consists of 1,199 individuals and

365 duplicates. Duplicates were images taken on different days. The algorithms that per-

formed the best were a probabilistic PCA, a subspace LDA and an elastic branch graph

algorithm. Figure 2.29 shows the verification results for all the participating algorithms.
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Figure 2.29: The effect of time lapse between data collection sessions on the verification
rate (FERET database). The graph on the left shows the verification rates of various
techniques with images taken on the same day. The graph on the right shows a clear
decrease in the verification rates because duplicate images of subjects were collected on
a different day (from [167]).

It also demonstrates the great differences in performance between images taken on the

same session and images taken during different sessions.

The FRVT 2002 evaluation was build on top of the FERET and FRVT that preceded

it. By the the year 2000 there were a few commercially available systems and there was

a need to evaluate them in a controlled environment. The FRVT 2002 provided a de-

manding setting simulating a real world scenario with a very large database of images of

37,437 people totaling 121,589 images for testing commercial off-the-shelf (COTS) sys-

tems. Performances measured were closed- and open-set identification as well as verifica-

tion. A second set of images tested the ability of the systems to perform face recognition

tasks across a wide rage of image types such as images taken outside, non-frontal images

etc. Changes in indoor lighting were shown to have little effect on the rates achieved with

the best system reporting90% verification rate with1% false acceptance rate. On the

other hand, the best rate achieved using outdoor images at1% false acceptance rate was

only 50%. Furthermore, using images taken over many years it was found that the best

systems performed5% worse for every year between the images sessions. Another point

that was investigated is how the database size affects the rank 1 rates. The best system,

once again, achieved85% using a database of 800 people,83% on 1,600 and73% on all
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37,437 images. During the FRVT 2002 it was possible for the first time to investigate the

effects of different demographics on the recognition rates. It was found that men were

more easily identified than women (by6%-9%) and so were older people, showing that

for every 10 years of age there is an increase of5% in the recognition rate until the age

of 63. Finally, FRVT 2002 also investigated the effectiveness of the 3D morphable model

technique of Blanz and Vetter for generating synthetic views of faces and it was found to

significantly improve the recognition rates.

The availability of the above evaluation techniques has had a significant impact on

the development of face recognition technology [156]. Apart from providing an objective

benchmark for comparing different methodologies the FERET and FRVT 2002 generated

a plethora of new research questions that need to be addressed. Why are men more easily

recognized than women and why are younger people more difficult than older people?

Why did indoor lighting not affect the participants in FRVT 2002 significantly but outdoor

illumination changes did? How can one model the effects of age in order to provide a more

accurate face recognition system and avoid the rate reduction when images are taken in

sessions more than a year apart?

In terms of 2D face recognition the state of the art techniques seem to focus on sub-

space analysis of the population. Eigenfaces, Fischerfaces, Support Vector Machines and

other subspace techniques seem to dominate the field. The rates today for frontal images

seem to range between80− 95% when reported by independent sources [190, 159, 160]

(on a small database). Similar techniques that perform well in 2D are been used in 3D

as well, achieving similar rates. However, other techniques such as the ones dealing with

surface-based events (point signatures etc.) have also been employed with great success.

When the author initially started working on this technology many researchers were still

employing geometric techniques for recognition. These techniques as previously dis-

cussed lack the scalability that is required in such endeavours that PCA-based techniques

offer and as a results the focus has shifted. Despite some impressive steps having being

made face recognition technology is not mature enough to be employed in critical set-

tings as the iris recognition systems that have been built and are being installed in airports
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worldwide. This might change dramatically in a few years. In the next chapters we are go-

ing to investigate both geometric and the more popular PCA-based techniques mirroring

the general progress of 3D face recognition.



Chapter 3

Review of Surface Registration

Generally speaking, the purpose of a registration is to find the optimal transformation

T that will map the pointsa in one coordinate system to thecorrespondingpointsb of

another such that:

b = T (a) (3.1)

wherea = (ax, ay, az) andb = (bx, by, bz) are points in the two coordinate systems which

correspond to each other based on some similarity metric. A two-dimensional illustration

is shown in Figure 3.1. There are many types of registration techniques and the choice of

the appropriate technique depends on the type of surface used, which is often linked to

the way it was captured.

Before comparing and interpreting the information that exist on two images or sur-

faces, one must align them so that anatomical points in one object are related to points

corresponding to the same anatomical location on the second object. Comparing homol-

ogous areas is a core requirement in many applications. In medical imaging, registration

can be used to align similar structures and fuse the information from different modalities.

In face recognition, aligning facial surfaces is of tantamount importance as faces need

to be registered in order to compare their features. As already discussed, the face of the

same person under two different poses can vary so much that it makes its identification

impossible. In that case, a rigid alignment can correct for pose variation. A face can also

change in non-rigid ways, with a facial expression. This can be compensated for by using
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Figure 3.1: The transformationT (a) transforms a pointa in imageA into its correspond-
ing location in imageB.

a non-rigid registration to align corresponding areas to each other.

Any registration technique can be split into two principal design components: The

type of transformation used for aligning the surfaces and the similarity metric associated

with the specific surface representation. The next sections describe these components in

more detail. Within the section about surface representation and similarity metrics, vari-

ous techniques for optimizing the search for corresponding points, as well as the search

for the optimal transformation in the parametric space, are also briefly discussed.

3.1 Transformation types

Transformations can be classified into two different types; those that preserve the straight-

ness of lines and others that do not. Rigid and affine transformations, which preserve the

straightness of lines, are more appropriate for objects that do not deform, such as bones.

Non-affine transformations, which do not preserve the straightness of lines, are usually

reserved for objects that can deform, such as the heart or the face.
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3.1.1 Rigid transformation

A rigid transformation is a geometrical transformation, which when applied to an object,

for example a surfaceA = {ai}, it maintains all the distances and internal angles. It can

be formally expressed as a combination of rotationR and translationt:

b = RABa + tAB (3.2)

and has six degrees of freedom. In matrix form it can be described as:

Trigid(ax, ay, az) =




bx

by

bz




=




r11 r12 r13

r21 r22 r23

r31 r32 r33







ax

ay

az




+




tx

ty

tz




(3.3)

whereRAB = {rij}, i, j ∈ {1, 2, 3} is a3 × 3 orthogonal rotation matrix describing the

rotational component of the transformation, andtAB = [tx, ty, tz]
T , which is a displace-

ment vector describing the translational component of the transformation.

3.1.1.1 Affine transformation

A more general class of transformations is the affine transformation which is expressed

by:

b = AABa + tAB (3.4)

where matrixAAB is a rotation matrix. Lengths and angles are not preserved, but parallel

lines are. In matrix form it is represented as:

Taffine(ax, ay, az) =




bx

by

bz




=




α11 α12 α13

α21 α22 α23

α31 α32 α33







ax

ay

az




+




tx

ty

tz




(3.5)

whereA = {αij}, i, j ∈ {1, 2, 3} is a 3 × 3 matrix describing the scale, shear and

rotation components of the transformation whilet is a displacement vector describing
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Figure 3.2: An example of a linear transformation.

the translational component. Figure 3.2 shows schematic examples of rigid and affine

transformations.

3.1.2 Non-affine transformations

Sometimes the ideal mapping between two images is not affine and therefore a non-affine

deformation is needed, as global functions are not adequate to capture local deformations.

For example, in the case of faces, an affine transformation would be unable to model (or

simulate) on a neutral face the local deformations caused by a smiling face and a non-

affine transformation would be more appropriate to use (Figure 3.3). In practice, the

transformation is often defined by so-called control points or landmarks and the deforma-

tion is smoothly interpolated at intermediate points. Spline-based transformations have,

at the local level, a simple form, yet they maintain their global flexibility and smoothness.

For a more detailed look into how splines are used in computer graphics and geometric

modeling see [7].

Originally, splines were devised to be used for aircraft modeling where engineers

were using long, flexible strips of metal or wood which they would deform with the use

of weights at selected points. A set of control points, need to be identified where spline-

based transformations approximate (or interpolate) the required displacement to map one

set of control points to the other while providing a smooth displacement field between
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Figure 3.3: An example of a non-linear transformation.

them. The interpolation condition can be written as:

T(ai) = bi i = 1, ..., n (3.6)

whereai represents the location of a control point in the target surface andbi the location

of the corresponding control point in the source surface.

3.1.2.1 Thin-plate splines

Thin-plane splines(TPS) are a family of splines based on radial-basis functions. They

were originally formulated by Duchon [52] and Meinguet [136] for surface interpolation

of scattered data and have been used extensively in registration [76, 23, 22]. Given a set

of n landmarks, they can be defined as a combination ofn radial basis functionsθ(s):

t(x, y, z) = α1 + α2x + α3y + α4z +
n∑

j=1

βjθ(|φj − (x, y, z)|) (3.7)

Defining the transformation in three separate thin-plate spline functionsT = (t1, t2, t3)
T

returns a mapping between the two surfaces where the coefficientsα describe the affine

part of the spline-based transformation and the coefficientsβ describe the non-affine part

of the transformation. The interpolation conditions in eq. 3.6 form a set of3n linear

equations and in order to determine the3(n + 4) coefficients uniquely, twelve additional

equations are needed. These guarantee that the non-affine coefficientsβ sum to zero and

that their crossproducts with thex, y, z coordinates of the control points are likewise zero.

The crossproduct is required to ensure that the second part of equation 3.7 contains only
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non-affine transformations. This can be expressed as:




Θ Φ

ΦT 0







β

α


 =




Φ′

0


 (3.8)

Hereβ is an× 3 matrix of the non-affine coefficientsβ, α is a4× 3 matrix of the affine

coefficientsα, Θ is the kernel matrix withΘij = θ(|φi − φj|) andΦ is the control point

matrix of the transformation who’si-th row is (1, xi, yi, zi). The solution forα andβ

is a thin-plate spline transformation which interpolates the displacements at the control

points. The radial basis functions of thin-plate splines is defined as:

θ(s) =





|s|2 log(|s|), in 2D

|s| , in 3D

(3.9)

3.1.2.2 Free-form deformations

TPS are based on radial basis functions which have infinite support and therefore each

control point has a global effect on the entire transformation. The global influence of

the control points is undesirable since it has the potential of making the modeling of

local transformations difficult. Furthermore, the TPS calculation is relatively inefficient

and given a large number of control points, it can be prohibitive. Instead of TPS,free-

form deformations(FFDs) [183] can be used which have local control. Contrary to thin-

plate spline functions which can handle an arbitrary configuration of control points, FFDs

define the displacements on a regular mesh.

The spatial domain of the surface or points to be deformed is defined as follows:

ΩI = {(x, y, z) | 0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z} whereΦ denotes anx × ny × nz

grid of control pointsφi,j,k with uniform spacingδ. The displacement field defined by the

FFD can be expressed, in this case, as the 3D tensor product of 1D cubicB-splines[63]:

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (3.10)
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Figure 3.4: Graphical representation of B-Splines.

wherei = bx
δ
c − 1, j = by

δ
c − 1, k = b z

δ
c − 1, u = x

δ
− bx

δ
c, v = y

δ
− by

δ
c, w = z

δ
− b z

δ
c

and whereBl represents thel-th basis function of the B-Spline (Figure 3.4):

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u + 1)/6

B3(u) = u3/6

The basis functions of cubic B-Splines have limited support and therefore changing a

control point in the grid affects only a 4×4×4 region around that control point.

3.2 Surface similarity

The second choice one needs to make in the design of a registration algorithm is the type

of surface representation to select and consequently, what similarity criterion to use. The

similarity criterion should be one that allows for the unimportant differences between

the two surfaces to be ignored while the important similarities to be used for aligning

them to each other. In other words, the similarity measurement should discriminate be-

tween homologous points optimally to allow correct (and efficient) registrations. There
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are generally four techniques for representing surfaces and surface similarity in registra-

tion: feature-, point- and model-based and global similarity-based. The choice of tech-

nique depends primarily on the type of data used and the type of transformation that needs

to be computed.

3.2.1 Feature-based methods

In feature-based representations the surface is pre-processed in order to extract a subset

of the total information, using a discriminating measurement, which provides a more

compact description of the surface. The idea behind this approach is to find points on the

surfaces that match to each other and compute the distance between them. These matched

features are usually used for calculating rigid transformations to bring the entire surface

into alignment. Significant effort has been put into eliminating incorrect matches [180].

The features typically used for this representation are point features, curves and regions.

Feature points are loci of geometric significance such as peaks or pits. Thirion [199]

computed the extrema of principal curvatures which were matched with the corresponding

ones on the other surface by finding points which, among other similarities, had the same

sign of principal curvature and similar curvature values. Goldgofet al. [73], on the other

hand, used the extremum of the Gaussian curvatureK, which they located by thresholding

the valueK.

When it comes to the registration of facial surfaces, feature-based representations have

been used extensively, not only as a descriptor but as a way of establishing correspondence

to align the faces before full-surface comparisons. Nagamineet al. [142] used various

heuristics to extract five feature points from the human face, assuming that the faces were

frontal. More interestingly, Luet al. [127] calculated a shape index for each pointa on

the facial surface using the maximum and minimum local curvature,κ1 andκ2 as in:

ShapeIndex(a) =
1

2
− 1

π
tan−1 κ1(a) + κ2(a)

κ1(a)− κ2(a)
(3.11)

in order to find an initial bootstrapping alignment for the surfaces, before using ICP (dis-
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Figure 3.5: Finding feature points using local curvature information of the face. (a) the
texture image (b) the shape index (c) after averaging mask is applied (d) the points located
(from [127]).

cussed in 3.2.2) to more finely adjust the registration. Given this coordinate-independent

way of locating features, features that were on faces with different poses could be aligned.

They located an easily identifiable extreme point, the inside corner of the eye, and from

there they began their search for nearby feature points such as the nose. Figure 3.5

shows the curvature information used for locating the features. Alternatively, Chua and

Jarvis [44] used point signatures (described in Chapter 2) to register surfaces.

The second type of feature corresponds tocontinuouslines or curves, typically con-

sisting of differential structures such as ridges or region boundaries and they are less

compact than feature points in describing the surface shape. Of particular interest in med-

ical imaging is the detection of ridges which are usually defined as long, narrow, raised

strips of points on the surface. Monga and Benayoun [140] searched for a contiguous set

of loci on a surface where the largest principal curvatureκ1 is locally maximal. These

loci correspond to the zero-crossings of the extremality functione1 = ∇κ1 · t1 where

∇κ1 is the directional derivative of the largest principal curvature andt1 is the principal

direction that corresponds toκ1.

Early in face recognition research, Cartouxet al. [38] segmented the face based on

the principal curvature, which helped them establish a plane of bilateral symmetry which

they used to normalize for pose before calculating the similarity between the faces. Years

later, Hesheret al. [89] used a very simple technique which involved locating the nose

tip and then the bridge of the nose for aligning the faces. They first locate the nose tip,

as the most protruding point of a straight-looking face and then they search all the points
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Figure 3.6: Using the nose bridge for registration (from [89]).

above the tip to locate the points that belong to a ridge, effectively locating the ones on

the bridge of the nose. Registration of the surfaces involves a simple translation on the 2D

plane to bring the nose tips into alignment. The rotational component was calculated by

feeding the nose bridge points to a line-fitting algorithm which returned the appropriate

rotation. Finally, depth adjustments are made by adding a constant to all pixels so that

the tip of the nose pixel has the same value across all images. Figure 3.6 shows the depth

images they used. Notice the highlighted feature line on the nose bridge that was used to

correct the pose of the faces.

Finally, regions are areas that have some common characteristics such as consistent

curvature sign or are surrounded by some boundary and they are denser surface descrip-

tors than curves and points. Regions are a natural descriptor for surfaces and they allow

for the characterization of a surface as an adjacency graph. Matching can then be per-

formed by looking for the regions that have most compatible subgraphs in common. This

way, matching is performed not just on the characteristics of each area but also on the

extended neighborhood of each region. Besl and Jain [11, 107] employ the sign of the

meanH and GaussianK curvature (K/H) in order to measure homogeneity, and use it

to identify and segment regions of interest. They identify surface types with which they

could characterize patches of the surface such as elliptic and outward bulging, elliptic

and inwardly bulging, planar, hyperbolic, saddle shaped etc. and they used them to seg-

ment structures in medical images. A very similar approach was adopted by Morenoet

al. [141] to identify and segment regions of the face. In Figure 3.7 the brighter points are

those where the curvature value is positive while the darker patches is where the curvature

is negative. With the appropriate thresholding they managed to locate the features they
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Figure 3.7: (a) The sign of the median and (b) Gaussian curvature. PointHK classifica-
tion (c) before and (d) after thresholding (from [141]).

needed.

Based on the surface representation and transformation type chosen, one needs to

search for the optimal matches between two surfaces. This generally happens either by

successively comparing a set of candidates or by iteratively minimizing an objective func-

tion. As discussed earlier, because features on a surface can be relatively sparse, matching

them generally determines a rigid transformation. It usually involves a comparison of var-

ious shape parameters such as curvature at extrema, shape type, etc. One of the early tech-

niques for matching features has been thegeneralized Hough transformwhich matches

similar structures and derives a transformation from each pair. The transformation space

is quantized and the matches increment a corresponding cell [193]. Another early tech-

nique developed for finding the optimal matches is calledgeometric hashing[112] and it

originally stood out for its efficiency. It works by pre-computing local matching informa-

tion which does not vary with rotations and translations and which is stored in a hash table

for each surface. The hash table has entries each of which is associated with a feature to

which a local coordinate system (basis) can be assigned. Given a transformation between

two bases, the consistency of the mapped non-basis features is evaluated and consistent

feature pairs “vote” for the ideal transformation.

3.2.2 Point-based methods

Point-based methods register surfaces by calculating correspondences between a dense

set of points making up the surface. Initially, the point sets need to be roughly aligned to
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each other and subsequently, they are finely registered by iteratively minimizing a distance

metric. The latter is usually the sum of squared distances between closest points on the

two surfaces.

Using the whole surface rather than just a manually selected array of landmarks or

automatically extracted features, can be significantly more computationally intensive, but

has many advantages. One of the advantages is the substantial increase in information pro-

vided by the surface and the redundancy that it entails. Early face recognition techniques

that used only a small selection of points perform poorly on large datasets because there is

simply not enough information to distinguish one face from another. Furthermore, manu-

ally selected landmarks, contrary to automatically extracted feature-based landmarks, can

be very tedious to determine, prone to random error and can make registration procedures

more difficult to repeat under the same conditions.

Besl and McKay [12] formulated theiterative closest pointalgorithm (ICP) for reg-

istering 3D shapes. Based on two sets of points where closest point correspondence has

been established, they calculate the ideal rotation and translation using a quaternion-based

method that would bring them into close alignment.

Let A = {ai} be a measured point set (aka source) to be aligned with a model point

set (aka target)B = {bi}, where|B| = |A| and points on each point set with the same

index correspond to each other. The authors first define a distance metricd between an

individual source pointa and a target (model) shapeB:

d(a, B) = min
b∈B

||b− a|| (3.12)

Using this distance metric they propose looping over all points inA and finding the closest

point inB. LetY denote the resulting set of closest points andC the closest point operator:

Y = C(A,B) (3.13)

The ideal transformation is then calculated using a quaternion-based method and applied
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to the source set. The process is repeated until a certain threshold is reached.

The unit quaternion is a four vectorqR = [q0, q1, q2, q3]
t whereq0 ≥ 0 andq0

2 + q1
2 +

q2
2 + q3

2 = 1. qT = [q4, q5, q6]
t defines a translation vector and the complete registration

state vector isq = [qR|qT ]t. The mean square similarity function to be minimized is:

f(q) =
1

|A|
|A|∑
i=1

||bi −R(qR)ai − qT ||2. (3.14)

The center of massa of point setA and the center of massb of point setB can be derived

by:

a =
1

|A|
|A|∑
i=1

ai and b =
1

|B|
|B|∑
i=1

bi. (3.15)

The cross-covariance matrixΣab of the setsA andB is given by:

Σab =
1

|A|
|A|∑
i=1

[(ai − a)(bi − b)t] (3.16)

The column vector∆ = [A23 A31 A12]
T is formed using the cyclic components of the

anti-symmetric matrixAij = (Σab − ΣT
ab)ij. This vector is used to form the symmetric

4× 4 matrixQ(Σab)

Q(Σab) =




tr(Σab) ∆T

∆ Σab + ΣT
ab − tr(Σab)I3


 (3.17)

whereI3 is the 3×3 identity matrix. The optimal rotation is the unit eigenvectorqR =

[q0, q1, q2, q3]
t corresponding to the maximum eigenvalue of the matrixQ(Σab). The op-

timal translation vector can then be calculated by subtracting the rotated centroid of the

source from the centroid of the target as in:

qT = b−R(qR)a (3.18)

This least squares quaternion operation to calculate the transformation vectorq is denoted
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as:

(q, dms) = Q(A,B) (3.19)

wheredms is the mean square point matching error. Listing 1 shows the ICP algorithm

more formally.

Listing 1 The Iterative Closest Point algorithm
1: Start with source setA and target setB.
2: Set iteration counterk = 0, A0 = A andq0 = [1, 0, 0, 0, 0, 0, 0]t.
3: repeat
4: Find the closest points betweenA andB by: Yk = C(Ak, B)
5: Compute the ideal transformation to alignYk andA0 by: (qk, dk) = Q(A0, Yk).
6: Apply the transformation:Ak+1 = qk(A0)
7: until change in mean square error is smaller than a thresholdτ as in:dk − dk+1 < τ

Their technique was proven particularly successful in registering comparable surface

patches. A smaller subpatch can also be aligned with a bigger patch by considering sev-

eral possible initial transformation states and using the one that returns the smallest mean

square error. They also propose an accelerated version of ICP which involves a more

optimized search for the ideal transformation. There have been since then many sug-

gestions how to speed up the selection of correspondences and how to deal with out-

liers [12, 204, 215, 70].

Some of the modifications have to do with the selection of points from each surface to

build point pairs. For example, instead of using all points on the other surface to compute

corresponding pairs, some authors have proposed using a random subset in order to reduce

the number of vertices that have to be processed [132]. Others, like Turk and Levoy [204],

proposed a uniform subsampling of the surfaces.

Further modifications are related to the searching for the closest point (matching)

on the other surface. Finding the closest point can be a very time consuming step. Si-

mon [186] proposed the use of k-D trees [10, 65] as part of the shape alignment. K-D

trees are a sequence of bisections in a k-dimensional space. A k-D tree uses planes that

are perpendicular to one of the coordinate axis to split the space into two (Figure 3.8).

By moving down the tree, one cycles through the axes used to choose the splitting plane.
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Figure 3.8: A k-D tree representation (from [3]).

At each step, the splitting plane is created on the median of the points being put into

the kd-tree (with respect to the point coordinates in the axis being used). The process

stops when no more subdivisions can take place and all points have been allocated to a

node in the tree. The result of the algorithm is a balanced k-D tree. The search for the

closest point in a k-D structure involves a recursive procedure that begins at the root of

this tree, traversing it to the leaves until the point has been found, exploiting the struc-

ture. Searching a k-D tree has the potential to significantly reduce the time required to

locate the closest point from a cloud of points as it reduces dramatically the number of

point-to-point comparisons in the closest-point search. Other ways of finding the closest

point on the other surface include locating the intersection of the ray originating at the

surface point in the direction of the surface normal with the other surface [43]. Another

technique, used by Szeliski and Lavallée [195] involves the use of the distance transform.

They pre-computed offline the distances and closest points for discrete locations. This

technique is discussed in more detail later in this section.

Other modifications involve the weighting of the corresponding pairs appropriately.

Godinet al. [70] assigned lower weights to pairs with greater point-to-point distances. In

the same work they also assigned weights based on the compatibility of normals.

Finally, some have opted for rejecting pairs of points based on some statistics. For
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example Pulli [164] rejected the worstn% of pairs based on their point-to-point distance.

Masudaet al. [132] reject pairs with distances more than 2.5 times the standard deviation.

Rangarajanet al. [165] proposed a solution to the registration of surfaces by using a

technique calledrobust point matching(RPM) algorithm. Their implementation is par-

ticularly robust in simultaneously finding correspondences between the two objects and

computing the transformation parameters. Areas that contain cuts and tears in the sur-

faces often confuse traditional ICP implementations, but are accounted for in RPM. RPM

works by first defining a set of corresponding variables{M jk}, thematch matrix, such

that{M jk} = 1, if point xj corresponds to pointyk and{M jk} = 0, if it does not. Given

two sets of points, they search simultaneously for the rotationR, translationt and match

matrixM that minimizes some distance function.

The ICP algorithm has been used extensively for aligning human faces [151, 133]. It

has also been extended to the non-rigid alignment of surfaces. One of the seminal works

in non-rigid registration was proposed in Szeliski and Lavallée [195] where a new method

for determining the minimal non-rigid deformation was presented. To minimize the simi-

larity function (eq. 3.14) they used B-splines, avoiding the higher order polynomials that

tend to introduce artifacts such as oscillations. Their algorithm finds correspondences

between points in each surface using the closest-point approach and the matching pairs

were subsequently aligned using a B-spline model of deformations. In order to perform

fast nonlinear least squares minimization they used theLevenberg-Marquardtalgorithm

(LM) because it works well on uncorrelated noisy measurements with a Gaussian distri-

bution. In order to calculate the optimal transformation LM requires the evaluation of the

distance functiond(a, B) along with its derivative with respect to all of the unknown pa-

rameters. In order to avoid getting stuck in local minima in a high-dimensional parameter

space, they initially estimated a simple rigid transformation before estimating more com-

plex deformations at the global level. The global level is modelled with a low-resolution

spline and the optimal spline parameters are used to bootstrap the estimates at finer levels.

The least squares minimization requires a fast computation of the distanced(a, B) and its

gradient.
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Figure 3.9: A hierarchical octree example (from [195]).

In order to speed this process up, the authors introduced a distance map which stores

the distances that were pre-computed offline. A voxel-based volume is set up to contain

surfaceB and for each voxel it stores the identity of the closest point to that surface,

as well as the distance from it. Each point in surfaceA that enters the volume inherits

the closest point precomputed for the voxel in which it falls, reducing the closest-point

search to a simple table lookup. To further optimize for speed, space and accuracy, they

developed a new kind of distance map which they calledoctree spline[114, 34]. The main

benefit behind this implementation is that it allows greater accuracy near the surface than

far away from it. As the registration improves so does the resolution of the distance map,

allowing for initially fast, robust registrations followed by finer adjustments at later stages.

More importantly, the octree spline was extended to represent the local deformation by

storing the displacements of the B-spline model.

The use of the octree splines as a distance map representation implies that the distance

from the surface determines at which resolution the spline coefficients are interpolated

(Figure 3.9(a)). Finally, to further accelerate convergence, they used a hierarchical basis

representation for the octree spline (Figure 3.9(b)) where displacement values at finer

levels are added to the displacements interpolated from the parents and thus all finer levels

contain a relative or offset representation. This made convergence not only faster but also

made the final rendering significantly smoother. Their technique was used extensively for

the registration of medical images.
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Other techniques have been proposed that do not rely on the closest-point-based cor-

respondence. For example, Chen and Medioni [43] used a subset of the measured surface

A to look for corresponding points in the model surfaceB. For a pointa on a smooth

patch ofA they located pointb which is where the normal ofa intersects surfaceB. Next,

they defined a plane tangent toB at pointb and they computed the transformation that

would minimize the sum of squared distances between the transformed pointa and its

corresponding tangent plane onB. The authors report that this point to plane distance

makes the convergence process less susceptible to local minima than the point-to-point

distance of the classic ICP. Luet al. [127] found that the point-to-plane distance reflects

the true distance between the two surfaces better, but was significantly slower to calculate.

To combine speed with a more robust registration they used a “hybrid ICP” in which they

use Besl and McKay’s system to calculate a coarse estimation of the alignment and Chen

and Medioni’s approach for a finer alignment.

Feldmar and Ayache [59, 58] searched for closest points in a feature space rather

than Euclidean space. Instead of using the coordinates of a point in 3D, they compared

eight coordinates for each point; thex, y, z coordinates, its normal(nx, ny, nz) and its

principal curvaturesκ1 andκ2. They then used a weighted distance function, in order to

find a compromise between the components of the feature vector used for registration, to

determine the optimal transformation.

There have been various optimizations for accelerating non-rigid surface registration.

The minimization of equation 3.14 can be, computationally speaking, a very expensive

process, given the degrees of freedom that a transformation can have. Furthermore, there

is the risk of running into local minima that do not allow the “correct” alignment of the

surfaces. Finding the ideal transformation can be seen as an optimization problem for

which various techniques can be used. Szeliski and Lavallée [195], for example, used

an unconstrained nonlinear optimization technique. Other techniques that can be used

includesteepest descent, conjugate-gradient descent, etc. [130].The version of ICP that

we used has a few optimizations similar in nature to some of the above. More details on

which optimizations were used, which were not used and why are provided in the end of
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Section 4.3.1.

3.2.3 Model-based representations

Deformable surface modeling has been used extensively for segmenting medical images

to identify a structure in a volume and/or track it in a sequence of volumes. Based on

physical or surface evolution expressions, these methods compute the surface motion by

modeling virtual forces that manipulate the object rather than trying to explicitly match

the two surfaces.

Some researchers have proposed afinite-element model(FEM) approach for solving

deformable surface models numerically [155, 198]. A 3D shape is thought of as the result

of forces acting on a deformable material such as clay. They use the FEM mathematical

formulation in order to simulate dynamically changing objects:

Mü + Cu̇ + Ku = R (3.20)

whereu is a3n × 1 vector of the displacements of then nodal points relative to the ob-

ject’s center of mass, whileM , C andK are matrices describing the mass, damping and

material stiffness between each point within the body.R is a3n× 1 vector describing the

x, y, z components of the forces acting on the nodes. Using FEM a displacement function

can be estimated which can be grafted upon a superquadric ellipsoid which represents the

difference between a simple superquadric shape and the final more general shape.

More native to 3D surfaces, the model of Amini and Duncan [2] uses 3D points as

the input data and represents all shapes as bending energy from a zero energy flat plane

εbe(u, v) = κ2
1 + κ2

2. Matching between surfaces becomes the matching of points with

similar energy and principal curvature.

Hutton [96] developed adense surface model(DSM) which is a hybrid of ICP and

ASM. A DSM is build by running PCA analysis on a series of faces for which dense,

closest-point-based correspondence has been established with the help of manually placed
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Figure 3.10: The fitting of the DSM to an unseen example (from [96]).

landmarks. Once the model is build a new face instancexnew can be generated by:

xnew = x + ωb (3.21)

where, as in the eigenfaces technique,ω = [ω1|ω2|...|ωt] is the matrix of the firstt eigen-

vectors andb = [b1, b2, ...bt] is a set oft parameters controlling the shape. This part of

shape manipulation is interchanged with ICP in order to fit the model to an unseen, non-

landmarked face. The idea behind DMS is to iteratively manipulate the shape parameters

within “legal” constraints as the surfaces are fitted to each other using ICP. Figure 3.10

shows the fitting process.

3.2.4 Global similarity-based methods

The techniques mentioned so far rely on local information to register surfaces. Contrary to

these, the approaches of Johnson and Hebert [100] and Campbell and Flynn [37] perform

registration based on the global surface geometry and can deal potentially better with

featureless patches. Johnson and Hebert presented a technique for surface characterization

that does not require feature extraction or segmentation. Instead, they usespin-images

to describe an object. Using a single point basis constructed from an oriented point,
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they described the position of other points on the surface using two parameters. The

accumulation of these parameters for many points on the object’s surface results in an

image at each oriented point. Since these images describe the relationship between points

on the same surface, they are invariant to rigid transformations. Using the correlation

between images, they managed to build correspondences between a model and measured

data.

3.3 Conclusions

In the remainder of the thesis surface registration techniques will be used to enable com-

parison between faces. Some of the registration techniques presented will be used in order

to align homologous parts of the faces to each other. Since we are trying to detect dif-

ferences and similarities in the facial features across all faces it is imperative that these

features are registered to each other. This way, pose differences between faces are min-

imized and the residual differences between the facial surfaces are due to differences in

the actual facial structure.



Chapter 4

3D Face Recognition Using Surface and

Texture Registration

4.1 Introduction

In this chapter a face recognition algorithm is proposed which consists of two steps [151]:

The first step involves a 3D rigid registration of the facial surfaces to determine the corre-

spondences between two faces. In the second step, different similarity metrics are intro-

duced and evaluated in order to measure the distance between pairs of closest points on

the two faces. A key advantage of the proposed technique is the fact that it can automat-

ically identify faces irrespective of the posture of the subjects. The effect of illumination

differences on the recognition rate is measured and discussed. Finally, since this tech-

nique is used on subjects with various facial expressions, the effects of non-rigid facial

changes in the face are assessed and the strength of the discriminatory power of 3D data

is demonstrated.

In this chapter face data from two different databases is used for validating the pro-

posed technique: In both cases it consists of a dense 3D mesh of vertices describing the

facial geometry and 2D texture map describing the facial appearance of each subject pro-

ducing a photo-realistic model of each face.
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Figure 4.1: A passive sensor. Two cameras with a known geometric relationship cap-
ture two images and by establishing the correspondence between their pixels recover 3D
shape [123].

4.2 3D face data

The data used in the experiments are 3D face surface scans. Various shots of 57 subjects

were taken by us using the VisionRT VRT3D [123] and 300 surface scans were produced

by the University of Notre Dame using a Minolta Vivid 900 range scanner [46].

4.2.1 VRT3D face scans

To collect 3D data for the first experiments a commercial stereo camera system was used,

which is a hybrid between a passive stereo sensor and a structured light one. In the passive

stereo approach two cameras (minimum) with known geometric relationship are used to

capture images of the subject. Correspondences between the 2D images are established

and the location of 3D points can be computed (Figure 4.1). In the structured light ap-

proach one camera is used along with a light projector and the geometric relationship

between the two must be known. In the hybrid approach a light pattern is projected on

the surface merely as an aid for finding correspondences between the images of the two

cameras. The VRT3D camera is made up of three video cameras and a speckled pattern

projector. The projector projects a random light pattern of dots on the surface of the face

to aid 3D shape recovery. The output is a 3D face model. The third camera uses a filter

to eliminate the speckled pattern projected onto the faces to capture greylevel texture in-
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Figure 4.2: The VisionRT VRT3D camera system.

Figure 4.3: The three images used for the reconstruction of the surface.

tensity information. Furthermore, to aid correct texture capture, a halogen light is used

to illuminate the surface of the face. Figure 4.2 shows the VRT3D capture system and a

typical data capture session. Figure 4.3 shows the images collected by the three cameras

which are used for the reconstruction of the textured facial surface. This technology

was chosen over laser scanners because of its speed of acquisition (up to 30 frames/sec)

and the speed of data reconstruction (< 5 sec. on a 1GHz machine), which allows near

real-time processing in realistic scenarios. The speed of the data acquisition also prevents

motion artifacts from being introduced in the 3D acquisition process. Finally, the sys-

tem is built in a cost effective fashion, reducing hardware costs significantly compared to

other capturing techniques. The accuracy of the VRT3D is fairly high with an RMS error

of under1mm for a typical 3D surface acquisition. The accuracy has been determined

in a study where a phantom human torso was tracked using an Optotrak LED tracking

system (RMS accuracy of0.1mm) as a gold standard [189]. Ten LEDs were positioned

around the torso and the VRT3D and Optotrak systems were co-calibrated. The phantom
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Figure 4.4: An example dataset after reconstruction with and without texture.

was then moved to different positions and the LED coordinates are tracked by both sys-

tems. The discrepancy between them was used to establish the accuracy of the VRT3D

system. The human torso is admittedly a simpler surface to model than the high curvature

regions of the face, but gives an idea about the capturing capabilities of the system. The

drawbacks of the acquisition system are its relative bulkiness and since the cameras and

projector use lenses, its limited depth of field. A typical stereo camera sensor has a depth

of field of about0.3m or less while a structured light sensor has about1m. This makes

the 3D face acquisition more intrusive as the faces need to be placed within a specific

distance from the camera, as with laser scanners. Figure 4.4 shows the output surface

from the reconstruction process with and without texture.

4.2.1.1 Preprocessing of data

In order to speed up the processing and reduce the registration errors every subject’s face

was preprocessed. An ellipse outlining the subject’s face is drawn manually on the 2D

texture map.The ellipse was drawn manually by placing the mouse cursor on one side of
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Figure 4.5: A VRT3D dataset example before and after manual cleaning.

the face and dragging it across the 2D facial surface. This process was done manually but

it could theoretically be automated by detecting the edges of the facial surface. However,

our objective was not face detection and such an endeavor was not pursued.Since the

mapping between the surface points and the 2D texture map is known, the vertices which

have texture coordinates that lie outside the ellipse can be eliminated. Each point consists

of a set of 3D coordinatesvi = (vix , viy , viz), which defines its location in space, and a

2D texture coordinateti = (tix , tiy), which defines the corresponding pixel on the texture

image. Letc = (cx, cy) be the center of a user-defined ellipse on the face. If the major

axis of the ellipse is of sizea and the minor of sizeb then the points which are kept are

defined by: {
(vi, ti) :

(
(tix − cx)

2

a2
+

(tiy − cy)
2

b2
− 1

)
< 0

}
(4.1)

In this fashion it is possible to discard parts of the mesh that correspond to the neck and

hair which confuse the registration process and can introduce errors. An example of this

processing is shown in Figure 4.5.

4.2.1.2 Data collection protocol

The data was collected over various sessions with student participants.Each subject was

added to the database within the same session with the images of each subject being

captured within20sec of each other.Each participant was asked to take three different

head positions. These were a45o left and right turn of the head, a0o position (looking

straight into the camera), as well as a45o upward tilt. The above data was captured
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Figure 4.6: Type of data captured with the VRT3D camera.

twice in order to have a plethora of data for training and testing purposes as proposed

in [137]. Additionally, three different emotional expressions of each subject at0o were

acquired; one where the subject is frowning, one with the subject smiling and a neutral

one. Figure 4.6 shows examples of the type of data captured with the VRT3D camera.

In most cases each reconstructed face has between 8,000 and 12,000 points. The final

number of subjects was 57 which was composed of 4 females and 53 males. Furthermore,

based on the subjects’ ethnic self-classification, the database contained images of eight

South Asians, six East Asians, one Black and forty two Caucasians between the ages of

19 and 25.

For a patch on the surface to be captured by the VRT3D sensor there are two basic re-

quirements that need to be satisfied; both stereo cameras must have the patch in their field

of view and the speckled pattern needs to be reflected adequately from that area. There

are five major sources of error that arise if one of the previous requirements is not satis-

fied (Figure 4.7): Areas that reflect the speckled pattern poorly such as eyes, eyebrows,

beards and teeth sometimes appear as holes in the reconstructed surface (Figure 4.7(a)).

Additionally, since the speckled pattern appears as a series of black dots on the face,

people with particularly dark skin tend to have more holes than lighter-skinned people

(Figure 4.7(b)). Areas that are occluded from at least one camera due to the subject’s

head posture are also not reconstructed as shown in (Figure 4.7(c)). Occlusion can also
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(a) (b) (c) (d) (e)

Figure 4.7: Surface reconstruction errors in the VRT3D data.

occur when part of the face (usually the nose) hides another part of the face because the

subject was not looking completely straight into the camera (Figure 4.7(d)). Finally, areas

of high curvature pose difficulties for the VRT3D camera system. The tip of the nose

and its nostrils are sometimes missing from the final mesh (Figure 4.7(e)).A few images

(< 10) were deemed to contain too many capture and reconstruction errors due to some

of the above reasons and they were excluded from the final database.

4.2.2 University of Notre Dame face scans

In order to validate the experimental results with a known database, a number of datasets

were obtained from the University of Notre Dame [46]. These are part of a larger col-

lection of mainly 2D face images. The database has been built using the Minolta VIVID

910 camera which uses a structured light sensor to scan surfaces. Light reflected from

the surfaces is captured by a CCD camera and the surface is reconstructed by inferring

3D shape from the distortion of the light pattern. Measurements are usually completed

within 2.5sec. The camera also captures color texture information which it applies on the

surfaces. An advantage of this data over the VRT3D datasets is that they are usually of

higher resolution. A typical face has about 20,000 points before any preprocessing. The

facial features are better defined and there are less holes and surface artifacts. On the

other hand, the datasets obtained from the University of Notre Dame database were only

frontal images of neutral expression. The 2D texture maps are in color and in order to cre-

ate similar experimental conditions they were converted to greylevel. Figure 4.8 shows
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a dataset example from the Notre Dame database. Another reason why tests with this

dataset is particularly important is because, contrary to the VRT3D dataset, the data for

each subject was collected over two sessions separated by 11 to 13 weeks. This is signif-

icant as data collected on different dates can affect the recognition rates [157] with Gross

et al. [80] noting significant differences even between images taken two weeks apart.

Figure 4.8 shows that there are parts of the face that need to be discarded in order

for the recognition to be enhanced as was the case with the VRT3D data. Areas such

as shoulders and ears were eliminated in a similar fashion to Section 4.2.1.1 in order to

improve the automatic registration. Notice how this dataset also suffers from the same

problems as the VRT3D database. Holes and/or spikes are present in almost all datasets

as are areas of low reflectance, such as eyebrows, which are difficult to capture by a

range sensor.Another drawback of the datasets by Notre Dame University is the lower

quality of the texture data compared to the VRT3D data. As demonstrated later, the 2D

texture data applied on the 3D datasets is often less than 130 pixels wide from one ear

to another and less than 200 pixels from chin to the beginning of the hairline, while the

VRT3D textures are 300 and 450 respectively.More importantly however, the contrast

in the data is particularly poor with facial images often being over-exposed.The dataset

tested on contained two biometric samples, spaced two weeks apart, for each of the 150

subjects and they were assessed by the author to contain: 114 Caucasians, 38 East Asians,

2 South Asians, 3 Blacks and 3 undetermined subjects. The subject pool was made out

of 81 males and 69 females.Once again certain images that had a significant amount of

the facial surface missing were removed from the face pool and were not used. This was

particularly important for the Nore Dame database because these same images were going

to be used in the next chapters in landmark-based techniques. What this entails is that if

the faces could not be accurately landmarked because the area around the fiducial point is

missing, then the dataset was discarded.

The same database has been used in previous work. Changet al. used a larger pool of

these subjects with PCA in a single probe study. With an optimal set of eigenvectors in

2D and 3D, they achieved a rank-one recognition rate of89.0% for 2D, and94.5% for 3D.
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Figure 4.8: Example of a Notre Dame dataset.

In a multi-probe study, where one or more biometric sample for each subject is used for

testing, the 3D performance dropped to92.8% while 2D performance improved, reaching

89.5%. After combining the two modalities in a multiple-probes scenario they were able

to obtain significantly better performance, at98.8%, than for either 2D or 3D alone [39].

Russet al.[175] used 200 subjects from the same database to perform verification tests on

30 probes. In order to simplify the processing they converted the 3D point clouds to 2D

range images which they aligned to each other by using the nose of each face as a refer-

ence point and then implementing a registration technique which improves the alignment

of the images using the Hausdorff distance and the mean square error to establish cor-

respondence between points on the two surfaces. Two similarity metrics, the Hausdorff

distance and the mean square error were finally used after the faces were registered. The

former reached a verification rate ofPV = 98% with a false acceptance rate ofFA = 0

while the latter produced aPV = 95% at aFA = 0.

4.3 Face matching

4.3.1 Face registration in 3D

If one assumes that the face is a rigid body which can be captured perfectly by sensors,

then the mean square error difference between the points on the two surfaces can only

be due to difference in identity and 3D pose. Based on these assumptions there is a
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rigid transformationT rigid that will bring the faces of the same subject in near-perfect

alignment and will eliminate errors due to pose differences and isolate differences due

to identity. In a more realistic scenario and more formally, let∆intra be the average

difference between all probespi and a gallery facesgi where id(pi)=id(gi) such that:

∆intra =
1

M

M∑
i=1

||pi − gi|| (4.2)

whereM is the number of probes. The average difference between all possible gallery/probe

combinations is set by:

∆inter =
1

M ×N

M∑
i=1

N∑
j=1

||pi − gj|| (4.3)

whereN is the number of faces in the gallery. By aligning all probes to all gallery faces

we are trying to maximize the ratioρ of the above differences:

ρ =
∆intra

∆inter

(4.4)

Registration of surfaces or pose estimation is a key problem in computer vision that

has been studied in depth (see Chapter 3). Given two facial surfaces, i.e. a probe (moving)

faceA = {ai} and a gallery (fixed) faceB = {bi}, the goal is to estimate the optimal

rotationR and translationt that best aligns the faces. To find the optimal rigid transfor-

mationT rigid = (R, t) the ICP algorithm is used [12]. The function to be minimized is

the mean square difference function between the corresponding points on the two faces:

f(Trigid) =
1

|A|
|A|∑
i=1

||bi −Rai − t||2. (4.5)

where points with the same index correspond to each other. The correspondence is es-

tablished by looping over each pointa on probe faceA and finding the closest point, in
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Euclidean space, on gallery faceB:

d(a, B) = min
b∈B

||b− a|| (4.6)

The squared difference between two points||a− b||2 is defined as:

||a− b||2 = (ax − bx)
2 + (ay − by)

2 + (az − bz)
2 (4.7)

Unlike Besl and McKay [12] who first proposed the ICP algorithm, we do not use the

quaternion method for calculatingR. Instead, we use thesingular value decomposition

(SVD) approach [6], based on the cross-covariance matrix of the two point distributions

which generalizes well ton dimensions.This calculates a least-squares estimate of the

rotation matrixR for a set of pointsai and the rotated pointsbi = Rai + t + ni for

some translation vectort and noise vectorsni. This is achieved by translating the points

by their mean locations

a′
i = ai − ΣN

i=1ai

N
b′

i = bi − ΣN
i=1bi

N
, (4.8)

calculating the matrixH = ΣN
i=1a

′
ib

′
i
t, decomposing it asH = UΛV t using SVD and

calculatingX = V U t. This results in the required rotation matrix. The translation

t is then calculated by subtracting the centroid of the probe from the gallery face after

rotation.

Apart from the basic elements of the ICP a few optimizations have been implemented

in order to improve the registration. Before rigid registration is performed on the faces,

the center of mass of all surfaces is moved to the origin of the coordinate system. This

compensates for large differences in the distance between subjects and the chances of

correct pairings between the points of the two surfaces increases. Furthermore, because

the probe faces are not only frontals but semi-profile as well, several initial transforma-

tions are used in order to further fine-tune the starting position. Profile faces, as seen

in Figure 4.7(c), contain only a subset of a frontal face, since occlusion prevented the
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VRT3D sensor from capturing the rest of the face. After moving all faces to the origin,

profile faces will most likely be misregistered if their starting position is not adjusted.

Note that the pose (frontal, profile or upward tilt) is unknown and given that we want to

implement anautomaticface registration, a coarse initial pose estimation is necessary to

avoid misregistrations. The upwards tilted faces have been translated to the origin like all

other datasets and given that they are frontal and contain most of the face, the registration

between them and the frontal gallery faces is not problematic. We assume that each probe

will either be a frontal face, a45o profile face or a -45o profile face. In order to ascertain

which is the ideal translation componentt = (tx, ty, tz) of the initial transformation, three

hypothetical starting transformations with different translations are tested:

t0 = (0, 0, 0)

t1 = (+30, 0, 0)

t2 = (−30, 0, 0)

Based on our experience the above translations are sufficient to cover all head postures

cases during data capture. Assuming that the difference between a probe faceA and a

gallery faceB is |A − B| as defined in eq. 4.9, then the ideal translation to align their

respective point setsa andb is:

f(j) =
1

|A|
|A|∑
i=1

||bi − ai − tj||2. (4.9)

In other words, the similarity between the faces is assessed at three different starting

positions and the registration starts from the position where the mean square difference

between the corresponding points of the faces is the smallest. This way we achieve good

registrations even between profiles and frontal datasets without compromising the princi-

ple of automation.

Another optimization implemented, as proposed in [204] and [174], was the rejection

of “hazardous” pairings during the closest point search in ICP. According to ICP one must
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Figure 4.9: Establishing correspondence between two surfaces. Closest-point pairings
that contain edge points are used in (a) but ignored in (b) when calculating the optimal
transformation. Using these pairings in (a) will cause incorrect registration by forcing the
top surface to move to the left (from [174]).

loop over all the points in the probe (source) dataset and find the closest points in gallery

(target) datasets. In that case, hazardous pairings are those where the closest point on the

gallery face is a boundary point, which is in turn defined as a point that is found on a

cell edge that is not shared by another cell. What this means in effect, is that during any

one iteration only correspondences between those parts of the two surfaces that overlap

are taken into consideration.Furthermore, this optimization also deals with problems in

data such as holes, because an area on a face that corresponds to an area on another face

that is missing will not be used.Figure 4.9 shows an example of pairings that should be

ignored in order for the surfaces to be correctly registered. Finally, in order to speed up

the calculation of the closest match we use a k-D tree locator as presented in [10] and [65]

where points are organized in such a way that the number of point-to-point comparisons

are minimized (see Section 3.2.2).The ICP and its variants implemented (mentioned

above) allow us to register two surfaces in about20 iterations in under< 15sec.

The extentions of ICP that one chooses to implement are very much application spe-

cific. In this case it was felt that the above would provide an ideal balance between

accuracy and speed. For example Chen and Medioni [43] report that the point-to-plane

distance makes the convergence process less susceptible to local minima. Luet al. [127]

agree and state that the point-to-plane distance reflects the true distance between the two

surfaces better. However, the latter reports that the point-to-plane distance is significantly
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slower to calculate. In this work speed was one of the main drivers for choosing the reg-

istration method and thus significantly slower architectures were ruled out. Furthermore,

given that the faces were moved to the originin before any ICP iteration had started and

given the nature of the facial surface (highly regular across the population), getting stuck

in local minima was uncommon. As a result something better than point-to-point dis-

tance was not needed. Extensions for the ICP, such as the ones presented above, were

implemented if there was a need based on the specific datasets used.

4.3.2 Face registration in 4D

So far only geometric information has been used to align the faces. However, that is only

one source of information, which can be used to drive the registration. Since all acquired

faces include geometric information as well as a 2D texture map, a 4D registration has

been developed, which incorporates textural information in the ICP algorithm [101, 60].

Here, each point is represented by a 4D vectora = (ax, ay, az, at) whereat is the texture

intensity of the point. The cost function to be minimized is still defined by eq. 4.9 but this

time calculating the distance between pointsa andb in surfacesA andB respectively is

an operation on 4D points:

||a− b||2 = (ax − bx)
2 + (ay − by)

2 + (az − bz)
2 + w(at − bt)

2 (4.10)

wherew is a weight variable that normalizes the intensity value differences (since the

texture value is usually a unitless number) and thus determines the importance of the tex-

ture in the search for the closest point. Since there is no longer a closest form solution

for the optimal transformation, we treat the registration as an optimization problem try-

ing to minimize the cost function in eq. 4.9 by usinggradient descentto find the global

minimum.
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4.3.3 Measuring facial similarity

After two faces have been registered (using either the 3D or 4D ICP algorithm described

above) the residual 3D or 4D distance between the points in the probe face and the closest

point correspondences in the gallery face can be used as a similarity metric. LetA′ =

T (A) be the probe surface after registration andB be the model or gallery surface. The

Euclidean distance between the two surfaces is then defined as:

∆E =
1

|A′|
|A′|∑
i=1

((a′
ix − bix)

2 + (a′
iy − biy)

2 + (a′
iz − biz)

2 + w(a′
it − bit)

2) (4.11)

To measure only differences in surface shape the parameterw is set to0. The similarity

metric has been intentionally separated from the registration process in order to increase

the modularity of the algorithm, which enables easy switching between different similar-

ity metrics.

As discussed earlier, the purpose of aligning the facial surfaces was to minimize er-

rors due to registration and thus isolate the distance error due to difference in identity. Let

faceA andB belong to the same subject whileC belongs to a different subject. Further-

more, letA′ andC ′ be the faces after rigid registration to face B. Figure 4.10 shows a 2D

schematic representation of the facial surfaces before and after registration. The yellow

area between each pair of lines denotes the mean square error between them. Despite

the rigid registration there are still significant differences between facesB andC ′ while

the difference between facesA′ andB belonging to the same subject have been mostly

eliminated.

4.4 Experimental protocol

As proposed in the FERET evaluation protocol in [157] and discussed in Chapter 2 we

will assess different methodologies for recognizing faces by measuring performance in

three tasks: verification, open-set identification and closed-set identification. In order

to perform open-set identification subjects are usually split into three groups. The first



4.4 Experimental protocol 121

Figure 4.10: Schematic mean square distance before and after registration. SurfaceA
andB are different biometric samples of the same subject while surfaceC belongs to a
different subject. Notice that after rigid registration the difference betweenA′ andB is
very small compared to the one betweenC ′ andB.

group comprises of faces that are known to the system and are referred to as thegallery

G. The other two are the probe setPG, containing different biometric samples of the same

subjects as the ones contained in the gallery and the probe setPN containing samples

of people not in the gallery. Given that our population pool is limited, having only 57

subjects captured by the VRT3D and 150 in the University of Notre Dame database we

are not going to use different datasets for open-set identification. Instead we are going to

divide the subjects into two pools, the gallery setG and the probe setP whereP = PN .

The correct detection and identification ratePDI is still the same as the traditional open-

set identification but the false alarm ratePFA is calculated differently. In the open-set

identification already presented,PFA is computed by:

PFA(τ) =
|{pj : maxi sij ≥ τ}|

|PN | (4.12)

Since there is noPN set in this case, thePFA is calculated by:

PFA(τ) =
|{pj : maxi sij ≥ τ and id(gi) 6= id(pj)}|

|P| − 1
(4.13)
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This means that for every face inP we check if there is any face inG other than the face

belonging to the same subject that would cause a false alarm, given a thresholdτ . In other

words, for every probepi we remove the correct matchgi from G and check if any other

gallery face would provide a match aboveτ . This provides a very close approximation of

the original open-set identification measurement. The trade-off relationship betweenPFA

andPDI is normally plotted on an ROC and the area under the curve will be reported as

an evaluation measure. In the worst case scenario the area under the ROC curve is50%

while in the best case100% (Figure 2.3). The second measurement related toPFA and

PDI that is reported is thePFA = PDI rate.

The third measure reported is the rank 1 rate. The cumulative count in this case is

given by:

C(1) = |{pj : rank(pj) ≤ 1}| (4.14)

The closed-set identification for rank1, PI(1), is the fraction of probes at rank1 and is

described by:

PI(1) =
|C(1)|
|P| (4.15)

It is important to note that the rank 1 orPI(1) rate will return higher scores than the stricter

PFA = PDI rate. This is only natural, since thePFA = PDI measure expects not only the

correct gallery facegi to be matched to each probepj, but that the similaritysij between

them will be greater than thresholdτ . One, therefore, expects thePFA = PDI and the

ROC curve measurements (to which they are related) to be more volatile to changes in the

experimental parameters.

For calculating the verification rate we use the round-robin method [156], which is

designed for two groupsG andP. The rate reported will be the verification ratePV with

a false acceptance ratePFA = 1%.



4.5 Results 123

PI(1) Rates of the VRT3D database
w frontal profile smiling frowning tilted

0 100% 94.7% 43% 96.4% 100%
0.02 100% 94.7% 50.8% 98.2% 98.2%
0.04 100% 80.7% 64.9% 98.2% 98.2%
0.06 100% 70.1% 75.4% 98.2% 98.2%
0.08 100% 52.6% 85.9% 98.2% 94.7%
0.1 100% 45.6% 87.7% 96.4% 92.9%
0.12 100% 42.1% 89.4% 96.4% 89.4%
0.14 100% 33.3% 91.2% 96.4% 84.2%
0.16 100% 28% 92.9% 94.7% 80.7%
0.18 100% 26.3% 94.7% 94.7% 80.7%
0.2 100% 26.3% 94.7% 94.7% 75.4%

Table 4.1: The rank 1 rates (PI(1)) of the different types of queries using various texture
weights on the VRT3D database.The texture weights are expressed in factors by which
one multiplies the texture value of a specific point, as indicated in eq. 4.10.

4.5 Results

4.5.1 Automatic recognition using the VRT3D database

Table 4.1 and Figure 4.12 show the rank 1 rates of the various expressions and head po-

sitions using the VRT3D face database. The rank 1 recognition rates for frontal faces are

very high, reaching an impressivePI(1) = 100%. Profile faces also have high rank 1 rates

but the rates are decreasing as more weight is put on the texture. The same is seen for

tilted faces, that perform best when no texture is used. For smiling and frowning faces us-

ing texture improves the results significantly. A similar trend can be observed in Table 4.2

and Figure 4.13 showing the correlation between false alarm rate and the detection and

identification rate (PFA = PDI). The profiles and the tilted faces perform best when no

texture is used. On the other hand, the frontal faces, the smiling and frowning ones seem

to peak in terms of performance in the middle of the texture weight range and then start

dropping again. The same behaviour is observed when the area under the ROC curves in

table 4.3 and figure 4.14 is measured as well as in the verification ratesPV in Figure 4.15

and Table 4.4.
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Figure 4.11: Type of queries according to the experimental protocol.
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Figure 4.12: All rank 1 rates (PI(1)).
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PFA = PDI rates of the VRT3D database
w frontal profile smiling frowning tilted

0 98.2% 91.7% 61.4% 90.3% 94.7%
0.02 99.1% 88.5% 66.6% 94.7% 93.8%
0.04 100% 77.1% 69.2% 96.4% 91.2%
0.06 100% 62.2% 71% 94.7% 87.7%
0.08 100% 57.8% 74.5% 93.8% 80.7%
0.1 98.2% 57.1% 75.4% 92.1% 71%
0.12 98.2% 57.8% 76.3% 88.5% 66.6%
0.14 97.3% 56.1% 75.4% 87.7% 64%
0.16 97.3% 55.2% 75.4% 87.7% 62.2%
0.18 97.3% 54.3% 75.4% 87.7% 60.5%
0.2 96.4% 54.3% 75.4% 85.9% 61.4%

Table 4.2: ThePFA = PDI rates of the different types of queries using various texture
weights on the VRT3D database.
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Figure 4.13:PFA = PDI rates at various texture weights on the VRT3D database.
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ROC Area percentages of VRT3D database
w frontal profile smiling frowning tilted

0 99.7% 94.4% 67.4% 97.4% 96.6%
0.02 99.8% 94.3% 73.2% 98.6% 96.6%
0.04 100% 82.9% 77.8% 99.1% 93.8%
0.06 100% 69.1% 81.1% 99% 90.8%
0.08 100% 61.8% 82.6% 98.4% 85.7%
0.1 99.9% 58.2% 83.7% 97.5% 80.1%
0.12 99.8% 56.3% 83.9% 96.3% 75.4%
0.14 99.9% 54.6% 84.6% 95.1% 72.2%
0.16 99.6% 53.6% 84.7% 93.8% 69.5%
0.18 99.4% 53.1% 84.7% 93.2% 67.5%
0.2 99.3% 52.8% 84.8% 92.5% 65.9%

Table 4.3: The ROC area rates of the different types of queries using various texture
weights on the VRT3D database.
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Figure 4.14: Percentage of graph under the ROC curve using the VRT3D database with
various texture weights.
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Verification rates PV of the VRT3D database
w frontal profile smiling frowning tilted

0 100% 91.2% 33.3% 94.7% 94.7%
0.02 100% 92.9% 49.1% 98.2% 96.4%
0.04 100% 77.1% 61.4% 98.2% 91.2%
0.06 100% 50.8% 70.1% 98.2% 91.2%
0.08 100% 43.8% 73.6% 96.4% 78.9%
0.1 100% 28% 75.4% 96.4% 63.1%
0.12 100% 24.5% 75.4% 94.7% 50.8%
0.14 100% 22.8% 73.6% 92.9% 47.3%
0.16 100% 21% 75.4% 92.9% 43.8%
0.18 100% 21% 75.4% 91.2% 43.8%
0.2 100% 21% 73.6% 87.7% 42.1%

Table 4.4: The verification ratesPV of the different types of queries using various texture
weights.
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Figure 4.16: All rank 1 ratesPI(1) using the Notre Dame database.

4.5.2 Automatic recognition using the Notre Dame database

Table 4.5 and figures 4.16, 4.17, 4.18 and 4.19 show a different trend for the Notre Dame

Database. In this case 150 frontal faces were used as queries and 150 faces as gallery

faces and the same tests were run on them as on the VRT3D database. The rank 1 rates

when no texture is used are very high again, reaching100%, but drop sharply as the

texture weight increases even though both gallery and probe sets contain frontal faces.

The same phenomenon is observed with thePFA = PDI andPV rates as well as the

rate measuring the area under the ROC graph. Notice the difference in contribution of

the texture information compared to the VRT3D database. The reasons behind this are

discussed in the next section.

4.6 Discussion

The experimental results reported in Section 4.5 above demonstrate the wealth of infor-

mation that exists in texture 3D surface models and how it can be used for accurate face

recognition. The technique is automatic in the sense that it does not require the use of
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Figure 4.17:PFA = PDI rates at various texture weights using Notre Dame datasets.
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Figure 4.19: Verification rates (PV atFA = 1%) using the Notre Dame database.

Notre Dame Statistics
w PI(1) PFA = PDI ROC area PV atFA = 1%
0 100% 94.6% 98.7% 99.3%
0.02 99.3% 92.6% 98% 99.3%
0.04 99.3% 85.6% 92.8% 90.6%
0.06 80% 74.6% 84.9% 81.3%
0.08 69.3% 72.3% 80.7% 68%
0.1 62% 70% 78.2% 62%
0.12 58.2% 68.4% 76.2% 59.7%
0.14 55.3% 67% 74.7% 57.3%
0.16 54% 66% 73.9% 53.3%
0.18 52% 65.3% 73.1% 51.3%
0.2 50.6% 65.3% 72.8% 48.6%

Table 4.5: ThePI(1), PFA = PDI , ROC area andPV rates of the Notre Dame database
using various texture weights.
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landmarks or any other information about a face prior to registration. However, for the

faces to be correctly registered, the facial surfaces need to be relatively free from non-

facial points, such as shoulders, which could adversely affect the alignment. In this chap-

ter this is done by manually tracing an ellipsoid over each face’s “area of interest” (see

Section 4.2.1.1).

4.6.1 VRT3D data

4.6.1.1 Frontal faces

When using no texture the probe set that performs the best out of the VRT3D datasets is

the group that has frontal faces with neutral emotional expression. This is expected as a

face from the frontal, neutral gallery set is most similar to the frontal, neutral probe set.

Figure 4.20 shows a distance map of two frontal faces of the same person where red colors

indicate small distances while blue ones indicate large. The 3D distance between the

faces is very small and it is only natural to expect high recognition rates. Furthermore, the

VRT3D datasets are taken under a controlled environment where the angle and distance

between the subject and the lights is constant. There is therefore very little within subject

variability in the textures of the 3D data collected (assuming same head posture). As

a result the texture information, up to a certain texture weight, can only increase the

recognition rate. An example of this is demonstrated by the two VRT3D texture datasets

on the left in Figure 4.21. In order to correctly measure the textural differences between

the faces one can not simply subtract the 2D texture images from each other. Instead,

the difference must be calculated by subtracting the intensity values ofcorresponding

points from each other. Once again, to establish correspondence between points we loop

over all points on one surface and we build closest-point pairings between them and the

points on the other surface. Figure 4.22 shows the textural differences between two sets

of corresponding points being computed and projected back onto a 2D image. Since

the resulting value might be a negative number all values are normalized so that pixel

intensities on the difference image are positive. The closer a pixel is to128 (grey) the
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(a) (b) (c) (d)

Figure 4.20: (a) and (b) shows two frontal datasets from the same subject, (c) shows
a color map of the distances between them after registration while (d) is the color map
of distances between (a) and a frontal dataset belonging to another subject (cool colors
indicate large distance, warm colors indicate small distance).

(a) (b) (c) (d)

Figure 4.21: Images (a) and (b) are the original images of the subject. (c) shows the
differences in illumination between the two images before they have been registered and
(d) shows the differences after registration.

smaller the difference in texture between the points that projected it. Darker or lighter than

grey values indicate greater differences in those face patches. In Figure 4.21(c) there are

pronounced textural differences because the faces are not properly registered and merely

translated to the origin. In Figure 4.21(d) of the same figure the textural differences have

been reduced after the rigid registration.

As mentioned in Section 2.1.1 thePFA = PDI rate is a stricter measurement and

more sensitive to the experimental parameters. This can already be seen from the frontal,

neutral datasets where thePFA = PDI rates fall (Table 4.2) as more emphasis is put on

the texture.
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Figure 4.22: Subtracting texture intensities of corresponding surface points. The texture
intensities of corresponding points are subtracted from each other and the difference is
projected on a 2D bitmap. The normalization allows for a signed representation of the
results.

4.6.1.2 Profile faces

When comparing45 deg profile faces the rank 1 rate is very highwhen no texture is used

(94.7%), something which would seem very difficult to reach with 2D information with

such dramatic differences in posture. Images in Figure 4.24(a) and Figure 4.24(b) show

the frontal and profile dataset of a subject. Despite almost half of the face in Figure 4.24(b)

missing, the distance between the surfaces after registration is small. As mentioned in

Section 4.3.1, because surfaces with different sizes were compared, parts of the faces that

do not overlap are ignored and thus, such different surfaces can be dealt with. When

profile datasets belonging to different subjects are registered to each other the differences

between them are greater as seen in image Figure 4.24(d).In addition, when texture is

used, the rank 1 rate starts dropping (Figure 4.12 and Table 4.1). The same is observed

with thePFA = PDI and thePV rates. This is due to the differences in posture between

the datasets. This difference due to posture between surfaces is minimized using a rigid

registration, but the illumination differences are not dealt with as the 2D texture maps are

not pre-processed. Therefore, the use of texture has detrimental effects on recognition

tests using profile faces as probes.Figure 4.25 shows the differences between the aligned

textures of the frontal and a profile 2D shot. The textural differences are visibly greater

than the images in 4.21. The colored area is the area where the surfaces do not overlap

and is ignored as it was not included in the metric.
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Figure 4.23: Preprocessing 2D images of the PIE database in order to normalize illumi-
nation variation (from [78]).

The textural differences due to illumination can in principle be corrected by perform-

ing some normalization on the texture images themselves. A relatively simple preprocess-

ing algorithm is presented in Gross and Brajovic [78] that compensates for illumination

variations in images. Taking a single image, the algorithm first estimates the illumina-

tion field and then compensates for it in order to recover most of the scene reflectance

(Figure 4.23). The technique does not require any training steps or any knowledge of

statistical face models. The technique was applied before using several standard 2D face

recognition algorithms on many databases and they demonstrated large performance im-

provements.

In Section 4.3.1 it was reported how an initial estimate of position is performed in

order to bootstrap the ICP algorithm. This starting position can be used to infer the angle

at which the data was captured. Assuming that the light source does not change location

and given a known head posture (profile or frontal), one can compensate for the difference

in illumination across poses by using a model as presented in [129]. We did not conduct

experiments with such normalized data since the scope of our study was to investigate

the effects of posture on shape and texture and not to tackle the illumination variability

problem.
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(a) (b) (c) (d)

Figure 4.24: (a) shows a frontal dataset, (b) a profile dataset from the same subject, (c) is
a color map of the distances between them after registration while (d) is the color map of
distances between (a) and a profile dataset belonging to another subject.

Figure 4.25: The two images on the left are the original images of the subject. The third
image shows the differences in illumination between the two images after they have been
registered. The red area indicates the part of the gallery face that does not overlap with the
profile probe face and is therefore not taken under consideration in the similarity metric.
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(a) (b) (c) (d)

Figure 4.26: (a) shows a frontal dataset, (b) a tilted dataset from the same subject, (c) is
a color map of the distances between them after registration while (d) is the color map of
distances between (a) and a tilted dataset belonging to another subject.

4.6.1.3 Tilted faces

When upward-tilted faces are used as probes the rates are very high when no texture is

used (Table 4.5 and Figures 4.16, 4.17, 4.18 and 4.19). As already mentioned the VRT3D

system requires both stereo cameras to “see” the same part of the face for the software to

be able to infer the 3D shape. An upwards tilted face does not contain as many occlusions

as a profile face. Assuming that a face is a cylinder, the heighth of the cylinder (from

forehead to chin) is larger than the diameterd (from one ear to the other). In other words

the face’s principal curve is the one between the ears and as a result, occlusion occurs

at smaller angles when the face is turned from left to right than if it is tilted upwards

or downwards. Consequently, the surfaces of a frontal and a tilted face do not differ

significantly. Once the faces are registered they look very similar in 3D. Figure 4.26

shows a frontal and a upwards tilted face and the small residual distance between the

two once they have been registered. However, as with profiles, when texture is used the

recognition rate falls sharply. This is because as mentioned above changes in posture

cause illumination differences between faces. Figure 4.27 shows a frontal and tilted face

of the same subject and the difference between them after their textures have been aligned.

Once again the illumination differences in the textures are greater than the ones shown in

Figure 4.21.
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Figure 4.27: The two images on the left are the original images of the subject. The third
image shows the differences in illumination between the two images after they have been
registered.

4.6.1.4 Faces with expressions

When the faces used as probes have facial expressions then the actual geometry of the

surface is different. These non-rigid deformations violate the rigid-body assumption pre-

sented earlier. A smiling or frowning face has a different geometry around the parts of

the face where muscles are stretching and pulling the soft tissue. This results in reduced

recognition rates compared to emotionally neutral frontal faces. Figure 4.29(a) shows a

frontal gallery face and image (b) of the same figure shows a smiling probe belonging to

the same subject. In Figure 4.29(c) it is clear that the area around the mouth is the area

where most differences between probe and gallery face are found while, in Figure 4.29(d)

the differences between the neutral gallery face and a smiling probe belonging to a dif-

ferent person are evident. Similarly in Figure 4.30 showing the surface of a frowning

face it is clear that most of the differences are located around the eyebrows and around

the mouth. The similarity score gap between faces (c) and (d) in Figures 4.29 and 4.30

is smaller than in experiments where identity is the major source of difference between

a probe and a gallery. Both different expression and different identity increase the 3D

distance between faces, thus reducing the recognition rate. Since, however there are no

big differences in posture there are also no dramatic differences in illumination. There

are some local differences in the areas where the surfaces are deformed due to a facial

expression, which causes the light to be reflected differently, but these differences are not

enough to render the texture map useless. As seen in Figures 4.28 and 4.31 there are
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Figure 4.28: The two images on the left are the original images of the subject. The third
image shows the differences in illumination between the two images after they have been
registered. Notice the difference in the non-rigid parts of the face that are active during a
smile.

(a) (b) (c) (d)

Figure 4.29: (a) shows a frontal (neutral) dataset, (b) a smiling dataset from the same
subject, (c) is a color map of the distances between them after registration while (d) is the
color map of distances between (a) and a smiling dataset belonging to another subject.

differences in the textures but especially on the frowning example 4.31 they are mostly

located around the eyebrows where the surface deformation is greater. Also the local sur-

face deformations of the average smiling face in the VRT3D datasets are more dramatic

than the surface deformations on a frowning face (partly because of the reluctance of sub-

jects in a multicultural environment to express sorrow as enthusiastically as joy). This

partly explains the significantly higher recognition rates achieved with frowning probes

compared to smiling ones.

4.6.2 Notre Dame data

High recognition rates were also achieved with the Notre Dame database using just the

surface information. As table 4.5 shows, all 150 faces were matched correctly in rank 1
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(a) (b) (c) (d)

Figure 4.30: (a) shows a frontal (neutral) dataset, (b) a frowning dataset from the same
subject, (c) is a color map of the distances between them after registration while (d) is the
color map of distances between (a) and a frowning dataset belonging to another subject.

Figure 4.31: The two images on the left are the original images of the subject. The third
image shows the differences in illumination between the two images after they have been
registered. Notice the non-rigid parts of the face that are active during a frown.
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tests. ThePDI = PFA rate is also very high, showing that the average surface similarity

between two correct matches was significantly smaller than the average surface similarity

between the smallest incorrect match. In other words the average client yields a signif-

icantly closer match than the average best imposter. When texture is used the rates fall

sharply.This is because the datasets of the Notre Dame face database were not captured

under the controlled conditions that the VRT3D datasets were captured. One can easily

notice that there often are great variations in illumination between images of the same

subject. This is either due to different light sources being used across sessions or due

to the subject changing position with regards to the light source (or both).Figure 4.33

(top) shows these kind of illumination differences even when the position of the subject

is relatively the same across images. The image on the right shows the result when the

two images are subtracted from each other. Figure 4.33 (bottom row) shows an exam-

ple of variation in position with respects to the camera and the consequences it has on

the illumination of the face. It is important to note that these dramatic differences in il-

lumination do not exist in frontal scans of the VRT3D set as illustrated in Figure 4.21.

Part of the reason for achieving such uniformity in the VRT3D datasets is that contrary

to the Notre Dame database, all images of each subject were captured within a couple of

minutes from each other, which significantly reduces the within-subject variability. As

a result when more and more weight is put on texture with the Notre Dame datasets the

average best imposter score is significantly closer to the average score of the clients and

at some point even outperforms the latter. Figure 4.32 shows the average client score and

the average best imposter score, demonstrating that as the texture weight increases so do

the scores of the average client and the average best imposter. Note that when a texture

weight greater than0.12 is used a crossover occurs and the average client performs worse

than the average best imposter.
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Figure 4.32: Average client score plotted against the average best imposter score. Notice
how after a certain texture weight the average best imposter scores better than the average
client (0=identical).

Figure 4.33: The images on the left are the original images of the Notre Dame subject
while the third one shows the differences in illumination between the first two images
after they have been registered.
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4.7 Conclusions

In this chapter the usefulness of three-dimensional information for face recognition is

demonstrated. Despite dramatic postural differences between the datasets of each subject

very high recognition rates were achieved. Although the surface-only recognition rates are

not affected by postural differences, when 2D texture information is used alongside the 3D

shape in the similarity metric, the recognition rate is significantly affected. Furthermore

lower rates are achieved when the subjects engaged in a facial expression as the surface

geometry was affected. Both the issue of posture and the facial expressions can be dealt

with to decrease their effect. As mentioned in Section 4.6 the textures of the faces were not

pre-processed. It is likely that pre-processing the 2D texture maps with a technique, such

as the ones proposed in [78], would improve the recognition scores. In order to deal with

facial expressions on the other hand, one could account for differences by landmarking

the non-rigid anatomical features and bringing them into some sort of close alignment

across all subjects. Finally, using 4D registration does not improve the results. A 4D ICP

performed significantly worse in aligning faces, independently of the texture weighting

used. The increase in misregistrations of facial surfaces is caused by a relatively great

number of local minima in the texture data which causes incorrect point correspondences

to be formed. As a result the recognition rates after using a 4D ICP were much lower than

using a 3D ICP.

As mentioned in Chapter 2 Medioniet al. [135] used a similar ICP-based technique

which reached90% rank 1 rates using 100 subjects. His method however relied only on

3D surface information and not 2D. Maureret al. [133] also used an ICP-based technique

but during the facial comparison stage they implemented a weighted sum technique, like

the one presented in this chapter, taking advantage of both 2D and 3D information. When

using neutral images in the probe and gallery set the verification rate at FAR= 1% reaches

99.2%. What is more important, however, is that using sets containing facial expressions

as well as neutral faces, it reaches a verification rate of93.5%. Lu et al. [127] focused

on making the registration faster and more robust. In the evaluation stage, apart from
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point location and texture they also used the shape index at each point. Using 18 faces

some of which were semi-profile and with facial expressions they reached a rank 1 rate of

92%. Finally, Lu and Jain [128] tried to deal with facial expressions by using thin plate

splines to model the intra- and inter-subject variation. Using these models they tried to

distinguish deformations due to identity from deformations due to facial expressions. On

a database which included faces with facial expressions they managed to reach rank 1

rates of89% using 3D data only and91% using 3D+2D.

The method introduced in this chapter compares faces by using all facial points. No

effort is made to represent the faces in a more compact way by taking advantage of the

inherent redundancy that exists in such data. Using such high-dimensional input is com-

putationally costly. Subspace analysis could potentially eliminate the redundancy and iso-

late the modes of variation that are important for recognition. Furthermore, the technique

presented here is used on two relatively small databases and therefore, it is difficult to pre-

dict how such a technique would fair with a very large set of data where the likelihood of

an imposter with a mean square distance smaller than the correct match increases. An al-

ternative representation of reduced dimensionality could prove more effective. In the next

chapter we introduce and compare two model-building techniques for face recognition

based on PCA.



Chapter 5

Automatic construction of statistical 3D

face models for face recognition

5.1 Introduction

Given the redundancy in facial data, a common approach to face recognition is to use

statistical face models. Two statistical model-building techniques are presented in this

chapter and their effectiveness in 3D face recognition is evaluated and compared. The

motivation behind the use of statistical models is the fact that it can potentially allow a

more compact description of faces and thus decrease the vulnerability of face recognition

algorithms, such as the one presented in Chapter 4, to noise. Such an increased robustness

would also allow the scaling of face recognition techniques to larger databases.Further-

more, even for a small database of 1000 subjects, using the method of the previous chap-

ter would require 1000 rigid registrations before a face can be compared to the rest of the

gallery faces. This is computationally very expensive. The techniques presented in this

chapter require only one registration to a template face in order to minimize variation due

to pose. Then, all comparisons take place in a reduced dimensionality subspace which

allows for face-to-face comparisons to happen in a fraction of the time.

In this chapter we propose the use of two registration techniques for building mod-

els of 3D face recognition. The first technique is a landmark-based technique in which
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landmarks, placed manually on fiducial anatomical points, are used for registration. The

landmark points are brought into close alignment using rigid and non-rigid registration

and the correspondences are established between a base mesh, or template, and the sub-

ject’s face. The other technique implemented is an automatic rigid surface registration

used to establish correspondences between surface points without the use of manually

placed landmarks. Once correspondences are established using either techniques, statis-

tical models of 3D faces are created using PCA. The two models were tested using the

face recognition protocol described in Chapter 4. Furthermore three important properties

of the model are examined: its generalization ability, its specificity and its compactness.

5.2 Principal component analysis revisited

Early attempts in face recognition used local face features in order to describe a face [108,

74], but these techniques have proven largely ineffective as they lack robustness [205].

Given the structural regularity of the faces, one can exploit the redundancy in order to

describe a face with less parameters. In intensity images the dimensionality of the space

depends on the number of pixels in the input images while in 3D data it depends on the

number of points on the surface. Let us assume a set of 3D face surfacesΓ1, Γ2, Γ3,...,ΓM ,

each withn surface points. The average 3D face surface is then calculated by:

Γ =
1

M

M∑
i=1

Γi (5.1)

and using the vector difference

γi = Γi − Γ (5.2)

the covariance matrixC is computed by:

C =
1

M

M∑
i=1

γiγ
T
i (5.3)
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The eigenanalysis ofC yields the eigenvectorsui and their associated eigenvaluesλi

sorted by decreasing eigenvalue. All surfaces are then projected on the facespace by:

βk = uT
k (Γ− Γ) (5.4)

wherek = 1, ...,m. Every surface can then be described by a vector of weightsβT =

[β1, β2, ..., βm], which dictates how much each of the principal eigenfaces contributes

in describing the input surface. The value ofm is application and data-specific, but in

general a value is used such that98% of the population variation can be described. More

formally [96]: ∑m
k=1 λk∑M
j=1 λj

≥ 0.98 (5.5)

The similarity between two facesA andB can be assessed by comparing the weights

βA andβB which are required to parameterize the faces. We will use two measurements

for measuring the distance between the shape parameters of the two faces. The first one

is the Euclidean distance which is defined as:

dE(βA,βB) = ||βA − βB|| =
√√√√

m∑
i

(βAi − βBi)
2 (5.6)

Turk and Pentland also calculated the distance of a face from the feature-space. There

are then four possibilities for an input image: (1) the face is near the feature-space and

near a face class (the face is known), (2) near feature-space but not near a face class (face

is unknown), (3) distant from feature-space and face class (image not a face) and finally

(4) distant from feature-space and near a face class (image not a face). This way images

that are not faces can be detected. Typically case (3) returns a false positive in most

recognition systems.

By computing the sample variance along each dimension one can use the Mahalanobis

distance to calculate the similarity between faces [221]. In the Mahalanobis space, the

variance along each dimension is normalized to one. In order to compare the shape

parameters of two facial surfaces the difference in shape parameters is divided by the
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corresponding standard deviationσ:

dM(βA,βB) =

√∑m
i (βAi

− βBi
)2

σ2
i

(5.7)

Another alternative is to use the MahCosine distance metric as reported in Chawla and

Bowyer [42]. The MahCosine measure is the cosine of the angle between the biometric

samples after they have been transformed to the Mahalanobis space. More formally, the

MahCosine measure between imagesΓA andΓB with projectsβA andβB in the Maha-

lanobis space is computed as:

dMahCosine(ΓA, ΓB) = cos(θΓA,ΓB
) =

|βA||βB|cos(θΓA,ΓB
)

|βA||βB| (5.8)

Some people report improved results with distance metrics other than the basic Maha-

lanobis and Euclidean distance [42] but in order to increase the comparability of our

results we have opted for the more widely used former two distance metrics.

5.3 Building the face model

One of the key problems in computer vision has been the correspondence problem. As

Vetteret al. [170] have shown in 2D, the linear combination of pixels does not result in a

truly average face (Figure 5.1). The reason for this is that the pixel-wise linear combina-

tion does not account for variations of shape. Many face modeling techniques [50, 113,

97] assume that the data, whether 3D or 2D forms a linear vector space. However, the

data is not always in that form. The 2D or 3D face data are usually of various geometries

and sizes with varying number of pixels or points. The correspondence problem in this

case is the problem of finding points on the facial surface that correspond, anatomically

speaking, to the same surface points in other faces. In other words, theith point on ev-

ery surface should correspond to the same feature across all faces [15]. Early statistical

approaches for describing a face did not attempt to match features together [205, 110].

It was assumed that faces were photographed under controlled conditions and no explicit
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Figure 5.1: A mean calculated with and without correspondences. (from [170])

attempt was made to match corresponding areas. Later research focused on establishing

correspondence between features of objects in order to generate more meaningful face

models.

One way to establish correspondence is by using manually placed landmarks to mark

anatomically distinct points on a surface. As this can be a painstaking and error-prone

process some authors have tried to automate it by using a model trained on manually

placed landmarks and employing it to find landmarks on other surfaces [48, 96, 64, 51].

Davies [51] developed a framework for establishing correspondence between datasets

automatically by treating this task as part of the learning process. In order to achieve this,

an objective function was established which measured the utility of a model based on the

minimum description length principle. The problem of finding correspondences is then

treated as a problem in which correspondences are manipulated in order to optimize the

objective function.

Another way of establishing correspondence between points on two surfaces, as dis-

cussed in Chapter 3, is by analyzing their shape. Wanget al. [214] used curvature infor-

mation to find similar areas on a surface in order to construct 3D shape models. In Brett

et al. [26, 25] the surfaces were decimated in a way that eliminates points from areas of

low curvature. High curvature areas are then assumed to correspond to each other and are

thus aligned.

Contrary to such techniques which use a small number of corresponding feature points,

the ICP algorithm aligns shapes by minimizing the sum of squared distances between
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closest points on the surfaces. Using automatic techniques like these, points on one sur-

face are matched with closest points on the other surface. Some work has been done on

combining automatic techniques such as ICP with a semi-automatic statistical technique,

such as active shape models, in order to take advantage of the strengths of each [96].An

example of such a technique is disccussed in the concluding section of this chapter.

Finally, as discussed in earlier chapters Vetteret al. [209] established correspondence

between 3D facial surfaces by using optical flow on 2D textures to match anatomical

features to each other. In the next sections the two methods for building the face model

are presented followed by a detailed comparison of the two.

5.3.1 Building the model using landmark registration

Initially, the facial surfaces are visualized in 3D using a publicly available visualization

library (www.vtk.org). Landmarks are then manually placed on features of the face using

the mouse to select points on the 3D surface. The face could be rotated in space which

made the selection of the correct feature somewhat easier. The use of texture on the faces

helped the selection of the correct landmark further. The images were landmarked by two

undergraduate volunteers and each of them landmarked different parts of the database.

Since there was no overlap between the datasets they worked on, we did not perform any

tests to check the consistency of their efforts. However, all faces were checked in the end

of the above process by the author in order to correct some inconsistencies and reduce

errors.

Parts of the face such as the cheeks are difficult to landmark because there are no

uniquely distinguishable anatomical points across all faces. The landmarks used were

placed on anatomically distinct points of the face in order to ensure proper correspon-

dence. Some of the landmarks were placed on the “outer” anatomical features such as

chin and eyebrows in order to better capture the overall dimension of a face. It was im-

portant to choose landmarks that contain both local feature information (eg. the size of the

mouth and nose) as well as the overall size of the face (eg. the location of the eyebrows).
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Anatomical points landmarked
Points Landmark Description
Glabella Area in the center of the forehead between the eyebrows,

above the nose which is slightly protruding (1 point).
Eyes Both the inner and outer corners of the eyelids are land-

marked (4 points).
Nasion The intersection of the frontal and two nasal bones of the

human skull where there is a clearly depressed area directly
between the eyes above the bridge of the nose (1 point).

Nose tip The most protruding part of the nose (1 point).
Subnasal The middle point at the base of the nose (1 point).
Lips Both left and right corners of the lips as well as the top

point of the upper lip and the lowest point of the lower lip
are landmarked (4 points).

Gnathion The lowest and most protruding point on the chin (1 point).

Table 5.1: The 13 manually selected landmarks chosen because of their anatomical dis-
tinctiveness.

Previous work on 3D face modeling has shown that there is not much difference between

the use of 11 and 59 landmarks [96]. It was therefore decided that 13 landmarks are

sufficient for building the model while making the landmarking process less tedious. On

average it took about a minute to landmark a single face accurately. Table 5.1 shows the

landmarks that were used and Figure 5.2 shows an example of a face that was manually

landmarked.

5.3.1.1 Rigid landmark registration

Initially the mean landmarks were calculated by registering all landmark sets to a land-

mark set belonging to one of the subjects using the least square approach presented in

Arun et al. [6]. Subsequently, the mean position of each landmark is computed. All

datasets are then re-registerered to this mean landmark set. The transformations gener-

ated from the registration of each landmark set to the mean landmarks is applied to each

facial surface. As a result, all faces are brought into close alignment using only the land-

marks to calculate the rigid transformation. Figure 5.3 (top row) shows two faces aligned

to the mean landmarks while the bottom row shows a frontal 2D projection of the outer

landmarks of the same faces before and after rigid landmark registration.
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Figure 5.2: The 13 manually selected landmarks chosen because of their anatomical dis-
tinctiveness.

Figure 5.3: Rigid registration of faces using landmarks. The top row shows the two faces
aligned to the mean landmarks. The bottom row shows a frontal 2D projection of the
outer landmarks of the same faces before and after registration.
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Figure 5.4: Before and after non-rigid landmark registration. Yellow points represent
landmarks.

5.3.1.2 Non-rigid landmark registration

The next step involves the use of non-rigid registration in order to maximize the corre-

spondence between the faces. This is necessary, because after rigid registration facial

features are not always paired-up with the corresponding points on the other surface. Fig-

ure 5.4 shows two idealized surfaces before and after non-rigid landmark registration. The

yellow points represent the manually placed landmarks that were deemed to correspond

to each other. Because the surfaces are not of the same size and shape, even after being

closely aligned using a rigid registration (Figure 5.4 (top)), many points are not paired

up with the correct points on the other surface. Registering the landmarks non-rigidly

(Figure 5.4 (bottom)) allows for corresponding points to be paired up.

Thin plate splines (TPS) can be used in order to warp each set of landmarks to the

mean landmarks [169]. For example, Hutton [96] used TPS to accurately non-rigidly

register all landmarks and interpolate the alignment in the space between the them. TPS

use radial basis functions which have infinite support and therefore each control point has

a global effect on the entire transformation. The TPS calculation is therefore complex and

inefficient. One of the advantages of using a smaller number of landmarks is the decrease

in the computational cost of estimating the TPS warping between the two point sets.

An alternative approach for the non-rigid registration of 3D faces is to use a so-called
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Figure 5.5: Example of B-spline approximation. The image on the left shows the input
data and the image on the right the approximation of the control grid [116].

Figure 5.6: A free-form deformation and the corresponding mesh of control points.

free-form deformation(FFD) [183] which can efficiently model local deformations. As

discussed in Chapter 3, B-spline transformations, contrary to thin-plate splines, have local

support, which means that each control point influences a limited region. Furthermore,

the computational complexity of calculating a B-spline is significantly lower than a thin-

plate spline. In the following, a non-rigid registration algorithm for landmarks based on

multi-resolution B-splines is proposed.

Leeet al. [116] described a fast algorithm for interpolating and approximating scat-

tered data using a coarse-to-fine hierarchy of control lattices in order to generate a se-

quence of bicubic B-spline function whose sum approximates the desired interpolation

function. Figure 5.5 shows an example of a B-spline approximation. We extend this

method in order to calculate the ideal free-form transformation for 3D landmarks. A

rectangular grid of control points is initially defined (Figure 5.6) inside which the set of

landmarks are placed. The control points of the FFD move in order to precisely align the

facial landmarks placed within the grid to the corresponding landmarks of another face.
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The transformation is defined by anx × ny × nz grid Φ of control point vectorsφlmn

with uniform spacingδ:

T (x, y, z) =
3∑

i=0

3∑
j=0

3∑

k=0

Bi(r)Bj(s)Bk(t)φl+i,m+j,n+k (5.9)

wherel = bpx

δ
c − 1,m = bpy

δ
c − 1, n = bpz

δ
c − 1, r = px

δ
− bpx

δ
c, s = py

δ
− bpy

δ
c and

t = pz

δ
− bpz

δ
c and whereBi, Bj, Bk represent the B-spline basis functions which define

the contribution of each control point based on its distance from the landmark [63]:

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u + 1)/6

B3(u) = u3/6

Given a moving point set (source)p = {(pex , pey , pez)} and a fixed point setq =

{(qex , qey , qez)}, the algorithm estimates a set of displacement vectorsd = p− q associ-

ated with the latter. The output is an array of displacement vectorsφlmn for the control

points which provides a least squares approximation of the displacement vectors.

Since B-splines have local support, each source pointpe is affected only by a limited

number of surrounding 64 control points. The displacement vectors of the control points

associated with that part of the lattice can be denoted asφijk wherei, j, k = 0, 1, 2, 3 and

are given by:

φijk =
wijkd∑3

a=0

∑3
b=0

∑3
c=0 w2

abc

(5.10)

wherewijk = Bi(r)Bj(s)Bk(t). In other words, eq. 5.10 entails that the closer a control

point is to a source pointpe, the larger the former’s associatedwijk value and therefore, the

larger the influence of the corresponding displacement vector. Listing 2 is a pseudocode

representation of the B-spline registration algorithm.

Because B-splines have local support, if the distance between the control points is too
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Listing 2 The 3D B-spline registration algorithm
1: Input: a source landmark setp = {(px, py, pz)} and

corresponding displacement vectorsd = {(dx, dy, dz)}
2: Output: control latticeΦ = {φlmn}
3: for all l,m, n do
4: reset∆lmn and setωlmn = 0
5: end for
6: for each point(px, py, pz) in p do
7: let l = bpx

δ
c − 1, m = bpy

δ
c − 1, n = bpz

δ
c − 1

8: let r = px

δ
− bpx

δ
c, s = py

δ
− bpy

δ
c, t = pz

δ
− bpz

δ
c

9: computewijk and
∑3

a=0

∑3
b=0

∑3
c=0 w2

abc

10: for i, j, k = 0, 1, 2, 3 do
11: computeφijk with eq. 5.10
12: addw2

ijkφijk to ∆(l+i)(m+j)(n+k)

13: addw2
ijk to ω(l+i)(m+j)(n+k)

14: end for
15: end for
16: for all l,m, n do
17: if ωlmn 6= 0 then
18: computeφlmn = ∆lmn/ωlmn

19: else
20: φlmn = 0
21: end if
22: end for
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small, then the transformation will be affecting only a small area of the surface. If on

the other hand, the distance between control points is great (i.e. not many control points

are used), then the transformation will be more global and will not allow for a precise

alignment of the surface.

In order to avoid these problems, two extensions were implemented: The first is a

multilevel version of the B-spline approximation as presented in Leeet al. [116] where

an initial coarse grid is used initially and then iteratively subdivided to enable closer and

closer approximation between two point sets. Before every subdivision of the grid the

current transformationT is applied to pointsp and the displacement vectorsd are re-

computed. Listing 3 shows the multilevel implementation of the 3D B-spline registration

algorithm while Figure 5.7 shows a grid being subdivided.

Listing 3 The multilevel 3D B-spline registration algorithm
1: Input: a source landmark setp = {(px, py, pz)} and displacement vectorsd =
{(dx, dy, dz)}

2: Output: a control lattice hierarchyΦ0,Φ1, ...,Φn

3: let g = 0
4: while g ≤ n do
5: let p′ = T (p)
6: let d′ = p− p′

7: computeΦg from p′ andd′ as presented in Listing 2
8: let g = g + 1
9: end while

The second extension prevents control points from deforming an area excessively. If

one defines a control point grid with uniform spacingδ, then the most a control point can

move is δ
2
. In addition, as with the rigid registration, all landmarks sets are non-rigidly

registered to themeanlandmarks. This ensures that the amount of deformation across all

landmark sets are minimized. Figure 5.8 (top row) shows two faces being aligned to the

mean landmarks while the bottom row shows a 2D outline of the outer landmarks of the

same faces before and after non-rigid landmark registration.
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Figure 5.7: Four grid subdivision for landmark registration.

Figure 5.8: Non-rigid registration of faces using landmarks. The top row shows the two
faces aligning themselves to the mean landmarks. The bottom row shows a 2D outline of
the outer landmarks of the same faces before and after a non-rigid registration.
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Figure 5.9: Color map of the distances between a face and a template mesh after non-rigid
registration of the landmarks.

5.3.1.3 Establishing correspondences

Each rigidly registered faceA is transformed using a non-rigid transformation generated

from the non-rigid registration of its landmarks to the mean landmarks resulting inA′.

A face, which is not part of the population and which is free of artifacts is chosen and

further manually pre-processed to make the point distribution on its surface very regular.

This face, referred to as the template face, is used later to resample each dataset, the

reasons for which are discussed in the next section. The actual template size does not

affect the model. Most of the experiments that follow were repeated with a different

template and the recognition rates did not change significantly. Just as with all other

datasets, the template faceB is warped to the mean landmarks by first calculating the B-

spline transformation to register the landmarks of the template face to the mean landmark

set and applying the resulting transformation to the whole surface of the template face.

FaceA′ and a template faceB have now been brought into close alignment particularly

near their landmarked areas. Figure 5.9 shows a face where each point is color-coded to

show the distance to the closest point on the template mesh. Notice how the area around

the landmarked areas is small while the distance in the outer parts of the face, such as

the cheeks, is greater. Once the template meshB is warped to the mean landmarks it is

used to resample surfaceA′. This is done for several reasons: First of all, because each
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surface has a different number of points, which makes it impossible to use PCA. Thus,

the template is used to resample each dataset and represent it with the same number of

points. Moreover, non-facial areas (eg. shoulders, hair, ears) are automatically removed.

Finally, artifacts such as holes and spikes on each dataset are eliminated.The latter is

done automatically since all points on surfaceB are going to be matched to a point on

surfaceA. What this does in effect is link up points around the edge of a hole into one

cell. The holes are not refilled by points but they are covered by a cell.The removal of

artifacts reduces the amount of noise that is encoded in the model and thus produces a

better model. All of the above are achieved by following a resampling protocol.

For every pointb in template meshB the closest pointa′ on surfaceA′ is located.

Since we would like our statistical shape model to encode the differences in shape between

the faces but not the difference in pose, we will use the pointa before applying the

non-rigid transformation as corresponding point. This results inA′′, a surface with the

geometry ofA but the topology ofB. Figure 5.10 gives a schematic illustration of the

process of establishing correspondence between the two surfaces. Applying a non-rigid

transformation on the two surfaces allows an alignment of surface points that would not

have been possible with a mere rigid transformation, as demonstrated earlier in Figure 5.4.

5.3.1.4 PCA of the 3D faces

Figure 5.11 shows the complete pipeline of the aforementioned process. After correspon-

dence has been established and the number of points on each surface is the same, PCA

can be used. The following results were constructed using the Notre Dame database made

up of 150 subjects with two datasets per subject. We decided to landmark the Notre Dame

and not the VRT3D data as the quality of the facial surfaces was superior. As before, both

gallery and probe consisted of 150 datasets. Figure 5.12 shows the variance described

by each of the significant components of the face data. The first mode describes51% of

the model’s variance. Table 5.2 and Table 5.3 show the first four principal components

of shape variation between−3, 0 and+3 standard deviations using the landmark-based
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Figure 5.10: The process of establishing correspondence between faces in the landmark-
based method. The top row shows faceA being non-rigidly transformed intoA′ and the
closest points inB located. In the middle row the coordinates fromA are copied over
resulting inA′′ which has has the connectivity of points inB but the point coordinates of
A. All cases ofA′′ will have the same number of points thus enabling the use of PCA.

registration model. Figure 5.13 shows the population distribution on the first two prin-

cipal modes of variation. Notice how the population distribution on the two principal

axes is unimodal, forming only one peak.This means that there are no sub-clusters in

the population distribution and that all faces are spread uniformly in space in the first two

dimensions.The arrows show the boundaries of three standard deviations and all faces

are represented within these limits.

Figure 5.11: The process pipeline of the landmark-based registration model.
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Figure 5.12: The variation described by the modes of the landmark-based statistical face
model.

Landmark-Registration-Based Principal Shape Modes
−3
√

λ mean +3
√

λ

mode 1

mode 2

mode 3

mode 4

Table 5.2: The first four principal shape modes of the landmark-registration-based model
(frontal view).
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Landmark-Registration-Based Principal Shape Modes
−3
√

λ mean +3
√

λ

mode 1

mode 2

mode 3

mode 4

Table 5.3: The first four principal shape modes of the landmark-registration-based model
(profile view).
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Figure 5.13: The shape distribution of the landmark-based registration model projected
on the first two principal modes. The arrows show the boundaries of three standard devi-
ations.
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Figure 5.14: Registration errors encoded in the landmark-registration-based model.

5.3.2 Building the model using automatic surface registration

Closer examination of the principal components showed that some were describing posi-

tional changes in the face. The statistical face model based on landmarked features was

found to encode registration errors generated by the manual selection of features. Fig-

ure 5.14 shows the 7th principal component of the model generated using landmarks. It

is evident that this mode encodes some rotational component. At the same time the actual

facial surface changes insignificantly within that mode. We therefore decided to compare

models built by landmark registration with those built by surface registration. For the

latter the automatic surface registration algorithm presented in Chapter 4 can be used.

Instead of using landmarks to register the faces to the template the ICP algorithm was

employed on the assumption that if all surfaces are rigidly registered to the template mesh,

they are also registered to each other. The optimal transformation to align surfaceA to

template surfaceB is estimated and applied on the former resulting inA′. Subsequently,

the template meshB, with uniform point distribution, is used to resample each faceA′.

For every pointb in template meshB the closest pointa′ on A′ is located. The point

coordinates ofa′ are then used as corresponding points for pointb while maintaining the

connectivity between the points inB. This results inA′′ which, has the geometry ofA′

but the topology ofB. Figure 5.15 shows a schematic illustration of the process.

As mentioned earlier, the template face has been manually “cleaned” in order to elim-

inate unwanted facial areas. As a result, all those areas inA representing hair, shoulders

and other non-facial parts are automatically removed since these points inA′ have no
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Figure 5.15: The process of establishing correspondence between faces in the ICP-based
method. In the top row, a rigid surface registration ofA to B results inA′. The correspon-
dence between points inA′ andB is then established and the point coordinates are copied
over fromA′ while maintaining the connectivity of point inB. Once more, all cases of
A′′ will have the same number of points thus enabling the use of PCA.
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Figure 5.16: The process pipeline of the ICP-based model.
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Figure 5.17: The variation described by the modes of the ICP-based statistical face model.

corresponding point in B. Figure 5.16 shows the pipeline of the model building using

automatic surface registration.

Figure 5.17 shows the variance described by each of the principal components. The

first mode describes48% of the model’s variance. Table 5.4 and Table 5.5 show the first

four principal components of shape variation between−3, 0 and+3 standard deviations

using the ICP-based model. Figure 5.18 shows the population distribution on the first

two principal modes of variation.The arrows show the boundaries of three standard

deviations. Again, the population distribution in the first two principal axes is unimodal.

Furthermore, all the subjects are within three standard deviations of the mean (in the first

two dimensions).
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ICP-based Principal Shape Modes
−3
√

λ mean +3
√

λ

mode 1

mode 2

mode 3

mode 4

Table 5.4: The first four principal shape modes of the ICP-based registration model
(frontal view).

ICP-based Principal Shape Modes
−3
√

λ mean +3
√

λ

mode 1

mode 2

mode 3

mode 4

Table 5.5: The first four principal shape modes of the ICP-based registration model (pro-
file view).
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Figure 5.18: The shape distribution of the ICP-based model projected on the first two
principal modes. The arrows show the boundaries of three standard deviations.

5.4 Comparing the face models

5.4.1 Qualitative comparison

A visual comparison of the models generated by the two methods already shows some

differences between them. Figure 5.19 shows two views of the landmark-based mean

(left) and the ICP-based mean (right). The facial features on the landmark-based model

are much sharper than the features of the ICP-based one. Given that the features of the

surfaces are aligned to each other using non-rigid registration, it is only natural that the

resulting mean would be a surface with much more clearly defined features. For example,

the lips of every face in the landmark-based model are always aligned to lips and therefore

the points representing them would approximately be the same with only their location in

space changing. On the other hand the lips in a ICP-based model are not always repre-

sented by the same points. The upper lip on one face might match with the lower lip on

the template face, which results in an average face model with less pronounced features.
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Figure 5.19: Comparison of a landmark-based model mean (left) and a ICP-based model
mean (right).

This is expected, as the faces are aligned using a global transformation and there is no

effort made to align individual features together. A similar phenomenon is demonstrated

earlier in a 2D image in Figure 5.1.

Another visual difference between the two models is the fact that facial size is encoded

more explicitly in the landmark-based model. The first mode in Table 5.2 and Table 5.3

clearly encodes face length. On the other hand the ICP-based model in Table 5.4 and Ta-

ble 5.5 does not describe size. The closest-point correspondence in the ICP-based model

is established after rigid surface registration while in the former the faces were actually

morphed to fit the landmarks. Figure 5.20 shows schematically the type of correspon-

dences likely to occur in the landmark- and ICP-based model. In the landmark-based

model in Figure 5.20(a), faceA is scaled due to the non-rigid transformation generated

by registering the landmarks. This scaling does not take place in the ICP-based model

of Figure 5.20(b). It is this scaling that is explicitly encoded in the former and not in the

latter. The ICP-based model encodes just the surface changes over the overlapping areas

of faceA and faceB.
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(a) Landmark-based model (b) ICP-based model

Figure 5.20: (a) shows schematically the correspondences established by the use of land-
marks and (b) shows them for the ICP-based model. Notice how the correspondences
established in (b) are mostly along the normal direction.

Figure 5.21: Once the faces are registered using ICP the closest points are selected. The
geodesic distance between pointsx andy in the template mesh andp andq in the sub-
ject’s face remains relatively unchanged.

The first mode of the surface-registration model in Table 5.4 might, at first sight, look

like it is describing facial width but in reality the geodesic distance from one side of the

face to the other (i.e. left to right) changes very little. Figure 5.21 shows a schematic

representation of a template mesh and a face as seen from the top. The geodesic distance

between pointsx andy in the template mesh is the same as the geodesic distance between

pointsp andq in the subject’s face. In other words the “height” and the “width” of the

template face that is used to resample a facial surface does not change significantly. What

does change and is therefore encoded in the first principal component of the ICP-based

model is the “depth” (protrusion) of the template face.

The above characteristics, however, merely describe some visual aspects of the face

and do not necessarily describe their ability to perform good classification.
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Rank 1 rates
Modes Used Euclidean Mahalanobis

LR ICP LR ICP
10 84.67% 98% 79.33% 98.67%
20 89.33% 99.33% 88.67% 99.33%
30 90.67% 99.33% 94% 99.33%
40 92% 99.33% 97.33% 99.33%
50 92.67% 99.33% 97.33% 99.33%
60 92.67% 99.33% 98.67% 99.33%
70 92% 100% 98.67% 98%
80 92% 100% 98% 98%
90 92% 100% 98.67% 98%
100 92% 100% 98.67% 98%
110 92% 100% 98% 98%
120 92% 100% 97.33% 98%
130 92% 100% 98.67% 97.33%
140 92% 100% 98.67% 98%

Table 5.6: The rank 1 rates of the landmark-based (LR) and ICP-based (ICP) models.

5.4.2 Quantitative comparison of the models in face recognition

In order to assess the quality of the two model-building methods for face recognition, the

faces of the Notre Dame database were divided in two, the gallery setG and the query

setP. G is used to build the model as described previously andP is used for identifica-

tion. Both sets of faces are projected into the facespace and their parameters are used for

similarity comparisons as described in Section 5.2. Using the Euclidean and Mahalanobis

similarities between the faces, open- and closed-set identification as well as verification

was used as in Chapter 4 to describe the task-specific effectiveness of the models. Ta-

ble 5.6 and Figure 5.22 shows the rank 1 (PI(1)) rates of the two models. The differ-

ence between them is clear as the ICP-based model performs significantly better than the

landmark-based, achieving rank 1 rates of100%. It is important to note that the ICP-based

model performs significantly better with a low number of eigenmodes, managing to reach

98% and98.67% using Euclidean and Mahalanobis distance measures respectively, when

only 10 eigenmodes are used. The landmark-based model scores84.67% and79.33%

in the same measurements. Similar trends can be observed in Table 5.7 and Figure 5.23

showing thePFA = PDI rate and in Table 5.9 and Figure 5.25 showing the ROC area

rates. The difference is less pronounced in Table 5.8 and Figure 5.24 which shows the

verification rates (PV ). Figure 5.26 shows the recognition rates of the landmark-based

model building technique which uses non-rigid registration against the results of a rigid-
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Figure 5.22: The rank 1 rates of the landmark-based and ICP-based models.

FA=DI rates
Modes Used Euclidean Mahalanobis

LR ICP LR ICP
10 79.67% 91.33% 78.33% 93.67%
20 84% 92.67% 80.33% 95.67%
30 84.67% 94% 83.33% 95.33%
40 86% 94% 86.67% 96%
50 87% 94% 89% 95.33%
60 87.67% 94.67% 91% 94.67%
70 87.67% 95% 89.33% 94.67%
80 88% 95% 92.33% 94.67%
90 88% 95% 91.33% 94.33%
100 88.33% 95% 92% 93.67%
110 88.33% 95% 92% 94.67%
120 88.33% 95% 92.67% 94.67%
130 88.67% 95% 94% 96.33%
140 88.67% 95.33% 95% 97.67%

Table 5.7: The FA=DI rates of the landmark-based (LR) and ICP-based (ICP) models.
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Figure 5.23: The FA=DI rates of the landmark-based and ICP-based models.

Verification rates
Modes Used Euclidean Mahalanobis

LR ICP LR ICP
10 88.6% 97.3% 82% 99.3%
20 93.3% 98.6% 92% 98%
30 93.3% 99.3% 94.6% 99.3%
40 94% 98.6% 96% 98%
50 94% 98.6% 96.6% 98.6%
60 94% 98.6% 96.6% 98.6%
70 94% 98.6% 97.3% 98.6%
80 94.6% 98.6% 97.3% 97.3%
90 94.6% 98.6% 97.3% 97.3%
100 94.6% 98.6% 96.6% 97.3%
110 94.6% 98.6% 96.6% 98%
120 94.6% 98.6% 97.3% 98%
130 94.6% 98.6% 98% 98.6%
140 94.6% 98.6% 98% 98.6%

Table 5.8: The verification rates (PV atFA = 1%)
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Figure 5.24: The verification rates (PV atFA = 1%)

ROC curve rates
Modes Used Euclidean Mahalanobis

LR ICP LR ICP
10 88.29% 96.54% 85.73% 98.48%
20 91.98% 97.73% 89.42% 98.41%
30 92.89% 98.08% 92.17% 98.95%
40 93.33% 98.17% 94.32% 98.79%
50 93.44% 98.15% 95.53% 98.58%
60 93.74% 98.21% 96.55% 98.45%
70 93.80% 98.25% 96.61% 98.60%
80 93.85% 98.26% 97.33% 98.23%
90 93.93% 98.32% 97.28% 98.15%
100 94% 98.32% 97.14% 98.28%
110 94.03% 98.39% 97.16% 98.38%
120 94.06% 98.42% 97.75% 98.46%
130 94.09% 98.46% 98.31% 98.78%
140 94.10% 98.59% 98.97% 99.22%

Table 5.9: The ROC curve rates of the landmark-based (LR) and ICP-based (ICP) models.
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Figure 5.25: The ROC curve rates of the landmark-based and ICP-based models.

only landmark registration model-building method. Conclusions regarding all of these

results are drawn in the concluding section of this chapter.

5.4.3 Comparing the properties of the models

In addition to using task-specific assessments of 3D face models other more generic ob-

jective measures can also be used to assess the quality of 3D statistical models.

5.4.3.1 Generalization ability

The generalization ability of a face model is its ability to represent a face that is not part

of the training set. This is of importance, as the model needs to be able to generalize to

unseen examples and not be overfitting to the training set. Generalization ability can be

measured using leave-one-out reconstruction [51, 96]. The face modelu is built using

datasets{Γ} and leaving one faceΓi out. The left-out face is projected into the facespace
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Figure 5.26: Rigid vs. non-rigid landmark registration.
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created using the remaining 149 faces:

β = uT (Γi − Γ) (5.11)

The faceΓi is then reconstructed using its face parametersβs generating a surfaceΓ′i(s):

Γ′i(s) ≈ Γ + Uβs (5.12)

wheres is the number of shape parametersβ. Then the average square approximation

error between the original faceΓi and the reconstructedΓ′i is measured:

δi(s) = |Γi − Γ′i(s)|2 (5.13)

This process is repeated for all faces. For a more robust assessment of the model the

generalization ability was measured as a function of the numbers of shape parametersβ.

The mean square approximation error is the generalization ability score and is given by:

G(s) =
1

M

M∑
i=1

δi(s) (5.14)

WhereM is the total number of faces used. For two model building methodsX and

Y , if GX(s) ≤ GY (s) for all s andGX(s) < GY (s) for somes then the generalization

ability of methodX is better than that of methodY . In this cases is the number of shape

parametersβ that are used to build the left-out face. In order to assess the differences

between the models’ generalization scores the standard error of each model has to be

calculated [191]:

σG(s) =
σ√

M − 1
(5.15)
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Figure 5.27: The Generalization ability of the landmark-based and ICP-based models.
Note that in the graph the better a model generalizes to unseen examples the lower its
generalization scores are. The error bars are computed as shown in eq. 5.15 and they
show a relatively small standard error inG(s) which allows us to safely conclude that the
differences in the generalization scores of the two models are significant.

whereM is the total number of faces used to build the model andσ is the sample standard

deviation ofG(s) defined as:

σ =

√√√√ 1

M − 1

M−1∑
i=1

(xi − x)2 (5.16)

As can be seen in Figure 5.27 the ICP-based model has greater capacity to model unseen

examples. For all number of parameterss used the ICP-based model performs signifi-

cantly better. These differences are most obvious when 1 to 30 parameters are used.In

literature [51, 96] the generalization ability of the model is plotted with0 being the most

general model and anything greater than that being less general.
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5.4.3.2 Specificity

Specificity measures the ability of the face model to generate face instances that are simi-

lar to those in the training set. To test the specificityN random facesΓ′ were generated as

a function ofs, the number of face parametersλ. The generated faces are then compared

to the closest facesΓ in the training set:

S(s) =
1

N

N∑
i=1

|Γi − Γ′i(s)|2 (5.17)

For two model-building methodsX andY , if SX(s) ≤ SY (s) for all s andSX(s) < SY (s)

for somes then methodX builds a more specific model than methodY . Once again the

standard error of each model has to be calculated in order to be able to assess whether the

differences between the two models are significant:

σS(s) =
σ√

N − 1
(5.18)

To calculate the specificity 500 random faces were generated. Figure 5.28 shows that the

ICP-based model is also significantly more specific than the landmark-based model.

5.4.3.3 Compactness

Compactness measures the ability of the model to reconstruct an instance with as few

parameters as possible. A compact model is also one that has as little variance as possible

and it is described as a plot of the cumulative covariance matrix:

C(s) =
s∑

i=1

λi (5.19)

To assess the significance of the differences the standard error in C(s) is calculated once

again. The standard deviation in theith mode is given by [191]:

σλi
=

√
2

M
λi (5.20)



5.4 Comparing the face models 179

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145
0

1

2

3

4

5

6

7

8

9
Specificity

S
(s

)

s

landmark−based model
ICP−based model

Figure 5.28: The specificity scores of the landmark-based and ICP-based models.Small
standard error inS(s) (as shown from the error bars) also allows for us to conclude safely
that the difference in specificity scores is indeed significant.
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Figure 5.29: The compactness scores of the landmark-based and ICP-based models.The
standard error bars indicate the likely error ofC(s) allowing one once more to conclude
that there is significant difference between the compatness scores of the two models.

whereλi is theith eigenvalue of the covariance matrix. The standard error is then given

by:

σC(s) =
s∑

i=1

√
2

M
λi (5.21)

Figure 5.29 shows that the ICP-based model is significantly more compact than the landmark-

based model.

5.5 Conclusions

In this chapter it was shown that the ICP-based model is superior to the landmark-based

one because it allows for the faces to be better aligned to each other. The landmark-based

model might produce visually better defined features, but it performs significantly worse

in face recognition experiments. It was also shown that the ICP-based model is more

specific, generalizes better to unseen examples and is more compact.In the results of this
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chapter, it was demonstrated that the Mahalanobis distance is a better distance metric to

use for the landmark-based model. This is because the landmark-based model contains

noise in the form of surface misregistrations since it only uses landmarks to align the

facial surfaces to each other. The effect of this within-class variation is minimized when

one uses the Mahalanobis distance. Eq. 5.7 describing the latter shows the difference

between two shape parameters being divided by the corresponsing standard deviation.

This effectively removes within-subject variation. The Euclidean distance on the other

hand does not take the standard deviation into account and thus is more sensitive to within-

class variation. Another

A landmark-based model, whether it models faces or other objects, might work bet-

ter on datasets of more varying size. Using an ICP-based model which mainly encodes

surface variation of overlapping areas without encoding size would probably not be very

appropriate. In the case of the human face, the cranium is covered by a layer of muscle,

fat, skin and in certain areas cartilage, all of which introduce a lot of local surface-based

variability from person to person. Furthermore, the population of faces used in this study

for building the statistical model consisted of adults. If children had been included in the

facespace, there would surely have been more head and facial feature size variation. It is

not clear how well smaller faces would be reconstructed using the ICP-based technique

for such a case. A landmark-based technique might, for example, capture and model the

aging trajectory of the population more accurately as it allows for more radical head size

differences to be correctly encoded [98].

The importance of establishing good correspondence between surfaces is further demon-

strated by another finding: If the landmark-based model-building technique is repeated

but instead of performing a non-rigid landmark registration, faces are only rigidly reg-

istered using the landmarks, then the recognition rates fall significantly (Figure 5.26).

Including a non-rigid registration of landmarks and thus establishing a better correspon-

dence between the surfaces and their anatomical features, leads to a better model.

In principle, texture could have been incorporated into the face models producing

two spaces: One for shape and one for appearance. Early experimental results using the
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textures of the Notre Dame datasets were relatively poor due to the low quality of the

texture. We, therefore, decided to focus on shape only and how different registration

techniques affect the statistical face model.

Hutton [96] used a similar approach for creating face models. Instead of using mul-

tilevel B-splines, Hutton employed thin plate splines to achieve similar goals. Thedense

surface model(DSM) Hutton built was used for a two-class classification problem where

subjects were diagnosed as having Noonan syndrome (a genetic disorder subtly affecting

the facial structure) or not, but the model was never used for a multi-class classification

problem. In two-class classification tests of674 subjects it managed to correctly detect

the ones with Noonan syndrome with90% accuracy. He later reports similar rates for

Velo-cardiofacial syndrome (88%), Smith-Magenis syndrome (93%) and Williams syn-

drome (94%). He also uses the DSM to distinguish males from females with an overall

accuracy of76.8%. Since the population in [96] contained children and adults the use

of landmarks was perhaps more appropriate in order to detect developmental problems.

Therefore, the choice of model-building technique might be application-specific. Further-

more, apart from discarding pairs of closest points which are far from each other, there

is no other effort made in Hutton to improve the correspondence, such as filling holes or

regularizing the surface mesh. In Chapter 6 the classification problem is used as a test-

bed to explore some techniques that improve surface-to-surface correspondence as well

as surface regularization.



Chapter 6

Improving the correspondence using

non-rigid surface registration

6.1 Introduction

In the previous chapter we have proposed two registration algorithms for estimating cor-

respondences for the automatic construction of statistical shape models. Both methods

suffer from a similar problem: Particularly in areas of high curvature where the faces

might differ significantly, such as around the lips or nose, the correspondence established

between surface points tends to be incorrect. The top image in Figure 6.1 demonstrates

some closest-point correspondences between two surfaces after imperfect registration.

The circles show areas where due to differences in curvature the correspondence estab-

lished is not the ideal one.When using the template face to resample the training set

samples the aforementioned errors in establishing correspondence result in an irregular

mesh, which is a form of noise in the training set. An example of such mesh irregularity

on a training set sample is shown in Figure 6.2.Notice how the nose and eyebrows are

particularly prone to these kind of artifacts.

In this chapter two techniques are proposed based on non-rigid surface registration

which aim to improve correspondences between surfaces. The bottom image in Figure 6.1

shows schematically how the correspondence between a facial surface and a base mesh
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Figure 6.1: Schematic representation of errors in establishing correspondence. Due to
differences in spatial morphology the correspondence between the surfaces is not ideal
resulting in non uniform data used for PCA.

Figure 6.2:In areas of high curvature errors in establishing correspondence occur. This
results in an irregular mesh where some areas have higher point density than others. This
image shows such artifacts on a facial surface used for training the model. Examples like
this introduce noise into the model and our assumption is that reducing such occurences
will result in a better model.

can be improved if the base mesh is allowed to deform towards the other mesh via non-

rigid registration. Ultimately, however, the point distribution on the original facial surface

determines the distribution of the points on the resulting surface. It is for this reason that a

second technique is also introduced which uses a synthetically generated uniform surface,

such as a sphere, which deforms to approximate the original dataset while maintaining

uniform spacing between the resulting surface points. The assumption throughout this

chapter is that by improving the correspondence, higher face recognition rates should be

expected.
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6.2 Non-rigid surface registration using a template face

The method presented in this section is a way of calculating a non-rigid transformation to

align two sets of points. Given surfacesA andB, made up of two point setsa andb, the

similarity function that we want to minimize is:

f(T nonrigid) =
1

|A|
|A|∑
i=1

||bi − T nonrigid(ai)||2. (6.1)

whereT nonrigid is a non-rigid transformation. In Chapter 5 we proposed a non-rigid

registration algorithm for sets of landmarks with known correspondence. In this chapter

we assume that the correspondence between surface points is unknown. In order to pair

points on two surfaces to each other, just as with ICP, we assume that corresponding points

will be closer to each other than non-corresponding ones. A distance metricd is defined

between an individual source pointa and a target (model) shapeB:

d(a, B) = min
b∈B

||b− a|| (6.2)

Using this distance metric the closest point inB from all points inA is located. Even

though the non-rigid registration uses closest point correspondences it is different from

simply establishing the pairs of points as it is done in Figure 6.1 (top). The reason for

that is that the non-rigid transformation is computed by a type of “voting”. All points on

the surface are assigned their corresponding points and a transformation is computed that

would minimize the error between these correspondences. Given the number of points

that exist on a surface, the surface deformation resulting from the displacement of the

control point grid tends to be smooth. This is particularly the case when the initial control

point spacing is large, which enables better pairings to be established (see 6.1 (bottom)).

Let Y denote the resulting set of closest points andC the closest point operator:

Y = C(A,B) (6.3)
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After closest-point correspondence is established, the point-based non-rigid registration

algorithm developed in Chapter 5 can be used to calculate the optimal non-rigid transfor-

mationT nonrigid. This is represented here by the operatorM. In order for the deformation

of the surfaces to be smooth, a multiresolution approach similar to the one in Chapter 5

was adopted, where the control point grid of the transformation is subdivided iteratively

to provide increasing levels of accuracy. The non-rigid surface registration algorithm is

displayed in Listing 4. Figure 6.3 shows two color maps of the distances between a face

Listing 4 The non-rigid surface registration
1: Start with surfacesA and a target point setB.
2: Set subdivision counterk = 0, A(0) = A and resetT nonrigid.
3: repeat
4: Find the closest points betweenA andB by: Y (k) = C(A(k), B)
5: Compute the ideal non rigid transformation to alignY (k) andA(0) by:

T
(k)
nonrigid = M(A(0), Y (k)).

6: Apply the transformation:A(k+1) = T
(k)
nonrigid(A

(0))
7: until k equals user-defined maximum subdivisions limit

and a base mesh of the landmark-based model. Image (a) shows the distance between

a face and a base mesh after non-rigid landmark registration. Notice that the areas near

landmarks are the closest to the base mesh (eyes, mouth, nose, chin). Image (b) shows

the color map after non-rigid surface registration has been performed and as a result the

distance between the face and the base mesh has been reduced globally.

Similarly for the ICP-based model, Figure 6.4(a) shows a color map of the distance

between a face and a base mesh after rigid surface registration. Notice that some areas

of the face are close to the base mesh while others are further away. Notice also how

the color map pattern of the ICP-based model differs from the landmark-based one of

Figure 6.3(a). Figure 6.4(b) shows the color map after non-rigid surface registration has

been performed.

This processing step is added to the model construction pipelines of the statistical

models discussed in Chapter 5. The landmark-based statistical model involves the rigid

registration of the landmarks followed by a non-rigid registration of the latter. Correspon-

dence is then established between the landmark-registered surfaces. It is right before the
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(a) After point-based non-
rigid registration.

(b) After non-rigid surface reg-
istration.

Figure 6.3: The effects of non-rigid surface registration on non-rigidly registered data
using landmarks. The closest points were originally the ones surrounding the areas that
contain landmarks (a). After the non-rigid surface registration the two surfaces have been
brought into much closer global alignment (b).The stripes on the facial surface on image
(b) are the result of the non-rigid surface registration. Under certain control point grid
resolutions a faint array of stripes can be seen on the surface which is caused by a slightly
greater deformation to surface points closer to the grid’s control points. This has no effect
on the actual correspondence established after the non-rigid registration.

(a) Before non-rigid sur-
face registration.

(b) After rigid surface registra-
tion.

Figure 6.4: The effects of non-rigid surface registration on surfaces that have been
rigidly registered using ICP. The surfaces in (a) were in closer alignment compared to
the landmark-based registration but a non-rigid surface registration (NRSR) brought them
into better alignment (b).
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Figure 6.5: The process pipeline of the landmark-based statistical model which contains
a non-rigid surface registration (NRSR).

Figure 6.6: The process pipeline of the ICP-based statistical model which contains a non-
rigid surface registration (NRSR).

establishment of correspondence that the non-rigid surface registration is added in order

to make the resulting correspondence smoother, which in turn results in smoother meshes.

Just as with landmark-based non-rigid registration (Figure 5.10) the non-rigid surface reg-

istration (NRSR) is used in order to align the facial points with their corresponding ones

on the template mesh. Once the pairings have been established the point coordinates of

the surfacebeforethe non-rigid registration are copied over to the template mesh while

maintaining the point connectivity of the latter (see Section 5.3.1.3). Figure 6.5 shows

the new processing pipeline for generating a non-rigid surface registration-based statis-

tical model. The step in red is the newly added step that performs the non-rigid surface

registration before the correspondence is established. Similarly for the ICP-based statis-

tical model in Chapter 5, after the faces have been rigidly registered a non-rigid surface

registration is performed to bring the facial points into closer alignment before the dense

surface correspondence is established. Figure 6.6 shows the new processing pipeline for

generating an ICP-based statistical model. Once more, the step in red performs the non-

rigid surface registration before the correspondence is established. The non-rigid surface

registration can register two surfaces in under4secs on a2Ghz machine.
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(a) Mesh generated before
non-rigid surface registra-
tion.

(b) Mesh generated after
non-rigid surface registra-
tion.

Figure 6.7: Differences in surface uniformity before and after non-rigid surface registra-
tion.

Figure 6.8: Further problems with non-rigid surface registration.

Figure 6.7(a) shows a facial surface that has been created without non-rigid surface

registration while Figure 6.7(b) shows the same surface when non-rigid surface registra-

tion has been used. Notice how the surface mesh in image (b) is significantly smoother

and more uniform than the one in image (a).

6.3 Non-rigid surface registration with a uniform surface

As mentioned before, ultimately the uniformity of the point distribution used for building

the statistical face models depends on the uniform spacing of the sensed data which the

base mesh is sampling. If there are holes on the face or even very large cells then the

resulting base mesh will not be uniform. Figure 6.8 shows how such artifacts in the

original surface cause irregularities in the resulting dataset even though non-rigid surface

registration is used and the surfaces are closely aligned.

One way to solve this problem is by searching for a closest point anywhere on the
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surface.

In this section an alternative technique is presented for generating surfaces with uni-

formly spaced points that can be used for building the statistical model. To achieve this we

propose to use a synthetically generated uniform grid of points on a sphere. The deforma-

tion process is, furthermore, restricted along the normal direction of the sphere, ensuring

that point uniformity is maintained throughout the morphing process.

6.3.1 Preparing for the non-rigid registration

Initially all faces are rigidly registered to a template face using ICP. The choice of template

face is discussed in Section 5.3.1.2. As mentioned in Chapter 4 we treat the alignment

problem as an optimization problem whose goal is to minimize the Euclidean distance

between the pointsb on template faceB and the pointsa on a datasetA in order to find

the optimal rotationR and translationt:

f(T rigid) =
1

|A|
|A|∑
i=1

||bi −Rai − t||2. (6.4)

After all faces have been registered to the template they are translated by a transformation

T init to an optimal position near the surface of the sphere, as shown in Figure 6.9(b)

and 6.9(c). All faces are moved to the same location on the sphere by applying the same

T init to all of them:

A′′ = T init(T rigid(A)) (6.5)

6.3.2 Spherical non-rigid registration

In order to deform the sphere to match a face, a new type of registration is developed

which we termspherical B-spline registration(SBR). For this, a sphere of radiusr is

generated. Any point on the surface can be defined by two anglesφ and θ (see Fig-

ure 6.9(a)). We fit aspherical non-rigid transformation(SNRT) (Figure 6.10) to approx-
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(a) (b) (c)

Figure 6.9: (a) The initial sphere and (b) and (c) with a face placed on the optimal position
on it.

Figure 6.10: The control point grid of the spherical non-rigid transformation.

imate the facial surface. The spherical B-spline registration is similar to the B-spline

registration presented in Section 6.2. The difference is that the displacements of the trans-

formation control points are calculated in spherical rather than Cartesian coordinates. In

Listing 2 of Chapter 5 the 3D B-spline registration algorithm takes in a source landmark

setp = {(pex , pey , pez)} and the displacement vectorsd = {(dex , dey , dez)} associated

with these landmarks. We start off by calculating the distance∆ of each facial point

a = (ax, ay, az) from the center of the sphere (the origin of the coordinate system) as:

∆ =
√

a2
x + a2

y + a2
z (6.6)
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If every point on the face is a projection of a ray starting from the center of the sphere, the

angleθ andφ of each ray is calculated.θ is calculated as:

θ = arcos(
az

∆
)× 180

π
(6.7)

φ is calculated as:

φ = arctan(
ay

ax

)× 180

π
+ 180× n (6.8)

wheren specifies the sphere quadrant given byax anday. Given a spherical grid with

uniform angular spacingδ, the SNRT can then be formulated as the 2D tensor product of

B-splines:

TSNRT (φ, θ) =
3∑

l=0

3∑
m=0

Bl(u)Bm(v)φi+l,j+m (6.9)

wherei = b θ
δ
c−1, j = bφ

δ
c−1, u = θ

δ
−b θ

δ
c, v = φ

δ
−bφ

δ
c and whereBl andBm represent

B-spline basis functions [63]. By using a sphere to reconstruct the surface we succeed in

keeping the grid of the surface very uniform. The approximating of the original data

points takes place only along the normal direction on the sphere’s surface and therefore

the spacing between the sphere points is uniform. Listing 5 provides the pseudo-code

of the SBR algorithm. As with previous cases of non-rigid registration, in order to fit

Listing 5 The sphere B-spline registration algorithm
1: Start with sphereA and a target point setB.
2: Set subdivision counterk = 0, A(0) = A and resetTSNRT .
3: repeat
4: Representevery point inB by two sphere anglesφ andθ and calculate distance∆

from the sphere’s surface.
5: Compute the ideal spherical non-rigid transformation using arraysφ, θ, ∆
6: Apply the transformation:A(k+1) = TSNRT

(k)(A(0))
7: until k equals user-defined maximum subdivisions limit

our model to the data we use a multi-resolution approach. After approximating the data

using an initial coarse spherical control point grid, we subdivide it and we approximate

again achieving greater accuracy (Figure 6.11). This process is repeated until the face is

approximated accurately. Figure 6.12 shows the sphere being iteratively transformed to

approximate a face places near its surface. Figure 6.13 shows an original dataset (left), a
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Figure 6.11: The iterative subdivisions of the spherical control point grid.

Figure 6.12: The iterative registration of the facial surface.

deformed sphere after registration (middle). The right image of the same figure shows the

two aforementioned surfaces on top of each other. It is evident that the registration is of

high definition and accuracy.

Apart from yielding faces with the same number of points (ideal for PCA), the B-

spline registration of the faces allows for the correction of artifacts of the surface. Holes

in the face that arise from the limitations of the data capturing hardware are corrected au-

tomatically as the sphere is smoothly deformed by fitting to the hole’s surrounding points.

The dataset in image (a) and (b) in Figure 6.14 has artifacts in areas where the structured

light is not reflected well. After deforming the sphere these artifacts disappear as Fig-

(a) (b) (c)

Figure 6.13: (a) The original face, (b) the approximated face and (c) the overlap between
the two.
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(a) (b) (c)

Figure 6.14: Holes are covered and grid is regularized afterSBR.

ure 6.14(c) shows.The landmark- and ICP-based model building methods, presented in

the previous chapter, were also eliminating holes by linking up points around the edge of

a hole into one cell as discussed in section 5.3.1.3. In this case, however, actual points are

generated to fill up the hole. The SBR algorithm can approximate a face in under6secs

on a2GHz machine.

6.3.3 Face extraction

The SBR technique is applied to all the faces and an approximation of their original sur-

face is generated. The surfaces have now the same number of points and a PCA-based

model can be readily created. Figure 6.15 shows the mean face generated using this data.

The spheres we used have a total of 40,000 points, but most of the points on them are not

part of the original facial surface and it would therefore be desirable to eliminate them.

More importantly, the border area on the sphere where the sphere points start approximat-

ing the facial points has the potential to negatively affect the recognition process. The two

images on the left in Figure 6.16 show two approximated faces of the same subject. It is

clear that in the border there is random variation that depends on how the data was pre-

processed, which could affect the statistical methods employed. The image on the right

of the same figure shows a top view of faces belonging to the same subject. It is evident

that one surface is more protruded than the other in the borders of the faces. Eliminating

“non-facial” points allows one to build the PCA model without variation that is not di-
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Figure 6.15: Mean face when using SBR.

Figure 6.16:Variation in sphered data of the same subject. The left and centre images
show two different biometric samples of the same subject. Notice how there is a difference
between the highlighted areas of the two surfaces. The image on the right shows the two
biometric samples (red and white to differentiate them) registered to each other. Notice
how, despite belonging to the same subject the spheres exhibit significant variation where
the face meets the sphere. These variations introduce noise into the model which can have
a negative effect on the recognition rates.

rectly linked to the facial structure of the subjects. As already mentioned the initial sphere

is deformed using a coarse grid which is iteratively subdivided to achieve greater degree

of detail. During the first coarse iterations a significant part of the sphere points are de-

formed to approximate the data. This “global” movement will inevitably be contained in

the data and needs to be eliminated. Figure 6.17 shows the variation encoded in the first

principal component of the full sphere. The circled areas show examples of variation that

does not explicitly relate to the subject’s face. In order to eliminate this variation we

chose to select a smaller area on the sphere, which represents the area deformed to ap-

proximate points on the face. The original faces are placed on top of their corresponding

versions after SBR as seen in Figure 6.13(c) and the area on the sphere that is under the
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Figure 6.17: 1st principal component of sphere space.Notice how the noise introduced
into the model by datasets such as the one in figure 6.16 is encoded explicitly into the
model’s 1st principal component.

original face is extracted. We define a sphere points = (sx, sy, sz) as being exactly under

the original facial surfaceA by finding the closest point onA and determining whether

the point is an edge (boundary) point or not. An edge point is defined as a point that is

part of a side that is used by only one polygon. Points that are in the boundary of each

surface are identified and pairings that include them are ignored during the calculation of

the transformation.

We, thus, define a functionedge(p) that takes a point and returns true if it is an edge

point and false if it is not an edge point. Given a set of pointssi on the sphere and the set

of corresponding closest pointsai on the original facial surface, the points which are then

retained are given by:

{si : ||si − ai|| < τ, !edge(ai)} (6.10)

whereτ is a user defined distance threshold, the value of which is heuristically chosen.

The symbol “!” reverts the returned value of functionedge(p). Based on the above

criteria the resulting surfaces will have different number of points, given that the faces are

of different size and therefore occupy different area of the sphere. The points which were

kept are the points that are present onn% of subjects. In other words after the faces are

extracted from the sphere we discard a further set of points that does not exist on a user-
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(a)n = 1% (b) n = 50% (c) n = 100%

Figure 6.18: Choosing which points on the sphere to keep. (a) contains the points that are
present in at least 1% of the subjects (n = 1%). (b) contains the points that are present
in at least half of the subjects (n = 50%) and (c) contains the points that are present on
all subjects (n = 100%). Notice how the number of points decreases as the value ofn
increases.

Figure 6.19: Examples of extracted faces.

defined percentage of faces. Figure 6.18 shows how changing this percentage changes

the size of the face. Notice how settingn to higher values decreases the number of points

kept. The red area around faces (b) and (c) shows the area that was clipped from the

original image (a) by modifying the value ofn. The datasets in Figure 6.19 are examples

of the datasets (7000 points) after they have been fully processed. All datasets contain

the same number of points and have no surface artifacts or irregularities that would have

adverse effects on the recognition effort. Figure 6.20 shows the processing pipeline when

SBR is used.

Figure 6.21(a) shows the facial surface that has been created without non-rigid surface

registration while Figure 6.7(b) shows the surface when non-rigid surface registration
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Figure 6.20: The processing pipeline when SBR is used.

(a) Before non-rigid sur-
face registration.

(b) After non-rigid surface
registration.

(c) After SBR

Figure 6.21: Effects of non-rigid surface registration and SBR on the uniformity of face
points.

(NRSR) has been used. Notice how Figure 6.21(c) which has been created using the

SBR, has uniform point distribution with no dense or sparse point clusters.

The SBR itself can not be added as a step in the pipeline of the landmark-based model,

as it was done with the ICP-based one. As mentioned earlier, the point ids are used in the

landmark-based model to temporarily store the established correspondences. When us-

ing SBR the surface points are regenerated and therefore the point ids that are stored

become irrelevant. Nevertheless, to demonstrate that uniform surfaces allow better corre-

spondences to be established, we use SBR to regenerate the surfaces. These regenerated

surfaces are then used in the landmark-based technique as presented in Chapter 5. This

model is referred to as the SBR landmark-based model. The type of registrations involved

in each of the three landmark-based techniques and their order is contrasted in Table 6.1.

The type of registrations involved in each of the three ICP-based techniques and their
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Landmark-based model techniques
Technique SBR Rigid landmark reg. Non-rigid landmark reg. Non-rigid surface reg.

Original landmark-based - step 1 step 2 -
SBR landmark-based step 1 step 2 step 3 -

NRSR landmark-based - step 1 step 2 step 3

Table 6.1: The three landmark-based techniques and the order of the registrations involved
in the creation of the model.

ICP-based model techniques
Technique Rigid surface reg. SBR Non-rigid surface reg.

Original ICP-based step 1 - -
SBR ICP-based step 1 step 2 -

NRSR ICP-based step 1 - step 2

Table 6.2: The three ICP-based techniques and the order of the registrations involved in
the creation of the model.

order is contrasted in Table 6.2.

6.4 Results

In order to assess the strength of the model-building techniques we perform the same

face recognition tests as we did in the previous chapter. First, we will assess the effect

of the non-rigid surface registration (NRSR) step in both the landmark-based and ICP-

based statistical model. We will also evaluate the effectiveness of the spherical non-rigid

registration (SBR) in generating datasets to be used with PCA. As demonstrated, the

model that includes an SBR, already contains a rigid registration before the surfaces are

transformed into spheres and extracted from them. In that way it is very similar to the

ICP-based model. For this reason we are going to refer to those results as SBR ICP-

based.

Figure 6.22(a) shows the rank 1 rates of the original landmark-based model, as well

as the landmark-based models that contain a non-rigid surface registration (NRSR) and

spherical non-rigid registration (SBR). Figure 6.22(b) shows the verification rates for the

aforementioned landmark-based models. Figure 6.23(a) and 6.23(b) show the ROC and

PFA = PDI rates respectively. According to all the measurements the models that in-

clude an NRSR and SBR step, improve the rates compared to the original version of the

landmark-based statistical model-building technique.
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Figure 6.22: The rank 1 and verification rates of the landmark-based models.
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Figure 6.23: The ROC andPFA = PDI rates of the landmark-based models.
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Figure 6.24(a) shows the rank 1 rates of the original, NRSR and sphered ICP-based

model. Figure 6.24(b) shows the verification rates for the aforementioned ICP-based

models. Figure 6.25(a) and 6.25(b) show the ROC andPFA = PDI rates respectively.

In this case an improvement is visible in the rates when using the sphered data but no

significant difference between the original ICP-based technique and the one that involves

a non-rigid surface registration in its pipeline.

Figure 6.26 and Figure 6.27 show the statistical evaluation tests, generalization ability,

specificity and compactness for the six types of model generation.

6.5 Discussion

The results clearly demonstrate the effectiveness of the non-rigid surface registration in

providing a better, more uniform correspondence between point sets and thus improv-

ing the model. In the case of the landmark-based model, where the correspondence is

problematic because it is established using a manually selected array of points the effect

is even greater. The landmark-based model, that has an NRSR step included, performs

significantly better in classification tests than the baseline landmark-based technique. Fur-

ther improvement is achieved when the surfaces are resampled with the SBR to create a

uniform grid with no artifacts which allows for a relatively noise-free correspondence to

be established.More concretely, the basic landmark-based technique reaches a maximum

of 92% (rank 1) while the technique which includes the NRSR step reaches94%. On the

other hand using the SBR technique allows the rank 1 rake to97.5%.

The effects on the ICP-based model are less pronounced. The NRSR step does not

produce the effects seen with the landmark-based model. The correspondence established

with the ICP-based is already quite good and more uniform than the landmark-based one

and this result is expected. Nevertheless, the SBR improves the results of the ICP-based

model further bringing the rank 1 and verification rates up to100% even when using only

20 and 30 parameters respectively.The rank 1 rate of the ICP-based technique reaches

100% recognition but only after 70 eigenmodes are used. In contrast the technique which
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Figure 6.24: The rank 1 and verification rates of the ICP-based model.



6.5 Discussion 204

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
85

90

95

100
ROC area rates of the ICP−based model

R
O

C
 s

ur
fa

ce
 a

re
a

Number of Eigenmodes used

original ICP−based
NRSR ICP−based
SBR ICP−based

(a)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
85

90

95

100

P
FA

=P
DI

 rates of the ICP−based model

P
F

A
=

P
D

I r
at

es

Number of Eigenmodes used

original ICP−based
NRSR ICP−based
SBR ICP−based

(b)

Figure 6.25: The rank 1 and verification rates of the ICP-based model.



6.5 Discussion 205

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145
0

1

2

3

4

5

6

7

8

9

10
x 10

4 Compactness of ICP−based models

C
(s

)

s

Original ICP−based model
NRSR ICP−based model
SBR ICP−based model

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145
0

1

2

3

4

5

6

7

8

9

10

11
Generalization Ability of the ICP−based models

G
(s

)

s

Original ICP−based
NRSR ICP−based
SBR ICP−based

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145
0

1

2

3

4

5

6

7

8

9

10

11
Specificity of the ICP−based models

S
(s

)

s

Original ICP−based
NRSR ICP−based
SBR ICP−based

Figure 6.26: Statistical tests on the ICP-based models.
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Figure 6.27: Statistical tests on the landmark-based models.
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include an SBR step reaches100% even when 20 eigenmodes are used.

Performing generic tests on the models we observed that they are quite similar. The

results demonstrated no significant differences in the models in terms of generalization

ability, compactness and specificity.



Chapter 7

Facial feature analysis and automatic

model optimization

7.1 Introduction

In Chapter 5 we proposed two general model-building techniques for the construction of

statistical face models: a landmark- and an ICP-based method. Chapter 6 expanded on

these by introducing a non-rigid surface registration step in the model-building process.

Both chapters dealt with building a face model that uses the entire face. In this chapter we

investigate which parts of the 3D facial shape are most useful for face recognition. Two

methods are presented: the first one involves the manual segmentation of the facial data

while the second one involves the exclusion of facial parts based on their stability across

facial expressions.

Early on in face recognition, the use of certain regions of the human face was ex-

amined as a possible alternative to using the entire face. Pentlandet al. [154] automati-

cally detected facial features and using these eigenfeatures by themselves a95% rate was

achieved in rank 1 tests. This shows that in lower dimensions the eigenfeatures outperform

the eigenface recognition. Emidioet al. [56] used just the eye to perform classification.

When only a small number of model parameters were used, the whole face was a more

powerful classifier than the eye. However, when more than 15 model parameters were
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used, the eyes were performing better in classification tests.

As discussed in Chapter 1, face recognition can be affected by a number of factors

such as facial expressions, occlusion, viewing angle as well as aging. The human brain

uses both global and local features to recognize faces, possibly as a way of making person

identification more robust. Similarly, in machine face recognition, techniques might be-

come more robust by using parts of the face that are less affected by the aforementioned

extraneous variables. For example, when trying to identify a person from a smiling im-

age, the mouth and the eyes are probably not the best characteristics to use because their

shape changes significantly. However, the upper part of the nose changes very little due to

facial expressions and might be more appropriate to use. Some researchers report that the

eyes are less prone to the effects of time [93] and thus using just the eyes might improve

the classifiers’ performance. Especially in cases when the training set is not particularly

large, adding facial features that are noisy or highly correlated to each other can have

detrimental effects on the recognition rates.

In the sections that follow, the two approaches for using subsets of the facial sur-

face for facial recognition are presented. These subsets are extracted from the ICP- and

landmark-based statistical face models presented in Chapter 5. The extensions proposed

in Chapter 6 were not employed in order to evaluate the techniques presented in this

chapter using the baseline methods. The techniques of Chapter 6 increase the recognition

rates significantly and given that they are already relatively high, it would have been more

difficult to detect differences in performance between experimental conditions.

7.2 Anatomical face segmentation

The first method to identify the parts of the face that are most useful for recognition is to

segment the face into anatomical regions and test each of them individually. All model-

building techniques presented so far, whether surface- or landmark-registration based,

have a common goal: establishing point correspondence across all faces in the population.

To this end, it is sufficient to segment the average face. The resulting segmentation can
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Region size
Region Number of points Percentage of whole face
cheeks 2241 40%
eyes 881 15%
nose 814 14%

mouth 733 13%
forehead 578 10%

chin 461 8%

Table 7.1: The size of the segmented facial parts.

then be transferred to all other faces using the established point correspondences.

Using publicly available software (www.blender.org), the average face of the landmark-

and ICP-based techniques was segmented into separate anatomical regions. The six re-

gions are: the forehead, the two eyes, the nose, the two cheeks, the mouth and finally the

chin as shown in Figure 7.1. Areas of the same color were regarded as a single feature

even if they are not connected to each other. It is worth noting that the so-called “fore-

head” in the following sections is not what is colloquially referred to as forehead. It has

been substantially trimmed during the model-building stage and does not include more

than a couple of centimeters above the eyebrows. Additionally, the two eyes, just like the

two cheeks, are grouped together. The assumption made is that the two regions around

the eyes of the face are equal in terms of information and discriminatory power.In con-

trast, to perform modular face recognition Pentlandet al. [154] used the left and right eye

(separately), the nose and the mouth as features. Part of the reason for that is the fact that

they detected the features automatically and these are the most easily identifiable features

on a 2D face. On the 3D data that used in this work, where correspondence has been es-

tablished across all faces, the template face is manually segmented and the segmentation

is propagated across the population. This way, one could select any features of the face

without considering issues such as feature detection. The regions we selected were based

on the commonly used regions (eyes, nose, mouth) plus a segmentation of the remaining

features (cheeks, chin, forehead).Table 7.1 lists the facial regions, the number of points

that make up each of them and the percentage that each part is of the whole.
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Figure 7.1: The manually segmented features of the average face generated by the
landmark-based technique. Areas of the same color are considered as one even if they
are not connected to each other.

7.2.1 Eigenfeatures

Once all faces are automatically segmented using the manually generated segmentation of

the average face from each of the two models, a separate eigenspace can be build for each

feature using PCA. This results in six independent featurespaces referred to aseigeneyes,

eigenforeheads, eigennoses, eigenmouths, eigenchinsandeigencheeks. Tables 7.2 and 7.3

show the first two principal modes of variation for the nose and the cheeks of the ICP-

based statistical model. A comparison of the features’ first modes of variation and of

the whole face from Tables 5.5 and 5.4 in Chapter 5 readily demonstrates that the modes

of variation of the features are not the same when the features are analyzed individually

as when they are part of the face. Each feature varies differently when it is part of a

collection of other facial features than when it is by itself. This observation is at the heart

of the assumption that individual features might perform well in face recognition tests

even though they might only be a subsection of the whole face.

Given that the correspondence has been established between the surfaces in 3D and

given that the correspondences are also known between the 3D surfaces and the 2D tex-

ture data, this technique could also be used to segment the bitmaps of the face for calcu-

lating separate facespaces for 2D information. If this were to be combined with a feature
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Eigennose of the ICP-based model
−3
√

λ mean +3
√

λ

mode 1

mode 2

Table 7.2: The first two principal components of the nose-space.

Eigencheeks of the ICP-based model
−3
√

λ mean +3
√

λ

mode 1

mode 2

Table 7.3: The first two principal components of the cheek-space.
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(a) original texture (b) original 3D
model

(c) segmented texture

Figure 7.2: Segmented facial parts with texture.

detection method, it would provide a powerful 2D segmentation technique. Figure 7.2

shows the 2D information of a face being segmented into regions automatically by us-

ing the correspondence propagated to it from the manually segmented model mean. For

demonstration purposes, the face segmented in this case belonged to the VRT3D database

because of the poor quality of textures in the Notre Dame datasets.

7.2.2 Face recognition using eigenfeatures

7.2.2.1 Comparison of eigenfeatures

As in previous chapters these feature models can be used for classification by calculating

the distance between subjects in the featurespace. The population used to build each

featurespace is the 150-strong Notre Dame database. Each feature was split into a gallery

setG and a probe setP. The results that are reported in the following were obtained using

the Euclidean distance metric to measure similarity. Similar results were obtained using

the Mahalanobis distance, but those graphs are not displayed in order to reduce the size

of result section.

The first task is to compare the classification ability of each of the eigenfeatures indi-

vidually. Figures 7.3 and 7.4 show the recognition rates for each anatomical region. For

the landmark-based model, the strongest feature for classification is the nose followed by

the cheeks, eyes, mouth, forehead and chin. The dashed line shows the recognition rates
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when using the entire face. The results demonstrate the great discriminatory power of

some of the features. The nose in particular, with only 814 points (14% of whole face),

manages to reach a rank 1 rate of90% when more than 90 parameters are used and a

verification rate of95%.

The same experiments were conducted using the ICP-based model and Figures 7.5

and 7.6 show the classification rates for the facial regions. In the case of the ICP-based

model, the strongest feature for classification is, once again, the nose (rank 1 rate of

98.6%), followed by the eyes, cheeks, mouth, chin and forehead.

7.2.2.2 Combining eigenfeatures

Another way to take advantage of the classification ability of the individual features is to

use them in a combined fashion. An experiment conducted using a combination of facial

regions involved the incremental addition of the most powerful regions to the statistical

model and testing each of these models individually.

The regions are incrementallyconcatenated to the model, in the case of the landmark-

based model starting with the most powerful discriminant (nose) to the weakest (chin),

as demonstrated in Figures 7.3 and 7.4. Figure 7.7 shows the different models of the

landmark-based type that were tested. For the ICP-based model the order was slightly

different, given that the classification power rank of the different regions was slightly

different itself.

Figures 7.8 and 7.9 show the recognition rates as the segments of the landmark-based

type areconcatenated to the model. The results are surprising: Adding the two regions

which perform best when used individually into one dataset does not improve the results.

In fact, when used by itself, the nose performs better than the nose and the cheeks to-

gether. As more regions are added to the nose-cheek model the closer the rates get to the

recognition rates of the whole face. Since Figures 7.8 and 7.9 showed that the recog-

nition rates for the landmark-based model dropped significantly when cheeks were used

and subsequent additions improved the results, a different order of features was used. The

cheeks were added last while the rest of the order remained the same (nose, eyes, mouth,
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Figure 7.3: The classification rates for the segments of the landmark-based model.
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Figure 7.4: The classification rates for the segments of the landmark-based model.
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Figure 7.5: The classification rates for the segments of the ICP-based model.



7.2 Anatomical face segmentation 218

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
30

40

50

60

70

80

90

100
Verification rates using various parts ICP−based model (Euclidean)

V
er

ifi
ca

tio
n 

ra
te

Number of Eigenmodes used

cheeks
chin
eyes
forehead
mouth
nose
whole face

(a) Verification rate

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
50

55

60

65

70

75

80

85

90

95

100
ROC area rates using parts ICP−based model (Euclidean)

R
O

C
 a

re
a 

pe
rc

en
ta

ge

Number of Eigenmodes used

cheeks
chin
eyes
forehead
mouth
nose
whole face

(b) ROC rate

Figure 7.6: The classification rates for the segments of the ICP-based model.
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(a) (b) (c) (d) (e) (f)

Figure 7.7: Incremental addition of the facial parts of the landmark-based model. The
bold areas are the parts of the face that make up the model. The opaque ones are not used
in the facespace. Model (a) is a nose-space while (f) in the end uses the whole face to
create a model.

forehead, chin, cheeks). Figures 7.10 and 7.11 show the results for this order of region

additions. Also in this case, the two first regions (nose and eyes) perform worse when

used in conjunction than when the nose is used individually. Adding the third component

(mouth) improves the rank 1 rates. According to all four measurements, using all but the

cheeks either improves or has no effect on the recognition rates compared to when the

whole face is used. This might be explained by the fact that most points on the cheeks are

far away from any landmarks and thus the correspondence between the points across all

subjects might not be as good as for other features.

The same incremental approach is adopted for the ICP-based model, based on the

order of classification power of the specific model (nose, eyes, cheeks, mouth, chin, fore-

head). Figures 7.12 and 7.13 show the recognition rates as the individual segments are

concatenated to the model. Once again, it can be seen that certain combinations of features

perform better than the whole face. In Figure 7.12(a), the nose and the eyes combined per-

form almost as good as the whole face with only29% of the points of the original surface.

In Figure 7.12(b) and Figure 7.13(b) of the same figure, the nose-eyes model manages to

perform consistently better than the whole face combined.

7.2.2.3 Decision fusion using eigenfeatures

Another way of combining information from the different regions is not by concatenating

their points into one statistical model but by fusing the scores of each of the feature clas-

sifiers into one score for classification(ie. adding distances in the feature-space). This
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Figure 7.8: Rates of the incremental addition of the segments of the landmark-based
model.
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Figure 7.9: Rates of the incremental addition of the segments of the landmark-based
model.
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Figure 7.10: Rates of the incremental addition of the segments of the landmark-based
model with the cheeks added last.
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Figure 7.11: Rates of the incremental addition of the segments of the landmark-based
model with the cheeks added last.
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Figure 7.12: Rates of the incremental addition of the segments of the ICP-based model.
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Figure 7.13: Rates of the incremental addition of the segments of the ICP-based model.
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means that rather than using the score of a combined model, the score of each model

is computed separately after nearest neighbor search is performed within each space. A

simple approach is presented in Ross and Jain [171] where the similarity scores from dif-

ferent classifiers are combined based on the sum rule. The sum rule is a weighted average

of the scores from the multiple modalities.

We found that fusing the scores of the different parts, rather than joining their vertices

into a single model, significantly improved the recognition rates. To produce these fused

scores, equal weights were used for all classifiers, as finding the ideal balance between

the feature scores was not the objective. Figures 7.14 to 7.17 show some experiments

in which classification scores were fused. The scores are not displayed after 70 model

parameters because they do not change significantly. Using the fused scores of the eigen-

features returns significantly higher classification rates than joining the vertices of the

segments into a model. It is worth noting that the recognition rates increase when scores

of more eigenfeatures are fused together. This results in the fused scores of all segments

performing significantly better than when they are part of the same statistical face model

(whole face).

A similar pattern is also observed in Figures 7.16 and 7.17 showing the recognition

rates of the fused segments of the ICP-based model. Once again using the fused scores of

the individual segments yields significantly higher rates managing to reach100% rank 1

rates across all parameters, including the case when only ten parameters are used.

7.3 Automatic model optimization

In the previous section, a manual segmentation of the face was used and the individual re-

gions were examined in order to identify the one that contributes most to high recognition

rates. This, however, involves an arbitrary choice of regions which a human observer con-

siders as distinct and separate from other regions. One problem with this approach is that

all segmented regions of the face contain some points that assist the correct identification

of a person and other points that impede it.
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Figure 7.14: Comparing the recognition rates of features generated with the landmark-
based approach and their vertices joined together in the model-building stage against the
rates of features which have their individual scores fused after classification.
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Figure 7.15: Comparing the recognition rates of features generated with the landmark-
based approach and their vertices joined together in the model-building stage against the
rates of features which have their individual scores fused after classification.
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Figure 7.16: Comparing the recognition rates of features generated with the ICP-based
approach and their vertices joined together in the model-building stage against the rates
of features which have their individual scores fused after classification.
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Figure 7.17: Comparing the recognition rates of features generated with the ICP-based
approach and their vertices joined together in the model-building stage against the rates
of features which have their individual scores fused after classification.
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7.3.1 Statistical variability

Chapter 1 briefly discussed that a face that has a prominent characteristics (large nose,

big lips) is more easily remembered by humans than an average face. Theorists postulate

that the more distant a face is from a hypothetical “mental” mean the more easily it can

be distinguished and identified.

Similarly, when it comes to machine face recognition, the greater the ratio of the

within subjects variability (due to pose, facial expression etc.) and the between subjects

variability (due to identity), the harder face recognition becomes. In other words, one

can hypothesize that as the ratio of the within and between class variability decreases, the

recognition rates improve.

7.3.1.1 Within-subject variability

With the correspondence between the points of the surfaces established, one can compute

those points that vary the most within the subject class. To calculate this variability, 150

gallery faces of the Notre Dame database were paired up with their corresponding 150

probe faces.Notice how in this part the probe faces are actually used in the model building

stage to optimize the model. This is in generally not the right thing to do because you train

your system to the specific population. Ideally, you want a completely separate probe set

from a gallery set. However, in this case, given that we only have two biometric samples

per subject, it was impossible to implement the technique that follows without violating

the aforementioned rule. In earlier chapters, the reason we did not use LDA was precisely

because we did not want to use both probe and gallery set into the same model. If we

had done so, the results might have been impressive but all biometric samples would have

been seen by the model and any results would have been misleading.The point variability

was calculated by finding the average distance between corresponding points of datasets

belonging to the same subject. Letgi be a gallery point set whilepi be a probe point set

belonging to the same subject with index valuei. If a single point on the gallery point set
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(a) landmark-based (b) ICP-based

Figure 7.18: Within-class variability of the (a) landmark-based and (b) ICP-based model

is defined asgij then the within-class variabilitywj for each point is calculated by:

wj =

√∑N
i=1(gij − p′ij)2

N
(7.1)

whereN is the number of datasets in the gallery set that were used to calculate the within

subject variability. Figure 7.18 shows the within-class variability of the two types of

statistical face models. Colors toward blue indicate that a certain point varies a lot within

subjects while colors closer to red indicate that the point is relatively invariable within

pairs of datasets from the same subject. The color scale is the same for both models.

Figure 7.19 shows the same variability but this time the scalar values on each face have

been normalized in order to maximize the spread of the variability and to highlight the

areas on either side of the extreme. Notice how the areas around the landmarks vary the

most (Figure 7.18(a) and 7.19(a)). This is an expected outcome, given the way the model

is build according to the landmark-based technique. The latter uses 13 fiducial points to

rigidly register the surfaces. The step after this rigid alignment is a non-rigid landmark

registration which further aligns anatomical areas to each other in order to establish point

correspondence. The multilevel B-spline registration that is used to achieve that (see

Chapter 5) deforms the face in order to register these 13 fiducial points perfectly. The

areas that deform most, given the local emphasis of the multilevel B-splines, are the areas

surrounding these landmarks. However, since these landmarks are manually selected,
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(a) landmark-based nor-
malized

(b) ICP-based normalized

Figure 7.19: Normalized within-class variability of the (a) landmark-based and (b) ICP-
based model.

they are prone to error. Naturally, this error is greatest in the areas of maximum non-rigid

distortion. For this reason points around the landmarks in particular, vary significantly

within-subjects.

To test this hypothesis the within-subject variability of the landmarks after rigid align-

ment was calculated. The first column in Table 7.4 shows the variability inmm between

the pairs of landmark sets belonging to the same subject. If the surfaces have no artifacts,

are of very high resolution and perfectly landmarked, then the within-class variability of

the landmarks would be close to zero. This, however, is not the case as some landmarks

vary significantly within-subjects. The second column in the same table shows the rank-

ing order of the most variable landmark point (rank 1) to the least variable one (rank 13).

Notice the correlation between the color mapping of the within-subjects variability of the

whole face and the ranking order of the landmarks (Figure 7.20). In general, the greater

the average error of a landmark, the greater the within class variability of the surface

points surrounding that landmark.

The eye landmarks, the ones on the left and on the right of the mouth, the chin and the

glabella ones vary the most and that explains the variability distribution in Figure 7.18(a)

and 7.19(a). Compared to the rest of the landmarks, these areas are more problematic to

landmark for a number of reasons. First of all, the glabella and the chin do not have very

clearly identifiable characteristics. Locating the landmark can be quite arbitrary. The left
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and right of the mouth is also challenging to mark because there is not such a sharp surface

difference between lip and non-lip tissue. Furthermore, the poor quality of the texture data

in the Notre Dame datasets makes it particularly difficult to landmark. Finally, given that

there are often holes around the areas of low-reflectance and high curvature such as near

the eyes, it is often impossible to place a landmark in the “correct” place and a landmark

is instead placed in the nearest possible surface point. Contrary to the aforementioned,

placing landmarks on the tip of the nose, nasion or subnasal is easier as these areas have

distinctive geometrical characteristics.

However, the error distribution in the landmark sets is not just due to errors in lo-

cating the “correct” fiducial point. Fitzpatrick and West [62] showed that after the rigid

registration the registration error will tend to be smaller, on average, at landmarks close

to the centroid of the landmark configuration and its value increases as the distance of the

point from the principal axes of the landmark configuration increases. It is for this reason

that the “outer” landmarks vary relatively more than the more central ones (nose, nasion,

subnasal, etc.) and that the error is greater towards the edges of the face and smaller to-

wards the center (Figure 7.20). The non-rigid registration that follows the rigid one aligns

the landmark sets almost perfectly to each other. It is therefore expected that the areas

that will be distorted the most are the ones that have greater registration error after rigid

registration (i.e. the points that are far from the centroid).

Figure 7.18(b) shows the variability for the ICP-based datasets. Once again, the ex-

tremes of the distribution are highlighted with the variability distribution normalized in

Figure 7.19(b). In the case of the ICP-based model, the faces are rigidly registered to the

template face using the whole surface and not just a manually selected group of landmark

points. For this reason, the blue areas have disappeared and the areas with most within-

class variability are areas such as the eyes, mouth, eyebrows that tend to contain errors

during the data capture as well as the subnasal area which tends to be occluded by the

tip of the nose. The within-class variability is insignificant in this case compared to the

variability of the landmark-based model.
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Landmark variability (mm)
Landmark within-class

variability rank
left of left eye 2.49 1

right of left eye 2.14 8
glabella 2.21 6

left of right eye 2.39 2
right of right eye 2.31 4

nasion 1.75 9
nose tip 1.63 10
subnasal 1.61 11

left of mouth 2.30 5
top of mouth 1.57 13

right of mouth 2.32 3
bottom of mouth 1.58 12

chin 2.19 7

Table 7.4: Within-class variability of the
landmark points.

Figure 7.20: The rank of
the most within-class vari-
able landmark points.

7.3.1.2 Between-subject variability

In order to calculate the between-subject variability, each of the 150 faces of the facespace

was compared to the mean face and the average digression of each point from the mean

point position was computed. Letgi be a gallery point set whileg be the mean gallery

point set. If a single point on the gallery point set is defined asgij then the within-class

variability bj for each point is calculated by:

bj =

√∑N
i=1(gij − gj)

2

N
(7.2)

whereN is the number of datasets in the gallery set.

Figure 7.21 shows the between class variability of the point sets in absolute values

while 7.22 shows the normalized values to utilize the full color range and to emphasize

the differences between the areas. The color values in the between-class variability image

can not be directly compared to the values in the within-class variability (Figure 7.18),

because the range of the lookup table of the color mapping has been adjusted to produce

more meaningful rendering of the values. It is evident that the landmark-based model has

more between-class variability than the ICP-based model. The latter provides a closer

overall fit for all the point sets, which corroborates the findings in Chapter 5.
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Just as with the within-subject variability, the between-subject is also affected by the

nature of error distribution on the face after rigid registration as presented in [62]. In this

case it is even more evident how points further from the landmark centroid have greater

registration error than landmarks near the centroid. Table 7.5 and Figure 7.23 clearly

show that the outer landmarks vary the most while the ones closer to the center of the face

like the subnasal and the mouth fiducial points vary very little, comparatively speaking.

In other words, the outer landmarks (further from the landmark centroid) become more

explicit encoders of head size. Furthermore, the surface points surrounding the landmarks

far from the landmark centroid, like the glabella, left of the left eye, right of the right eye

and the chin have maximum error and are thus distorted the most when the non-rigid

registration is performed (Figure 7.21(a)).

This kind of variability distribution is not seen in the between-class variability of

the ICP-based model because landmarks are not used (Figure 7.21(b)). It can be seen

that, with the ICP-based model, there are areas toward the center of the face with small

variation while areas near the borders, which are more susceptible to face size differences,

vary the most. In both models, in other words, there is little between-subject variability

toward the center of the face and significantly more in the edges. A sole exception to this

is the nose, which is a part of the face that differs significantly from face to face even

after registration. Despite being a central feature, it is evident from the between-class

variability distributions of both models that the nose tip varies significantly from subject

to subject. This might explain why the nose was a particularly good discriminant factor

in the experiments of Section 7.2.1.

7.3.1.3 Face recognition using an optimized facespace

By using analysis of the point variability discussed above, one can decide which facial

points to include in the statistical model. The points with the greatest within-subject

variability are removed and the recognition rates for the new model with the remainder

of the points are recalculated. In order to test this hypothesis, various increments of

the most varying points were removed and the model was reconstructed. Figure 7.24
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(a) landmark-based (b) ICP-based

Figure 7.21: Between-class variability of the (a) landmark-based, (b) ICP-based statistical
face models.

(a) landmark-based nor-
malized

(b) ICP-based

Figure 7.22: Normalized between-class variability of the (a) landmark-based and (b) ICP-
based model.

Landmark variability (mm)
Landmark between-class

variability rank
left of left eye 4.24 3

right of left eye 3.73 7
glabella 4.72 2

left of right eye 3.76 6
right of right eye 4.03 4

nasion 3.83 5
nose tip 3.70 8
subnasal 2.94 12

left of mouth 3.55 10
top of mouth 2.63 13

right of mouth 3.66 9
bottom of mouth 3.22 11

chin 5.07 1

Table 7.5: Between-class variability of
the landmark points.

Figure 7.23: The rank
of the most between-class
variable landmark points.
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(a)0% (b) 10% (c) 20% (d) 30% (e)40% (f) 50% (g) 60%

Figure 7.24: Removing the most within-class varying points.

shows the models that result from the removal of the10%, 20%, 30%, 40%, 50% and60%

most within-class varying points. The same experiments were conducted for both model-

building methods. Figures 7.25 and 7.26 show the evaluation scores of the optimized

landmark-based models. Notice how in most cases, the gradual removal of the most

varying points significantly improves the rates. Even when60% of the facial points are

removed leaving the model with just over 2000 points, its classification ability is still

better than all other point removal steps. As predicted, even a conservative removal of

points at a level of10% manages to improve the baseline scores where no points are

removed.Finally figure 7.27 shows the same results but the x-axis shows the percentage

of points removed in order to emphasize the general behaviour of the model as less of the

within-variable points remain. Notice also how, in contrast to the other figure, this figure

shows the results when removing70% and80% of the most variable points.Figures 7.28

and 7.29 show the evaluation scores of the various optimized ICP-based models. In this

case, removing the most within-class variable points does not significantly improve the

recognition rates. Within a range of model parameters removing10% of the most variable

points improves thePFA = PDI and verification rates, but at other times, using the whole

face without removing points performs better. This is somewhat understandable if one

considers two characteristics of the ICP-based model. Firstly, the recognition rates where

already quite high and it can get increasingly difficult to improve on these. Secondly,

and perhaps more importantly, the within-subject variability of the ICP-based model as

displayed in Figure 7.21 is not great and there are no extrema as in the landmark-based

model where a removal of the points of those areas would clearly improve the results. As

a result, there is no clear advantage of removing the most within-class variable points of
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Figure 7.25: The recognition rates resulting from the gradual removal of the most within-
class varying points from the landmark-based model.
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Figure 7.26: The recognition rates resulting from the gradual removal of the most within-
class varying points from the landmark-based model.
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Figure 7.27:The recognition rates resulting from the gradual removal of the most within-
class varying points from the landmark-based model. Notice how the x-axis has the per-
centages of points removed in order to demonstrate more clearly the general pattern of
behaviour of the model.
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the ICP-based model.

7.3.1.4 Discussion

The discriminatory power of individual features is surprisingly high, opening up possibil-

ities for the use of 3D eigenfeatures as classifiers. As it is demonstrated, the relationship

between individual features is different from technique to technique and this strongly

suggests that the findings are model-specific and in no way do they reflect the behavior of

any statistical face model. Specific conclusions drawn from one model do not necessarily

apply to another. Nevertheless, some observations, like the discriminatory power of the

nose, might be true for other models too.

Another observation in this chapter is that different combinations of features improved

the recognition results compared to using the entire face. Only a couple of combinations

were presented in this chapter. If one segments the face inn regions, there are2n−1 com-

binations of facial features. In this case, sincen = 6, there are 63 different combinations

of features to assess, something which is impractical.

The score fusion results of the various feature-based classifiers could be further im-

proved if a more sophisticated decision fusion algorithm than a simple sum rule is used.

In this chapter, an unweighted sum was employed. An alternative would be to use a sepa-

rate training set and find a weight combination between the facial features that minimizes

the classification errors.A good start would be to use the within-class variability that was

calculated as an indication of which areas would be better classifiers. For example, facial

segments of high within-class variability would have a lower weight than segments with

low within-class variability. At the same time segments with high between-class variabil-

ity would be associated with a greater weight value in the fusion function than areas with

low between-class variability.

Furthermore, alternative combinations of the scores of the models could be performed.

For example, one could fuse the classifier scores of the whole face with the scores from

the strongest features etc. Future work in this area will be discussed in Chapter 8.

Generally speaking, different facial regions produce different recognition rates be-
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Figure 7.28: The recognition rates resulting from the gradual removal of the most within-
class varying points from the ICP-based model.
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Figure 7.29: The recognition rates resulting from the gradual removal of the most within-
class varying points from the ICP-based model.
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(a) landmark-based (b) ICP-based

Figure 7.30: Ratio of within- and between-class variability.

cause of the variability within these areas. Some tend to vary a lot from person to person

allowing for better discrimination while others vary very little. As a result, points on one

facial region have different statistical properties from points on other regions. A more

optimized solution to the classification problem was explored, where points on the face

were selected, which would perform well at classification regardless which anatomical

region they belong to. Eliminating points from a surface in order to maximize the dis-

criminating factors has produced promising results. In this chapter, points on the face

were eliminated if they were deemed to vary significantly between subjects of the same

class. The variability of points between classes, however, was not explicitly used apart

from providing explanations for some of the scores. Another approach would be to take

both the within- and the between-class variability into account and try to keep points that

vary most between class while eliminating the ones that vary most within class. A simple

approach was tested where the between-class variability of each point was divided by the

within-class.The points where the between- and within-class ratio is small are referred

to assuboptimaland are removed. Figure 7.30 shows the scalars of the joined variabil-

ity mapped on the face. Preliminary experiments using division to fuse the within- and

between-class variability have not yielded significant improvements in the recognition

rates. More specifically removing10% of the suboptimal points did not allow the rank 1

rate to get over91% which is lower than using the baseline method which uses the whole

face. In contrast removing10% of the most within-class variable points allows the rank 1
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rate to reach93%. When20% of the suboptimal points are removed the rank 1 rate drops

even further reaching only89%. Results like these led us to abandon this route. However,

other approaches to combine the within- and between-class variability might prove more

successful.Generally speaking, an objective function like in Davies [51], enables one to

assess which combinations of eigenfeatures to use or which points to eliminate. The ob-

jective function allows for the parameterization of the combinations and their evaluation

in the search for the optimal statistical model.

Studying the within- and between-class variability of the population could also be used

in other types of classification. For example, in the method presented in Chapter 4 where

the squared 3D distance between corresponding points is used as a similarity metric. In

that case, one could assign weights to each point in the population based on the within-

class variability. When calculating the squared 3D distance, points of low within-class

variability would contribute more than points with high within-class variability.

Finally, the variabilities calculated in the last section were calculated using the probe

and gallery sets that were subsequently used for classification. Ideally, an unseen set of

images should be used to calculate the variability before applying the findings on the set of

data. Given the small number of datasets available for this study, however, the variability

was calculated using the same sets that were used for classification. Nevertheless, the

principle behind the optimization of the statistical face model still applies.



Chapter 8

Conclusions

In this work we developed various 3D face recognition techniques based on rigid and non-

rigid registration. Moreover, we showed which types of registration can lead to better

point correspondence across faces and thus to better models. Using these models, we

also explored an eigenfeatures implementation as well as a subspace optimization. We

have used various metrics in face recognition to perform a task-specific evaluation of the

3D face models. We have also used metrics such as specificity, generalization ability

and compactness to characterize the models. The techniques developed here could have

application to other biometric modalities which yield 3D data, such as ears, noses, hands

etc. Furthermore, these techniques could assist in general object recognition problems

and not just biometrics.

8.1 Summary of contributions

In Chapter 4 we demonstrated the wealth of information that exists in 3D facial data

by introducing a fully automatic face recognition technique in which facial surfaces are

registered to each other using the ICP algorithm. The remaining 3D square difference

between the registered faces was used as a similarity metric, yielding rank 1 rates of

up to 100% using frontal images. The proposed method produced encouraging results

for faces that were substantially different from frontal neutral faces, such as faces with
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expression or an extreme pose. Using automatic surface registration compensates for

these differences and yields good recognition rates. In the same chapter we investigated

the effects of pose, facial expression and illumination on a similarity metric that fuses the

3D and 2D information. The recognition rate using this metric on non-frontal images falls

while on faces with expression it increases. Similar surface-based approaches managed

to reach84% using a smaller database of only 10 subjects with a variety of pose and

expression [127]. Medioniet al.[135] used a database of 100 subjects to test a approach

similar to ours achieving similar results but only tested on neutral images and profiles

of up to20◦, which is smaller than our profiles of45◦. Furthermore, they did not make

an attempt to use texture intensity during registration and classification. In general the

technique in Chapter 4 performed better than all surface-based techniques we reviewed.

The few techniques that managed to reach as high recognition rates as our reported results

were obtained using smaller databases.

In Chapter 5, we presented two model-building techniques for subspace analysis.

Based on the assumption that better correspondences between facial points lead to bet-

ter recognition rates, we proposed a semi-automatic landmark-based method and a fully

automatic surface registration-based (ICP-based) one. Both approaches reduced surface

artifacts and produced surfaces that have the same number of points, which can then be

used in PCA-based techniques.

Subsequently, we demonstrated that the ICP-based model provides a better correspon-

dence than a landmark-based technique and as a result, yields higher recognition rates

across all measures. Furthermore, we showed that the ICP-based model is more compact,

generalizes better on unseen instances and is more specific than the landmark-based one.

The recognition rates with both techniques were better than all PCA-based techniques we

reviewed in Chapter 5. The sole exception is a technique which uses PCA both on the

shape and the texture of the faces such as the one by Bronsteinet al. [27] which was also

tested on faces with expressions. However, the latter work was tried on a small database

and thus the differences might be insignificant.

In Chapter 6 the shortcomings of the models were discussed and addressed with the
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inclusion of an automatic non-rigid surface registration to improve the point correspon-

dence. We demonstrated that this non-rigid registration improves the recognition rates

significantly. Finally, we used a synthetic uniform surface (a sphere) to regularize each

surface before it is used for building the model, something which further improved the

classification rates.

In Chapter 7 we introduced a novel 3D eigenfeatures technique. We performed PCA

on segmented facial features creating a separate featurespace for each anatomical region.

Using these eigenfeatures we established which anatomical regions perform better than

others in classification tasks and we discussed why that would be the case. Combining

these regions in various combinations into a unified model allowed us to achieve better

recognition rates when the entire (unsegmented) face was used. An alternative solution

was proposed which involved the fusing together of the classification scores of each fea-

turespace, managing to reach significantly higher rates than combining the eigenfeatures

into a single model. Moreover, by manipulating the ratio of the within- and between-class

variability lead to more powerful models. Using variability information we showed how

removing points that vary significantly within-subjects can help improve the classifica-

tion. Even when the model is reduced by 60% in size it still yields higher rates than when

using the entire surface.

8.2 Limitations and future work

8.2.1 Using a larger and improved database

The experimental results reported in this work were generated using 150 subjects at most.

As discussed in Chapter 2 the results can vary significantly depending on the size of the

database used. In order to increase the validity of our results it would be desirable to

replicate the experiments on a larger dataset. The XM2VTS database [144] has about 300

3D datasets, which is still fairly limited. Researchers at Arizona State University are in

the process of acquiring about 1500 face scans to be used for 3D face authentication [207].
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The scans look to be of the same or higher resolution as the ones used in this study.

Great demographic variety would also be a desirable trait for a database. People from

various ethnic backgrounds and of both sexes should be represented in adequate propor-

tions and ideally, the 3D images should be taken at repeated intervals of time. The latter

would also allow one to model the growth trajectories of the human face and try to develop

models that are more insensitive to facial changes as a result of growth or aging.

A bigger database which contains more than one image per subject would also allow

for increased robustness to within-subject variation as the model would encode some of

the within-subject variability of the faces. Furthermore, it would allow one to apply other

statistical techniques such as linear discriminant analysis which requires the facespace to

contain more than one sample per class.

8.2.2 Improved testing protocol

One consequence of using a relatively small database is the fact that some testing proto-

cols used in this thesis had to be adjusted. Many researchers build the model with a group

of faces and then test the recognition rates using two probe sets: A gallery probe setPG,

which contains different instances of seen examples and a probe setPN , which contains

unseen examples. This enables one to perform open-set identification and verification

tests with “true” imposters. Instead, we divided the subjects into two pools, the gallery

setG and the probe setP. This has a number of ramifications. The false alarm ratePFA

is traditionally computed by using the probe setPN to find the “best imposter” and check

if the similarity score between him and the gallery dataset it matched to has a similarity

scoresij smaller than thresholdτ . More formally:

PFA(τ) =
|{pj : maxi sij ≥ τ}|

|PN | (8.1)

Since there is noPN set in this case, thePFA is calculated by:

PFA(τ) =
|{pj : maxi sij ≥ τ and id(gi) 6= id(pj)}|

|P| − 1
(8.2)
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In other words, for every face inP we check if there is any face inG other than the

face belonging to the same subject that would cause a false alarm based on thresholdτ .

Creating separate probe sets would increase the validity of the findings presented here.

In an ideal environment, where one has access to a large data pool, one would build

a PCA-based model on a training set of images. One would then decide on the number

of eigenvectors and type of distance metric to use based on tests on a validation set and

finally, use a test set to measure the performance of the technique [24]. This would also

make the algorithm more compatible to the testing procedures of the FERET and FRVT

2002 evaluations where teams are expected to use a completely new set of images during

the test phase (see Chapter 2).

8.2.3 Create a texture and shape model

One of the potential advantages of new 3D face databases is that the texture may be of

higher quality than in the dataset currently used. All the experiments performed in this

work and the models created can easily be extended to use texture information. One could

build a separate texture facespace and use this information in conjunction with 3D shape to

perform classification. Alternatively the shape and texture information could be combined

into one model by using a weighting to normalize the intensity values with respect to the

geometry creating a texture-shape-facespace. Chapter 2 discussed various findings that

demonstrate that the recognition rates can improve if the texture and shape modalities are

combined into one. Other similarity metrics such as mutual information [131, 212] could

also be used to assess the similarity between 2D datasets, which can then be combined

with shape similarity scores.

8.2.4 3D to 2D registration

The bulk of face recognition is taking place using 2D data. 2D acquisition remains a very

easy way of collecting data and in some scenarios the only possible way. The advantages

offered by 3D data, however, such as the insensitivity to small posture changes is partic-
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ularly attractive. One could use 3D data even when the probes are in 2D by registering

the projection of the 3D model to 2D data and using the parameters of the 3D model to

perform face recognition. In order to fit the 3D data one would also have to build a sepa-

rate texture space on the 3D data. This has already been demonstrated with a morphable

appearance model in Blanzet al. [18]. Additionally, using modular subspaces, as the

ones presented in Chapter 7, breaks down the problem in various subtasks and allows for

a more flexibility and robustness.

8.2.5 Modeling facial expressions

Facial expressions are one of the greatest sources of variability in facial data. The model

building techniques presented in previous chapters could be used to explicitly model facial

expressions in order to build an expression-space.

Including faces of various expressions in the facespace allows for the classification

of the input faces based on their facial expression. Combining this technique with an

automatic landmark technique one can go from using sets of landmarks for expression

recognition to using full facial data. Assuming that the database contains various expres-

sions for each subject, one could detect the expression of the input image and only search

through the subset of images in the database containing that expression.

Modeling facial expressions could also be useful in cases when the database contains

only neutral images. Since the correspondence between facial points can be established

with the modeling techniques we have developed, one could generate a free-form transfor-

mation that turns a neutral face of a subject to a face with expression of the same subject

(and vice versa). The transformations across subjects could then be analyzed with PCA in

order to build and expression-space. This effectively creates an eigensmile, eigenfrown,

eigendisgust, eigensurprise etc. These models can then be used to animate neutral faces,

but more importantly these models could allow one to “neutralize” a facial expression

and turn the face into a more suitable form before being submitted for identification. Fig-

ure 8.1 shows a face being manipulated by a facial expression model and turned from a
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Figure 8.1: Modeling facial expressions. An expression model encodes the non rigid
transformation that are needed in order to transform the source surface (smiling) to the
target surface (neutral).

smiling face (source) to a neutral one (approximating the target), which would be more

easily identified by a face recognition algorithm. The expression model could also al-

low the modelling of all the expressions between the smiling and neutral state. Yinet

al. [222] are preparing to make a 3D facial expression database available for the research

community, which would be a ideal data source to conduct this kind of work.

The VRT3D system used to capture data for some of the experiments conducted in

this work is able to capture up to 30 frames/sec. This is particularly useful because one

could capture not just a finalized facial expression but many intermediate steps building a

much more “complete” expression-space. Given the capture speed of the VRT3D system,

apart from facial expressions one could potentially model the facial movements generated

when a subject is talking. Knowing the correspondence between phonemes and facial

expressions, one could create models for the speech animation as well as analyze the

dynamics of facial expressions.

8.2.6 Creating better correspondence

Throughout the thesis it was often stated that improving the correspondence between

faces improves the recognition rates. One of the ways this can be done is by using a larger

number of landmarks. Automatic landmark placement is also an option for reducing the

tediousness of the process. Areas such as the cheeks and forehead, however, are difficult

to landmark and furthermore, the ICP-based model uses no landmarks and outperforms
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the landmark-based models. A way to create better correspondence is by improving the

search for the corresponding point from one surface to the other. Currently, the way this

is done is by searching for the closest point in 3D space. An extension of that would be to

add various attributes to each point, making the search for the closest point more robust

and insensitive to data capture errors. Instead of itsxyz coordinates each point could be

represented by a feature vector which includes curvature information, texture intensity at

that point as well as a signature calculated from the relationship between that point and

its neighboring points as presented in [45].

Finally, the point correspondence across faces could be optimized as a function of the

recognition rates. Using a classification task as an objective function one could manip-

ulate the correspondence between the points to find point pairings that would maximize

the classification rates.

8.2.7 Advanced score fusion

In Chapter 7, simple fusion techniques were used to demonstrate alternative ways of com-

bining eigenfeatures of a face. More advanced methods are available for combining bio-

metric scores. For example, the scores from each feature classifier could be concatenated

into a feature vector which itself would be subjected to a second-level classifier that can

form a decision boundary in the score space [99]. Alternatively, a larger database, with

more than one biometric entry per person, would allow the sequential fusion of scores.

This means that a score is collected from each subject’s biometric entry and the scores

within each subject could be summed or averaged to form a more robust score that would

naturally be more immune to within-class variance.
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