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Abstract

Cardiovascular diseases (CVDs) are one of the major causes of death in the world. In recent

years, significant progress has been made in the care and treatment of patients with such

diseases. A crucial factor for this progress has been the development of magnetic resonance

(MR) imaging which makes it possible to diagnose and assess the cardiovascular function

of the patient. The ability to obtain high-resolution, cine volume images easily and safely

has made it the preferred method for diagnosis of CVDs. MRI is also unique in its ability

to introduce noninvasive markers directly into the tissue being imaged(MR tagging) during

the image acquisition process. With the development of advanced MR imaging acquisition

technologies, 3D MR imaging is more and more clinically feasible. This recent development has

allowed new potentially 3D image analysis technologies to be deployed. However, quantitative

analysis of cardiovascular system from the images remains a challenging topic.

The work presented in this thesis describes the development of segmentation and motion

analysis techniques for the study of the cardiac anatomy and function in cardiac magnetic

resonance (CMR) images. The first main contribution of the thesis is the development of a fully

automatic cardiac segmentation technique that integrates and combines a series of state-of-the-

art techniques. The proposed segmentation technique is capable of generating an accurate 3D

segmentation from multiple image sequences. The proposed segmentation technique is robust

even in the presence of pathological changes, large anatomical shape variations and locally

varying contrast in the images.

Another main contribution of this thesis is the development of motion tracking techniques that

can integrate motion information from different sources. For example, the radial motion of

the myocardium can be tracked easily in untagged MR imaging since the epi- and endocardial

surfaces are clearly visible. On the other hand, tagged MR imaging allows easy tracking of

both longitudinal and circumferential motion. We propose a novel technique based on non-rigid

image registration for the myocardial motion estimation using both untagged and 3D tagged MR

images. The novel aspect of our technique is its simultaneous use of complementary information

from both untagged and 3D tagged MR imaging. The similarity measure is spatially weighted

to maximise the utility of information from both images.

The thesis also proposes a sparse representation for free-form deformations (FFDs) using
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the principles of compressed sensing. The sparse free-form deformation (SFFD) model can

capture fine local details such as motion discontinuities without sacrificing robustness. We

demonstrate the capabilities of the proposed framework to accurately estimate smooth as well

as discontinuous deformations in 2D and 3D CMR image sequences. Compared to the standard

FFD approach, a significant increase in registration accuracy can be observed in datasets with

discontinuous motion patterns.

Both the segmentation and motion tracking techniques presented in this thesis have been

applied to clinical studies. We focus on two important clinical applications that can be

addressed by the techniques proposed in this thesis. The first clinical application aims

at measuring longitudinal changes in cardiac morphology and function during the cardiac

remodelling process. The second clinical application aims at selecting patients that positively

respond to cardiac resynchronization therapy (CRT).

The final chapter of this thesis summarises the main conclusions that can be drawn from the

work presented here and also discusses possible avenues for future research.
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Chapter 1

Introduction

This chapter gives an introduction to this thesis. Cardiovascular diseases (CVDs) is one of the

major causes of death in the western world. In recent years, significant progress has been made

in the care and treatment of patients with such diseases. A crucial factor in this progress has

been the development of magnetic resonance (MR) imaging which makes it possible to diagnose

and assess the cardiovascular function of the patient non-invasively. The ability to obtain

high-resolution, cine volumetric images easily and safely has made it the preferred method

for diagnosis of cardiovascular diseases. MR images is also unique in its ability to introduce

noninvasive markers directly into the tissue being imaged (MR tagging) during the image

acquisition process. With the development of advanced MR imaging acquisition technologies,

3D MR imaging is more and more clinically feasible. This recent development has allowed

new potentially 3D image analysis technologies to be deployed. Quantitative analysis of the

cardiovascular system from the images remains a challenging topic.

1.1 Background and motivation

In this section, we review the basic anatomy and function of the heart and give a brief

introduction of CVDs and the main MR imaging techniques that have been developed for

diagnosing patients with CVDs. In addition, we describe some of the basic clinical parameters

1
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which are widely used in the assessment of CVDs.

1.1.1 The anatomy and structure of the heart

The cardiovascular system [Bray, 1999,Katz, 2005] is comprised of the heart and blood vessels

whose main function is to circulate blood around the body. They act as a transport system for

delivering oxygen from the lungs and nutrients from the gastrointestinal tract to the cells of

the body. The heart (Figure 1.1) consists of two pumps lying side by side which pump in phase

with each other. Each pump has an atrium and a ventricle as shown in the figure. The right

atrium receives venous blood from the body and passes it through into the right ventricle (RV)

where it is pumped to the lungs (pulmonary circulation) for oxygenation. At the same time

the left atrium receives oxygenated blood from the lungs and the left ventricle (LV) pumps it

out to the rest of the body (systemic circulation).

Figure 1.1 – The heart consists of two pumps lying side by side. The arrows show the direction
of blood flow in the two sides. This figure has been adapted from Figure 13.3 in [Bray, 1999].

The four chambers of the heart are separated from each other and the rest of the body by four

sets of valves. The bicuspid (or mitral) and tricuspid atrioventricular (AV) valves separate the

left and right atria and ventricles respectively, while the aortic valve separates the LV from

the aorta, and the pulmonary valve separates the RV from the pulmonary artery. Thin chords

called the chordae tendineae are attached to the AV valves and projections of the ventricular
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muscles known as the papillary muscles. During ventricular contraction the papillary muscles

tense and prevent the valves from inverting into the atrium.

The cardiac cycle

Venous blood returning to the heart from the rest of the body flows continuously from the

superior and inferior vena cava into the right atrium, while oxygenated blood from the lungs

enters the left atrium through the pulmonary veins. When the pressure in the atria exceeds

the pressure in the ventricles, the AV valves open and the blood enters the ventricles. When

the ventricles are about 80% full, the atria contract and propel more blood into the ventricles

completing the ventricular filling. This stage of the cardiac cycle, when the ventricular filling

takes place, is known as diastole.

After a very short pause (approx. 0.1 s), the ventricles contract. This stage is known as systole.

As the ventricles contract the pressure in the ventricles increases rapidly and exceeds the atrial

pressure, causing the AV valves to close. Simultaneously, the papillary muscles contract so

that the AV valves do not revert back into the atria. The continued contraction raises the

ventricular pressure beyond the pressure in the aorta and the pulmonary artery. This causes

the pulmonary and aortic valves to open and blood is ejected at low pressure from the RV into

the pulmonary circuit and at high pressure from the LV into the systemic circuit. When the

pressure in the ventricles falls below that in the pulmonary artery and the aorta, the pulmonary

and aortic valves close. Similarly when the ventricular pressure falls below the atrial pressure,

the AV valves open and the ventricles start to refill with blood again and the cycle repeats.

The electrical activation of the heart

The myocardium (the heart muscle) is comprised of muscle cells called myocytes. These are

typically 10 − 20µm in diameter and 50 − 100µm in length. The junction between adjacent

myocytes, called the intercalated disc, allows electrical impulses to be transmitted from cell to

cell making the myocardium act like an electrically continuous sheet. The contraction of the
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heart is initiated by the sino-atrial (SAt) node which acts as a pacemaker, dictating the rate of

beating of the heart (Figure 1.2). The node is composed of myocytes which generate an action

potential roughly once every second that excites the adjacent atrial work cells and causes a

wave of depolarisation to travel across the two atria and initiates atrial systole.

Figure 1.2 – The cardiac conduction system adapted from figure 13.5 in [Bray, 1999].

The electrical impulse then reaches the AV node in the atrial septum (the wall separating the

two atria). The impulse is delayed by the AV node allowing the atria to finish contracting

before the ventricles are activated. The electrical impulse then travels down a narrow bundle

of conduction fibers called the bundle of His, which separates into two parts, one activating

the LV of the heart and the other in the RV. The bundle of His terminates in the Purkinje

network, located in the subendocardium, which distributes the electrical impulse rapidly to the

work cells of the myocardium.

The coronary circulation

The heart receives the energy it needs from the coronary circulation (Figure 1.3), which consists

of five main arteries: the left main coronary artery (LM), the right coronary artery (RCA),

the left anterior descending artery (LAD), the left circumflex artery (CIRC), and the posterior

descending artery (PDA). The RCA and the LM arise from the aorta, while the LAD and CIRC

arise from the LM when it splits into two. The PDA arises from the RCA in approximately

90% of the human population and from the CIRC in approximately 10% of the population.
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Figure 1.3 – The coronary circulation. [Institute, 2010]

Type of CVD Deaths (in %)
Coronary heart disease 49.9

Stroke 16.5
High blood pressure 7.5

Congestive heart failure 7.0
Diseases of the arteries 3.4

Other 15.6

Table 1.1 – Percentage breakdown of deaths due to CVDs [Members et al., 2012].

The blood flow from the coronary arteries reaches the myocardium by vessels which penetrate

the walls of the ventricles. This means that the endocardial regions of the heart are very

vulnerable to cell death, or infarction, if coronary artery occlusion occurs. This is especially

the case for the myocardium of the LV which has a much thicker wall than the RV. Occlusion

of the LM is much more serious than occlusion of any one of the other arteries since this blocks

off all of the blood supply to the myocardium of the LV.

1.1.2 Cardiovascular diseases

Table 1.1 shows a percentage breakdown of the deaths due to CVDs in the USA [Members

et al., 2012]. In both the USA and Europe, the greatest proportion of deaths resulting from

CVDs are due to coronary heart disease (CHD) [Members et al., 2012].
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Coronary heart disease, acute coronary syndrome, and angina pectoris

Coronary heart disease is the narrowing or blockage of the coronary arteries, usually caused

by atherosclerosis. Atherosclerosis is the buildup of cholesterol and fatty plaques on the inner

walls of the arteries. These plaques can restrict blood flow to the heart muscle by physically

clogging the artery or by causing abnormal artery tone and function. Without an adequate

blood supply, the heart becomes starved of oxygen and the vital nutrients it needs to work

properly. This can cause chest pain known as angina. If the blood supply to a portion of the

heart muscle is cut off entirely, or if the energy demands of the heart become much greater

than its blood supply, a heart attack may occur.

Acute coronary syndrome (ACS) refers to any group of symptoms attributed to the obstruction

of the coronary arteries. The most common symptom prompting diagnosis of ACS is chest pain,

often radiating to the left arm or angle of the jaw, pressure-like in character, and associated

with nausea and sweating. Acute coronary syndrome usually occurs as a result of one of three

problems: ST elevation myocardial infarction (30%), non ST elevation myocardial infarction

(25%), or unstable angina (38%) [Torres and Moayedi, 2007]. Here the ST elevations refers to a

finding of an electrocardiogram, wherein the trace in the ST segment is abnormally high above

the isoelectric line. The ST segment corresponds to a period of ventricle systolic depolarisation,

when the cardiac muscle is contracted.

Angina pectoris, commonly known as Angina, refers to chest pain due to ischemia of the heart

muscle, generally caused by the obstruction or spasm of the coronary arteries. Coronary artery

disease, the main cause of angina, is due to atherosclerosis of the cardiac arteries. Angina occurs

when there is an imbalance between the heart’s oxygen demand and supply. This imbalance

can result from an increase in demand (e.g. during exercise) without a proportional increase in

supply. When the symptoms of coronary occlusive disease do not change the patient is said to

have stable angina pectoris. Stable angina often decreases in severity over weeks and months

because of the development of collateral vessels and enlargement of partially occluded coronary

arteries.
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Stroke (cerebrovascular disease)

Stroke is one of the CVDs, which affects the arteries leading to and within the brain. A stroke

occurs when a blood vessel carrying oxygen and nutrients to a part of the brain is blocked by a

clot, or ruptures. As a result, the affected area of the brain cannot function, which might result

in an inability to move one or more limbs on one side of the body, inability to understand or

formulate speech, or an inability to see one part of the visual field. The part of the brain affected

can be damaged because of the lack of blood flow and the consequences can be devastating.

The patient may become paralysed in addition to the loss of language skills and vision. Stroke

can be treated, if the warning signs are detected early enough, by drugs or surgical intervention.

High blood pressure

High blood pressure, is often called the ”silent killer” as no symptoms are shown in a person

suffering from this CVDs. Untreated it can lead to stroke, heart attack, heart failure, or kidney

failure. Medications are available which can help to reduce and control high blood pressure but

it is a lifelong disease, which cannot be cured. It may also lead to hypertensive heart disease.

Systemic hypertension is one of the most prevalent and serious causes of coronary artery and

myocardial disease in the United States [Rubin and Reisner, 2009]. Chronic hypertension

leads to pressure overload and results first in compensatory left ventricular hypertrophy and,

eventually, cardiac failure.

Congenital cardiovascular defects

Congenital cardiovascular defects (CCD), also known as congenital heart defects, are structural

problems that arise from abnormal formation of the heart or major blood vessels. Significant

congenital cardiovascular defects occur in almost 1% of all live births. The International

statistical classification of diseases and related health problems (ICD-9)1 lists 25 congenital

1http://www.who.int/classifications/icd/en/
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heart defects codes, of which 21 designate specified anatomic or hemodynamic lesions [Members

et al., 2012].

Defects range in severity from tiny pinholes between chambers that may resolve spontaneously,

to major malformations that can require multiple surgical procedures before school age and

may result in death in utero, in infancy, or in childhood. Common complex defects include the

following [Members et al., 2012,Rubin and Reisner, 2009]:

• Tetralogy of fallot (TOF) represents 10% of all cases of CCD and is the most common

cyanotic heart disease in older children and adults. It involves four heart malformations:

e.g. infundibular pulmonary stenosis, overriding aorta, ventricular septal defect and right

ventricular hypertrophy.

• AV septal defects are caused by an abnormal or inadequate fusion of the superior and

inferior endocardial cushions with the mid portion of the atrial septum and the muscular

portion of the ventricular septum.

• Coarctation of the aorta is a local constriction that almost always occurs immediately

below the origin of the left subclavian artery at the site of the ductus arteriosus.

• Hypoplastic left heart syndrome is a CCD in which the left ventricle of the heart is severely

underdeveloped. If part of the endocardial tube gets pinched shut in a region that becomes

the future ventricle, hypoplastic heart syndrome will occur. If the pinched part of the

endocardial tube is the bulbus-cordis region of the developing heart, hypoplastic right

syndrome will occur. If it is in the ventricle region, it will be on the left side that is

hypoplastic.

Congenital heart defects are serious and common conditions that have a significant impact on

morbidity, mortality, and health care costs for children and adults.
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Cardiomyopathy and heart failure

Because of the heart’s capacity to compensate, congestive heart failure is often tolerated for

years. The heart’s ability to adapt to injury is based on the same mechanisms that allow

cardiac output to increase in response to stress. The fundamental compensatory mechanism

is the Frank-Starling mechanism [Rubin and Reisner, 2009]: the cardiac stroke volume is a

function of diastolic fiber length. Within certain limits, a normal heart will pump whatever

volume is brought to it by the venous circulations. Stroke volume, a measure of ventricular

function, is enhanced by increasing ventricular end diastolic (ED) volume secondary to an

increase in atrial filling pressure.

Anything that increases cardiac workload for a prolonged period or produces structural damage

may eventually lead to myocardial failure. Ischemic heart disease is by far the most common

condition responsible for cardiac failure, accounting for 87% of strokes from heart disease

[Members et al., 2012]. Most of the remaining cases are caused by nonischemic forms of heart

muscle disease and congenital heart disease. Ventricular hypertrophy is observed in virtually

all conditions associated with chronic heart failure.

Cardiac dysrhythmias

Cardiac dysrhythmias refer to any variation from the normal rate or rhythm (which may include

the origin of the impulse and/or its subsequent propagation) in the heart. The heartbeat may

be too fast or too slow, and may be regular or irregular. A heart beat that is too fast is called

tachycardia and a heart beat that is too slow is called bradycardia.

It can be classified into the following forms according to ICD-9:

• Paroxysmal supraventricular tachycardia: An episodic form of supraventricular tachycar-

dia, with abrupt onset and termination.

• Paroxysmal ventricular tachycardia: A tachycardia arising distal to bundle of His, with

a rate greater than 100 beats per minute.
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• Atrial fibrillation: An arrhythmia in which minute areas of the atrial myocardium

are in various uncoordinated stages of depolarisation and repolarisation; instead of

intermittently contracting, the atria quiver continuously in a chaotic pattern, causing

a totally irregular, often rapid ventricular rate.

• Atrial flutter: An electrocardiographic finding of an organised rhythmic contraction of

the atria, generally at a rate of 200-300 beats per minute.

• Ventricular fibrillation: An arrhythmia characterised by an irregular pattern of high or

low-amplitude waves that cannot be differentiated into QRS complexes or T waves. These

electrocardiographic waves occur as a result of fibrillary contractions of the ventricular

muscle due to rapid repetitive excitation of myocardial fibers without coordinated

contraction of the ventricle.

• Ventricular flutter: A ventricular tachyrhythmia characterised electrocardiographically

by smooth undulating waves with QRS complexes merged with T waves, a rate of

approximately 250 per minute.

• Cardiac arrest: Sudden cessation of the pumping function of the heart, with disappearance

of arterial blood pressure, connoting either ventricular fibrillation or ventricular standstill.

• Sinoatrial node dysfunction: A derangement in the normal functioning of the sinoatrial

node. Typically, SAt node dysfunction is manifest as sinoatrial exit block or sinus arrest,

but may present as an absolute or relative bradycardia in the presence of a stressor. It

may be associated with bradycardia-tachycardia syndrome.

• Other specified and unspecified cardiac dysrhythmias.

The most common symptom of arrhythmia is an abnormal awareness of the heartbeat, called

palpitations. These may be infrequent, frequent, or continuous. Some of these arrhythmias are

harmless (though distracting for patients) but many of them predispose to adverse outcomes.

Some arrhythmias do not cause symptoms and are not associated with increased mortality.

However, some asymptomatic arrhythmias are associated with adverse events. Examples
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include a higher risk of blood clotting within the heart and a higher risk of insufficient

blood being transported to the heart because of weak heartbeat. Other increased risks are

of embolisation and stroke, heart failure and sudden cardiac death. Medical assessment of the

abnormality using an electrocardiogram is the most common way to diagnose and assess the

risk of any given arrhythmia.

1.1.3 Cardiac dyssynchrony, remodelling and resynchronisation ther-

apy

Patients with dilated cardiomyopathy (DCM) that is further complicated by intra-ventricular

conduction delay with dyssynchronous wall motion have an increased mortality risk as

compared to the general DCM population. Dyssynchrony reduces cardiac systolic function

while increasing oxygen consumption, and may be a source of arrhythmia [Kass, 2002]. The

recent development of endocardial lead systems to activate the left ventricle prematurely

has yielded the novel therapeutic option of resynchronisation therapy to correct cardiac

dyssynchrony. Using either biventricular or left ventricular pre-excitation, systolic function and

energetic efficiency can be substantially enhanced in heart failure patients who have underlying

discoordinate contraction.

Left ventricular remodelling is the process by which ventricular size, shape, and function are

regulated by mechanical, neurohormonal, and genetic factors [Pfeffer and Braunwald, 1990,

Sutton and Sharpe, 2000]. Remodelling may be physiological and adaptive during normal

growth or pathological due to myocardial infarction, cardiomyopathy, hypertension, or valvular

heart disease. Postinfarction remodelling has been arbitrarily divided into an early phase

(within 72 hours) and a late phase (beyond 72 hours) [Pfeffer and Braunwald, 1990]. The early

phase involves expansion of the infarct zone, which may result in early ventricular rupture or

aneurysm formation. Late remodelling involves the left ventricle globally and is associated

with time-dependent dilatation, the distortion of ventricular shape, and mural hypertrophy.

The failure to normalise increased wall stresses results in progressive dilatation, recruitment of

border zone myocardium into the scar, and deterioration in contractile function [Sutton and
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Sharpe, 2000].

On the other hand, a reduction in LV end-systolic volume (ESV) of 10% signifies clinically

relevant reverse remodelling, which is a strong predictor of lower long-term mortality and heart

failure events [Yu et al., 2005]. [Yu et al., 2005] suggests that assessing volumetric changes after

an intervention in patients with heart failure provides information predictive of natural history

outcomes.

[Bax et al., 2004] found a interesting relationship between cardiac dyssynchrony and cardiac

resynchronization therapy (CRT):

• The LV dyssynchrony is larger in responders then non-responders to CRT;

• baseline LV dyssynchrony of 65 ms or more has a sensitivity and specificity of 80% to

predict clinical response and 92% to predict reverse LV remodelling;

• patients with extensive dyssynchrony who undergo CRT have an excellent prognosis (6%

event rate), whereas patients who do not have dyssynchrony and undergo CRT have a

poor prognosis (event rate 50

This leads to the conclusion that patients with extensive LV dyssynchrony respond well

to CRT. Using a cutoff level of 65 ms, a sensitivity and specificity of 80% were obtained

for predicting clinical response of reverse remodelling and 92% for predicting reverse LV

remodelling. Moreover, patients with LV dyssynchrony of approximate 65 ms had an excellent

prognosis after CRT, in contrast to patients with < 65 ms who had a high event rate (50%)

during one-year follow-up.

1.1.4 Cardiac magnetic resonance imaging

Common cardiac imaging techniques include echocardiogram (US), positron emission tomog-

raphy (PET), computed tomography (CT) and single-photon emission computed tomography

(SPECT). An echocardiogram uses ultrasonic waves for real-time visualisation of the heart
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chamber and blood flow. Recently, it has become one of the most commonly used tools in

the diagnosis of heart problems, as it allows non-invasive, low-cost visualisation of the heart.

In addition the blood flow in the heart can be visualised using a technique known as Doppler

US. CT is an imaging methodology which uses X-rays to produce tomographic images of the

body. This is achieved by reconstructing a tomographic image from a large series of two-

dimensional X-ray images taken around a single axis of rotation. While CT offers high spatial

and temporal resolution, it requires a significant amount of radiation to produce good quality

images. PET is an imaging methodology based on positron emitting radioisotopes. It enables

visual analysis of multiple different metabolic processes (e.g. glucose uptake) and is thus one

of the most flexible functional imaging technologies. However, it only offers low spatial and

temporal resolution and can only be carried out in specialised centres. SPECT is similar to

PET in its use of radioactive tracer material and detection of gamma rays. Cardiac gated

acquisitions are possible with SPECT, however, the image quality is often inferior to that of

PET imaging.

The work in this thesis focuses on MR imaging [Lauterbur, 1973] which is primarily a medical

imaging technique most commonly used in radiology to visualise the anatomy and function of

the body. MR imaging provides a much greater contrast between the different soft tissues of

the body compared to CT, making it especially useful in neurological (brain), musculoskeletal,

cardiovascular, and oncological (cancer) imaging. Unlike CT, it does not use ionising radiation,

but a powerful magnetic field to align the magnetisation of (usually) hydrogen atoms in water

or fat in the body. Radio frequency (RF) fields are used to systematically alter the alignment of

this magnetisation, causing the hydrogen nuclei to produce a rotating magnetic field detectable

by the scanner. This signal can be manipulated by additional magnetic fields to build up

enough information to construct a tomographic image of the body.

Imaging planes

As the heart is continuously in motion, it is difficult to acquire a volume. Instead, we have to

acquire slices. In this case, it is necessary to acquire images in multiple orientations so that an
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accurate diagnosis can be made. It is common to define, orient, and display the heart using

the long-axis (LA) of the left ventricle and selected planes at 90 degree angles relative to the

LA. The commonly used imaging planes are shown in Figure 1.4 and some example images

are shown in Figure 1.5. Other factors which also make cardiac magnetic resonance (CMR)

imaging challenging are patient motion, respiration, and the anisotropic resolution of the images

acquired. Typically, the in-plane resolution (1-2.5mm) is much higher than the through-plane

resolution (8-10mm) as shown in Figure 1.6.

Figure 1.4 – The typical orientation of CMR imaging planes [Heller et al., 2002]

Figure 1.5 – The images from left to right show respectively SA, horizontal long-axis and vertical
long-axis views of the heart.
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Figure 1.6 – This figure shows a simulated LA view of the heart which has been obtained by
stacking a set of SA images. As can be seen the through-plane resolution is much lower than the
in-plane resolution.

Cine steady state free precession (cine MR imaging)

Images of the heart may be acquired in real-time with CMR, but the image quality is limited.

Instead, most sequences use electrocardiography (ECG) gating to acquire images at each phase

of the cardiac cycle by accumulating information over several heart beats with breath holding.

However, the breath holding introduces respiratory motion between slices acquired during

different breath holds. Nevertheless, this technique forms the basis of functional assessment

by CMR. Blood typically appears bright in these sequences due to its contrast properties and

rapid flow. The technique can discriminate very well between blood and myocardium. The most

frequently used MR acquisition sequence for this is called balanced steady state free precession

(bSSFP) [Carr, 1958]. SA, four (4CH or horizontal long-axis (HLA)), three (3CH) and two

chamber (2CH or vertical long-axis (VLA)) views are often acquired during a routine clinical

setting. An example of this image modality is given in Figure 1.7.

Spatial modulation of magnetisation imaging (tagged MR imaging)

Myocardial tissue in the body can be labelled by altering its magnetisation properties which

are persistent even in the presence of motion. By measuring the motion of the labelled tissue,

deformation fields in the myocardium can be reconstructed. Magnetic resonance tagging was

first proposed in [Zerhouni et al., 1988]. [Axel and Dougherty, 1989b, Axel and Dougherty,

1989a] used a spatial modulation of magnetisation imaging (SPAMM) technique as a means of

non-invasively introducing markers within the myocardium of the LV. The technique relies

on the perturbation of the magnetisation in the myocardium by using a sequence of RF
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saturation pulses before the acquisition of images using conventional MR imaging. Because

the myocardium retains knowledge of the perturbation in the magnetisation the motion of the

myocardium can be tracked during systole. To capture complex 3D cardiac motion patterns,

multiple 2D tagged slices are usually acquired in different orientations. SPAMM has been later

extended to complementary spatial modulation of magnetisation imaging (CSPAMM) [Fischer

et al., 1993] which separates the component of the magnetisation with the tagging information

from the relaxed component by the subtraction of two measurements with first a positive and

then a negative tagging grid. This technique improves the grid contrast and greatly facilitates

the automatic evaluation of the myocardial motion. Thus the motion assessment of the heart

throughout the entire cardiac cycle becomes possible. Recent reviews of MR tagging are given

in [Axel et al., 2005].

Despite the advantage of the tagged imaging, a common difficulty to estimate cardiac motion

from tagged images arises from the inevitable fading of the tag during the cardiac cycle. Tags

which will survive the fading are usually manually segmented or identified in the last phase

of the sequence of tagged images. Another difficulty is low temporal resolution: a sufficiently

large motion will lead to misalignment between material points due to a lack of information

between the tags.

3D tagged MR imaging

3D tagging has recently been implemented using three sequentially acquired 3D data sets with

line tag preparation in each of the three spatial dimensions [Rutz et al., 2008]. Conventional 2D

CSPAMM approaches are prone to slice misregistration and associated with long acquisition

times. In the 3D tagging approach, a fast method for acquiring 3D CSPAMM data has been

proposed. This 3D tagging method allows measuring the deformation of the whole heart in

three breath-holds with a duration of 18 heartbeats each. Three acquisitions are sequentially

performed with line tag preparations in each orthogonal direction. An example of this image

modality is given in Figure 1.8.
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Figure 1.7 – Example cine SSFP and LGE images from a volunteer. SSFP = Steady State Free
Precession; LGE = Late Gadolinium Enhancement.

Late gadolinium enhancement MR imaging

Late gadolinium enhancement (LGE) MR imaging was introduced by [Saeed et al., 1989,Kim

et al., 1996, McCrohon et al., 2003], to identify infarcted myocardial tissue using CMR. This

technique incorporates the administration of relatively inert extracellular gadolinium contrast

during gradient-echo inversion recovery imaging. In this image acquisition, areas of noninfarcted
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Figure 1.8 – Example whole heart TFE and tagged MR images from a volunteer. TFE = Turbo
Field Echo; 3D tMR = 3D Tagged Magnetic Resonance Imaging.

tissue appear dark, and infarcted or fibrotic tissue appears bright, because of reduced clearance

and increased volume of distribution of the gadolinium [Saeed et al., 1989]. This fundamental

aspect of delayed enhancement MR has led to the expression: ”bright is dead.” [Mandapaka

et al., 2006]. An example of this image modality is given in Figure 1.7.
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Whole heart Turbo Field Echo

The whole heart turbo field echo (TFE) sequence acquires an isotropic non-angulated volume

[Uribe et al., 2007]. Images were acquired during free breathing with respiratory gating and

at end-diastole with ECG gating. Different from previous acquisitions that were limited to 2D

imaging, the isotropic 3D resolution enables the assessment of cardiac anatomy and function

with minimum planning or patient cooperation. The respiratory self-gating technique is shown

to improve image quality in free-breathing scanning. The resulting image gives a consistent

single-phase high resolution image of the whole-heart anatomy. It can be treated as a baseline

to align other image modalities into a common space [Zhuang et al., 2011], or to segment the

whole-heart anatomy [Zhuang et al., 2008]. An example of this image modality is given in

Figure 1.8.

1.1.5 Indices of cardiac function

Functional indices are used clinically to assess and characterise cardiac function. Indices can

be classed into two different categories: global and local indices. Global measures of cardiac

function describe the overall ability of the heart to deliver blood to the rest of the body, while

local functional indices are used to assess regional dysfunction in the heart, which is determined

by the state of the myocardial tissue.

Global indices

Global indices assess the overall performance of the ventricles in their ability to eject blood.

The left ventricular volume (LVV), left ventricular mass (LVM), stroke volume (SV), ejection

fraction (EF) and cardiac output (CO) have all been used to assess the performance of the

LV [Frangi et al., 2001].

LVV is defined as the volume enclosed by the LV. Volume-time curves of the left-ventricular

cavity can provide information about the global contractility of the myocardium.
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LVM is the mass of the LV and is equal to the volume of the myocardium, Vm, multiplied by

the density of the myocardium, ρm = 1.05g/cm3 [Foppa et al., 2005]:

LVM = Vmρm (1.1)

SV is defined as the volume ejected during systole and is equal to the difference between the

end-diastolic volume (EDV) and the ESV:

SV = EDV − ESV (1.2)

EF is defined as the ratio of the SV to the EDV:

EF =
SV

EDV
× 100% (1.3)

CO is the amount of blood ejected from the LV per minute and is equal to the SV multiplied

by the heart rate (HR):

CO = SV ×HR (1.4)

Although global indices can be used to identify the abnormal functioning of the heart they

do not indicate which regions of the heart have reduced contractile function. Moreover, for

some patients, global indices fall within normal limits even though the wall motion may be

abnormal. For example, patients suffering from hypertensive left ventricular hypertrophy may

have normal EF while circumferential and longitudinal shortening are depressed [Kramer et al.,

1994]. Measuring local indices can help to detect areas of the myocardium which have been

damaged because of reduced blood flow.

Local indices

A widely recognised regional analysis technique for left ventricle myocardium is to use the

17-segment division model suggested by [Heller et al., 2002]. The motion of the heart can
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be characterised in terms of its contraction in the radial, circumferential and longitudinal

directions. The regional wall motion (RWM), regional wall thickening (RWN) and regional

myocardial strain (RMSt) in different directions are the local indices. These indices are often

used to identify the abnormality.

Figure 1.9 – Bull-eye plot of the 17 segments of the left ventricular myocardium suggested
by [Heller et al., 2002], Left the bull-eye plot, Right the anatomy landmarks for the bull-eye plot
segments

RWM is defined as the myocardial movement of each segment. The functional abnormality of

myocardium affects its contraction movement. It may, as a result, affect the total movement of

a segment. Regional wall motion provides an indication of how healthy a specific segment is. In

clinical practice, visual assessment by an experienced cardiologist is normally used to score the

index as a semi-quantitative evaluation [Cigarroa et al., 1993]. For automatic assessment, the

average radial distance from the myocardial region to the central axis is defined as the RWM:

RWM = (δES − δED)/δED × 100% (1.5)

Here, δ is the radial distance from a myocardial point in one segment to the central axis of the

blood cavity; ES is end-systolic; ED denotes end-diastolic.
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RWN is a measure related to the thickness of myocardium at different phases. It provides

an alternative to RWM and can be more sensitive in discriminating between passive motion

and active motion. The index can be manually scored [Cigarroa et al., 1993] or automatically

quantified by the following equation:

RWN = (ηES − ηED)/ηED × 100% (1.6)

Here η is the thickness of the myocardium in a local region, defined as the distance between

the endocardial and epicardial surfaces.

RMSt is the fractional change of the length from a reference state to a subsequent state in the

radial, circumferential and longitudinal directions. RMSt is now considered the superior index

to RWM and RWN in discriminating infarcted myocardium from ischemic one [Götte et al.,

2001]. RMSt in the different directions can be defined in terms of the off-diagonal terms of the

Lagrangian strain tensor [Amini and Prince, 2001].

1.2 Objectives and challenges

It is now clear that MR imaging is becoming the modality of choice for cardiovascular image

analysis as it has a number of advantages over other imaging techniques. It is safe, noninvasive

and flexible. 2D, 3D and 4D images with high spatial and temporal resolution of the anatomy

and physiology of the heart can be acquired in arbitrary orientations. Additionally, MR tagging

can be used to measure detailed information about the myocardial deformation. However, there

are a few technical challenges which need to be addressed.

Firstly, the ability to segment the images with pathological changes is necessary to gain a

better understanding of the remodelling process of the heart following infarction. For example,

determining the evolution of left ventricular remodelling and the relative contribution made

by infarcted and remote myocardium to chamber dilatation has importance for evaluating

interventions aimed at preventing heart failure. However, most existing cardiac image
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segmentation algorithms do not explicitly address subjects with pathological changes in the

MR images caused by myocardial infarction, e.g. large shape variation and local varying levels

of signal contrast. The contrast of the myocardial can be different in MR images due to

infarction due to different tissue property between normal and infarcted myocardium. The

consequence is that measuring remodelling following infarction is difficult or inaccurate using

automated image segmentation techniques.

Secondly, different MR acquisitions, including SA and LA cine MR images, 3D TFE MR images

and 3D tagged MR images, are often treated independently during the subsequent analysis of

cardiac function. The global and local cardiac functional parameters may not be available

from one acquisition and may differ across different acquisitions. For example, regional volume

change over the cardiac cycle can be captured from SA and LA cine MR images. However, this

does not take into account the difference between active and passive motion. Potential ways

of taking into account active myocardial motion are to use muscle thickening or strain. The

strain index can only be fully extracted from a combination of different modalities.

Finally, most existing cardiac registration algorithms do not explicitly address the fact that the

motion of different organs maybe different. This can lead to motion discontinuities in the image

domain. For example, in the case of the heart, a sliding motion occurs at the pericardium. It is

challenging to develop a motion tracking algorithm that can adaptively adjust to these motion

discontinuities.

1.3 Contributions

The focus of the research presented in this thesis is the integrated use of multiple MR image

acquisitions for cardiac function analysis. The work presented in this thesis makes three main

technical contributions to the analysis of cardiac function in the context of segmentation and

motion tracking. We also show two clinical applications that highlight the potential use of the

developed techniques. The main contributions of the thesis are contained in chapters 4-7:
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• A fully automatic cardiac segmentation technique is developed. The proposed segmenta-

tion technique is capable of generating an accurate 3D segmentation from multiple MR

image acquisitions. To identify the cardiac anatomy from multiple image sequences, a

spatial correction step is performed before segmentation. A 3D atlas is propagated to

the SA and LA images using a single transformation across multiple acquisitions. A

locally affine registration method (LARM) is used to cope with the large anatomical

shape variations. A multiple component expectation maximisation (MCEM) is employed

to compensate for locally varying intensity contrast. Finally, 4D graph-cuts segmentation

is used to extract the cardiac anatomy within each image acquisition consistently.

• A novel technique for myocardial motion estimation using both untagged and 3D tagged

MR images is proposed. The novel aspect of our technique is in its simultaneous use of

complementary information from both untagged and 3D tagged MR images. To estimate

the motion within the myocardium, we register a sequence of tagged and untagged MR

images during the cardiac cycle to a set of reference tagged and untagged MR images

at end-diastole. The similarity measure is spatially weighted to maximise the utility of

information from both images. In addition, the proposed approach integrates a valve

plane tracker and adaptive incompressibility into the motion tracking framework.

• A sparse representation for cardiac motion tracking using free-form deformations (FFDs)

based on the principles of compressed sensing is proposed. The sparse free-form

deformation (SFFD) model can capture fine local details such as motion discontinuities

without sacrificing robustness. We demonstrate the capabilities of the proposed

framework to accurately estimate smooth as well as discontinuous deformations in 2D

and 3D image sequences. Compared to the classic FFD motion tracking approach, a

significant increase in registration accuracy can be observed, in particular for images

which exhibit discontinuous motion.

• Finally, two clinical applications for the above techniques are presented. We developed a

framework which uses measures of myocardial motion to predict the response of individual

patients to CRT. We also demonstrate the feasibility of using 3D probabilistic cardiac
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atlases together with image registration to map the anatomical changes that occur over

time in response to acute ST-elevation myocardial infarction (STEMI).

A list of publication arising from the work in this thesis can be found in Appendix A.

1.4 Overview of thesis

In this thesis, following this chapter, we review the current state-of-the-art for segmentation

(Chapter 2) and motion tracking (Chapter 3) methods for cardiac MR images. The methods

and algorithms that have been developed during our research are presented in the subsequent

chapters. In Chapter 4 we develop a method for cardiac anatomy segmentation using atlas-

based methods. In Chapter 5 a comprehensive cardiac motion tracking framework using tagged

and untagged MR images is developed. In Chapter 6 we extend the classic non=rigid image

registration with free-form deformations to a sparse representation. In Chapter 7 two clinical

research applications that can be addressed by the techniques proposed in the thesis are

presented.

Finally, in Chapter 8, we summarise the work presented in this thesis and discuss future work.

1.5 Statement of originality

The material in this thesis has not previously been submitted for a degree at any university, and

to the best of my knowledge contains no material previously published or written by another

person except where due acknowledgement is made in the thesis itself.
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Cardiac image segmentation

In this chapter, we review several automatic and semi-automatic segmentation methods for

CMR images. The remainder of the chapter is organised as follows: The challenge of the

cardiac segmentation is presented in Section 2.1. In Section 2.2, a selection of current cardiac

segmentation methods are categorised. In Section 2.3, recent popular methods in medical

image segmentation, especially multi-atlas and patch-based segmentation, are discussed. In

Section 2.4, we discuss the development of evaluation techniques and benchmarks. Finally, the

conclusions regarding the state-of-the-art are summarised in Section 2.5.

2.1 Challenge of cardiac segmentation

Most research effort in cardiac image segmentation has focused on the LV. This is largely due

to the fact that the function of the RV is often less studied than that of the LV in CVDs.

In addition, the LV is often easier to be identified and delineated than the RV: It has a well-

defined ellipsoidal shape and is surrounded by the myocardium with a typical thickness of 6mm

to 16mm [Petitjean and Dacher, 2011]. In contrast, the RV has a more complex crescent-like

shape. The wall is also three to six times thinner than that of the LV, reaching the limit of the

spatial resolution of MR imaging [Petitjean and Dacher, 2011].

The most common image obtained during a typical CMR acquisition is the SA cine MR images

26
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(shown in Figure 1.7). The most frequently used MR acquisition technique for this is called

bSSFP (as discussed in the introduction). A typical SA cine MR acquisition covers the whole

heart with about 8-10 slices of an in-plane resolution of 1-2mm and through plane resolution of

8-10mm. Each slice is acquired in a separate breath-hold of the patient. About thirty cardiac

phases can be obtained during one cardiac cycle depending on the heart rate.

Figure 2.1 – Variability among cardiac images. The image of the heart varies in terms of both
intensity and shape. [Petitjean and Dacher, 2011]

One of the challenges for cardiac segmentation algorithms is that, as shown in Figure 2.1, CMR

images exhibit a great variability, both in terms of appearance and shape. The appearance may

differ due to the use of the different MR scanners or differences in the acquisition protocols. It

can also be caused by partial volume (PV) effects due to the non-zero thickness of MR images

slices: In some areas, a voxel can contain a mixture of several tissue types. Finally, pathological

changes like infarction may cause local varying intensity contrast [Shi et al., 2011]. In terms

of the shape, the ventricle can vary significantly across subjects, across different pathologies

(dilation or hypotrophy), across time (before and after remodelling) and along the LA. This

variability must be accounted for during the segmentation.

Examples of the challenges for cardiac image segmentation are shown in Figure 2.2: The
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Figure 2.2 – A ROI identifying the heart and anatomy for SA cine MR images [Petitjean and
Dacher, 2011]

epicardial wall consists of the boundary between the myocardium and the surrounding tissues.

Some of the surrounding tissues show poor contrast compared to the myocardium. The

segmentation is thus difficult. In contrast to this, MR images usually provide quite good

contrast between the myocardium and the blood pool. This means that the endocardial wall

is easier to be identified. However, intensity inhomogeneity caused by blood flow artifacts can

make the segmentation challenging. In addition, the papillary muscles and trabecular inside

the heart chambers have the same intensity as the myocardium. Thus it is often difficult to

distinguish them from the myocardium. In most clinical segmentation protocols, the papillary

muscles and trabecular should not be taken into account for the delineation of the endocardial

wall.

Figure 2.3 – Variability of the heart in SA MR images along the LA. [Petitjean and Dacher,
2011]
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Another major challenge in the segmentation of SA cine MR images is the large variability along

the LA as shown in Figure 2.3. The apical and basal slices are more difficult to be segmented

than mid-ventricular ones. Small structures at the apex are usually degraded due to the large

through plane resolution. On the other hand, the shape of the LV varies often drastically in

slices close to the base of the heart, because of the vicinity of the atria. In general, the RV

shape varies even more along the LA.

Spatial misalignment is another challenge in the segmentation of SA cine MR images. Due

to potential differences in the position of the heart during different breath-holds (e.g. due

to respiration) there is usually some spatial misalignment between the images (inter-sequence

misalignment) as well as between individual slices of the SA and LA images (intra-sequence

misalignment). The image segmentation can be correct in 2D slices but distorted in 3D

anatomical space and the distorted 3D segmentation can cause inconsistencies and inaccuracies

in the final derived indices of cardiac function.

Several attempts have been made to segment the myocardium from 3D whole-heart images,

include CT [Zheng et al., 2007] and 3D TFE MR images [Peters et al., 2007, Zhuang et al.,

2010]. Compared to SA cine MR images, 3D whole-heart images are limited in terms of clinical

availability as well as in terms of temporal resolution. This limits the ability to compute

clinical parameters like EF which require segmentation at the end systolic (ES) and ED phases

of the cardiac cycle. On the other hand, 3D whole-heart images provide nearly isotropic image

resolution, which can increase segmentation accuracy on apical and basal segments and avoid

the spatial misalignment problem.

The segmentation of the ventricles during the full cardiac cycle allows temporal volume and

the mass changes to be assessed and is of great interest as an indicator of cardiac performance

[Caudron et al., 2011]. However, because of the lack of landmarks inside the mycardium, the

circumferential (twisting) and the longitudinal (through plane) myocardial motion cannot be

analysed from SA cine MR images but requires dedicated modalities such as 2D or 3D tagged

MR images [Chandrashekara et al., 2004,Rougon et al., 2005,Rutz et al., 2008].
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2.2 Methods of cardiac image segmentation

A common categorisation for medical image segmentation algorithms is low-level segmentation

algorithms like thresholding as well as edge-based and region-based approaches [Pham et al.,

2000]. Voxel-based classification methods without strong a-priori information can also be

included into this category [Petitjean and Dacher, 2011]. Numerous segmentation problems

require the use of a-priori knowledge to increase the robustness and accuracy compared to

low-level segmentation algorithms. On one hand, user interaction can be regarded as a-priori

knowledge [Pham et al., 2000]. On the other hand, a-priori information usually consists of a

model, e.g. in form of the spatial relationships between objects or in form of assumptions about

the shape and appearance of anatomical structures.

Deformable models, including snakes and their variants, offer a popular framework for

incorporating a-priori knowledge. They can include anatomical information, as well as high-level

information through active shape and appearance models. Finally, atlas-based segmentation

approaches make use a-priori information in form of a set of manually labelled images.

In this section, we will first introduce the idea of cardiac localisation followed by the low-level

segmentation algorithms commonly used in cardiac image analysis. Then, we will discuss high-

level segmentation algorithms methods such as deformable models, active shape and appearance

models and atlas-based approaches.

2.2.1 Cardiac localisation

The first step of cardiac segmentation especially myocardium segmentation requires an

approximate delineation of the object of interest to be provided. Cardiac localisation techniques

often rely on the following assumptions:

1. The intensity of blood is higher than that of myocardium.

2. MR images are SA multi-stack images in which the LV appears as approximately circular

in shape.
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3. Localisation is based on 2D images and heart is approximately at the centre of the images.

Ray casting from the hypothetical centre of LV is often used to detect the ROI [Kedenburg

et al., 2006,Jolly, 2006]. These methods rely on the unique geometry, intensity distribution and

gradient of the boundary between LV, myocardium and other tissues in MR images as shown

in figure 2.4.

Figure 2.4 – The feature set defining the heart LV. (a) The four cross sections through the
ventricle used to extract the features; Aligned training profiles along with their average for the
(b) horizontal cross section and (c) vertical cross section. [Jolly, 2006]

[Su Huang, 2009] used multilevel Otsu thresholding [Otsu, 1975] to find the intensity

distribution of blood. They then applied a region growing method using the image centre

as the seed point. A convex hull based on the grown region is then used as the initial location

of the LV to approximate a circular ROI. Based on the assumption that the LV blood pool is

more circular than the RV blood pool, [Lu et al., 2009] selected the LV from the result of the

Otsu thresholding by computing a roundness metric R = 4πA
p2

of each surviving convex object.

Here A denotes area and p is perimeter length. The resulting measure R is equal to 1 for a

perfect circle.

[Uzumcu et al., 2006, Wijnhout et al., 2009] used a circle-based Hough transformation using

the results of Canny edge detection [Canny, 1986] step . For each of the images in the ED

phase, the Hough Transform generates an accumulator image with identical dimensions as the

input image, with high values near centre points of objects having a radius within the specified

range (2− 60mm).
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Figure 2.5 – LV location procedure. (a) Target image with rectangular ROI (green box) and
image centre(green point), (b) ROI image, (c) Binary image, (d) Surviving objects’ convex hulls
(red) and the corresponding roundness metric (green). The detected LV blood pool centroid is
labelled as a red point. [Lu et al., 2009]

[Lin et al., 2006] proposed to use a novel combination of temporal Fourier analysis of image

cines with simple contour detection to achieve a fast localisation of the heart. First a Fourier

transform over time at each pixel location is performed. The first harmonic image is used to

detect the ROI. In order to reduce the effect of noise and signal from non-cardiac structures,

the H1 images were filtered with a smoothing filter and all pixels with magnitude less than 5%

of the maximum magnitude within the 3D volume were set to zero. Then, the ROI for each

slice was iteratively refined.

In contrast to previous approaches the cardiac localisation problem can be viewed as a general

object detection problem. Haar-like features are image features that are widely used in general

object recognition and may be applied to localise the LV in cardiac images. A simple rectangular

Haar-like feature can be defined as the difference of areas inside a rectangle, which can be at any

position and scale within the original image. This feature set is called two-rectangle feature.

The values indicate certain characteristic of a particular area of the image. Each feature type

can indicate the existence (or absence) of certain characteristics in the image, such as edges or

changes in texture. [Viola and Jones, 2002] proposed an automatic object detection framework

based on a Haar feature cascade classifier. Two-, three- and four-rectangle features are used

together with a cascade classifier to identify human faces. This framework can be generalised

and applied to different object detection tasks with task-specific training set.
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2.2.2 Low-level segmentation algorithms

Thresholding can be an effective segmentation strategy when the focus is to find the

endocardial contour [Goshtasby and Turner, 1995,Nachtomy et al., 1998]. In addition, dynamic

programming (DP) can improve the result of the thresholding by taking advantage of the

approximate circular geometry of the LV when using polar coordinates. After the initial

thresholding, a one-dimension optimal path is located under polar coordinates which best

describes the endocardial contour. The design of the cost matrix for the optimal path search

can be based on thresholding [Liu et al., 2006], wavelet-based enhancement [Fu et al., 2000]

radial lines [Yan et al., 2007], or the gradient values [Cousty et al., 2010] to weight a spatio-

temporal graph. In [Jolly et al., 2009], a shortest path algorithm was applied to an average

image to locate the LV. The average image was created from all phases over one cardiac cycle.

Contours in each individual image were then recovered using minimum surface segmentation.

Voxel-based classification method is another popular segmentation strategy when little or no

prior knowledge is available. In cardiac segmentation, the features for classification usually

are the intensities and the segmentation is often performed using two standard unsupervised

techniques: Gaussian mixture models (GMM) and clustering [Petitjean and Dacher, 2011].

GMM is usually used to model the histogram of image intensities with a mixture of Gaussians.

The Gaussian parameters (mean, variance) are then typically found using the expectation

maximisation (EM) algorithm [Dempster et al., 1977]. The number of Gaussians used is often

assumed to be known and fixed a-priori. In CMR images four Gaussians are frequently chosen

to represent the intensities of the different tissue classes. These Gaussians then model the

background, myocardium, blood pool and fat. PV effects occur due to the fact that a voxel

can contain a mixture of different tissues. This is especially problematic for images with low

spatial resolution or large slice thickness. PV effects can be accounted for in GMM-based

methods by adding multiple Gaussians representing PV between myocardium and blood or

myocardium and air [Pednekar et al., 2006]. The papillary muscles can be taken into account

by assigning a mixture of two Gaussians (blood pool and papillary muscle) to a single label

(blood pool) [Senegas et al., 2004]. The EM algorithm can be initialised by using a heart
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detector [Pednekar et al., 2006] or using priors like an atlas (cardiac atlases will be discussed

later in the chapter). The result of the EM segmentation can be improved to increase spatial

consistency of the segmentation. This can be achieve using dynamic programming [Pednekar

et al., 2006] or Markov random fields (MRF) [Gering, 2003].

A different approach to the low-level segmentation of cardiac images consists of clustering voxels

within a feature space. [Lynch et al., 2006a] used a K-means based clustering to obtain separate

clusters. After the initial clustering step the LV cavity is identified by computing the similarity

between the blood pool and a circle. The closest blood pool to LV cavity is the RV cavity. The

wall between these two cavities is measured to assess the myocardium thickness, which acts

as a guide for segmenting the epicardial wall from the endocardial wall using image gradients.

Finally, the epicardial wall is approximated using a smooth spline.

Several methods have been proposed to exclude papillary muscles during the endocardial wall

segmentation: the computation of the convex hull of the contour [Lin et al., 2006], applications

of mathematical morphology such as opening and closing on the contour [Cousty et al., 2010],

or fitting a parametric curve to the contour to enforce smoothness.

Low-level segmentation algorithms with little prior knowledge can detect the epicardium once

the endocardial contours have been detected. This often relies on a spatial model that

incorporates assumptions about myocardial thickness or mathematical morphology operators

applied on the endocardial contour [Petitjean and Dacher, 2011]. However, the epicardial

contour is much more variable from image to image in terms of intensity distribution, geometry

and surrounding tissues as show in Figure 2.3. Thus a robust segmentation requires stronger

prior knowledge but image-based and classification-based approaches can only offer limited

flexibility for incorporating strong prior knowledge. In the next section, we review some of the

high-level segmentation algorithms that can incorporate stronger a-priori knowledge for heart

segmentation.
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2.2.3 High-level segmentation algorithms

The low-level segmentation algorithms described above are mainly intensity driven. This makes

the segmentation flexible but can also result in random and unrealistic segmentations due to

noise, artifacts, and low-contrast boundaries present in the image. High-level segmentation

algorithms avoid these problems by incorporating additional a-priori information, e.g. about

the shape and appearance of the object of interest. Typical high-level segmentation algorithms

include deformable models, active shape and appearance models and atlas-based segmentation.

Deformable models

Active contours or snakes [Kass et al., 1988] is a framework which minimises an energy function

that is associated with a contour embedded in the image. The energy is a linear combination

of internal and external energy terms. The external energy is driven by edge information in

the image. The internal energy is minimised when the shape of the active contour achieves

some desirable properties, such as smoothness. Active contours are one of the most popular

approaches in model-based segmentation due to their ability to deal with objects with complex

shapes. Prior information about the expected geometry of the heart can be incorporated in the

predefined model as internal energy terms.

[Paragios, 2002] proposed a variational technique to segment MR cardiac images. Firstly

the authors computed the mean signed distance map to a reference shape model. Then, the

alignment to this reference shape is incorporated into the energy function to be minimised.

The approach includes the coupled propagation of both contours so that it maintains the

relative positions of the endocardial and epicardial contours according to a pre-defined distance

model. Image intensity information is integrated through a gradient vector flow-based [Xu

and Prince, 1997] boundary term and a regional term that aims at best separating the cardiac

contours/regions according to their global intensity properties. The resulting equations of

motions for the contours are implemented using a level set approach [Osher and Sethian, 1988,

Sethian, 1996] and a fast and stable numerical approximation scheme, the additive operator
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Figure 2.6 – Deformable models and anatomical constraints for the segmentation of the LV.
Black contours: initial conditions. White contours: active contours. [Paragios, 2002]

splitting [Weickert et al., 1998,Goldenberg et al., 2001] is used. An example of the propagation

is shown in Figure 2.6.

An alternative approach based on probability density functions (PDFs) was proposed in [Lynch

et al., 2006b]. Here PDFs are computed from the data by adding the binary segmentation

images of both contours from a training dataset. The prior information is applied in a global

sense after scaling and alignment to avoid leaking and the selection of spurious local minima.

The PDF is embedded as a multiplicative term in the equations of motions in a region-based

fashion. The region-based information improves flexibility in the segmentation of a wide variety

of cardiac morphologies.

Statistical models

A number of different representations for shape models with prior information have been

proposed, including point distribution model (PDM) and deformable models. In the following

paragraphs these works are briefly reviewed.

Active shape model (ASM) consist of a statistical shape model, called PDM, obtained by
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principle component analysis (PCA) on the set of aligned shapes, and a method for searching

the model in an image [Cootes et al., 1995]. The PDM is a model for representing the mean

geometry of a shape and as well as the statistical modes of geometric variation as inferred from

a training set of shapes. PDMs rely on landmark points. A set of training images is manually

landmarked with enough corresponding landmarks to sufficiently approximate the geometry of

the original shapes. Let X = {X[m,n]} represent the data matrix of the landmarks, where

each column contain m landmarks in a training image from n training images. PCA is used to

compute normalised eigenvectors and eigenvalues of the covariance matrix across all training

shapes. The matrix of the top y eigenvectors is given as P, and each eigenvector describes a

principal mode of variation along the data set. A linear combination of the eigenvectors is used

to define a new shape X′, mathematically defined as:

X′ = X + Pc (2.1)

where X is defined as the mean shape across all training images, and c is a vector of the shape

parameters for each principal component. Therefore, by modifying the variable an infinite

number of new shapes can be defined. The magnitude of c is often constrained to ensure that

the new shapes are all within the variation seen in the training set and thus plausible.

In addition, ASMs provide a search strategy in which the similarity between the model and the

image is maximized in an iterative fashion. The ASM can be extended to model the appearance

in terms of intensities. This extension is called active appearance models (AAM) [Edwards

et al., 1998] and represents both the shape and texture variability seen in a training set.

AAM have been first applied to LV segmentation in [Mitchell et al., 2000]. The authors later

introduced a multistage hybrid model, combining ASMs and AAMs [Mitchell et al., 2001].

They have argued that the AAM is optimised on global appearance while the ASM provides

more precise border locations. They proposed to concatenate several matching phases, starting

with an AAM that positions the model onto the heart, followed by a hybrid ASM/AAM stage.

After the position refinement, a final stage of AAM search helps to locate local structures
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precisely. Eventually, this segmentation approach was extended to 3D in [Mitchell et al., 2002].

An example of a 3D AAM-based segmentation of the LV is shown in Figure 2.7

Figure 2.7 – Segmentation results by 3D AAM. (a) Manually identified contours. (b) 3D AAM-
based segmentation of the LV [Mitchell et al., 2002].

[Lapp et al., 2004] used a combination of AAM and statistical deformation models (SDM)

[Rueckert et al., 2003] for cardiac segmentation. The authors applied the idea of statistical

deformation models to AAM and used a deformable registration step for establishing point-

to-point correspondences. PCA is performed on both texture vector and deformation vector

to extract appearance and shape information. To incorporate both shape and appearance

information into one model a further PCA is applied on the concatenated texture and

deformation parameters. The result statistical atlas of the heart allows the creation of arbitrary

plausible images of the heart in both terms of shape and appearance within the variations of

the training datasets.

[Kaus et al., 2004] presented a fully automated deformable model technique for the

segmentation of the myocardium in 3D MR images. This approach integrates various sources

of a-priori knowledge learned from annotated image data into a deformable model. The inter-

individual shape variation is represented by a statistical PDM. For a new contour or surface

to be estimated, the shape as well as pose parameters are iteratively updated by a gradient
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descent minimisation of the region-based energy terms. The spatial relationship of the epi- and

endocardium was modelled by adapting two coupled triangular surface meshes. Compared to

other approach, the proposed approach includes two types of prior information: (a) spatially

varying appearance features and (b) surface connectivity in order to improve the segmentation

robustness.

[Rouchdy et al., 2007] generated a deformable elastic template with nonlinear material

properties and applied it to rodent CMR image segmentation. A mesh model is first localised in

the images using affine registration. The edge information from the image is used as the driving

force to locally deform the mesh to refine the segmentation of local details. The deformation

is regularised by the nonlinear elastic property of the physical model. This results in a more

realistic deformation field during the adaptation.

[Ecabert et al., 2008,Peters et al., 2007] extended the work of [Kaus et al., 2004] and applied it

to whole heart segmentation of CT and MR images. They used a generalised Hough transform

to locate the ROI, e.g. the chambers of the heart. In order to deal with variable cardiac

morphology in the whole heart segmentation, a piecewise-affine adaptation was introduced.

This adaptation significantly increased the ability of the model to achieve a better initialisation

of the whole-heart model segmentation. Finally, the segmentation is refined by optimising

both the transformation parameters and the vertex locations of the mesh model through the

competition of the external and internal energy. An example of the resulting whole-heart

segmentation is shown in Figure 2.8.

By imposing constraints on the segmentation through the use of statistical models, the above

methods overcome the previously mentioned segmentation problems of low-level segmentation

algorithms without the need for user interaction. However, these methods require training

data, usually in the form of manual segmentations and annotations. Moreover, these statistical

models cannot approximate segmentations that are not included in the training set. Although

it is possible to extend the training set to include enough shape variability to achieve high

accuracy, the training sets in [Mitchell et al., 2002, Kaus et al., 2004, Ecabert et al., 2008]

are often restricted to small datasets. One of the problems is that it is always costly to
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Figure 2.8 – Whole heart segmentation result using deformable models [Peters et al., 2007].

acquire enough atlases in both terms of image acquisition and manual labelling. The atlas-

based segmentation techniques described in the next section are more flexible, allowing for the

recovery of shapes that are not present in the training set.

Furthermore, external features widely used in the statistical model based segmentation are

mainly based on the information from a small local area of the unseen image such as the intensity

or gradient value. These features are sensitive to intensity inconsistency due to different image

acquisition protocols or artefacts.

Atlas-based segmentation

Traditional medical atlases contain information about anatomy and function from single

individuals. Such an atlas can be made subject-specific by transforming its coordinate system

to match that of another individual. This transformation removes any subject-specific shape

variations and allows subsequent comparison of structure and function between individuals or

propagation of information in the atlas to the subject. Atlases can be generated from the manual

segmentation of an individual subject or multiple subjects. In atlas-based segmentation the

atlas is registered to unseen images. The result is not restricted to the variation of the training
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set but rather by the flexibility of the registration process. If the boundary is well defined

in the atlas image, using appearance information from the atlas and smoothness constraints,

the segmentation propagation can retrieve boundaries with low contrast or those that are not

clearly visible in the unseen image. Atlas-based segmentation techniques have been widely

applied to brain segmentation [Collins et al., 1995,Dawant et al., 1999].

The construction of an atlas of the heart can be based either on the segmentation of single

individual [Lorenzo-Valdés et al., 2002, Zhuang et al., 2010] or on probabilistic model, usually

representing the average segmentation obtained in a population of subjects [Lorenzo-Valdes

et al., 2003,Lorenzo-Valdés et al., 2004]. [Lorenzo-Valdés et al., 2002] proposed to construct a

subject-specific atlas for each subject from the ED phase and propagate this atlas to all other

cardiac phases of the same subject. A non-rigid registration [Rueckert et al., 1999] was used

to accomplish the purpose. The process is illustrated in Figure 2.9 The limitation of this work

is that the subject-specific atlas can only be applied to images from the same subject. Hence,

the work is not fully automated.

Figure 2.9 – Anatomical atlas-based segmentation: (i) computation of the transformation T
between the atlas and the image and (ii) deformation of the atlas by T [Lorenzo-Valdés et al.,
2002].

[Lorenzo-Valdes et al., 2003,Lorenzo-Valdés et al., 2004] proposed to use a probabilistic atlas to

initialise as tissue classification based on the EM algorithm. It is notable that the probabilistic

atlas used is 4D spatio-temporal atlas. Temporal alignment was used to normalise the number of
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phases of the each individual during the atlas construction and propagation Figure 2.10. The

segmentation obtained after convergence of the EM algorithm is refined to integrate spatial

information through a MRF.

Figure 2.10 – Temporal registration and resampling: linear interpolation is used to generate
time frames from image sequence B which corresponds to those of sequence A [Lorenzo-Valdés
et al., 2004].

[Zhuang et al., 2010] proposed the use of a LARM to capture the anatomical substructures

during the whole-heart segmentation. LARM assigns a local affine transformation to each

substructure, while globally it is a deformable registration. LARM was applied during

the single atlas propagation phase after affine registration and before non-rigid registration.

A robust initialisation of the different substructures of the heart was achieved. The

resulting transformation between the atlas and the unseen image maintains the local shape

of the predefined substructures and allows only global deformations. After this a free-form

deformation with adaptive control point status (ACPS) was introduced to avoid the influence

of the non-cardiac tissues adjacent to the heart with indistinct boundaries by allowing a

non-uniform free-form deformation. The improvements of the different steps are shown in

Figure 2.11.

The atlas-based segmentation approaches presented above are more flexible comparing to

deformable models. Once an atlas has been constructed, only a single registration from the atlas

to the target image is required to obtain a segmentation. On the other hand, the registration

may fail if the anatomy in the unseen image is too different from the anatomy in the atlas in
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Figure 2.11 – Comparison of manual segmentation, Affine+FFD, LARM+FFD, and LAR-
M+ACPS. [Zhuang et al., 2010].

terms of morphology. For example, it can be difficult to register an atlas of the normal heart

to the heart of a subject with dilated myocardium [Shi et al., 2011]. The registration may also

fail if the anatomy in the unseen image contains some pathological changes that lead to locally

varying contrast. For example, the intensities in the myocardium can exhibit this problem due

to infarction. Both of these difficulties may cause the resulting transformation to be not a good

registration between the atlas and unseen image.

2.3 Multi-atlas and patch based segmentation

To overcome the problems of the atlas-based segmentation discussed above and to make the

segmentation more robust, [Rohlfing et al., 2004, Heckemann et al., 2006, Aljabar et al., 2009]

proposed to use a number of different atlases. Each atlas is registered to the target image and

the resulting segmentations are then fused into a consensus segmentation. It has been recently

shown that using multiple atlases can yield better results for the segmentation of brain MR

images [Artaechevarria et al., 2009], neck images [Han et al., 2008] and aortic images [Isgum

et al., 2009]. In the fusion step it is possible to use a subset of the most successful registrations

or use all registrations. Typically, fusion strategies such as majority voting, weighted voting

or locally weighted voting are used. Thus, a generalised multi-atlas segmentation framework

will include three steps as shown in Figure 2.12: Firstly, the atlas selection step will select
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the a subset of atlases that are most similar to the subject in order to reduce complexity and

increase robustness. Secondly, the atlas propagation step will propagate the selected atlases to

the unseen image using affine and/or non-rigid registration. Finally, the decision fusion step is

used to combine the segmentations from multiple atlases into a final segmentation of the unseen

image. If the number of atlases equals to one or the atlases are fused into an average image,

the framework can be reduced to the single atlas-based segmentation method. Most of the

work on the multi-atlas segmentation techniques focuses on the first and the final step of the

framework. In the following part we review the most commonly used approaches to multi-atlas

segmentation.

Figure 2.12 – The general framework for multi-atlas based segmentation. Here Ai denotes the ith
atlas, Li denotes the ith label, Qi denotes the transformed atlas and L′i denotes the transformed
label.

[Rohlfing et al., 2004] proposed to use registration to unseen images from a database of

individual atlas images with subsequent multi-classifier decision fusion. The multi-classifier

decision fusion strategy used in the paper is a simple majority voting with a partial volume

interpolation. The method is applied to confocal microscopy images acquired from the brains of

20 bees. The multi-atlas segmentation strategy is compared against registration to an individual

atlas image, an average shape atlas image and the most similar image from a database of



2.3. Multi-atlas and patch based segmentation 45

individual atlas images. The result suggests that the multi-atlas segmentation performs better

than the alternative approaches. [Heckemann et al., 2006] applied the above methods to the

human brain in MR images. The paper showed that multi-atlas segmentation performs at

levels of accuracy approaching those of expert human raters in terms of the Dice overlap values

obtained.

[Aljabar et al., 2009] proposed to use a subset of the most similar atlases during the atlas

selection step. The authors showed that selecting the most similar subset of atlases for each

unseen subject provides more accurate subcortical segmentations than those using a non-

selective combination of random atlas subsets or all atlases. The selection is based on an

image similarity measure between the atlas and the unseen image. In the result, the authors

demonstrated that the fusion of approximately 20 out of a total of 275 atlases produced

segmentations with near maximal accuracy.

The decision fusion step for the multi-atlas segmentation has been investigated in much

detail. Majority voting is the most used approaches in papers including [Rohlfing et al.,

2004, Heckemann et al., 2006, Aljabar et al., 2009]. Global weighted voting is proposed

by [Artaechevarria et al., 2008], where the weighting is generated by the similarity between the

transformed atlas and the unseen image. Although the image similarity does not necessarily

correlate to the registration accuracy, experimental results on images of mouse brains showed

higher accuracy of weighted voting compared to majority voting.

In global fusion strategies, the weights for the different atlases are fixed for the whole image.

However, the registration between the image and atlas might be very successful in some

regions of the image and might fail in other regions. Using global weighting, it is difficult

to accommodate partly successful registrations.

[Artaechevarria et al., 2009] proposed to use a local weighted voting strategy instead of the

global weighted voting. Instead of assigning a single weight to all voxels in the atlas, each voxel

can have a different weight. Each voxel between the atlas and the unseen image is weighted by

a similarity between the local patches. In their results, the authors showed that in general the

local weighted fusion works better than the global weighted fusion, while different similarity
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measure should be used for different sub-structures.

[Lotjonen et al., 2010] proposed to construct the final segmentation using an EM or graph cuts

based optimisation after local weighted voting. The weight is used as a-priori probability for

a subsequent EM-based image segmentation. In addition, they proposed to use the intensity

differences after intensity normalisation to speed up the registration process which is one of

the most time consuming processes during the multi-atlas propagation. The results showed a

three-fold improvement in terms of computational speed as well as improved accuracy.

In the atlas propagation step, the registration is usually constrained to ensure one-to-one

correspondences between the target image and the atlas. This restriction ensures a realistic

deformation and preserves the topology of the atlas structures in the target image. However,

this also restricts the ability of the registration ability to capture large, local variations in

terms of shape. When the registration fails for small structures, it is likely that the correct

correspondence can be found within the local neighbourhood. Unfortunately, most decision

fusion strategies mentioned above cannot deal with these residual misregistrations between the

images and the atlas.

[Coupé et al., 2011] proposed a nonlocal patch-based approach during the decision fusion step.

The proposed method achieved the labelling of each voxel individually by comparing the patch

centred at this voxel with other patches in atlases within a certain spatial neighbourhood.

Using this method, several patches from each atlas can be used during the decision fusion.

This enables a large increase in the number of sample patches and reduces the influence of

registration errors. The authors used the local weighted fusion with intensity similarity based

on intensity normalisation. The proposed path-based approach outperforms the above multi-

atlas based methods for the segmentation of small structures like the hippocampus in terms of

segmentation accuracy.
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2.4 Evaluation methods and benchmarks

Characterising the performance of image segmentation approaches has been an important

task to the development of the image segmentation approaches. Interactive drawing of the

desired segmentation by human observers has been the only acceptable approach and yet

suffers from intra-rater and inter-rater variability [Warfield et al., 2004]. The performance

of raters (human or algorithmic) generating segmentations of medical images has been difficult

to quantify because of the difficulty of obtaining or estimating a known true segmentation

for clinical data. Although physical and digital phantoms can be constructed for which ground

truth is known or readily estimated, such phantoms can not reproduce the full range of imaging

characteristics, especially the normal and pathological anatomical variability observed in clinical

data. Comparison to a collection of segmentations by raters is an attractive alternative since

it can be carried out directly on the relevant clinical imaging data [Warfield et al., 2004].

[Warfield et al., 2004] proposed an EM algorithm for simultaneous truth and performance level

estimation (STAPLE). The algorithm considers a collection of segmentations and computes

a probabilistic estimate of the true segmentation and a measure of the performance level

represented by each segmentation. The source of each segmentation in the collection may be an

appropriately trained human rater or raters, or may be an automated segmentation algorithm.

The probabilistic estimate of the true segmentation is formed by estimating an optimal

combination of the segmentations, weighting each segmentation depending upon the estimated

performance level, and incorporating a prior model for the spatial distribution of structures

being segmented as well as spatial homogeneity constraints. The probabilistic framework can

be easily adapted and used in the label fusion step of the multi-atlas segmentation approaches

[Weisenfeld and Warfield, 2011,Asman and Landman, 2012].

[Backhaus et al., 2010] developed a new open-source database and web interface for research

purposes including the evaluation of cardiac segmentation methods. This project is named

”cardiac atlas project”. [Suinesiaputra et al., 2012] estimated a ground truth consensus

segmentation using the STAPLE algorithm where patients are selected from the cardiac atlas

project. Two independent sets of expert (manual) segmentation from different sources that are
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available from the cardiac atlas project were included in this study. In addition, automated

segmentations from five groups were contributed. The total number of cases with segmentations

from all seven raters was 18. The generated ground truth segmentation could be used for future

evaluation of cardiac segmentation algorithms.

2.5 Conclusion

The focus of research in cardiac segmentation has gradually changed during the past 20 years,

from the low-level segmentation algorithms to the high-level segmentation algorithms. By

incorporating shape and appearance priors into the segmentation, high-level segmentation

algorithms achieve reasonable results for the segmentation of the LV, especially in the mid-

ventricular slices from normal volunteers. The precision of the segmentation is of the order of

the variability of manual tracing [Petitjean and Dacher, 2011]. However, each of the high-level

algorithms still has their own drawbacks.

Deformable models tend to be sensitive to local variability including noise and artifacts.

Statistical models have difficulty to adapt to images that were not included in the training

set. This is a significant problem given the large anatomical variability of the heart, especially

in the context of different cardiac diseases. Atlas-based approaches based on image registration

are one of the most flexible cardiac segmentation algorithms. However, a reliable, realistic

and accurate registration, which is the key to the successful atlas propagation, is not always

available. Its variant, multi-atlas segmentation with patch-based label fusion, is now widely

used in brain image segmentation and might be a good candidate for further research to improve

the accuracy of cardiac segmentation algorithms.

Nearly all of the existing segmentation methods have been applied and tested on normal

volunteers or a subset of cardiac pathologies. In a wide group of cardiac pathologies where the

heart shape could vary significantly, it will be more difficult to construct an appropriate training

set for statistical model based algorithms as well as to register the atlas to unseen image for

atlas-based algorithms. Furthermore, most of the automatic segmentation methods, including
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model-based and atlas-based methods, assume homogenous tissue intensities. This leads to

problems when segmenting subjects with myocardial infarction, as the infarcted myocardium

often has a heterogeneous intensity distribution in contrast to normal myocardium, which

is characterised by a more homogeneous intensity distribution. These problems are further

compounded by the fact that these heterogeneous intensity distributions are difficult to model

using prior knowledge since the position and intensity of the infarcted myocardium can vary in

an unpredictable fashion across different subjects.

In this thesis, we will focus on the challenges of extending the existing segmentation methods to

work on a wider range of pathologies using a three-step approach: Firstly, we use an automatic

object detection based on a Haar feature cascade detector to identify the LV in each MR image

[Viola and Jones, 2002]. In the second step a cardiac atlas from normal patients is registered to

each subject’s MR image using affine registration, LARM and non-rigid registration [Zhuang

et al., 2008]. LARM is selected as intermediate registration due to its ability to deal with

large shape variability. Finally, we automatically segment the LV and myocardium using a

modified atlas-based graph cut segmentation technique [Lorenzo-Valdés et al., 2004, Boykov

and Kolmogorov, 2003] to deal with the local intensity variability.
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Cardiac motion analysis

MR imaging is a highly advanced and sophisticated imaging modality for cardiac motion

tracking and analysis, capable of providing detailed 3D analysis of global and regional cardiac

function with great accuracy and reproducibility. In the past few years, numerous efforts have

been developed for cardiac motion tracking and analysis from MR image sequences. In this

chapter, we will review some of the state-of-the-art methods for cardiac motion tracking. We

will primarily focus on motion tracking methods developed for CMR image sequences, e.g. cine

and tagged MR imaging. The remainder of the chapter is organised as follows: Section 3.1

introduces some basic concepts of cardiac motion analysis. In Section 3.2 methods for cardiac

motion analysis from cine MR imaging are discussed. In Section 3.3 the main algorithms for the

recovery of cardiac motion from tagged MR imaging are presented. In Section 3.4 the evaluation

strategy and public data base are discussed. Finally, conclusions are drawn in Section 3.5.

3.1 Introduction

There are two categories of cardiac function indices as discussed in Section 1.1.5: Global and

local indices. Global indices, such as EF, SV and CO, can be used to assess the overall

cardiac performance. Local measures, such as RWM and RMSt in different regions, can provide

objective quantification of cardiac function and relate it to the location of ischemic injury. In

50
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order to extract both global and local indices, cardiac motion analysis is used.

Cine MR imaging is the standard imaging technique for measuring global function indices

[Castillo et al., 2003]. It is also well suited for measuring some important regional indices,

such as RWN due to the good visibility of the myocardial boundaries. MR tagging [Axel

et al., 2005,Rutz et al., 2008] is an alternative imaging technique to track deformations within

myocardium. Local indices such as RMSt can be derived from tagged MR images.

The main motion analysis algorithms for cine MR images are classified into three different

categories: sparse feature tracking, deformable models and dense tracking methods. Tagged

MR images, due to its unique nature of image acquisition, enables specific motion analysis

algorithms like harmonic phase tracking (HARP) [Osman et al., 2000, Ryf et al., 2002, Pan

et al., 2005, Liu and Prince, 2010] and Gabor filter banks based methods [Montillo et al.,

1996, Qian et al., 2006, Qian et al., 2008, Wang et al., 2008, Chen et al., 2010]. We will review

the state-of-the-art for motion tracking for cine MR images and tagged MR images in different

sections because there is a large difference in the nature of the imaging acquisition of these two

sequences [Wang and Amini, 2011].

3.2 Motion tracking for cine MR images

The most commonly used features for motion tracking in cine MR images are the endocardial

and epicardial contours. One strategy for motion tracking is to first track a set of sparse features

throughout the cardiac cycle and subsequently to perform dense motion field reconstruction.

For motion analysis from cine MR images, a useful constraint that can be utilised is myocardial

incompressibility [Bogen et al., 1980]. The constraint of incompressibility arises from the

knowledge that myocardial volume change is usually no more than 4% during the cardiac

cycle [Bistoquet et al., 2008]. To reconstruct a dense motion field from cine MR images, image

registration and deformable models with incompressibility constraints are often used.
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3.2.1 Sparse feature tracking

Motion tracking techniques in this category usually involve firstly segmenting the ventricular

wall followed by tracking the movement of feature points. Alternatively the feature points

can be manually identified. Tracking the motion of feature points on the ventricular wall

is often treated as an optimisation process. The correct correspondence between features

at two time points results in the lowest energy configuration of the system. After energy

minimisation the deformation vector for every feature point is calculated according to the

obtained correspondences. Most tracking methods then fit a mesh model to reproduce the

motion of the feature points in order to evaluate the cardiac function.

[Kuhl et al., 2004] proposed a semi-automatic border detection and volume computation

algorithm for both cardiac 3D US and cine MR images. In each image plane, the mitral

valve annulus or endocardial contours is outlined manually on each ED LA or SA frame.

Then, based on the manually defined points, a spatio-temporal spline model based on thin-

plate splines is initialised. The model ensures both smooth contours in the spatial domain and

continuous, smooth motion in the temporal domain. Corresponding points for the endocardium

are located in the direction perpendicular to the model’s contours. The similarity between

feature points is defined by a finite impulse response filter that highlights possible contours

and allows morphological filtering of the intensity profile perpendicular to the current contour

estimate. After that, all detected points are approximated by the spline model. Finally, the

model is cut by the mitral annulus points along the LA. The advantage of this algorithm is its

temporal smoothness and simultaneous optimisation over the temporal domain. However, it

requires manual delineation of the endocardial contours on ED frames.

[Lin and Duncan, 2004] proposed a generalised robust point matching (RPM) [Rangarajan

et al., 1997] framework to track the motion of the LV using extended free-form deformation

(EFFD). The EFFD model uses arbitrarily-shaped lattices instead of parallel-epipedical lattice

shapes employed by FFDs. The authors argued that the EFFD models provide more accurate

estimation of LV deformation compared to FFDs. The algorithm requires a rough segmentation

of the myocardial boundary in the ED frame and the points are tracked over the cardiac
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Figure 3.1 – Example of contour tracking from [Remme et al., 2005]. Short-axis tagged MR
images are shown at ED in (a) and ES in (b) with the tracked image stripe points. The larger
circles outline the epicardial and endocardial surfaces. In (c) and (d), the untagged SA images at
ED and ES are shown, respectively, with manually placed and tracked fiducial markers.

cycle. [Yan et al., 2007] proposed a new optimisation method called the boundary element

method (BEM). The most attractive feature of BEM compared to finite element method (FEM)

is that it only requires discretization of the surface rather than the volume.

[Remme et al., 2005] proposed to analyse LV motion using manually tracked, distinct

anatomical landmarks (fiducial markers) fitting with a parameter distribution model. The

method focused on fitting a FEM to the manually marked sparse features. A parameter

distribution model (PRDM) of LV deformations was obtained from a database of MR tagging

studies. The PRDM was used to filter the calculated deformations and incorporate prior

information on likely motions. The authors argued that by using the prior information from

a database of tagged MR images, the motion from untagged MR images can be accurately

reconstructed including the twisting LV deformation. A tracking example is presented in

Figure 3.1.

3.2.2 Deformable models

In the deformable modelling approach, a model is deformed to fit the imaging data using

energy minimisation or based on classical, physics-based equations of motion [McInerney and

Terzopoulos, 1996]. The particularities of how to deform models and apply constraints to the

deformable model vary with the particular application. The force to drive the deformation

of the model in cine MR images usually originates from the endo- and epicardial contours.
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Because of the sparsity of the feature information, vector field interpolation is often required

to obtain a dense motion field for every point within the myocardial region. The advantages of

this type of method are the easy construction of statistical models of cardiac physiology and

the determination of classical measures, like EF, RWN and RWM, without additional steps. It

is important to note that these methods assume a delineated myocardial contour as input by

either manual interaction or automatic segmentation.

[Veress et al., 2005] proposed a deformable registration technique, called hyperelastic warping,

to determine LV strains from mid-diastole to end-diastole using multiple SA cine MR images.

A FE model is deformed by the difference in image intensities as a body force and a hyperelastic

strain energy along the fiber angles based on continuum mechanics as the regularisation force.

The boundaries of the LV were manually segmented for both epicardium and endocardium. The

myocardium was represented as diffeomorphic1, hyperelastic material with fiber angles varying

from −90◦ at the epicardial surface to 90◦ at the endocardial surface.

One widely used constraint for cardiac motion analysis for cine MR images is myocardial

incompressibility. [Bistoquet et al., 2008] proposed an incompressible deformable model to

recover the motion of the biventricular from cine MR images data. The deformation is modelled

by a transformation between the reference frame and the current frame. The driving force is

calculated in a divergence-free space. Incompressibility is enforced by a divergence-free matrix-

valued radial basis function. The function is used to project the parameter space into the

space of incompressible deformations. The displacement is calculated at the middle surface

nodes between the endo- and epicardial contours. The approach requires the myocardium to

be segmented in the initial frame and the motion of the myocardial contour and the middle

points are tracked throughout the cardiac cycle.

1 A diffeomorphic transformation is one to one, differentiable and invertible transformation [Christensen
et al., 1996]
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3.2.3 Dense tracking methods

Dense or registration-based motion methods are popular solutions to cardiac motion tracking.

Cardiac motion tracking can be viewed as a 4D registration problem [Makela et al., 2002].

In general, image registration is a process that aims to find the optimal transformation that

transforms a source image to a reference or target image by maximising a similarity measure

between the images. The advantages of casting the motion tracking problem as a registration

problem are: Firstly, no preprocessing of the image sequence or segmentation is required.

Secondly, registration-based methods are usually fully automatic without the need for user

intervention. The potential disadvantage is that image registration techniques can get trapped

in local minima and thus are prone to potential misalignment due to image noise and artifacts.

However, these are common problems also for other techniques such deformable models and

sparse feature tracking. Finally, the computational time for dense motion tracking is usually

relatively long.

[Perperidis et al., 2005] proposed the use of a registration technique employing B-spline based

FFDs for the spatio-temporal alignment of CMR image sequences. It extends the FFD-based

registration approach [Rueckert et al., 1999] to 4D B-spline which is separated into spatial and

temporal components. Two different optimisation strategies have been adopted. One strategy is

to perform a combined optimisation with spatial and temporal components. The other strategy

is to optimise each transformation component separately. The similarity is measured between

the image intensities in different phases of the cardiac cycle. The results demonstrated that

a significant improvement in the alignment of the image sequences is achieved by using the

deformable spatio-temporal transformation model.

[Sundar et al., 2009] used a 4D image registration method to estimate cardiac motion. This

framework considers the registration of the first frame to all other frames simultaneously. This

facilitates the spatio-temporally consistent motion estimation as opposed to other registration-

based algorithms which estimate the motion by sequentially registering one frame to another.

An attribute vector for every point in the image is used to convey information about intensity,

boundary, and geometric moment invariants. Hierarchical registration of image sequences is
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then performed by using the most distinctive points for initial registration of the sequences and

gradually adding less-distinctive points to refine the registration. The attribute vectors reduce

the complexity of the registration while retaining a relatively high degree of accuracy.

Figure 3.2 – Overview of the TDFFD framework: Continuous spatiotemporal trajectories are
computed from the 3D+t velocity field, parameterised by a 3D+t grid of control points with B-
spline basis function. The image similarity is computed from image intensities for the current set
of trajectories. Quasi-incompressibility is added as a biophysical constraint for regularising the
velocity field. [De Craene et al., 2012]

Myocardial incompressibility can be used in registration methods as well as in the deformable

methods. [De Craene et al., 2012] proposed a TDFFD to extract motion and strain from a

sequence of 3D US images. An overview of the framework is presented in Figure 3.2 The

energy functional consists of two terms: the image similarity and a regularisation term. The

image similarity metric is defined as the sum of squared differences between the intensities of

each frame and a reference frame. Any frame in the sequence can be chosen as reference frame.

The regularisation term is based on the incompressibility of myocardial tissue. The originality

of the approach resides in enforcing time consistency by representing the 4D velocity field as the

sum of continuous spatiotemporal B-spline basis function. The spatio-temporal displacement

field is recovered through forward integration of the non-stationary velocity field. The TDFFD

approach proved to be more robust to a reduced temporal resolution compared to conventional

registration approaches.

[Metz et al., 2011] proposed a generalised framework of temporal FFDs to extract motion
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from dynamic images. The method is based on a 3D (2D + time) or 4D (3D + time) FFDs

model. Registration is performed directly on the dynamic images. This avoids a bias towards

a specifically chosen reference time point. The novelty of this approach is that, optionally,

cyclic motion constraints can be imposed. When the cyclic motion constraint is enforced ,the

motion will be periodic in time. The similarity metric used is the variance of intensity over time

and a constrained optimisation using a stochastic gradient descent method with adaptive step

size estimation is also applyed. The method has been quantitatively compared with existing

registration techniques on synthetic data, 3D + t CT of the lungs and 3D + t computed

tomography angiography (CTA) of the heart.

3.3 Motion tracking for tagged MR images

Conventional cine MR images show clearly the motion of the endo- and epicardial surfaces.

However, the motion between the endo- and epicardial surfaces is more difficult to discern,

largely due to the lack if discernible features inside the myocardium. Tagged MR images

provides the means to track the myocardial motion between the endo- and epicardial boundaries.

In recent times, MR tagging has seen increased applications in the clinic and is becoming

the gold standard for quantifying regional strain function. Although MR tagging provides a

compelling visualisation of myocardial motion, fast and accurate image analysis methods are

still required before tagged MR images can be used for quantitative analysis [Wang and Amini,

2011]. Since the introduction of tagged MR images, many methods have been developed to

detect and track the tags. In the rest of this section, different image analysis methods using

tagged MR images are reviewed and discussed.

Cardiac motion analysis methods using tagged MR images can be divided into two different

categories: The first category is feature-based motion tracking method including sparse feature

tracking and deformable models. The features are often sparse tag lines, geometrically salient

landmarks and tag line intersections. The accuracy of feature-based image analysis methods

using tagged MR images highly depends on the quality of the image, the consistency of the
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tagged MR images and the spacing of the tag lines. In addition, an extra step is needed to

interpolate the sparse tracking result into a dense deformation field. The second category aims

to obtain the deformation field directly from tagged MR images, without extracting features

from the tagged MR images [Wang and Amini, 2011]. Two different types of methods fall in

this category: frequency-based methods, e.g. HARP and Gabor filter methods and registration-

based methods.

3.3.1 Harmonic phase tracking

HARP [Osman et al., 2000] is a phase-based technique for rapid analysis of tagged CMR

images. Rather than working on tagged images directly, HARP uses phase information from

the frequency domain. The principle of HARP tracking is that the harmonic phase of a material

point remains constant as it moves during the cardiac cycle. HARP analysis operates directly

in the k-space representation of the tagged MR images. Figure 3.3 shows a horizontally tagged

MR image [Figure 3.3(a)] and its Fourier transform [Figure 3.3(b)]. One DC peak at the centre

of Fourier space and another two harmonic spectral peaks can be seen. A bandpass filter,

shown here as a circle, is applied to isolate a spectral peak. The inverse Fourier transform of

this isolated region produces a complex harmonic image. The HARP magnitude image reflects

the geometrical change of the heart and the image intensity change caused by fading, while the

HARP angular image reflects the motion of the myocardium in the direction orthogonal to the

tags. The main advantage of HARP is that it is fast and automatic with no need for extracting

tag lines in a pre-processing step.

One problem with HARP motion tracking is that it can fail in the presence of a large amount of

motion. Another limitation of HARP is that it can only estimate the in-plane motion, typically

using 2D SA tagged MR images [Wang and Amini, 2011]. To address this problem, several

solutions to extend the HARP motion tracking to 3D have been proposed. [Ryf et al., 2002]

extended HARP from 2D to 3D by using a true 3D tagging technique followed by a conventional

fast 3D gradient echo imaging sequence. The phase invariant property of material points in

three directions is utilised after extracting spectral peaks in 3D Fourier space. The true 3D
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Figure 3.3 – Example of HARP motion tracking: (a) An MR images with horizontal tags. (b)
The magnitude of the Fourier transform of the tagged MR image. The circle indicates a bandpass
filter which is applied to extract the spectral peak. (c) HARP magnitude image. (d) HARP
angular image. [Pan et al., 2005]

motion can be captured but the scan time is quite long and demands a sophisticated breath-hold

technique. Thus, this method is not very practical in typical clinical environment. [Pan et al.,

2005] extended the traditional HARP method for 3D cardiac motion tracking by combining

information from two orthogonal image planes of tagged MR images: A stack of SA images

with a tagging grid as well as LA images with one horizontal set of tags is used. Similar to

2D HARP, the condition of phase invariance of material points is used to track the motion.

A material mesh model is used for interpolation from sparse phase information from the two

image planes.

To accurately estimate large motion using HARP, [Liu and Prince, 2010] proposed a refinement

method based on the computation of the shortest path. The method uses a graph representation

of the image and seeks an optimal tracking from a specified seed to each point in the image

by solving a single source shortest path problem. In addition to this shortest path refinement,

tracking in the presence of through-plane motion is improved by introducing synthetic tags at

the reference time. Experimental results show that the proposed method can track the cardiac

motion more robustly compared to the original HARP method.

[Arts et al., 2010] proposed to estimate the motion using a sine wave-modelling in the frequency

domain directly. The method is based on simultaneous detection of the local spatial phase shift

and spatial frequency in bandpass-filtered images. Although tags deteriorate with time while

anatomical features reappear in the images, the proposed method appears relatively robust for

these changes than the HARP method. This method and the HARP method both work in
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2-D, use bandpass filtering, and need local phase and frequency information to extract local

displacement. The difference is that for the sine method, the local gradient of the phase is

determined directly via frequency analysis. Moreover, this method uses a measure for the

quality of model fit, which is used to suppress the influence of unreliable parts in the signal.

3.3.2 Gabor filter banks

Gabor filters are a family of band-pass filters which consist of a Gaussian multiplied by a

complex sinusoid in the spatial domain, or equivalently, a shifted Gaussian in the frequency

domain [Wang and Amini, 2011]. By choosing the appropriate parameters the magnitude

response of the Gabor filter can be used to remove tags in the myocardium and the phase

response can be used to track tags. A Gabor filter bank is a set of 2D Gabor filters with

tunable parameters that represent the variable spacing and orientation of tag lines. Utilising a

phase-based optical flow, the phase response of the Gabor filter bank for a material point can

be assumed to be constant during the deformation [Chen et al., 2010].

[Montillo et al., 1996] extracted deformation information in a 2D simulated model by finding the

optimal parameters that maximise the Gabor filter response. The method accurately extracts

the tag line spacing, orientation, displacement and effective contrast. The authors also proposed

a frequency parameter interpolation method to recover all tag information at a finer resolution

than those of the filter bank parameters. [Qian et al., 2006] extended the 2D Gabor filter bank

method to 3D in order to extract and track deformed tag surfaces instead of tag lines. Here, a

3D Gabor filter bank based on the geometric characteristics of the tagging sheets is designed.

The whole 3D image dataset is convolved with each Gabor filter in the filter bank in the Fourier

domain. A set of deformable meshes is then fitted to the extracted tagging sheets and tracked

over time.

Based on Gabor filter banks and deformable models, [Chen et al., 2010] proposed a three step

process for 3D cardiac motion tracking: First, the method extracts the tag intersections based

on local phase analysis using Gabor filter bank. Then, RPM is used to track the intersection

movement. The RPM is performed by finding a transformation and a one-to-one correspondence
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between grid tag intersections in different image frames. By using RPM, the influence of

through-plane motion and relatively large deformation and/or relatively small tag spacing can

be minimised. Finally, a meshless deformable modelling technique [Wang et al., 2008] is used

to generate a dense displacement field from the sparse feature tracking result.

3.3.3 Sparse feature tracking

The intersection points of orthogonal tagging planes encode a unique 3D position in the

myocardium. The intersection points can be used as sparse features that move along with

the deforming tissue during the cardiac cycle. Due to the 3D motion of the myocardial tissue,

the intersections in the reference frame may move in and out of the imaging plane.

[Kerwin and Prince, 1998] presented a method for generating accurate motion estimates over a

sparse set of material points using standard tagged MR images. Each tracked point is located

at the intersection of three tag surfaces. Each of tag surfaces is estimated using a thin-plate

spline. Tag surfaces are used to help to estimate the out of imaging plane deformation. The

intersections in each frame are determined by an iterative alternating projection algorithm.

The alternating projection algorithm is used to reduce the complexity since each thin-spline

equation may involve hundreds of logarithmic terms which are expensive to compute. Only the

intersections within the LV boundaries are considered.

[Amini et al., 2001] proposed an efficient technique for the measurement of 3D motion of

material points of the human heart from tagged MR images. The technique reconstructs 3-D

B-spline surface representation of the tag planes. The parametric representation of the tag

surfaces leads to an easy and robust way to compute the position of 3D intersections of each

frame. The developed methods allow the extraction of non-rigid deformation of the intersections

as a function of time by minimising the sum of distances between any two reconstructed tag

surfaces.

Instead of extracting MR beads (the intersection of tag planes) by reconstructing tag planes,

[Sampath and Prince, 2007] proposed an automatic 3D intersection tracking method. The
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3D motion of the tag intersections is obtained by combining two 2D motion estimates that

are computed on both SA and LA image planes using 2D HARP tracking techniques. This

technique is also referred to as slice-following. It is noticeable that in extreme cases the out

of plane motion between two consequent frames can invalidate the 2D HARP tracking. The

slice-following technique may fail in this case. A validation of 2D in-plane motion tracking

using this acquisition sequence on a moving phantom is also presented.

3.3.4 Deformable models

In tagged MR images, the force to drive the deformable model can originate from tag

intersections, tag lines, or tag surfaces. However, in all cases an interpolation is required

to obtain a dense motion field for the model.

[Park et al., 1996, Young and Axel, 1992, Young, 1999] proposed a volumetric deformable

model with parameter functions for deformation analysis. These methods used 3D FEMs

and converted the FEM nodal deformations into parameter functions. The method uses tag

intersection points in the image plane (three orthogonal sets) and boundary points to estimate

the volumetric deformation of the LV. [Haber et al., 2000] modified this framework to estimate

the motion and deformation of both LV and RV free wall and septum. The process is illustrated

in Figure 3.4. [Hu et al., 2003] present a statistical model to estimate in-vivo material properties

as well as strain and stress distributions in both ventricles using the displacements calculated

from tagged MR images data based on the result of [Haber et al., 2000].

[Amini et al., 1998] proposed an efficient thin-plate spline warping method. By deforming

an area in the plane, two embedded snake grids from two tagged frames are brought into

registration and finally interpolated into a dense displacement vector field. Here the assumption

is made that the motion of the LV is 2D which is roughly the case towards the apical end of the

heart. However, this assumption strongly limits the method’s ability to model the 3D motion

towards the base of the heart. [Wang et al., 2001] proposed to use a subspace approximation

technique to accomplish the same task. The authors formulate the displacement estimation

as a variational problem and then project the solution into the spline subspace. A B-spline
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Figure 3.4 – Example of motion tracking using deformable models: (a) 1st row: LV with image
(light) and tag (dark) planes. 2nd row: 2D images with example of tag motion from initial (dark
lines) to final (dashed lines) phases. (b) Initial mesh at end-diastole overlaid on the tagged MR
images. Lighter coloured squires between the myocardial contours are marked active. The rest
of the contours are in passive mode. (c) Final mesh at end-systole overlaid on the tagged MR
images. [Haber et al., 2000]

subspace is chosen due to the fact that efficient numerical methods can be derived. The results

suggest that the method significantly improves the computational time compared to the original

approach [Amini et al., 1998].

A 4D B-spline cubic deformable models was introduced for analysis of cardiac motion in [Huang

et al., 1999]. Here, model fitting is posed as an energy minimisation problem. The external

energy encodes the distance between isoparametric planes of the model and MR images tag

planes. No internal energy is enforced. The model is based on a 4D grid of control points.

Smoothness of the final motion is supported by the fact that each control point contributes

to a few frames in time and a few tag planes in space. The energy minimisation problem is

numerically solved by an adaptive conjugate gradient descent algorithm. First, all the tag lines

for all the slices and all the frames are extracted and grouped by each tag plane. Second, 4D

Chamfer distance potentials is computed. The Chamfer distance is an approximation of the

Euclidean distance from each model point to the nearest target point. Finally, the 4D model is

deformed using the potential field. The output of the fitting process is a time-varying B-spline

model whose knot planes reconstruct the tag surfaces in the three orthogonal directions in 4D.

After model fitting, a 3D displacement field can be obtained by subtracting the 3D B-spline

model at the initial time frame from any other time frame.

[Tustison et al., 2003] improved the 4D B-spline model framework in by proposing the following
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changes: First, an internal energy function is used which is defined by the model’s first and

second-order partial derivatives summed over 4D space. Second, additional control points can

be inserted and used for more localised interpolation.

[Deng and Denney Jr, 2005] proposed a 3D B-spline model based on a cylindrical coordinate

system. This cylindrical B-spline model takes the LV myocardial shape into account and ensures

smoothness in the circumferential, radial, and longitudinal directions. It has been shown that

a cylindrical and prolate-spheroidal B-spline parametrisation improves the accuracy of the

computed circumferential strains.

More recently, [Wang et al., 2008] proposed a meshless deformable model for 3D motion

estimation and analysis of the LV based on tagged MR images. The meshless model considers

the object as a set of discrete points. The external forces are computed at tag intersections

which are extracted from tagged MR images using Gabor filters. Internal forces are computed

from the local strain energy between neighbouring points using a moving least square method.

In particular, the model performs well even when the control points (tag intersections) are

relatively sparse. The meshless model has been validated on a numerical phantom, as well as in

in-vivo data of healthy subjects and patients. The experimental results show that the meshless

deformable model can fully recover the myocardial motion and strain in 3D.

3.3.5 Registration methods

Optical flow [Horn and Schunck, 1981] and free-form deformations [Rueckert et al., 1999] are

widely used image registration methods to extract motion from tagged MR images [Wang and

Amini, 2011]. The fundamental assumption of optical flow is that image intensity remains

constant for a material point projected to image space. The assumption is not satisfied in

tagged MR images due to the fading of tags. Tag fading describes the effect that due to the

relaxation of the magnetisation of the spins throughout the cardiac cycle, the intensity of a

material point fades from frame to frame and thus changes. Different ways are proposed to

deal with the variable intensity in tagged MR images.
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[Prince and McVeigh, 1992] proposed a variable brightness optical flow method to overcome

the intensity variation in tagged MR images by introducing a term which accounts for the

variable brightness of the tags using knowledge about the MR acquisition parameters and initial

magnetisation. [Dougherty et al., 1999] utilised a Laplacian filter to compensate for the intensity

and contrast loss in myocardial tags. [Florack et al., 2007] applied a multi-scale optical flow

framework using HARP images to avoid the variable intensity problem. The harmonic phase of

a material point remains constant as it moves during the cardiac cycle. As a result the intensity

or phase should not change. A spatio-temporal Gaussian filter is applied as a pre-processing

step. The pre-processing step helps to produce a stable and smoothly varying motion field of

the LV myocardial wall.

Non-rigid registration using FFD was proposed by [Rueckert et al., 1999]. In this approach,

the global motion is modelled by an affine transformation, while local motion is described by

a FFD based on multilevel B-splines. A hierarchical registration is achieved by optimising a

cost function measuring the similarity between two images as well as the smoothness of the

deformation required to align the images. The cost function can be information theory based

mutual information (MI) [Collignon et al., 1995,Viola and Wells III, 1997] or normalized mutual

information (NMI) [Studholme et al., 1999].

[Chandrashekara et al., 2004] made use of the non-rigid registration algorithm and applied it

to the analysis of myocardial deformations. In this approach, the first frame is regarded as the

reference frame and all other frame in the cardiac cycle are registered to the reference frame.

In order to obtain complete a 3D motion of the myocardium, the cost function is modified to

represent the normalised sum of the NMI between the registered SA and LA images. NMI is

chosen in order to reduce the influence of variable intensity over time. The main advantage

of this method is that tag localisation and deformation field reconstruction are performed

simultaneously within the optimisation. Another advantage is that no assumptions about the

nature of the tag pattern are made so that the proposed method is potentially applicable to

other image modalities. In other words, the information of other image modalities can be easily

incorporated.
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3.4 Evaluation methods and benchmarks

Evaluating the performance of cardiac motion tracking algorithms is a more difficult task then

the characterising the performance of image segmentation approaches. The ground truth is more

difficult to obtain and extremely time consuming. One solution is the interactive drawing of the

desired segmentation at different time points by human observers. Apart from the problems

mentioned in Section 2.4, this solution suffers from the fact the the motion within each segment

can not be assessed. The development of evaluation methods and publicly available benchmarks

are urgently needed.

[Tobon-Gomez et al., 2012] presented the first attempt to build a public available benchmark

for cardiac motion tracking. The database includes MR and 3D US datasets from a dynamic

phantom and 15 datasets from healthy volunteers. The MR acquisition included cine steady

state free precession (SSFP), whole-heart TFE, and 3D tagged MR sequences. From the SSFP

images, the ED anatomy was extracted using a deformable model of the LV. From the LV

model, 12 landmarks were generated (4 walls at 3 ventricular levels). These landmarks were

manually tracked in the 3D tagged MR data over the whole cardiac cycle by two observers.

The landmarks can provide extra information for the assessment of cardiac motion tracking

algorithms in addition to the segmentations from different time points.

3.5 Conclusion

Cardiac function analysis has focused primarily on the myocardium of the LV. This is due to

the fact that LV controls systemic perfusion and is responsible for the majority of the cardiac

function. The analysis of the RV is more difficult due to the fact that its wall is thinner.

Moreover it has a more complex geometry and motion pattern.

In this chapter, we have reviewed cardiac motion analysis techniques for CMR images including

MR images tagging and cine MR images. Several cardiac motion analysis techniques are

restricted to tagged MR images such as HARP and Gabor filter banks. Sparse feature extraction
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and tracking, deformable models and registration methods can be applied to both cine MR

images and tagged MR images. Cine MR images provides very clear information about the

anatomy of the heart which is useful for calculating global indices, but has limited ability to

model the motion within the myocardium. Tagged MR images, on the other hand, contain

more detailed information about the RWM.

An interesting avenue for future work is the combination of information from cine MR images

and tagged MR images. It is not only desirable to obtain the cardiac motion pattern in the

radial, longitudinal and circumferential directions simultaneously, but also highly feasible if

deformable model or registration frameworks are used since these do not impose any assumption

about the imaging modality itself. The research focus of this thesis will focus on the extraction

of cardiac motion from both modalities simultaneously.



Chapter 4

Automatic segmentation of different

pathologies from cardiac MR images

4.1 Introduction

The work in this chapter is based on the following published papers:

• Wenzhe Shi, Xiahai Zhuang, Robin Wolz, Duckett Simon, KaiPin Tung, Haiyan Wang,

Sebastien Ourselin, Philip Edwards, Reza Razavi, and Daniel Rueckert. (2011). A multi-

image graph cut approach for cardiac image segmentation and uncertainty estimation.

Statistical Atlases and Computational Models of the Heart: Imaging and Modelling

Challenges (STACOM), pages 178-187.

• Wenzhe Shi, Xiahai Zhuang, Haiyan Wang, Duckett Simon, Declan Oregan, Sebastien

Ourselin, Eddie Edwards, Daniel Rueckert. (2011). Automatic segmentation from

cardiac cine MRI with different pathologies using registration and multiple component

EM estimation. Functional Imaging and Modeling of the Heart (FIMH), pages 163-170.

• Xiahai Zhuang, Wenzhe Shi, S Duckett, Haiyan Wang, Reza Razavi, Daniel Rueckert,

Sebastien Ourselin. (2011). A Framework Combining Multi-Sequence MRI for Fully

68
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Automated Quantitative Analysis of Cardiac Global And Regional Functions. Functional

Imaging and Modeling of the Heart (FIMH), pages 367-374.

Accurate estimation of indices of cardiac function, such as LVM, EDV, EF, RWM and RWN, is

important in routine clinical applications as well as in cardiovascular research aiming at better

understanding the function of the heart. In order to compute these measurements of cardiac

function, one of the essential steps is to identify the ventricles and the myocardium and to

delineate their boundaries. Manual segmentation tends to lead to significant inter- and intra-

observer variations and is extremely time-consuming. It is hence highly desirable to develop an

automated method to obtain a reproducible and unbiased result.

As mentioned in the introduction, MR imaging [Lauterbur, 1973] is a medical imaging technique

most commonly to visualise detailed internal anatomy and function of the body. In standard

clinical practice, the most commonly available MR images of the heart are multiple stacks of

SA and LA MR images. These images are typically acquired as cine sequences showing the

heart throughout the entire cardiac cycle. Due to the anisotropic resolution of the images (high

in-plane resolution but low out-of-plane resolution) and the fact that different slices of the

stack are acquired during different breath-holds, the automated segmentation of these images

is difficult. On the other hand, 3D TFE MR (3D MR for short) imaging is now becoming

clinically feasible [Uribe et al., 2007]. These images have high spatial resolution and are free

from inter-slice respiratory motion. However, the images have a lower signal-to-noise-ratio

and lack of contrast compared to SA and LA MR images. Therefore, combining 3D and cine

MR imaging data has the potential to provide better accuracy and robustness for automated

segmentation.

4.1.1 Limitations of current cardiac image segmentation approaches

Deformable model-based segmentation [Huang et al., 2010,Pluempitiwiriyawej et al., 2005,Kaus

et al., 2004, Rouchdy et al., 2007] achieves automatic delineation of the object of interest by

deforming the surface of a pre-constructed model towards the detected boundaries, while at



70 Chapter 4. Automatic segmentation of different pathologies from cardiac MR images

the same time constraining the model to maintain a reasonable shape. What constitutes a

reasonable shape is typically encoded as a-priori knowledge of the model. The detection of

candidate boundaries in these methods is usually confined to a local region around the model

surface. Therefore, constructing an appropriate a-priori model, whose shape variability can

adequately capture the geometry of the heart in unseen images, is crucial for segmentation

techniques in this category.

An alternative technique for segmentation is to propagate a pre-constructed atlas to the unseen

images using image registration [Lorenzo-Valdés et al., 2004,Zhuang et al., 2008,Zhuang et al.,

2010]. By using advanced image registration techniques such as LARM [Zhuang et al., 2010],

this segmentation approach is able to deal with large shape variations of the heart. However, the

segmentation accuracy reported using LARM is still limited, in particular for the segmentation

of the epicardium [Zhuang et al., 2010]. This problem becomes particularly evident when the

intensities in the myocardium exhibit locally varying contrast, e.g. due to infarction.

Voxel-based segmentation identifies differences between the intensity distribution of different

tissues [Zhang et al., 2001,Kedenburg et al., 2006,Boykov and Kolmogorov, 2003, Jolly, 2006].

In these approaches, each voxel is assigned a classification label by modelling the intensity

distribution of each tissue. One common model using the EM framework assumes that the

intensity of a tissue class has a Gaussian distribution defined by the intensity mean and standard

deviation. In this context the EM framework is used to maximise the likelihood of labelling

parameters given the current estimation. The method is able to achieve sub-voxel accuracy but

requires a good initialisation. However, the lack of geometric information makes it difficult to

achieve such a good initialisation due to the large shape variation of the heart within a given

population of subjects.

Most of the automatic segmentation methods, including model-based and atlas-based methods,

assume homogenous tissue intensities. This leads to problems when segmenting images

from patients with myocardial infarction: Infarcted myocardium often has a heterogeneous

intensity distribution in contrast to normal myocardium which is characterised by a more

homogeneous intensity distribution. These problems are further compounded by the fact that
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these heterogeneous intensity distributions are difficult to model using prior knowledge since

the position and intensity of infarcted myocardium varies across different subjects.

Atlas propagation is widely used either for the initialisation for cardiac segmentation [Lorenzo-

Valdés et al., 2004] or as the primary segmentation method [Zhuang et al., 2010]. An important

but not yet fully explored aspect of such image segmentation is: How can we quantify

and visualise the segmentation uncertainty? This uncertainty can be further divided into

uncertainty arising from the registration [Risholm et al., 2010, Kybic, 2009] and uncertainty

about the final segmentation. No matter how robust a segmentation technique is, it is important

to have the ability to alert the user if the uncertainty of the segmentation is high. High

uncertainty can either be a sign of an unreliable segmentation result or of pathologies in the

cardiac anatomy.

4.1.2 Overview and contributions

In this chapter we propose an integrated framework (Figure 4.1) to deal with the challenges

described above. We automatically segment the LV and myocardium simultaneously from a

static high-resolution 3D MR images at ED phase as well as multiple stacks of SA and LA

cine MR images. The proposed framework includes a Haar feature-based cascade classifier for

the detection of the heart, image registration for propagating prior information in from of a

probabilistic atlas built a group of healthy subjects, and a MCEM estimation and multi-image

graph-cuts based method for segmentation refinement. Before image segmentation we transform

all images into a common spatial and temporal coordinate system and correct the inter- and

intra-sequence misalignments [Chandler et al., 2006]. We develop a registration scheme that

propagates a probabilistic atlas to the subject’s coordinate system. Using Gaussian mixture

modelling in the EM estimation has been proposed by [Ashburner and Friston, 2005] to cope

with partial volume voxels which exist at the interface between different tissue classes. We

extend this approach by using a spatial weighting to emphasise where the components cluster

and choose the number of Gaussian models explicitly from the number of potential components

(for example myocardium consist of normal and infarcted myocardium and background consist
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of blood tissue and air). The segmentation is then refined using a multi-image graph-cuts

algorithm.

Figure 4.1 – Overall workflow of the segmentation framework.

We also explore the potential of registration and segmentation uncertainty in improving the

robustness: If and only if the uncertainty of the segmentation is high, the system will ask the

user to input additional landmarks to help better initialise the atlas-to-subject registration.

The landmarks include the apex, the centre of mitral valve, the centre of left ventricle and the

two right ventricle insertion points. The next sections describe the segmentation framework

in more detail; Section 4.3 introduces the idea of using uncertainty in the analysis. Finally,

Section 4.4 illustrates the segmentation results from 32 patients while Section 4.5 summarises

and concludes this chapter.

4.2 Myocardium segmentation from multiple image se-

quences

SA and LA images have high temporal resolution revealing dynamic information about the

heart. By contrast, 3D MR images acquired within a single breath-hold provide a static image

of the heart with high spatial resolution in all three directions. Therefore, we propose to use

all three types of MR images within a unified segmentation framework that employs a two-step
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segmentation technique using registration- and intensity-based segmentation.

4.2.1 Detection of the LV using a cascade classifier

The location of the heart in MR images is highly variable as a result of the operator-defined

imaging planes and the variable anatomy across different subjects. To automatically identify

the position and orientation of the cardiac anatomy, we have adopted and refined the object

detection approach proposed by Viola and Jones [Viola and Jones, 2002]. The basic idea of

this approach is to train a Haar-feature based cascade classifier that is capable of detecting

anatomical structures in medical images [Pavani et al., 2009,Zheng et al., 2007].

Figure 4.2 – Positive (green) and negative (red) examples from the training set for the cardiac
detector.

We adapted this algorithm to detect cardiac chambers and used a training set consisting of

25 healthy cases. These 25 cases are not used in the evaluation of the segmentation in section

4.4. To train the classifier, we manually identified a bounding box around the location of the

heart in the SA MR images. From these images, positive examples for classifier are generated

from every slice, excluding the basal and apical slices. Negative examples were generated by

randomly sampling the images in such a way that each example either contains no cardiac

anatomy or only parts of the cardiac anatomy. An illustration of the positive and negative

examples are shown in Figure 4.2.



74 Chapter 4. Automatic segmentation of different pathologies from cardiac MR images

To improve the robustness of object detection we have modified the approach for the detection

of the LV in cardiac MR images in three ways: (1) In a pre-processing step, image intensities

are classified into air, soft tissue or blood using a Gaussian mixture model. The classifier is

then only applied to those voxels labelled as blood. (2) We test the classifier in 2D for every

slice; however, we exclude the apical and basal slices from hypothesis testing. (3) If multiple

positive matches are returned across slices, they are fused into an average hypothesis using

classifier fusion.

We have tested the proposed detector on 100 subjects including 40 healthy volunteers and

60 patients using cross validation. The detection rate and false alarm rate of our proposed

approach are 96% and 4% while for the original approach [Viola and Jones, 2002] the rates are

83% and 25%. Some examples from the output of the cardiac detector are shown in Figure 4.3.

(a) (b) (c) (d)

Figure 4.3 – Some examples of the results from the cardiac detector.

4.2.2 Spatio-temporal registration

The images acquired for each patient consist of stacks of SA and LA images (acquired as

cine images) as well as a high-resolution, 3D anatomical volume acquired at end-systole. The

LA image stacks consist of four (4CH), three (3CH) and two chambers (2CH) views. It is

noticeable that the SA and LA images were acquired during a separate breath-hold for each

slice while the 3D anatomical image was acquired within a single breath-hold. Due to potential

differences in the position of the heart (e.g. due to respiration) there is usually some spatial

misalignment between the images (inter-sequence misalignment) as well as between individual
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slices of the SA and LA images (intra-sequence misalignment). In addition, there is often

temporal misalignment between the 3D anatomical image and the SA and LA cine images.

In order to use multiple images simultaneously, these misalignments must be corrected. The 3D

anatomical volume provides good spatial resolution and can thus serve as the target for accurate

slice-to-volume registration [Chandler et al., 2006]. In our approach we first register all available

LA and SA image slices to the 3D image using a rigid temporal registration using NMI as a

similarity measure to identify matching frames, followed by a spatial 3D rigid registration using

the same similarity measure. The resulting spatio-temporal (4D) transformation corrects the

inter-sequence misalignment. The intra-sequence shifts between SA slices are corrected by

registering SA slices to the 3D image using multiple in-plane 2D translations. The similarity

measure is a combination of the similarity between the SA slice and the 3D image and the

similarity between the neighbouring SA slices. After intra-sequence slice shifts are corrected,

all images are transformed to the same spatio-temporal coordinate system, in this case, the

coordinate system of the 3D anatomical MR image.

4.2.3 Initial atlas-based segmentation of the heart

We constructed the probabilistic atlas as described in [Lorenzo-Valdés et al., 2004]. The

probabilistic atlas has been constructed from 25 healthy subjects and is used as a-priori

information for the EM algorithm. A reference image is selected from the 25 healthy subjects

and all other subjects are mapped into this reference space using affine registration followed

by a coarse non-rigid registration. The intensities are then averaged over all subjects in the

reference space. In addition the labels are fused into a probabilistic map to produce a spatial

a-priori map for each label. An example of the constructed probabilistic atlas is illustrated in

Figure 4.4.

The segmentation using atlas propagation heavily relies on the result of the atlas-to-image

registration. The main difficulty for the registration of an atlas to cardiac image is to localise

the different parts of the heart. A global affine registration is usually not sufficient for accurate
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registration. Instead, a local, non-rigid registration is often used. However, the local registration

is relatively sensitive to the initialisation, i.e. the result of the global affine registration.

Once a region of interest containing the cardiac anatomy has been located via the object

detection approach proposed in Section 4.2.1, we use image registration to propagate an atlas

to the unseen images. The registration of an atlas to an unseen image yields an estimate of the

transformation required to propagate the labels from the atlas to the unseen images.

In [Zhuang et al., 2008, Zhuang et al., 2010] the authors proposed LARM to address the

large local shape variability of cardiac anatomy commonly seen across large populations with

pathologies. LARM is integrated into the registration process in our proposed framework as

an intermediate registration step between a global affine registration and a local non-rigid

registration. Compared to traditional registration schemes, LARM is capable of providing a

good initial alignment between the images of patients with pathologies and the atlas constructed

from normal subjects.

In LARM, the transformation between images is defined by the following equation 4.1:

T(x) =


Ti(x) if x ∈ Vi

∑i=n
i=1 Wi(x)Ti(x) otherwise

(4.1)

Here x denotes the voxel, Ti(x) is region Vi’s estimated affine transformation in region Vi

and Wi is the distance between x and Vi. In our case, Vi are respectively LV cavity, LV

myocardium and RV. In order to avoid overlap between two local affine regions, the Jacobian

(see Appendix, eq. (B.1)) of the transformation at a voxel is enforced to be larger than 0.5

during the registration. We extend the above method to multi-image atlas propagation using

a combined NMI similarity measure which is defined by the following equation 4.2:

S =

∑n
i=1 |Ii|NMI(Ii, Iatlas,T)∑n

i=1 |Ii|
(4.2)

Here Iatlas denotes the atlas image, Ii denotes the ith image and |Ii| denotes the number of
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voxels in the image.

4.2.4 Multi-component EM estimation

(a) (b) (c) (d)

Figure 4.4 – Example of the constructed probabilistic atlas: (a) the average intensity atlas
(b) spatial probability atlas for LV (c) spatial probability atlas for myocardium and (d) spatial
probability atlas for RV.

To enable voxel-based classification, we propagate a probabilistic atlas to the unseen images

using the result of the previous registration process as a spatial constraint. We then use the EM

algorithm to classify each voxel into one out of three labels Λ = {Lk, Lb, Lm} for background,

blood pool, and myocardium respectively [Lorenzo-Valdés et al., 2004].

In our work the probabilistic atlas has been constructed from healthy subjects. In normal

anatomical MR images, the intensity of myocardium is relatively homogeneous and the EM-

based segmentation is able to segment normal myocardium of healthy subjects with high degree

of accuracy (mean distance and standard deviation reported in [Lorenzo-Valdés et al., 2004] is

2.05± 2.19mm). For patients with myocardial infarction, the intensity of the infarcted region

can be significantly different from that of healthy myocardium. This leads to an inaccurate

delineation of the myocardium in the infarcted region when using the traditional EM-based

algorithm [Lorenzo-Valdés et al., 2004] as the example in Figure 4.5 shows.

We propose to use a MCEM algorithm to cope with this abnormal intensity distribution. The

MCEM algorithm models the myocardial tissue using multiple Gaussian distributions and can

thus better adapt to the heterogeneous intensity distribution in patients with infarcted tissue.
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Figure 4.5 – Workflow of the multi-component EM estimation based segmentation component.
The green arrows indicate the workflow we use and the red arrows indicate the workflow in
[Lorenzo-Valdés et al., 2004].

Let K be the number of labels and n be the number of voxels in the image. Let G(yi, µ, σ)

represent a Gaussian distribution where yi is the intensity, and µ and σ are the mean and

standard deviation respectively. Furthermore, let pmL (i) be the probabilistic estimate of the

segmentation of a voxel xi for label L at the m-th iteration; patlasL (i) denotes the prior probability

propagated from the probabilistic atlas after the registration step. The MCEM algorithm is

then initialised as follows:

p0
L(i) = patlasL (i) (4.3)

µ0
L =

∑n
i=1 yip

0
L(i)∑n

i=1 p
0
L(i)

, (σ0
L)2 =

∑n
i=1(yi − µ0

L)2p0
L(i)∑n

i=1 p
0
L(i)

(4.4)
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Given that label L is modelled using |l| components, the initial probabilistic segmentation of

each component, p0
Lj

(i), is given by:

p0
Lj

(i) =
G(yi, µ

0
Lj
, σ0

Lj
)patlasL (i)∑K

k=1

∑|l|
o=1G(yi, µ0

ko
, σ0

ko
)patlask (i)

(4.5)

where µ0
Lj

= µ0
L − σ0

L +
2σ0
L(j−1)

|l|−1
, (σ0

Lj
)2 = (σ0

L)2/|l|, and δ0
Lj

=

∑n
i p

0
Lj

(i)∑n,|l|
i,o=1 p

0
Lo

(i)
is the proportion of

component j.

To estimate the probabilistic segmentation, a spatial coefficient ωLj which measures how close

each voxel xi is to the centre of gravity cLj of label L’s component j is also computed. This is

important for avoiding misclassifying voxels with intensities that are similar to those of infarcted

tissue but which are remote from the location of the infarct. The algorithm then proceeds by

interleaving the following E- and M-steps:

E-step:

cLj =

∑n
i=1G(yi, µ

m
Lj
, σmLj)p

atlas
L (i)xi∑n

i=1 G(yi, µmLj , σ
m
Lj

)patlasL (i)
(4.6)

ωm+1
Lj

(i) =
1

||xi − cLj||+ 1
(4.7)

pm+1
Lj

(i) =
G(yi, µ

m
Lj
, σmLj)p

atlas
L (i)δmLjω

m
Lj

(i)∑K
k=1

∑|l|
o=1 G(yi, µmko , σ

m
ko

)patlask (i)δmkoω
m
ko

(i)
(4.8)

pm+1
L (i) =

|l|∑
o=1

pm+1
Lo

(i) (4.9)

M-step:

µm+1
Lj

=

∑n
i yip

m+1
Lj

(i)∑n
i p

m+1
Lj

(i)
, (σm+1

Lj
)2 =

∑n
i (yi − µm+1

Lj
)2pm+1

Lj
(i)∑n

i pLj(i)
m+1

(4.10)
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δm+1
Lj

=

∑n
i p

m+1
Lj

(i)∑n
i=1

∑|l|
o=1 p

m+1
Lo (i)

(4.11)

The EM algorithm continues until the the log-likelihood changes by less than a given constant

ε. The result is an algorithm which allows areas of myocardial infarction to be segmented.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.6 – Randomly selected segmentation results of different patients: (a-h) SA view of SA
images overlay with SA segmentation and (i-l) LA view overlay with 3D segmentation.
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4.2.5 Multi-image graph-cuts refinement

Although the atlas is propagated to all images simultaneously, the MCEM algorithm segments

the 3D, SA and LA images separately. We propose to use an energy function based on MRF

in combination with graph-cuts [Boykov et al., 2001] to refine the segmentation. A MRF

is used to ensure a spatially smooth segmentation across all images at the same time. In

the following sections we will refer to this as the multi-image refined multiple component

expectation maximisation (MRMCEM) segmentation. 4D graph-cuts have recently been used

to segment image sequences [Linguraru et al., 2010,Wolz et al., 2010]. Here, we have adopted

the 4D graph-cuts approach to utilise information from multiple MR images with different

spatial resolutions. To differentiate our approach from a 4D graph-cuts segmentation of image

sequences, we refer to it as multi-image graph-cuts segmentation. It should be pointed out that

the original graph-cuts approach is a binary segmentation method. However, a segmentation

using multiple labels can be achieved using the expansion and swap algorithm for the graph-

cuts [Boykov et al., 2001].

Let Ik be the k-th image of the multiple image set. Segmenting Ik can be defined as a process

of assigning a label fi ∈ L to each voxel xi ∈ Ik. An MRF-based energy function can be

formulated as:

E(f) = λ
∑
x∈Ik

D(fi) +
∑

{xi,xj}∈N

Sintra(fi, fj) +
∑

{xi,xj}∈M

Sinter(fi, fj) (4.12)

Here N and M denote a neighbourhood of voxels within an image and across different images

respectively and f is the labelling of Ik [Boykov et al., 2001]. The data term D(fi) measures

the disagreement between the a-priori probabilistic model and the observed data (the image

intensities) at xi. Sintra(fi, fj) and Sinter(fi, fj) are two smoothness term that penalises

discontinuities in the segmentation in N or M . The parameter λ governs the influence of

the data and smoothness terms. We found empirically that setting λ = 2 leads to robust

results for the segmentation of the myocardium. Two different smoothness terms are selected

respectively for inter-image smoothness and intra-image smoothness since they are intuitively
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distinguishable. For intra-image smoothness, continuity in intensity space is enforced. In

contrast to this the inter-image smoothness comes from the overlap between voxels from

different images. For the inter-image smoothness the continuity in intensity space is not

necessarily meaningful due to the fact that the images come from different imaging sequences.

To optimise eq. (4.12), a graph G =< V,E > with a node v ∈ V for each voxel x is defined

on the images. Each edge e ∈ E consists of connections between node v and two terminal

nodes F and B (also called source and sink node) as well as connections between neighbouring

voxels (within images and across images). The terminal nodes F and B represent the two

labels describing foreground and background, respectively. By determining a minimum cut on

graph G, the desired segmentation can be obtained [Boykov et al., 2001]. The data term D(fi)

is estimated using the MCEM segmentation [Shi et al., 2011] which generates a probability for

each label of each voxel.

The smoothness term between neighbouring voxels within an image is defined by the following

equation:

Sintra = wintra
1

ln(1 + (I(xi)− I(xj))2) + ε
(4.13)

Here I denotes the intensity and ε is a small constant value which compensates for noise when

I(xi) is similar to I(xj). For neighbouring voxels we define wintra = 1/d where d is the distance

between two voxels.

For voxels across different images, a different smoothness term is chosen. We define a

smoothness term that depends on the degree of overlap between the voxels across different

images. This addresses the fact that the intensity contrast across different images can vary

and is thus not meaningful. We use the Dice metric to compute the amount of spatial overlap

between voxels across different images

Sinter = winter(2||Axi
∩ Axj

||)/(||Axi
|| ∪ ||Axkj||) (4.14)

where Axi
and Axj

are the volumes of voxel xi and xj from different images and winter is a

constant weight. In our experiments we have heuristically chosen as winter = 2 . The result of
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this equation is a value between 0 and 1 due to different voxel size and position of the images.

The smoothness term is defined in a neighbourhood M where Sinter > 0.

By using this multi-image graph-cuts approach, we connect intra-image voxels according to their

intensity similarity and neighborhood and inter-image voxels according to their spatial overlap.

This enables us to segment multiple images simultaneously and consistently. To identify the

endocardial contours and to remove the papillary muscle completely we computed the convex

hull of the blood pool segmentation. This is done in 2D since the endocardial contour in the

LA view is not always convex. Then, a Fourier representation of the epi- and endocardial

contour is computed. The first few harmonic phases correspond to the low frequencies of

the contour and the last harmonic phases correspond to the high frequencies. We retain the

first six harmonic phases to obtain a final, smoothed segmentation [Lu et al., 2009,Su Huang,

2009, Jolly, 2006]. A 3D surface model of the myocardium can be constructed using shape

based interpolation [Grevera and Udupa, 2002] and marching cubes triangulation [Lorensen

and Cline, 1987]. Some examples of the resulting segmentation are shown in Figure 4.6.

4.3 Uncertainty definition and evaluation

An important but not yet fully explored aspect of atlas-based image segmentation is the

quantification of the segmentation uncertainty. It is important to have the ability to alert

the user if the uncertainty of the segmentation quality is high which can either be a sign of an

unreliable segmentation result or of pathologies in the cardiac anatomy.

4.3.1 Registration uncertainty

Given two images, Iatlas and Ik (the k-th image of the subject), we can estimate a transformation

T which maps each voxel x in image Ik to a corresponding voxel T(x) so that their intensity

values Ik(x) and Iatlas(T(x)) should be similar. Using a probabilistic formulation for the image

registration problem [Risholm et al., 2010], the uncertainty of the transformation T at point x
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can be modelled by the following equation:

uc(T(x)|Ik(x), Iatlas) = 1− p(Ik(x), Iatlas|T(x))p(T(x))

p(Ik(x), Iatlas)
(4.15)

We assume that the difference between the appearance of the subject and atlas after

transformation can be represented by a normal distribution with zero mean. The degree of

deformation can be modelled by a distribution around a rigid transformation that gives a

single Jacobian determinant over the whole image space. Thus, we model the likelihood term,

p(Ik(x), Iatlas|T(x)), as a normal distribution of the intensity difference between transformed

Iatlas and Ik estimated using an EM algorithm after histogram equalisation. Similarly, the

prior of the transformation, p(T(x)), is modelled as a Rician distribution of the Jacobian

determinant of the transformation [Rohlfing et al., 2003]. The distribution is estimated based

on the inversion technique proposed in [Koay and Basser, 2006]. The Rician distribution is a

non-negative and asymmetric distribution, which approximates the distribution of the Jacobian

determinant well for a given transformation. The distribution is controlled by two variables: v

and σ. The probability density function is f(x|v, σ) = x
σ2 exp

(
−x2+v2

2σ2

)
B0

(
xv
σ2

)
where B0 is the

modified Bessel function of the first kind with order zero. If v/σ > 3, the Rician distribution

becomes approximately Gaussian. If v = 0 the Rician distribution reduces to a Rayleigh

distribution. Some examples of the histogram of the Jacobian determinant of transformations

and the fitted Rician distribution are presented in Figure. 4.7. This shows that the Rician

distribution approximates the true distribution of the Jacobian determinants well. Finally, the

last term in eq. (4.15), p(Ik(x), Iatlas), can be modelled as a constant term.

4.3.2 Segmentation uncertainty

The uncertainty of a given label from our 4D graph-cuts segmentation can be modelled by the

following equation:

uc(Lj|Ik(x)) = 1− p(Ik(x)|Lj)p(Lj)
p(Ik(x))

(4.16)
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(a) (b)

Figure 4.7 – The histogram of the Jacobian determinant and fitted Rician distribution from
different subjects.

The equation is means given the intensity at x how unlikely Lj should be assigned to x. The

term p(Ik(x)|Lj) is the likelihood that the intensity of Ik(x) belongs to Lj as estimated by the

segmentation algorithm. p(Ik(x)) is modelled as a constant term and the prior term is modelled

as

p(Lj) =
1

log(δj + 1 + ε)
(4.17)

In this equation ε is a small constant value and δ is the interquartile range of the multiple

component distribution that represents Lj’s intensity distribution from our segmentation

method. The interquartile range is chosen because it is a robust statistic that conveys

the dispersion of a distribution [Risholm et al., 2010] and corresponds well to the intra-

region homogeneity of a segmentation. It is robust in the sense that it provides meaningful

information even for non-Gaussian distributions such as the ones obtained from the MRMCEM

segmentation.

4.3.3 Uncertainty quantification and user interaction

For each voxel xi in all images, its registration and segmentation uncertainty can be evaluated

and visualised using eqs. (4.15) and (4.16) respectively. We can further define the registration
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and segmentation uncertainty of a given region Lj by averaging over a ROI. The quantification of

uncertainty can be used to inform the user about how reliable the segmentation and registration

results within a ROI are.

Based on the results from uncertainty analysis, we can design a system that detects deviations

from the normal level of expected uncertainty. In our analysis we have four failure cases

in which the global affine registration fails during the atlas registration. The subsequent

segmentations also fail. Myocardial registration uncertainty is a good indicator for failed

global affine registration (failed cases 0.86 ± 0.14, successful cases 0.39 ± 0.08, p < 0.0001).

A combination of registration and segmentation uncertainties is better in terms of classification

using linear discriminant analysis (LDA) [Fisher, 1936] (failed cases 1.73 ± 0.12, successful

cases 1.2 ± 0.08, p � 0.0001). A good threshold for detecting segmentation failures using the

combined registration and segmentation uncertainty is 1.59 as derived from LDA with accuracy

of 100%.

In the cases where we detect a segmentation failure, the user is asked to define six anatomical

landmarks (apex, centre of left ventricle, anterior and inferior insertion points of right ventricle,

centre of right ventricle and centre of basal plane). These landmarks are also annotated in the

atlas. By introducing knowledge about these six additional landmarks, the atlas-to-image

registration can be initialised more accurately and all segmentations are performed correctly.

4.4 Results

We acquired datasets from 32 subjects. Each dataset consists of SA, LA four, three and two

chamber cine MR image sequence (2.2 × 2.2 × 10,mm, 30 phases) and anatomical 3D MR

images (1.1 × 1.1 × 1.1,mm, one phase). The patients were scanned using 1.5T MR-scanner

(Achieva, Philips Healthcare, Best, Netherlands) with a 32-element cardiac coil or a 5-element

cardiac coil (large or claustrophobia patients). Images were divided into three different groups

according to pathologies, including patients with myocardial infarction (11 cases), ventricular

hypertrophy (10 cases), and healthy subjects (11 cases). Example SA images are shown in
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Table 4.1 – Segmentation results: The Dice overlap measure for the endocardial segmentation
(Lb) and epicardial segmentation (Lb+Lm) results between automatic and manual segmentation’s
label results. Lorenzo refers to [Lorenzo-Valdés et al., 2004] and Zhuang refers to [Zhuang et al.,
2008].

Group Segmentation Lorenzo Zhuang MCEM MRMCEM

normal
endocardial 0.921± 0.013 0.919± 0.016 0.927± 0.013 0.930± 0.013
epicardial 0.935± 0.016 0.936± 0.013 0.946± 0.018 0.947± 0.017

infarction
endocardial 0.841± 0.045 0.853± 0.036 0.899± 0.029 0.910± 0.019
epicardial 0.932± 0.015 0.933± 0.012 0.950± 0.011 0.950± 0.010

hypertrophy
endocardial 0.748± 0.228 0.917± 0.031 0.917± 0.028 0.925± 0.018
epicardial 0.761± 0.210 0.929± 0.028 0.940± 0.023 0.948± 0.019

Table 4.2 – Segmentation results: The average surface-to-surface distances in mm for the
endocardial surfaces and epicardial surfaces between manual and automatic segmentation surface’s
results. Lorenzo refers to [Lorenzo-Valdés et al., 2004] and Zhuang refers to [Zhuang et al., 2008].

Group Surface Lorenzo Zhuang MCEM MRMCEM

normal
endocardial 2.274± 0.115 2.119± 0.101 1.990± 0.150 1.890± 0.100
epicardial 2.154± 0.167 2.122± 0.191 1.830± 0.185 1.800± 0.151

infarction
endocardial 2.931± 0.545 2.637± 0.590 1.926± 0.342 1.867± 0.243
epicardial 2.192± 0.325 2.326± 0.598 1.775± 0.195 1.800± 0.208

hypertrophy
endocardial 6.738± 8.198 2.446± 0.459 2.349± 0.418 2.014± 0.225
epicardial 7.581± 8.073 2.862± 0.528 2.162± 0.337 1.932± 0.318

Figure 4.8.

Manual segmentations were performed by a cardiologist who delineated the myocardium

and left ventricle. We then compared the manual segmentation to the segmentation results

obtained via four different techniques: (a) the technique of [Lorenzo-Valdés et al., 2004]

which uses affine and non-rigid registration of a probabilistic atlas followed by EM and MRF

segmentation, (b) the technique of [Zhuang et al., 2008] which employs registration for atlas

propagation, (c) the MCEM proposed in this thesis and (d) the MRMCEM proposed in this

thesis. For comparisons between these methods we used the Dice metric which is defined as

D = (2||Sa ∩ Sb||)/(||Sa||+ ||Sb||) where Sa and Sb are the manual label segmentation and

automatic label segmentation. We also used the surface-to-surface distance [Zhuang et al.,

2010,Schaerer et al., 2010,Huang et al., 2010] for comparisons. The surface-to-surface distance

measures the average distance between the closest vertexes from two surfaces.

The results are summarised in Table 4.1 and 4.2. The results indicate that our proposed

segmentation scheme performed consistently better than the other two methods. In our
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.8 – The example images from different pathological groups: (a-c) shows different slices
from a healthy subject, (d-f) shows different slices from a ventricular hypertrophy subject and
(g-i) shows different slices from a myocardial infraction subject.

experiments, the global affine registration failed for 8 out of 30 patients with ventricular

hypertrophy, leading to failures using the segmentation technique proposed by [Lorenzo-Valdés

et al., 2004]. On the other side the registration-based approach by [Zhuang et al., 2008] uses

the LARM registration technique and thus the segmentation results are significantly better
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on subjects with ventricular hypertrophy due to its ability to address the large local shape

variability. Furthermore, the MCEM method outperformed both other techniques due to

its ability to model infarcted myocardium using multiple tissue class components. Finally,

the MRMCEM segmentation achieved high accuracy with extra information from 3D and LA

images across all three groups, which compares favourably to other recent techniques [Zhuang

et al., 2010,Schaerer et al., 2010,Huang et al., 2010].

Figure 4.9 – The left figure shows myocardial segmentation uncertainty. A t-test is performed
between different groups. The p-value between normal and ischemic is 0.05, between normal
and dilated is 0.47 and between ischemic and dilated is 0.03. The right figure shows myocardial
registration uncertainty. The p-value between normal and ischemic is 0.02, between normal and
dilated is 0.03 and between ischemic and dilated is 0.97

The proposed measure of uncertainty are a good indicator for failure of the global affine

registration. If the segmentation is considered successful, the uncertainty correlates well to

abnormality of the patient’s cardiac anatomy as suggested in Figure 4.9. This is possibly

due to the fact that our segmentation algorithm is designed to segment pathological images

well using LARM [Zhuang et al., 2010] and MCEM [Shi et al., 2011]. To examine if the

uncertainty measure correlates with the degree of pathology in individual patients, we plot the

uncertainty across different pathological groups. Figure 4.9 shows that myocardial segmentation

uncertainty is a very good predictor for separating ischemic cardiomyopathy from the rest of

subjects (ischemic subjects 0.82 ± 0.012, other subjects (normal and dealated) 0.80 ± 0.016

p < 0.001). Meanwhile myocardial registration uncertainty is a good predictor for separating

patients with dilated cardiomyopathy from normal subjects (patients 0.38 ± 0.08, normals

0.33 ± 0.04 p < 0.05) but not from ischemic subjects. From these results, we conclude that
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the segmentation uncertainty that arises from the intensity distribution correlates to abnormal

intensities caused by ischemic cardiomyopathy. We believe that registration uncertainty that

comes from geometry distribution corresponds well to abnormal cardiac geometry such as

dilated cardiomyopathy.

4.5 Discussion and conclusion

In this chapter we have developed a framework for the automatic segmentation of cardiac MR

images with different pathologies from multiple sequences. We evaluated our proposed method

using a data set with a wide range of anatomical diversity including healthy controls, patients

with myocardial infarction and patients with cardiac myopathy. The proposed segmentation

algorithm has been compared to two other, state-of-art, segmentation schemes. The results

showed a consistent improvement, particularly in the segmentation of subjects with myocardial

infarction for which registration-based segmentation tends to perform poorly.

Also, voxel-based techniques [Lorenzo-Valdés et al., 2004] alone did not demonstrate a robust

performance without a good initialisation from LARM propagation in the group with ventricular

hypertrophy. The proposed integration of registration- and voxel-based segmentation has

shown the ability to achieve both robustness and accuracy. The segmentation is performed

simultaneously for all images using a multi-image graph-cuts approach. The accuracy of

the segmentation is significantly improved compared to previous segmentation methods by

utilising both intra- and inter-image information. Finally we proposed a system that detects

segmentation failures using registration and segmentation uncertainties.

Cardiac pathology is not always easily detectable in images, e.g. with the transposition of

vessels, but is likely to be detected by registration and segmentation uncertainty. Since we

can define uncertainty for every part of the cardiac anatomy, it is desirable to investigate if the

relationship between the uncertainty and the abnormality could help to detect these pathologies

automatically. Static cardiac indices, like LVM, LVV and EDV, can be extracted from cardiac

segmentation results. In order to measure dynamic indices, like RWN, RWM and RMSt, cardiac
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motion tracking techniques are needed. In next chapter, we develop a comprehensive cardiac

motion tracking framework to extract motion from multiple modalities simultaneously.



Chapter 5

A comprehensive cardiac motion

estimation framework

5.1 Introduction

The work in this chapter is based on the following published papers:

• Wenzhe Shi, Xiahai Zhuang, Haiyan Wang, Simon Duckett, Duy V.N. Luong, Catalina

Tobon-Gomez, KaiPin Tung, Philip Edwards, Kawal Rhode, Reza Razavi, Sebastien

Ourselin, Daniel Rueckert. (2012). A comprehensive cardiac motion estimation

framework using both untagged and 3D tagged MR images based on non-rigid registration.

IEEE Transactions on Medical Imaging, 31(6):1263-1275.

• Haiyan Wang, Wenzhe Shi, Xiahai Zhuang, Simon Duckett, Kai Pin Tung, Philip

Edwards, Reza Razavi, Sebastien Ourselin, and Daniel Rueckert. (2011). Automatic

cardiac motion tracking using both untagged and 3D tagged MR images. Statistical

Atlases and Computational Models of the Heart: Imaging and Modelling Challenges

(STACOM), pages 45-56.

• Wenzhe Shi, Maria Murgasova, Eddie Edwards, and Daniel Rueckert. (2010). Simulta-

neous Reconstruction of 4-D Myocardial Motion from Both Tagged and Untagged MR

92
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Images Using Nonrigid Image Registration. Medical Imaging and Augmented Reality

(MIAR), pages 98-107.

The ultimate objective of cardiac image analysis is to provide useful and efficient tools for

the diagnosis and treatment of patients with CVDs. Increasing attention has been focused on

the estimation of regional deformation parameters, such as regional volume output and RMSt.

The analysis of such parameters has been shown to help better understand diseases such as

cardiomyopathy and ischemia [Edvardsen et al., 2001, Kukulski et al., 2003] and can lead to

improved methods for the treatment of patients with CVDs [Bax et al., 2004,Kuhl et al., 2004].

Myocardial tissue can be labelled by altering its magnetisation properties that remain persistent

even in the presence of motion. MR tagging was first proposed by [Zerhouni et al., 1988,Axel

and Dougherty, 1989b,Axel and Dougherty, 1989a] and developed as a means for non-invasive

motion tracking within the myocardium of the LV. Using this imaging technology, non-invasive

markers can be introduced directly into the tissue during the image acquisition process. By

tracking the motion and deformation of the tag patterns, the motion of the myocardium can be

reconstructed using cardiac motion tracking algorithms [Osman et al., 1999, Young, 1999, Pan

et al., 2005] including non-rigid image registration [Chandrashekara et al., 2004, Mansi et al.,

2009,Bistoquet et al., 2008,Ledesma-Carbayo et al., 2005].

A common difficulty in cardiac motion tracking arises from the inevitable tag fading during the

cardiac cycle. Tags which survive the fading are usually manually segmented or identified in the

last frame of the sequence of tagged MR images. Another difficulty is low temporal resolution:

A sufficiently large motion (e.g. larger than the tag spacing) will lead to misalignment between

material points due to the lack of information between the tags. An alternative approach to

track the cardiac motion using MR imaging is based on HARP [Osman et al., 1999]. However,

this approach is intrinsically 2D although extensions to 3D motion tracking have been proposed

[Pan et al., 2005]. The lack of sufficient longitudinal information and respiratory motion are

other difficulties in the reconstruction of true 3D motion from multiple SA and a small number

of LA images. With the development of 3D tagged MR imaging [Rutz et al., 2008], it is now

possible to estimate radial, circumferential and longitudinal motion from a consistent 3D MR
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imaging dataset.

(a) Untagged
Image

(b) Untagged
Image

(c) Untagged
Image

(d) Untagged
Image

(e) Untagged
Image

(f) Tag First (g) Tag Last (h) Tag Last (i) Tag Last (j) Tag Last

Figure 5.1 – The figure shows (a-e) the untagged SA and LA MR images, (f) the original 3D
tagged images at the EDbegin phase, (g-i) the average 3D tagged images extracted at respectively
the EDbegin, ES and EDend phases and (j) the EDend phase with the segmented epi- and
endocardial surface.

5.1.1 Overview and contributions

In this chapter we propose a framework for motion tracking using both untagged and tagged MR

images simultaneously. This framework is illustrated in Figure 5.1. An advantage of untagged

MR images is that the cardiac anatomy, in particular the myocardium, is clearly visible and

can be identified using state-of-art image segmentation algorithms [Petitjean and Dacher, 2011]

including the work we developed in Chapter 4. In addition, the radial motion of the myocardium

can be tracked easily in untagged MR images since the epi- and endocardial contours are clearly

visible. A disadvantage of untagged MR images is that circumferential and longitudinal motion

cannot be accurately quantified as there are few features inside the myocardium that can be

reliably tracked and often not enough LA images available. On the other hand, 3D tagged

MR images allow the easy tracking of both longitudinal and circumferential motion inside the

myocardium. However, in 3D tagged MR images it is difficult to identify and quantify the

cardiac anatomy as the tags obscure the anatomy. Furthermore, the tags degrade progressively
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throughout the cardiac cycle. Although tag removal algorithms have been developed [Qian

et al., 2007], the quality of the resulting images is not as good as conventional untagged MR

images such as those obtained using bSSFP imaging sequences [Carr, 1958]. The lack of visible

anatomy in the 3D tagged MR images can cause problems during the motion tracking as it is

difficult to distinguish between tissue and blood in the first frame. Therefore, both types of

MR images provide complementary information that can be jointly exploited.

Figure 5.2 – Workflow of the proposed comprehensive cardiac motion method.

We extend a registration algorithm that has been previously used successfully for motion

tracking [Chandrashekara et al., 2004]. In this registration-based approach the motion is

reconstructed by registering a sequence of images during the cardiac cycle to a reference image

at end-diastole. The proposed approach shown in Figure 5.2 uses stacks of SA and LA untagged

MR cine images as well as a sequence of 3D tagged MR images. Cardiac MR images acquired

within a single scanning session may have different spatial positions, due to patient movement

or different respiratory positions during breath-holds, as well as different temporal resolutions.

This misalignment between the different image sequences will cause inconsistencies in the

simultaneous motion tracking. Thus, we have developed a spatial and temporal registration

approach that maps all images to a common spatio-temporal reference space. To allow fully

automated motion tracking we use a Haar-feature based object detection algorithm [Viola and

Jones, 2002, Pavani et al., 2009, Zheng et al., 2007] to detect a region of interest containing

the LV before motion tracking. A spatially-varying, weighted similarity measure is used for

the motion tracking using image registration. This similarity measure combines information

from untagged and 3D tagged images. The weighting between the different images is spatially

varying and depends on the intensity gradient and segmentation of the untagged MR images:

At the epicardial and endocardial boundaries (indicated by high intensity gradients in the
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untagged images), the weighting favours information from the untagged MR images. Inside

the myocardium (indicated by the homogenous regions of the segmentation of the untagged

MR images) the weighting favours information from the 3D tagged MR images. However, even

with the simultaneous use of the tagged and untagged MR images, it is hard to reconstruct the

correct motion of the valve plane. We explicitly track the valve plane using a regional tracker

and constrain the estimated motion to be consistent with the valve plane tracker. This leads

to more accurate estimation of parameters of cardiac function such as ejection fraction.

The clinical application we focus on in this chapter are patients who undergo CRT: A significant

number of these patients do not derive symptomatic benefit from the treatment or present

with remodelling. Assessing global myocardial volume change such as EF and RMSt has the

potential to improve patient selection. In particular, systolic dyssynchrony index (SDI) has

been previously reported to be a good indicator for selecting patients who respond to CRT [Bax

et al., 2004]. SDI is commonly defined as the standard deviation of the time taken to reach the

minimum systolic volume or maximum function. To assess the clinical potential of the motion

tracking we compare the proposed algorithm against the current clinical practice, e.g. using

the TomTec 4D LV analysis tool V2.0 [Kuhl et al., 2004], for assessing EF and regional (blood)

volume SDI of patients undergoing possible CRT.

The remainder of the chapter is organised as follows: Section 5.2 describes the image acquisition

techniques and the data set used in this chapter. Section 5.3 explains the spatial and temporal

registration between different sequences. Section 5.4 introduces details of the comprehensive

motion tracking algorithm while Section 5.5 shows how the results of the motion tracking can

be used to compute features relevant to cardiac function analysis. Section 5.6 evaluates the

accuracy and robustness of the proposed technique. Finally, Section 5.7 presents a discussion

of the results and future work.
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5.2 Cardiac MR image acquisition

The data used in this chapter includes 12 subjects, six of which are healthy volunteers and

six are CRT candidates. All subjects were scanned using a 1.5T MR scanner (Achieva,

Philips Healthcare, Best, Netherlands) with a 32-element cardiac coil or a 5-element cardiac

coil (for large or claustrophobic patients). Cardiac synchronisation was performed with

vector electrocardiography (VECG). After localisation and a coil sensitivity reference scan,

an interactive real-time scan was performed to determine the geometry of the SA, HLA and

VLA views. A multiple slice SSFP scan (untagged) was performed in the SA orientation (flip

angle = 60o, TR/TE = 2.9/1.5ms, resolution 1.45 x 1.45 x 10mm, 30 heart phases). Single slice

scans were performed in LA orientations with the same spatial and temporal resolution of SA

slices for HLA and VLA views. Typical SA and LA images are shown in Figure 5.1.

3D tagging was implemented using three sequentially acquired 3D data sets with line tag

preparation in each of the three spatial dimensions [Rutz et al., 2008]. A respiratory navigator

was used to ensure that the images are spatially aligned. 3D tagged images were acquired of the

whole LV using the following parameters: tag separation = 7mm, field of view (FOV) = 108 x

108 x 108mm, echo planar imaging (EPI) factor = 7, TFE factor = 4. The voxel size for each of

the three datasets is 1.00 x 1.00 x 7.71mm, where the direction of low resolution is different for

each of the three acquisitions. Depending on the heart rate, cardiac phases were recorded with

a temporal resolution of about 30ms with 24 to 30 phases. The temporal resolution is consistent

for all three tagged image acquisitions. Several example slices from the 3D tagged images are

shown in Figure 5.1. From these three different 3D tagged images a high-resolution tagged

image has been created by interpolation and then averaging. This image serves as reference

coordinate space and has an isotropic resolution of 1mm. This average 3D tagged image is used

for temporal alignment between tagged and untagged images as well as for manual landmark

tracking. An example of this average, isotropic, 3D tagged image is shown in Figure 5.4a.
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5.3 Spatial and temporal alignment

The analysis of cardiac motion information from different images requires a common spatial and

temporal reference space. However, this is a challenging task due to differences in the image

acquisition for the different images. There are three major difficulties: (i) the presence of tags in

3D tagged MR images obscuring the anatomy, (ii) differences in position caused by respiratory

and patient motion within sequences and across sequences and (iii) variable temporal resolution

of the different image sequences. [Camara et al., 2009] presented a registration algorithm for

tagged and untagged MR image sequences. This algorithm is based on phase information

in order to correct the spatial misalignment between SSFP image sequences and CSPAMM

image sequences, but does not include temporal misalignment. In this section, we extend this

framework for the combination of information derived from untagged and 3D tagged MR image

sequences which accounts for spatial misalignment as well as differences in temporal resolution.

(a) SA Before (b) SA After (c) LA Before (d) LA After

Figure 5.3 – This figure shows the 3D tagged pseudo-anatomical image overlaid with isolines from
the SA image: (a) before alignment (b) after alignment. Similarly, it shows the LA image overlap
with isolines from the SA image: (c) before alignment (d) after alignment. The misalignments are
highlighted by the red arrows.

5.3.1 Temporal alignment

Each frame of a MR image sequence contains a DICOM meta-tag describing the trigger time.

The trigger time defines how many milliseconds after the previous end-diastolic phase the

acquisition of the current frame is triggered. We define T s as the trigger time of the first

phase, T e as the trigger time of the last phase and N as the number of frames. The temporal

resolution of the SA untagged MR images ISA is defined as ∆t = (T eSA − T sSA)/NSA. Similarly,
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the temporal resolution for each of the LA untagged MR images I4C , I3C , I2C can be computed.

Note that the temporal resolution may vary across SA and LA images. In contrast, the 3D

tagged MR images Itagged share the same temporal resolution. We define a common temporal

resolution T sref , T
e
ref , Nref as follows:

T sref = max(T sSA, T
s
4C , T

s
3C , T

s
2C , T

s
3T ) (5.1)

T eref = min(T eSA, T
s
4C , T

s
3C , T

s
2C , T

s
3T ) (5.2)

Nref = min(NSA, N4C , N3C , N2C , N3T ) (5.3)

All image sequences are resampled to this common temporal resolution using nearest neighbour

interpolation. We have not used a more sophisticated interpolation scheme such as linear or

spline-based interpolation since such interpolation may not yield realistic intensity values for a

given voxel between two time points. For example one may introduce artificial intensity values

if a voxel contains fluid in one time point and tissue in the next time point.

5.3.2 Spatial alignment

The 3D tagged MR images are free from respiratory motion artifacts since respiratory navigators

are used during the acquisition. They contain complete 3D motion information. Thus, it is

an ideal common spatial coordinate system for motion tracking. The only difficulty is the

presence of tags in the images obscuring the anatomical information, which is needed to align

the untagged MR images to these images. However, techniques for the removal of tags have

recently been developed for CSPAMM images [Manglik et al., 2004, Qian et al., 2007]: For

example, [Manglik et al., 2004] used a Gabor filter which acts as a band-pass filter with the

central spatial frequency of the filter set equal to the frequency of the tags in the image. [Qian
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et al., 2007] applied a 2D band-stop filter using mean shift-based clustering and principal

component analysis for the same purpose.

Removal of tags from 3D tagged MR

We have tested various techniques for tag removal [Manglik et al., 2004, Qian et al., 2007,

Camara et al., 2009] on the first frame of 3D tagged images shown in Figure 5.1f. However,

none of them provided satisfactory results. Compared to the CSPAMM images for which these

techniques have been developed, the 3D tagged MR images used here are dominated by tag

patterns and show little detail of the underlying anatomy. On the other hand, with increasing

tag fading the tags in the 3D tagged images correspond to the presence of myocardium and

other tissues, especially in the end-diastolic phase. One can easily extract the low frequency

band by applying a Fourier transform followed by band-pass filtering and an inverse Fourier

transform. We have chosen a band-pass filter that preserves the lowest 10% of the frequencies.

We have performed this simple but effective approach for tag removal on all three 3D tagged

images individually for all phases. After tag removal, the three detagged image sequences are

averaged into an isotropic reference image to generate a 4D pseudo-anatomical image sequence.

An example phase from this sequence is shown in Figure 5.4. The 4D pseudo-anatomical images

have good contrast for the myocardium.

Spatial registration

Images from multiple cardiac MR image sequences may be misaligned due to patient motion

and different breath-hold positions during acquisition. For SA untagged MR images this

misalignment can also occur between slices [Camara et al., 2009, Chandler et al., 2006] as

Figure 5.3 demonstrates. We can correct these artifacts by registering the untagged MR images

to the 4D pseudo-anatomical image. The 4D tagged pseudo-anatomical image after tag removal

provides good spatial resolution (1 × 1 × 1mm) for accurate slice-to-volume registration with

the SA and LA untagged MR images.
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(a) Before tag removal (b) After tag removal

Figure 5.4 – This figure shows (a) an average image of three 3D tagged images and (b) an average
image of three 3D images after tag removal (this is referred to as 3D pseudo-anatomical image in
the text).

We register all available SA and LA untagged cine MR image to the 4D pseudo-anatomical MR

image using rigid registration with an extension of the work in [Chandler et al., 2006]: The

registration transformation is modelled as a 3D rigid transformation between the untagged cine

image sequence and the pseudo-anatomical image sequence. Additionally, a 2D in-plane rigid

transformation is used for every cine slice to allow for misregistration between slices as the

result of different breath-hold positions. The registration is optimised between 4D images to

fully utilise the temporal information. The similarity metric function is defined as a weighted

combination of the similarity between the untagged cine and the 4D pseudo-anatomical MR

image and the similarity between LA and SA slices over time. We choose NMI as the similarity

measure to deal with the difference between modalities. The weighting is defined by the number

of voxels in the similarity metric. As a result, both inter- and intra-sequence misalignments are

corrected and all images are transformed into the same common spatial temporal coordinate

system. Non-rigid deformation of the heart due to breathing motion [Shechter et al., 2004] is

not modelled in this spatial registration step as the limited anatomical information from the

4D pseudo-anatomical MR images makes it not feasible to introduce more flexibility into the

transformation model. Figure 5.3 shows some example images before and after correction.
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5.4 Comprehensive motion tracking

During the cardiac cycle, the LV undergoes a number of different deformations including

circumferential, radial and longitudinal motion. While the 3D tagged MR images provide good

information about all aspects of the motion, the SA images may provide more information of

radial motion and the LA images may provide some extra information about the radial and

longitudinal motion. Thus, to fully reconstruct the deformation field within the myocardium,

we propose to acquire multi-slice SA, LA images as well as 3D tagged images of the LV.

Consider a material point in the myocardium at a position pmyo = (x, y, z)T at time t0 = 0 that

moves to another position p′myo = (x′, y′, z′)T at time ti = i∆t where ∆t is the time interval

between two consecutive phases and i corresponds to the time frame. The goal of the motion

tracking is to find the transformation T for all time phases i such that:

T(pmyo, ti) = p′myo (5.4)

We represent T using a series of free-form deformations [Rueckert et al., 1999] as described

in [Chandrashekara et al., 2004]. An overview of the tracking algorithm is given in the following

section.

5.4.1 Overview

The estimation of the deformation field T proceeds in a sequence of steps: We first detect the

region of interest containing the heart in the SA image using an object detector similar to the one

proposed in [Viola and Jones, 2002] as described in the previous chapter (see Section 4.2.1).

Within the bounding box, we automatically segment the myocardium of the LV at the ED

phase of the untagged MR images. Various automatic segmentation tools exist [Huang et al.,

2010, Rouchdy et al., 2007, Zhuang et al., 2010, Boykov and Kolmogorov, 2003] but here

we have used a probabilistic atlas-based segmentation technique developed in the previous

chapter (see Section. 4.2.4) to segment the untagged images. After this a gradient detector
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is used to highlight the epicardial and endocardial contours. The information from both the

segmentation and the gradient detector is combined into a spatially varying weighting function

which moderates the influence of the tagged and untagged images during the motion tracking.

During the motion tracking we register the images taken at time t1 to the reference image at

time t0 and obtain a transformation representing the motion of the myocardium at time t1

using a hierarchical B-spline transformation model and gradient descent optimisation method

[Rueckert et al., 1999]. We use the resulting transformation as an input for the next time

frame and continue this process until all the time frames in the sequence are registered to the

first phase [Chandrashekara et al., 2004]. The algorithm allows us to relate any point in the

myocardium at time t0 to its corresponding position throughout the sequence. The cost function

which is minimised during the registration can be defined as a weighted combination of four

different terms including an image similarity term Ci, a smoothness term Cs based on bending

energy [Rueckert et al., 1999], a valve plane tracking term Cv and a volume preservation term

Cr:

C = Ci + λCs + λvCv + λrCr (5.5)

In the following each of the steps and components mentioned above are described in detail.

5.4.2 Automatic detection and segmentation of the heart

The basic idea of this approach is to train a cascade of classifiers based on Haar features that

is capable of detecting anatomical structures in medical images [Viola and Jones, 2002,Pavani

et al., 2009, Zheng et al., 2007]. The classifier is then used to test the hypothesis whether a

given region of interest contains the chambers of the heart. This approach has already been

used in the previous chapter (Chapter 4) to identify the ROI containing the heart.

To train the classifier, we manually identified a bounding box around the location of the heart

in SA MR images. From these images, positive examples are generated for every slice, excluding

the basal and apical slices. Negative examples are generated by randomly sampling the images

in such a way that each example either contains no cardiac anatomy or only parts of the
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cardiac anatomy. To improve the robustness of the object detection [Viola and Jones, 2002] we

have modified the approach for the detection of the heart in cardiac MR images. The details

are presented in Section 4.2.1. After the heart is located we use the probabilistic atlas-based

segmentation technique developed in the previous chapter (Chapter 4) to segment the untagged

images. This segmentation technique uses a local affine registration and multiple component

EM estimation to deal with possible pathology. The entire process takes roughly 15 minutes

to segment one dataset on a standard dual-core laptop.

5.4.3 Weighted similarity measure for motion tracking

To exploit the complementary nature of the tagged and untagged MR images we have developed

a spatially adaptive weighting function that accounts for the different types of information

available: The 3D tagged MR images characterise well the motion inside the myocardium while

the untagged SA and LA images characterise the motion well at the epi- and endocardial

borders of the myocardium. Outside the myocardium are the blood pool or the lungs, neither

of which contains any useful information for cardiac motion tracking apart from the papillary

muscles. Thus, we would like to generate a weighting function that (a) is zero outside the

myocardial region, (b) maximises the weighting of the tagged images within the myocardium

and (c) increases the influence of the untagged images at the myocardial border. The spatial

weights for the tagged and untagged images are only generated for the reference image used for

the registration. In our case this is the end-diastolic phase.

The weighting for the untagged images, W u(p), is generated by multiplying the gradient of

the probabilistic myocardium segmentation with the gradient of the image intensity. This will

give high weight to those locations were both gradients are high which indicates a possible

presence of the myocardium boundaries. In contrast it will give low weight to regions in which

either gradient is low. Let S denote the segmentation of the untagged MR image I. This

segmentation assigns a label Λ = {Lbg, Lmyo, Lblood} to every voxel. A probability for the

myocardium P (p, Lmyo) can be derived from the multiple component EM segmentation [Shi

et al., 2011]. The weights for the untagged MR image are defined as
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W u(p) =
||∇Iσ(p)|| · ||∇Pσ(p, Lmyo)||

maxp∈I (||∇Iσ(p)|| · ||∇Pσ(p, Lmyo)||)
(5.6)

where ||∇Iσ(p)|| and ||∇Pσ(p, Lmyo)|| are the gradient of intensity and the gradient of

myocardium probability at location p after convolution with a Gaussian kernel G with standard

deviation σ = 10mm respectively.

The weights for the 3D tagged image are defined as

W t(p) =


1−W u(p) if L(p) = Lmyo

0 otherwise

(5.7)

An example of the resulting, spatially varying weight maps is shown in Figure 5.5. Given a

weight map, we define the similarity between two images IA, IB as the weighted normalised

cross-correlation between the image intensities:

S(IA, IB,W,T) =∑
p∈IAW (p)(IA(p)− µA)(IB(T(p))− µB)√∑
p∈IAW

2(p)(IA(p)− µA)2(IB(T(p))− µB)2
(5.8)

Here µA and µB denote the weighted average intensities in image IA and IB respectively. This

means that those voxels that have a low weighting contribute little to the similarity metric and

thus do not influence the registration. For simultaneous registration of the untagged and 3D

tagged images, the correlation is computed separately across the tagged images and untagged

images and combined into a single similarity measure:
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Ci = {
∑
s∈T

|Ωs|
[
S(I t,st0 , I

t,s
ti ,W

t,s,T)
]

+
∑
s∈U

|Ωs|
[
S(Iu,st0 , I

u,s
ti ,W

u,s,T)
]
}

/
∑
s∈U,T

|Ωs| (5.9)

Here |Ωs| denote the sum of weights in the image Is and s is the index of the image. Note that

the similarity measure takes into account that different images have usually a different number

of voxels and therefore the similarity measures must be weighted accordingly.

Figure 5.5 – This figure shows a SA MR image. The colour overlay shows the weight map. Red
and green colours indicate the weight for tagged images and untagged images respectively. The
transparency of the colour indicates the magnitude of weight.

5.4.4 Valve plane tracking

The mitral valve plane is an important landmark for accurate cardiac motion estimation but

difficult to extract from tagged or untagged SA images based on intensity information alone. By

tracking the valve end points in the long-axis views we are able to reconstruct the valve plane

motion and can incorporate information about the tracking of the valve plane as a boundary

condition into the motion tracking. We constrain the registration with tracked valve plane

using the following term:

Cv = −
∑

p∈Vt0
D(T(p), Vti)

|Vt0|
(5.10)
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Here Vti denotes the reconstructed valve plane surface at time ti and D is the surface distance

operator. The surface distance operator D(p, S) computes the distance between point p and

the closest point on the surface S in millimetres.

An overview of the tracking of the valve annulus is described below: For each untagged LA

image, we first detect the two end-points of the valve at the ED phase using a Haar feature

based cascade classifier [Pavani et al., 2009, Zheng et al., 2007] as well as a-priori knowledge

about the position of the valve points. As illustrated in Figure 5.6b, the line of the intersection

between the middle slice of the SA and HLA views as well as the line of the intersection between

the HLA and VLA views meet at point O. This point is used as anchor point for the valve

plane detection and can be see as the origin of the heart- or patient-centric coordinate system.

A bounding box can be generated relative to the point O indicating the likely location of the

valve plane. A Gaussian mixture model is applied to classify the voxels in the LA images into

air, soft tissue or blood. Only those voxels labelled as soft tissue are considered as candidate

valve points.

(a) (b) (c)

Figure 5.6 – Automatic detection of valve points: (a) A LA view of the heart showing the
orientation of the SA view and other LA views. (b) An example of the bounding box that
contains possible candidate pairs for the valve plane. (c) Some of the Haar-like features used for
detection of the valve plane points.

For each candidate valve point pi its normalised distance to the border of the bounding box

can be used to model the likelihood for a valve point at this location. In addition, the SA

view is usually planned at 90◦ relative to the LA view of the LV that intersects the apex and

the centre of the mitral valve plane. Therefore, SA plane and LA plane intersect in a straight

line that is perpendicular to the LA of the LV. The angle θ between this intersection line

and x-axis, as demonstrated in Figure 5.6a, determines the orientation of the LA. Ideally, if a
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point pi is a valve plane point, then a second valve point qi should be present in the direction

perpendicular to the LA direction. Thus, the valve plane can be found by detecting a pair of

points {pi,qi}. No dedicated feature extraction is needed for the orientation estimation, thus

reducing the computational complexity significantly. However, in practice, due the fact that

the valve annulus deforms and that the scan planes may not be planned in the ideal orientation,

the correct orientation of the valve plane may sometimes differ by a small angle θ. We therefore

test every point pi with every point in the neighbourhood of qj so that the set of candidate

valve-planes points is {pi,qj|∀i; j = i+ k} where k is a predefined distance. Then these pairs

of points are ranked by the likelihood tested from the Adaboost [Freund and Schapire, 1995]

classification.

Most clinical cardiac MR acquisitions include multiple LA views such as HLA, VLA and 3CH

views. All three views can provide useful complementary information. We therefore construct

three different detectors for the three LA views to detect a pair of valve points at each view.

Two layers of Adaboost [Freund and Schapire, 1995] are cascaded for each detector to avoid

the training to be biased by negative samples, of which there are about 10 times more than

positive samples. As different feature sets are used for the two layers, the hypotheses from the

first layer are maintained to be combined with the result from the second layer. The classifier is

trained on 30 patients and 10 healthy cases, for which the valve points were manually marked

by clinician.

The motion of the valve annulus can then be estimated by tracking template patches around

the detected end-points of the valve. To maintain robustness we track the valve points

simultaneously in three LA views. When the accuracy of the tracking is reduced by noise or

sudden motion in one view, the tracking in other views may be less affected and hence produces

good overall performance. Initially, the positions of the valve end points are aligned along the

LA across three LA planes at the ED phase and this alignment is maintained throughout the

tracking. We define two regions encompassing the valve end points in each LA view and evaluate

the similarity between images by cross-correlation. We reconstruct the mitral valve plane from

the tracked valve end-points via triangulation.
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5.4.5 Adaptive incompressibility for motion tracking

Several authors have proposed incompressibility constraints for the motion tracking of the

myocardium [Rohlfing and Maurer, 2001, De Craene et al., 2010] to reflect the fact that

the myocardium is largely incompressible while deforming. Such a constraint can be easily

integrated into the registration framework by adding a penalty term based on the determinant

of the Jacobian of the deformation [Rohlfing et al., 2003]. However, the question is whether

this constraint should be evenly applied in space. Partial volume voxels exist at the interface

between different tissue classes. We can determine the likelihood of myocardium of a given point

P (p, Lmyo) from the multiple component EM segmentation developed in the previous chapter.

We formulate the incompressibility constraint using the following equation based on [Rohlfing

et al., 2003]:

Cr =
∑
ΩSA

ωpEJacobian(p,T) (5.11)

In this equation, ΩSA denotes the domain of untagged SA image and the Jacobian penalty term

is defined as

EJacobian(p,T) = | log(JT(p))| (5.12)

This penalises any volume change of the transformation T. The penalty term is weighted

according to the likelihood of a voxel containing myocardium:

ωp =
λj

| log(P (p, Lmyo))|+ ε
(5.13)

Here ε is a small constant term, λ is set to 0.5 in our experiment and j denotes the iteration

during the optimisation. j is introduced in the equation to allow more flexible deformation at

the beginning and avoid the local minimum.

During the motion tracking the cost function is optimised using a gradient-descent optimisation

as proposed in [Rueckert et al., 1999]. In the context of this optimisation this means that

the volume preservation term depends on the current iteration in the optimisation. Such
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an adaptive volume preservation constraint has several advantages: Firstly, it assigns higher

weights to the constraint of voxels likely to be myocardium and lower weights on voxels outside

the myocardium. Secondly, it overcomes one of the disadvantages of the incompressibility

constraint, namely its tendency to not deform away from the initial configuration as this violates

the incompressibility constraint. This means that the initial configuration often corresponds

to a degenerate local minimum of the cost function. Progressively increasing the weight for

the incompressibility constraint during the optimisation to avoid local minima was originally

proposed and tested in [Rohlfing et al., 2003]. This allows the initial deformation to be driven

by the similarity measure only and enforces the incompressibility constraint later during the

optimisation. This approach can deal better with large deformations as they occur in the

myocardium.

5.5 Motion tracking in patients undergoing cardiac resyn-

chronisation therapy

In order to analyse cardiac motion in patients undergoing cardiac resynchronisation therapy,

SDI is calculated from those cardiac phases in which the maximum of regional function (volume

output, strain) is reached. For each of the 16 segments of the left ventricular myocardium

model according to American heart association (AHA) model [Cerqueira et al., 2002] the phase

to reach maximum regional function is recorded. From the 16 phases, the SDI is then defined

as the standard deviation of these phases, with a high SDI indicating more dyssynchrony

[Jaochim Nesser et al., 2007]. To allow comparison between patients with different heart rates,

SDI is usually expressed as a percentage of the cardiac cycle, which can be determined from the

temporal resolution of the image sequences. For SDI from regional volume and motion analysis,

those segments whose output/strain magnitudes are less than 5% of the maximum function of

other segments are excluded.
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5.5.1 Parcellation of the myocardium

For each subject, we define the 16 standard segments of the left ventricular myocardium

according to the AHA model [Cerqueira et al., 2002]. This is done by fitting a pre-constructed

myocardium model with 16 segments to the automatically segmented myocardium [Shi et al.,

2011] using non-rigid image registration [Rueckert et al., 1999]. This provides a 16 segment

parcellation of the myocardium at the end-systolic phase for each subject. From this patient-

specific model we can generate a 16 segment endocardial surface for regional SDI analysis of

LV volume. An example of this is shown in Figure 5.7.

Figure 5.7 – The parcellation of the endocardial surface into 16 segments.

5.5.2 Regional SDI analysis

From the 16 segment endocardial surface model, we define the LA of the LV as the line between

the centre of the apical segments to the centre of the basal segments. We propagate the surface

using the obtained motion fields and evaluate the regional LV (blood) volume for each time

frame. The regional volume SDI is calculated from the time frame in which the minimum

volume is reached for each of the 16 segments.

In addition, the regional strain SDI is calculated in a similar fashion: From the 16 segment



112 Chapter 5. A comprehensive cardiac motion estimation framework

myocardial parcellation, the strain of each voxel is averaged over every segment. We here

use the Lagrangian strain tensor [Ogden, 1997] which is defined as E = JtJ − I where J

denotes the Jacobian matrix of the transformation and I the identity tensor. The strain tensor

describes the strain along any direction. Strain can then be calculated in the longitudinal,

radial and circumferential directions defined in the cardiac coordinate system [Elen et al.,

2008]: Longitudinal strain El = Lt · E · L, radial strain Er = Rt · E · R and circumferential

strain Ec = Ct · E ·C.

5.6 Evaluation

In our experiments we have used images from 12 subjects, of which six are CRT candidates

and six are normal volunteers. Details describing the data used can be found in Section 5.2.

To evaluate the tracking accuracy within the myocardium we have manually tracked 16

landmarks in 3D in each dataset. These landmarks correspond to intersections of the tag

lines in the tagged images. We select one landmark close to the centre of each AHA segment

excluding the apex. The landmarks are tracked backwards from the last frame to the first

frame of the sequence. This avoids situations in which unpredictable tag fading and degrading

makes tag tracking impossible. We manually identify the landmarks on the 3D tagged images

(see Figure 5.4a for an example) and we then refine the position of the landmarks by applying

a centre-of-gravity operator using a window size of 4. The centre of gravity of a region of voxels

is defined as the average of their positions, weighted by their intensity. This allows not only

for sub-voxel accuracy but also reduces inter- and intra-subject variability. Examples of how

the landmarks are selected and the landmark positions are illustrated in Figure 5.11.

Since we are not able to track landmarks near endo- and epicardial borders reliably due to

tag fading the accuracy of the tracking near the endo- and epicardial surfaces is assessed

by computing the distance between the propagated surfaces and their manually segmented

counterparts in each frame. For this we have manually segmented both the end-diastolic

myocardium and the end-systolic myocardium for both SA and LA MR images. We extract
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Table 5.1 – Inter-observer variance of the relative error for the surface tracking of the endo- (ED)
and epicardial (EP) contours for the different SA and LA views. The error is given as mean and
standard deviation

SA 2CH 4CH
EP 4.3%± 1.2% 3.4%± 0.6% 3.5%± 1.8%
ED 7.1%± 2.1% 4.3%± 1.4% 3.9%± 0.8%

smooth endo- and epicardial surfaces and contours from segmentations using shape based

interpolation [Grevera and Udupa, 2002] and marching cubes [Lorensen and Cline, 1987].

In addition, we have analysed the relative inter-observer variability of the landmark tracking

on a subset of three datasets (one patient and two normal subjects). Since the intrinsic motion

patterns of patients and normal volunteers may be different we use the relative tracking error

ρ which is defined as:

ρ =
‖pmanual − ptracked‖
|dpmaximum|

(5.14)

where p is a point in 3D, and dp denotes the true displacement of p. For surfaces the relative

error is defined in terms of the distance between closest vertices on the surfaces.

The relative inter-observer landmark tracking error is 7.8%±4.4%. The results of relative inter-

observer surface tracking error are shown in Table 5.1. In general, it is more difficult to identify

the endocardial surface than the epicardial surface. This is reflected by the relative inter-

observer variance and the relative errors in Figures 5.8 to 5.10 as the error for the endocardial

surface tracking is always higher than the error for the epicardial surface tracking.

5.6.1 Accuracy results

To assess the quality of the motion tracking inside myocardium we compare the position

of the manually tracked landmarks with the landmark position predicted by the proposed

motion tracking algorithm. We have evaluated six different strategies for the myocardial
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Figure 5.8 – This figure shows the relative landmark error in % when comparing the results of
manual tag tracking with the registration-based motion tracking. The lines correspond to the
mean while the bars indicate the variance. The blue solid line indicates the results using untagged
images only, the red dash line shows the results using 3D tagged images only and the green dash-
dot line shows the results using the combined motion tracking using both the tagged and untagged
MR images.

motion estimation: (a) using untagged images only, (b) using tagged images only, (c) combined

tagged and untagged images without constraints, (d) combined tagged and untagged images

with valve plane constraint, (e) combined tagged and untagged images with incompressibility

constraint and (f) combined tagged and untagged images with all constraints. All methods

use a bending energy constraint described in [Rueckert et al., 1999] to enforce smoothness of

the transformation with a λ = 0.000001. In our experiment λv and λr are set to 0.02 and 0.8

respectively. The control point grid spacing of the FFDs has three levels starting from 40mm

to 10mm and a corresponding image resolution from 4mm to 1mm. The maximum number of

iterations of each step is 40. The relative error between the manually and automatically tracked

landmarks (eq. 5.14) using all different approaches is shown in Figure 5.8 and Figure 5.9. The

average maximum displacement for patients and volunteers is shown in Table 5.2.

The results indicate that the combined registration using tagged and untagged images performs

better than the registration using either tagged or untagged images alone. The error of the

motion tracking using tagged images only increases over the cardiac cycle and reliable tag

tracking was achieved only in the first phases of the image sequences. This poor performance

primarily comes from tag fading and degrading which introduces noise into the registration and

makes tracking of large deformations difficult. Since the temporal resolution of the 3D tagged



5.6. Evaluation 115

Figure 5.9 – This figure shows the relative landmark error in % when comparing the results
of manual tag tracking with registration-based motion tracking. All methods are based on the
combined motion tracking. The blue solid line indicates the results using valve plane constraint,
the red dash line shows the results using incompressibility constraint and the green dash-dot line
shows the results using the comprehensive motion tracking with both constraints.

MR images is usually lower than that of the untagged MR images, the myocardial motion may

include areas in which there is large motion between two consecutive time frames. If there is a

sufficiently large motion between two time points, the motion tracking algorithm may confuse

one tag line with another tag line unless anatomical information is used. This type of error is

often cumulative. The motion tracking using untagged images is not expected to perform well

in this evaluation due to lack of motion information within the myocardium. Nevertheless, the

results show that the motion tracking using untagged images is able to limit the magnitude of

the errors. This is probably due to accurate and consistent estimation of radial motion over

the cardiac cycle. The primary source of error in this case comes from the underestimation of

the longitudinal and circumferential motion which does not accumulate over time. Combining

tagged and untagged images clearly improves the performance. The incompressibility constraint

helps to constrain the distribution of the error by providing a volume preservation force but

tends to underestimate the motion. Moreover, the valve plane tracking helps the longitudinal

motion estimation so the error is reduced. Overall, the comprehensive motion tracking method

performs best.

A realistic estimation of cardiac motion should include radial, circumferential and longitudinal

motion. An accurate tracking of the endocardial and epicardial boundaries on untagged

MR images indicates good radial and longitudinal motion estimation. Thus we compare the

difference between the propagated surfaces and the manual surfaces using the relative surface
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Figure 5.10 – This figure shows the relative surface distance when comparing the result of an end-
systolic segmentation (propagated from the end-diastolic time point) with a manual end-systolic
segmentation. Red indicates the results using untagged images, yellow indicates the results using
tagged images, green shows the results of the combined motion tracking, cyan shows the results
using the valve plane constraint based on the combined motion tracking, blue indicates the results
using the incompressibility constraint based on the combined motion tracking and magenta shows
the results of the proposed comprehensive method. Results are shown for the endocardial surface
(ED) and the epicardial surface (EP).

Table 5.2 – Average maximum displacement (based on manual tracking) for patients and
volunteers.

Landmarks Endocardial surface Epicardial surface
Patients 5.3 mm 4.1 mm 2.4 mm

Volunteers 10.2 mm 8.6 mm 5.7 mm

error defined in eq. (5.14). From Figure 5.10 it can be seen that the combined motion tracking

using tagged and untagged images outperforms the motion tracking using tagged images alone

on every occasion. The motion tracking using tagged images alone performed poorly since tag

fading makes it extremely difficult to track the myocardial boundaries accurately. Moreover,

the combined motion tracking performs much better than using motion tracking in untagged

images only on epicardial LA contours. This is due to the limited number of slices in the SA MR

images and the low number of LA MR images in typical clinical acquisitions. The longitudinal

motion information within the myocardium derived from the tagged images helps to estimate

longitudinal motion more accurately. In addition, the valve plane constraint improves tracking

of the contours in the LA views. The incompressibility constraint does not yield a significant

improvement alone compared to the combined method. The median error of healthy controls

over all frames is 1.44mm for landmark tracking, 1.04mm for endocardial surface tracking and
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(a) (b)

Figure 5.11 – This figure shows the manual landmark identification and distribution of the
landmarks.

0.76mm for epicardial surface tracking using the comprehensive method, compared to the voxel

size 1.45mm for the untagged images and 1mm for the 3D tagged images.

Figure 5.12 – This figure shows the mean and standard deviation of the radial motion of all
AHA segments estimated from different methods. The blue solid line indicates the results using
untagged images only, the red dash line shows the results using 3D tagged images only and the
green dash-dot line shows the results using the combined motion tracking using the proposed
comprehensive method.

It should be pointed out that both evaluation metrics used here are biased due to different

reasons: One reason for this bias is that the ground truth is obtained from either the tagged

image or the untagged image. Another reason is that potential small misalignment between

untagged and tagged images exists even after spatial alignment. Thus the relative landmark

error is biased toward tagged only method and the relative surface error is biased towards

untagged only method. However, the comprehensive method performed best in both evaluations

and neither of the evaluations is biased towards the comprehensive motion tracking method.
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Figure 5.13 – This figure shows the mean and standard deviation of the longitudinal motion
of all AHA segments estimated from different methods. The blue solid line indicates the results
using untagged images only, the red dash line shows the results using 3D tagged images only and
the green dash-dot line shows the results using the combined motion tracking using the proposed
comprehensive method.

Figure 5.14 – This figure shows the mean and standard deviation of the circumferential motion
of all AHA segments estimated from different methods. The blue solid line indicates the results
using untagged images only, the red dash line shows the results using 3D tagged images only and
the green dash-dot line shows the results using the combined motion tracking using the proposed
comprehensive method.

Furthermore we can observe from Figure 5.16 that the proposed motion tracking estimates

radial, circumferential and longitudinal motion well.

Radial, longitudinal and circumferential motion are calculated from six normal volunteers. The

mean and standard deviation of these motions from all AHA segmented are plotted throughout

the cardiac cycle to access the performance of different algorithms. Figure 5.12 shows the

results of the radial motion where the underestimation can be observed from the tagged only

method. Figure 5.13 shows the results of the longitudinal motion where the underestimation can

be observed from the untagged only method. It is also noticeable that the variance between
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Table 5.3 – Change of myocardial mass computed using the different motion tracking methods.
The algorithms are untagged only, tagged only, combined without constraints, combined with
incompressibility constraint, with valve plane constraint and with all constraints.

Untagged Tagged Combined Incompressible Valve All
+16% -28% -14% -8% -17% -10%

Table 5.4 – Evaluation of EF accuracy defined in eq. (5.14). The gold standard is used
here manual is the manual segmentation. The algorithms are TomTec, untagged only, combined
without constraints, combined with incompressibility constraint, with valve plane constraint and
with all constraints.

TomTec [Kuhl et al., 2004] Untagged Combined Incompressible valve All
3.3% 10.4% 5.2% 7.6% 3.5% 3.8%

different segments are large. This is probably due to the fact that the longitudinal motion

predominately happens in basal segments other than in apical segments. Finally, Figure 5.14

shows the results of the circumferential motion where the underestimation can be observed from

the untagged only method. These figures further confirm that the proposed motion tracking

estimates radial, circumferential and longitudinal motion better than tagged only or untagged

only methods.

(a) (b) (c) (d)

Figure 5.15 – This figure shows the SDI curves from a normal subject and a CRT candidate.
(a) regional volume SDI for a normal subject, (b) strain SDI for a normal subject, (c) regional
volume SDI for a CRT candidate and (d) strain SDI for a CRT candidate.

5.6.2 SDI results

In this section we use the TomTec 4D LV analysis tool V2.0 based on [Kuhl et al., 2004] during

our study for six CRT candidates and two normal volunteers. One of the common problems for
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mm

     Radial             Longitudinal         Circumferential

Tagged

Untagged

Proposed

Figure 5.16 – This figure shows a visualisation of the myocardial motion field in radial,
longitudinal and circumferential directions. The first row shows the motion field derived from
tagged images only. The second row shows the motion field derived from untagged images only
and the third row shows the motion field derived from the comprehensive motion tracking . The
red circle indicates under or over estimation of the motion.

motion estimated from tagged MR is that the mass of the myocardium is not preserved. We

have assessed the myocardial mass change resulting form the extracted motion patterns. The

results are presented in Table 5.3. The volume is calculated from the propagated end-systolic

manual segmentation. The mass of the myocardium is overestimated by motion tracking from

untagged images and is also underestimated by motion tracking from the tagged images. The

mass of the myocardium is underestimated using the valve plane constraint alone. Finally,
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the mass is significantly better preserved with the proposed combined registration with the

incompressibility constraint.

EF, regional volume and strain SDI can also be derived from the motion tracking result from

untagged images as well as from the comprehensive motion tracking. From the results in

Figure 5.10 it is clear that the method based on tagged images performs poorly for the tracking

of the endo- and epicardial surfaces. However, this tracking is essential for the assessment

of global functional parameters such as EF and local functional parameters such as regional

volume output, radial motion and radial strain. The result from the motion tracking using

tagged images only is quite poor for the SDI analysis and thus has been excluded from further

analysis. The accuracy is defined as:

γ = ‖GSmeasurement − ALmeasurement
GSmeasurement

‖ (5.15)

where GS denotes the gold standard and AL denotes the automatic measurement. This

accuracy measurement is chosen due to its robustness to variation between healthy volunteers

and patients. Table 5.4 shows the accuracy for ejection fraction, Table 5.5 shows region volume

SDI and Table 5.6 shows the regional strain SDI and includes a comparison against clinical

measurements obtained using the TomTec system [Kuhl et al., 2004]. The gold standard for

the EF are the manually segmented endocardial surfaces at both end-diastolic and end-systolic

phases. TomTec as well as the methods using the valve plane constraint performed quite well.

However, the untagged motion tracking performed poorly mainly due to underestimation of the

EF. It suffers from the lack of longitudinal motion. Similarly, the methods without valve plane

constraint underestimate the longitudinal motion within the LV blood pool. The same result

can be observed for the regional volume SDI measure.

For regional strain SDI we used linear regression and the R2 coefficient to measure the

correlation with regional volume SDI obtained from clinical measures. We use correlation

since no ground truth is available. The regional strain SDI derived from the untagged images

does not agree well with the clinical regional volume SDI measurements due to the lack of
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Table 5.5 – Evaluation against TomTec’s regional volume SDI measurement. The algorithms are
untagged only, combined without constraints, combined with incompressibility constraint, with
valve plane constraint and with all constraints.

Untagged Combined Incompressible Valve All
9.8% 6.1% 7.0% 5.4% 5.6%

Table 5.6 – Evaluation of regional strain SDI against the TomTec’s regional volume SDI. Linear
regression and R-Square distance are used instead of accuracy. Negative value indicates negative
correlation. The algorithms are untagged only, combined without constraints, combined with
incompressibility constraint, with valve plane constraint and with all constraints.

Untagged Combined Incompressible Valve All
R2 -0.77 0.64 0.70 0.71 0.78

circumferential and longitudinal strain. However, the regional strain SDI derived from the

combined motion tracking method correlates better. Due to the different nature of strain and

volume SDI, both methods do not agree with each other strongly. Finally, the incompressibility

constraint and valve plane constraint both contribute to better correlation of regional strain

SDI and volume SDI.

5.7 Discussion and conclusion

We have presented a novel method for cardiac motion tracking using 3D tagged as well as

untagged image sequences from SA and LA views simultaneously. The key advantage of the

proposed method is the simultaneous use of complementary motion information contained in

the tagged and untagged images. Since untagged images are routinely acquired as part of

clinical MR image acquisition, no extra scans are necessary. Our evaluation shows that there is a

significant improvement of registration accuracy both in terms of tag tracking and segmentation

propagation. We have proposed a spatially adaptive weighting to help extract complementary

information from both tagged and untagged MR images. The rich anatomical information in

untagged MR images, especially on the epi- and endocardial boundary, is used to compensate

for problems such as tag fading in the tagged images. On the other hand, complete motion
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information in 3D from the tagged images is helpful to estimate circumferential and longitudinal

motion which is difficult to extract from untagged MR images. In addition to the spatially

adaptive weighting, we have added a valve plane tracker to additionally constrain and guide

the motion estimation in particular in the longitudinal direction.

The analysis of global and regional cardiac function has been performed by mapping a standard

AHA model [Cerqueira et al., 2002] onto our segmentation. A comparison of our cardiac

analysis and a state-of-the-art commercial software tool has been performed. The proposed

motion tracking method shows very good correlation with the ejection fraction and the regional

volume SDI.

By combining complementary information using a spatially dependent weighting, incom-

pressibility and valve plane constraint, we have successfully built an accurate and realistic

cardiac motion analysis framework. The accuracy in terms of landmark and surface distances

is improved significantly. Moreover, 4D motion with complete radial, longitudinal and

circumferential components is estimated consistently during a single process. In this work,

the registration framework uses a numerical solution to approximate the partial differential

equations and calculate the gradient of the energy function. The optimisation strategy is

computationally expensive. In addition, it is difficult to distinguish the motion between the

myocardium and its surrounding tissues. In the next chapter, we will propose a novel SFFD

based registration framework with analytical optimisation to address these challenges.



Chapter 6

Registration using sparse free-form

deformations

The work in this chapter is based on the following published paper:

• Wenzhe Shi, Xiahai Zhuang, Luis Pizarro, Wenjia Bai, Haiyan Wang, Kai-Pin Tung,

Philip Edwards, Daniel Rueckert. (2012). Registration using sparse free-form deforma-

tions. Medical Image Computing and Computer Assisted Intervention (MICCAI), in

Press.

6.1 Introduction

Image registration is one of the fundamental tasks in medical image analysis. It is a key

component of both cardiac motion tracking and segmentation. The classic FFD registration

approach [Rueckert et al., 1999] is widely used for medical image registration. Several

improvements of the method have been proposed in the past, including a diffeomorphic variant

of FFDs to generate more realistic deformation [Rueckert et al., 2006, De Craene et al., 2012]

which ensures a one to one mapping; a temporal FFD to allow 4D deformation [Metz et al.,

124
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2011]; an analytical expression for the mutual information based similarity metric to accelerate

the optimisation [Modat et al., 2010] as well as different optimisation strategies [Glocker et al.,

2008, Klein et al., 2010]. Despite its popularity, little effort has been devoted to improve the

accuracy of the formulation compared to other registration methods such as optical flow [Horn

and Schunck, 1981, Mémin and Pérez, 2002, Roth and Black, 2005, Sun et al., 2010] and the

Demons approach [Thirion, 1998,Vercauteren et al., 2008].

(a) (b) (c) (d) (e) (f) (g)

Figure 6.1 – Sparse representations of FFDs: (a) Target image; (b) source image; (c) deformation
field induced by the FFDs φ in x-direction; (d-g) FFDs at four different levels.

In this chapter, we address one main difficulty of the classic FFD approach, namely the

conflict between the robustness of the registration and the ability to model highly-localised

and potentially discontinuous deformations. This conflict stems from the fact that the FFD

approach uses a smooth B-spline basis to model the contribution of each control point to

the deformation. To model global and smooth deformations a coarse control point spacing is

typically used. To allow very localised deformations a finer control point spacing is required.

However, this can make the FFD-based registration less robust as the model has far more

variables which must be optimised. A conventional approach to address this issue uses a

coarse-to-fine approach in which the initial coarse control point mesh is successively subdivided

to produce finer control point meshes [Rueckert et al., 1999].

The standard smoothness constraints for non-rigid registration methods [Rueckert et al.,

1999, Horn and Schunck, 1981, Thirion, 1998] assume that the deformation within a neigh-

bourhood changes only gradually since the underlying deformation itself is smooth. Combining

the implicit smoothness of the B-spline basis and the explicit smoothness constraint in the

regularisation, the FFDs-based registration will produce smooth deformations.

As mentioned above, the control point grid spacing has a significant impact on the ability
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to capture motion discontinuities robustly. Previous research focussed on the adaptive

parametrisation of the B-spline control point grid [Schnabel et al., 2001,Rohlfing and Maurer,

2001, Hansen et al., 2008] has been driven by the intensity information in the images. An

improved model should enable more control points to be placed in the area in which more

flexibility for the modelling of deformations is required.

Many other approaches to image registration have been proposed that aim to overcome the

conflict between robustness and accuracy in the motion estimation, in particular in the field of

optical flow [Mémin and Pérez, 2002, Roth and Black, 2005, Sun et al., 2010]. More recently,

sparse coding methods have been proposed to evaluate the patch similarity between two images

[Roozgard et al., 2011] and to constrain the transformation [Shen and Wu, 2010]. However, to

the best of our knowledge, no work has addressed the conflict between robustness and accuracy

in the context of FFD-based registration.

6.1.1 Overview and contributions

In this chapter, we introduce a sparse representation for FFDs to estimate the registration

transformation. Our approach is inspired by the work in [Roozgard et al., 2011, Shen and

Wu, 2010]. This simple model uses standard smoothness constraints and only imposes one

assumption on the deformation, namely that the deformation is sparse in the parametric space

of the deformation. The assumption is generally true because the deformation between images

is usually simpler than the actual images themselves. In this work, we use a multi-level FFD to

represent the deformations in a parametric form. In this multi-level FFD each level consists of a

B-spline control point mesh with increasingly finer resolution. As can be seen from Figure 6.4,

the sparsity assumption holds in general for multi-level FFDs. Based on this assumption, we

formulate the registration of two images using a sparse multi-level FFDs representation of the

control points. We introduce a regularisation term to impose smoothness at each level and a

sparsity term to enforce coupled multi-level sparsity.

The novelty and contributions of this chapter are the introduction of a sparsity model that

avoids the a priori selection of an appropriate control point grid spacing. Furthermore, the
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approach reduces the conflict between global smoothness (robustness) and the local level

of detail of the transformation (accuracy) by optimising the different levels of the FFDs

simultaneously with a sparsity constraint. These advantages allow for the robust estimation of

deformation fields in the presence of highly localised or discontinuous deformations. We refer

to this new approach as SFFD. In the evaluation, we demonstrate that the proposed method

can consistently capture localised motion with high accuracy.

6.2 Classic free-form deformation model

In the classic FFD registration [Rueckert et al., 1999], a non-rigid deformation φ = [X Y Z]T

is represented using a B-spline model in which the deformation is parameterised using a set of

control points ψ = [U V W ]T such that

φ =


B 0 0

0 B 0

0 0 B

ψ , (6.1)

where B denotes the matrix of the B-spline basis functions. To find the optimal deformation

between two images, the registration minimises an energy functional E written as a function

of ψ, which is typically a combination of two terms E(ψ) := ED(It, Is ◦ φ) + ER(ψ). The

term ED is a data constraint measuring the similarity between the target image It and the

transformed source image Is ◦ φ. The term ER is a regularisation constraint that enforces

a smooth transformation. The energy function is typically minimised using gradient descent

approaches [Modat et al., 2010,Klein et al., 2010] or discrete optimisation approaches [Glocker

et al., 2008].
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6.3 Sparse free-form deformation model

To be able to deal with large, global deformations and to improve the robustness, the classic

FFD registration uses a multi-level approach: First, the optimal registration parameters are

determined for a control point grid with large spacing. The grid is then successively subdivided

to capture local deformations [Rueckert et al., 1999]. This requires an a-priori choice of the

initial and final control point spacing. Furthermore, each level is optimised separately and

once a level has been optimised it is no longer updated, leading to suboptimal registration

results as can be seen in Figure 6.2. It was suggested in [Shen and Wu, 2010] that a realistic

transformation can be easily embedded into a sparse representation. We postulate that an

automatic selection of control points across different levels can be achieved by optimising all

FFD levels simultaneously while using a sparsity constraint.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 6.2 – Visual comparison between the classic FFDs and the proposed SFFD using the
colour scheme from [Baker et al., 2007]. The colour range corresponds to different direction and
magnitude of the transformation. (a) and (g) show the rubber whale image from the Middlebury
dataset and a frame from the cardiac B experiment, respectively;(f) and (l) display the ground
truth transformations with noticeable motion discontinuities; (b-d) and (h-j) show the estimated
motion with the classic FFDs approach for 512/8mm, 256/4mm, and 64/1mm control point
spacing; (e) and (k) exhibit the estimated motion with the proposed SFFD approach where
λNS = 0.04.
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6.3.1 Sparse representation of transformation

In this section, we propose estimating the transformation φ with a sparse representation of

the control points ψ. We use a multi-level FFD representation [Schnabel et al., 2001], ψ =

[U1...Um V 1...V m W 1...Wm]T , as it is well suited for sparse representations. Accordingly, we

utilise a multi-level B-splines basis B = [B1...Bm]. The transformation φ is computed as in eq.

(6.1) with the above redefinitions of ψ and B. The multi-level FFD is illustrated in Figure 6.1.

Our assumption is that a typical FFD can be sparse in its representation as presented in

Figure 6.4.

Basis pursuit denoising [Donoho and Huo, 2001] is a mathematical optimisation that balances

the trade-off between sparsity and reconstruction fidelity. In the context of image registration,

the problem can be formulated as:

arg min
ψ

E(ψ) := ||It − Is ◦ φ||22 + ||ψ||1 , (6.2)

Hhere the first term corresponds to the sum of squared differences (SSD) between the target

image and the transformed source image. The second term enforces the sparsity of the solution

ψ by using the L1-norm. The L1-norm is used to enforce sparsity because it is convex and

has many favourable theoretical results [Donoho and Huo, 2001, Roozgard et al., 2011, Shen

and Wu, 2010]. In general, an arbitrary (dis)similarity measure can be utilised in the data

term ED(It, Is ◦ φ), including information theoretic measures such as MI or its normalised

counterparts NMI [Studholme et al., 1999].

Following these principles, we formulate a novel registration approach, namely the SFFD model,

as

arg min
ψ

E(ψ) := ED(It, Is ◦ φ) + λR
∑
i∈[0,m]

ER(ψi) + λS||ψ||1 , (6.3)

with constants λR, λS ∈ IR+ weighting the regularisation term and the sparsity term,

respectively. Note that the regularisation term imposes smoothness at each level of the multi-

level FFD independently, while the sparsity term enforces coupled multi-level sparsity. This
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allows us to actively determine the importance of the control points across all levels in a joint

manner, not independently as in the classic FFD framework. This strategy can be used to

estimate deformations fields robustly and to preserve motion discontinuities, as it will be seen

in the experimental validation. The SFFD model is at the same magnitude of the computational

complexity as the classic FFD model.

We optimise eq. (6.3) using the interior point method of [Kim et al., 2007] that uses a log barrier

function to make the sparsity term differentiable. The parameter λS is normalised between the

data and the sparsity terms using the finite convergence to zero property. That is, for the

L1-regularised least squares problem, convergence is achieved for a finite value λmax of λS. The

value of λmax can be determined using eq. (4) in [Kim et al., 2007]. In our experiments, we use:

λNS = λS/λmax . (6.4)

For completeness, the reader will find the partial derivatives of the similarity measures and the

regularisation terms with respect to ψi in the appendix B.

6.4 Results

6.4.1 Datasets

In this work, we have evaluated the proposed SFFD against the classic FFD model on

four different datasets. The datasets we have used for evaluation include the Middlebury

benchmarking dataset (which is a standard dataset widely used in computer vision), 2D

cardiac MR images with synthetic smooth and discontinuous motion, and 3D cardiac MR

image sequences.

For basic benchmarking we have used six pairs of 2D greyscale natural images from the Mid-

dlebury benchmark training dataset [Baker et al., 2007]. The Middlebury benchmark dataset

contains deformations with multiple independently moving rigid objects and background. For
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this dataset the ground truth deformation between each pair of images is available. The ground

truth is derived from the camera position and parameters. There is a relatively large diversity

in motion discontinuities present in this dataset. Due to the above reasons, it is used as a

primary benchmark to test and develop the SFFD registration.

In addition, we have tested our approach using 2D and 3D cardiac MR images. For 2D cardiac

MR images a synthetically generated transformation has been applied to the images using

sinusoidal function as proposed in [Pizarro et al., 2011]. A single sinusoidal function is used to

generate a group of 10 data with smooth motions using different magnitudes and frequencies.

This set of data will be referred to as dataset Cardiac A. Also, a set of 10 discontinuous

motions dataset (Cardiac B) is generated where multiple sinusoidal functions are fused into a

discontinuous motion using segmentation information which can be seen in Figure 6.2l. The

registration recovers the synthetic motion between the original image and the transformed

image. For the above datasets, the average error between the ground truth deformation and

the deformation obtained after registration is measured.

We have also used 13 3D cardiac cine MR images dataset (Cardiac C) from normal volunteers

to assess the proposed registration framework. The image resolution is 1.25 × 1.25 × 8mm.

We estimate the accuracy based on the tracking of myocardial boundaries of the left ventricle.

Manual expert segmentations of endo- and epicardial surfaces are available at both ED and ED

phases by a clinician. We then register the ES phase directly to the ED phase. We evaluate

the surface distance between propagated myocardial surface and manual myocardial surface at

ES phase.

6.4.2 Implementation details

During the optimisation of the classic FFDs, we use seven different levels of image resolution.

In the coarsest level each voxel is subsampled by a factor of 64 in each dimension. We use B-

spline interpolation for the subsampling as evidence suggests that B-spline based interpolation

is superior than linear interpolation [Sun et al., 2010, Modat et al., 2010]. The coefficient for

the smoothness penalty is set to 0.001 as in the original approach [Rueckert et al., 1999] if
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NMI is used as a similarly measure. If SSD is used as a similarity metric the coefficient for the

smoothness penalty is set to 1 since SSD induces stronger deformations.

One of the most crucial parameters of the classic FFD registration is the control point grid

spacing. We create a spacing at each image pyramid level by subdividing the FFD from the

previous level. We have evaluated different initial control point spacings at the coarsest level

varying from 512mm to 64mm while the control point spacings at the final level varies from

8mm to 1mm. For the SFFD, we use a multi-level FFD with the coarsest level having a control

point grid spacing of 64mm and finest level having a spacing of 1mm. The number of image

pyramid levels and the smoothness penalty λR are the same for both methods. Finally, NMI is

used as similarity measures for the 3D cardiac MR images and SSD is used for the 2D cardiac

MR images with simulated motion as well as for the Middlebury benchmark. The Middlebury

benchmark is an optical flow based benchmark where the assumption of constant intensity

generally holds. The assumption holds for the synthetic dataset since no noise is introduced in

our case. The constant intensity assumption makes SSD a preferable candidate as the similarity

measure in these two cases. On the other hand, NMI has been proven to be a robust similarity

measure especially for clinical MR images with time varying contrast and noise.

6.4.3 Effects of the sparsity constraint

In this section we evaluate the effects of the sparsity constraint in the Middlebury dataset. The

Middlebury benchmark provides accurate motion ground truth from real images and contains

both discontinous motion and smooth motion. We first apply the classic FFDs approach to

the data. We use three different levels of resolutions and a smoothness parameter of 1. SSD is

selected as the similarity measure. It is noticeable in Figure 6.3 that the accuracy is different

from image to image. From our observation, the optimal initial grid spacing depends highly on

the level of discontinuity of the data. We applied a comparable SFFD approach with largest

grid spacing of 64mm to the benchmark. The SFFD approach shares the same number of image

resolutions, smoothness parameter and similarity measure with the classic FFDs. In Figure 6.3,

the performance of different sparsity constraints is similar across the different images. There
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is a significant increase of the accuracy when the sparsity parameter is first introduced and

the accuracy remains stable until around λNS = 0.16 with a sharp decrease towards the final

point of convergence. There is no obvious bias toward different degrees of discontinuity in the

dataset.

(a) (b)

Figure 6.3 – The accuracy of different parameters. Each line corresponds to a pair of 2D images
in the Middlebury benchmark. (a) The influence of different initial grid spacing to the classic
FFDs; (b) The influence of different normalised sparsity parameter λNS to the SFFD.

To observe the effect of the sparsity parameter, we plot the L1-norm of the SFFD’s parametric

basis against the displacement in Figure 6.4. The L1-norm of the parametric basis decreases

dramatically when the parameter is introduced. It finally reaches zero when the finite

convergence condition is met. On the other hand, the L1-norm of the displacement is stable

without significant decrease until the parameter becomes too large. There is in general a

difference of a magnitude between the L1-norm of the displacement and the L1-norm of the

parametric basis when the sparsity parameter is introduced. This shows that the displacement

of the FFDs can be represented by a sparse representation in the parametric space if the sparsity

constraint is enforced.

In the SFFD framework, one parameter is the coarsest grid spacing in the multi-level FFD

representation. Here, we examine the effect of different coarsest grid spacing. The results

are presented in Table 6.1. The accuracy increases slightly from 32mm to 64mm. It remains

steady from 64mm to 512mm. Overall, the coarsest spacing does not have a huge impact on
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(a) (b)

Figure 6.4 – (a) The L1-norm of the parametric basis of the SFFD with respect to different
normalised sparsity parameter λNS ; (b) The L1-norm of the displacement at the finest FFDs level
of the SFFD with respect to different normalised sparsity parameter λNS .

Table 6.1 – Median and IQR of accuracies from the SFFD with different coarsest spacing when
normalised sparsity parameter λNS = 0.04.

Coarsest spacing 32 mm 64 mm 128 mm 256 mm 512 mm
Accuracy 0.26 (0.46) 0.24 (0.54) 0.25 (0.55) 0.24 (0.54) 0.24 (0.54)

the accuracy. From our experience, it seems beneficial that the control point’s B-spline basis in

the coarsest level covers the whole images. This allows to model global transformations. Thus,

it is suggested to set the coarsest grid spacing to more than 20% of the image dimension in

each direction.

6.4.4 Evaluation

For the classic FFDs, different spacing leads to significantly different results as shown in

Table 6.2. Moreover, different datasets require different initial spacings to achieve the best

performance. It can be seen from the final column in Table 6.2 that the SFFD is robust against

the choice of λNS compared to the choice of the control point spacing of the FFDs. There is

little need to adjust λNS across datasets to achieve very good performance for each individual

dataset. The result suggests that a λNS ≈ 0.04 yields consistently good performance.
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Table 6.2 – Median and IQR of accuracies from the classic FFDs with different initial and final
spacing and the SFFD with different normalised sparsity parameter λNS . Cardiac A, B and C refer
to the 2D cardiac MR image with synthetic smooth motion and discontinuous motion and 3D
cardiac MR image sequences respectively. The units of the accuracy metrics are in the bracket.
For the results, n/a means that the image is not large enough to contain the initial control point
grid spacing, bold font means the best result and * means statistically significantly different from
the best result of the classic FFDs using t-test with p-value 0.05.

Initial/final spacing 64/1 mm 128/2 mm 256/4 mm 512/8 mm
Middleburry (mm) 0.69 (0.58) 0.62 (0.54) 0.61 (0.45) 0.67 (0.66)
Cardiac A (mm) 0.03 (0.04)* 0.02 (0.02)* 0.02 (0.03) 0.01 (0.02)
Cardiac B (mm) 0.07 (0.08)* 0.05 (0.04) 0.05 (0.02) 0.06 (0.05)*
Cardiac C (mm) 1.68 (0.56) 1.86 (0.63)* 1.94 (0.82)* n/a

λNS 0.00 0.01 0.04 0.16
Middleburry (mm) 0.68 (0.60) 0.25 (0.56)* 0.24 (0.54)* 0.26 (0.57)*
Cardiac A (mm) 0.03 (.02) 0.01 (0.01) 0.01 (0.01)* 0.01 (0.01)*
Cardiac B (mm) 0.07 (0.03) 0.02 (0.01)* 0.02 (0.01)* 0.02 (0.01)*
Cardiac C (mm) 1.74 (0.64) 1.55 (0.61) 1.54 (0.62) 1.62 (0.64)

The results show that the median using the multi-level FFD representation without sparsity

constraint (where λNS = 0) are 0.68mm, 0.03mm, 0.07mm and 1.74mm for Middlebury and

cardiac A, B, C datasets respectively. Thus, all datasets benefit from the sparsity constraint

with a consistent increase in registration accuracy. Moreover, the SFFD exhibits a significant

improvement against the best results from the classic FFD where discontinuous and highly

localised motion patterns are present. The improvement is most significant against ground-

truth from the Middlebury dataset and from the 2D cardiac MR image dataset with synthetic

discontinuous motion. An increasing ability to capture local and discontinuous motion while

maintaining robustness over smooth regions can be also seen in the visual comparison in

Figure 6.2.

Finally, in the 3D cardiac MR image sequences, we witness a limited improvement, 1.54 ±

0.32 vs 1.68 ± 0.28, in the result. Due to the lack of an objective ground truth, we measured

the errors only on the LV myocardial surfaces. Apart from that, available accuracy measures in

real medial image dataset are often not a good indicator of how well the registration performs

[Rohlfing, 2012]. Hence, the result can only partially demonstrate the registration accuracy.
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6.5 Discussion and conclusions

In this chapter, we have developed a SFFD model for registration which addresses some most

important short-comings of the original FFD registration model. Control points across different

FFD levels are optimised simultaneously using a sparse representation. Compared to the classic

FFD, the SFFD requires less parameter tuning across different datasets. The user no longer

needs to choose an appropriate control point spacing a-priori. Our experiments have shown

a consistent improvement compared to the original FFDs approach. The most significant

improvement can be observed in the Middlebury dataset (0.61 ± 0.22 vs 0.24 ± 0.27) and

Cardiac B dataset (0.045 ± 0.016 vs 0.021 ± 0.005) where the deformation field exhibits both

smooth and discontinuous motion.

By simply replacing the classic FFDs deformation using the proposed SFFD deformation model,

the registration algorithm may lead to improved results in both cardiac segmentation 4 and

motion tracking 5 applications we developed in this thesis. In next chapter, we will show two

important clinical applications which fundamental techniques are build on the framework we

have developed in the previous chapters.
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Clinical applications

7.1 Introduction

The work in this chapter has been published in the following papers:

• D. P. O’Regan, W. Shi, B. Ariff, A. J. Baksi, G. Durighel, D. Rueckert, S. A. Cook.

(2012). Remodelling after acute myocardial infarction: mapping ventricular dilatation

using three dimensional CMR image registration. Journal of Cardiovascular Magnetic

Resonance, 14(1):41-49.

• SG Duckett, W Shi, X Zhuang, A Shetty, M Ginks, CA Rinaldi, G Carr-White, D

Rueckert, RS Razavi. (2012). Cardiac MRI: understanding myocardial motion to predict

remodelling pre cardiac resynchronisation therapy. Journal of Heart 98:A6-A7.

The previous chapters have focused on developing new methodologies for the segmentation and

tracking of the heart in CMR images. In this chapter we demonstrate the feasibility of applying

the developed methods in two different but equally important clinical research applications.

The first clinical application aims at selecting patients who will respond positively to CRT.

The second clinical application aims at characterising and quantifying longitudinal changes in

cardiac morphology and function during cardiac remodelling following myocardial infarction. In

137
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this thesis, we focus more on the feasibility of applying the developed techniques in these clinical

contexts rather than focusing on the clinical findings in these studies. We demonstrate that

the proposed techniques can meet the specific requirements of these two clinical applications.

7.2 Application to cardiac resynchronisation therapy

A significant number of patients that undergo CRT do not derive symptomatic benefit from

treatment or remodel 1. Assessing the synchrony of myocardial motion, such as measuring

changes of LV blood pool volume, muscle thickening, deformation and strain, has the potential

of improving patient selection for CRT. In this section, we develop a framework for computing

and comparing measurements derived from myocardial motion tracking and evaluate their

correlation to clinical outcome measures of CRT. Different from the evaluation in Chapter 5,

here we focus on the clinical usefulness of the motion tracking instead of the accuracy.

7.2.1 Introduction

CRT is a standard treatment for heart failure patients with low EF and conduction delay

depicted by left bundle branch block (LBBB) on the surface ECG [Cleland et al., 2005].

However, the number of patients who do not derive clinical benefits still remains at

approximately 30% [Cleland et al., 2005].

The TomTec 4D left ventricular (LV) analysis software (TomTec Imaging systems Inc, Munich,

Germany) measures global LV mechanical (volume) dyssynchrony and has been shown, in both

cardiac cine MR and 3D echocardiography, to provide useful information in predicting whether

a patient is likely to respond to CRT or not [Kapetanakis et al., 2005]. This method of assessing

global LV dyssynchrony calculates the time taken to reach minimum regional volume for the

16 segments as a percentage of the cardiac cycle. The SDI is then defined as the standard

deviation (SD) of these timings with a high SDI denoting more dyssynchrony in the cardiac

1remodel here refers to decrease in ESV>15% at 6 months.



7.2. Application to cardiac resynchronisation therapy 139

motion pattern. To allow comparison between patients with different heart rates the SDI is

expressed as a percentage of the cardiac cycle.

A limitation of using volume change over the cardiac cycle as an indicator of systolic

dyssynchrony is that it does not take into account the difference between active and passive

motion. Scarred or akinetic myocardial segments can be deformed or stretched by adjacent

segments, leading to passive volume changes. It is not clear if or how this phenomenon affects

the accuracy of the method, both in determining how truly dyssynchronous a ventricle is

and how likely a patient is to respond to CRT. Potential ways of taking into account active

myocardial motion are to use muscle thickening or strain (radial, circumferential or longitudinal)

for computing the SDI. However, in a typical clinical CMR acquisition, only a small number

of SA slices are used to assess myocardial motion [Lardo et al., 2005, Han et al., 2010], which

does not provide a global understanding of the LV motion or dyssynchrony.

In this work, we have developed a method for computing global myocardial muscle thickening,

deformation, radial, circumferential and longitudinal strain from cine untagged and tagged

CMR images. Using this information, we have derived SDI for all parameters which are

comparable to the SDI computed from volume changes. Since thickening, deformation and

strain analysis take both active and passive motions into account, we aim to investigate how

these techniques can aid clinicians in predicting which patients are likely to respond to CRT.

7.2.2 Image acquisition

48 patients with severe heart failure fulfilling standard criteria for CRT (EF≤35%, LV ED

diameter≥55mm and prolonged QRS>120ms) were recruited. The patients were scanned using

1.5T MR-scanner (Achieva, Philips Healthcare, Best, Netherlands) with a 32-element cardiac

coil or a 5-element cardiac coil (large or claustrophobia patients). Cardiac synchronisation was

performed with vector electrocardiography (VECG). After localisation and a coil sensitivity

reference scan an interactive real-time scan was performed to determine the geometry of the

SA, four (4CH), three (3CH) and two chamber (2CH). A multiple slice, cine SSFP scan was

performed in SA orientation to assess the ventricular function (FA=60, TR/TE=2.9/1.5ms,
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resolution 2.2x2.2x10mm, 30 heart phases). The 4CH, 3CH and 2CH views were used to assess

LV function for regional wall motion abnormalities. The scan duration of every two cine slice

is approximately 12 seconds.

3D tagging was implemented using three sequentially acquired 3D data sets with line tag

preparation in each of the three spatial dimensions [Rutz et al., 2008]. A respiratory navigator

was used to ensure that the images are spatially aligned. 3D tagged images were acquired of the

whole LV using the following parameters: tag separation = 7mm, FOV = 108 x 108 x 108mm,

EPI factor = 7, TFE factor = 4. The voxel size for each of the three datasets is 1.00 x 1.00

x 7.71mm, where the direction of low resolution is different for each of the three acquisitions.

Depending on the heart rate, cardiac phases were recorded with a temporal resolution of about

30ms with 24 to 30 phases. The scan duration is approximately 60 seconds with 3 breath-holds.

7.2.3 Methods

To quantify the SDI for LV volume output, myocardial deformation, strain, and wall thickening,

we modify the comprehensive cardiac motion estimation framework presented in Chapter 5 to

semi-automatically compute these parameters at each phase across the cardiac cycle. The

motion tracking framework consists of the following five steps:

1. Spatial and temporal alignment of the images;

2. Detection of the heart and semi-automatic segmentation of the myocardium from

untagged CMR images;

3. Extraction of deformation fields of the heart from both untagged and tagged CMR images;

4. Detection of endo- and epicardial surfaces and computation of volume output, wall

thickening;

5. Extraction of deformation fields within the myocardium and computation of myocardial

motion, deformation, and strain.
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The values of myocardial wall thickening, wall deformation, and strain fields are all mapped

onto the coordinate of the ED phase of the SA cine MR image. In this coordinate system the 16

segments of the myocardium LV are defined from the segmentation results. For each subject,

we define these 16 segments according to the definition of the AHA [Cerqueira et al., 2002].

The spatial and temporal registration is performed before the segmentation of myocardium

to align all images into a common spatial and temporal coordinate system as discussed in

Section 4.2.2. At the time that this research was conducted, the automatic segmentation

framework in Chapter 4 was not yet completed. Instead, the segmentation was done by a

clinician who manually labelled the myocardium of the LV at the ED phase of the cine CMR.

Then, we fit a pre-constructed 3D myocardium model, which has the 16 segments defined, onto

the manually segmented myocardium using automatic image registration. As a result, we have

labelled the myocardium at ED phase for each subject into 16 segments.

After the segmentation step, we extract the deformation fields from both cine untagged and

tagged images simultaneously as described in Chapter 5 using the weighted similarity measure.

The resulting deformation is used to initialise the registration of the next phase. This process

continues until all the phases are registered with the reference image.

Once the cardiac motion pattern has been extracted the segmentation of the endo- and

epicardial surfaces of the LV for all phases can then be achieved using the extracted motion: As

mentioned before, the segmentation of the ED phase is achieved using manual delineation. After

this, we propagate the segmentation from the ED phase to the other phases using the derived

motion to achieve automatic segmentation of all frame in the sequence. In this procedure, the

ED phase image is selected as the reference image. The segmentation of the reference image is

then propagated to all the other phases using the registration results. Finally, having achieved

the segmentation of the endo- and epicardial surfaces for all cardiac phases, we compute the

volume of the endocardium and the surface distance between the two surfaces for each segment

of the LV myocardium.

The myocardial deformation and strain are computed from the deformation field of the

myocardium. Having obtained the deformation fields d(x, i) for voxel x, from the ED phase
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to phase i, the magnitude of the myocardial motion is computed as follows: m(x) = |d(x, i)|.

To calculate the strain we use the Lagrangian strain tensor [Ogden, 1997] which is defined as

S = JtJ−I where J denotes the Jacobian matrix of the transformation and I the identity tensor.

The strain tensor describes the strain along any direction. Strain can then be calculated in the

longitudinal, radial and circumferential directions defined in the cardiac coordinate system [Elen

et al., 2008] using the following definitions: Longitudinal strain Sl = Lt · S · L, radial strain

Sr = Rt · S ·R and circumferential strain Sc = Ct · S ·C.

To assess global LV dyssynchrony we calculate the time taken to reach maximum muscle

thickness, peak deformation or strain for each of the 16 segments as a percentage of the cardiac

cycle. The SDI is then defined as the SD of these timings with a high SDI denoting more

dyssynchrony. To allow comparison between patients with different heart rates the SDI are

expressed as a percentage of the cardiac cycle. For segments to be included in SDI computation,

the muscle thickening of them should be greater than one millimetre or 10% of the diastolic

wall thickness. Figure 7.1 shows the graphs for volume change, thickening, deformation and

strain over the cardiac cycle from a patient, which allows us to visually study and interpret the

difference of the four methods in LV contraction study.

7.2.4 Results

Based on the framework we proposed here, various SDIs are calculated. We found a strong

relationship between volume derived SDI and acute response (p = 0.008) and remodelling (p <

0.001) (Figure 7.2). We found a weaker relationship with remodelling and muscle thickening

SDI (p = 0.001) (Figure 7.2) and no relationship with a SDI derived from strain indexes

(Figure 7.3). More details and further discussions are published in [Duckett et al., 2012].
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Figure 7.1 – This figure shows the graphs for SDI derived from (A) volume change (in %), (B)
SA muscle thickening (in %), (C) deformation (in mm) and (D) strain (in %) in a patient with
dilated cardiomyopathy. Each curve represents one of the 16 segments over the cardiac cycle.

7.3 Application to remodelling after acute myocardial

infarction

In this section, we examine the feasibility of using a 3D probabilistic cardiac atlas together

with image registration to map the anatomic changes that occur over time in response to acute

STEMI. For this we modify the proposed segmentation framework developed in Chapter 4

to enable it work with SSFP images as well as LGE images. Using the MCEM estimation

developed, we segment not only the myocardium but also the region of the infarct. Finally,

we estimate a set of remodelling indices to quantify and characterise the longitudinal changes

occurring during remodelling.
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Figure 7.2 – This figure shows the plots for acute response and remodelling against SDI derived
from volume and muscle thickening. [Duckett et al., 2012]

7.3.1 Introduction

The heart adaptively responds following myocardial infarction in order to maintain cardiac

output. While these effects are beneficial in the short term, they may eventually lead to

congestive heart failure [Gaudron et al., 1993] in the longer term. Early remodelling occurs

within the first few days and involves slippage and stretching of myocytes within the infarcted

zone [Weisman et al., 1988]. Late remodelling also involves changes to the healthy myocardium,

resulting in contractile segments becoming elongated [Mitchell et al., 1992]. Determining the

evolution of left ventricular remodelling and the relative contribution made by infarcted and

remote myocardium to chamber dilatation has importance for evaluating interventions aimed

at preventing congestive heart failure.

Atlas-based analysis of cardiac MR images enables delineation and registration of cardiac

structures using spatial a-priori information in the form of a probabilistic atlas. Such atlases

[Lorenzo-Valdés et al., 2004, Zhuang et al., 2010] are created from the average of a number of

manually segmented anatomical images which are transformed into a single reference space.
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Figure 7.3 – This figure shows the plots for acute response (top row) and remodelling (bottom
row) against SDI derived from different strains. [Duckett et al., 2012]

In this section, we apply atlas-based techniques to align and co-register images of the heart

in a prospective cohort study to map the evolution of remodelling over time. This approach

can enable consistent and quantitative comparisons to be made between different cardiac MR

sequences obtained at various time-points. Regional changes in geometry can be measured

by transforming the baseline images onto the segmentation obtained at follow-up. This

transformation can be used to reveal how local changes in curvature, thickness and expansion of

the left ventricular wall evolve following acute infarction. However, developing these techniques

in the heart is challenging as it requires a consistent and accurate approach to co-register and

transform the 3D cardiac MR images acquired in a longitudinal study.

7.3.2 Image acquisition

In total 46 patients (age range, 33-77 years; mean age 55 years) underwent cardiac MR imaging

within 7 days following primary percutaneous coronary intervention for acute STEMI with

follow-up at one year. The CMR studies were performed on a 1.5T Philips Achieva system

(Best, Netherlands) using 32-channel coil. A multiple slice, cine SSFP scan was performed

in SA orientation (image resolution 2.0 × 2.2 × 8mm, 20 heart phases). The scan duration
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of every two cine slice is approximately 12 seconds. An intravenous bolus of Gadobutrol 1.0

mmol/ml was administered at a dose of 0.15 mmol/kg. LGE imaging was performed to assess

infarct size 10 minutes after contrast injection with a 2D inversion recovery sequence (resolution

1.6 × 2.2 × 8mm). The scan duration for each slice is approximately 8 seconds. The atlas of

healthy volunteers was created from left ventricular SA cine images acquired on a 1.5T Siemens

Sonata system [Lorenzo-Valdés et al., 2004].

7.3.3 Methods

Figure 7.4 – Flow chart showing the main steps for co-registering and segmenting the cardiac
MR images to obtain a 3D transformation between baseline and follow-up images.

The segmentation of cine and LGE images in a longitudinal study poses additional challenges

to the segmentation framework we have proposed in Chapter 4. A summary of the steps in the

modified analysis process is shown in Figure 7.4. In this application, one of the difficulties arises
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from that fact that there is no 3D image available to serve as the reference image during the

spatial and temporal alignment stage. In this case, we correct the intra-sequence misalignment

by utilising the spatial and temporal information embedded in each of the cine slices. A

2D in-plane translation is used for every cine slice to allow for misregistration between slices

as the result of different breath-hold positions. The registration is optimised between 2D+t

neighbouring slices to fully utilise the temporal information. The similarity metric used in the

registration is defined as a combination of the similarity between the short-axis slices over time.

After that, we use the cine image as the reference space and register the LGE image to this

reference space using a 3D rigid transformation as well as multiple 2D in-plane translations.

The heart is localised in the SA MR images using the object-detection approach described in

Section 4.2.1. The follow-up image is rigidly registered to the baseline image. A probabilistic

atlas is registered to both the baseline and follow-up images using affine, local affine and

then non-rigid registration independently. Details are described in Section 4.2.3. To obtain a

consistent segmentation of the follow-up and baseline images, we propose to use a 4D graph-cuts

approach to jointly segment the follow-up and baseline images. This can be achieved using a

variation of the segmentation proposed in Chapter 4 in which the multiple image sequences are

replaced with the follow-up and baseline images: We modify the term Sinter in Equation 4.14

so that it becomes equal to Sintra in Equation 4.13. We use the MCEM estimation with spatial

information from the probabilistic atlas to assign each voxel a probability of background, blood

pool or myocardium.

To segment the infarcted myocardium, a further EM segmentation step is then used for the

LGE images to define a boundary between enhancing and non-enhancing voxels in order to

classify voxels as infarct or remote regions. The infarct percentage is calculated as the volume

of enhanced tissue divided by the total volume of myocardial tissue. The transmural extent of

infarction is calculated as the proportion of infarcted myocardium in the radial direction of the

left ventricular wall.

A 3D mesh reconstruction of the endocardial and epicardial surfaces is created from the baseline

segmentation using shape based interpolation [Grevera and Udupa, 2002] and marching cubes
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[Lorensen and Cline, 1987]. To enable longitudinal comparisons, a further non-rigid registration

between the segmentations from baseline and follow-up images is used to measure the structural

changes in the myocardium using SSD. The follow-up mesh is then constructed by propagating

the baseline mesh using the transformation obtained from the intensity-based registration. This

process enables a one-to-one correspondence of the number and position of mesh vertices during

the transformation (Figure. 7.4).

The infarct location is used in the rigid registration but not in the non-rigid registration so

that any infarct extension will not influence the longitudinal assessment. Points adjacent to the

mitral annulus and the left ventricular apex are excluded from the analysis as the calculation

of wall thickness is sensitive at these locations. The myocardial wall expansion is defined

as the mean change in separation in all directions between each vertex on the mesh and its

surrounding neighbours. Wall thickness is calculated along lines joining an epicardial vertex to

the nearest endocardial vertex. Regional wall curvature is assessed by calculating the reciprocal

of the radius of a sphere aligned to the inner surface of the ventricular mesh in units of mm−1

multiplied by a scaling factor (Appendix C). The curvature value is a measure of the extent to

which a region deviates from a flat surface such that a higher value indicates a more spherical

geometry and is determined by radial, circumferential and meridional shape. An example of

the derived remodelling indices of a patient is illustrated in Figure 7.5.

7.3.4 Results

A dot density histogram for each variable derived from the image registration model at baseline

and follow-up is illustrated in Figure 7.6. The results suggest the following longitudinal change.

Wall expansion within infarcted myocardium was greater than in non-infarcted myocardium.

Wall thickness within the infarcted region decreased significantly during the first year and was

unchanged in the remote region. Wall curvature increased in both the infarcted region and

remote region over the follow-up period. More details and further discussions are published

in [Oregan et al., 2012].
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(a) (b) (c)

(d) (e) (f)

Figure 7.5 – (a - c). 3D model of the LV in an 51 year old male patient following primary coronary
intervention to a left circumflex artery occlusion 3 days previously. The model has been rotated
so that lateral wall is nearest the viewpoint and the interventricular septum is furthest away. The
model has co-registered LGE and SSFP MR images to a probabilistic atlas. (a) Distribution of
enhancing necrosis (transmural percentage of infarcted myocardium). (b) Left ventricular wall
thickness (mm). (c) Regional wall curvature (1/mm × 10 − 4). (d - f). 3D model of the LV in
the same 51 year old male patient demonstrating the changes in morphology at one year following
acute STEMI. The same segmentation obtained at baseline has been propagated to the follow-up
images. (d) Regional wall expansion ratio (proportional change in adjacent point separation). (e)
LV wall thickness (mm). (f) Regional wall curvature (1/mm x 10-4). [Oregan et al., 2012]

7.4 Discussion and conclusions

In this chapter, we have applied our techniques in previous chapters to two clinical applications.

We have developed a framework for comparing measures of myocardial motion from cardiac
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Figure 7.6 – A Dot density histogram for each variable derived from the image registration model
at baseline and follow-up. Each point represents data from an individual patient. [Oregan et al.,
2012]

MR imaging and evaluated how these techniques can aid in predicting response to CRT. We

also examined the feasibility of using a 3D probabilistic cardiac atlas and image registration to

map the anatomic changes that occur over time in response to acute STEMI. In next chapter,

we will summarise the works we have presented in this thesis and point out some limitations

as well as further research directions.



Chapter 8

Conclusion

8.1 Summary of current achievements

Providing global and regional cardiac indices from cardiac MRI is one of the fundamental

topics of research in medical image analysis. The ability to accurately extract and precisely

interpret these indices may enable the development of many novel clinical applications, including

early diagnosis, optimisation of treatment and follow-up. Cardiac segmentation, especially LV

segmentation, provides important morphological information as well as the anatomical basis

to calculate global and regional indices such as EDV, LVM etc. On the other hand, cardiac

motion tracking provides important dynamic information during the cardiac cycle to help the

estimation of global indices like EF as well as regional indices such as RWM, RWN, RMSt.

Different CMR image sequences can be acquired in a clinical setting. These different image

sequences provide complementary information about the cardiac function. Each imaging

sequence has its own advantages and disadvantages: SA and LA cine MR images provide

good in-plane resolution in the SA and LA direction and dynamic information throughout the

cardiac cycle. The cardiac anatomy, and in particular the myocardium, is clearly visible in

each slices. However, their through-plane resolution is poor. Furthermore, each slice requires

a separate breath-hold leading to potential misalignment between slices due to respiratory

motion. In terms of cardiac motion, the radial motion of the myocardium can be tracked easily

151
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in untagged cine MR images, since the epi- and endocardial surfaces are clearly visible. On

the other hand, the circumferential and longitudinal motion cannot be accurately quantified as

there are few features inside the myocardium that can be reliably tracked and there are often

not enough long-axis images available. In contrast to this, whole-heart 3D TFE images provide

nearly isotropic 3D resolution of the whole heart. However, only one or two phases are typically

available, limiting the usefulness of these images to assess cardiac motion. Finally, 3D tagged

MR images allow the easy tracking of both longitudinal and circumferential motion. However,

in 3D tagged MR images, it is difficult to identify and quantify the cardiac anatomy as the

tags obscure the anatomy. Furthermore, the tags degrade progressively throughout the cardiac

cycle.

The work in this thesis has been focused on the development of a fully automatic cardiac image

analysis framework, using cardiac segmentation and motion tracking techniques from multiple

MR sequences simultaneously. CMR images acquired within a single scanning session may have

different spatial positions, due to patient movement or different respiratory positions during

breath-hold, as well as different temporal resolutions. This misalignment between the different

image sequences will cause inconsistencies in the cardiac image analysis framework. Thus, we

have developed a spatial and temporal registration approach that registers all the images into

a common spatio-temporal reference space.

In addition, we have proposed a combination of state-of-art techniques to segment the LV

from multiple MR image sequences. A 3D probabilistic atlas is registered to all untagged

image sequences at the same time using a registration algorithm based on LARM and FFDs.

The use of LARM [Zhuang et al., 2010] provides an extra degree of robustness towards large

anatomical shape variations and pathologies. We estimate the probability of the different

anatomical structures using the MCEM estimation. The MCEM algorithm, compared to EM,

can estimate the probability of myocardium even in the presence of local varying contrast

caused by myocardial infarction. Finally, a multi-image graph cuts approach is developed to

refine the segmentation across all images sequences simultaneously. Our experiments have

shown that the proposed framework can delineate the LV myocardium accurately in different

patient groups. The approach benefits from the additional information provided by the different
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image sequences. We have shown that the uncertainty in the probabilistic framework is a

valuable source of information in the identification of possible segmentation failures, as well as

in distinguishing among different pathologies.

To extract motion information from both untagged and tagged images throughout the cardiac

cycle, we have extended a registration algorithm that has been previously used successfully

for motion tracking [Chandrashekara et al., 2004]. In the registration approach, the motion

is reconstructed by registering a sequence of images during the cardiac cycle to a reference

image at end-diastole. The proposed approach uses stacks of SA and LA untagged MR cine

images as well as a sequence of 3D tagged MR images. To allow fully automated motion

tracking we use a Haar-feature based object detection algorithm [Viola and Jones, 2002,Pavani

et al., 2009, Zheng et al., 2007] to detect a region of interest containing the LV before motion

tracking. A spatially-varying, weighted similarity measure is used for the motion tracking

using image registration. This similarity measure combines information from untagged and 3D

tagged images. The weighting between the different images is spatially varying and depends

on the intensity gradient and segmentation of the untagged MR images: at the epicardial

and endocardial boundaries, the weighting favours information from the untagged MR images.

Inside the myocardium the weighting favours information from the 3D tagged MR images.

However, even with the simultaneous use of the tagged and untagged MR images, it is difficult

to reconstruct the correct motion of the valve plane. We have explicitly tracked the valve

plane using a regional tracker and constrained the estimated motion to be consistent with the

motion estimated from the valve plane tracker. This leads to a more accurate estimation of the

parameters of cardiac functions such as EF. Finally, we have shown that the comprehensive

method outperforms tracking using untagged or tagged images alone, both in terms of accuracy

and the extracted regional indices, such as regional strain and volume output.

Image registration is an important component in both cardiac segmentation and motion tracking

techniques described above. The classic FFD approach [Rueckert et al., 1999] is one of the most

widely used registration methods for medical image registration. One of the main difficulties

of the classic FFD approach is the conflict between the robustness of the registration and the

ability to model discontinuous and highly localised deformations. This conflict stems from the
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fact that the FFD approach uses a smooth B-spline basis to model the contribution of each

control point to the deformation. To model global and smooth deformations a coarse control

point spacing is typically used. To allow for very localised deformations a fine control point

spacing is required, making the method less robust. A conventional approach to address this

issue uses a coarse-to-fine approach in which the initial coarse control point mesh is successively

subdivided.

In this thesis, we have introduced a sparse representation for FFDs to estimate the registration

transformation. This simple model uses the standard smoothness constraints and only imposes

one assumption on the deformation, namely that the basis of the deformation is sparse in

the parametric space of the deformation. Based on this assumption, the registration of two

images is formulated by using a sparse multi-level FFD representation of the control points

with coupled multi-level sparsity constraint. The novelty and contributions of this method are

the introduction of a sparsity model that avoids the a priori selection of an appropriate control

point grid spacing. Furthermore, the approach reduces the conflict between global smoothness

and local detail of the transformation by optimising over the different FFD levels simultaneously

with a sparsity constraint. These advantages allow for the robust estimation of deformation

fields in the presence of discontinuous motion. The evaluation has demonstrated that the

proposed method can consistently capture localised motion with high degrees of accuracy.

The ultimate objective of cardiac image analysis presented above is to provide useful and

efficient tools for the diagnosis and treatment of patients with cardiovascular diseases. We

have applied the techniques to two clinical applications. We have developed a framework for

comparing measures of myocardial motion from cardiac MR imaging and evaluated how these

techniques can aid in predicting responses to CRT. We also examined the feasibility of using a

3D probabilistic cardiac atlas and image registration to map the anatomic changes that occur

over time in response to acute STEMI.
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8.2 Limitations and future work

The thesis has focused on using image registration for cardiac function analysis using multiple

MR sequences. The probabilistic, atlas-guided segmentation approach using image registration

has three fundamental limitations: Firstly, it is difficult to consider thin regions, which can be

critical in separating local substructures, using the intensity-based registration. Examples of

such structure is the thin membrane that separates the epicardium and the liver. The membrane

is usually displayed as thin regions whose intensity value differs from both the epicardium

and the liver. Intensity-based registration techniques may fail to recognise this important

anatomical structure due to the small size, meaning it contributes little to the final registration

result. Secondly, the segmentation framework is difficult to recover from any registration error

during the propagation phase. Finally, the registration approach is computationally expensive

compared to other segmentation techniques.

An alternative segmentation approach which has recently attracted significant interest is

nonlocal patch-based segmentation [Coupé et al., 2011]. In this approach, the segmentation is

achieved by labelling each voxel individually by comparing its surrounding patch with patches

in atlases after registration. By using this method, several samples from each atlas can be

used during the decision fusion. As an extension of the conventional single atlas segmentation

approach, it can be used to address some of the problems mentioned above. Furthermore, due

to its nonlocal nature, a coarser registration can be used which reduces the computational cost

and increases the registration robustness.

When extracting cardiac motion from multiple MR image sequences, the inter- and intra-

sequences misalignment due to respiratory motion is one of the major difficulties. We have

developed a spatio-temporal registration scheme to correct such misalignment using either

whole-heart 3D image or the 3D tagged MR images. However , if the spatio-temporal

registration fails, the different image sequences (e.g. the untagged and tagged MR images)

may contain inconsistent motion information. This inconsistency will complicate the cardiac

motion estimation and can lead to unrealistic motion estimates in local regions. To address

this problem, we could extend the transformation model from 3D to 4D to avoid the need
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for temporal alignment [Perperidis et al., 2005, De Craene et al., 2010]. However, this would

add significant additional degrees of freedom to the motion estimation challenge. Feature-

based registration [Kerwin and Prince, 1998, Kuhl et al., 2004, Sampath and Prince, 2007]

may work well for spatial registration if multiple common landmarks can be detected from the

different image sequences. However, such a motion tracking approach cannot recover from any

accumulation of errors during the tracking. A combination of both approaches may be desirable

to ensure both sensitivity and robustness in the motion tracking.

In our approach, we have used an automatic heart localisation algorithm to automatically

extract the region of interest and eliminate the need for manual intervention. However, the

computational time required for complete analysis is still approximately 3-4 hours. The

bottleneck in terms of computational complexity is the image registration process. It is

relatively easy to use analytical expressions for the gradients of the registration cost function

[Modat et al., 2010] to improve the performance in terms of computational time.

One important characteristic of cardiac motion is that it is continuous in both space and

time. In addition, the cardiac motion is typically periodic. [Metz et al., 2011] proposed a

spatio-temporal 4D FFD model with periodic behaviour to improve the performance of the

registration in the context of cardiac motion analysis. It would be desirable to extend our

comprehensive framework to incorporate such a periodic behaviour.

Finally, both the cardiac segmentation and motion tracking framework are based on the concept

of image registration. A potential extension of the two segmentation and motion tracking

framework would be to replace the classic FFD registration with the proposed SFFD registration

developed in Chapter 6. Using the SFFD approach, it avoids a-priori selection of deformation

parameters like grid spacing to get optimal registration accuracy for different subjects.
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Appendix B

Derivation of energy gradient

Let x = (x, y, z) stand for a world coordinate location and let u = (u, v, w) denote a lattice

coordinate for a free-form deformation (FFD). The FFD lattice represents the locations of the

control point vectors Φl,m,n The dimensions of the FFD lattice are U , V and W in the principal

directions, we can index the control point vectors so that the subscripts l, m and n each range

from 0 to U − 1, V − 1 and W − 1 respectively. The displacement h(x) at world location x

with corresponding lattice coordinates u is given by

h(x) =
U−1∑
l=0

V−1∑
m=0

W−1∑
n=0

Bl(u)Bm(v)Bn(w)Φl,m,n

where Bl, Bm and Bn are univariate cubic B-Spline kernels centred at l, m and n. The

transformation T is obtained by additively applying the deformation:

T(x) = x + h(x)

so that the Jacobian of T and the Jacobian of h = (hx,hy,hz) are related by

∂T

∂x
= I +

∂h

∂x
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where I is the identity matrix. We will restrict J to denote the Jacobian of T so that, in the

world coordinate frame, the Jacobian of the transformation is

J =
∂T

∂x
= I +


∂hx
∂x

∂hx
∂y

∂hx
∂z

∂hy
∂x

∂hy
∂y

∂hy
∂z

∂hz
∂x

∂hz
∂y

∂hz
∂z

 (B.1)

We assume that the origin of the world and lattice frames coincide so that the conversion

between world and lattice coordinates can be achieved by matrix multiplication. Let M be the

matrix to convert world coordinates to lattice coordinates, i.e. u = M x.

The number of degrees of freedom in the FFD is N where N = 3UVW . Let φ =

(φ0, φ1, . . . , φN−1)T represent the parameter set of the FFD obtained by concatenating all the

control point vectors Φl,m,n into a single vector. These can be easily extended to multi-level

FFD as described in the main sections.

The energy function to be optimised consists of three parts in a standard formulation [Rueckert

et al., 1999]:

E = ED + λrEsmooth + λvEvol

The similarity energy is a spatially integrated function of the difference between images like

SSD [Kybic and Unser, 2003]:

ED =

∫
Ω

D(It, Is,T,x)dx

where Ω is a fixed region of interest and D(It, Is,T,x) = (It(x)−Is(T(x)))2 is the SSD between

target image It and source image Is after applying transformation T at point x. We require

the gradient of this energy ED with respect to the deformation parameters and we assume

that D(It, Is,T,x), as a function of the components of φ and x, satisfies the conditions for
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differentiation under the integral sign. This means that we can write

∂ED
∂φ

=

∫
Ω

∂D(It, Is,T,x)

∂φ
dx (B.2)

The differentiate of the integrand D(It, Is,T,x) can be easily derived and found in [Kybic and

Unser, 2003]

∂(It(x)− Is(T(x)))2

∂φi
=
∂(It(x)− Is(T(x)))2

∂It(x)

∂It(x)

∂x

∂x

∂φi
. (B.3)

where the first term ∂(It(x)−Is(T(x)))2

∂It(x)
= 2(It(x) − Is(T(x))), the second term equals to the

gradient of It at x and the third term ∂x
∂φi

= ∂h(x)
∂φi

. For information theory based similarity

measures like NMI, readers are suggested to find the gradient in [Modat et al., 2010].

The smooth preservation energy is a spatially integrated function of the bending energy:

Esmooth =
1

|Ω|

∫
Ω

[(
∂2T

∂x2

)2

+

(
∂2T

∂y2

)2

+

(
∂2T

∂z2

)2

+ 2

(
∂2T

∂xy

)2

+ 2

(
∂2T

∂xz

)2

+ 2

(
∂2T

∂yz

)2
]
dx

(B.4)

where |Ω| is the size of the region. We require the gradient of this energy with respect to the

deformation parameters. Abbreviating Equation B.4 as Esmooth = 1
|Ω|

∫
Ω

[A2 +B2 +C2 + 2D2 +

2E2 + 2F 2]dx, the derivative of the penalty term with respect to a deformation parameter φi

involves a sum of derivatives each of which can be obtained using the chain rule, e.g. ∂(A2)
∂φi

=

2A ∂A
∂φi

. The same chain rule can be applied to each and every component of the Equation B.4.

Finally, the volume preservation energy is a spatially integrated function of the determinant of

the Jacobian, J :

Evol =

∫
Ω

(log |J |)2dx

where | · | denotes the determinant of J . We require the gradient of this energy with respect to

the deformation parameters and we assume that (log(|J |))2, as a function of the components
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of φ and x, satisfies the conditions for differentiation under the integral sign. This means that

we can write

∂Evol
∂φ

=

∫
Ω

∂ log(|J |)2

∂φ
dx (B.5)

Differentiating the integrand, we obtain

∂(log |J |)2

∂φ
=

2 log |J |
|J |

∂|J |
∂φ

. (B.6)

|J | and its logarithm are readily calculated so we require an expression for the gradient ∂|J |
∂φ

.

The ith component of the ∂|J |
∂φ

is given by

∂|J |
∂φi

= tr

(
adj(J)

∂J

∂φi

)

for i = 0 . . . N − 1, where tr(·) denotes the trace and adj(·) denotes the adjugate. We expand

∂J
∂φi

to give

∂J

∂φi
=

∂

∂φi

(
∂T

∂x

)
=

∂

∂φi

(
I +

∂h

∂x

)
=

∂

∂φi

(
∂h

∂x

)
=

∂

∂φi

(
∂h

∂u

∂u

∂x

)
(B.7)

We have

∂u

∂x
= M ,

where M is the constant world to lattice transformation matrix, so, after applying the product

rule to Equation B.7, we obtain

∂

∂φi

(
∂h

∂u

∂u

∂x

)
=

∂

∂φi

(
∂h

∂u

)
M =

∂2h

∂φi ∂u
M

The term ∂h
∂u

is the Jacobian of the deformation in the frame of the FFD lattice. We can re-write
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∂h
∂u

as three columns to obtain

∂

∂φi

(
∂h

∂u

)
=

[
∂

∂φi
(
∂h

∂u
)

∂

∂φi
(
∂h

∂v
)

∂

∂φi
(
∂h

∂w
)

]
(B.8)

The effect of differentiating with respect to the ith parameter φi depends on whether it

corresponds to a displacement in the u, v or w direction of the lattice. The parameter vector

φ is obtained by concatenation of the control point vectors Φl,m,n so that the parameters

φi correspond to u-displacements if i = 0 mod 3, v-displacements if i = 1 mod 3 and w-

displacements if i = 2 mod 3.

Assume, for example, that parameter φi corresponds to the first (u) component of the specific

control point vector Φλ,µ,ν . Consider the first column of the matrix on the right of Equation B.8:

∂

∂φi
(
∂h

∂u
) =

∂

∂φi

∑
l,m,n

dBl(u)

du
Bm(v)Bn(w)Φl,m,n

=
∂

∂φi

[
dBλ(u)

du
Bµ(v)Bν(w)Φλ,µ,ν

]

=


dBλ(u)
du

Bµ(v)Bν(w)

0

0



The second and third columns can be found in a similar way to give

∂

∂φi

(
∂h

∂u

)
=


dBλ(u)
du

Bµ(v)Bν(w) Bλ(u)dBµ(v)

dv
Bν(w) Bλ(u)Bµ(v)dBν(w)

dw

0 0 0

0 0 0



The cases where φi corresponds to a second (v) or third (w) component of Φλ,µ,ν can be found

in a similar fashion. The resulting expressions can be substituted back via Equations B.8,

B.7 and B.6 to provide the value for the gradient of the volume preservation energy term in

Equation B.5.



Appendix C

Definition of wall-curvature

For any tetrahedron, there exists a circumsphere such that its vertices lie on the sphere’s surface.

We may therefore define four vertices on the ventricular model such that the circumscribed

sphere approximates to the curvature of the surface in that region. For each cell in the model,

we extended three vertices 10mm in length from the cell centre point and anchor them to the

mesh surface to form a tetrahedron.

To obtain values of a convenient magnitude we used a scaling factor. The curvature (C) was

defined as a scaled inverse of the tetrahedron’s circumsphere radius (r):

C =
10000

r
(C.1)

The radius of a given circumsphere of a tetrahedron can be defined as:

r =

√
D2
x +D2

y +D2
z − 4ac

2|a|
(C.2)

The equation for the circumsphere of the tetrahedron with polygon vertices is (xi, yi, zi) for

i = 1, ..., 4 is:

165
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a ≡ |

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, c ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 + z2
1 x1 y1 z1

x2
2 + y2

2 + z2
2 x2 y2 z2

x2
3 + y2

3 + z2
3 x3 y3 z3

x2
4 + y2

4 + z2
4 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (C.3)

and

Dx ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 + z2
1 y1 z1 1

x2
2 + y2

2 + z2
2 y2 z2 1

x2
3 + y2

3 + z2
3 y3 z3 1

x2
4 + y2

4 + z2
4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, Dy ≡ −

∣∣∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 + z2
1 x1 z1 1

x2
2 + y2

2 + z2
2 x2 z2 1

x2
3 + y2

3 + z2
3 x3 z3 1

x2
4 + y2

4 + z2
4 x4 z4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, Dz ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 + z2
1 x1 y1 1

x2
2 + y2

2 + z2
2 x2 y2 1

x2
3 + y2

3 + z2
3 x3 y3 1

x2
4 + y2

4 + z2
4 x4 y4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(C.4)
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