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Abstract

X-ray fluoroscopy and echocardiography imaging (ultrasound, US) are two imaging modalities

that are widely used in cardiac catheterization. For these modalities, a fast, accurate and

stable algorithm for the detection and tracking of catheters is required to allow clinicians to

observe the catheter location in real-time. Currently X-ray fluoroscopy is routinely used as the

standard modality in catheter ablation interventions. However, it lacks the ability to visualize

soft tissue and uses harmful radiation. US does not have these limitations but often contains

acoustic artifacts and has a small field of view. These make the detection and tracking of the

catheter in US very challenging.

The first contribution in this thesis is a framework which combines Kalman filter and discrete

optimization for multiple catheter segmentation and tracking in X-ray images. Kalman filter

is used to identify the whole catheter from a single point detected on the catheter in the first

frame of a sequence of x-ray images. An energy-based formulation is developed that can be

used to track the catheters in the following frames. We also propose a discrete optimization

for minimizing the energy function in each frame of the X-ray image sequence. Our approach

is robust to tangential motion of the catheter and combines the tubular and salient feature

measurements into a single robust and efficient framework.

The second contribution is an algorithm for catheter extraction in 3D ultrasound images based

on (a) the registration between the X-ray and ultrasound images and (b) the segmentation of

the catheter in X-ray images. The search space for the catheter extraction in the ultrasound

images is constrained to lie on or close to a curved surface in the ultrasound volume. The curved

surface corresponds to the back-projection of the extracted catheter from the X-ray image to

the ultrasound volume. Blob-like features are detected in the US images and organized in a

graphical model. The extracted catheter is modelled as the optimal path in this graphical

model.

Both contributions allow the use of ultrasound imaging for the improved visualization of soft

tissue. However, X-ray imaging is still required for each ultrasound frame and the amount of

X-ray exposure has not been reduced. The final contribution in this thesis is a system that

can track the catheter in ultrasound volumes automatically without the need for X-ray imaging

during the tracking. Instead X-ray imaging is only required for the system initialization and
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for recovery from tracking failures. This allows a significant reduction in the amount of X-ray

exposure for patient and clinicians.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Minimally Invasive Surgery

Recent years have seen a rapid development in the area of Minimally Invasive Surgery (MIS),

which has already evolved from laboratory experiments to practical applications, and replaced

many traditional open surgical procedures.

In an open surgery, a large incision is usually made to allow the surgical procedure to be carried

out under the direct vision of the surgeon. In most open surgical procedures, the structures and

the tissues involved are exposed and can be observed and touched directly by the surgeon [131].

As defined in [186], a minimally invasive surgery (MIS) is a form of surgery that minimizes the

size of surgical incisions in order to reduce trauma and postoperative pain, to avoid large blood

loss, and to furthermore decrease the length of the hospital stay. Compared with traditional

open surgery, the target structure is usually not directly visible and has to be visualized via

imaging techniques such as laparoscopy, fluoroscopy, and ultrasound. The surgical instruments,

which are usually specifically designed, are inserted to the target site through small incisions

or body cavities and these instruments are manipulated remotely to carry out the surgery.
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2 Chapter 1. Introduction

Table 1.1: Some specific procedures using MIS (Table adopted from [159])

Organ system Procedures
Cardiac Closing atrial septal defects; Coronary artery bypass

graft (’off pump’); Repairing patents’ foramen ovale;
Valve surgery.

Gastrointestinal Appendicectomy; Adrenalectomy; Cholecystectomy;
Lymph node biopsy; Splenectomy; Hiatus hernia, um-
bilical and inguinal hernia repairs; Colonic cancer; Di-
verticular disease; Inflammatory bowel disease; Rectal
prolapse; Dividing adhesions.

Gynaecological Polypectomy; Sterilisation; Endometrial ablation; Fi-
broid removal.

Neurological Removal of pituitary tumours; Treatment of intracranial
aneurysms; Carotid angioplasty; Radiosurgery for brain
tumours.

Orthopaedic Arthroscopy of joints; Carpal tunnel release; Pelvic frac-
ture repair; Rotator cuff repair.

Otorhinolaryngology Removal of nasal/sinus tumours; Lymph node biopsy.
Respiratory/Thoracic Lung surgery; Recurrent pleural effusions.

Urology Biopsy; Removal of kidney and ureteric calculi;
Nephrectomy.

Vascular Stenting carotid and renal arteries; Repair of thoracic
and abdominal aneurysms; Varicose veins.

A minimally invasive surgery has several advantages over traditional open surgery. It can reduce

the incisions and the hospitalization time, enhance the manual dexterities of the surgeon and

minimize the infection risk. As a result, patients undergoing MIS usually have less trauma, less

post-operative pain, shorter hospital stays and smaller scarring. However, to achieve the same

or even better performance than traditional open surgery, special imaging techniques, as well

as special instruments for interventions, need to be developed. Specialists who are required to

manipulate the imaging or surgery equipments need to be trained. In addition, the operative

time is usually longer than in conventional open surgery [159].

Currently MIS techniques have been widely used in a range of procedures. Table 1.1 (Table

from [159]) summarizes some typical procedures that can be carried out using MIS. We will

not elaborate on every procedure since only cardiac procedures are relevant to this thesis.
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1.1.2 Minimally Invasive Cardiac Surgery

Minimally Invasive Cardiac Surgery (MICS) is a type of heart surgery that is performed through

several small incisions. Before MICS was widely used, a thoracotomy was commonly performed

in conventional heart surgery. A thoracotomy is the process of making an incision (usually

large) into the chest wall to gain the access to the pleural space of the chest [154]. The heart,

the lungs, or the esophagus are the most common targets during a thoracotomy. A thoracotomy

incurs many complications such as pneumothorax, infection, bleeding and respiratory failure.

In addition, the intense postoperative pain can cause atelectasis or pneumonia [8, 33]. For

many heart thoracotomies, the risk is extremely high since the heart has to be stopped during

the surgery. In addition the breastbone and ribs must be sometimes separated for a better

access to the target region.

Patients can benefit from MICS for the reasons that it can significantly reduce the incisions,

trauma and enhance the manual dexterities of the surgeon. Besides, MICS can also be per-

formed without stopping the heart (therefore it eliminates the need for a heart-lung machine) or

separating the breastbone. All of the above advantages significantly reduce the risk of compli-

cations and decrease the duration of the hospitalization [94, 137, 126]. A comparison between

the traditional open-chest thoracotomy with MICS is shown in Fig. 1.1.

Typical procedures in which MICS has been widely used include surgery for ventricular septal

defect (VSD), atrial septal defect (ASD), heart valve surgery, multi or single vessel small tho-

racotomy, coronary artery bypass grafts (CABG) and the treatment of atrial fibrillation (AF)

[192].

1.1.3 Cardiac Catheterization

Cardiac catheterization is a category of minimally invasive cardiac surgical procedures in which

catheters are inserted into the heart through a small incision in a patient’s neck, arm or groin,

for either diagnostic or interventional purposes. Certain types of catheters are inserted using

guidewires and steered towards the heart, monitored by imaging such as X-ray fluoroscopy or



4 Chapter 1. Introduction

Figure 1.1: A comparison between the conventional thoracotomy (left) and MICS (right) for
cardiac surgery (Figure from [165]).

ultrasound. Once in place, they can be used to carry out a number of procedures such as

angioplasty, balloon septostomy, electrophysiology studies and catheter ablation [81]. Most of

these procedures are carried out in a special examination room, i.e. a catheterization laboratory

or Cath Lab. A typical Cath Lab consists of a patient couch, image intensifier, monitors,

catheters, guidewires, angioplasty balloons, and stents [210]. Fig. 1.2 shows a typical Cath

Lab.

Angiography is a medical imaging method that can visualize either the lumen or the inside of

blood vessels by injecting a radio-opaque contrast agent, which can be visualized under X-ray

imaging, into the target blood vessels. As a result, the visualization of the blood vessels with

the contrast agent under X-ray imaging can be used for diagnostics of vessel occlusion, stenosis,

thrombosis or aneurisms. A common use of angiography is to visualize the coronary arteries

via coronary catheterization. Catheters are inserted into the target vessel and eject the X-ray

contrast agent into the vessels. The distribution of the contrast agent in the coronary arteries

allows a visualization of the size of the artery openings, which is an important observation

for disease diagnostics [191, 212]. Fig. 1.3 shows the procedure of coronary angiography. The



1.1. Motivation 5

Figure 1.2: A typical Cath Lab (Figure from [210]).

figure also shows an example of the angiography X-ray image (bottom left) and some catheters

commonly used in angiography (bottom right).

Angioplasty is an interventional procedure in which narrowed or obstructed arteries are widened

mechanically. Obstructed arteries are typical caused by atherosclerosis [135]. During this

intervention, a balloon catheter with an empty balloon is guided to the narrowed or obstructed

location and then the balloon is inflated to open up the location of the obstruction or widen the

narrowed vessel. As a result, the blood flow is improved. Then the balloon is deflated and the

entire catheter is retracted. In some cases, a stent may be attached to the balloon catheter to

reach the location of the narrowing which is then retained in the location after the catheter is

withdrawn in order to keep the vessel open. Coronary angioplasty, also known as percutaneous

coronary intervention (PCI), is used to widen the narrowed coronary arteries of the heart [135].

Figure 1.4 shows the procedure of coronary angioplasty as well as a balloon catheter with a

stent on the bottom left.
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Figure 1.3: Coronary angiography (Figure from [191, 212, 134]).

Balloon septostomy is another cardiac intervention in which an atrial septal defect (ASD)

is widened by using a balloon catheter. As a result, a greater amount of oxygenated blood

is allowed to enter the systemic circulation in cases of congenital heart defects (CHD). This

procedure is similar to angioplasty: The balloon catheter is firstly passed through the ASD into

the left atrium from the right atrium, with the balloon deflated. Then the balloon is inflated

and the catheter is withdrawn. As result, the ASD is enlarged and a larger amount of blood can

pass through. Normally a balloon septostomy is pre-procedure for a corrective surgery and the

ASD is expected to be closed by either sutures or cardiac patches when the corrective surgery

is ongoing [132]. Fig. 1.5 shows the procedure of balloon septostomy and some examples of the
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Figure 1.4: Coronary angioplasty procedure (left) and an example of a balloon catheter with a
stent for coronary angioplasty (right) (Figure from [133, 135]).

Figure 1.5: Balloon septostomy procedure (left) and some examples of the balloon catheter for
septostomy (right) (Figure from [132, 148]).

balloon catheter on the bottom right.

An electrophysiology study (EP test or EP study) is a MICS procedure in which the electrical

activity of the heart is evaluated. The purpose of EP studies is to assess abnormal heart

rhythms and to locate the position of pathways leading to arrhythmias. During this procedure,

a single or multiple catheters are placed within the heart through a vein or artery. X-ray

imaging is used to visualize the catheter positions. The electrodes are used to measure the

electrical activity along the conduction pathways of the inner walls of the heart [227].
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Catheter ablation is an interventional procedure in which an abnormal pathway of the heart is

located and destroyed by using an ablation catheter. This procedure is used to treat cardiac

arrhythmias such as atrial fibrillation (AF). Usually it is the post-procedure of an electrophys-

iology study and can be integrated with an EP study, for interventional purposes rather than

only diagnostic purposes. In this procedure, an ablation catheter is used to advance to the

heart through a vein. The ablation catheter tip can be used to destroy the abnormal tissue

that is causing the arrhythmia by either local heating or freezing. Fig. 1.6 shows three types

of catheters which are commonly used in EP studies and ablations [96].

Fig. 1.7 shows a standard procedure of catheter ablation for atrial fibrillation: (1) The relevant

catheters are inserted through a small incision, which is made by a cardiologist, into the blood

vessels and later to the heart, guided by live X-ray images; (2) once the catheters, normally the

lasso catheter and the coronary sinus catheter, are in place, small electrodes are placed around

the area of the heart to measure the electrical activities and to identify the abnormal tissue;

(3) after the source of the problem is located, the ablation catheter is used to delivery energy

to destroy the abnormal tissue [96].

1.1.4 Common cardiac diseases that can be treated using catheter-

ization

Arteriosclerosis and Atherosclerosis

Arteriosclerosis is an artery disease in which the wall of the abnormal arteries becomes thick,

hard and lacks elasticity [193], Atherosclerosis (arteriosclerotic vascular disease, ASVD) is one

type of arteriosclerosis that caused by accumulation of fatty plaques, which consist of white

blood cells (both dead and active), cholesterol, triglycerides, calcium or other crystallized ma-

terials in the artery [61]. Angiography can be used for the diagnosis of both arteriosclerosis

and the later stage of atherosclerosis. However, atherosclerosis is a chronic disease and can go

undetected without symptoms for decades. Thus early atherosclerosis normally shows no clear

symptoms in angiography images. Possible surgery-based treatments for both arteriosclerosis
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Figure 1.6: Three types of catheters used for EP study and ablation. From the left to the right
are an ablation catheter, a coronary sinus catheter and a mapping catheter.

and atherosclerosis include angioplasty (see details in the last section), coronary artery bypass

surgery and endarterectomy. Coronary artery bypass surgery (coronary artery bypass graft,

CABG) is a cardiac intervention in which other arteries or veins are grafted to the coronary ar-

teries to bypass atherosclerotic narrowings and increase the blood supply to the heart. This can

be carried out without stopping the beating of the heart. Endarterectomy is another procedure

in which the atheromatous plaque in an artery is removed from the arterial wall directly.

ASD and cyanotic CHD

An atrial septal defect (ASD) is a type of congenital heart defect (CHD) in which the left and

the right atria of the heart are not completely isolated. The ASD enables blood flow between

the left and right atria. As a result, the oxygen-rich blood from the left atria is mixed with the

oxygen-poor blood in the right atria, or vice versa. This may lead to a low oxygen amount in the

arteries when it is supplied to other organs and tissues of the body. However, the main shunt of
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Figure 1.7: Catheter ablation for atrial fibrillation (Figure from [96]).

the blood flow is from the left atria to the right atria. ASD can be treated via catheter-based

procedures.

Different from ASD, cyanotic CHD is a type of congenital heart defect in which the oxygen-rich

blood in the left atria is mixed with the de-oxygen blood in the right atria or the de-oxygen

blood directly bypasses the lung and enters the systemic circulation. One typical cyanotic CHD

is dextro-transposition of the great arteries (d-TGA), in which the aorta and the pulmonary

artery are transposed. As a result, the de-oxygen blood in the left atria enters the systemic

circulation directly and the oxygen-rich blood flows to the lung. To alleviate this case, a hole

is made between the left and the right atria to allow the oxygen-rich blood into the left atria

and then to enter the systemic circulation as well. Sometimes the hole or an ASD is widened
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by a balloon catheter to increase the amount of oxygen in the left atria [88].

Atria fibrillation and other cardiac arrhythmias

Cardiac dysrhythmia is a category of cardiovaccular diseases in which the heart beat is irregular:

faster (above 100 times per minute) or slower (below 60 times per minute) than normal, caused

by an electrical activity disorder. Many types of cardiac dysrhythmia can be treated by catheter

ablation [108]. Among them, the most common one is arial fibrillation (AF).

AF is often associated with a fast heart rate and symptoms such as heart palpitations, fatigue

or shortness of breath. AF is usually caused by abnormal electrical impulses in the roots of the

pulmonary veins. These impulses affect the normal electrical activity in the right atrium and

furthermore cause irregular electrical conduction of the ventricular impulses which generate the

beating of the heart [160, 97].

Other cardiac dysrhythmias which can be treated by catheterization include supraventricular

tachycardia (SVT) and atria flutter (AFL). SVT is also associated with a fast heart rate caused

by irregular electrical activity above the ventricles [59]. AFL is an irregular heart rhythm in

the atria and may occur spontaneously in normal hearts. AFL is normally associated with a

fast heart beat and frequently degenerates into atrial fibrillation [206, 97].

1.1.5 Imaging Modalities

The use of images from endoscopes, X-ray, ultrasound, MR and CT, is playing an increasingly

important role in MIS. For cardiac image guided MIS, imaging can be classified into pre-

operative medical imaging and intra-operative imaging. Pre-operative imaging, acquired from

modelities such as magnetic resonance imaging (MRI) and computed tomography (CT), is

used to model and analyze the morphology appearance or motion of the organ of interest

prior to interventions for diagnostic purpose. This enables treatment planning or visualization

for the subsequent intervention. Intra-operative imaging refers to images acquired during the

intervention, such as endoscopic, fluoroscopy and echocardiography images. These images are
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mainly used for navigation and intra-operative visualization of the surgical scene in real-time.

This real-time visualization of surgical scenes in cardiac MIS is the topic of this thesis.

Normally, images from pre-operative and intra-operative imaging techniques contain noise and

artifacts. Along with the rapid development of image analysis and computer vision techniques,

it is possible to automatically extract, enhance and highlight organs or structures of interest.

As a result, computer-aided visualization can help the clinicians to improve the accuracy and

speed of observation. In the context of cardiac catheterization, the most useful information

is the position of the catheters in relationship to the morphology of the heart. An automatic

segmentation and tracking of the catheter in interventional images during catheterization en-

ables a better visualization. This can aid the physician in MIS interventions by highlighting the

catheter location in real-time in the images. In the following we will review the most commonly

used intra-operative imaging modalities for catheterization and compare their advantages and

disadvantages.

X-ray Fluoroscopy

X-radiation (X-rays) is a form of electromagnetic radiation with a wave length between 0.01

to 10 nm, a frequency between 3 × 1016 to 3 × 1019 Hz and an energy between 100 eV to 100

keV [93].

X-ray fluoroscopy is an imaging technique that obtains images of the internal structures of a

patient in real-time by using different X-ray absorptions of different internal organs or tissues.

An X-ray fluoroscope consists of an X-ray source and an X-ray image intensifier, between which

the patient is placed. The X-ray image intensifier converts X-rays into a visible image. Modern

X-ray system usually encompasses the X-ray source and the intensifier within a C-arm set-up.

Sometimes X-ray systems include two C-arms (with two X-ray sources and two intensifiers) to

enable a bi-plane imaging. Fig 1.8 shows an example of such a bi-plane X-ray intensifier. The

X-ray energy is absorbed to a larger extend by bone than by soft tissues. As a result the X-ray

energy reaching the intensifier through bone is less than through soft tissues. This difference

can be visualized by intensifier [93].
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Figure 1.8: An example of bi-plane X-ray intensifier (Allura Xper FD biplane systems developed
by Philips) (Figure from [163]).

For most clinical applications in cardiac catheterization, such as catheter ablation for atrial

fibrillation (AF), X-ray fluoroscopic imaging is the currently dominant intra-operative modality

used during the intervention. Fluoroscopy imaging can be performed at frame rates up to 30

frames per second. Therefore it allows the location of the heart and interventional devices to

be visualized in real time. However, 2D X-ray images can not visualize soft tissues in 3D. In

addition, the imaging also poses a potential danger to patients, especially children, as a result

of the exposure to ionizing radiation.

In a catheterization laboratory where standard catheter ablations are carried out in a hospital,

C-arm based X-ray image intensifiers are commonly used to obtain real-time fluoroscopic images

during interventions. The C-arm mechanism enables the image intensifier to visualize the target

area from arbitrary angles according to clinical requirements. This provides a way to acquire 3D

spatial information about the target area despite the fact that only 2D images can be acquired

at each point in time. However, 3D imaging comes at a high cost: images from different angles,

from which 3D scene can be reconstructed, cannot be acquired simultaneously with only one
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Figure 1.9: X-ray images of catheters for clinical (left) and porcine experimental (right) usages.

X-ray source. One exception are bi-plane X-ray intensifiers which have a pair of X-ray sources

(an example is shown in Fig. 1.8). However, this also means that the radiation amount is

doubled. Fig. 1.9 shows examples of the catheters in X-ray images. The left image shows a

clinical image for a patient with a low dose X-ray exposure while the right shows an image for

a porcine experiment with high dose X-ray exposure. It is obvious that the low dose image for

clinical real-time use is more noisy than the image obtained with a high dose of X-ray exposure.

Echocardiography

One potential alternative imaging modality is echocardiography, wihch uses standard ultra-

sound images to create 2D or 3D images of the heart.

Ultrasound are sound waves with a frequency higher than the limit of the human hearing,

which is approximately 20kHz. The frequency range for ultrasound in medical imaging usually

is between 2 and 18 MHz and the energy exposure is less than 1 watt per square centimetre.

An ultrasound wave is produced by a transducer and then travels through the body. The

ultrasound impulse is reflected and echoed between the tissue interfaces and the transducer.

The time difference and the strength of the reflected sound wave are measured. This information

is turned into digital signals for imaging [15].
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Figure 1.10: Artifacts in ultrasound images (Figure from [173]).

Compared with X-ray imaging, ultrasound imaging has the following advantages: (1) it can

provide 3D imaging with 3D spatial information directly; (2) better soft tissue visualization

which is required for many clinical cardiac interventions; (3) no harmful radiation. However,

acoustic artifacts and a small field of view make the visualization of the interventional scene

only by ultrasound extremely challenging [92]. Fig. 1.10 shows two types of common artifacts:

(1) reverberation artifacts, which are caused by echoes between internal tissues rather than

echoes between tissues, and (2) comet-tail artifacts, which is a special form of reverberation

artifacts but usually caused by tiny structures [173].

Transthoracic echocardiography (TTE) uses an echocardiography transducer (or probe) placed

on the chest wall (or thorax) to visualize the cardiac anatomy based on ultrasound. This is a

non-invasive imaging technique that can be used to assess the morphology and function of the

heart quickly and easily. However, because of the placement of the probe outside the body,

the accuracy of the imaging can be limited, e.g., due to obesity, chronic obstructive pulmonary

or chest-wall deformities between the probe and the heart [209]. It also has a limited ability

to visualize cardiac structures at the back of the heart. Transesophageal echocardiography

(TEE) is another type of ultrasound imaging in which the echocardiography transducer is

inserted into the patient’s esophagus. Thus it can provide direct visualization of the cardiac
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Figure 1.11: An comparison between TTE and TEE procedures (Figure from [136]).

structures and surgical instruments that are inside the heart without imaging through the chest

wall. Compared with TTE, it may cause some degree of discomfort for the patient. However,

the image quality is generally better than in TTE. The reason is that the ultrasound waves

only needs to travel a short distance between the heart and the esophagus in TEE while the

ultrasound waves need to traverse skin, fat, ribs and lungs in TTE. This leads to a significant

attenuation of the ultrasound waves and thus weaker and noiser signals [209]. Fig 1.11 shows

a comparison between the procedures of TTE and TEE.

Generally the visualisation and identification of catheters is particularly difficult in both types

of echocardiography, even for experienced physicians, due to the acoustic artifacts, the small

field of view and the general difficulty of interpreting ultrasound images. In addition, elec-

trodes on catheters, which can be used to locate catheters in X-ray images, are difficult to

identify in ultrasound images. Thus most of existing visualization approaches that are based

on identifying the electrodes in X-ray images cannot be easily used in ultrasound imaging.

New computer assisted techniques are needed to enhance the visualization of the catheters in

ultrasound images.

The research reported in this thesis focuses on the development of novel techniques for improved

catheter visualization in X-ray and ultrasound imaging. X-ray fluoroscopy and ultrasound are

the main modalities to be used in this thesis. Thus the advantages and disadvantages of
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Table 1.2: A comparison between X-ray and ultrasound modalities.

X-ray Ultrasound
Clinical use Most catheterization inter-

ventions
Limited and only in some
diagnostic procedures

View area Large Small
Imaging quality High quality imaging, but

noisy with low dose.
Lower image quality due to
various acoustic artifacts

3D visualization 2D imaging technique. Pos-
sible 3D visualization via re-
construction with bi-plane
systems

TEE can provide direct 3D
visualization

Soft tissue visu-
alization

Soft tissue invisible Soft tissue visible

Ionizing radia-
tion

Uses ionizing radiation and
poses potential danger to
pregnant women and chil-
dren

Exposure to ultrasound
wave is not harmful.

both modalities are compared and discussed in detail here. This comparison is summarized

in Table 1.2. Fig. 1.12 also shows images for these two modalities. The entire catheter in

X-ray images can be clearly identified while the same catheter can only be visualized partly

in the ultrasound images and they are also difficult to identify. The electrodes are invisible in

ultrasound images.

Other Modalities

Intravascular ultrasound (IVUS) is another ultrasound imaging technique in which an ultra-

sound probe is attached to the tip of a specially designed catheter which is inserted into the

blood vessels to record in-vivo images of the endothelium of vessels. IVUS has a clear advantage

of a better visualization of the details inside the coronary artery lumen. However, the main

drawbacks of using IVUS in clinical practice include the high cost of this clinical usage, the

high risk caused by the specialized catheter and the long time of the procedure [201]. Fig. 1.13

shows an example of an IVUS catheter (left) and an IVUS lumen image (right).

Another new emerging intravascular imaging technique is optical coherence tomography (OCT),

which uses the magnitude and the echo time of the light instead of ultrasound to visualize micro-

structures like the lumen area of vessels or the anterior segment of the eye and the retina at a
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Figure 1.12: Examples of orginial X-ray images (top) with the corresponding ultrasound volume
visualized (bottom) (Figure from [208]).

high resolution. OCT has a higher resolution than IVUS, with the tradeoff of a smaller imaging

depth. As a result, the field of view for OCT image is relatively small. The resolution and

the imaging depth of an OCT system depend on the light frequency. Generally, the limited

imaging depth and the view field makes this application only suitable for detailed diagnostic

assessment of micro-structure diseases [21]. Fig. 1.14 shows an example of a OCT catheter with

its corresponding image. In summary, both OCT and IVUS are limited to imaging of vessels

and cannot be used for the cardiac chambers.
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Figure 1.13: An example of two types of IVUS catheters and one of example of the IVUS lumen
image showing vessel plaque (Figure from [201]).

Figure 1.14: An example of an OCT catheter (right) and its corresponding image (left)(Figure
from [201]).

Electroanatomic mapping (EAM) is a yet another emerging imaging technique that can localize

the position and the orientation of the catheter tip, and construct a road map of the catheter in

real-time by recording intracardiac electrical activation related to anatomical locations during a

catheter ablation procedure. An EAM procedure is often companied with fluoroscopy imaging

before the road map is constructed. However, the use of fluoroscopy is limited after the road

map constructed. Thus, one general advantage of EAM is its ability to reduce the usage of

fluoroscopy during the intervention. Other advantages of this technology include an increase
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Figure 1.15: An example of the EAM specialized lasso catheter (left) and its imaging under
EAM mapping (right) (Figure from [23]).

of the accuracy and easy reacquisition of the position for re-ablation (since the road map has

already been reconstructed and it is straightforward to re-locate the ablation target using this

road map). However, the spread of this new technology is limited by its cost and the strong

dependence on specialized hardware platforms. Most of the EAM systems required specially

designed catheters rather than normal ones [22]. Fig. 1.15 shows an example of an EAM system

[23].

Computed tomography (CT) is a imaging technique that uses X-ray to reconstruct a 3D volume

data. This is enabled by rotating a pair of an X-ray source and an intensifier around the target

to form a sequence of images from various angles. Then these images are integrated into

a 3D volume using a reconstruction algorithm. Cone beam computed tomography (CBCT)

is a medical imaging technique that uses cone-beam shape X-rays to construct a computed

tomography instead of the fan-beam used by the conventional CT [175]. The cone-shape beam

enables a 3D visualization at one rotation while the conventional CT can only obtain a slice at

one rotation. CBCT is most commonly used for diagnosis and can be used in stent placement

interventions [20]. Besides the capability of 3D imaging, it shares most of the disadvantages of

X-ray fluoroscopy such as ionizing radiation or the lack of contrast of soft tissue. In addition,
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Figure 1.16: The imaging principle of CBCT (left) and an example of 3D image (right) (Figure
from [211, 184]).

since the time of acquisition is relatively long, the fast motion of the heart will have a negative

influence on the reconstruction accuracy. This drawback limits the application to real-time

interventions, especially with large motions [156]. Fig. 1.16 shows the imaging principle (left)

and a 3D reconstructed volume by CBCT (right). In this volume the reconstructed left atrium,

aorta and esophagus is marked in red, blue and green, respectively.

Interventional magnetic resonance imaging (IMRI) is a Magnetic Resonance (MR) imaging

technique used in interventional radiology procedures. The obvious advantage of IMRI over

X-ray based imaging is its lack of ionizing radiation for the patient and the operator, and the

advantage over ultrasound is its high quality images. However, the strong magnetic fields of

the MR scanner require surgical tools that are specially designed. This limits the IMRI to be

widely used in catheterization procedures [161].

1.2 Challenges

As X-ray fluoroscopy and ultrasound imaging are used in most of cardiac interventions, the

detection and tracking of catheters for cardiac catheterization are mainly based on these two

modalities.
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For X-ray images, although catheters are visualized with a high quality, the detection and

tracking of catheters are still challenging. A catheter being tracked is a non-rigid object.

Unlike a rigid object, a non-rigid object needs more parameters to model the tracking. In

addition, the catheter motions are complicated, with a combination of motions along both

transversal and longitudinal direction. This means that the search space of each parameter is

also large. Moreover, normally more than one catheter is in the view and multiple catheters

can interfere with each other. The large amount of noise in the low dose images for clinical use

also has negative consequences. All of the above factors make the problem challenging. Finally,

catheterization is a real-time application that imposes strong constraints on the speed of the

tracking algorithm.

Therefore in order to enable soft tissue visualization, the addition of ultrasound imaging would

be beneficial. For ultrasound, the segmentation and tracking is even more challenging since the

imaging quality is worse than in X-ray images. Since 3D TEE ultrasound is used, the search

space is larger than 2D imaging modalities such as X-ray fluoroscopy. In addition, a great

number of acoustic artifacts exist in this large search space. Thus, direct catheter detection in

ultrasound is not feasible. In order to make the task easier, constraints should be introduced

to reduce the search space and eliminate the interference of the artifacts. This can be done

by combining the corresponding X-ray and ultrasound images for the tracking. A framework

is required to integrate these two modalities and this framework must be fast and tolerant to

registration errors.

Another challenge is to avoid X-ray exposure as much as possible to a large extent. This

requires the catheter extraction to be performed in ultrasound images without the aid of X-ray

images. In this case, the only available prior information is the location of the catheter in

the last frame. When the temporal consistency is used, the catheter segmentation problem is

transformed into a catheter tracking problem. Compared with X-ray imaging, the frame rate

in US images is lower and the view of field is smaller. This means the motion of the catheters

is larger and more unconstrained. The complexity of the catheter motion, as well as the low

ultrasound imaging quality and the severe acoustic artifacts, aggravate the tracking problem,

especially when taking constraints on computational cost into account.
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1.3 Contributions

The main contributions of this thesis include the following:

• A novel and fast catheter segmentation and tracking strategy in X-ray images is proposed.

There are a large number of studies addressing the problem of catheter segmentation and

tracking in X-ray images. Most of them focus on catheter electrode detection instead of

detecting the entire catheter. Some of the approaches address the entire catheter track-

ing via discrete optimization. However, the complex of catheter motion pattern and the

mutual interference between multiple catheters are usually not fully taken into account.

In our research, we propose a strategy to deal with a more complicated motion involving

large longitudinal movements. The novel features of our tracking strategy include a fast

path growing based catheter extraction, adaptability to large longitudinal movements for

individual catheter tracking and the capability to address the problem of mutual interfer-

ence from multiple catheters during tracking. A combination of edge and ridge detectors

is used within image patches to estimate the catheter orientation and the center of local

catheter fragments. These features can resolve the intersection of multiple catheters in

X-ray images. A Kalman filter is used to extract the entire catheter by incorporating

these features.

• The second contribution of the thesis is a catheter extraction system for ultrasound images

assisted by the corresponding X-ray images. Based on previous work on 2D-3D registra-

tion of X-ray and ultrasound images, our system can successfully bridge the gap between

these two modalities. This strategy enables the ultrasound imaging to be combined with

X-ray images during the intervention. A better visualization of soft tissues is possible

through the use of ultrasound images. Based on the registration of ultrasound and X-ray

images, the segmentation or tracking results from the X-ray images are employed to re-

duce the search range for catheter location in the ultrasound images. Searching for the

catheter in this reduced space means that severe acoustic outliers outside the search range

can be eliminated. This also accelerates the catheter extraction algorithm, compared with
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the extraction without X-ray images. In this reduced search space features can be de-

tected. A graphical model is defined to organize these features. The optimal path in this

graphical model can be identified to fit the catheter curve in ultrasound images. To the

best of our knowledge, this work is the first to address the problem of the segmentation

of the entire catheter from ultrasound images for cardiac catheterization procedures.

• We also proposed a catheter tracking strategy using only ultrasound images. This strate-

gy significantly reduces the dependence on X-ray imaging and thus the risks from ionizing

radiation. Without X-ray images, the only clue help to reduce the search range is the

location of the catheter in the last frame. We refer to this type of prior information as

temporal consistency. Temporal consistency is used to identify the outliers that are obvi-

ously inconsistent with catheter extraction results from previous frames. However, even

if temporal consistency is taken into account, the complicated catheter motion involving

both transversal and longitudinal motion is still a challenging problem. The tracking

methodology we have developed for 2D X-ray images cannot be simply extended to 3D

ultrasound images because the computational cost would increase dramatically. In order

to address this problem, the entire tracking process is decoupled into two stages: transver-

sal tracking and longitudinal tracking. The strategy guarantees the tracking along both

longitudinal and transversal directions with high speed. In addition, the motion model of

the catheter is designed as a periodic motion model since it can approximate the periodic

beating of the heart. The parameters of this motion model are being tracked online by

using a Kalman filter. The motion model is estimated based on the information from

previous frames. The estimated motion model can be used to predict the location of the

catheter in the next frame more accurately. A more precise prediction of the catheter

location in the next frame can reduce the likelihood of a tracking failure as a result of

large motion. Furthermore it can reduce the amount of X-ray exposure since a tracking

failure normally requires additional X-ray images to re-initialize the tracking. The pro-

posed system is implemented using a GPU platform. To the best of our knowledge, this

system is the first catheter tracking system for 3D ultrasound images which can satisfy

the real-time requirements (above 10 fps).
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Figure 1.17: A system integrating all contributions. Yellow indicates processing that can take
place off-line.

All of the proposed contributions can be integrated as a complete system as shown in Fig. 1.17.

The online procedure starts with the catheter extraction and tracking in X-ray images. Inde-

pendently, the off-line constructed probe model can be used to calculate the transformation

between the corresponding X-ray images and ultrasound images by registration. Then the re-

sult of the registration, as well as from the catheter tracking in the X-ray images, can be used

to extract the catheter in the corresponding ultrasound volume. Finally, the extracted result

from one ultrasound frame can be used to initialize the tracking for the following ultrasound

frames without the need for X-ray images. The relationship between all proposed algorithms

will be summarized in the conclusion chapter.

1.4 Thesis Outline

In the following chapter, we will review the background and the state-of-the-art that is related

to our research. The third chapter will introduce the catheter segmentation and tracking for

X-ray images. The catheter segmentation algorithm can extract the entire catheter from each

frame independently. It does not require the information from previous frames. It can be used

to initialize a tracking system or to recover a tracking failure. A tracking algorithm is also

developed to use the information from previous frames. From our evaluations, the extraction

algorithm can preserve the entirety of the catheter. It is robust to more complicated motions.

The tracking algorithm can address multiple catheters cases, including catheter overlapping

and mutual interferences. This is important since cases of multiple catheter cases are quite

common in clinical interventions. The fourth chapter will introduce the catheter segmentation
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in ultrasound images based on the corresponding X-ray images. In this chapter the X-ray

imaging and ultrasound imaging are related by a 3D-to-2D registration algorithm. Then the

catheter extracted from X-ray images can be projected to the corresponding ultrasound images.

This information enforces a constraint on the search space for catheters in the ultrasound

images. With this catheters are segmented from this constrained space. We proposed graph

model-based algorithms to extract the catheter in the ultrasound images. Our system is tolerant

to the registration error between X-ray images and ultrasound images. This framework is

validated based on both phantom and clinical data. The fifth chapter focuses on the real-time

catheter tracking only in ultrasound images. X-ray imaging is not required for each single

frame and the X-ray exposure can be maximally reduced. Approaches addressing the tracking

of catheter in 2D X-ray images are not applicable to 3D ultrasound volume, mainly due to

the increase in computational complexity. Thus we proposed a strategy which uses a reduced

search space to search for possible locations of the catheter. Our experiments based on both

porcine and clinical data indicate that our system can address more complicated motion and

simultaneously preserve the entirety of the catheter being tracked. With the GPU platform,

the entire system can meet the real-time requirement (above 10 fps). The last chapter will

give a brief conclusion, including a summary of the contributions, the potential problems and

possible future work.



Chapter 2

Background

This chapter reviews the related work and the state-of-the-art in the field of segmentation and

tracking. We start with a general investigation of computer vision techniques relevant to our

application. In the second part of the chapter we focus on techniques for catheter segmentation

and tracking, as well as a brief introduction of hardware accelerators.

2.1 Feature detection for segmentation and tracking

As the first step for both segmentation and tracking, feature detection is an important step

since it can directly affect the performance of the entire system. Good features can significantly

enhance the robustness and furthermore improve the accuracy. In some cases, features, such

as corners, blobs, tubular structures, are clearly visible and they can be detected by designing

corresponding detectors. However, in other cases, features are less clearly visible. In many cases,

a feature is in form of a high-dimensional vector. This vector-based feature usually encodes

the information from the neighbourhood of a pixel or voxel. Then sufficient data are required

to learn the nature of the feature. Supervised learning can be used to determine the decision

hyper-plane or probabilistic distribution for either segmentation or tracking applications. In

some cases, unsupervised learning can also be used to transform the original feature into a more

useful feature for segmentation or tracking.

27
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2.1.1 General Feature Detection

Detectors dealing with basic geometric features such as blobs, corners, edges or tubular struc-

tures in an image normally produce scalar-valued measurements characterizing the strength of

the feature. Then the corresponding features are detected by thresholding the output of the

detector. Usually such scalar-valued detectors are expected to be fast, robust and accurate.

For speed, detectors are usually designed with low computational cost such as using integral

images [16]. Furthermore, if a large number of pixels in a small neighbourhood have a detector

value above the threshold, then only one pixel (with the maximal value) is selected to represent.

This is referred as non-maximum suppression [121]. For robustness, detectors are expected to

be invariant to the changes of illumination, rotation, scale and affine transforms. This can

be achieved by feature normalization, principle orientation, scale space [121] and shape adap-

tion [138], respectively. In addition, interpolation can be carried out to allow feature detection

with sub-pixel accuracy [121].

Corners

The Harris corner detector [82] is a classic feature extraction method but one of the most useful

methods to extract stable corner points from images. The Harris corner detector is based on

the eigenvalues of a structure tensor matrix Hharris in form of:

Hharris =
∑

u,v∈N(x,y)

ω(u, v)

 Ix(u, v)
2 Ix(u, v)Iy(u, v)

Ix(u, v)Iy(u, v) Iy(u, v)
2

 (2.1)

Here Ix(u, v) and Iy(u, v) are the image intensity derivatives along x and y axis on pixel (u, v).

N(x, y) denotes a neighbouring patch of (x, y). ω(u, v) denotes the weights (normally using a

Gaussian Kernel) for averaging within a small patch. A corner is identified if both two eigenval-

ues of the corresponding matrix have a large positive value. The Harris corner detector has been

widely used in the field of computer vision and robotics due to its stability, straightforward and

fast calculation, as well as its high accuracy. Alternative corner detectors which have a similar

performance to the Harris corner detector have been reported in several studies [181, 185, 168].
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Blobs

In addition to corners, blobs are another type of salient points commonly used. Most of the

blob detectors are based on the Laplacian of Gaussians (LoG) [116], the difference of Gaussians

(DoG) [117, 121], or the determinant of the Hessian matrix (DoH) [115, 16]. Given an input

image I(u, v) and a Gaussian kernel G(u, v, s) at the scale of s, the result of the convolution

L(u, v, s) is defined as:

L(u, v, s) = G(u, v, s) ∗ I(u, v) (2.2)

Assume the second partial derivatives of L(u, v, s) along x and y are denoted by Lxx(u, v, s),

Lxy(u, v, s) and Lyy(u, v, s), then the Laplacian of Gaussian (LoG) is defined as

▽2L(u, v, s) = Lxx(u, v, s) + Lyy(u, v, s) (2.3)

The value of the LoG can be used to detect blobs.

The difference of Gaussian (DoG) uses the difference of two Gaussian convolution values at

different scales to approximate the value of the LoG. One assumption of this approximation is

that L(u, v, s) satisfies the diffusion equation:

Ls(u, v, s) = 0.5▽2 L(u, v, s) (2.4)

Here Ls(u, v, s) is the derivative of L(u, v, s) along the scale change s and can be approximated

by the difference of L(u, v, s) at various scale s.

In addition to LoG and DoG, descriptors based on the Hessian matrix can be used to detect

blobs. The Hessian matrix is the matrix of second derivative and can be written as:

Hhessian =

 Lxx(u, v, s) Lxy(u, v, s)

Lxy(u, v, s) Lyy(u, v, s)

 (2.5)

The determinant and the trace of the Hessian matrix are often used as a detector. The Hessian

matrix is also used in Speeded-Up Robust Features (SURF) detector [16]. One advantage of
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Figure 2.1: A example showing Harris corners on the left and DoG blobs.

SURF is that it calculates the elements of the Hessian matrix based on an integral image. The

integral image can be used to approximate the DoG value in an efficient way [16]. This strategy

significantly speeds up the detection process and is suitable for real-time applications. Fig 2.1

shows an example of Harris corners (Left) and DoG blobs (Right).

In order for salient point detectors to detect corners or blobs, a basic requirement is that the

detector should be invariant to changes of orientation, scale and affine transforms. In [16, 121],

orientation invariance is guaranteed by calculating the principle orientation of the local patch

and scale invariance is achieved by constructing a scale space pyramid. Affine invariance is

generally obtained by iteratively calculating a second-moment matrix to realize shape adapta-

tion [138, 139, 118, 141, 199].

Edges

Edges are another category of basic features being widely used. The edge detection problem

has been well researched. Most approaches use first-order derivatives of the intensity for edge

detection [36, 60]. Assume that the image gradient along x and y are denoted by Ix(u, v) and
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Iy(u, v) at (u, v), then the following responses are calculated:

Imag(u, v) =
√
Ix(u, v)2 + Iy(u, v)2 (2.6)

φ(u, v) = atan2(Ix(u, v), Iy(u, v)) (2.7)

Here Imag(u, v), the gradient magnitude, can be used to threshold edges. φ(u, v) is the direction

in the direction normal to the edge.

Tubular Structures

Most detectors for tubular structures are used in applications such as road segmentation from

2D aerial images [187, 112] or vessel segmentation from 3D medical images [69, 174, 109, 102,

113]. Compared with edge detectors, most tubular structure detectors are based on second

order derivatives, which form a Hessian matrix as shown in eq. 2.5. A 2D tubular structure

usually corresponds to a 2D Hessian matrix that has a principle eigenvalue with a large absolute

value and a second eigenvalue close to zero. For 3D tubular structures, two eigenvalues have a

large absolute value, and the third eigenvalue is close to zero. We assume that the eigenvalues

in 2D(3D) are ordered as follows: |λ1| < |λ2|(< |λ3|). Both blobs and tubular structures can

be identified via the eigen-system of the Hessian matrix. Table. 2.1 summarizes the geometric

patterns and the corresponding eigenvalues. Fig 2.2 shows an example of edge detection and

tubular structure detection in an X-ray angiogram of the heart.

For parametric models such as lines, circles, ellipses, and curves, the detection problem in the

original image space can be transformed into a detection problem in parameter space, which

is also called the Hough space. Each set of the parameters are weighted proportionally to the

number of supporting pixels in the original image. Then the detected shape, which is modelled

by the parameters with a large weight, is extracted [57, 83]. However, the computational cost of

the detection via Hough transform is high if the shape being detected is modelled with a large

number of parameters. One typical application for the Hough transform is the line detection.

Since lines can be modelled with only two parameters, the line detection based on the Hough
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Table 2.1: Geometric patterns and the corresponding eigen-
values |λ1| < |λ2|(< |λ3|) (Table from [69])

2D 3D
Patterns

λ1 λ2 λ1 λ2 λ3

L L H−a plate-like structure (bright)
L L H+ plate-like structure (dark)

L H− L H− H− tubular structure (bright)
L H+ L H+ H+ tubular structure (dark)
H− H− H− H− H− blob-like structure (bright)
H+ H+ H+ H+ H+ blob-like structure (dark)
aH+\− means a high absolute value with a
positive\negative sign. L means a low absolute value
close to zero.

transform is quite efficient and has been widely used in many applications [3, 130, 66]. Fig. 2.3

shows an example of line detection through its 2D Hough space. The left part of the figure

shows two lines in the original space and the right part of the figure shows the voting result in

the Hough space modelled by two parameters of each line (the distance to the origin and angle

between the line and the X-axis).

2.1.2 Feature Detection using Machine Learning

The general feature detection framework described previously can be only used for simple

features or shapes. These features are parametric features that can be identified based on prior

knowledge. Usually the detection or classification of such features is performed by thresholding

the output of the corresponding detector. However, more complex sets of features are difficult

to represent and the detection of these features is more complex. In addition, it is difficult to

explicitly represent the prior knowledge necessary to encode these more complex features. In

these cases, an alternative approach is to learn either an more efficient representation of the

feature or a probabilistic distribution in the feature space.

In many cases features represent vectors in a high-dimensional space. This vector usually en-

codes the local information within the neighbourhood of the point of interest. One commonly

used feature in computer vision is the intensities within a local patch directly, usually normal-

ized [68], of either the original image or the gradient image. Other features (also referred as
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Figure 2.2: An example of edge detection with Sobel (bottom left) and Canny (bottom right)
operators, and tubular structure detection (top right), compared with the original image (top
left).

descriptors) [121, 16, 140, 53] organize the local information in a more efficient way. We give two

examples of the most popular descriptors in Fig. 2.4 and Fig. 2.5: The scale-invariant feature

transform (SIFT) [121] defines a descriptor based on the statistics of gradients. A local patch

near the key point is aligned with an primal orientation calculated previously. This patch is

divided into small cells (4×4 in the figure). For each cell, it consists of a number of pixels. The

gradient directions for these pixels are used to construct an 8-bin histogram for this cell. Then

the 4 × 4 gradient histograms for all cells in the local patch are concatenated to form a 128D
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Figure 2.3: An example of Hough line detection with two lines in the original coordinate (left)
and the corresponding voting in the Hough space.

vector. Fig. 2.4 shows an example of SIFT descriptor. The left shows the patch consisting of

4×4 cells, with the centre (the yellow cross) on the key point and x-axis aligned with the primal

orientation calculated previously (the yellow arrow), the black arrows in each cell indicate the

strength of each bin corresponding to the 8-bin histogram. The right sub-figure shows an ex-

ample of a cell of which the histogram is generated based on the local gradients denoted by red

arrows. The Histogram of Gradients (HoG) [53] gives a more general framework to construct

a feature descriptor based on gradients. A full gradient image is divided into small cells and

a histogram based on gradient orientations is constructed. Then a block, which consists of a

number of cells, is defined. The feature of this block is constructed by concatenating all his-

tograms corresponding to the cells belonging to this block. In contrast to SIFT, which can only

describe the local neighbourhood of a key point, HoG features can be used to describe a whole

image by concatenating the features of all blocks in this image. Fig 2.5 shows a basic approach

for the calculation of HoG. The left sub-figure shows cells with the corresponding orientation

distribution, which is similar to SIFT descriptors. The right sub-figure shows the histograms

corresponding to all cells within a local block. All this histogram can be concatenated to form

a feature describing this block.
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Figure 2.4: SIFT descriptor calculation with cells (left) and an example of one cell calculated
based on local gradients (right).

Figure 2.5: HoG descriptor calculation with cells (left) and the histograms based on the gradient
statistics (right).

Given a set of vector-based measurements, which are called features in this context, a discrete

(classification) or continuous (regression) function is learned based on a set of available training

data. This function takes the features as inputs and the output of this function, normally a

scalar value, indicates the class label or a regression value. For example the class labels could

be ’no feature detected’ or ’feature detected’. The learning process can be carried out in either

a supervised or unsupervised way depending on whether the labels of the training data are used

during the learning.
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In most of the classification or regression cases, some available training data are manually

annotated with labels and a supervised learning is performed. Commonly used supervised

learning methods include support vector machines (SVMs) [189, 40], decision trees [188], k-

nearest neighbours algorithms (k-NN) [51] and artificial neural networks (ANNs) [221]. SVMs

are one of the most popular supervised learning methods for classification. They determine a

hyperplane to separate data with different labels by maximizing a margin (the distance between

two hyperplanes which give a boundary to the positive data and the negative respectively).

SVMs can be used to solve both linear and non-linear problems. Fig. 2.6 shows an simple 2D

linear SVM case in which the hyperplane equation is denoted by

w · x− b = 0 (2.8)

Here w is the normal direction of this hyperplane and b
∥w∥ denotes the offset of the hyperplane

to the origin along w. For a positive or a negative class, the value of w · x − b is above 1

or below -1, respectively. w · x − b = ±1 can be considered as two margin hyperplanes and

the distance between these two hyperplanes is 2
∥w∥ . Thus, ∥w∥ is to be minimized in order to

maximize the margin in form of the distance between these two hyperplanes.

To improve the classification performance, especially to address the problem of overfitting,

a group of classifiers can be integrated and organized instead of a single classifier. This is

the basic idea of ensemble learning. Typical ensemble learning techniques include bagging [31],

boosting [71, 176], probabilistic boosting trees (PBT) [198] and random forests [32, 52]. Bagging

is an ensemble learning in which a number of subsets of the data (bags) are sampled and a

number of classifiers are trained based on each subset. Then the final output of bagging

is the average of the outputs of all trained classifiers. Boosting is a method to organize a

number of weak classifiers to form a strong classifier. Each classifier is assigned a weight and

these weights are used to average and combine all weak classifiers. Probabilistic boosting tree

employs both the idea of decision tree and boosting. One of the most popular ensemble learning

is random forests which are a group of decision trees. A bagging strategy is used to select a

number of subsets of the data and an individual decision tree is trained based on each data
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Figure 2.6: A simple 2D linear SVM case.

subset. However, to eliminate the correlation among different trees, during the training of each

individual tree, a subset of features is randomly selected to form the tree. Random forests can

also be used for unsupervised learning [52]. Another advantage of ensemble learning is that

it is easier to carry out incremental learning by updating the weight of each weak classifier.

Thus these method can be used for online learning [157, 158, 170]. For example in [200, 77],

to address the tracking problem, various types of features can be considered as weak learners

and measurements are evaluated by the combination of these features with the corresponding

weights. In each iteration, new training data are used to update the weights of these features

and eventually the most salient features have the highest weights during the training process.

Many of high dimensional features are redundant. A redundant feature space is not only high

in computational cost, but also affects the general performance of detectors. Thus, the trans-
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formation of high dimensional features to a more compact and low-dimensional representation

is of central importance in the field of machine learning. Principal component analysis (P-

CA) [58] is a widely-used method to reduce dimensionality by analyzing the singular values of

the corresponding covariance matrix. Manifold learning [177, 195, 17, 204, 43, 178] has been

proposed to retain the useful dimensions in a manifold space to preserve useful information

in a low-dimension representation. Sparse coding [127, 128, 114], as well as low rank tech-

niques [129], are other alternative ways to achieve a sparse feature representation by matrix

analysis. Using sparse learning as an example, the original features are written as a matrix

Ym×n = (y1, . . . , yn) with the size of each feature vector n and the dimension m. Then an

over-complete dictionary Dm×k with the size of the dictionary k as well as the corresponding

sparse representation Xk×n = (x1, . . . , xn) is found by minimizing the following function:

min
Dm×k,xi

n∑
i=1

(∥yi −Dm×kxi∥22 + λS(xi)) (2.9)

Here S(xi) is a sparsity constraint (usually the L0 or L1 norm). Then the new representation

Ỹm×n can be obtained by applying

Ỹm×n = Dm×kXk×n (2.10)

A dictionary can be learned using method proposed in [4]. Through sparse coding, the original

features can be represented by a sparse code of coefficients. A mechanism transforming the

original features to a sparse code can be considered as a sparse encoder. Compared to the

original feature, a sparse code reduces the redundant information while preserving useful infor-

mation. If a number of sparse encoders are stacked (the output of one sparse encoder is used

as the input to another sparse encoder) to form a hierachical network, then a deep network is

constructed [18]. Fig. 2.7 shows an example of two layer networks with the original feature in

blue, the first layer coding in green and the second (the final) coding in red. The yellow layer is

a classifier based on the sparse coding in red. The final sparse code is expected to preserve more

compactly valuable information than the original features or other intermediate spare codes.

This code can be considered as a new feature created by unsupervised training. In contrast
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Figure 2.7: An example of a two-layer stacked auto-encoder network with a softmax classifier.

with the original feature, the new feature usually achieves better performance when it is used

for supervised learning. Conversely, the original feature can be recovered from a sparse code.

This process is called decoding. The recovered feature from a sparse code is expected to be

noise-free since the source, the sparse code, is expected to be more compact and without redun-

dant information. Deep learning algorithms [18], which fit such an architecture are becoming

increasingly popular for their capability to establish a network architecture to create a good

feature representations in an unsupervised fashion. Deep neural networks (DNN) [19, 110],

restricted Boltzmann machines (RBM) [171] and deep belief networks (DBN) [26] can provide

alternative architectures to the stacked sparse encoder. However, a large number of training

data are required when deep learning approaches are used.
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2.2 Optimization and Filtering

2.2.1 Optimization

No matter how local detection results are obtained, false positives and false negatives always

exist in real-world situations. To address this problem, other constraints such as smoothing have

to be used. This allows the formulation of an optimization problem. In the field of computer

vision, in addition to conventional continuous optimization based on gradient descent, discrete

optimization approaches are popular since they can reach the global solution efficiently and will

not be trapped in local minima. Commonly, graphical models are used to model the objective

function to be optimized [194].

For example, assume a graphical model is denoted by G =< V,E > with a vertex set V and an

edge set E. Let us further assume that objective function to be solved can be modeled by a set

of variables. Each variable corresponds to a vertex in the graph and the relationship between

any two variables is modeled as an edge linking the two corresponding vertices. In addition, we

assume that all of the variables share the same discrete and finite value space L and each value

in this space will be viewed as a label. The labels (or values) of all variables are represented as

a vector x = (x1, . . . ,xn). Then, the discrete optimization problem is to find the optimal label

for each variable. The optimal label assignment is expected to correspond to a global minimum

of the cost function in form of:

min
x

(
∑
p∈V

up(xp) + λ
∑

p,q∈E
wp,q(xp, xq)) (2.11)

This form of the cost function consists of a unary term up(xp) and a pairwise term wp,q(xp, xq).

The unary term uses constraints from each individual vertex and the pairwise term enforces

constraints on a pair of vertices (an edge). The exact form of the unary term and pairwise

terms depend strongly on the particular application.

In image segmentation [180, 30], graph-cut based optimization plays an increasingly important

role to solve this type of optimization problem [29]. The ’maximizing flow and minimizing
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Figure 2.8: Binary label classification based on max-flow/min-cuts optimization.

cuts’(max-flow/min-cuts) algorithm, which is proposed in [28, 105], is one of the most widely

used approaches to solve the optimization problems described above. Fig. 2.8 shows the process

of max-flow/min-cuts solution: Given a graphical model with both vertices and weighted edges.

We assume all vertices in a graph are linked to two additional vertices: a source s or a sink

t by additional edges. Imagine that there is a flow from the source to the sink, through all

edges. Each edge has a maximal flow capacity equal to its weight. If we increase the flow in the

network some edges will reach their maximum flow capacity. These edges compose a set, which

is referred as a s − t cut, separating the vertices into two sets, corresponding to two binary

labels. This technique can also solve multi label optimization problems [28, 105].

To further accelerate the optimization process, a primal-dual strategy is introduced in [107] and

the fast primal-dual (fast-pd) algorithm is proposed. The key idea is to transform the objective

function in Eq. 2.12 into the following binary optimization problem with the argument set
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x = {xp,a, xpq,ab : p, q ∈ V, a, b ∈ L}:

min
x

(
∑
p∈V

(
∑
a∈L

up(a)xp,a) + λ
∑

p,q∈E
(
∑
a,b∈L

wp,q(a, b)xpq,ab)) (2.12)

s. t. the following constraints: ∑
a∈L

xp,a = 1 (2.13)

∑
a∈L

xpq,ab = xq,b (2.14)

∑
b∈L

xpq,ab = xp,a (2.15)

Note that the value of each argument in x is either 1 or 0. Thus this is a typical integer

programming problem. xp,a = 1 means that label a is assigned to vertex p and xpq,ab = 1 means

that labels a and b are assigned to vertex p and q respectively. Eq. 2.13 indicates that only one

label is assigned to each vertex. Eq. 2.14 and Eq. 2.15 preserves the consistency between the

values of xp,a, xq,b and xpq,ab. The fast primal dual algorithm aims to accelerate the optimization

by solving the dual problem of this integer programming problem. Other approaches include

random walks [79].

In addition to graph-cut approaches, there are other approaches to solve this type of opti-

mization problem. An early way to solve this problem is using belief propagation (BP) tech-

niques [65], which are expensive in terms of computational cost. In [70] an improved loopy

belief propagation (LBP) is proposed to accelerate the optimization process. At the same time,

message-passing has been proposed to address the same type of optimization problem. The

tree-reweighted message passing (TRW) algorithm, which is the most popular version, is o-

riginally proposed in [202]. The basic idea of TRW is to decompose the graphical model into

several components in form of simple tree structures. Then the optimization of each individual

component is solved by belief propagation. Finally all components are integrated again by

averaging the weights of vertices shared by different components in the entire graphical model.

The convergence of TRW has been shown to be guaranteed by an improved version proposed

in [103]. In [106], the dual decomposition has been introduced to enhance the performance of

the message passing approaches. A comparison between LBP, TRW and graph-cuts can be
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found in [194].

2.2.2 Filtering

In tracking problems, the measurements of features may be obtained sequentially instead of

simultaneously. In this case, an optimization framework is only applicable to a frame for

which the measurements have been obtained at the same time. In the case of measurements

sequentially obtained from different frames, filtering techniques, which are often used in the

field of robotics [196], can be employed. These filtering techniques can predict and update a

set of pre-defined states sequentially using new measurements through a system model and a

measurement model.

Kalman filters [207], are often used to address dynamic problems with linear models and Gaus-

sian noise. Two basic stages are included in a Kalman filter framework: prediction and updat-

ing. Assume that the state vector under estimation at the k− 1th time is denoted by x̂k−1|k−1,

with its corresponding uncertainty covariance matrix P̂k−1|k−1. During the prediction stage

at time k, the state vector x̂k|k−1 as well as the corresponding uncertainty matrix P̂k|k−1 are

predicted based on the system model and the information at the k−1th time; then the measure-

ment yk at time k is obtained and the estimation of the state vector and the covariance matrix

are updated into x̂k|k and P̂k|k based on a measurement model and new arriving measurements.

Fig 2.9 shows the overview of the framework. The numerical calculation of covariance matrix

is sometime unstable since it is not always inversible. The squared root decomposition has

been introduced into the calculation process to address this problem [11]. To accelerate the

calculation when the dimension of the state vector is very large, the information matrix which

is the inverse of covariance matrix is calculated instead of the covariance matrix.

The sparse extended information filter (SEIF) [197] achieves high computational efficiency. The

basic idea of SEIP is using a sparse information matrix (many low-value elements are set to

zero) to approximate the real information matrix with a small tradeoff in accuracy. The basic

Kalman filter assumes linear models. To address non-linear problems, the extended Kalman

filter (EKF) [196] and Unscented Kalman filter (UKF) [203] have been proposed. However,
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Figure 2.9: Kalman filter framework.

one limitation of the Kalman filter is that it assumes that the noise of either the system model

or the measurement model follows a Gaussian distribution. However, this assumption is not

always applicable.

Another filtering techniques are particle filters [6], also called Sequential Monte Carlo (SMC).

Compared with a Kalman filter, they make no assumption on the noise distribution. The key

idea of particle filter is to use sampled particles (which are a group of sampled state vectors)

to approximate the probability distribution. During the prediction stage, a certain number of

particles are sampled at the current time k based on the previous state k−1 their corresponding

probability distribution, as well as the system model. Then new measurements are used to

evaluate each particle and re-weight them, based on the measurement model. The re-weighted

particles are used to approximate the likelihood. Finally, based on the likelihood, the particles

are re-sampled to form a new probability distribution for the current time k. Fig. 2.10 shows

an brief framework of particle filter. More discussions on the details of applying particle filters

can be found in [164, 120, 37, 56, 24, 25].
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Figure 2.10: Particle filter framework.

2.3 General Segmentation and Tracking Applications in

Computer Vision

There exists a vast amount of literature on image segmentation and tracking. Therefore we

only review some of the key approaches. Emphasis is placed specifically on contour and curve

segmentation and tracking, which is directly related to our research.

2.3.1 Segmentation

Image segmentation, as one of the basic problems in computer vision, has thrived since the

very beginning of computer vision. The methodologies for segmentation vary based on different

applications. Early efforts have mainly focused on simple methodologies such as clustering [220,

12], edge detection [119], histogram-based techniques [155] and adaptive thresholding [13, 14].

Clustering aims to segment images by grouping similar structures together. The clusters can

also be merged and split iteratively to refine the segmentation [91]. Segmentation can also be

refined by region-growing, which assumes that a seed region is manually identified from which
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the segmentation can be grown [42, 2].

Expectation-Maximization Algorithm and Hidden Random Markov Field

If the image to be segmented is characterized by properties that are known a-priori and can be

modeled using a small number of parameters, algorithms such as the Expectation-Maximization

algorithm (EM), can be employed [225].

The EM algorithm is an estimation strategy to estimate the values of unobservable states y

and the parameters of the probability functions θ given the observable states x by iteratively

maximizing the likelihood which is in form of:

L(x; θ) = p(x | θ) (2.16)

The EM algorithm can be divided into two steps: the Expectation step (E-step) and the

Maximization step (M-step). During the E-step, the distribution of the unobservable states x

under conditions y and the current estimation of θt is estimated. Then the expectation of the

log likelihood under the conditional distribution y is represented as:

Q(θ) = Ey|x,θt log(L(x,y; θ)) (2.17)

In the subsequent M-step the model parameters θ are updated by maximizing Q(θ):

θt+1 = argmax
θ

Q(θ) (2.18)

Hidden Markov models (HMM) are Markov chains or MRFs with states which cannot be direct-

ly observed. HMMs have been successfully used in speech recognition [166] and handwritten

character recognition [111]. Fig. 2.11 shows an example of hidden Markov model in which x de-

note the unobservable states and y denotes the observations. The state transition probabilities

are given by a and b.
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Figure 2.11: An example of hidden Markov model with hidden states x in red circles, observable
states y in green boxes and state transition probabilities a and b.

In [225], a hidden MRF is defined as the combination of unobservable states y = {yi, i ∈ S}

representing the image segmentation labels for each pixel, and observable states x = {xi, i ∈ S}

representing the intensities of each pixel. S denotes an index set. The form of conditional

probability distribution of x under y is known (normally a Gaussian distribution is used) but

the parameters of the probability distribution θ is unknown. Then the EM algorithm is used

to estimate the parameters θ and the hidden states x iteratively.

For Markov random fields, the segmentation can also be transformed to an optimization prob-

lem. In such cases, the arguments to be optimized are the labels of each pixel indicating the

segmentation categories. The cost function encodes both constraints from the image intensities

and the model itself (i. e. the smoothness for a contour curve). Usually this optimization cannot

be solved efficiently by conventional continuous gradient-based optimization since it can be eas-

ily trapped in local minima. In contrast, discrete optimization, such as graph-cut [27, 169, 30],

is popular in such applications [64, 223, 80, 216].
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Figure 2.12: Examples of GrabCut applications. (Figure from [172]).

The GrabCut method [169] is one particularly successful example of segmentation approaches

based on graph cuts. GrabCut is an interactive segmentation: First, a bounding box around the

object to be segmented is specified by user. Then, a Gaussian mixture model is used to estimate

the color distribution of the object. This model is used to construct a MRF with an objective

function that encourages smoothness of the segmentation across neighboring pixels. The whole

segmentation process can be iteratively refined by max-flow/min-cuts optimization approaches

until convergence. Fig. 2.12 shows an example of the GrabCut segmentation. The forms of

the cost functions which can be solved by the original graph-cuts are limited. However, many

improvements have been made to make graph-cuts approaches applicable to a more general

form of cost functions [104, 143, 167, 5].
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2.3.2 Tracking

Optical Flow

In object tracking, most of studies focus on the tracking of objects in natural images. Many

early studies use optical flow (OF) to measure the relative displacements between two adjacent

frames [90, 122]. Optical flow is a method that calculates the relative motion between two

adjacent image frames. One of the basic assumptions of OF is that when a point at pixel (x, y)

at t-th frame moves to another pixel (x + ∆x, y + ∆y) at t + ∆tth frame, then the intensity

remains constant:

I(x, y, t) = I(x+∆x, y +∆y, t+∆t) (2.19)

Another assumption is that when using a Taylor expansion, the higher order derivative terms

(above 2) are close to zero. Then the above equation can be approximated as follows:

I(x+∆x, y +∆y, t+∆t) = I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t (2.20)

By applying Equ. 2.19 to Equ. 2.24 the basic optical flow equation can be obtained:

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0 (2.21)

Vx = ∆x
∆t

and Vy = ∆y
∆t

denote the relative displacements in x and y between two adjacent

frames for this pixel. However, the relative displacements cannot be obtained by only one

optical flow equation. This is referred as the aperture problem. In order to compute the local

displacements, a large number of optical flow equations at all pixels are used. Usually the

relative displacements at pixels in a neighborhood are assumed to vary smoothly. Then the

displacements for each pixel can be solved. These displacements can be used to track the object

across different frames or analyze the motion of the object. Fig 2.13 shows the optical flow on

an image (left) and the strength of the flow (right).

The use of optical flow techniques is limited to only small motion tracking. The reason is that

for large motions, the assumption that the higher order derivatives of the Taylor expansion are
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Figure 2.13: An example of the optical flow of an traffic scene (left) and the magnitude of the
flow (right) (Figure from [35]).

close to zero is not valid. However, there are methods to address the large motion problem [35].

Other problems include the flow discontinuity at the boundary of different objects. This has

been discussed in [222]. A recent evaluation on OF can be found in [10].

Learning-based tracking

As a result of the increased popularity of machine learning methods, learning-based approaches

have been intensively studied for its application to object tracking. Boosting is one of the

most commonly-used learning-based approaches to be used for tracking [76, 78, 9] due to its

well understood theoretical underpinnings [71] and its simple updating mechanism for online

learning [76, 78].

In the traditional boosting algorithm the strong learner hstrong(x) is a linear combination of N

weak learners hweak
n (x) with corresponding weights αn:

hstrong(x) = sign(
N∑

n=1

αnh
weak
n (x)) (2.22)

Usually αn can be estimated by minimizing the classification error for each weak learner. How-
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ever, to do this, all data samples are required to be available during training. This limits the

applicability of bootsing in online learning scenarios where only one sample is available at each

time.

To address this [76] develop an online boosting approach: Instead of combining weak learners

directly, a strong learner is constructed by a linear combination of N weak selectors hs
n(x) in

form of:

hstrong(x) = sign(
N∑

n=1

αnh
s
n(x)) (2.23)

A selector is defined based on a set of M weak learners and the selector selects the weak learner

with the lowest classification error in this set. The usage of selectors allows the strong classifier

to be available at any time. In [78], a semi-supervised online boosting approach is proposed to

make the tracking more robust. In this framework the data without labels can also be used to

update the system. A distance is defined on two unlabeled data. During the online training

process, the tracker is updated not only by the classification error for the labelled data but

also by these distances for unlabeled data. Fig. 2.14 shows an example of the tracking results

from [76].

To address the drift problem in a tracking system, a framework consisting of tracking, learning,

and detection (TLD) is proposed for real-time tracking applications [98]. TLD is a framework

that addresses the problem of drift which affects the performance of a tracker in long sequences.

As Fig. 2.15 shows, the motion of the object is estimated by the tracker. Simultaneously, the

detector, which works independently from the tracker, locates all similar appearances of the

object by running the detector across the whole image. The learning component assesses the

performance of both the tracker and the detector. Based on their performances, it generates

training examples to update the detector in order to avoid false positives and false negatives

matches which have been observed.

Random forests have also been used in a tracking framework to online estimate Hough trans-

forms. This is also referred as Hough forests in [72, 75]. During the training stage, a random

forest is trained by using image patches with a class label and an offset to the centroid of image.

During the detection stage, the test image patches are passed through the random forest. The
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Figure 2.14: Tracking results based on online boosting (Figure from [76]).

detection result is calculated by Hough voting on the outputs of the forest.

Non-rigid tracking

Non-rigid object tracking can be viewed as the problem of curve or contour tracking. A sig-

nificant amount of research has been carried out in this area, much of which focuses on active

contour models (or snakes) [99]. These models aim to fit a contour to the image by minimizing

an energy function which is of the form:

min
Γ(s)

∫ 1

0
(Einternal(Γ(s)) + Eimage(Γ(s)) + Euser(Γ(s)))ds (2.24)

Here Γ(s) denotes the parameterization of the contour. Einternal forces the contour to be

smooth while Eimage attracts the contour towards features in the image. Euser allows the
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Figure 2.15: The overview of the TLD framework.

incorporation of user interaction in form of constraints. The solution to the above equation is

usually found via iterative optimization techniques which can be time consuming. Active shape

models (ASM) [48] construct a contour model represented by a set of landmarks on this contour,

along with the probability distribution of these landmarks. The non-rigid motion of this contour

can be represented by the displacements of these landmarks. During the training stage, the

contours for all shapes are aligned in a local coordinate system. Then the distribution of each

landmark in this local coordinate is learned by using principle component analysis (PCA).

During the detection stage, the global transform of the model to the image, as well as the local

displacements for all landmarks, is estimated. Fig 2.16 shows an example of cardiac contour

fitting by ASM in ultrasound images. The concept of ASMs has been successfully extended

to active appearance models (AAM) which use both shape and appearance information of the

object being tracked [47]. In addition, filter-based methods have been used for curve tracking.

In [95] the parameters of a contour model being tracked are updated based on a particle filter.

Mean shift [44, 45, 46] is another real-time tracking approach which can track a non-rigid
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Figure 2.16: Tracking of the heart in ultrasound images using ASMs (Figure from [48]).

object within a local patch. The mean shift is an iterative method to find the peak of a density

function (which is unknown) based on a finite number of sampled data. Assume xi denotes

one sampled data point and x is the current estimation of the peak. Then the mean shift is

estimated by:

m(x) =

∑
xi∈N(x)K(xi − x)xi∑
xi∈N(x)K(xi − x)

(2.25)

Here K(xi − x) is a kernel function (ususally a Gaussian) which determines the weight of each

sampled data point xi. N(x) denotes the neighborhood of x. The value of x is updated with

m(x) and the whole process is repeated until x and m(x) are close to each other. When mean

shift is used in visual tracking, the object to be tracked is modeled as a template, which is a

histogram based on intensities. Then during tracking, on each pixel the intensity histogram
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is constructed and compared with the template. Then a local confidence map is constructed

based on the similarities at each pixel to the template. The peak of the confidence map is

identified by the mean shift procedure. However, since mean shift is a patch-based approach,

it can only address deformation within a local patch.

For large deformations, part-based models [62] have been proposed. These models can establish

the relationship between different parts of the object to be tracked [63]. In the part-based model,

a coarse global detector is used to approximately identify the object. Simultaneously, multiple

local detectors that correspond to the parts of the object are used. Both the global detector

and local part detectors are evaluated at each pixel of the image. Then the detection result at

one pixel is evaluated based on both the responses of all detectors and the spatial relationship

between detected positions. Then a confidence map, which indicates the potential locations of

the object to be tracked, is constructed. Fig. 2.17 shows an example of pedestrian detection

based on part-based model.

More recent contour-based tracking techniques for non-rigid objects are increasingly designed

for particular applications such as face tracking [62, 39, 218] or body tracking [182, 100, 224].

However, the model of a face or body usually assumes a limited degree of freedom. In addition

salient features such as eyes for faces or arms for bodies are available. Thus the tracking

approaches for face and body cannot be extended to the tracking of other non-rigid objects. In

addition, curve tracking has been formulated as a discrete optimization problem. Then a large

number of discrete optimization approaches [29, 30, 107, 104, 103] can be used. One typical

example [86] for curve tracking is based on fast-pd algorithm. The proposed curve tracking

algorithm was also tested on guide-wire tracking based on X-ray images. This work will be

detailed later.



56 Chapter 2. Background

Figure 2.17: Pedestrian detection based on part-based model (Figure from [63]).

2.4 Catheter Segmentation and Tracking for Cardiac In-

terventions

2.4.1 Catheter Segmentation and Tracking in the X-ray Images

In the context of catheter tracking the topic of catheter tip detection has attracted a lot of

attention since it has significant clinical value. The catheter tip has normally one or more
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electrodes and therefore has a very characteristic appearance in X-ray images. This enables a

variety of feature detectors to be used. For example, the detection of the lasso catheter tip has

been studied given the unique round shape of the catheter tip [34]. In this work the pose of

the tip is reconstructed via ellipse fitting of its projection in a single biplane X-ray image. The

catheter tip is then tracked through the remaining frames. For the tracking of coronary sinus

(CS) catheter tips an electrode-based detector has been proposed in [125]. This detector first

identifies blob-like structures based on an analysis of the Hessian matrix. The tip is identified

by selecting a number of blobs with the lowest value of a pre-defined cost function. This work

has been extended for the detection of lasso catheters and ablation catheters [124]. In [213]

a probabilistic boosting tree (PBT) is used to train detectors for both the catheter tips and

electrodes. Based on these results a number of hypotheses regarding the position of the tip in

the next frame are generated. The hypothesis with the highest probability is selected based on

a Bayesian formulation.

In a recent paper a multiple tip tracking algorithm has been proposed [142]. This approach is

more robust to overlapping catheters and cases of occlusions. In this approach, blobs are first

detected. Then outliers are removed based on spatial and geometric constraints. After that,

the remaining blobs are clustered together. Then the blob detection near each detected blobs

is repeated with a lower threshold. The purpose of this is to recover those blobs which were

missed during the first blob detection. Finally, a number of hypotheses are generated based on

these measurements and a greedy algorithm is used to score each hypothesis. The detection

result is estimated by applying the hypothesis with the highest score. As a result, the selected

blob clusters can be considered as the catheter tips and the corresponding blobs represent the

electrodes on the tips. Fig. 2.18 shows an example of the detection results of three catheter

tips, marked with different colors.

Most of the earlier approaches that focus on catheter tracking in X-ray images are specific

to the catheter type. Therefore these approaches cannot be easily extended to other types

of catheters. In addition, only salient features such as the tip or electrodes are used in these

approachs. There is a small number of approaches that focus on the tracking of the whole

catheter. Nearly all of these approaches focus on guide-wire tracking. In [205], a probabilistic
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Figure 2.18: Catheter tip detection based on the method in [142]) (Figure from [142]).

framework based on the combination of learning-based and appearance-based features, as well

as a hierarchical and multi-resolution tracking strategy has been proposed. In this work a

probabilistic boosting tree (PBT) is trained for detection. The hierarchical tracking approach

includes rigid and non-rigid tracking stages, corresponding to a coarse-to-fine process. In [162]

the guide-wire tracking problem is addressed using a discrete optimization strategy in which

the energy function is minimized. The energy function consists of a data term providing image

intensity constraints and a regularization term that preserves the length of the curve. The data

term is constructed using support vector regression in order to learn the relationship between

the tracking error and intensity-based features. In later work [89], another discrete Markov

Random Field (MRF) optimization was proposed for hybrid tracking. A combination of both

a tubular structure detector and a salient landmark detector is used to enhance the robustness

and the accuracy.

One typical representation of the guide-wire tracking based on discrete optimization was pro-

posed in [86]. In this work a discrete optimization framework using MRFs and fast Primal-Dual

(fast-PD) optimization is developed to track catheters. The catheter is modeled as a B-spline

curve, which is a parametric representation of a non-linear curve. The location and the shape

of a B-spline curve are determined by the labels (corresponding to displacements) of each con-

trol point that minimize an energy function. In Fig. 2.19 the control points are denoted by
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Figure 2.19: Illustration of the curve tracking based on discrete optimization on multiple label
assignment.

Pi, i = 1, . . . , 4. For each control point, the location in the next frame is searched within a

local region. This region is the same as the label space since each local coordinate in the region

corresponds to a label. Two types of label space, denoted by Lsparse and Ldense, are illustrated

in the figure. The sparse label space is recommended when real-time performance is required

while the dense label space is used when accuracy is more important. The corresponding en-

ergy function consists of only a pairwise term since an assumption that each position of the

curve is determined by the nearest two control points is made. This pairwise term is a linear

combination of a data term introducing image intensity information and a regularization term

preserving the length.

In the recent literature there is a clear trend for guide-wire tracking techniques based on discrete

optimization techniques [85]. These strategies are fast and can find a near-optimal solution

with limited computational complexity. In [85] a number of different discrete optimization

strategies are compared. Fast-PD is one of the recommended approaches. However, these

discrete optimization approaches can only track a fixed portion of the catheter. This cannot

compensate for large longitudinal motions of the catheter. The reason for this is that these

optimization approaches assume a limited search range along the longitudinal direction for each

control point of the B-Spline model. Large longitudinal motion is likely to cause the control

points out of the search range.
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2.4.2 Catheter Segmentation and Tracking in the Ultrasound Im-

ages

With the exception of studies focusing on tracking of the heart [219] or the valves of the

heart [146] in ultrasound images, most previous work has used passive markers attached to

surgical instruments [190, 147, 145] for tracking in ultrasound images. However, this is not

suitable for catheter tracking given the small size of the catheter tip. Other previous approaches

have tracked biopsy needles without additional markers [55, 226]. However, these algorithms

are designed for rigid needles and cannot be easily extended to track long, non-rigid catheters.

Very few studies have directly addressed the problem of catheter segmentation and tracking

in ultrasound. One recent study has targeted catheter segmentation in US [38] based on a

pre-defined physical model. In the proposed method, the linear catheter tip is detected using

on a Hough transform. This model focuses on the tip of the catheter and assumes a rigid nature

of the catheter tip. Fig. 2.20 shows the catheter tip and its corresponding ultrasound image.

The flexible part of the catheter is not tracked in their work. Although the final purpose of our

catheter tracking is to localize the tips, it is important to first segment the whole catheter in

order to constrain the tip location.

However, recently several methods that register the X-ray images to ultrasound images [73, 144,

92, 74, 87] have been developed. Thus, the information from the corresponding X-ray images

can assist in detecting or segmenting structures in ultrasound.

2.5 Hardware Acceleration

Inherent parallelism exists in many applications of image processing, computer vision and

medical imaging. In order to enhance the real-time performance, different hardware accelerators

can be used to speed up the entire algorithm in addition to efficiency improvements in the

algorithms itself. Currently, Graphics Processing Units (GPU) and Field-Programmable Gate

Arrays (FPGA) are most widely used accelerators to realize the parallelism programming. More
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Figure 2.20: Catheter tip and its corresponding ultrasound image in [38] (Figure from [38]).

recently, many CPUs can also support multi-threading. In the following we will give a brief

introduction to these techniques.

2.5.1 GPU Acceleration

The definition of Graphics Processing Units (GPU) was firstly proposed by Nvidia [152] as a

single chip processor with integrated transformation, lighting, triangle setup/clipping, and ren-

dering engines that is capable of processing a minimum of 10 million polygons per second [151].

Although the original purpose of the development of GPUs have been to manipulate computer

graphics, GPUs have been widely used to accelerate many applications such as scientific com-

puting, analytics, engineering, given the its efficient parallel computing ability. Compared with

the traditional singe-core CPUs, which are capable to quickly process sequential serial tasks

with a high frequency, GPUs have a large number of cores on the chip which can process in

parallel multiple tasks simultaneously and efficiently [153]. The Single Instruction, Multiple

Threads (SIMT) architecture is used for GPU parallel programming. Instructions are issued

in serial while multiple threads can execute each instruction in parallel [149]. Nvidia has also
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released its own GPU programming interface, Compute Unified Device Architecture (CUD-

A) [150]. Besides CUDA, the Open Computing Language (OpenCL) is another interface for

GPU programming aiming at cross-platform inter-operability [101].

2.5.2 FPGA Acceleration

A Field-Programmable Gate Array (FPGA) is a semiconductor device which can be pro-

grammed for customized applications based on a matrix of configurable logic blocks (CLBs).

FPGAs allow reprogramming in case that the design evolves [217]. Due to its high flexibility

in design, FPGAs have been widely used in a variety of application fields such as aerospace,

automotive wired and wireless communications, audio, security, video and imaging [217]. Com-

pared with the fixed microprocessor-based CPUs or GPUs, FPGAs are based on reconfigurable

logic. This provides high flexibility for users in allocating hardware infrastructure resources

and trading off the overall performance based on a particular application [41, 49]. Usually a

typical FPGA consists of the following components [217]: (1) Configurable logic blocks (CLBs)

which are the basic logic units and can perform elementary calculations for a single task in-

dependently; (2) basic select I/O that can support a number of I/O standards and organize

these I/O operations in banks; (3) interconnects that link each CLBs to other CLBs, I/Os or

global signals; (4) embedded block RAM memory and (5) digital clock management. VHDL

and Verilog are common programming languages for FPGA design [1, 54].

2.5.3 CPU vs GPU vs FPGA

A number of comparisons have been performed between CPUs, GPUs and FPGAs based on a

variety of applications [41, 49, 7, 50]. There is no general conclusion regarding the comparison

of performance across these platforms since most of the evaluations are based on very specific

applications. The best choice for hardware acceleration is highly dependent on the particular

application. Generally, for a sequential algorithm with high dependency among different mod-

ules, CPUs are preferred given its high operational frequency and low data transfer latency
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from and to on-chip cache memory. Although currently most CPUs support multiple cores,

their ability to perform computations in parallel is still not comparable to GPUs or FPGAs

since the number of cores is limited. GPUs are an ideal choice for applications which are inher-

ently parallelizable and the memory accesses are inter-dependent since it has a huge number

of cores. However, fine-grained parallelism is difficult to realize with GPUs since the memory

access is not efficient in GPUs. The size of local memory for each thread and the size of shared

memory for each block are both limited. Data residing in local or shared memory cannot be

cross-shared by the threads or blocks. On-chip global memory can solve this issue. However, it

has a much longer latency than shared and local memory. In addition, control flow instructions

will not be efficiently performed in GPUs. In comparison, FPGAs are a practical tool that sup-

port fine-grained parallelism with a low memory access latency. A high flexibility is provided

to designers to customize the design and manage the tradeoffs for particular implementations.

However, the lower operational frequency compared to both CPUs and GPUs should not be

ignored [123, 41, 49, 7, 50].



Chapter 3

Fast Catheter Segmentation and

Tracking in X-ray Fluoroscopic Images

3.1 Introduction

X-ray fluoroscopy is the standard imaging modality for cardiac catheterization procedures. Fast

and reliable catheter segmentation and tracking enables better visualization and more accurate

localization of the catheter. The fast segmentation of catheters can be used either for the

initialization of the tracking or for the recovery from tracking failures. In the first frame of

an X-ray sequence, there is little or no prior information available to support fully automatic

segmentation. Therefore manual user interaction is required to specify which of the catheters

is to be tracked. In this chapter we introduce a fast semi-automatic segmentation algorithm

based on Kalman filter-based path growing and patch analysis. Compared to previous work

which mainly focuses on catheter tips or other salient features, this strategy can segment a

wide range of catheters with a high speed. This strategy is also used during the tracking stage

which is also described in this chapter. When large longitudinal motion causes only a small

proportion of the catheter to be trackable, this strategy can be used to extend the segmentation

to the more difficult parts of the catheters.

For the tracking stage, a framework based on discrete optimization using the Fast Primal-

64
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Dual (fast-PD) algorithm is proposed in order to solve the curve fitting problem efficiently. A

graphical model is used to model the catheter as a smooth curve for the discrete optimization

problem. For the tracking of individual catheters without interference from other catheters,

we propose a new cost function that achieves robust and accurate tracking results. The cost

function includes terms that not only preserve the appearance, but also preserve the length,

curvature and distribution of points of the tracked catheter.

If there are multiple catheters within the same view, these can cause problems for tracking

algorithms: For example, if two catheters are close to each other, there exists a possibility that

the tracking may only detect one catheter. To address this, the relative distances between

multiple catheters are added as soft constraints during the optimization. This can be achieved

by creating dynamic edges in a graphical model. The relative distance between a pair of

two control points is encoded as the weight of the corresponding dynamic edge in this model.

These soft constraints are efficient clues to avoid the tracking failures caused by mutual catheter

interference and occlusions.

3.2 Catheter Extraction in X-ray Images

The catheter extraction in the X-ray images is a key stage for the initialization of a tracking

algorithm. Fig. 3.1 illustrates each stage of the proposed extraction method: Given one frame

of the X-ray sequence (Fig. 3.1 (a)), the steps of the proposed algorithm are as follows: First,

a SURF detector [16] is used to detect blob-like structures, i.e. the electrodes on the catheter.

Blob-like structures (including real electrodes and outliers) detected by the SURF detector are

highlighted in yellow in Fig. 3.1 (b). Starting from each detected blob, a Frangi vesselness filter

is then used to determine whether a catheter is passing through the local patch. Fig. 3.1 (c)

shows the results after apply this vesselness enhancement filter. If the patch is assumed to

contain a catheter, a more detailed patch analysis is used to compute the principal direction

of the catheter and to determine a potential landmark of the centerline in the next patch via

a Kalman filter-based path growing framework. Fig. 3.1 (d∼h) shows a patch located on a
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potentially relevant blob (d), edge points and their gradients being extracted within the patch

(e), edge points classified into two different groups corresponding to the two sides of the catheter

(f), edge points (after RANSAC outlier removal) used to calculate the path growing direction

and to update the centerline (g), and the final result using patch analysis and Kalman filtering

(h). In the following we will describe these steps in more detail.

3.2.1 Blob Detection and Tubular Structure Detection

Most catheters have electrodes on the tip, which appear as blob-like structures in the X-

ray images. To detect these, the method of Speed Up Robust Features (SURF) [16] is used

(Figure 3.1(b)). Meanwhile, the flexible shaft of the catheter requires a tubular structure

detector. For this we adopt Frangi’s vesselness filter [69] (Figure 3.1(c)).

Both the calculation of the SURF detector and Frangi’s vesselness filter require the calculation

of Hessian matrix, which is in form of:

H =

 Ixx Ixy

Ixy Iyy

 (3.1)

Here the elements of the Hessian, Ixx, Ixy and Iyy, are the second order partial derivatives of

the image intensities along the two directions of the image plane x, y. Assume the eigenvalues

of Hessian matrix are λ1 and λ2 with the order |λ1| < |λ2|. Then the response function of the

SURF detector, Rsurf , is defined as:

Rsurf = DxxDyy − (0.9Dxy)
2 (3.2)

Note that Dxx, Dxy and Dyy are the approximated values of Ixx, Ixy and Iyy of the Hessian

matrix computed using integral images.

The response function of Frangi’s vesselness filter, Rfrangi, is defined as:
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Rfrangi =


0, if λ2 > 0

exp(−2λ2
1

λ2
2
)(1− exp(−λ2

1+λ2
2

2c2
)), otherwise,

(3.3)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.1: Catheter extraction in an X-ray image (see text for details).
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Here c is normally set to half of the maximal value of
√
λ2
1 + λ2

2.

After the definition of the response functions for both blobs and tubular structures, τsurf and

τfrangi are used to threshold the output of these response functions.

3.2.2 Patch Analysis

A patch is initially placed on each detected blob (Figure 3.1(d)) and later on the position

determined by the Kalman filter, as detailed in the following section: Given a small square patch

of the image, we determine whether there is a section of catheter inside using Frangi’s vesselness

filter. If the patch contains a catheter, a centerline is fitted to approximate the catheter segment.

Information based on the fitted centerline is used for the Kalman filter-based path growing in

the next step. However, Frangi’s vesselness filter does not produce an accurate direction and

position of the catheter fragments within the patch. This is because of performance reasons. To

make the entire system as fast as possible, the Hessian matrix, on which Frangi’s vesselness filter

is based on, is calculated in an approximate fashion by using integral images instead of using the

standard procedure proposed in [69]. However, the performance of Frangi’s vesselness filter is

very sensitive to the accuracy of the corresponding Hessian matrix. Thus, instead of calculating

the direction and position by the vesselness filter, we analyse the statistical properties of the

edge points and their corresponding intensity gradients. Our basic assumption is that the

section of the catheter inside the local patch is straight. The patch analysis can be divided into

edge point extraction, point classification, outlier removal and centreline fitting.

Edge point extraction

First, the border of the catheter in the patch is detected using Sobel edge features [60] based

on two Haar filters along the x and y directions in the integral image. The filter responses of

the two directions at a point i are collected into vector d = (dix, diy). Then the magnitude Ri

and the orientation θi of the vector d are calculated. By thresholding the magnitude of d with

τedge and selecting the maximum response in a neighbourhood, a set of candidate edge points
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are identified: ei = (Ri, θi) (Figure 3.1(e)).

Point classification

Based on the candidate edge points, a histogram of (θi mod π) is constructed. We use mod π

for the histogram so that parallel but opposite edges map to the same histogram bin. The

maximum value in the histogram identifies the most likely direction of the catheter. Two

angles are then defined from this maximum: θ+ and θ− so that θ+ − θ− = π. All edge points

are then classified as catheter edges if they are within a certain range of these angles, usually

±π/6. Edge points are therefore classified into three categories:

ei ∈


E+, if θi ∈ [θ+ − π/6, θ+ + π/6] mod 2π

E−, if θi ∈ [θ− − π/6, θ− + π/6] mod 2π

E0, otherwise.

(3.4)

Here E+ and E− represent opposite edges of the catheter (Figure 3.1(f)) and E0 contains all

other edge points.

Before calculating θ+ and θ−, a mask is used to filter the histogram and set bins to zero if

these correspond to directions identified as ’unlikely’ via prior knowledge (if prior knowledge

exists). Patches are analysed one by one in the order indicated by the centreline direction.

The prior knowledge can be the output direction from the last patch analysis in an adjacent

patch. The purpose of this is to ensure a consistent direction with the direction of the centreline

in the previous patch. This adds robustness for patches which contain two or more catheters

intersecting each other.

Outlier removal

Because of the assumption that the section of the catheter inside the local patch is straight, the

edge points can be modelled using line equations. Thus each set E+ and E− can be modelled

with a line equation corresponding to one edge of the catheter within the local patch. Assuming
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that the proportion of outlier points is below 50%, Random Sample Consensus (RANSAC) [67]

is a good choice to remove these outliers. In our application, two points (the minimal required

quantity to model a line equation) are sampled and a line is fitted through them. The distances

between this line and the other points are subsequently calculated. If the number of points in

the vicinity of the line is above a threshold, the line is accepted and the supporting points are

retained while the others are removed as outliers. Outliers are moved from sets E± to set E0.

Centerline fitting

After outliers are eliminated from the two sets, a centreline equation is determined using E±

(Figure 3.1(g)). This centreline equation encodes direction and position information and can be

written as ax+ by+ c = 0. However, points from E± are not exactly located on this centreline

but located on two borders of the catheter in form of

ax+ by + c± d = 0. (3.5)

Here d denotes the offset of the border lines of the catheter to the centreline. Given the

2D coordinates (x±
i , y

±
i )

T of the points from E±, the coordinates can be rewritten as vi =

(x±
i , y

±
i , 1,±1)T . Finding the centreline can then be easily transformed to a linear optimization

problem. We then find the solution p = (a, b, c, d)T that satisfies

min
p

∥Ap∥2, subject to ∥p∥2 = 1. (3.6)

Here A = (v1,v2, . . . ,vn++n−)T and n± is the total number of points in set E±. This optimiza-

tion problem can be solved using Singular Value Decomposition (SVD). After the parameters

of the centreline are determined, the direction θp is denoted by:

θp =


arctan(−a/b) mod π, if b ̸= 0

π/2 if b = 0.
(3.7)
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The intersection xp = (xp, yp)
T of the centreline and the perpendicular line through the centre

of the patch, which is the new updated position, is given by:

xp =

 b −a

a b


−1  bxc − ayc

−c

 . (3.8)

Here xc = (xc, yc)
T is the centre of the patch.

Fitting of multiple line equations

In a clinical scenario, multiple catheters may be present in one view simultaneously. Further-

more it is likely that two or more catheters are quite close to each other or intersect each

other. Even if only one catheter is present, it may have sharp turns and in the corresponding

local patches the line fitting may fail. In such cases, multiple line equations may be required

simultaneously within one patch. A possible solution is to repeat the above procedure itera-

tively: In each iteration we perform the above line fitting and the corresponding supporting

edge points E+ and E− are then removed from the histogram. Then, a different line equation

is fitted in the next iteration. This procedure is repeated until a stopping criteria is reached:

The stopping criteria depends on the numbers of edge points in E+ and E− and on the number

of iterations. The borders of both sides of of the catheter should be equally clear. In other

words, the edge points supporting the two borders of the catheter (corresponding to sets E±

respectively) should have approximately equal size. Therefore, if the ratio of the numbers of

points E+ and E− is approximatly 1 (> τmulti in our application) and the sum of these two

numbers is above a threshold nmulti, the line equation is accepted. If the fitted line is accepted

and the number of the iteration is below 3, then the loop continues; otherwise it stops.

Parallel lines within one patch

Sometimes multiple catheters are both close to each other and have the same directions. As a

result there are several parallel lines within the same local patch. The above strategy cannot
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Figure 3.2: An example of multi-line fitting patch analysis with multiple line segments detected
in yellow.

work in this case. The reason is that the supporting edge points for parallel catheters are within

the same bin in the orientation histogram. Thus they need to be separated first in order to

identify the edges of different catheters. Given a direction θ+, the 2D spatial positions of all

points in E+ and E− are projected onto the axis that corresponds to the direction of θ+. Then

the distribution of the projected points on this axis serves a clue for further clustering: points

clustered together are considered to belong to one catheter, and points with a large gap on the

axis are considered to belong to different clusters or catheters. We show an example of one

image containing patches with multiple catheters in Fig. 3.2.
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3.2.3 Kalman Filter-based Path Growing

Given a set of initial candidate blobs detected using SURF, the catheter can be extracted by

expanding it from each blob to form the whole catheter. At each step of the expansion or

growth, the centreline fitting via local patch analysis is carried out. The measurements from

the previous step (direction and updated position of the catheter centreline) are employed to

locate the next patch. If a patch yields no fitted line or the border of the image has been

reached, the process is terminated (Figure 3.1(h)). This process can be formulated within a

Kalman filtering framework. The system model of the Kalman filter is defined as:



xk+1 = xk +△t(v(ωkcos θk)),

yk+1 = yk +△t(v(ωksin θk)),

θk+1 = θk +△tωk,

ωk+1 = ωk +△tσk.

(3.9)

The state vector is given by xk = (xk, yk, θk, ωk)
T . Here xk and yk denote positions of the patch

centres while θk and ωk denote angular displacement and velocity at k-th time respectively.

The state vector is updated at every step as well as its corresponding covariance matrix Pk.

△t is the sampling time and σk ∼ N(0, σ2). We use v to denote the instantaneous velocity,

which is then defined as a function of angular velocity ωk,

v(ωk) = (vmax − vmin) exp(−αω2
k) + vmin. (3.10)

v(ωk) should be neither too large nor too small, and within [vmin, vmax]. α (usually set to 1)

denotes how sensitive the velocity is in response to a change of ωk. This means that the step

size for the catheter growth is proportional to the size of the instantaneous angular velocity.

As a result, landmarks are sampled more densely at sharper turns of the catheter and more

sparsely on smoother sections. The elements of the state vector θk and xk = (xk, yk)
T are

directly measured by the values of θp and xp = (xp, yp)
T obtained from the patch analysis.
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The system and measurement equations of the Kalman filter can then be written as follows:

xk+1 = Akxk +Bkσk, (3.11)

zk = Hkxk +Vk, (3.12)

with the system matrix

Ak =



1 0 − sin θk(Sk +△tvmin) −2αωk cos θkSk

0 1 cos θk(Sk +△tvmin) −2αωk sin θkSk

0 0 1 △t

0 0 0 1


(3.13)

and measurement matrix

Hk = [I3|0]. (3.14)

Here Sk = △t(vmax − vmin) exp(−αω2
k) and Bk = (0, 0, 0,△t)T . We assume that the mea-

surement uncertainties for the position and the direction are within 5 pixels and around 15◦,

respectively. Based on this assumption we can write Vk as a diagonal matrix with entries

(5, 5, 0.25) along its diagnonal. The coordinates and the direction obtained from the initial

patch analysis are used to initialize the first three states in the state vector x0, y0 and θ0. ω0

is set to zero. We also make another assumption that the initial uncertainty of the position is

within 5 pixels and the uncertainty of both the angular displacement and the angular velocity

is within 15◦. Then we can define the corresponding covariance matrix P0 as diagonal matrix

with diagonal entries (5, 5, 0.25, 0.25). By applying the extended Kalman filter, a sequence of

sorted displacements (xk, yk)
T representing the potential catheter can be generated.

3.2.4 Catheter Extraction Applied to Tracking in X-ray Sequences

Normally the catheter extraction in each frame independently suffers from instability because

it does not take the temporal consistency between consecutive frames into account. In order

to make the segmentation in subsequent frames more robust and consistent, information from
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previous frames can be used for the catheter extraction. This transforms the segmentation

problem into a tracking problem. A method for catheter tracking in X-ray images is presented

in the following. In our application, the main requirement is to track the catheter as completely

as possible. To achieve this, the algorithm described in this section first uses the previously

proposed fast-PD method to track movements transversal to the catheter. This alone is suffi-

cient when the length of the catheter in the field-of-view is not changing. Secondly, a Kalman

filter-based path growing method, the same as proposed in the last section, is used to extract

parts of the catheter that are obscured. This strategy ensures that the entire catheter is always

tracked as much as possible.

(a)

(b)

(c)

Figure 3.3: Catheter tracking in X-ray images .
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Fast-PD Catheter Tracking

Fast-PD [107] is a fast discrete multi-label approach for the efficient optimization of Markov

Random Fields (MRF). In our application, the catheter is defined by a set of key points and

can be considered as a graph in which two consecutive points are linked by an edge. Each point

defines a search region in the next frame and each potential location of the catheter in the

search region corresponds to a discrete label. Fig. 3.3 (a) shows an example of an X-ray frame

with the result of the catheter extraction marked in blue. Fig. 3.3 (b) shows the next frame

with the projection of the result from the previous frame in blue and the new result estimated

via fast-PD optimization in red. The dotted lines in green represent the search range of the

optimization. All of the pixels in the search region of any key point define a label space L.

During the tracking, the energy function that is minimised using fast-PD is defined as

f(x) =
n∑

i=1

(ui(xi)) + γ
n−1∑
i=1

(d(xi, xi+1)). (3.15)

Here x = {x1, x2, · · · , xn} are the possible positions in the search region for each point. Each

position corresponds to a label assignment. The unary term ui(xi) and the pairwise term

d(xi, xi+1) are defined as:

ui(a) =


0, if Patch(a) = 1

1− S(a), if Patch(a) = 0,
(3.16)

d(a, b) =
√
((xa − xb)2 + (ya − yb)2). (3.17)

The unary term enforces the constraints from the image itself and the pairwise term enforces the

constraints from the model, e.g., the smoothness of the curve. Given a, b ∈ L, the unary term

depends on the value of Patch(a), which checks if there is at least one catheter passing through

the local patch. This can be done by via the patch analysis introduced previously. If there is

no catheter, i.e. Patch(a) = 0, the unary term is defined by a similarity function S(·), in our

case the normalized cross-correlation between the previous and current image. The pairwise

term d(a, b) is the planar distance between two locations in the search area corresponding to
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the two labels a, b. γ is a parameter that balances the unary and pairwise terms and is chosen

manually. The result is a segmentation of the catheter in the new frame accounting for motion

that is transversal to the catheter (see Figure 3.3(b)). However, sometimes some parts of the

catheter are outside of the search range, which can lead to an incomplete extraction of the

catheter. Thus we use the Kalman filter-based path growing again to recover the undetected

parts of the catheter.

Kalman filter-based path growing for Tracking

A large search region for the fast-PD optimization would significantly slow down the tracking

algorithm. In our application, we have chosen to ignore the search range in the longitudinal

direction and retain that of the transversal direction because the transversal direction is more

important. However, the trade off is that a large amount of motion in the longitudinal direc-

tion of the catheter could cause the catheter to move out of the search range of the fast-PD

optimization. To address this, Kalman filter-based path growing is introduced in Section 3.2.3

to compensate for this.

The fast-PD optimization yields a sequence of sorted points corresponding to potential catheter

locations for the next frame. Starting from the two end points of the catheter, each point is

checked for whether there is a catheter passing through it using the function Patch(x). For each

point with Patch(x) = 0 the point is removed and the next adjacent point is checked; for each

point with Patch(x) = 1 the point is used as the new end point and the process is terminated.

As a result, the catheter may be shortened but will have reliable points (Patch(x) = 1) as end

points. The Kalman filter-based path growing is then used to detect new sections, starting from

the end points, which allows for the recovery of the entire catheter, even if there is a larger

proportion of the catheter in the current frame than in the previous frame. Figure 3.3(c) shows

that an untracked part of the catheter in yellow has been recovered by the Kalman filter-based

path growing.
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3.3 Catheter Tracking in X-ray Images

The previous section of this chapter describes a fast catheter extraction algorithm which can be

used to segment catheters at each individual frame. The extraction algorithm can be performed

at different frames independently. From now on we discuss the catheter tracking framework,

in which catheter can be segmented from the current frame based on the information from

previous frames.

3.3.1 Image Enhancement

In each X-ray frame, several measurements are computed based on the pre-processing of the

original X-ray image I. Four types of measurements in form of an enhanced image calculated

from I are obtained: tubular structures Itub, blob-like structures Iblob, orientations Iori for

tubular structures and enhanced catheter tips Itip. The intensity values of all derived images

are normalized within the range [0, 1]. Itub and Iblob are calculated via the Hessian matrix at one

or a limited number of scales. The range of scales is pre-defined and the scale is controlled by a

Gaussian kernel with standard deviation σblur. More precisely, a smoothed image is computed

as Iblur = I ∗G(0, σblur) where G(µ, σ) is a Gaussian kernel with mean µ and standard deviation

σ. Then the Hessian matrix H is defined as

H =

 ∂2Iblur
∂x2

∂2Iblur
∂x∂y

∂2Iblur
∂x∂y

∂2Iblur
∂y2

 (3.18)

Here the elements of the Hessian, the second order partial derivatives, can be approximated by

finite differences. The catheter tip enhancement map Itip is calculated using Frangi’s vesselness

filter [69]:

Itip =


0, if λ2 > 0

exp(−2λ2
1

λ2
2
)(1− exp(−λ2

1+λ2
2

2c2
)), otherwise,

(3.19)
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with two eigenvalues λ1 and λ2 satisfying |λ1| < |λ2|. c is normally set to half the maximal value

of
√
λ2
1 + λ2

2. Meanwhile, an orientation map Iori is calculated from the normalized eigenvector

v2 of the Hessian matrix,

Iori = φori. (3.20)

Here φori is calculated from the eigenvector v2 = (cos(φori), sin(φori)). The blob map Iblob can

be calculated by the determinant of the Hessian matrix as proposed in [16]:

Iblob = detH = λ1λ2. (3.21)

Using Itub and Iori, a steerable filter can be designed to enhance tips of the tubular structures

at point p:

Itip(p) = |
∑

△px,△py∈Ω Itub(p
′
)G(△px, σtip)sign(py)∑

△px,△py∈Ω G(△px, σtip),
| (3.22)

with

p
′
= p+ [vx,vy]△p. (3.23)

Here Ω = [−5, 5] defines the size of the patch. The x-axis of this patch(vx ) is set to align with

the angular direction φori from Iori. The y-axis vy is perpendicular to vx. The local coordinates

in the patch are represented by △p = [△px,△py]
′
. As before G(0, σtip) is a Gaussian kernel

with zero mean and variance σtip = 5. sign(∗) is the sign function which returns 1, 0 or -1

in case of positive, zero and negative arguments respectively. Fig. 3.4 shows examples of the

different pre-processed images.

3.3.2 Overview of the Discrete Optimization Framework

The catheter tracking problem is transformed into a discrete optimization problem using a

Markov Random Field (MRF) formulation. The MRF in our application is in form of a graph

model G =< V,E > which is related to a B-spline representation of the catheters or the

contour of the ultrasound probe. The nodes in this graph correspond to the control points of

the B-splines. For each B-spline, the control points at two ends are specified and belong to a
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(a) (b)

(c) (d)

Figure 3.4: Examples for an original image (a), its corresponding tubular map (b), blob map
(c), and tip map (d).

terminal node set Vc. All other control points belong to the set Vn. Vc and Vn comprise the

complete node set V of the graphical model. The edges E link pairs of nodes. These edges

consist of two types of edges that depend on the relationship of the nodes. If two nodes are

adjacent control points of the B-spline, then an edge is created and this edge is added to the set

Es. The relative distance of two nodes is important especially when these two nodes are close

to each other and they belong to two parallel catheters or two parts of the same catheter. In

these cases the relative distances between the nodes should be preserved, whether they belong

to the same B-spline or not. Thus, a dynamic edge is added. This type of edges is denoted by
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Er. Es and Er comprise the complete edge set E of the graphical model. The term ’dynamic’

is used to indicated that the edge set Er is changing from frame to frame, depending on the

distribution of the control points. If a node in Vc is connected by only one edge of Es and its

position is far not on the image border, then this node is identified as a catheter tip and added

to a subset Vt ⊆ Vc. In some cases, one catheter is represented by more than one B-spline curve

fragment and they are linked together to represent the whole catheter.

For each catheter, catheter fragment, or the contour of the ultrasound probe, i = 0, . . . ,m− 1,

a B-spline curve is denoted by

Si(t) =
ni−1∑
j=0

ci,jBi,j(t), t ∈ [ti,min, ti,max]. (3.24)

Here the control points ci,j, i = 0, . . . , ni − 1 belonging to V , with ci,0 and ci,ni−1 belong to Vc.

For each node ci,j, the updated location is obtained by a local movement offset △ci,j within a

2D search range {−Rrange ≤ x ≤ Rrange,−Rrange ≤ y ≤ Rrange}. We assume that each pixel

in this search range corresponds to one label. Thus obtaining the correct movement offset for

each control point is equivalent to assigning the correct label to this point. Therefore, the

problem of curve tracking is transformed to a multi-label assignment problem, which can be

solved via discrete optimization. The label space comprises all pixels in the search range. The

optimization objective function is defined as

argmin
x

f(x) = (1− γ)
∑
p∈V

(up(xp)) + γ
∑

p,q∈E
(wp,q(xp, xq)). (3.25)

Here x denotes all labels assigned to each node p in V . xp denotes the location of the control

point p. The objective function consists of an unary term up(xp) and a pairwise term wp,q(xp, xq)

linked with a parameter γ. In the following sections, details about the objective function are

presented.
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3.3.3 Objective Function

The unary term up(xp) in (3.25) in our application consists of only a single unary data term

that attracts xp to the tip of the catheters. The pairwise term wp,q(xp, xq) in the objective

function in (3.25) is a combination of several terms, including a pairwise term w0
p,q, a length

continuity preserving term w1
p,q, a landmark distribution term w2

p,q, a shape continuity term

w3
p,q, and a relative distance preservation term w4

p,q. The pairwise terms can be summarised as

wp,q(xp, xq) =
4∑

u=0

αuw
u
p,q(xp, xq), (3.26)

with
∑4

u=0 αu = 1. The coefficients αu, u = 0 · · · 4 are heuristically determined.

Unary Data Term

The B-spline used in our application is a clamped B-spline, which interpolates its interval

control points with two fixed end control points. The unary data term is only defined for nodes

in Vt. The purpose of this term is to attract each node in Vt to the location with a high intensity

value in the catheter tip map Itip:

up(xp) =


(1− Itip(xp)), if p ∈ Vt

0, otherwise.
(3.27)

Pairwise Data Term

The main task of the pairwise data term is to locate the catheter through pixels with high

intensity values in the maps Iblur, Itub and Iblob. The main difference to the unary data term

is that the pairwise term focuses on the whole catheter rather than only on the catheter tips.

Different types of similarity measurements are used for Itub, Iblob and Iblur. Itub detects general

tubular structures and Iblob detects specific blob-like electrodes. Iblur measures the original

intensities after smoothing. The pairwise data term is only defined for two adjacent control

points of the same B-spline. The nodes p and q can also be denoted by the j-th and j + 1–th
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control points of the B-spline. We make the following assumption: If two consecutive control

points j and j + 1’s labels are xp and xq, then any other control point k of the same B-

spline is labelled as xp, k < j and xq, k > j. The reason for this is to make other control

points’ movements consistent with these two consecutive control points. The motion offsets

corresponding to labels xp and xq is denoted by △ci,j and △ci,j+1, respectively. Thus the

resulting B-spline is defined by

Ŝi(t) = Si(t) +
j∑

k=0

△ci,jBi,k(t) +
ni−1∑
k=j+1

△ci,j+1Bi,k(t). (3.28)

The catheter observations, or landmarks, are sampled densely in the range [ti,min, ti,max] with

a step size △t = 5. The k-th landmark corresponds to tk = min(ti,min + k△t, ti,max) with

k = 1, . . . ,mi where mi = ⌈(ti,max − ti,min)/△t⌉. Finally the pairwise data term is defined as

w0
p,q(xp, xq) =

∑mi
k=0N

i
j,j+1(tk)(1− Im(Ŝi(tk)))∑mi

k=0N
i
j,j+1(tk)

(3.29)

with

Im(Ŝi(tk)) = β0Iblur(Ŝi(tk)) + β1Itub(Ŝi(tk)) + β2Iblob(Ŝi(tk)), (3.30)

where β0 + β1 + β2 = 1. N i
j,j+1(tk) is a weight parameter. Normally a large weight is allocated

to a landmark which is near to the corresponding control point. The weight can be calculated

by:

N i
j,j+1(t) =

Bi,j(t) + Bi,j+1(t)∑ni−2
k=0 (Bi,k(t) +Bi,k+1(t)).

(3.31)

Pairwise Length Continuity Term

Using only intensity information causes the tracking to be sensitive to noise and outliers. This

can be addressed by incorporating prior knowledge into the tracking. Such prior information

can be the length, the landmark distribution, and the shape of the catheter, or the relative

distance between different catheters. One problem that occurs frequently is that the tracked

curve can collapse into a single point if no regularization constraints are applied. To address

this problem, previous work [86] introduced a length continuity preserving regularization term.
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The length of the B-spline curve Ŝi(t) is calculated by

l(t) =
∫ t

ti,min

∥Ŝ′

i(τ)∥dτ, t ∈ [ti,min, ti,max]. (3.32)

Here Ŝ
′
i(τ) denotes the first derivative of Ŝi(τ). Note that this derivative is in vector form. The

length continuity preserving regularization term is defined by ensuring that the 2-norm of the

derivative vector at each landmark is equal to that of the B-spline in the previous frame. This

term is defined for adjacent control points which have an edge that belongs to Es:

w1
p,q(xp, xq) =

∑mi
k=0N

i
j,j+1(tk)ρ(∥Ŝ

′
i(tk)∥, ∥S

′
i(tk)∥)∑mi

k=0 N
i
j,j+1(tk).

(3.33)

The function ρ(x, y) from [86] is used to measure how close the two scalars x and y are:

ρ(x, y) = (1− x/y)2. (3.34)

Pairwise Landmark Distribution Term

We also add a length continuity regularization term that prevents the catheter from collapsing.

However, in most of the cases, the length of the catheter is changing rapidly due to longitudinal

motion. The length continuity regularization term causes the tracking to respond to the changes

in catheter length rather slowly. Thus, in our application, another regularization term using

the second order derivatives of the B-spline curve is added. This term allows catheter length

changes but enforces that the distance between adjacent landmarks remains constant:

w2
p,q(xp, xq) =

∣∣∣∣∣d∥Ŝ
′
i(τ)∥
dτ

|τ=tk

∣∣∣∣∣ . (3.35)

Note that
d∥Ŝ′

i(τ)∥
dτ

|τ=tk denotes the value of
d∥Ŝ′

i(τ)∥
dτ

at the point τ = tk. This term is defined

for all edges in the edge set Es.
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Shape Continuity Term

In addition to length information, the shape of the catheters from the previous frames can also

be used as a constraint in the current frame. The purpose of the shape continuity term is to

rule out outliers caused by image noise or other catheters. The shape continuity term is defined

by forcing the curvature of the catheter at each point to be equal to that of the corresponding

point in the previous frame:

w3
p,q(xp, xq) =

∑mi
k=0N

i
j,j+1(tk)ρ(∥Ŝ”

i (tk)∥, ∥S”
i (tk)∥)∑mi

k=0 N
i
j,j+1(tk).

(3.36)

Here ρ(x, y) = (1− x/y)2, as defined previously. Again, this term is defined for all edges in the

edge set Es.

Relative Distance Preservation Term

All of the above regularization terms work on individual catheters. However, in clinical cases, it

is common that multiple catheters are present in the same view. In such a situation, it is likely

that two catheters or two sections of the same catheter can interfere with each other. Especially

when two catheters or two catheter fragments are parallel and close to each other, then one

of these two catheters may be incorrectly identified on the other catheters. In such cases, the

relative distance between these two catheters should be used. To address this, every pair of

nodes in set V , except for adjacent nodes of the same curve, is checked for the probability of

overlap, based on their distance and collinearity. For a node (control point) j of the i-th B-

spline, a position of this curve, Si,j(ti,j) at ti,j, which this control point j has the most influence

on, is identified. The value of ti,j can be obtained by solving:

ti,j = tindex (3.37)

With

index = argmaxmi
k=0Bi,j(tk). (3.38)
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In this equation, the value of ti,j is selected among a finite set tk, k = 0 . . .mi corresponding to

mi landmarks of the curve i. The B-spline kernel Bi,j(t) for control point j should achieve the

highest value at t = ti,j.

We assume that nodes p and q correspond to the j1-th node on the i1-th B-spline and the j2-th

node on the i2-th B-spline, respectively. We use xp/xq to denote the label of node p and q.

Since each label corresponds to a displacement in a local coordinate related to a search region,

we use △cp and △cq to denote the displacement nodes p and q. Then the updated B-spline is

obtained as

S̃i1/2(t) = Si1/2(t) +

ni1/2
−1∑

k=0

△cp/qBi1/2,k(t). (3.39)

After this definition, if the nodes p and q satisfy the following conditions, there is a high risk

that curves i1 and i2 will have negative interference on each other:

| cos < Si1(ti1,j1)− Si2(ti2,j2),S
′

i1/2
(ti1/2,j1/2) > | < τangle1, (3.40)

| cos < S
′

i1
(ti1,j1),S

′

i2
(ti2,j2) > | > τangle2, (3.41)

with ti1,j1 calculated from eq. 3.38. Here we use τangle1 = 0.7, τangle2 = 0.8. < ∗, ∗ > denotes the

angle between two vectors. These conditions select nodes which are both close to each other

and parallel to each other. For such a pair of nodes, an edge is constructed to link them and

this edge is referred as relative distance preserving edge (RDP edge). A RDP edge is added to

an edge set Er. Note that for different frames, the elements in Er may differ. If nodes p and q

are selected to construct an RDP edge, and the labels of these nodes are assigned to xp and xq

respectively. The weight of this edge is determined by:

w4
p,q(xp, xq) = βrδre

−αr|dis(S̃i1
(ti1,j1 ),S̃i2

(ti2,j2 ))|, (3.42)

δr = |dis(S̃i1(ti1,j1), S̃i2(ti2,j2))− dis(Si1(ti1,j1),Si2(ti2,j2))|, (3.43)
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with αr = 1.0 and βr = 10.0. Here dis(∗, ∗) is defined as

dis(S1,S2) = | ∥S1 − S2∥
cos < S1 − S2,S

′
1 + ŝS

′
2 >

|, (3.44)

ŝ = sign(cos < S
′

1,S
′

2 >). (3.45)

Note that S
′
i(t) is the derivative of Si(t) in term of t. The term cos < S1 − S2,S

′
1 + ŝS

′
2 >

evaluates how parallel the curves are at these two control points while ∥S1−S2∥ evaluates how

closed these two control points are in distance. The function dis(S1,S2) measures both the

distance and the extent of parallel tangential directions for the pair of nodes. All of the above

defined terms are then combined together into a global objective function in eq. (3.25), which

is optimized using the fast-PD discrete optimization approach.

3.4 Experiments

We evaluate the two algorithms that we have developed in this chapter: the catheter extraction

algorithm in Section 3.2 and the catheter tracking algorithm in Section 3.3. Since the data we

used are different for these two evaluations, we first introduce the data sets and then describe

the experimental settings in each section separately.

3.4.1 Evaluation of the Catheter Extraction Algorithm

The purpose of developing the catheter extraction algorithm is to improve the tracking system

by either (re)-initialization or post-processing. Thus the evaluation of the extraction algorithm

is based on a tracking application. As a result, a comparison is performed between several

tracking algorithms with and without the extraction algorithm. In this section, we compare

three algorithms: (1) A tracking algorithm based on discrete optimization, previously proposed

in [86]; (2) the catheter extraction algorithm used to segment catheters from each individ-

ual frame independently, and (3) a combination of (1) and (2) with our catheter extraction
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algorithm as a post-processing step.

Porcine data (consisting of five sequences and nearly 1000 frames) and patient data (consisting

of four sequences, nearly 2000 frames) were used in our experimental evaluation. The image

size is 512×512 and the image resolution is 0.43mm×0.43mm for porcine data and 0.34mm×

0.34mm for patient data. All X-ray images were acquired using a C-arm fluoroscopy imaging

system. For each frame, three X-ray images were taken at different angles. All of the porcine

data used high dose X-ray for improved image quality. The patient data were acquired during

trans-catheter aortic valve implantation procedures using low dose X-ray. All images contain a

guide wire as well as a catheter. The ground truth catheter locations in the X-ray images were

marked manually. The frame rate of the porcine X-ray sequences is 15 fps and approximately

8 to 10 frames cover one heart beat. The frame rate for the patient X-ray sequences is 30

fps and approximately 30 to 35 frames cover one heart beat. The main source of motion is

cardiac motion rather than respiratory motion. Experiments were performed on an Ubuntu

Linux system with a 3.40GHz CPU, 8GB RAM desktop computer, without GPU acceleration.

The algorithm has been implemented in C++ and complied with the GNU Compiler Collection

(GCC), using the default optimization option. The default option does not take into account

multiple core parallelization for CPUs. Thus the evaluation of computational speed is based on

a single-core. A higher speed can be expected when using both the highest optimization option

and multiple core compilation. For all CPU implementations, image intensities are presented

as 16-bit integers (shorts) or 32-bit floating-point (floats) numbers.

The following performance metrics were defined to evaluate the speed, accuracy and robustness

of each algorithm:

• Average frame rate: The ratio of the number of frames and the computing time is the

average frame rate. This measures the real-time capabilities;

• Average tracking error: For each landmark i, the shortest distance di to the ground

truth is calculated. Then, a threshold ρ is used to select correctly tracked landmarks with

di ≤ ρ. The average di of the correctly tracked landmarks is defined as the tracking error;
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• Incorrect tracking percentage (ITP): ITP is defined as the percentage of incorrectly

tracked landmarks of the total number of landmarks. ITP indicates the reliability of the

tracking results;

• Failed tracking percentage (FTP): For each landmark in the ground truth, the min-

imum distance to the tracked curve is calculated. The landmark is considered as success-

fully tracked if the distance is below ρ. Thus, FTP is defined as the percentage of ground

truth landmarks that are not successfully tracked given the total number of landmarks in

the ground truth. This evaluates to some extent the whole catheter can be tracked;

• Ratio of failed tracked frames (ROF): If FTP or ITP in a single frame is 100%, we

regard this tracking as a failure. The ratio between the number of frames where a tracking

failure is detected and the total number of frames indicates how often re-initialisation is

needed. It also indicates the stability and robustness of the system.

Parameter Tuning

Parameters were selected based on either prior information or experiments across a range of

possible values. Some of them, such as the scale of the SURF features, are dependent on the

data and are selected based on prior knowledge for each dataset, e.g. the size of the catheter.

Others were selected based on experiments and can be used for other data, such as the threshold

of the SURF response, the threshold of the tubular score, the threshold for the edge points in

patch analysis, the size of the patch for patch analysis, and the maximum and minimum growth

step size for Kalman filter-based path growing. We summarize some key parameter choices in

Table 3.1.

It can be observed that the scales for both the vesselness and SURF detectors are rather

limited. This is because the width of the catheter can be considered as prior information in

order to limited the number of scales which have to be used. This allows the algorithm to

be fast. Another critical setting is the search range of the fast-PD tracking framework. We

set the 1D search range in the transverse direction of the catheter to 10 pixels. By defining a
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Table 3.1: Selected parameter values for the evaluation of the extraction
algorithm

parameter value parameter value
Scales for both Frangi’s and
SURF detectors a

4, 6 Threshold for the SURF re-
sponse (τsurf )

0.01

Threshold of the tubular s-
core (τfrangi)

0.1 Threshold of the edge points
in patch analysis (τedge)

0.005

Size of the patch for patch
analysis (in pixels)

10 Trade-off between unary
and pairwise terms (γ)b

0.1

Maximum step size for
Kalman filter-based path
growing (vmax)

10 Minimum step size for
Kalman filter-based path
growing (vmin)

3

aThe scales correspond to the standard derivation of the Gaussian kernel
during the calculation for the Hessian matrix for both Frangi and SURF
detectors. bBased on the accuracy, ITP and FTP performance, which
are the most important metrics, the trade-off value between unary and
pairwise terms can be selected in the range γ = 0.05− 0.2.

sufficiently large search region, the tracking system can capture large displacements including

abrupt catheter position changes. However, a larger search region means a higher likelyhood

of two or more overlapping catheters in the search region. This could confuse the tracking

system and manual corrections would be frequently necessary. Another drawback is that the

computational costs increase if the search region is enlarged. Using a 1D search space rather

than a 2D search space means the search cannot capture motion in the longitudinal direction.

This strategy makes the tracking fast but unable to track longitudinal movements. However, the

tracking of longitudinal movements is not our objective during the fast-PD optimization since

the longitudinal movements can be tackled completely by Kalman filter-based path growing.

Results

Fig. 3.5 shows the comparison results for different ρ (0.4-6.5) based on porcine data and clinical

data. All plots show the threshold ρ in the horizontal axis. The plots in (a) to (d) show the

performance in terms of error, ROF, FTP and ITP respectively for a value range of ρ = 0.4−6.5.

The methods compared include our proposed method combining fast-PD and Kalman filter-

based path growing extraction (red line), fast-PD only (blue line) and Kalman filter-based path

growing extraction only (green line). The computational speed of the different approaches is
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Figure 3.5: Comparison of experimental results on X-ray sequences.

31.3, 31.3 and 1666.7 frames per second. From these figures, it is clear that the combined

strategy achieves a significantly lower FTP with a trade-off of a higher ITP. The catheter

growing-only strategy achieves the highest speed and the lowest error. The results are shown

in Table 3.2 for ρ = 2mm. Fig. 3.6 and Fig. 3.7 show example frames with results of the three

methods for porcine and clinical data respectively. Rows (a), (b), (c) and (d) correspond to the

original data, the results of catheter growing extraction only, fast-PD only and the proposed

strategy combining fast-PD and Kalman filter-based path growing. The tracked curves are

marked in green. For each row, the six columns correspond to frame no. 1, 21, 41, 61, 81,

and 101. The figures show also that the proposed extraction method combined with a tracking

framework can extract the entire catheter even when the initialization is incomplete.
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Table 3.2: Results on X-ray image sequences for the extraction
and tracking algorithm.

Speed Error FTP ITP ROF
(fps) (mm) (%) (%) (%)

fast-PD + Growing 31 1.137 29.2 18.2 0.21
fast-PD only 31 1.135 47.0 12.9 0.21
Growing only >1000 0.82 44.0 9.2 0.26

In summary, the results indicate that the proposed extraction method based on a catheter

growing strategy can quickly extract the catheter entirely with low error. This can be used

for the initialization of the catheter tracking in an X-ray image sequence. However, it is not

recommended to track catheters using the catheter extraction algorithm alone. Since every

adjacent frame is segmented independently, no temporal consistency is enforced. Thus, using

the catheter extraction algorithm for every frame individually will result in a less robust perfor-

mance (higher ROF). Therefore, we have proposed to combine the catheter extraction strategy

with a fast-PD tracking framework, which can adapt to changing catheter lengths. However,

this approach tends to result in a higher ITP. An FTP below 40% can only be achieved by

combining fast-PD and Kalman filter-based path growing strategies.

3.4.2 Evaluation of the Catheter Tracking Algorithm

In the previous section the catheter extraction algorithm is used for initialization of a tracking

system or a post-processing step. However, this does not work in the case of two or more

catheters. The Kalman filter-based path growing strategy may link two catheter fragments

which could belong to different catheters. Thus, to track multiple catheters, the extraction

algorithm introduced in the previous section is not used.

We tested our algorithm on 10 high dose X-ray porcine sequences, comprising around 700 frames

with an original size of 512×512 pixels, with a resolution of 0.43mm×0.43mm. To improve the

computational performance the input images were down-sampled to 256×256 pixels. Exper-

iments were performed on a Nvidia GeForce GT 640 graphics card in a PC with a 3.40GHz

CPU and 8GB RAM. The algorithm is implemented in C++ and CUDA and complied with
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Figure 3.6: Examples of the tracking results in porcine X-ray data.

the Nvidia CUDA Compiler (NVCC) with default options. The GPU applications are opti-

mized for maximal parallelization since the potential improvements in speed based on GPUs

are expected to be significantly larger than for CPUs. For the GPU application, in order to

improve the instruction throughput, the image intensities are represented by 64-bit integers

rather than 32-bit floats. The precision is not affected by this. We compared two versions of

the proposed algorithm, with and without the relative distance preservation (RDP) term for

individual catheter tracking and multiple catheter tracking, In addition we also evaluated a

previously proposed algorithm [86, 85] to demonstrate the improvements of individual catheter

tracking and the ability for multiple catheter tracking.

The evaluation uses the following performance metrics:
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(a)

(b)

(c)

(d)

Figure 3.7: Examples of the tracking results in patient X-ray data.

• Average curve tracking error (CTE): A landmark i of the tracking result is correctly

tracked if the shortest distance di to the ground truth satisfies di ≤ ρ. The average di

among all correctly tracked landmarks is defined as the average curve tracking error;

• Average catheter tip tracking error (TTE): The average distance between the

tracked catheter tips is compared with the ground truth catheter tips. This error is

usually higher than CTE because no threshold is used;

• Overlap percentage: The length of the overlap between the tracking result and the

ground truth compared the whole length of both the result and the ground truth, is

defined as the overlap percentage. This measures the reliability of the tracking.
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GPU acceleration

The implementation of our algorithm on a mixed CPU and GPU platform ensures a good

computational performance when tracking multiple catheters. The allocation of the algorithm

to the CPU or GPU depends on the nature of the parallelism. A hybrid CPU and GPU

programming approach is used to perform some parts of the tracking on the GPU and other

parts on the CPU. However, frequent switching between the GPU and CPU can cause significant

overheads, i.e. data transfers between the CPU and GPU. This data transfer is often relatively

slow and represents a bottleneck for real-time applications.

In our application, the pre-processing stages of the algorithm involve image blurring and the

computation of the blob and tubular structure enhancement filters. In these pre-processing

stages each pixel of the image can be computed independently. Thus, these computations are

completely parallelizable and can be carried out on the GPU. They involve a data transfer from

the CPU to GPU and GPU computation of the following images: the tubular structure image

Itub, the blob image Iblob, the orientation image Iori and the enhanced tip image Itip. Note that

all of these processed images are stored on the GPU and there is no data copy from the GPU

to the CPU. The reasons for this is that the following calculations based on these images are

also carried out on the GPU.

The discrete optimization framework consists of two steps: Firstly, the computation of the cost

term for each label (the unary term) and the computation of each label pair cost term (the

pairwise terms); Secondly, the standard fast-PD optimization framework uses these terms as

inputs to find the optimal solution. In our implementation, the fast-PD optimization is carried

out on the CPU while the energy term computation can be fully parallelized on the GPU

for both unary and pairwise energy terms. All energy term values are organized in form of

tables and these tables have to be transferred from the GPU to the CPU, as input for fast-PD

optimization that is carried out on the CPU. Although a GPU to CPU data transfer is needed,

the approach is efficient because this table is much smaller than the image and can therefore

be efficiently transferred.
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Table 3.3: Parameter values for the evaluation of the tracking algorithm.

parameter value parameter value
Scales for both Frangi and
SURF detectors

4, 6 Threshold of the SURF re-
sponse (τsurf )

0.01

Threshold of the tubular de-
tector response (τfrangi)

0.1 Standard derivation of the
Gaussian kernel for tip en-
hancement (σtip)

5

Step size of landmark sam-
pling (△t)

5 Search range for each con-
trol point of B-spline model
(Rrange)

5

Angular threshold for the s-
election of a pair of nodes
with distance preservation
term (τangle1, τangle2)

(0.7, 0.8) Parameters for calculating
the weight of distance p-
reservation edge (αr, βr)

(1.0, 10.0)

aThe scales correspond to the standard derivation of the Gaussian kernel during
the calculation for the Hessian matrix.

Parameter Tuning

In order to optimize the performance of our algorithm, the parameter space of the algorithm

must be explored in detail. Most of the parameters, such as the thresholds or the scales for

tubular and blob detectors, or the search range for tracking, can be defined based on prior

information. Table 3.3 gives a brief summary of these parameter values.

The weighting parameters for the different terms (γ, α0, α1, α2, α3, α4, β0, β1, β2) are more dif-

ficult to select. These parameters are independent from each other. This makes the possible

space of parameters extremely large. Furthermore, the optimal choice of parameters may de-

pend on the actual image sequence. The motion pattern of the catheters, the frame rate or

the intensity contrast, which may vary among different sequences, influence the choice of these

parameters as well. This means that an optimal set of parameters for one sequence may not

be optimal in another image sequence with different properties. Thus, we aim to find a set of

parameters that represents a good compromise and works well for all tested image sequences.

To do this we firstly run an extensive grid search based on all available image data to ob-

tain a set of parameters that achieves the best performance. Then in order to accelerate the

parameter optimization process, we defined the range of all parameters to be within [0, 1]

and the resolution of the search grid to be 0.05. There are also linear constraints which are
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α0 + α1 + α2 + α3 + α4 = β0 + β1 + β2 = 1. We found the best set of parameters to be

(0.5, 0.3, 0.3, 0.15, 0.15, 0.1, 0.4, 0.3, 0.3). Thus for most of cases, we use these parameters. Oth-

erwise, we can adapt each parameter manually to achieve the best performance based on the

output of the grid search. The following rules are used when we carry out parameter tuning

for each individual sequence: (1) Increase γ when a more accurate tip tracking is required;

(2) increase α0 when image quality is high; (3) increase α1 and decrease α2 when longitudinal

movements are small; (4) increase α3 when the tracked object is more rigid; and (5) increase

α4 when the risk of overlapping catheters is high.)

Results

Fig. 3.8 shows a comparison of the CTE and overlap percentage for different values of ρ (1–

15mm): From this, the improvements for CTE and overlap percentage of the proposed tracking

system are visible for both individual catheter tracking and multiple catheter tracking, in

particular when compared with the approach in [86, 85]. There is a very slight improvement

when the Relative Distance Preservation (RDP) term is added. This is expected because the

cases with a high risk of overlapping catheters are infrequent in our experimental data. The

TTEs for the previous method, the proposed method with and without RDP are 10.9mm,

8.8mm and 8.1mm, respectively. The TTE is much higher than CTE because there is no

threshold ρ applied. Given ρ = 5mm, our proposed approach (with RDP) achieves a CTE/TTE

of 1.40/8.10 mm and an overlap percentage of 87.18%. A visual comparison is shown in Fig. 3.9.

The sub-figures show the original frame (a), the result of [86, 85] (b), and the results of our

method without RDP (c), and with RDP (d). The blue circles denote the nodes in V . Small

yellow circles denote landmarks and each adjacent landmark is linked with a red edge. The

pink lines denote the edges in Er and the white lines denote the edges in Es. The computation

time of our tracking method is between 100-600 ms per frame depending on the parameter

settings and datasets. The catheter extraction algorithm is much faster than the catheter

tracking algorithm in X-ray images. During the tracking, the bottleneck for the computational

speed is in the calculation of the values of objective function that is being optimized by the

Fast-PD optimization. Besides the objective function calculation, the image pre-processing
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(a)

(b)

Figure 3.8: Comparison of curve tracking error and overlap percentage for different error thresh-
olds ρ.

and feature detection are the other main factors in terms of computational speed. Thus in

the multiple catheter tracking module, image processing and feature detection, as well as the

objective function calculation, are performed using the GPUs.
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(a) (b)

(c) (d)

Figure 3.9: Example of the comparison for multiple catheter tracking with the original frame
(a), the result from [86, 85] (b), and the results of our method without RDP (c) and with RDP
(d).

3.5 Discussion

For catheter segmentation (extraction) in X-ray images, our proposed segmentation algorithm

based on Kalman filter-based path growing can extract catheters without any prior information.

This extraction can be performed at a speed of 100-600 ms per frame. It therefore satisfies

the real-time requirements without the need to resort to hardware acceleration, i.e. the use

of GPUs. The segmentation algorithm can be used for the initialization of catheter tracking,

the recovery from tracking failures, or the extension of the proportion of the catheters being
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tracking. However, the start and end points for catheter growing are sensitive. Thus, manual

interaction is needed to select the catheters to be segmented and tracked. Although these

requirements reduce the proposed system from a fully automatic system to a semi-automatic

system, it still significantly reduces the amount of manual work required.

During the catheter tracking, the proposed segmentation algorithm can be used to extend the

proportion of the catheter, which may be ’lost’ during the tracking stage. The tracking frame-

work, which is based on fast-PD optimization, uses the consistency of adjacent frames. This

makes the tracking more stable. However, the fast-PD optimization alone is unable to adapt

the tracking when the length of the visible catheter changes due to longitudinal movements.

Thus, a balance is sought between the fast-PD optimization and the Kalman filter-based path

growing strategy in order to both preserve the consistency and to allow adaption to changes in

the length of the visible cathether. From the perspective of our application, the Kalman filter-

based path growing strategy has the ability to track the whole catheter but risks ’over-growing’.

This means some non-catheter structures might be included in the catheter.

For the multiple catheter tracking approach, additional regularization terms are defined to ad-

dress the challenge of multiple catheters in the same view. In this algorithm, it is recommended

that the Kalman filter-based path growing extraction algorithm is not used. Because the extrac-

tion algorithm is very sensitive to mutual interferences of different catheters it can make the

multiple catheter tracking unstable. Furthermore, the multiple catheter tracking strategy uses

a large number of energy terms in the objective function. Thus it introduces a large number

of coefficients that must be chosen in a heuristic fashion. This makes the parameter space

large and difficult to tune. Although we propose values for these coefficients these may not be

optimal for all cases. An online learning strategy for the parameter values could address this

problem. Finally a large database of clinical patient data would help to evaluate our approach

more thoroughly.



Chapter 4

Catheter Segmentation in Ultrasound

Images using Registered X-ray Images

4.1 Introduction

The segmentation and tracking of catheters in ultrasound images is very challenging if no

prior information is used. In this chapter we propose to use corresponding and registered

X-ray images to assist with the segmentation of the catheters in the ultrasound images. A

segmentation algorithm for catheters in X-ray images has been introduced in the previous

chapter. This segmentation produces an estimate of the catheter in form of a B-spline curve.

Given the spatial transformation between the X-ray and ultrasound modality, each curve in a

2D X-ray image corresponds to a curved surface in the corresponding 3D ultrasound volume.

Thus the search space for the possible location of catheters in the ultrasound images can be

dramatically reduced from the whole 3D volume to only a limited space surrounding this surface

corresponding to the back-projected 2D catheter in the X-ray images. This strategy can reduce

the interference of other catheter-like structures, which are far from the catheter location, and

can reduce the computational cost for the segmentation in the ultrasound images.

In the following the spatial registration between the X-ray and ultrasound images will be used

as a key step linking both modalities together. Their registration is estimated by aligning a

101
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pre-calculated transesophageal echocardiogram (TEE) probe model to its 2D projection in the

corresponding X-ray images using the algorithm proposed in [73]. The transformation matrix,

which describes a rigid transform, can be efficiently calculated by iteratively minimizing the

re-projection error. The 2D-3D registration is not our contribution and therefore will be only

briefly discussed (Section 4.2). With the resulting transformation matrix, we can determine a

3D curved surface in the ultrasound images that corresponds to the catheter curve in the X-ray

images.

In Sections 4.3 and 4.4 two graphical models are introduced. These graphical models are used

to address the challenge of catheter segmentation in ultrasound images with the search region

for the catheter constrained by the back-projected curve surface. The first graphical model

is based on a simple model with two distinct end nodes. In this model the catheter curve

is modelled as the shortest path connecting the two end nodes. Although this model is easy

to compute and has a small parameter search space, which makes it easy to tune, it is not

flexible enough in more realistic clinical scenarios. We therefore propose a second model that

is based on a hierarchical graphical model with two levels. In this model the catheter curve

is modelled as a combination of the shortest path in the top-level graph and the longest path

in the bottom-level graph. This is referred to as the optimal path in the following. In clinical

cases this yields better results than those obtained from a simple single layer graph.

4.2 Registration of TEE and X-ray Fluoroscopy

The two imaging modalities are registered using the method proposed in [73]. The transforma-

tion matrix between X-ray image space and ultrasound image space is obtained by registering

a previously acquired nano-CT image of the TEE probe to the projection image of the ultra-

sound probe in the X-ray image. In this registration process, digitally reconstructed radiographs

(DRRs) are used to simulate the process of X-ray projection and projections of the 3D probe

are generated. The best match between the DRR and the acquired X-ray projection image is

then obtained by iteratively adjusting the transformation parameters (position and orientation)
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of the 3D probe image.

The transformation matrix T mapping each US volume from the US image coordinate system

to the X-ray coordinate system consists of three terms:

T = TprojTprobeTUS. (4.1)

Here TUS transforms the 3D US volume to the US probe space, Tprobe denotes the 3D position

of the US probe in the 3D space of the X-ray scanner, and Tproj stands for the projection of

the 3D position in X-ray space to the 2D X-ray image. TUS and Tproj can be acquired directly

from the corresponding imaging devices or through calibration, while Tprobe is calculated by

the GPU accelerated 2D/3D registration algorithm described above. The 2D projection error

for the X-ray images has been reported to be within 2mm in [73]. An example of a 2D/3D

registration is shown in Figure 4.1(a). For further details regarding the registration algorithm

the reader is referred to [73].

4.3 Catheter Extraction in Echocardiographic Images

Using Shortest Path

4.3.1 Feature Detection in a Reduced Search Space

The extracted catheter in the X-ray image is represented by a set of sorted 2D landmark-

s and their homogeneous coordinates: Iixray = (xi
xray, y

i
xray, 1)

T , i = 1, . . . , n where n is the

number of landmarks in the set describing the catheter. Suppose the voxels in the ultra-

sound image that correspond to each landmark in the X-ray image are denoted as Iiecho =

(xi
echo, y

i
echo, z

i
echo, 1)

T , i = 1, . . . , n then the relationship between the 2D X-ray landmark coor-

dinate and its corresponding ultrasound voxel coordinate can be denoted by:

Iixray = TIiecho (4.2)
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(a)

(b)

Figure 4.1: Registration of the ultrasound probe model to its X-ray projection (a) and an
example of the curved surface in US corresponding to the catheter curve in X-ray (b).

Note that the transformation matrix T is a 3D to 2D projection matrix introduced in Equ. 4.1.

Thus, for a fixed known X-ray coordinate Iixray, there are an infinite set of points Iiecho in

the ultrasound image satisfying Equ. 4.2. These points comprise a back-projected ray in the

ultrasound volume. Thus, any search strategy for the features of the catheter should focus on a
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search along each ray instead of the whole ultrasound volume. This can reduce the search cost

dramatically. However, because of registration and catheter segmentation errors, the search

space cannot be limited to just along the ray. Instead, the small space around each ray, within

a small distance threshold, is also searched. The features, which we extract are SURF features

as proposed in [16]. However, we use 3D SURF features rather than 2D SURF features as in the

previous chapter. For each ray, the detected features are clustered if they are within a certain

distance along the direction of the ray. Thus after searching along the i-th ray, a set of clusters

C i
j, j = 1, . . . , ni is generated automatically, where ni is the number of clusters found for the

i-th ray. For each cluster C i
j containing a set of feature points f i

j , we compute its characteristic

feature set Si
j which is defined as:

Si
j = {f i

j,Xmax, f
i
j,Y max, f

i
j,Zmax, f

i
j,Xmin, f

i
j,Y min, f

i
j,Zmin, f

i
j,mean} (4.3)

In this set, the first six points define a bounding box. The last feature point f i
j,mean is the mean

of the previous six feature points, with a standard deviation dij.

4.3.2 Catheter Extraction Based using a Graphical Model and the

A⋆ Algorithm

After a group of clusters has been generated, the next step is to identify which clusters are

located on the catheter. For this, we have chosen an approach that builds a graphical model

of the clusters and then finds the shortest path.

Clusters on nearby rays are connected by an edge considering each cluster Ci
j as a node in the

graphical model. In detail, for a cluster Ci
j on the jth ray, all other clusters on rays j + 1,

j + 2 are connected to this cluster. For each edge connecting two clusters (nodes), an initial

weight W ini
i,j→p,q of the edge from node C i

j to Cp
q is calculated as a linear combination of the

3D Euclidean distance dinii,j→p,q between the corresponding clusters and two standard deviations

(defined in the last subsection) of both nodes dij to dpq :
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W ini
i,j→p,q = αdinii,j→p,q + (1− α)(dij + dpq). (4.4)

Here α is a parameter that must be set manually for different situations. In most of our

experiments, we empirically set α to 0.5. dinii,j→p,q, which can be determined using the smallest

distance between any pair of points from feature sets Si
j to S

p
q . d

i
j and dpq are standard derivations

calculated on sets Si
j and Sp

q defined in e. q. 4.3.

Firstly, we set the original cost to connect two features equal to the distance between these two

features. If two features are quite close to each other, the weight to connect them is a small

positive value equal to the distance. However, for a path which consists of a large number of

features which are close to each other, the accumulated cost for the whole path is still high,

equal to the accumulated distance. In other words, if a path had no large gap and only consist

of features with small intervals, the cost would still be high. The cost is dependent to the

length of the catheter. In order to make the cost independent to the length, we assume that

the original cost below a pre-set value (5 in our application) equals to zero. Thus, there is no

cost to connect two nodes, which are close to each other. As a result, a path without large gap,

even if the path is quite long, it will have a low overall cost.

The standard shortest path problem defines only one start node and only one end node in the

graphical model. In our application, we first select all potential start nodes and all potential

end nodes. If a node Ci
j near the border has no other node at rays k < j connecting to it

with zero-weight, then this node is selected as a potential start node. If a node Ci
j near the

opposite border has no other node at rays k > j connecting to it with zero-weight, then this

node is selected as a potential end node. All potential start nodes are connected to a unique

virtual start node with zero-weight and all potential end nodes are connected to a unique virtual

end node also with zero cost. Thus the multiple start and end nodes are transformed to only

one start and one end node. Therefore, the standard shortest path can be solved by the A⋆

algorithm [84]. Finally, smoothing is performed through fitting a B-spline curve.
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4.4 Catheter Extraction in Echocardiographic Images

Based on Optimal Path

In this section we introduce an alternative graphical model for the catheter segmentation in

ultrasound volumes.

As mentioned before, we can use the registration transformation between the X-ray and US

modalities together with the catheter extraction in the X-ray images to significantly reduce

the search space for the potential catheter location in the US volume. This reduced search

space corresponds to a region around a curved surface corresponding to the extracted catheter

curve in the X-ray image (Figure 4.1(b)). This reduced space around the curved surface is first

straightened to a rectangular volume. 2D SURF features are then detected on sampled cross-

sectional 2D images extracted from this volume. Among these features, only a small proportion

corresponds to the correct catheter. Then a two-layer hierarchical graphical model is used to

organize all extracted features and the optimal path is identified in the graph. Features along

this optimal path should correspond to the catheter. The optimal path is a combination of the

longest path in the top layer graph and the shortest paths in each of the bottom layer graphs.

The longest path helps to maximize the probability of the linked catheter fragments belonging

to the complete catheter (rather than a shorter catheter segment or an imaging artefact) while

the shortest path is used to select the features which represent each catheter fragment in a

smoother way. The selected optimal path is considered as the candidate catheter extracted

from the US volume.

4.4.1 Search Space Straightening and SURF Feature Extraction

The catheter extraction method used for the X-ray images proposed in the previous chapter

cannot be extended to ultrasound images because the electrodes cannot be detected in the

ultrasound images. In addition, the patch analysis used in the X-ray images becomes very

computationally expensive if it is extended from 2D to 3D. The Frangi vesselness filter is also

unsuitable because it is sensitive to artefacts in ultrasound images. In these images Frangi’s
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vesselness filter detects too many outliers, which correspond to speckle and other imaging arte-

facts. This leads to many detected tubular structures with inconsistent longitudinal direction.

If the longitudinal direction is roughly known, then the catheter will exhibit a blob-like ap-

pearance at the intersection of the transversal plane that is perpendicular to the longitudinal

direction of the catheter. Thus a 2D blob-like detector, encoding prior knowledge about the

longitudinal direction of the catheter can be more suitable for the detection of possible points

on the catheter.

Given the extracted catheter in the corresponding X-ray image and the transformation matrix

between these two modalities, a curved surface in the 3D US volume, which corresponds to the

catheter in the 2D X-ray, can be extracted. The location of the catheter in the US image is

ideally located within this surface. However, in practice, the location of the catheter is likely to

be near this surface, but not exactly on it, because of catheter segmentation errors in the X-ray

images and registration errors. Thus, the search for features should not be restricted to the 2D

curved surface but should also be carried out along the direction perpendicular to the surface

(see Figure 4.2). Because of the curved nature of the surface, perpendicular lines at different

locations on the surface will be in different directions and may intersect each other. These

intersections can cause an inconsistent ordering of candidate landmarks along these directions

when compared with the original order. In order to cope with this, we define a single unified

transversal search direction for every location on the curved surface. As a result, the transversal

directions at all locations are parallel to each other and no intersections occur as Fig. 4.2 shows.

We re-write the transformation matrix for the 2D/3D registration as T = [t1, t2, t3, t4]
T . For

the k-th landmark location pk = (uk, vk) on the X-ray image, the corresponding ray equation

in the 3D ultrasound volume is denoted by:

[t1 − ukt4, t2 − vkt4]
TXk = 0. (4.5)

Here Xk = [xk
1, x

k
2, x

k
3, 1]

T represents the coordinates of the voxels in the US volume corre-

sponding to the k-th landmark in the X-ray image. The rays corresponding to locations on the

catheter in the X-ray image form a curved surface S. The optical axis c of the X-ray imaging
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Figure 4.2: Search space straightening.

system in US space is normal to the X-ray plane. The plane which crosses the centre of the

US volume with a normal vector along the optical axis c defines the reference plane R. The

vector, in this plane R, connecting the projection of one end of the catheter to the other end,

is defined as the longitudinal direction t of the catheter. Using this, the transversal direction

n is defined perpendicular to both c and t (see Figure 4.2).

After the transversal search direction, n, and the reference plane, R, are defined, the search

space surrounding the curved surface is straightened along the longitudinal direction, t, into a

regular rectangular volume, V. First, the direction vk of each ray corresponding to a landmark
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on the catheter in the X-ray image, and the corresponding intersection Xk
0 with the reference

planeR, are calculated using eq. (4.5). Then the ray equation can be denoted asXk = Xk
0+svk

where s is bounded by [skmin, s
k
max]. s

k
min and skmax correspond to the intersections of the ray with

the border of the original ultrasound volume. Next, the value of each voxel in the straightened

volume is calculated by

Vi,j,k = I(xk
0 + (j + smin − 1)vk + in), (4.6)

where smax = maxk s
k
max and smin = mink s

k
min. I(x) is the intensity value of coordinate x in the

original ultrasound volume. If x is outside the border of the volume, the value is set to zero.

The search range along the transversal direction is also bounded to [−τtransversal, τtransversal]

where τtransversal restricts the value of i. Eq. 4.6 maps voxels in the original US volume to their

new locations in the straightened US space.

The longitudinal direction t, along which the search space is straightened, corresponds to the

z-axis of the new, straightened US volume V. After a catheter has been transformed into the

straightened space, it is likely that the catheter lies in the z-axis direction, with small changes in

the other directions. Using this assumption, the x−y cross-sectional plane through V will show

a blob like structure at the position at which the catheter passes through the plane. However,

in practice, the catheter is often perpendicular to the X-ray plane, so that the catheter lies

along the y-axis and the x− z cross-sectional plane shows a blob-like structure rather than the

x− y cross-sectional plane. Generally, the y− z cross-sectional plane should not contain blobs.

The SURF detector is a fast blob-like detector for 2D images. Thus, given a coordinate X in

the straightened volume, we calculate the SURF detector response by examining both the x−y

and x− z cross-section and select the higher of the two SURF detector values at that position.

A set of candidate coordinates Xk
l with corresponding responses Rk

l for the l-th feature on the

k-th ray, are retained for the next steps by defining a threshold τsurf , .



4.4. Catheter Extraction in Echocardiographic Images Based on Optimal Path 111

4.4.2 Two-Layer Hierarchical Graph Construction

Since we know approximately where the catheter may start and end (using the information

from the X-ray images), it is possible to include this prior information via a graphical model

with corresponding starting and ending nodes.

Given a set of feature location Xk
l on each ray k, the features are first clustered into small

clusters using a single linkage clustering technique [183] based on their spatial distance. Each

cluster corresponds to a section of a catheter-like structure. Within each cluster, a low-level

graph is constructed based on the feature locations within the cluster. The shortest path

then corresponds to a potential section of the catheter. Given a set of catheter sections, a

high level graph is then constructed considering each catheter section (or low-level graph) as a

node. These two layers are connected via end nodes of the low-level graphs. In other words,

considering two clusters to be connected, the intra-edge is constructed by connecting the end

node of one cluster to the start node of the other cluster. By finding the longest path through

this graph, a set of catheter sections are selected and linked together to form the complete

catheter model. The whole path, consisting of one inter-cluster path and several corresponding

intra-cluster paths, is finally selected as the potential catheter model (Figure 4.3). The purpose

of this two-level hierarchical graph is to preserve the integrity of each catheter-like structure at

a low level, but also to link them together in an appropriate way.

To achieve this, each ray and pair of consecutive rays is considered. If the distance between

a pair of features on these ray(s) is below a threshold τsubgraph, then an edge is allocated to

link the two feature locations with a cost corresponding to the distance between them. After

single linkage clustering, the features are organized as a set of clusters Cj, j = 1, . . . ,m with

the features inside each cluster linked to each other directly or via other features.

Within a cluster, the features Xk
l (k is the ray index and l is the feature index on this ray)

with no direct link to other features that have a smaller ray index than k are selected as the

candidate start nodes. Features with no direct link to those with a larger index than its ray

index are selected as the candidate end nodes. In other words, start nodes should have no other
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(a)

(b)

(c)

Figure 4.3: The sub-figures show (a) the original features that have been detected (yellow dots
in the figure); (b) the top-level graph with each cluster of features as nodes (red); and (c) the
bottom-level graph. The original features are organized in a two-layer graph corresponding to
each cluster where the features inside the cluster are nodes related by edges (blue) based on
distances.
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linked nodes in front of them and end nodes should have no linked nodes behind them. Only

one pair of start and end nodes is selected among the candidates for each cluster by maximizing

the distance between the start and end nodes. This strategy aims to maximize the length of

the corresponding catheter fragment. Next, clusters are combined if one cluster i’s start or

end point Ai is very close to another cluster j’s start or end point Aj, and their directions are

almost co-linear. We assume that for cluster i/j, if the start (end) point is Ai/j, then the end

(start) point is denoted by Bi/j. Then they should satisfy the following constraints:

e|⟨
−−→
BiAi,

−−−→
AiAj⟩| + e|⟨

−−−→
AiAj ,

−−−→
AjBj⟩| < τcolinear, (4.7)

|−−−→AiAj| < τcluster. (4.8)

Here < a,b > represents the angle between vectors a and b. The start and end points are

swapped if the start point has a larger ray index than the end point after the clusters have been

combined. Finally, a sub-graph with start and end nodes for each cluster is constructed. These

sub-graphs are considered as the bottom layer graphs for the hierarchical graphical model.

Following this, the top layer graph is constructed by using only the start Si and end Ei of each

cluster i as nodes and establishing directed edges among them. The rule of linking edges is as

follows: for each cluster i, an edge ei,i (intra-cluster edge) is created from the start to the end

points. For any pair of the clusters i, j which have not been merged but are likely co-linear, an

edge ei,j (inter-cluster edge) is created from the end point of one cluster to the start point of

the other cluster. The result is a directed acyclic graph which can be used to find the longest

path. The weight of an edge should penalize linked endpoints which are far from each other or

the endpoints whose corresponding catheter fragments are less likely to be co-linear. Thus the

weights Wi,j allocated to each edge are chosen as:

Wi,j =


∥−−→SiEi∥

avgpR
i
p

τsurf
, if i = j

−∥−−→EiSj∥ e|θi|+e|θj |+e|ωi,j |

3
if i ̸= j.

(4.9)

Here avgpR
i
p is the average value of the SURF detector responses among the features of the

cluster. θi is the angle between
−−→
SiEi and

−−→
EiSj and θj is the angle between

−−→
EiSj and

−−→
SjEj.
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ωi,j = θj − θi. After the top layer graph is constructed, the next step is to find the optimal

path.

4.4.3 Finding the Optimal Path

At this stage, a two-layer hierarchical graph has been constructed. The top layer is a directed

acyclic graph. The start and end points of each cluster are nodes in the graph. The edges and

their weights are defined by the co-linearity of nearby clusters according to eq. (4.9). The

bottom layer contains several graphs, one for each cluster. The feature locations are the nodes

and the edges are the directed links between two features within a threshold. The cost of the

edge depends on the 3D distance between two linked nodes. The longest path is selected in the

top-layer graph using the dynamic programming technique presented in [179].

Having obtained the longest path, the intra-cluster edges which link only the start and the end

of each cluster should be interpolated with more nodes from the cluster. This can be achieved

by finding the shortest path for each sub-graph corresponding to each intra-cluster edge on the

longest path. This shortest path problem is solved using the A⋆ algorithm. Each intra-cluster

edge of the longest path is then replaced by the corresponding shortest path. As a result, the

optimized path not only links likely catheter segments, but also preserves and smooths the

shape of each catheter segment. In order to extract more than one catheter in the same view,

multiple optimal paths can be extracted. This is achieved by repeated localisation of the longest

path on the top-layer graph. At the end of each iteration, the nodes that have been already

selected as the active nodes on the path of a catheter are ruled out to ensure the extracted

optimal paths do not overlap each other.

When multiple catheters overlap in the X-ray images, the corresponding search space in the

ultrasound images would have multiple catheters in the field-of-view. In this case, the optimal

path finding procedure can be performed iteratively to extract multiple catheter candidates.

After each iteration, the weights of the extracted path can be altered in order to ensure that

these paths are not extracted again during the next iteration. In our experience the situation
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where the images contain multiple catheters are rare and we have therefore not evaluated this

approach in the remainder of the thesis.

4.4.4 Post-processing

The above described operations are all performed in the straightened space V. In the final step

of the catheter extraction, all detected catheter points are transformed back to the original

ultrasound volume. These points are then used to define a B-Spline curve that models the

catheter. The longitudinal direction di of each point i on the catheter is then computed using

a 1st-order derivative of the B-Spline curve at i.

Because the amount of overlap of the X-ray and ultrasound images is sometimes limited by

registration errors or only a small percentage of the catheter that is extracted from the X-ray,

we can additionally use a catheter path growing step to extend the extracted part of the catheter

to the un-extracted parts. Because the patch analysis framework previously used in Chapter 3

is computationally expensive in 3D, it cannot be used to obtain accurate measurements for a

Kalman-based filter framework. However, since the catheter is smoother in 3D than in it is 2D

X-ray images (the projective nature of 2D X-ray images can cause sharp changes of direction)

a straightforward and simple strategy can be applied here: Before applying the catheter path

growing method, the response of Frangi’s vesselness filter for each point is checked, starting

at each end point and working inwards. Points are discarded from the ends until a response

is found that is above a threshold τfrangi. This ensures that incorrectly tracked parts of the

catheter that are caused by changes of the length or shape of the catheter in the field of view

are ignored.

This is followed by a catheter path growing step: Starting from the current estimate of the end

points of the catheter, the direction vi for the growing is along −d0 for the first landmark and

dn for the last one. Given two adjacent landmarks pi−1 and pi, the step size for the catheter

growing is:

△si = (M −N)vT
i−1vi +N. (4.10)
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Here M and N are the maximum and minimum size of growing step, which are set manually.

This means that smaller steps are used when a sharp turn occurs and larger steps are used if the

catheter is linear. The growing direction combined with the step size yield the next candidate

position:

p′
i+1 = pi +△sivi. (4.11)

The final position of the next landmark is determined by locating the voxel within a defined

neighbourhood (we set a 10 voxels range as neighbourhood ) of p′
i+1 with the largest response

of Frangi’s vesselness filter in this neighbourhood. The response of Frangi’s vesselness filter

is used because the 2D SURF blob detector can only be used in the straightened space but

not in the original space. The catheter path growing is terminated when all of the candidates’

responses within the neighborhood are below the threshold τfrangi.

4.5 Experiments

4.5.1 Evaluation of the Single Layer Graphical Model

The single layer graphical model algorithm was first evaluated on a pair of phantom images,

consisting of a 2D X-ray fluoroscopic image and a 3D TEE image. Additionally, it has been

evaluated on real patient data, consisting a 321 frame X-ray sequence at 30 fps and a 216

frame TEE sequence at approximately 14 fps. The overlap between these two modalities lasts

for approximately 10 seconds. All of the X-ray images, acquired with a Philips Allura Xper

FD10 C-arm, have the same size of 512 × 512 pixels while the TEE images, acquired using a

Philips X7-2t TEE probe, have a size of 144 × 160 × 208 voxels. The patient was undergoing

an aortic valve implant via the minimally-invasive trans-aortic approach. 2D/3D registrations

were carried out on a PC running Window 7, with a 2.66GHz CPU, 4GB RAM with a NVIDIA

GeForce GTX 280 graphics card courtesy of James Houston, King’s College London, at St.

Thomas’ Hospital. All other experiments were carried out on a PC running Ubuntu Linux with

a 3.40GHz CPU and 8GB RAM. All algorithms are implemented in C++ and compiled with
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GNU Compiler Collection (GCC), using the default optimization option. The evaluation of the

computational speed is based on a single core. Image intensities are represented using 16 bit

integers (shorts) or 32 bit floats.

Our experiments are concerned with computation time and accuracy of the catheter segmen-

tation. The computation time for the catheter segmentation in the X-ray and US images are

denoted by txray and tultrasound respectively. The time required for the registration, treg, is less

than 1s. The total time can be calculated as:

toverall = max(txray, treg) + tultrasound. (4.12)

Because the SURF features are detected not only on the surface but within a margin around the

surface, it is possible to evaluate the accuracy of the catheter segmentation via re-projection

of the 3D points representing the catheter in the ultrasound image to the X-ray image and

comparing them with the original 2D points extracted in the X-ray image directly. This re-

projection error can be formulated as:

error = (

√√√√ n∑
i=1

∥xi − x
′
i∥

2
)/n. (4.13)

Here xi denotes the projection of the i-th point in the ultrasound image to the X-ray plane

and x
′
i denotes the nearest point to xi on the catheter detected in the X-ray image. This error

includes both the segmentation error and the registration error.

The phantom experiment was undertaken in a tank of water. Only one ablation catheter and

the ultrasound probe were put into the water. The procedure was simultaneously monitored

by C-arm X-ray fluoroscopy and ultrasound. The catheter extraction is fast: 0.15s and 1.4s

for the X-ray and ultrasound image respectively. The overall time toverall is around 2.4s with

a re-projection error of 1.60mm. Fig. 4.4a shows some of the results using the phantom data.

The ground truth for both X-ray and ultrasound images were obtained via manual annotation.

The average performance of the algorithm was evaluated using real patient data. The last ten
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(a)

(b)

Figure 4.4: Examples of the catheter extraction using the single-layer graphics model: (a) from
phantom images and (b) from real patient.

frames in the ultrasound imaging sequence (the registrations are more accurate) were paired

with up to 3 X-ray frames, which were most likely to be their corresponding frames in time.

20 such pairs were formed and some of the segmentation results are shown in Fig. 4.5. The

green points denote the original catheter extraction in the X-ray images while the blue points

denote the back-projections from the ultrasound images to the corresponding X-ray images.

The last frames of both X-ray and ultrasound were also paired and the results are shown in

Fig. 4.4b. For the patient sequence, the average re-projection error is 1.99mm and the overall

computation time is 2.72s.
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(a)

(b)

Figure 4.5: Performance in 20 pairs from real patient data: (a) re-projection errors are on
average 1.99mm. (b) Computation times are on average 2.72s.

4.5.2 Evaluation of the Hierarchical Graphical Model

For the evaluation of the hierarchical graphical model four sequences of clinical patient datasets

were used in our experiments. The patient data were acquired during trans-catheter aortic valve

implantation procedures. All of the X-ray images were acquired as low dose images. All images

contain a guide wire as well as a catheter. The X-ray and ultrasound sequences data were
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Table 4.1: Dataset Information

Modality Number of Frames Image Size Resolution
X-ray 2000 512×512 0.34×0.34 mm2

ultrasound 800 144×160×208 0.60×0.60×0.29 mm3

synchronised by manually matching image frames. The ground truth catheter locations in the

X-ray and ultrasound images were marked manually by an expert. The catheter is easy to

locate in the X-ray images and therefore the intra-observer variability is low. However, the

identification of a suitable ground truth in the ultrasound images was more challenging. We

randomly sampled 40 frames from all datasets and for each frame the catheter was annotated

five times. For each consecutive two annotations, the average error and the overlap percentage

was calculated when the two annotations were compared. The overall error is 0.7mm and the

overlap percentage is 87.3%. The frame rate of the X-ray images is 30 fps and approximately

30∼35 frames cover one heart beat. The frame rate of the ultrasound images is around 6∼7 fps

and 6∼8 frames cover one heart beat. The main cause for catheter motion is therefore cardiac

motion rather than respiratory motion. For the ultrasound images, we also estimate the motion

between two adjacent frames given its low frame rate. The average motion along transversal

and longitudinal directions are approximately 4mm and 6mm respectively. Because the frame

rates of the X-ray sequences are higher than the frame rates of the corresponding ultrasound

image sequences, one ultrasound image may correspond to two or three X-ray images rather

than one single X-ray image. Thus although there are only 800 frames of ultrasound data, the

number of corresponding X-ray and ultrasound image pairs consists of more than 2000 frames.

Table 5.1 gives more details about the datasets used in this section. All experiments were

performed on a PC running Ubuntu Linux system with a 3.40GHz CPU and 8GB RAM. All

algorithms are implemented in C++ and compiled with the GNU Compiler Collection (GCC),

with the default optimization option. Image intensities are represented using 16 bit integers

(shorts) or 32 bit floats.

The following performance metrics were used to evaluate the algorithm’s speed, accuracy and

robustness:

• Average frame rate: The ratio of the total number of frames to the total time consumed
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is used to represent the average frame rate. This measures the real-time capabilities;

• Average tracking error: For each landmark i, the shortest distance di to the ground

truth is calculated. Then a threshold ρ is used to select correctly tracked landmarks with

di ≤ ρ. The average di of correctly tracked landmarks is defined as the tracking error;

• Incorrect tracking percentage (ITP): ITP is defined as the number of incorrectly

tracked landmarks divided by the total number of landmarks. ITP indicates the reliability

of the tracking results;

• Failed tracking percentage (FTP): For each landmark on the ground truth, the

minimum distance to the tracked curve is calculated. The landmark is considered as suc-

cessfully tracked if the distance is below ρ. FTP is defined as the number of ground truth

landmarks that are not successfully tracked divided by the total number of landmarks

in the ground truth. This measure evaluates to what extent the whole catheter can be

tracked;

• Ratio of failed tracked frames (ROF): If FTP or ITP is 100%, we treat this as

a failure. The number of frames where a tracking failure is detected divided the total

number of frames indicates how often re-initialisation is needed. It also indicates the

stability and robustness of the system.

First, the proposed method is compared to the strategy without the catheter path growing

during the post-processing to demonstrate the advantage of catheter growing in cases where

there is large longitudinal motion in the ultrasound images. The advantages of the proposed

similarity measurement are also demonstrated by comparison with other vesselness filtering

methods, specifically Frangi’s and Sato’s vesselness filtering methods proposed in [69] and [174].

Finally, the overall algorithm is compared with the previously proposed method introduced in

the last section, which is based the single layer graphical model. This comparison highlights

the limitations of the single layer graphical model when applied to real-world clinical data.

When using the 2D SURF detector, only three scales (σ = 4, 6 and 8 for Gaussian smoothing)

are used to calculate the responses of the SURF detector in order to speed up the computation.
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Figure 4.6: Experimental results for the ultrasound sequences.

The threshold τsurf = 0.01 is used to select feature locations. The search range τtransversal

along the transversal direction for each voxel on the curved surface crucially depends on the

accuracy of the registration between X-ray and ultrasound images. Usually, it is set to 10

pixels to account for small registration errors, which means that the catheter is expected to

lie on or very near the curved surface that is back-projected in the ultrasound image. In the

case of poor registration or synchronization, the search range can be increased to 30, although

there is a tradeoff between larger search ranges and increased computation times. At the stage

of graph construction, the threshold for the minimum distances for the subgraph clustering is

set to τsubgraph = 10. The threshold to decide on whether to merge any two clusters is set to

τcolinear = 1 and τcluster = 20. For the catheter path growing stage, the maximum and minimum

growing steps are set to M = 5 and N = 3 respectively.
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Fig. 4.6 shows the results of the evaluation in terms of tracking error, FTP, ITP and ROF.

The FPS is 0.74, 1.35, 0.23, 0.23 and 2.00 frames per second for the proposed method with

and without catheter path growing, Frangi’s vesselness filtering, Sato’s vesselness filtering, and

the single layer graphical model. The vesselness filtering methods have the largest errors and

highest ITP and are only better than the shortest path strategy in terms of ROF and FTP. The

single layer graphical model performs much worse than the proposed strategy in all performance

metrics except for ITP. The proposed method with or without catheter path growing strategy

are the best two methods in almost any performance metrics and for any threshold value ρ.

Considering only the catheter path growing strategy the use of the catheter path growing

achieves lower errors, ROF and FTP. The trade-off is slightly increased computation times and

very small increases in ITP.

Fig. 4.7 shows example results for the different methods. Rows (a), (b), (c), (d) and (e)

correspond to the results using vesselness filtering [69, 174], the single layer graphical model

and the proposed methods without and with catheter path growing. The segmented catheter

is shown in green. For each row, the six columns correspond to frame no. 1, 21, 41, 61, 81

and 101. Given ρ = 5mm, our proposed method achieves a speed of 0.74 FPS and an error

of 1.79 mm, with a FTP of 27.7%, ITP of 4.19% and a failure ratio of 11.6%. Although the

performance is worse than that in X-ray images, the results are very encouraging given that the

X-ray images have much more clearly defined borders of the catheter against the background

while ultrasound images have much more artefacts.

Although the catheter path growing strategy can recover more of the catheter and extract parts

of the catheter that are not visible in the X-ray images, the trade-off is a larger computational

cost and a higher incorrect tracking percentage. Whether this approach should be used in

clinical applications depends on whether the whole catheter is preserved in the straightened

space. If not, this indicates that some parts of the catheter are not in the field-of-view of the

X-ray images or that the registration between these two modalities is inaccurate.
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(a)

(b)

(c)

(d)

(e)

Figure 4.7: Examples of the catheter tracking in ultrasound images from patients.

4.6 Discussion

Given the experimental results of different methods for catheter extraction in ultrasound images,

we found that the 2D SURF blob detector performs better than vesselness filtering methods.

The advantage of the blob detector in this application is that the direction of the catheter

can be well estimated based on the result of X-ray tracking and the registration between X-

ray and ultrasound images. If the catheter direction is known, it is easy to locate a series of

planes through which the catheter will exhibit a blob-like appearance on the intersection of the

cross-sectional planes and the catheter. A 2D SURF detector is thus more suitable to detect

blob-like structures in these planes. The vesselness filtering techniques are more general and
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more flexible, so they can be used more widely. The filters usually estimate the direction of

tubular structures by analyzing the eigenvalues of the Hessian matrix of second derivatives.

However, if the image intensities are noisy and corrupted by artefacts such as speckles, the

Hessian matrix estimated from the image is not reliable. Thus, the analysis on the eigenvalues

does not produce an accurate estimate of the direction of the catheter. Vesselness filtering

also ignores the prior information available from the X-ray segmentation. For these reasons,

vesselness filtering is a less effective method for catheter segmentation. This is also supported

by our experimental results. However, if a failure in the X-ray segmentation or in the X-ray

to ultrasound registration occurs, prior information of the catheter direction would not be

available for the ultrasound image volume, and in this case, vesselness filtering would be the

only viable option.

The single layer graph model shows a good performance on phantom data, but fails in most of

the frames in clinical patient data. The reason for this is the fact that in the clinical sequences,

the catheter does not always follow the shortest path in the constructed graph if the start and

end nodes cannot be fixed. Usually, the objective of the model is to maximize the likelihood of

a path to represent the catheter. This maximization problem can be transformed to a longest

path problem rather than a shortest path problem. Suppose that a catheter image comprises

a set of broken fragments rather than a complete continuous catheter. The shortest path then

corresponds to only one catheter fragment, whereas the longest path is able to segment the

whole catheter. In the clinical sequences, the poor quality of ultrasound images means that

this occurs frequently. On the other hand, to model each individual catheter fragment, for

which we know the start and end nodes, it is more appropriate to use a shortest path model.

This is because for each fragment, the purpose is to obtain a smooth representation of the

catheter fragment. With known start and end points, this smoothing problem can be easily

solved by finding the shortest path. In order to combine the two models together, a two layer

hierarchical graphical model is proposed in which the top layer determines how to organize the

catheter fragments, and the bottom layer determines how to achieve the best representation of

each fragment.

The complete tracking system can run at a relatively fast speed but not in real-time (the
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real-time requirement is 10 fps at least for ultrasound images) on the platform on which we

have carried out our experiments. However, since the computation for each pixel or voxel

is independent, the system could easily be accelerated using GPU programming techniques.

The computation time per frame is given by t = max(txray, treg) + tultrasound. Here txray,

treg and tultrasound represent the computation times for the catheter extraction in the X-ray

images, registration and catheter extraction from the ultrasound images, respectively. The

extraction in the X-ray images and the registration can be carried out simultaneously. Often,

the registration does not change significantly throughout the sequence, since the TEE probe

is approximately stationary during the ultrasound acquisition. This means that for one frame,

the registration transformation obtained from the first frame can be used, and the recalculation

of the registration is unnecessary. Thus the total time depends mainly on the sum of txray and

tultrasound. For txray, the average computation time is currently 0.03s, with nearly all of this

time spent on the computation of candidate measurements in the search region. During this

step, nearly 102 pixels in the search region are examined independently. These can be processed

simultaneously. Thus txray could potentially be reduced significantly using GPU acceleration.

Meanwhile, the potential improvement for the catheter extraction in the ultrasound images is

even larger, given that the ultrasound image is a 3D volume. The different stages of the catheter

extraction in the ultrasound images, the pre-processing and feature extraction, on both the

original volume and the straightened volume, take 0.7s in total. This can be fully parallelized

by examining each voxel independently and simultaneously on a GPU. The remainder of the

computation, such as the catheter path growing, cannot be fully parallelized and require around

0.7s. However, the main cost is the calculation of feature measurements for each voxel and these

computations could be carried out in advance and theiresults stored in memory. The average

total time is tultrasound = 1.3s using a CPU implementation. Given the easily parallelizable

nature of the proposed algorithm, the required speed of 10 frames per second may well be

achievable using a clever GPU or multi-GPU implementation.

Finally, the temporal consistency, which is a prior information from previous frames, is not

used to constrain the search space of the next frame for ultrasound sequences. Currently, given

one frame of ultrasound data, the algorithm does not take the previous location of the catheter
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into account. The catheter extraction for each ultrasound frame is carried out completely

independently. In the next chapter, we introduce a framework of catheter tracking using only

ultrasound sequences. Information from previous frames is used to provide constraints to the

search space of the current frame.



Chapter 5

Real-time Catheter Tracking using

Ultrasound without Fluoroscopy

5.1 Introduction

In this chapter we aim to develop a tracking system using ultrasound images only. Such a

tracking system purely based on ultrasound images assumes temporal coherence of the catheter

segmentation throughout an image sequence. Results from previous frames can be used to ini-

tialize the localization process in following frames instead of using the position of the catheter

from corresponding X-ray images. Because X-ray assisted segmentation is no longer required

for each frame, X-ray radiation exposure can be significantly reduced. However, the challenges

of this approach are the severe interference of acoustic artefacts. A large number of false posi-

tives and false negatives in the catheter detection must not compromise the tracking accuracy.

Therefore, the optimization framework needs to integrate additional constraints from both the

catheter model itself and from the consistency of subsequent frames. This can be addressed by

the fast discrete optimization framework proposed in [86]. Although this framework has been

used for guide-wire tracking in X-ray sequences achieving satisfying results, the extension to

ultrasound images has to overcome one main issue: computational latency.

The catheter is modelled as a B-spline represented by a set of control points. The discrete

128
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optimization framework defines a search range for each control point’s location based on their

previous location. The trade-off between the size of the search range and the computational cost

indicates that the search range must be constrained in order to meet real-time requirements.

However, if the search range for each control point is limited, then the curve tracking cannot

recover rapid changes in the shape or the visible length of the catheter. Usually the search

range covers a larger area in the transversal direction to the curve than in the longitudinal

direction. Thus, catheter tracking can track transversal movements better than longitudinal

movements, which causes the length of the catheter in the field of view to vary. The problem

of computational cost becomes more severe when the imaging modality is extended from 2D

X-ray to 3D ultrasound.

Besides this trade-off between the search range and the computational cost, another challenge

is that fast catheter motion may cause parts of the catheter to move out of the search range in

some frames. Tracking will fail in these cases. Thus, an online tracking failure detector is needed

to re-initialize the tracking at the right time. The re-initialization can be done either manually

or via the previously proposed X-ray assisted catheter segmentation. However, neither of these

methods are desirable w.r.t. a minimal manual intervention effort and minimal X-ray exposure.

Thus, in order to reduce the number of re-initializations, a search range should be chosen as

close as possible to the true position of the catheter. Therefore a method of motion estimation

has been developed to assist the prediction of catheter positions.

In this chapter, a real-time framework, which combines a fast discrete optimization for catheter

fitting and a Kalman filter for online motion estimation, is proposed to address the problem

of catheter tracking in ultrasound sequences for cardiac catheterization. The main algorithm

consists of three main steps: (1) tubular structure measurement obtained in the region of

interest; (2) discrete optimization for curve fitting given the tubular measurements; and (3)

a Kalman filter for motion estimation and location prediction in the next frame. From the

perspective of our application, the first and most important contribution is a system, which

can track the catheter in an ultrasound sequence in real-time, with acceptable accuracy for the

first time. Compared with the previous work in the last chapter, additional clinical data are

added to evaluate it. From an algorithmic perspective, the discrete optimization framework is
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decoupled into two stages, transversal motion tracking and longitudinal motion tracking. The

transversal motion tracking is addressed with the original optimization strategy in [86] with

a search range defined in the plane normal to the curve. To address longitudinal motion, a

new definition of the optimization strategy is developed (details are given in the Section 5.3.4).

Additionally, a motion model is developed to estimate periodic motion of the heart. This is

incorporated into the Kalman filter, which is used to accurately and robustly predict catheter

positions in subsequent frames.

5.2 Measurements in the Region of Interest

5.2.1 B-spline Curve Representation of the Catheter

A cardinal B-spline S(t) =
∑n−1

i=0 ciBi(t) is used to model a catheter using only one independent

variable t. The basis functions Bi(t) are defined for a range of [−tmargin, trange + tmargin] with

[0, trange] corresponding to the catheter including a margin ±tmargin allowing for longitudinal

movements. The parameters of the B-spline are the coordinates of the n control point locations

ci, i = 0, . . . , n− 1.

5.2.2 Region of interest definition

To accelerate the tracking algorithm only voxels that are close to the approximate location of

the catheter in a given frameare extracted for further processing. In order to extract the region

of interest, the locations on the curve are first sampled over the range [−tmargin, trange+tmargin].

Assuming we need m measurements on the curve, the sampling step can be defined as △td =

(trange + 2tmargin)/(m− 1). Thus the m sampled locations on the curve are {S0,S1, . . . ,Sm−1}

where Sj =
∑n−1

i=0 ciBi(−tmargin + j△td). A global longitudinal direction of the catheter, υtan,

is defined as υtan = Sm−1 − S0. For each sampled location, Sj, j = 0, . . . ,m− 1, a plane, Pj, is

defined containing this location with transversal direction υtan. The voxels on Pj that are in

a defined neighbourhood of Sj are selected as a part of a region of interest (ROI). This ROI is
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converted to a Cartesian representation by defining a search range, Rroi, and the interval △lroi.

The voxel at plane Pj with the plane coordinates (xj△lroi, yj△lroi), xj, yj ∈ [−Rroi, Rroi] is then

selected relative to the original Sj as a voxel in the Cartesian ROI with new the coordinates

(xj+Rroi, yj+Rroi, j). As a result, the surrounding voxels, which comprise the region of interest

are unwarped along the main longitudinal direction υtan. This forms a new Cartesian space

Vunwarped from the original space Voriginal. Fig. 5.1 illustrates this process.

Figure 5.1: Search space definition and extraction of the ROI after unwarping.

5.2.3 Measurement of tubular structures

In our application, tubular structures in Vunwarped are enhanced by applying the Frangi ves-

selness filter [69]. The thickness of the catheter can be used as prior information and as

scale parameter for the vesselness filter. The scale is represented by standard deviation σblur

of the Gaussian kernel used in Frangi’s vesselness filter. Firstly, we blur the image using

Vblur = Vunwarped ∗ G(0, σblur). Here G(0, σblur) is a 3D Gaussian kernel with zero mean and

standard deviation σblur. Since the Gaussian kernel is linearly separable, the 3D convolution
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can be efficiently calculated via consecutive 1D convolutions. The Hessian matrix is calculat-

ed from the blurred image Vblur and the Frangi’s vesselness value is then computed using a

difference operation:

H =


△xxVblur △xyVblur △xzVblur

△yxVblur △yyVblur △yzVblur

△zxVblur △zyVblur △zzVblur

 (5.1)

where, e.g., △xyVblur, is the second order differential operation on neighbouring pixels in Vblur

along the x and y index directions. Other entries are defined in a similar way. This operation

involves only each individual pixel with its adjacent pixels and thus the cost of the calculation

is lower than for the Gaussian convolution.

The eigenvalues of the Hessian matrix are denoted by λ1, λ2 and λ3 satisfying |λ1| < |λ2| < |λ3|.

The vesselness of tubular structures in the 3D volume are then enhanced by the function:

Vtub =


0, if λ2 or 3 > 0

exp(− 2λ2
1

|λ2λ3|)(1− exp(−2λ2
2

λ2
3
))(1− exp(−λ2

norm

2c2
)), otherwise

(5.2)

where λ2
norm = λ2

1 + λ2
2 + λ2

3. As described in Frangi’s paper [69], the predefined parameter c

depends on the intensity range of the image. Half the value of the maximum Hessian norm

works in most cases. All above operations can be parallelized and implemented using our GPU

acceleration platform.
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5.3 Catheter Tracking based on Two-Stage Fast-PD Op-

timization

5.3.1 Overview of the Fast-PD Framework

The original Fast-PD framework was introduced in [86]. Here, we explain this framework for a

better understanding of both the original idea and the improvements we have made.

In the original work, the problem of curve tracking is transformed to a multi-label assignment

problem on a Markov Random Field (MRF), which is modelled as a graph. This problem

can be solved by discrete optimization. Indeed, the curve, which is represented as a B-spline,

corresponds to the graph G =< V,E >, with the control points of the B-spline as the nodes V

and the links between adjacent control points as the edges E.

For a curve, the B-spline form is defined as:

S(t) =
n−1∑
i=0

ciBi(t), t ∈ [tmin, tmax] (5.3)

where the n control points ci, i = 0, . . . , n− 1 belong to V . These control points determine the

location and the shape of the curve. Thus, each control point’s location is constrained within a

pre-defined search range. Each pixel in the local search range corresponds to a label in a label

space. The localization of the curve is then transformed to a multi-label assignment problem

for each node in the graph model. The multi-label problem has been intensively studied in the

field of computer vision within the context of segmentation problems. Discrete optimization

is recommended as a fast solution to this category of problems. In [86], the Fast Primal-Dual

(fast-PD) algorithm is employed because of its efficient computation. The objective function is

defined as:

argmin
x

f(x) = (1− γ)
∑
p∈V

(up(xp)) + γ
∑

p,q∈E
(wp,q(xp, xq)), (5.4)

Here x denotes a vector consisting of the label assignment to each node in V . xp, is the pth

element of the vector x. It denotes the particular label assigned to node p. The objective
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function consists of an unary term up(xp) and a pairwise term wp,q(xp, xq) with a weighting

term γ. The challenge is to define these two terms and to introduce constraints from both the

tubular structure measurements and the physical properties of the catheter such as smoothness.

We begin with the definition of the terms in the objective function in e.q. (5.4) as given in [86].

The objective function consists of only pairwise terms, which are of the form:

argmin
x

f(x) =
n−2∑
i=0

((1− λ1)C1(xi, xi+1) + λ1C2(xi, xi+1)), (5.5)

Here the labels xi and xi+1 are assigned to the adjacent control points i and i + 1. The

data term C1(xi, xi+1) measures the tubular enhancement at the location of the curve and the

regularization term C2(xi, xi+1) preserves the length of the catheter.

When the labels xi and xi+1 are assigned to control points i and i+ 1, then any other control

point j’s label is also assigned to xj = xi if j < i or xj = xi+1 if j > i+ 1. The reason for this

predefined rule is to make other control points’ movements consistent with i and i + 1. The

local coordinate of the control point i, which corresponds to label xi, is denoted by △ci(xi).

The updated new B-spline is then defined as:

Ŝ(t) = S(t) +
i∑

j=0

△cj(xi)Bj(t) +
n−1∑

j=i+1

△cj(xi+1)Bj(t) (5.6)

Observations, or landmarks, are then sampled densely in the range [tmin, tmax] with a step size

of △t. The k-th landmark corresponds to tk = min(tmin + k△t, tmax) with k = 0, . . . ,m where

m = ⌈(tmax − tmin)/△t⌉. Finally, the pairwise data term is defined as:

C1(xi, xi+1) =

∑m
k=0Ni,i+1(tk)(1− Vtub(Ŝ(tk)))∑m

k=0Ni,i+1(tk)
, (5.7)

where Ni,i+1(tk) denote weights calculated by:

Ni,i+1(t) =
Bi(t) +Bi+1(t)∑n−2

u=0(Bu(t) +Bu+1(t))
(5.8)

Using only image-based constraints has the problem that the tracked curve can easily collapse
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into a single point [86]. To address this problem, a length preserving regularization term

C2(xi, xi+1) =

∑m
k=0Ni,i+1(tk)ρ(∥Ŝ

′
(tk)∥, ∥S

′
(tk)∥)∑m

k=0 Ni,i+1(tk)
(5.9)

is defined in the original work [86]. Here Ŝ
′
(tk) and S

′
(tk) are the first derivatives of Ŝ(tk) and

S(tk) respectively. The measurement function ρ(x, y) forces x to be equal to y:

ρ(x, y) = (1− x/y)2 (5.10)

Thus the length preserving function of this term is realized by forcing the 2-norm of the deriva-

tive vector of the new B-spline at each landmark to be equal to the one of the previous B-spline.

5.3.2 3D Catheter Tracking Framework

The previously described framework is not the original contribution of ours. Our work is based

on it and improvements are made for both transversal and longitudinal motion tracking.

In [86] catheter tracking is performed in the 2D X-ray image and thus the label space is

defined on a local 2D patch. However, when this strategy is directly extended to a 3D image,

the computational complexity increases from O(n2) to O(n3). This makes real-time tracking

impossible. Thus, we decouple the search space in 3D for each control point location into

two sub-spaces: one 2D search range in the normal plane and one 1D search range in the

longitudinal direction. The search range in the direction of the normal plane for each control

point is limited in a predefined range Rfastpd1 with △lfastpd1, which is the step size of the

measurements taken in this range. This is perpendicular to the main longitudinal direction

of the catheter, which corresponds to the z-axis in Vtub. After the localization of the normal

direction, the catheter position in the current frame should be almost correct and transversal

motion should be successfully tracked. However, the catheter’s end positions may be wrong,

especially when large longitudinal movements occur. A second-stage optimization is carried out

to adjust the curve in the 1D longitudinal direction and to track this additional motion. The

optimization framework consists of: (1) tracking of the catheter in the transversal direction
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and (2) tracking in the longitudinal direction. As shown in Fig. 5.2, the red curve denotes the

reference location defining the search space. The blue and yellow curves denote the result after

tracking in the transversal and longitudinal directions respectively. The dots on the curves

denote the distribution of the knots of the B-spline curve. The solid curves represent the

sections of tubular structures while the dotted curves represent non-tubular structures. The

computational costs of the transversal and longitudinal direction tracking processes are expected

to be O(n2) and O(n1) respectively. Thus, this decoupling strategy reduces the computational

cost from O(n3) to O(n2), which indicates its potential for real-time applications.

5.3.3 Transversal Catheter Tracking

The optimization for transversal motion tracking is based on the ideas of [86]. One of the key

changes is that the search range for each control point is restricted to a plane normal to the

longitudinal direction of the curve. The range Rfastpd1 is taken from the previous location of the

corresponding control point. Another change is that when modelling the catheter as a B-spline

curve S(t), the independent variable t is defined in [−tmargin, trange + tmargin] rather than in

[0, trange]. The range [0, trange] corresponds to the entire length of the catheter. tmin = −tmargin

and tmax = trange + tmargin. The margin ±tmargin is included to allow for compensation of

longitudinal movement. However, as one of our most important contributions, the longitu-

dinal tracking optimization framework introduces an improved definition of the optimization

framework in [86]. It is introduced in the next section.

5.3.4 Longitudinal Catheter Tracking

However, while transversal tracking can provide a good overlap with the tubularity measure-

ments, the catheter’s tips may be misaligned because of large longitudinal motion. In other

words, if the range [0, trange] is not exactly aligned with the catheter positions S(0) and S(trange)

the second stage optimization dealing with the longitudinal direction is required. However, the

part of the curve derived from the tubular measurements has the same shape as the true
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(a)

(b)

Figure 5.2: Tracking of transversal (a) and longitudinal (b) motion.

catheter. Any changes of the control point locations, no matter in which direction, are likely

to change this shape. Thus the optimization representation in [86] is not appropriate for this

case and it needs further improvements.

The overall longitudinal objective function to be optimized is:

argmin
x

f(x) =
n−2∑
i=0

((1− λ2)C
′

1(xi, xi+1) + λ2C
′

2(xi, xi+1) + C
′

3(xi, xi+1)). (5.11)

The definition of the three terms are explained below.

The curve is represented as a B-spline model which is a function S(t) of t over the range

[−tmargin, trange + tmargin]. One value of t within the range corresponds to the location of one
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point on the curve. The location and the shape of the entire curve depends only on the control

points and it is independent of the variable t. Thus we can relocate the end points of the curve

and the positions in between without changing the shape of the curve by constructing a new

variable t′ . The new generated curve S(t′) is expected to have the same shape but a different

landmark distribution with the original curve S(t). Now we introduce how to construct the

new variable t′ .

The jth of m sampled observation points on the curve is located at t = tj = −tmargin+j△t. We

assume the values of tj are generated from another 1D cardinal B-spline t(τ) =
∑n−1

i=0 tciBi(τ)

and assume:

tj =
n−1∑
i=0

tciBi(τj). (5.12)

Given that the values of tj and τj are evenly sampled along the 1D axis τ , the n control points

tci can be calculated by solving linear equations. In this stage we are adjusting each control

point tci over a range xi ∈ [−T, T ] where [−T, T ] is the label space and each xi corresponds

to one label in this space. The value of each xi is selected every △lfastpd2 pixels in the range

[−T, T ]. The new t′ computed by the adjusted control points is then defined as:

t
′
(τ) =

n−1∑
i=0

(tci + xi)Bi(τ). = t(τ) +
n−1∑
i=0

xiBi(τ) (5.13)

When labels xi, xi+1 are assigned to control points i and i+1, any other control point k’s label

is assigned to xk = xi, k < i or xk = xi+1, k > i+ 1.A new t′ can be generated as:

t
′
(τ, xi, xi+1) = t(τ) +

i∑
k=0

xiBk(τ) +
n−1∑

k=i+1

xi+1Bk(τ) (5.14)

The discrete form of t′ is denoted by:

t
′

j(xi, xi+1) = t
′
(τj, xi, xi+1) = tj +

i∑
k=0

xiBk(τj) +
n−1∑

k=i+1

xi+1Bk(τj) (5.15)
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A pair of labels xi and xi+1 correspond to a curve of the form:

S(t
′
(τ, xi, xi+1)) =

n−1∑
i=0

ciBi(t
′
(τ, xi, xi+1)). (5.16)

Substituting (5.14) into (5.16) gives:

S(t
′
(τ, xi, xi+1)) =

n−1∑
i=0

ciBi(t(τ) +
i∑

k=0

xiBk(τ) +
n−1∑

k=i+1

xi+1Bk(τ)). (5.17)

Note that the jth sample tj corresponds to the independent variable τj satisfying (5.12).

C
′
1(xi, xi+1) is then changed to incorporate the vesselness measurements:

C
′

1(xi, xi+1) =

∑m−2
j=0 Ni,i+1(t

′
(τj, xi, xi+1))G(S(t

′
(τj, xi, xi+1))).∑m−2

j=0 Ni,i+1(t
′(τj, xi, xi+1))

(5.18)

G(S(t)) is defined as:

G(S(t)) =


1− Vtub(S(t)), if 0 ≤ t ≤ trange

Vtub(S(t)), otherwise.
(5.19)

Here Ni,i+1(t) weights the corresponding term in a normalized way and ensures the measure-

ments close to the nodes i, i+1 have higher weights. The definition was introduced in e.q. (5.8).

Vtub(S) denotes the normalized intensity of location S in the vesselness image. The purpose of

the piecewise definition of G(S(t)) is in order to guarantee that the curve section corresponding

to [0, trange] is located on tubular structures and the sections of the curve between [−tmargin, 0]

and [trange, trange + tmargin] are located on non-tubular structures.

The regularization term C
′
2(xi, xi+1), which ensures that the longitudinal motions of two adja-

cent points on the catheter-curve are similar, is defined as:

C
′

2(xi, xi+1) =

∑m−2
j=0 Ni,i+1(t

′
(τj, xi, xi+1))∥Γ(τj+1, xi, xi+1)− Γ(τj, xi, xi+1)∥∑m−2

j=0 Ni,i+1(t
′(τj, xi, xi+1))

, (5.20)
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where Γ(τj, xi, xi+1) is defined as:

Γ(τj, xi, xi+1) = S(t
′

j(xi, xi+1))− S(tj). (5.21)

This term enforces an equidistant spacing of points t
′
(τ) in [−tmargin, trange + tmargin].

The final regularization term C
′
3(xi, xi+1) guarantees the new catheter tip’s t

′
are within the

range [−tmargin, trange + tmargin]. It is defined as:

C
′

3(xi, xi+1) =


0, if − tmargin ≤ t

′
(0), t

′
(trange) ≤ trange + tmargin

∞, otherwise.
(5.22)

Using all three terms above, the energy function is defined as in e.q. (5.11), which can be

quickly solved by the Fast-PD framework. Tracking failures can be detected by thresholding

the average intensity value of the pixels in Vtub which correspond to the resulting curve. We

use 0.15 as the threshold.

5.4 Kalman Filter Framework

Usually, the search range for the transversal motion tracking is limited (within Rfastpd1 as

previously described). If the catheter’s transversal movements are extensive and fast, a regular

search range is unlikely to recover the catheter. However, although the size of the search

range cannot be extended to fulfil real-time requirements, the location for the catheter can be

predicted using another reference tracking localization.

In most cases, the reference location is simply the location of the catheter in the previous frame.

This clue is important but not sufficient for predicting the next position. One solution is to

estimate the reference location by online estimation of the motion pattern. As one of the most

widely used techniques, the Kalman filtering technique, can update a state vector online which

may be used to reflect the motion pattern.
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In our application motion is mainly caused by periodic cardiac movements. Breathing motion

can be ignored due to its small influence on the catheter motion in ultrasound images. This is

because the TEE probe, which is in the patient’s oesophagus, is synchronized with the catheters

in the chest. Although both are affected by respiration, their relative position stays constant.

As cardiac motion has a predictable periodic pattern, a periodic model is considered to fit it.

To simplify the tracking system and to reduce the number of parameters, the periodic motion

is modelled in 2D rather than in 3D. The 2D plane is normal to the longitudinal direction of

the catheter and corresponds to the transversal motion tracking stage. This is justified because

we only track the transversal movement between the real and the projected catheter and ignore

longitudinal motion at this stage. One common way to model periodic motion is to use two

sinusoidal functions corresponding to the x and y axes. The motion trace in this 2D plane is

actually an ellipse (Fig. 5.3 right). We first define the state vector xk at frame k as follows:

xk = (lk1 , l
k
2 , φ

k, ϕk, ωk)T , (5.23)

This consists of the magnitudes lk1 and lk2 for the 2D normal plane, the phase difference φk, the

angular displacement ϕk , and the angular velocity ωk. lk1 , l
k
2 and φk define the shape of the

ellipse along its major/minor axis. At the same time, the measurements of the measurement

model are defined as the 2D locations zk = (zk1 , z
k
2 ) of this periodic motion. zk is defined as the

transversal offset vector from the current position of the catheter to the next position.(Fig. 5.3).

ϕk and ωk define the instantaneous state of the vector zk, which is shown in green in Fig. 5.3

(right). In the following En denotes an n × n identity matrix. The Kalman filter system and

measurement model is then defined as:

xk+1 =

 E4 v

0 1

xk +Rmodel, (5.24)

 zk1

zk2

 = Φk

 lk1 cos(ϕ
k)

lk2 sin(ϕ
k)

+ E2rmeasured, (5.25)
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Figure 5.3: The definition of the state vector and the measurement model for the Kalman filter.

with

Φk =

 cos(φk) − sin(φk)

sin(φk) cos(φk),

 (5.26)

where v = [0, 0, 0, T ]
′
is the sample time interval for T . Rmodel is the system covariance matrix

and rmeasured indicates measurement errors, with E2rmeasured as the measurement covariance

matrix. When given an initial status vector x0 and its corresponding covariance P0, xk and Pk

a position for the kth frame can be obtained by the Kalman filter. This measurement model

is motivated by the definition introduced in Fig. 5.3. In the left figure, a transversal plane is

determined at the mid-point of the catheter with its normal direction along the longitudinal

direction of the curve. Then the offset vector zk (in green) is defined as the vector from the

intersection of the current catheter (in red) with the transversal plane to that of the catheter’s

transversal plane in the next frame (in blue). In the right figure we model the offset vector

zk (in green) as a 2D periodic motion. Eq. (5.25) describes the transformation between two

coordinate systems XOY X
′
OY

′
(right).

However, a Kalman filter requires to specify the values of the state initialization x0, the state

covariance P0, the system covariance matrix Rmodel, and the measurement error rmeasured. Here

we give a basic guide for the parameter choices. More details will be given in the next section.

One of our basic assumptions is that the tracked catheter is treated as the true location with

a high confidence. Thus the measurement error rmeasured should be small. The cardiac motion

can be modelled but does not exactly follow a regular periodic motion. The basic periodic

parameters should vary within a limited range. The system covariance matrix is large but
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limited, depending on the actual motion in the data. More transversal motion will result in

larger values in the matrix. The values of x0 and P0 can be determined from prior information

such as the motion period and the motion magnitude. However, if the values of both x0 and P0

are reasonable (i.e. consistent with the prior information), their influence on the performance

will decrease during the tracking process.

Before a new catheter location is computed with the Fast-PD optimization, the new states

are first predicted via Eq.(5.24) followed by a prediction of the offset zk,k+1 with Eq.(5.25).

When the location of the catheter in the previous frame is projected to the current frame,

the longitudinal direction is approximated by calculating the difference vector between the

location of the two ends of the curve. The normal vector of the transverse plane is then aligned

with the longitudinal direction (Fig. 5.3). The new initial catheter estimate is obtained by

moving the projected location in the transversal plane with the offset zk,k+1. After Fast-PD

optimization, the new tracked catheter is used to update the offset zk+1. This new offset is

then used to update the status vector through the standard extended Kalman filter framework.

The transversal plane is also updated based on the new location of the catheter.

5.5 Experiments

The platform used for all experiments was a Linux PC with a 3.40GHz processor, 8GB RAM

and a 384-core, 2GB Nvidia GeForce GT 640 graphics card for GPU acceleration. The image

pre-processing, tubular enhancements, and the inputs for both transversal and longitudinal

discrete optimization have been parallelized for computation on the GPU However, the core

optimization of Fast-PD, as well as the Kalman filter module, are not ideal for parallelization

because of dependencies between sub-steps. However, they can be computed efficiently on the

CPU. The Compute Unified Device Architecture (CUDA) programming model is used for GPU

programming. The GPU applications are compiled with the Nvidia CUDA Compiler (NVCC)

with default options. The GPU applications are optimized for maximum parallelization since

the potential improvements in speed based on GPUs is expected to be dramatically larger than
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CPUs. For GPU the applications, in order to improve the instruction throughput, floating

point data types are replaced by long integer data types for image intensity representations.

The precision of the computation will not be affected since the long integer type is sufficient.

In the tracking algorithm for ultrasound images, the main factors that affect the speed is the

image processing and feature detection, as well as objective function calculation. However,

these stages can be fully parallelized and these calculations are carried out on the GPUs.

The method was compared to several existing catheter tracking techniques. The main methods

for comparison include our previous system proposed in [214, 215]. Another comparison method

is the direct use of the optimization system in [86] for catheter tracking in ultrasound imaging.

However, for real-time tracking, the label pool of this method is constrained to the transversal

plane in the longitudinal direction of the catheter. Thus it is equivalent to the system we propose

here without longitudinal tracking. We have not compared the direct use of the optimization

system with a 3D search range, including the longitudinal direction, because this would cause

the tracking system to be very slow and impossible to implement in a real-time application.

The proposed methods with and without Kalman filter motion estimation were also compared

to illustrate the influence of the motion estimation step. All algorithms were evaluated with

different parameters. For the three Fast-PD based algorithms, which include the one with

transversal tracking only, the one with both transversal and longitudinal tracking but without

the Kalman filter, and the one with every module, each was evaluated on two setups: one (slow)

setup with a large search range to evaluate its overall performance and another (fast) setup

with a short search range to satisfy the real-time clinical requirement.

We defined the following performance metrics:

• Average frame rate The ratio of the total number of frames to the total time consumed

is used to represent the average frame rate. It measures real-time capabilities;

• Average tracking error err(ρ) For each catheter landmark i, the shortest distance

di to the ground truth is calculated. A threshold ρ is used to select correctly tracked

landmarks with di ≤ ρ. The average di of correctly tracked landmarks is defined as the

tracking error;
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• Incorrect tracking percentage (ITP) pitp(ρ): This is defined as the ratio of the

number of incorrectly tracked landmarks over the total number of landmarks on the

tracking result. It measures the extent of false positives;

• Failed tracking percentage (FTP)pftp(ρ): One landmark of the ground truth can be

considered as failed if its minimal distance to the tracking result is above ρ. The FTP

is defined as the number of incorrectly tracked landmarks divided by the total number

of landmarks in the ground truth. It measures the system’s ability to detect the whole

catheter;

• Overlap percentage poverlap(ρ): This is the length of the overlap between the result and

the corresponding ground truth as a percentage of the length of the union of the result

and the ground truth;

• Ratio of incorrectly tracked frames (ROF) prof : The number of frames where a

tracking failure is detected over the total number of frames.

5.5.1 Datasets

The data used to evaluate the method include 4 long (approximately 200 frames per sequence

on average) clinical ultrasound sequences with corresponding X-ray fluoroscopic images, which

is referred as Type A data, and 34 short clinical ultrasound sequences without X-ray images,

referred as Type B. Both were acquired with a Philips X7-2t TEE probe, comprising more than

1800 frames in total. Various catheter types are included in these data. All data sets have a

manual ground truth for the catheter position. These ground truths are manually marked by

an expert. In the following experiments, the comparison is first made with methods [214, 215]

based on Type A data. For other comparisons and evaluations, all of the data are used. In

Table 5.1, we give details for each sequence.

To describe the extent of the catheter motion in these data, we compare two ground truths of

two adjacent frames.
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Table 5.1: Dataset Information

Seq. Size Frames Resolution (mm) frames rate (fps) dcata dnor
b dtanc

A1 144× 160× 208 216 0.60× 0.60× 0.30 14d 4.00 1.97 1.38
A2 144× 176× 208 216 0.51× 0.50× 0.30 14 4.58 1.39 2.12
A3 144× 176× 208 216 0.51× 0.50× 0.30 14 4.58 1.41 2.16
A4 144× 176× 208 216 0.51× 0.50× 0.30 14 4.58 1.35 2.70
B1 160× 64× 208 41 0.68× 0.89× 0.58 26 2.79 0.57 0.73
B2 160× 64× 208 55 0.56× 0.75× 0.48 30 3.35 0.37 0.15
B3 224× 208× 208 21 0.56× 0.55× 0.48 27 3.78 0.54 0.56
B4 160× 64× 208 65 0.56× 0.75× 0.48 30 3.34 0.42 0.27
B5 224× 208× 208 18 0.56× 0.55× 0.48 27 3.78 0.54 0.33
B6 192× 176× 208 17 0.35× 0.33× 0.24 12 6.56 2.29 2.34
B7 192× 176× 208 14 0.35× 0.33× 0.24 12 6.56 2.42 1.54
B8 192× 176× 208 15 0.38× 0.36× 0.24 12 6.11 2.37 2.09
B9 160× 176× 208 22 0.48× 0.51× 0.34 13 4.55 1.30 1.60
B10 128× 128× 208 21 0.61× 0.65× 0.43 17 3.54 1.32 1.94
B11 160× 176× 208 14 0.54× 0.59× 0.44 11 3.82 1.34 1.06
B12 160× 64× 208 49 0.69× 0.89× 0.58 26 2.77 0.69 0.61
B13 160× 64× 208 40 0.69× 0.89× 0.58 26 2.77 0.77 0.75
B14 160× 64× 208 49 0.57× 0.75× 0.48 30 3.33 0.92 0.64
B15 272× 256× 208 13 0.31× 0.32× 0.25 5 6.83 2.81 4.20
B16 224× 208× 208 31 0.56× 0.55× 0.48 27 3.78 0.71 1.26
B17 272× 256× 208 14 0.26× 0.27× 0.23 5 7.82 2.90 2.81
B18 224× 272× 208 16 0.35× 0.32× 0.30 6 6.18 2.56 3.78
B19 224× 272× 208 16 0.35× 0.32× 0.30 6 6.18 1.60 2.13
B20 160× 64× 224 22 0.74× 0.97× 0.63 24 2.56 1.31 0.99
B21 160× 64× 224 20 0.74× 0.97× 0.63 24 2.56 0.59 0.61
B22 160× 64× 224 30 0.74× 0.97× 0.63 24 2.56 0.91 1.75
B23 160× 64× 224 20 0.74× 0.97× 0.63 24 2.56 0.81 1.81
B24 160× 64× 224 26 0.74× 0.97× 0.63 24 2.56 0.52 1.03
B25 160× 64× 224 20 0.74× 0.97× 0.63 24 2.56 0.59 1.21
B26 160× 64× 224 29 0.74× 0.97× 0.63 24 2.56 0.71 1.82
B27 160× 64× 224 28 0.74× 0.97× 0.63 24 2.56 0.64 1.18
B28 160× 64× 224 45 0.74× 0.97× 0.63 24 2.56 0.79 1.54
B29 160× 64× 224 26 0.74× 0.97× 0.63 24 2.56 0.53 0.50
B30 224× 144× 224 29 0.35× 0.35× 0.31 12 5.92 1.52 2.23
B31 160× 64× 224 20 0.74× 0.97× 0.63 24 2.56 0.58 0.59
B32 160× 64× 208 25 0.81× 1.05× 0.68 23 2.36 0.76 1.24
B33 144× 128× 208 61 0.34× 0.35× 0.21 21 6.66 0.70 0.61
B34 144× 128× 208 60 0.34× 0.34× 0.21 21 6.72 0.64 0.49
a The estimated diameter of the catheter in voxels based on the estimated catheter diameter in mm (2m-
m) and the voxel size for each sequence.
b The estimated transversal motion per frame in mm.
c The estimated longitudinal motion per frame in mm.
d This figure for all Type A data is estimated based on prior information about the heart rate and the
images. No direct frame rate can be read from the image header file.
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The length of the ground truth is computed for every frame and the difference between two

adjacent frames is a measure of the longitudinal motion of the catheter between these frames.

The transversal motion error is calculated using the average tracking error performance metrics

defined previously, except that all distances are averaged, not just those below a threshold. For

each sequence, around 10∼20 consecutive frames were randomly sampled. Then the average

length difference and the average transversal motion error are computed based on these sampled

data.

5.5.2 Parameter Selection

During the stage of region of interest construction and the tubular structure enhancement,

most parameters are independent of different dataset sequences and can be fixed. We have

found that the catheter in all datasets can be modelled with n = 10 control points and m = 40

measurements. However, these two parameters of the catheter modelling can be adjusted for

more complicated curves such as a longer length (more measurements (sampled landmarks) are

needed) or a larger curvature (more control points are needed). All of the catheters are defined

on a range of trange = 100 with the margin tmargin = 10. The parameter m = 40 is also the

length of the volume Vtub. The width and the height of Vsub are the same, with the value of

Rroi/△lroi. In our application, we set △lroi = 1 and Rroi = 15 and these are fixed for every

sequence. In the fast version of the algorithm mentioned above, m = 20 and Rroi = 10 are

used.

The value of the parameter σblur is selected based on the diameter of the catheter in voxels,

which can be considered as prior information. Regarding the search range for both transversal

and longitudinal movements, the search ranges are Rfastpd1 = 5 (Rfastpd1 = 3 in the fast version)

with the sample bin △lfastpd1 = 1 for transversal movements, and Rfastpd2 = 10 (Rfastpd2 = 5

in the fast version) with the sample bin size △lfastpd2 = 1 for longitudinal movements.

During the Fast-PD tracking stage, two parameters which cannot be determined by prior in-

formation are the weighting terms for the Fast-PD terms: λ1 for transversal tracking and λ2

for longitudinal tracking. For such parameters which cannot be determined based on prior
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information, we perform an exhaustive search in the range 0.1 ∼ 0.9 with a resolution of 0.1

for each sequence.

During the Kalman filter tracking stages, the parameters to be set include the state initialization

x0 and state covariance P0, system covariance matrix Rmodel and measurement error rmeasured.

Assuming independence between different state elements, which causes P0 and Rmodel to be

diagonal, results in 16 remaining parameters, which is a large number for tuning. To reduce

the tuning space, we also make the following assumptions: we fix x0 and P0 since they have

limited influence on the performance. We set l01 and l02 in x0 equal to the estimated transversal

motion magnitude in Table 5.1 for each sequence. φ0 is set to π/2 and ϕ0 to zero. The

angular velocity ω0 is set according to the frame rate of each sequence, which approximates the

value to 2π/nperiod. nperiod is the approximate number of frames covering one cardiac period

and can be estimated from the frame rate and the average cardiac heart rate. We set P0

equal to Rmodel since they correspond to the same variables in the state vector. With these

assumptions, the number of parameters is reduced to 6. We also assume that lk1 and lk2 have

the same covariance value q1, and φk and ϕk also have equal covariance q2, since they are

intrinsically at the same quantity level. The angular velocity ωk has a different covariance

value q3. Thus the total number of parameters that need to be adjusted has been significantly

reduced to four: (q1, q2, q3, rmeasured). An exhaustive search based on the general evaluation

function feval(err(ρ), poverlap(ρ), prof ) is defined as:

feval(err(ρ), poverlap(ρ), prof ) = 10err(ρ) + (1− poverlap(ρ)) + prof (5.27)

The default values for (q1, q2, q3, rmeasured) are set to (1.0, 0.7, 0.7, 0.06) for all sequences. Gen-

erally, we set (ρ) = 5 as this value is close to the limit of manual detection of incorrect tracking.

5.5.3 Parameter Sensitivity

According to the previous section, most parameters can be determined from prior information

based on data properties. However, the weighting terms for Fast-PD tracking, which are λ1
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and λ2 cannot be determined in this way. Thus we perform an analysis based on all values from

the range [0.1, 0.9] with a resolution of 0.1. Another set of parameters that require exhaustive

search are (q1, q2, q3, rmeasured) for the Kalman filter. The prior information suggests default

values of (1.0, 0.7, 0.7, 0.06). We perform an analysis based on a range around these values.

The evaluated performance metrics include the error err(ρ), the overlap percentage poverlap(ρ),

FTP, ITP, ROF and the computation time.

The first evaluation is the parameter λ1 from 0.1 to 0.9. The algorithms with and without the

transversal tracking stage are evaluated. Kalman filter based tracking is not evaluated here

since it has no direct impact on the fast-PD optimization. For the variations with longitutinal

tracking, λ2 is set to an intermediate value of 0.5. From Fig. 5.4, it is obvious that including

longitudinal tracking and a general definition of λ2 = 0.5 achieves a better overlap percentage

and lower FTP at any value of λ1. This means that the improvement achieved by the lon-

gitudinal tracking approach is very robust even for various configurations of the transversal

tracking method, λ1 = 0.1 ∼ 0.9 . It is notable that the error is not improved since λ1 does

not control the accuracy. Other performances measures such as ITP and ROF are also not

improved because they do not have a direct relationship with the longitudinal tracking module.

The longitudinal tracking is used for extending the extraction to a catheter larger length, which

is reflected in overlap ratio and FTP.

The second evaluation examines the other coefficient λ2 from 0.1 to 0.9. As with the first

evaluation, the Kalman filter module is not involved. For both, the algorithms with and

without longitudinal tracking, the configuration of the transversal tracking module is set to

λ1 = 0.5. Given that the algorithm without longitudinal tracking is independent of λ2, the

resulting graphs for this algorithm (solid lines in Fig. 5.5) are horizontal lines which provide

a default value for λ2. From Fig. 5.5, we conclude that additional longitudinal tracking can

achieve a robust improvement in overlap ratio and FTP with different values of λ2. In other

words, the proposed system is insensitive to changes of the λ2 value. For other performance

metrics, improvements are not guaranteed. This is similar to the conclusion from Fig. 5.4.

The last evaluation is made for the Kalman filter’s parameter set (q1, q2, q3, rmeasured). In this
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Figure 5.4: Sensitivity analysis for λ1.

evaluation, only the algorithms with and without the Kalman filter module are evaluated. The

longitudinal tracking module is used in all evaluated algorithms. The evaluation is performed in

the range from (1.0, 0.1, 0.1, 0.01) to (10.0, 1.0, 1.0, 0.10) with a step size of (1.0, 0.1, 0.1, 0.01).

This range is chosen based on prior knowledge about the Kalman filter model and the error

distribution. 64 values are randomly sampled in this range and the indices of these values

are used for the horizontal axis. From Fig 5.6, the algorithms without the Kalman filter

module (dashed lines), with λ1 = λ2 = 0.5, show horizontal lines since they are independent

of the parameters. This horizontal line gives an evaluation reference. Note that the horizontal

axis does not represent a particular dimension of the parameter vector (q1, q2, q3, rmeasured). It

represents different combinations of all evaluated values in the vector. As this evaluation is only

made to see the sensitivity, rather than to find the optimum value, the values of the parameter

vector that the combination indices correspond to are not shown here. Generally we can see

from the figure that the performance with the Kalman filter module is sensitive to changes

in the parameters. The curve of the algorithms with the Kalman filter module show some

peaks above the reference line but also some valleys below. This is not surprising since these

parameters are strongly linked to the motion properties of each individual sequence. The ITP
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Figure 5.5: Sensitivity analysis for λ2.

and FTP are slightly improved and furthermore the overlap ratio is also enlarged. The error is

not improved by using the Kalman filter. The Kalman filter module can reduce the ROF and

this is more obvious for the fast setup than the slow setup, since for the fast setup the algorithm

with the Kalman filter achieves lower ROF more frequently than it achieves higher ROF. The

reason for this is that the search range is limited for the fast setup. Thus the catheter is more

likely to be out of range and hence the ROF will increase. In such cases, the Kalman filter’s

role is important to reduce the ROF.

5.5.4 Overall Performance Comparison

Comparisons were first made based on the four long sequences which have corresponding X-ray

images. Here all of the algorithms can be compared at the same time. All methods are compared

except the direct usage of Fast-PD without the longitudinal tracking and without Kalman filter.

Additionally, there is one method from our previous work [214, 215] to be included. This method

uses the X-ray tracking results to assist the catheter extraction in ultrasound images. However,

this method does not account for the temporal consistency between frames. Fig. 5.7 shows a
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Figure 5.6: Sensitivity analysis on Kalman filter parameters.

comparison of the tracking error, ITP, FTP and overlap percentage for different ρ (1–15). The

computation times for all approaches (in the same order as shown in Fig. 5.7) are 1.6, 11.8,

10.4, 10.5 and 1.35 fps. The ROFs of the first four approaches are 1.13, 6.57, 4.86 and 3.43%,

respectively. It should be noted that the measured speed is calculated based on the time spent

on the GPU plus the time spent on the CPU independently. The time needed for data transfer

between GPU and CPU is not taken into account.

Another comparison was made without the method in [214, 215] so that all of the data are

used, including the Type B data without corresponding X-ray images. Type B data cannot

be used with our previous method [214, 215]. Fig. 5.8 shows a comparison of the performance

metrics for different ρ (1–15). In the same order as in the figure legend, the computation times

for all approaches are 1.7, 11.8, 10.5, and 10.3 fps and the ROFs are 2.18, 7.43, 7.21 and 4.09%,

respectively. Note that the speed and the ROF are independent of ρ.

From these the comparison results we conclude that: (1) The proposed method is significantly

faster, more accurate and more robust than the previous methods in [214, 215]. The reason is

that the consistency between frames was not taken into account in the previous method causing
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Figure 5.7: Comparison results only with Type A datasets.

a poor performance. (2) The proposed Fast-PD framework with longitudinal movement is more

suitable to extract the entire length of the catheter with a smaller ITP, smaller FTP, and a

larger overlap ratio. It can also improve the tracking accuracy considering the results from

Type A datasets. However, the error has only reduced very slightly with Type B data. The

reason is due to the length of the data sets. If the longitudinal tracking was not used, for

data sets with more frames, the ITP percentage would eventually rise without longitudinal

tracking. The resulting large proportion of incorrect landmarks would have a negative effect on

the measured accuracy. Thus, the longitudinal tracking module can keep ITP percentage low

and this affects the final accuracy indirectly. As most of the Type B data sets are short, this is

not obvious. (3) With Kalman filtering, the ROF is reduced while other performance metrics

do not significantly change.

Generally, based on both Type A and B data, if we set ρ = 5mm, the proposed method with the

fast setup achieves a computation speed of 10.3 fps and an error of 1.07 mm, an overlap ratio

of 78.4% and a failure ratio of 4.1% on all data sets. Fig. 5.9 shows examples of the tracked

results on Type A data. The rows correspond to (a) the results using the previous method that
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Figure 5.8: Comparison results with both Type A and Type B datasets.

uses X-ray images [214, 215], (b) the method with only transversal tracking, (c) the method

with both transversal and longitudinal tracking but without Kalman filter prediction, and (d)

the proposed method including all building blocks. The resulting catheter splines are marked

in red. For each row, the six columns correspond to frame numbers 1, 32, 66, 74, 85 and 99.

Fig. 5.10 shows examples of the tracked results on Type B data. The rows correspond to (a) the

results using the method with only transversal tracking, (b) the method with both transversal

and longitudinal tracking but without Kalman filter prediction, and (c) the proposed method

including all improvements. The resulting catheter splines are marked in red. For each row,

the six columns correspond to frame numbers 1, 4, 7, 10, 13 and 16.

5.6 Discussion

In this chapter we proposed a strategy for catheter tracking in ultrasound sequences. To enable

its clinical application, our approach has been integrated as a module in a general framework:

For example, for the first frame of the sequence and the frames immediately after a tracking
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(a)

(b)

(c)

(d)

Figure 5.9: Examples of the tracking result on Type A (A1) sequence.

(a)

(b)

(c)

Figure 5.10: Examples of the tracking result on Type B (B7) sequence.
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failure, our algorithm requires that the extraction result is provided by some other methods.

Thus, in this framework, an automatic or semi-automatic catheter segmentation algorithm is

required to give an initialization for our tracking algorithm. The initialization method proposed

in our previous work [214] required X-ray to help segment the catheter in both X-ray and

ultrasound images. Since catheter segmentation directly from ultrasound images is challenging

due to the severe interference of acoustic artefacts, X-ray imaging could also be a solution to

the initialization for the current algorithm. However, for the frames where the catheter can be

easily tracked, the algorithm proposed in this paper can be used without X-ray exposure. This

reduces the risk of radiation from X-ray compared to the previous approach.

Since tracking re-initializations are currently unavoidable, a method to automatically detect

tracking failures is also investigated. We detect failures using the average tubular structure

response of all sampled landmarks on the detected curve. The average response can detect if

a tracking failure occurs in most cases. However, it neither takes the motion pattern of the

catheter nor the tubular response distribution along the entire catheter length into account. In

other words, if the motion pattern is more predicable, then the catheter position in the next

frame will be more certain as well. Thus, if a catheter is detected far from its predicted position,

then this can also be incorporated into the identification of a tracking failure. Furthermore,

using the average tubular response ignores the possibility that a acceptable catheter tracking

result may have a large incorrectly tracked proportion. However, this incorrectly tracked pro-

portion may make the average tubular response low. As a result, this acceptable result will be

considered as a tracking failure if we only use average tubular response to evaluate it.

Regarding the discrete optimization framework, the experimental evaluation shows that our

strategy achieves a good robustness to parameters changes. However, one key requirement to

guarantee this robustness is to ensure that the catheter spline curve is always smooth after

tracking. The reason is that if the catheter is not smooth enough, it may not be consistent

with the B-spline model so that the margin length at the end of the detected catheter might

not overlap with the real catheter. In such cases, the undetected parts of the catheter could

not be recovered during the longitudinal tracking stage because the undetected parts would be

too far from the search space. To address this, we currently use the second derivative of the
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B-spline model and add a constraint that the second derivatives of all the landmarks on the

curve should be zero. This constraint aims to make the margin length’s direction and curvature

more consistent with the detected catheter length. However, this is still a potential problem if

the curvature of the catheter tip is large and an insufficient number of observations are sampled

on the catheter.

Compared with the discrete optimization, the Kalman filter is very sensitive to parameter

settings. This is not surprising since most of these parameters, including the covariance matrix,

are linked with the motion properties for each individual sequence. Thus, in order to apply

the Kalman filter in the clinical context, the motion properties (which are strongly related to

the properties of the imaging such as frame rate and resolution) should be specified as prior

information and then used to set these parameters within the correct range. In our application,

the motion model and the measurement model are straightforward and many assumptions have

been made to simplify the filter system, including reducing the dimensionality of the parameter

space. The states being tracked are mainly the transversal motion rather than longitudinal

motion. The large transversal motion is the main factor responsible for tracking failures as it

causes the catheter to be outside the search space. Although our simple Kalman filter system is

successful, the full potential has not been explored. Thus in future work we will investigate using

a more advanced model and more elaborated filtering technique to obtain a higher robustness

to parameter changes and other interference from noise, outliers and modelling errors.

It is important to emphasise the real-time aspect of the application. The minimal requirement

of the frame rate is at least 10 fps. By constraining the search space, our algorithm can

satisfy this with a small trade-off for other performance metrics. However, to deal with more

complicated cases, the trade-off may be more expensive. For example, to further accelerate

our algorithm, the tubular structure enhancement is performed on the warped volume, which

is much smaller than the original volume. A drawback of this is that it may introduce a very

nonlinear space when the curvature of the catheter is high and the sampling varies compared

to the original volume. In such cases, a curve which is smooth in the warped volume may have

an unexpected non-smooth shape in the original volume. In addition, a low-resolution region

will have insufficient observations and the curve in this region may lack accuracy. For high
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curvature catheters, the algorithm may need to use the original volume directly. Another trade-

off involves the search range for the tracking in transversal direction, where the computational

costs increase drastically with higher search radii. Thus, to achieve real-time performance, the

search range can be limited or the search resolution can be reduced. A smaller search space

will cause the catheter to be out of range more frequently and thus increase the failure ratio,

while a lower search resolution will reduce accuracy and lead to a higher tracking error.

From the perspective of clinical applications, the most important part of the catheter to be

tracked is often the tip. However, we have found that directly segmenting and tracking the tip

in ultrasound images is extremely challenging. Thus, our approach is to first segment the entire

catheter and then to localize the tip on this curve. This makes the tip detection easier since the

tip must be located close to the end of the curve. However, due to the complexity of ultrasound

image formation, the tip may not correspond exactly to the end point of the detected curve.

Our algorithm therefore provides a starting constraint for a tip detection algorithm, which

would be an additional step in our detection framework.



Chapter 6

Conclusion

6.1 Summary

In this thesis we have proposed three modules relating catheter segmentation and tracking in

both X-ray and ultrasound images: (1) A fast catheter segmentation and tracking module for

X-ray images; (2) A fast catheter segmentation algorithm in ultrasound images assisted by the

registered X-ray images; and (3) A real-time catheter tracking framework in ultrasound images,

without the use of X-ray images.

The first module is a combination of both catheter segmentation and tracking in X-ray se-

quences. One of our key contributions is the Kalman filter-based catheter extraction that has

been used in both catheter segmentation and catheter tracking. The novel characteristic of this

strategy is that it can extend the catheter extraction to the entire catheter from key landmarks.

The proposed catheter segmentation based on this algorithm can run very quickly with a speed

of more than 1000 frames per second (only 0.0006 seconds per frame). It has the low error of

0.82mm but with a high FTP of 44%, a low ITP of 9.2%, and a high failure ratio of 0.26%.

During the catheter tracking the previous method, which is based on Fast-PD optimization,

can achieve a speed of 31 fps and a error of 1.14mm, but with a higher FTP of 47%, a slightly

lower ITP of 12.9%, and a failure ratio of 0.21%. However, with our extraction strategy, our

combined method can achieve a lower FTP of 29.2%, an ITP of 18.2%. There is no trade-off

159
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in terms of speed, accuracy and the failure ratio. This Kalman filter-based extraction strategy

has significantly reduced the failed tracking percentage, only with a small rise in the incorrectly

tracking percentage. With regards to the multiple catheter tracking, our proposed system can

achieve a CTE/TTE of 1.40/8.10 mm and an overlap percentage of 87.18%.

The second module consists of two strategies based on: (1) the shortest path in a single layer

graph; and (2) the optimal path in a two-layer graphical model. The shortest path based

strategy, although it achieves a speed of 2.4s per frame and a re-projection error of 1.60mm,

only works well on phantom data and in some clinical datasets. Thus the second strategy is

recommended for clinical cases. This strategy has been tested on different clinical datasets

and achieves more convincing results. The experimental results show that it can track catheter

motions in ultrasound images at 1.3 second per frame, with an error of less than 2 mm. Fewer

than 4.5% of the tracked results are incorrect and more than 72% of the ground truth is tracked.

Fewer than 12% of frames have a tracking failure. The path growing strategy for ultrasound

tracking trades-off a small rise in the percentage of incorrectly tracked features (increased ITP),

but is able to track a larger proportion of the catheter (reduced FTP). This is similar to the

Kalman filter-based extraction strategy in X-ray tracking. This strategy makes the system

more adaptive to cases where the catheter moves longitudinally and causes a change in the

visible length of the catheter. The 2D SURF detector in the straightened space produces

better measurements than the widely used vesselness filtering methods in our applications.

Lastly, we have proposed a real-time catheter tracking strategy based on ultrasound imaging for

cardiac catheterization. A two-step optimization framework for both transversal and longitu-

dinal tracking has been developed to ensure that the tracking algorithm is fast and reliable. In

addition, a Kalman filter is used to reduce the tracking failures. The experimental results show

that the proposed approach can track catheter motions at more than 10 frames per second,

with an error of 1 mm approximately. To the best of our knowledge this is also the first study

satisfying the real-time requirements (10 frames per second). The overlap ratio between the

ground truth and the result is more than 75%. Around 4% of frames need to be re-initialized by

X-ray tracking or manual intervention. It also shows that the longitudinal tracking module is

very robust to parameter changes. The Kalman filter module is less robust to the corresponding
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parameter changes. However, clues from prior information can be employed to choose the right

range of the parameters of the Kalman filter.

6.2 Applications

The direct application of the proposed modules can include an entire system combining all

of the modules. The main purpose of this application is: (1) to introduce the ultrasound

modality during the interventions to enrich the visualization of 3D soft tissues; (2) to reduce

the X-ray exposure to minimize the harm to human health; and (3) to make the system more

automatic and require less manually interventions. However, it is very challenging to discard

X-ray modality completely and to fully automate the process. Thus, based on the algorithms

proposed in this thesis, a strategy linking each module is proposed to construct an overall

framework, as shown in Fig. 6.1.

Here, we separate the module using the X-ray modality into extraction and tracking modules.

The extraction module takes manually marked landmarks as input and then extracts the entire

catheter in the first frame or in the frame where the tracking in X-ray fails. Then the result can

be used as an initialization for the tracking module, which uses the result from the previous

frame as the input. After initialization, the tracking module can work in an isolated loop (the

orange loop) until a failure has been detected. The results from both the extraction and tracking

modules for X-ray images provide a catheter curve in 2D. Then, simultaneously the registration

between X-ray and ultrasound can be carried out to obtain the transformation matrix, based

on an off-line reconstructed US probe model. In a real application, this can be carried out once

and then re-used in all following frames as our system allows some registration errors. Thus the

time spent for the registration for every frame can be saved. The registration and the results

from X-ray are used to extract the catheter in ultrasound image. The catheter extraction

module in the ultrasound images can extract the catheter based on the corresponding X-ray

and also provides an initialization to the last module: tracking for ultrasound images. After

the tracking module for ultrasound images enabled, the system enters the red loop, where the
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X-ray imaging is not needed until a tracking failure in the ultrasound images detected. Thus, if

the red loop continues without tracking failure, the other modules are not required to compute,

including the orange loop. This means that X-ray imaging is not used within the red loop.

However, when there is a failure detected in the ultrasound tracking, the system enters the

orange loop again. The result from the last successfully tracked ultrasound frame can be

projected back to the current 2D X-ray image. This projection can be used to initialize the

orange loop again for the purpose of catheter tracking in X-ray images. When the orange loop

is enabled, the result from the current X-ray image can be used for the catheter extraction

in the ultrasound images (module 4) again. Then the output from this can also be used to

initialize the red loop. If the red loop works without failure detected, then the orange loop is

not required. If the red loop fails again, the tracking will stay in the orange loop. However, in

the orange loop, if a tracking failure is detected as well for X-ray images, then the entire system

will go to the beginning, manually pointing. During the whole process, manually interventions

are only needed to identify the tracking failures in both X-ray and ultrasound images and to

specify the catheter being tracked by clicking on some key points. This significantly reduces

the manually work. Based on our experimental ultrasound data, the percentage of frames in

which there is a tracking failure is around 4% . Theoretically during a four hour intervention

the X-ray exposure can be reduced to less than 10 minutes. However, in clinical procedures, it

is difficult to estimate the exact amount of X-ray exposure because the need for X-ray imaging

does not only depend on the reliability of the tracking system in ultrasound images but also

the need to better visualize some important structures via high quality, less artifacted X-ray

imaging.

6.3 Future Work

The system we have proposed works well based on our tested datasets. However, though most

of the datasets we acquired are from clinical procedures, the limited quantity of datasets tested

means that these datasets cannot include every challenging aspect. In order to address these
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Figure 6.1: Green indicates manually interventions are needed. Yellow indicates processing
that can take place off-line. The red and orange arrows corresponds to two loops which are
referred as red loop and orange loop respectively.

potential problems, there are some several improvements that can be made.

The first issue is that in the field of view for either X-ray or ultrasound images more than one

catheter is visible. Besides multiple catheters, there may also be other catheter-like structures
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in the view. An ideal framework needs to identify, segment and track multiple catheters si-

multaneously, as well as rule out outliers. In Chapter 3 we have proposed a multiple catheter

tracking strategy for X-ray imaging. The proposed dynamic graph model can preserve relative

distances in order to distinguish each catheter.

However, this strategy focuses on only the pixels of the catheters rather than the entire image.

To illustrate this, consider in the first frame two catheters overlap but in the second frame

they no longer overlap and separate. Now we are evaluating one incorrect result in the second

frame: The estimated locations of the two catheters still overlap on one of the real locations

of these two catheters, with the other real location undetected. Then, if we only evaluate the

catheters which have being tracked, we would find the appearance of both tracked catheters is

acceptable. This is because both these two catheters are located on one of the real catheter

locations. Even one of them is incorrectly located. In this case, this incorrect result would be

skipped without detection. However, if we focus on every pixel of the image, i.e., we measure

the appearance of every pixel and calculate the spatial distance to the estimated locations, we

will find that pixels on the other real location (which the estimated locations are far from) with

a high similarity values but a large distance to the estimated locations. Based on this clue we

can easily identify this incorrect result. However, evaluating every pixel in the entire image is

expensive since the number of pixels in the whole image is larger than the number of pixels in

the vicinity of the catheters. A suitable sampling strategy can be used to address it.

As for the ultrasound images, multiple catheter tracking is more challenging. To provide clues

to identify each catheter, catheters extracted from X-ray images are used. However, this is

insufficient since a catheter curve in X-ray image corresponds to a curved surface in the ultra-

sound volume. There could be more than one catheter candidate around this curved surface.

Thus other constraints should be introduced as well. One possible clue is the temporal consis-

tency between adjacent frames. Thus, the extracted result from the current frame should be

close to the one extracted from the last frame. This has been considered in the catheter ultra-

sound tracking module when X-ray imaging is not needed. However, for the catheter extraction

module combining both X-ray and ultrasound images, only constraints from the X-ray images

are taken into account. Temporal consistency should be included as well in our future work.
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Another issue regarding ultrasound imaging is the localization of catheter tips, which are more

important in clinical practice. Currently the tip detection is linked to the curve extraction. In

other words, the ends of the catheter curve are considered as the potential tip locations. This

is not always true in the clinical practice since some parts of the catheter are not clearly visible

due to the sound effects. Thus the ends of a curve may correspond to the point dividing visible

and invisible parts of the catheter. To identify the correct catheter tip, the X-ray images should

be used as a clue since the tip on X-ray images is better visualized. If X-ray images are not in

use, which is the case in catheter ultrasound tracking module, other clues should be explored.

For example, in ultrasound images, the tip of catheters often appears with a comet-tail artifact,

which can be easily identified.

Catheters with high curvature shapes, e.g., the round tip of a lasso catheter, are also one

limitation of our algorithm. For catheters with high curvature, a dense sampling of control

points and dense observations can address this but it would incur a high computational cost.

Thus this is not possible in the current framework. However, due to the rapid development of

GPU hardware, this may not be a problem in the long term.

After the general framework has been established, several details of the framework still have

potential for improvement. One specific issue is the measurements of the catheter in both X-ray

and ultrasound images. The measurements which are used currently mainly depend on blob

and tubular detectors. However, these detectors for either X-ray or ultrasound images have a

large number of false positives and false negatives. To make an improvement, learning-based

approaches can be used to train the detector off-line and then use be the trained detector

online. However, in order to adjust the detector to the changes of the appearance online, fast

incremental learning methods must be employed to update it. The field of machine learning

provides a solid theoretical background to use such techniques. However, such learning-based

algorithms require a large amount of training data.

Another issue that can be further improved is the modelling of the motion pattern of the

catheter, which is consistent with the cardiac periodic motions. This model can provide more

accurate prediction of the catheter location for the next frame. In our current framework,
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Kalman filtering is used to predict catheter location. However, this can be further improved by

modelling the motion pattern off-line and then use of the learnt motion pattern in the online

procedure. Machine learning techniques can be used to either train the motion pattern directly

or to extract a good feature to describe the motion pattern. This feature can be tracked in

addition to the location of the catheter to provide clues for motion estimation at each frame.



Bibliography

[1] IEEE standards interpretations: IEEE Std 1076-1987, IEEE standard VHDL language

reference manual. IEEE Std 1076/INT-1991, pages 1–, 1992.

[2] Rolf Adams and Leanne Bischof. Seeded region growing. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 16(6):641–647, 1994.

[3] Nitin Aggarwal and W Clem Karl. Line detection in images through regularized hough

transform. IEEE Transactions on Image Processing, 15(3):582–591, 2006.

[4] Michal Aharon, Michael Elad, and Alfred Bruckstein. -svd: An algorithm for designing

overcomplete dictionaries for sparse representation. IEEE Transactions on Signal

Processing, 54(11):4311–4322, 2006.

[5] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour

detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 33(5):898–916, 2011.

[6] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on

particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions

on Signal Processing, 50(2):174–188, 2002.

[7] Shuichi Asano, Tsutomu Maruyama, and Yoshiki Yamaguchi. Performance comparison

of FPGA, GPU and CPU in image processing. In Field Programmable Logic and

Applications, 2009. FPL 2009. International Conference on, pages 126–131. IEEE, 2009.

[8] Safuh Attar, John R Hankins, Stephen Z Turney, Mark J Krasna, and Joseph S

167



168 BIBLIOGRAPHY

McLaughlin. Paraplegia after thoracotomy: report of five cases and review of the

literature. The Annals of Thoracic Surgery, 59(6):1410–1416, 1995.

[9] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Robust object tracking with

online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 33(8):1619–1632, 2011.

[10] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and Richard

Szeliski. A database and evaluation methodology for optical flow. International Journal

of Computer Vision, 92(1):1–31, 2011.

[11] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Estimation with

applications to tracking and navigation: theory algorithms and software. John Wiley &

Sons, 2004.

[12] Lauren Barghout and Jacob Sheynin. Real-world scene perception and perceptual

organization: Lessons from computer vision. Journal of Vision, 13(9):709–709, 2013.

[13] Kees Joost Batenburg and Jan Sijbers. Adaptive thresholding of tomograms by

projection distance minimization. Pattern Recognition, 42(10):2297–2305, 2009.

[14] Kees Joost Batenburg and Jan Sijbers. Optimal threshold selection for tomogram

segmentation by projection distance minimization. IEEE Transactions on Medical

Imaging, 28(5):676–686, 2009.

[15] Gilbert Baum. Fundamentals of medical ultrasonography. Putnam, 1975.

[16] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust

features (surf). Computer Vision and Image Understanding, 110(3):346–359, 2008.

[17] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for

embedding and clustering. In The Neural Information Processing Systems, volume 14,

pages 585–591, 2001.

[18] Yoshua Bengio. Learning deep architectures for ai. Foundations and trends in Machine

Learning, 2(1):1–127, 2009.



BIBLIOGRAPHY 169

[19] Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with

multi-layer neural networks. In The Neural Information Processing Systems, pages

400–406, 1999.

[20] Goetz Benndorf, Benjamin Claus, Charles M Strother, Lee Chang, and Richard P

Klucznik. Increased cell opening and prolapse of struts of a neuroform stent in curved

vasculature: value of angiographic computed tomography: technical case report.

Neurosurgery, 58(4):ONS–E380, 2006.

[21] Hiram G Bezerra, Marco A Costa, Giulio Guagliumi, Andrew M Rollins, and Daniel I

Simon. Intracoronary optical coherence tomography: a comprehensive review: clinical

and research applications. JACC: Cardiovascular Interventions, 2(11):1035–1046, 2009.

[22] Deepak Bhakta and John M Miller. Principles of electroanatomic mapping. Indian

Pacing and Electrophysiology Journal, 8(1):32, 2008.

[23] Biosensewebster. Lasso NAV Eco Catheter, 2014.

https://www.biosensewebster.com/lassonav.php.
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