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Abstract

The aims of this work were to develop techniques for describing morphological variations

of shoulder bones and to test these on real datasets.

The robust measurement and description of anatomical geometry can provide accu-

rate estimation and better understanding of bone morphology. Feature lines were detected

automatically using crest line techniques and shape information from shoulder bones was

extracted based on the extracted feature lines. Redefinition of local coordinate systems

was proposed utilising the crest line technique.

Three dimensional statistical shape models (SSM) were built for a set of primate

humeri and scapulae. Two types of models were constructed: one incorporated the main-

tained original scale whilst the other used scaled bones. Variations were captured and

quantified by Principal Component Analysis (PCA). The application can be extended

generally to long bones and other complex bones and was also tested on human femora.

Techniques to predict the shape of one bone from its neighbour at a joint were

presented. PCA was used to reduce data dimensionality to a few principal components.

Canonical Correlation Analysis (CCA) and Partial Least Square (PLS) Regression were

applied to explore the linear morphological correlations between the two shoulder bones

and to predict the shape of one segment given the shape of the adjoining segment.
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Chapter 1

Introduction

1.1 Background

The accurate definition of the shapes of bones and the ability to predict the shape or

alignment of one bone from its neighbour at a joint could be beneficial in many areas. For

example, in palaeontology this could be used to predict incomplete skeletal components; in

taxonomy it could provide parameters to categorise genera. In particular, morphological

variations of primate humeri and scapulae are important in the analysis of loading effects

on bone shapes due to significantly different locomotor types that upper limbs can be used

for (brachiation and quadrupedalism to name two extremes in this thesis).

1.2 Motivations and Objectives

This thesis focuses on analysing shoulder bone shapes for better understanding of their

bony morphology in a numerical way and proposing solutions for building accurate com-

puter models for primate shoulder bone shapes. Three relating issues are to be addressed:

I A standardisation of the shoulder joint for description, measurement and clin-

ical procedures is required. To be precise, a standardisation of joint motions

using identical local coordinate systems (LCS) is very important for the en-

hancement of the study of motion biomechanics. Moreover, it expedites the
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cycle of planning, navigation and analysis among researchers and clinicians.

As such, a universally accepted standard is indispensable.

II Statistical shape models (SSM) are of considerable interest when studying

shape variations in anatomical shapes. Two major difficulties in building a 3D

SSM remain: firstly, segmentation of regions of interest from a series of im-

ages and, secondly, establishment of point-to-point correspondences through-

out a training set. Although segmentation techniques are developing rapidly,

many recent applications are still based on available manual or semi-manual

segmentation tools, for example, MRIcro and Amirar. The accuracy of corre-

spondences is important, because of the sensitivity of shape parameterisations,

which may lead to difficulties in defining shape constraints. Manually labelling

correspondences on each sample is time-consuming and inaccurate even for 2D

shapes. Therefore, such a manual approach is impractical for 3D shapes.

III It is essential to comprehend relationships between bones of a joint in order to

determine the location and the appropriate size of orthopaedic implants, for

example, an understanding of these relationships can also be used as a tool for

diagnosing abnormality, predicting bone growth and planning interventions.

An intimate relationship between the humerus and the scapula of a subject is

likely to exist and therefore, the hypothesis of this study is that the shape of

one shoulder bone will be able to predict the shape of the other shoulder bone.

1.3 Contributions

In order to address the above issues for better comprehension of the shoulder joint, this

work has developed methods to: 1) extract local bony morphological features automati-

cally, 2) describe variations in shoulder bony morphology using a reduced set of variables,

and classify a shoulder bone without taxonomical information based on these variables,

3) predict the shape of a bone from its neighbour at a joint, and quantify the accuracy in

the morphological prediction using local morphological features. The main contributions
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of this thesis are to solve the research problems described below.

Automatic parameterisations of the shoulder bony anatomy Traditional param-

eterisations of shoulder bone shape analysis is based on direct measurements taken from

anatomical components. The present work developed an algorithm to extract distinctive

surface features automatically in order to allow parameterisation. Instead of relying on

some manually selected anatomical landmarks on an object, which may contain large vari-

ations, the method developed proposes an approximation of bony features with geometric

forms, such as spheres and cylinders.

Recommendations of local coordinate systems for the glenohumeral joint Ex-

isting definitions of local coordinate systems for the glenohumeral joint are inconsistent

and inaccurate. Therefore, more stable redefinitions were suggested and tested, and a

recommendation of a local coordinate system on the distal humerus is proposed.

Training sets constructions A training set refers to a subset of a dataset. It is used

to build a model for prediction or classification. The presented datasets are composed

of nine different genera of primates. Point-to-point correspondences of the bone surfaces

were identified across the humerus dataset and the scapula dataset. Two frameworks were

proposed to build the training sets, one for the humerus shapes and the other for the

scapula shapes. The frameworks developed can be extended generally to long bones and

complex bones.

Morphological variation descriptions An SSM was constructed separately on the

humerus training set and on the scapula training set. Due to the large variation of size

among the genera, two shape models were built for each training set, one including size

variation and the other excluding this variation. Principal variations of the shoulder bone

shapes were captured and described by a few variables using principal component analysis

(PCA). Visual simulations of how these variations change are presented.



1.4 Thesis Overview 23

Quantifications and classifications Based on the constructed shape models, shoulder

bone shapes from different genera of the primates in the training sets were quantified.

Given a humerus or a scapula shape, which is not in the training set, it can be classified to

a certain genus. Leave-one-out validations were performed to demonstrate the accuracy

of the classification method.

Bone morphing of a femur with statistical shape models A training set of human

femur shapes was constructed for which two shape models were built. In the first model,

the centres of the femoral heads were fixed. A simulation of selecting a sparse surface point

set is provided. An optimisation algorithm to reconstruct the best fit complete surface for

the selected point set was improved.

Prediction of a shoulder bone shape from the adjoining neighbour Canoni-

cal correlation analysis (CCA) was applied to extract linear morphological correlations

between 28 humeri and their corresponding scapulae. A partial least square (PLS) regres-

sion algorithm was implemented to perform the shape prediction. Robustness was tested

using leave-one-out validations. Prediction bias was estimated by calculating root mean

square errors between all surface points on the predicted surface and on the real surface,

and by comparing anatomical parameters obtained from the predicted shape and the real

shape.

1.4 Thesis Overview

The thesis outline is as follows:

Chapter 2 is a literature review of bony anatomy of human and non-human pri-

mate shoulders, and techniques involved in shape analysis. The anatomy of the two major

shoulder bones and the movement between them are briefly summarised. Some recom-

mendations on the definitions of joint local coordinate systems are elaborated. Relevant

techniques include crest line extractions, registration techniques, statistical shape models,

CCA and PLS regression.
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Chapter 3 describes and displays the datasets and method of acquisition of the

shoulder bones from nine genera of primates.

Chapter 4 explains an improved method of extracting crest lines on a bony surface

and suggests how the extracted lines can be used to obtain stable morphological features,

for example the rim of a glenoid. Redefinitions of local coordinate systems on the gleno-

humeral joint, and on the distal humerus, are proposed. These methods minimise errors

caused by manual interventions such as labelling anatomical landmarks. The procedure

of building the coordinate systems is also explained.

Chapter 5 describes the construction of SSMs for humeri and scapulae. Two shape

models were constructed; one considers size variabilities across a training set whilst the

other does not. Two SSMs for human femora were also constructed. An iterative optimi-

sation method is described and the results of the bone morphing technique based on SSM

and the optimisation method are presented.

Chapter 6 demonstrates how to extract linear morphological correlations between

the shoulder bone shapes using CCA. The prediction of a shoulder bone shape from the

adjoining bone shape using PLS regression is described. In order to assess accuracy of

the prediction method with regards to morphology, some stable morphological features

obtained from Chapter 4 are used to compare the predicted shapes and their corresponding

real shapes.

Chapter 7 concludes this thesis with a discussion of the methodologies used and

their further developments. A summary of future work on methodologies is presented.
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Chapter 2

Literature Review

2.1 Introduction

The contributions of this thesis can be divided into three major parts. The first con-

tributions are in understanding individual shoulder bone shapes and constructing local

coordinate systems for these bones. Secondly, in building statistical shape models (SSM)

for shoulder bones in order to describe their morphological variabilities so that a bone

surface can be reconstructed given a set of sparse surface points. Thirdly, in identifying

linear morphological correlations between the two main shoulder bones in order to predict

the shape of one bone from the other. This chapter explores the related areas which are

essential to this thesis and reviews relevant research topics. There are four main reviews:

anatomy (Section 2.2), bony coordinate frames (Section 2.3), geometric morphometrics

(Section 2.4) and computational and statistical techniques (Sections 2.5, 2.6 and 2.7).

2.2 Primate Shoulder Bony Anatomy

This section describes the anatomy of primate shoulder bones in order to identify the

anatomical parameters within which to study shoulder bony morphology. The scapula

and the humerus come together at the shoulder to form the glenohumeral joint in which

the humeral head meets the scapular glenoid to form a highly incongruent glenohumeral

cavity (Figure 2.1). The glenohumeral joint, which has six degrees of freedom, is regarded
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Figure 2.1: Human upper limb bony anatomy (left from [mmg03], right from [Ama06])

as a synovial ball and socket joint made up of the glenoid fossa of the scapula, the head

of the humerus and soft tissues, such as cartilages, ligaments and tendons. The geometry

of this articulation allows great freedom of movement in all directions, but provides little

passive stabilising effect to the joint. An additional osteological constraint is provided

superiorly by the acromion and the coracoid process of the scapula (Figure 2.4).

2.2.1 Humerus

The humerus is a long bone maintaining the distance between two synovial articulations,

the glenohumeral joint and the elbow joint (Figure 2.2). At the proximal end, the spheroid

humeral head articulates with the glenoid fossa, whilst distally, the humerus has two

epicondyles, the medial and the lateral epicondyles, articulating with the proximal radius

and the proximal ulna. In between the proximal and distal extremes of the humerus lies

the long middle portion of its body, the humeral shaft. The shaft of the humerus varies in

degrees of torsion amongst non-human primates. It is hypothesised that humeral torsion

has played a significant role in evolutionary developments [ISDA44].

In humans, the radius of the humeral head in the coronal plane ranges from 21mm

to 26.5mm [HK02]. The humeral head retroversion in relation to the plane of the articular
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Figure 2.2: Human humerus bony anatomy. (a) Anterior view, (b) Posterior view
[MH02]

surface and the trochlear axis ranges from 10◦ to 55◦ with mean 29.8◦ [PV95]. The

inclination angle (the angle between the long axis through the humeral shaft and the axis

through the neck of the humeral head) is between 132◦ and 142◦ [HK02].

2.2.2 Scapula

The primate scapula consists of an undulating concavoconvex blade divided into two fossae

on the dorsal surface by the scapula spine; a ridge grossly perpendicular to the blade

conferring considerable mechanical rigidity to the structure [Rob74]. In humans, both the

scapular blade and the spine are thickened along their free margins, enclosing thinner bone

that is occasionally fenestrated, suggesting a complex arrangement adapted to distribute

stress patterns across the structure to muscular insertions [Hil06] (Figure 2.3).

The human scapula is a large triangular bone with two surfaces, the anterior surface

and the posterior surface. There are three edges of the scapula blade: the lateral, the

medial and the superior borders, with the sides meeting each other at the scapula’s inferior,

superior and lateral angles, respectively (Figure 2.4). The acromion is a flat triangular

lateral projection over the glenoid fossa, which meets the lower lip of the spine at the
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Figure 2.3: Comparison of stylised (a) and anatomical (b) scapulae [Hil06]

Figure 2.4: Bony anatomy of the human scapula. (a) anterior view, (b) Posterior
view [MH02]
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acromial angle, and acts as a partial insertion of both Deltoid and Trapezius.

2.3 Shoulder Local Coordinate Systems

Now that the anatomical framework is established, it is necessary to relate morphology to

local coordinate frames or systems for engineering analysis.

2.3.1 Joint Coordinate Systems

Grood and Suntay first proposed the joint coordinate system (JCS) to eliminate the tem-

poral sequence dependency of Euler angle techniques in the study of human biomechanics

of joint motions and to encourage the use of clinically relevant models [GS83]. Thereafter,

many studies have been carried out to define and describe joint motions using their own ad-

justments based on Grood and Suntay’s JCS definitions [vdH97a, EBN00, Hil06, Ama06].

A standardisation for the shoulder was initialised by van der Helm [vdH97b]. The JCS is

now widely accepted and used in the Biomechanics field and is widely used in clinical sit-

uations. For the purpose of better communications among people involved, the Standard-

isation and Terminology Committee (STC) of the International Society of Biomechanics

(ISB) proposed definitions of the JCS for the shoulder [vdHCM+04] (see Appendix A),

proposing the usage of a common set of bony landmarks and an identical local coordinate

system (LCS).

A JCS, described by two segment-fixed axes ux and uv, and their mutually orthogo-

nal floating axis uf (Figure 2.5), was introduced by Grood and Suntay [GS83] to define the

relative motions of two rigid body segments. Most of the proposed systems for the gleno-

humeral joint only consider three degrees of rotation of the humeral head [Cha03, BF04],

which are insufficient to understand the full normal kinematics of the glenohumeral joint.

A more clinically relevant model should allow six degrees of freedom (DOF), including

three additional degrees of translations that relates the stability of the glenohumeral joint.

However, there is yet to be a generally accepted definition. Different research groups tend

to define their own JCSs depending on individual’s choice and convenience [Ama06].
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Figure 2.5: The three-cylinder open chain mechanism for the description of joint
kinematics [GS83]

It is essential to define an orthogonal Cartesian coordinate system (also called body

coordinate frame) that is fixed to an individual bone so as to specify the ux, uv and uf axes.

The JCS defines how the orientation of one body coordinate frame is related to another.

Hill applied the three-cylinder open chain mechanism [Hil06], as shown in Figure 2.5, to the

glenohumeral joint with two frames locally fixed on the humerus and the scapula and their

mutual interaction as the floating axis uf . The ISB’s recommendation on definitions of the

local frames on the humerus and the scapula, which utilises anatomical landmarks on the

bone surfaces, potentially increases variations contained by the morphological features of

the bones. To construct stable coordinate frames for the shoulder bones, Amadi redefined

the frames for the two bones and developed methodologies to build stable coordinate

frames [Ama06]. The major drawback of his method is the involvement of a significant

amount of manual labelling work that can result in variability.

More automatic techniques will need to be explored to remove this dependence on

manual labelling. The use of crest lines automates the decision of feature areas on shoulder

bones.
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2.3.2 Crest Lines

Crest lines are 3D lines on a surface corresponding to the successive loci of the sur-

face whose principal curvature is locally maximal, providing a satisfactory geometrical

representation of important physical properties such as anatomical features in medical

images [KMG98, TG96] and ridge-valley lines in satellite data [MAM97]. These proper-

ties have enabled widespread use in many fields in image processing and computer vision,

for instance registrations [STA98, GA92, SF04], face recognitions [GFP06] and growth

simulations [ANK98].

Various methodologies of crest lines extraction have been proposed. Thirion and

Gourdon developed a marching lines algorithm to extract characteristic lines based on

implicit representations of the iso-intensity surfaces of 3D images without extracting any

surface in the first place [TG93]; Ohtake et al detected view and scale independent ridge-

valley lines via first and second order curvature derivatives on shapes approximated by

dense triangle meshes [OBS04]; Stylianou and Chrysanthou approximated curvatures and

derivatives on every point of a point cloud to classify crest points followed by crest line link-

age and noise pruning [SC05]. Extraction methods on mesh surfaces have been developed

by employing a number of methods, including a local moving-least-squares approximation

technique [KK06], a bivariate polynomial [SF03] and morphological operators [RKS00].

Differential Geometry for Parametric Surfaces

This section describes the background of differential geometry relating to principal cur-

vatures and principal directions, which are essential for crest lines extraction. Surfaces in

this section are described in the classical form of mesh grids.

In computer-aided geometric design (CAGD), a surface is usually given by its para-

metric form

x = x(u, v) = (x(u, v), y(u, v), z(u, v))T (2.1)

u = (u, v)T ∈ [a,b] ⊂ R2
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where the cartesian coordinates x, y and z are differentiable functions of the parameters

u and v; [a,b] indicates the area (e.g. rectangle, triangle) of the u− v plane (Figure 2.6).

For all u ∈ [a,b], assume xu × xv 6= (0, 0, 0, )T so as to avoid potential problems with

undefined normal vectors.

Figure 2.6: A parametric surface [Boe]

The tangent plane of the surface which intersects with point x0 = x(u0) has its

outward unit normal vector n0 = n(u0) (for example, n in Figure 2.6):

n0 =
xu(u0)× xv(u0)

‖xu(u0)× xv(u0)‖
=

xu × xv

‖xu × xv‖
(2.2)

First Fundamental Form Let u(t) be a curve on the surface x(u) with tangent t and

normal m (the osculating circle of the curve is shown in Figure 2.7). According to curve

theory, the arc length of the curve s, which is an invariant parameter, can be obtained

from s = s(t) =
∫ t

a
‖ẋ‖dt where dot denotes the derivative with respect to t. Having

ẋ = xuu̇ + xv v̇, the squared arc element ds2 equals to

‖ẋ‖2dt2 = xu · xudu2 + 2xu · xvdudv + xv · xvdv2 (2.3)

= Edu2 + 2Fdudv + Gdv2

The second degree polynomial (Equation 2.3) is called the first fundamental form

of a regular parametric surface; E, F and G are called the first fundamental coefficients.
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Figure 2.7: Osculating circle [Boe]

Second Fundamental Form The normal curvature vector to u(t) at point x0 is the

projection of the curvature vector, k = ṫ/‖ṫ‖ where t = u̇/‖u̇‖, onto the unit surface

normal vector n. The proportionality factor k · n is called the normal curvature, denoted

by κ. κ is defined by t′ = κm where prime denotes the differentiation with respect to the

arc length of the curve; t′ is equal to x′′ = xuuu′2 + 2xuvu
′v′ + xvvv

′2 + xuu′′ + xvv
′′. Let

φ be the angle between the curve normal m and the surface normal n at point x0. Since

nxu = nxv = 0 and consequently nuxu + nxuu = 0, we have

κ cos φ = κmn = t′n (2.4)

= nxuuu′2 + 2nxuvu
′v′ + nxvvv

′2

= −xu · nuu′2 − (xu · nv + xv · nu)u′v′ − xv · nvv
′2

= Lu′2 + 2Mu′v′ + Nv′2

where L, M and N are called the second fundamental coefficients. The second degree

polynomial (Equation 2.5) is called second fundamental form of a regular parametric

surface

κ cos φds2 = Ldu2 + 2Mdudv + Ndv2 (2.5)

Principal Curvatures The extreme values κ1 and κ2 of κ are called principal curva-

tures of the surface at point x0. Their values and their corresponding principal directions

correspond to the eigenvalues and the eigenvectors respectively of the following matrix,
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which is called the Gauss-Weingarten map:

W =




L M

M N







E F

F G




−1

= −




(MF−LG)
EG−F 2

(LF−ME)
EG−F 2

(NF−MG)
EG−F 2

(MF−NE)
EG−F 2


 (2.6)

Alternatively, κ1 and κ2 are the (real) roots of the characteristic polynomial of

matrix 2.6. The quadratic polynomial is κ2 − (κ1 + κ2)κ + κ1κ2 = 0, which yields

κ1κ2 =
LN −M2

EG− F 2
(2.7)

κ1 + κ2 =
NE − 2MF + LG

EG− F 2

The term K = κ1κ2 is called Gaussian curvature, while H = 1
2 (κ1 + κ2) is called

mean curvature.

Curvature Approximation for Triangulated Mesh Surfaces

The problem with a triangulated mesh is that we cannot explicitly calculate derivatives

and curvatures on every vertex [SF04]. Therefore, prior to the crest point classification,

a quadric on the neighbourhood of every vertex should be fitted as to parameterise the

surface.

Based on the theory of surface curvature, the graph of an explicit bivariate function

f(x, y) for a triangulated 2D surface can be defined as a parametric surface in the form of

x(u) = (u, v, f(u, v))T , (u, v) ∈ D ⊂ R2 (2.8)

The normal of the tangent plane of this surface is therefore represented by

n(u) =
xu × xv

‖xu × xv‖
=

(−fu,−fv, 1)
T

√
1 + f2

u + f2
v

(2.9)

The first and the second fundamental coefficients are respectively calculated as
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Equations 2.10 and 2.11

E = 1 + f2
u , F = fufv, G = 1 + f2

v (2.10)

L =
fuu√

1 + f2
u + f2

v

, M =
fuv√

1 + f2
u + f2

v

, N =
fvv√

1 + f2
u + f2

v

(2.11)

The Gauss-Weingarten map (Equation 2.6) is consequently formed as

W =




L M

M N







E F

F G




−1

=
1

l




fuu fuv

fuv fvv







1 + f2
u fufv

fufv 1 + f2
v




−1

(2.12)

where l =
√

1 + f2
u + f2

v .

Classification of Crest Points

A crest point is defined by Monga et al as the point on a surface where the magnitude of the

maximum curvature is maximum along the maximum curvature direction [MB92]. They

derived the two extremalities (or extremality coefficients), emax and emin (derivatives of the

maximum and the minimum curvatures, κ1 (κmax) and κ2 (κmin)), along their principal

directions, t1 (tmax) and t2 (tmin). Zero crossings of the extremalities, which involve

also the third partial derivatives of the surface, correspond to the crest lines. Following

Yoshizawa et al [YBS05], the crest points consist of perceptually salient ridge points. They

distinguish convex and concave crest points, respectively, by

emax = 0, ∂emax/∂tmax < 0, κmax > |κmin| (2.13)

emin = 0, ∂emin/∂tmin > 0, κmin < −|κmax|

Without using zero crossings of the extremalities that require the third partial

derivatives, Stylianou and Farin [SF03, SF04] proposed a more computationally convenient

method to classify vertices as crest points using local domain values on the surface patch.

Let star(x0) denote all the vertices of the triangulated mesh that share an edge with x0;

the local domain values of x0 and star(x0) are calculated by projecting vertices x0, which
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will remain as x0, and star(x0) on the plane (P ). The procedure [SF03] of classifying the

ith (i = 1, 2, · · · , n) point is as following: y is the projection of star(x0) on plane P . ǫ is

the pre-defined threshold determining crest points.

I Find the edge (x0,ym), m ∈ [1, n] closest to ti
1.

II Find the edge (x0,yj), j ∈ [1, n] and j 6= m closest to −ti
1.

III Get the largest curvature of the corresponding vertices κm
1 and κj

1.

IV If (κi
1)

2 − (κm
1 )2 > ǫ and (κi

1)
2 − (κj

1)
2 > ǫ then x0 is a crest point.

Construction of Crest Lines

Two major problems remain after extracting the crest points. Firstly, they are unstruc-

tured and unconnected. Secondly, the calculation is noise-sensitive in that it may produce

unwanted short and poorly connected line segments. Only when the surface is really

smooth will the crest points have implicitly created all the crest lines.

To address the first problem, Stylianou and Farin provided an algorithm to trace a

crest line by adding an accordant point to a line [SF03]. In their other work, they proposed

a solution using region growing followed by a skeletonisation [SF04]. Instead of using a

skeletonisation, Stylianou and Chrysanthou [SC05] utilised the minimum spanning tree

(MST) to skin the grown regions.

To address the second problem, various approaches have been proposed to truncate

unwanted line segments [HG01, RKS00, OBS04, PK03]. A more sophisticated approach

is to use a threshold considering both the curvatures κmax and the lengths of the feature

lines [KK06].

2.4 Geometric Morphometrics

Traditionally, morphometrics is the field of multivariate statistical analysis concerned with

the methods necessary to rigorously address questions relating to shapes. It has involved
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the analysis of arbitrary collections of distance measures, ratios and angles, which fail

to capture the complete spatial arrangement of the anatomical landmarks on which the

measurements are based. They represent only a small part of information that may be

obtained from relative positions of the landmarks.

In the late 1980’s, the focus of morphometric procedures was shifted to emphasise

methods that captured the geometry of the morphological structures of interest and to

preserve the geometry throughout the analysis. These methods include outline methods,

which were the first geometric morphometric methods to be used, and landmark methods,

which begin with the collection of two or three dimensional anatomical landmarks. Rohlf

and Marcus suggested that this paradigm shift signaled a revolution on morphometrics

[RM93], whilst Bookstein referred to this as the morphometric synthesis [Boo96a]. Most

of this change has been due to the development and adoption of methods to analyse the

Cartesian coordinates of anatomical landmarks. The direct study of landmark coordinates

requires special techniques but yields powerful, concise, and comprehensive analysis [Sli07].

Coordinates of these same landmarks concisely encode all information in any subset of

distances (or ratios or angles) among them.

The fundamental advances of geometric morphometrics (GM) over traditional ap-

proaches include the way one measures the amount of difference between shapes, the

elucidation of the properties of the multidimensional shape space defined by this distance

coefficient, the development of specialised statistical methods for the study for shapes, and

the development of new techniques for the graphical representations of the results [RC02].

GM methods have found wide applications in the biological sciences, where comparing

anatomical features of organisms has been a central element for centuries. In particular,

anthropology has played an essential role in the development and adoption of these new

methodologies [BSP+99, Har89, OJ98, SLM+06].

General reviews of the entire morphometrics field and its development include

[RC90, RM93, Boo96a, O’H00]. Bookstein supplies a more technical review [BSP+91].

Adam et al [ARS04] address the influence of morphometrics beyond the field of anthro-

pology, and Bookstein et al [BSGM04] explain the role of anthropology in contemporary
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morphometrics.

2.4.1 Definition of Shapes

Kendall defined a shape as all the geometrical information that remains when location,

scale and rotational effects are filtered out from an object [Ken77]. The entire theory of

GM follows from this definition of shapes. A direct analysis on landmark data is invalid

since there are position, scale, and orientation effects on the object. These effects should

be removed prior to the analysis of the landmarks.

There are no precise definitions of scale (or size) effects. Different studies have their

specific surrogates for size and the choice of the size measurement cannot be applied to

all datasets or to other studies [Cor87, JFW95]. Since the definition of size is nonunique,

a shape can be independent of only the choice of the size measurement, which will affect

the results of any analysis of shape variations. A commonly used method to remove size

variation is to scale all the objects to a unit centroid size, the square root of the sum of

their squared coordinates [BSP+91].

The landmarks must be located on the same coordinate system, and their coor-

dinates must reflect the unique location and orientation of each object with respect to

those coordinate axes. The most popular methods, with most thorough theoretical de-

velopments, are the Procrustes methods [Gow75, RC90, DM98, GD04]. Other methods

include the conversion of the coordinates [LR04, RS98] and registration techniques (see

Section 2.6 for a review).

Once all the objects are scaled to the unit centroid size, and translated and rotated

to the same coordinate system, the remaining variables become shape variables. They

can be used as data in multivariate comparisons of shape variations [Boo96b]. The two

most important parameters to be estimated are the mean (or average) and the variability

around it.
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2.4.2 Morphometric Methods

A number of methods have been proposed to eliminate the location, scale and rotational

effects of landmarks, including superimposition methods, deformation methods, Euclidean

distance matrix analysis, finite element scaling analysis and methods based on interior

angles.

Generalised procrustes analysis is a widely used superimposition method. It super-

imposes landmarks using translations and rotations obtained in a least square sense. A

landmark set is firstly translated to the origin and then scaled to a common size (by di-

viding by centroid size); rotations are estimated by minimising the least square differences

between the corresponding landmarks. The thin-plate spline (TPS) method was originally

developed in the field of approximation [Boo89]. In GM, it is a deformation technique

that uses chosen functions to map the landmarks to their corresponding landmarks and

it can be used to visualise the localised shape phenomena. Procrustes method and TPS

are both well described in [Boo97, RDL02]. Details about other superimposition methods

can be found in [ARS04].

While most of the recent morphometric methods were developed for landmark

data, Bookstein proposed the sliding semilandmark method for outline data [Boo97]. He

combined the procrustes method and the TPS method to perform a multivariate analysis

of curving outlines in samples of biomedical images. In addition to optimally translating,

scaling and rotating the landmarks, the semilandmarks are slid along the outline curves

until they match the positions of the corresponding points along the outlines in another

object.

The difference between the approach proposed in this thesis and the traditional

morphometrics methods will be demonstrated in Chapter 5. Advantages and limitations

of the present approach will also be discussed in Section 5.7.
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2.5 Statistical Shape Models

Accurate definitions of anatomical structures and morphological variations of bones are

of importance in the fields of palaeontology, taxonomy and anthropology. They also play

an important role in subject-specific pre-clinical planning, intraoperative navigation and

musculoskeletal modelling. With the development of mathematical models and computa-

tional tools in medical imaging, a number of approaches have emerged to quantify shapes

and size of anatomical structures of bones. Model-based image analysis techniques such

as active shape models [CCTG95] and active appearance models [CBET99] have been

recently developed and widely used in computer vision.

Statistical shape modelling (SSM) is the underlying basic technology, showing con-

siderable promise to study the variations in anatomical shapes and acting as a basis for

the segmentation and the interpretation of images. Its basic idea is to establish, from a

training set, the pattern of variations in the shapes and the spatial relationships of struc-

tures for a given class of images. It is used to provide an efficient parameterisation of

the studied variability, producing a compact representation of shape and allowing shape

constraints to be applied effectively during image interpretation [CCTG95].

One of the major difficulties in building an SSM is the determination of surface

point correspondences between shapes over a large set of training shapes. Although manual

labelling in 2D images is still being used in many applications, it is very time-consuming.

3D landmarking becomes impractical due to the significant number of landmarks required

to describe the structure and by definition limits information that can be obtained. Also,

it is tedious and error-prone.

Numerous attempts have been made to automate the construction of training sets

with correspondences. The use of local shape features (e.g. high curvatures) has been

proposed to establish correspondences between shapes [BHT99, BT00a, Tag99, WPS00].

As pointed out by Davies, the method does not guarantee optimal correspondences al-

though it corresponds with human intuition [DCT01]. Alternatively, correspondences of

the training shape boundaries are defined through the parameterisation of each shape
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[BGK95, Boo97, KT98]. Davies and colleagues defined the best model as that which min-

imises the minimum description length of the training set [DTA+03]. They utilised the

SPHARM approach introduced by Brechbuhler to find the initial parameterisation of each

shape [BGK95]. Approaches using non-rigid registration have also been used in a number

of applications [FL98, BT00b, FRSN02]. Correspondences were identified by deforming

each training sample to the reference (also called atlas). The resulting deformation fields

can then be used to build the model. Splines, more specifically methods including B-

spline [RSH+99, LWS97, LV95] and thin-plate spline [Boo89, LK00, LP00], are common

mathematical models for non-rigid registrations.

Given a training set of n shapes which are represented by m corresponding surface

points and given that those shapes are already aligned to a common coordinate system,

each shape in the training set is denoted by a 3m-element column vector of point coordi-

nates

x = (x1, y1, z1, x2, y2, z2, · · · , xm, ym, zm)T

2.5.1 Principal Component Analysis

PCA is a projection-based dimensionality reduction method to reduce data dimensionality

by linearly transforming the data to a new coordinate system such that the greatest

variance by any projection of the data comes to lie on the first coordinate (called the first

principal component), the second greatest variance on the second coordinate, and so on.

The main advantage of using PCA in a study on the morphology of bones is that the

patterns or the major variations within high dimensional 3D surface data can be captured

and that the data can be compressed without losing patterns of the data. PCA is closely

related to SSM. It decomposes the training set in eigen space as well as restricts the shape

variations of the model close to the known variations.

Given a n × 3m data matrix x of n shapes consisting of m surface points (3m

dimensional), the computation of PCA starts with a mean-centred matrix y obtained

from the empirical mean x (x =
∑n

i=1 xi/n) of the distribution being subtracted from

the variables: y = x − x. Two approaches are mostly used to calculate the principal
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axes (eigenvectors). The first one is comparatively computationally expensive due to the

computation of the covariance matrix C3m×3m of y. The solution of equation Cφ = λφ

provides the eigenvectors φ (φT φ = 1) and eigenvalues λ of covariance matrix C. The

second approach utilising singular value decomposition (SVD) is numerically more stable.

Decomposing y as UΣDT , the right singular vectors contain the eigenvectors whilst the

squared diagonal elements of Σ contain the eigenvalues.

By arranging the eigenvalues in descending order and their corresponding eigenvec-

tors so that λi > λi+1 makes λj nearly zero at a certain point j. The first corresponding

j eigenvectors form the principal axes describing the most important modes of variabil-

ities of the data in eigen space. The proportion of the total variability fi explained by

each principal mode is equal to its eigenvalue divided by the sum of all n eigenvalues:

fi = λi/
∑

i λi. The eigenvectors φ provide the so-called modes of shape variations, and

the eigenvector corresponding to the largest eigenvalue accounts for the largest variation.

The magnitude of eigenvalue shrinkage is a function of the type of shrinkage, sample size,

the number of variables in the correlation matrix, the ordinal root position, the population

eigenstructure, and the choice of PCA or principal factors analysis [BS84].

The n (when 3m > n) largest eigenvalues and their corresponding eigenvectors of

the covariance matrix C3m×3m can be determined from the n eigenvalues and eigenvectors

of C̃n×n = yn×3myT
n×3m. The cumulation of the first few eigenvalues has such a large

proportion of the cumulation of all eigenvalues that the rest of the eigenvalues approxi-

mate a zero proportion. Let λ̃i(i = 1, 2, ..., n) be the eigenvalues of C̃n×n and φ̃i be the

eigenvectors, the first j eigenvalues λj and corresponding eigenvectors φj of C3m×3m can

be calculated as

λj = λ̃j (2.14)

φj =
1√
λ̃j

yφ̃j (2.15)

By far the most common form of factor analysis, PCA is a large-sample procedure

(another main type of factor analysis is common factor analysis, which is what people
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generally mean when they say factor analysis). The question of sample size in factor

analysis and PCA has been studied for decades: some statisticians have argued that a large

sample size N improves the precision of estimates from PCA [Cli70, Bag83]; others have

shown that the ratio of samples to variables is more important in interpreting outcomes of

PCA [GV88]. The commonly accepted minimal number of samples for the analysis should

be larger than 100 or five times the number of variables being analysed. However, it is

fair to say that there are no absolute rules for deciding sample size.

MacCallum et al suggested that the minimum sample size depended on the nature

of the data, most notably its strength [MHW01]. Strong data are data in which variable

communalities are consistently high and many variables are expected to have high load

(or weight) on at least three or four components. Communality represents the proportion

of the variance of a particular variable that is shared with other variables. The values

are calculated as the sum of squared component weights for a given variable [Try98]. The

meaning of load (or weight) of PCA is the same as for point distribution models, which

will be explained in the following section.

The reliability of applying PCA to the shoulder bone shapes is not validated in this

thesis. Instead, all applications based on PCA results in the present work are tested using

leave-one-out validations.

2.5.2 Point Distribution Models

A widely acknowledged SSM is the Point Distribution Model (PDM) introduced by Cootes

et al [CTCG92]. PDM is built from a set of training samples which are given in the form of

boundary or surface points. It models the shape probability distribution as a multivariate

Gaussian in a subspace of reduced dimensionality. SSM is a larger concept as it can be

also built from lines (e.g. sutura, crista) or areas (e.g. pars, foramen).

Correlations between shape (vector) elements can be obtained from the covariance

matrix

C =
1

3m

3m∑

i=1

(xi − x)(xi − x)T (i = 1, 2, · · · , n)
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where x is the vector of the mean shape. Let Pk be the first k(k ≤ 3m) eigenvectors of C,

the dominant shape variations can be modelled using factor analysis

S = x + Pkb (2.16)

b is the latent variable (also known as the factor loadings for the principal axes)

describing shape deformations and the number of eigenvectors k is chosen to explain a

given proportion of the variance exhibited in the training set such that
∑k

i=1 λi ≥ fV3m.

λi is the ith eigenvalue of covariance matrix C, the larger the ith eigenvalue the greater

the shape of change associated with the ith principal mode; V3m =
∑

3m λi is the total

variance in the training set and f defines the proportion of the variation we wish to obtain.

New plausible shapes S are generated by varying the values of vector b within

suitable limits, which are derived by examining the distribution of the parameter values

required to generate the training sets. The method relies on the assumption that the shape

variations across the population have normal distributions. Since 99.7% of the population

lies within three standard deviations of the mean, the suitable limit for bi is thus typically

in the range ±3
√

λi(i = 1, 2, · · · , k). This assumes that the important shape data and

key variability in shape data is wholly contained within this 99.7% of the population.

The approximate variance described by the first k principal components is estimated by

∑k
i=1 λi.

2.5.3 Neighbour-Conditional Shape Model

A pairwise conditional shape model is proposed by Bruijne et al for vertebral fracture

quantification from X-ray images [BLT+06]. The method does not only model the shape

variations over a population for individual vertebrae, but can also model the interrelations

between vertebrae in the same subject. It is able to predict the most likely shape of a

joint given the known shape of the adjoining segment, and to estimate the variations of

the estimation.

The maximum likelihood estimate of shape xy given the neighbour shape xx is
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calculated as

µ = µy + CyxC−1
xx (xx − µx) (2.17)

where µx and µy are the mean shapes of the training sets for xx and xy, respectively, and

covariance Cij is constructed as

Cij =
1

n− 1

∑

n

(xin − µi)(xjn − µj)
T (2.18)

Cxx in Equation 2.18 is not always invertible owning to multi-collinearity and unre-

liability due to insufficient number of training samples. Ridge regression [HK70] provides

a solution which replaces Cxx by Cxx + γI, where γ is a positive and extremely small

constant. The relationship between xx and xy tends to decrease as γ increases.

The probability distribution P (xy|xx) of shape xy given shape xx is modelled as

the Gaussian conditional density with expectation µ and variance K:

K = Cyy − CyxC−1
xx Cxy (2.19)

2.5.4 Bone Morphing

CT-free methods of guiding surgery without acquisition of CT data are desirable. These

are explored here for image-free surgical planning. Current normal practice requires a

three-dimensional patient-specific model to be generated from volume CT scans obtained

pre-operatively and surgical strategies are planned using all available information. For

many cases, very detailed and precise 3D models are unnecessary and the reconstructed

3D shapes of the articulating bones are sufficient.

Bone morphing is a procedure of extrapolating extremely sparse 3D surface points

on a bone to obtain a complete surface representation. It is important for intra-operative

visualisation of bone structures in image-free surgeries (examples include visualising bone

defects, planning surgical cuts, choosing implant size, choosing the implant position and

rotations with respect to bone cortical surfaces, and estimating distances between bones

and components prior to making any real cut [SBM+02]).
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Fleute and Lavellee proposed using an SSM to reconstruct a complete surface model

of the femur by manually digitising a few points on the femoral surface [FL98], in order to

improve visualisation of a system developed by the TIMC laboratory (France) for computer

assisted anterior cruciate ligament (ACL) reconstruction. The femora were registered using

an elastic registration method based on the multi-resolution octree-spline method. Non-

linear optimisation was performed to fit the statistical model to a few digitised surface

points so that the distance between the surface points and the model were minimised. The

objective function to be minimised is

f =

D∑

i=1

min
1≤j≤M

‖di −mj‖2 (2.20)

where mj = R(m+
∑t

i=1 ωiei)+T , D is the number of surface points, di is the ith surface

point, R is the rotation function and T is the translation function.

Stindel et al presented a method for performing a total knee arthroplasty (TKA)

based on bone morphing using the octree-spline deformation, published by Szeliski and

Lavallee [SL96], to build an SSM of the femora or the tibiae [SBM+02]. Yao and Taylor

developed a non-rigid registration method to deform a pelvis shape model to match with

the anatomical structures in a CT image [YT03]. A leave-one-out validation was performed

and it showed the method could achieve about 94% volume overlap and 5.5% density

error between the registered model and the ground truth model. Chan et al presented

a cadaveric validation of their method that used tracked ultrasound to instantiate and

register the SSM. Surface points were matched to the corresponding SSM surface using

the ICP algorithm with the mean shape of the model as the starting estimation [CBE+04].

Optimisation was based on the golden section search method [PTVF92].

Rajamani et al developed a morphing scheme operating directly in PCA shape

space incorporating the full set of possible variations including additional information such

as patients’ height, weight and age [RNS04]. In each iteration, they first calculated the

most probable shape that is related to the three initially digitised landmarks, and then

used statistical shape analysis to examine the remaining shape variability after surface

information coded by the digitised points was progressively subtracted. They also proposed
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a method to extrapolate 3D shapes by computing a Mahalanobis distance weighted least

squares fit of the constructed SSM to minimal sparse 3D data [RTSGB05]. The morphing

computation was formulated as a linear equation system and then solved for the shape

parameters that best describe the unknown shapes. The objective function that was

minimised is

f =
N∑

k=1,j=index(xk)

ωk‖~Yk − ( ~Xj +
m∑

i=1

αi~pi(j))‖2 + ρ
m∑

i=1

α2
i

λi
(2.21)

with N the number of points that were digitised, ~Yk the kth digitised point, ~Xj a point

on the mean shape that is closest to ~Yk, ~pi(j) the jth tuple of the ith basis vector of the

shape, λi the ith eigenvalue and αi scalar weights which are the m shape parameters that

describe the shape.

2.6 Registration Techniques

As mentioned above, one of the major difficulties in building an SSM is the determination

of surface point correspondences between shapes over a training set. The present work

identifies point-to-point correspondences using non-rigid registration. Rigid registration

is also utilised in automatic shape alignment. This section summarises the registration

techniques and describes the related methods in detail.

2.6.1 Types of Registration

In the recent decades, image acquisition devices have been developing rapidly. Images

are acquired faster with higher resolution and improved image quality, which has invoked

research on automatic image registration. Being first applied in image guided surgery

but perceived as a minor precursor to some medical applications at its early stage, image

registration is now widely used with applications in the context of industrial computer

vision, medical imaging, remote sensing and so on. Its potential applications include

[Haw00]:
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• Combining information from multiple imaging modalities

• Monitoring changes in size, shape or image intensity over time intervals

• Relating pre-operative images and surgical plans to the physical reality of the patient

in the operating room

• Relating individual anatomy to a standardised atlas

A classification of registration was proposed by van den Elsen and Viergever us-

ing nine basic criteria [vdEV93]: (a) Dimensionality, (b) Nature of registration basis, (c)

Nature of transformation, (d) Domain of transformation, (e) Interaction, (f) Optimisa-

tion procedure, (g) Modalities involved, (h) Subject and (i) Object. The description of

registration in this chapter is based on criterion (c), Nature of transformation. This pri-

marily includes rigid, affine, projective and curved registration. Applications mostly relate

to rigid registration and, specially, curved registration, which is referred to as non-rigid

registration in this thesis.

In order to align a 3D shape (or image), B (source), to its comparator shape, A

(target), to relate their corresponding position of features or coordinate space x, shape B

is transformed using a transformation algorithm. T is used to represent this registration

transformation and it is performed as

T : xB 7→ xA ⇐⇒ T (xB) = xA (2.22)

Rigid Transformation

Rigid transformation consists of only rotations and translations, and leaves given arrange-

ments unchanged. In 3D space, rigid registration has six DOF consisting of three trans-

lations and three rotations. Rigid transformation is regarded as a global transformation

because it only changes the position of an image whilst it preserves the overall geomet-

ric relationships between points of the image. The technique is particularly useful in

image-guided surgery for fiducial registration and calibration, by computing a rigid trans-

formation that minimises fiducial registration errors [FWMJ98].
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Denote the translation vector along x, y and z axes as t (t = (tx, ty, tz)
T ), and

the rotation matrix as R (RRT = I), a rigid transformation that maps any point xB =

(xB , yB , zB)T of shape B to its corresponding point xA = (xA, yA, zA)T of shape A can be

written in homogeneous coordinates:

Trigid(xB) =




R t

0 0 0 1







xB

yB

zB

1




(2.23)

The most popular representation of rotation matrix R uses Euler angles correspond-

ing to three successive rotations with angles α, β and γ around x, y and z axes.

R =




cos β cos γ cos α sin γ + sin α sin β cos γ sinα sin γ − cos α sinβ cos γ

− cos β sin γ cos α cos γ − sin α sinβ sin γ sinα cos γ + cos α sinβ sin γ

sinβ − sin α cos β cos α cos β




(2.24)

Affine Transformation

Affine transformation is an extension of rigid transformation allowing 12 DOF in 3D space:

translations, rotations, scalings and shears. It maintains co-linearity by mapping parallel

lines onto parallel lines whilst it does not preserve the geometric relationships between

points.

Scaling allows a shape to stretch or shrink along at least one axis or dimension, but

not necessarily all axes. Shear preserves a homothety (a similarity transformation which

preserves orientation) and an isometry by pushing a shape to one direction parallel to a 3D

coordinate plane or a 2D coordinate axis with a shearing factor determining how far the

direction is pushing (Figure 2.8). In 3D space, a shape can be pushed in two coordinate

axis directions with the third direction fixed.

As for rigid transformations, an affine transformation is described by a single con-

stant matrix equation, which can be obtained by replacing the rotation matrix R in Equa-
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A square

Rotation Shearing Translation Scaling

Figure 2.8: A demonstration of 2D affine transformations

tion 2.23 with matrix M . M can be decomposed into components representing 3D rota-

tions, scalings and shears (Equation 2.25):

M = R(α, β, γ)




1 Sxy Sxz

0 1 Syz

0 0 1







Sx 0 0

0 Sy 0

0 0 Sz




(2.25)

where Sxy, Sxz, Syz are shear parameters and Sx, Sy, Sz are scale factors in three orthogonal

directions.

An affine transformation cannot be simply taken as a linear transformation because

it does not satisfy the linear equation

L(φx + θx′) = φL(x) + θL(x′) ∀x, x′ ∈ RD (2.26)

Non-rigid Transformation

When a shape tends to deform in much more complicated ways, an affine transformation is

insufficient and more DOF are required to describe deformations with adequate accuracy.

By adding additional DOF, a linear or a nearly linear transformation model with few DOF
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(a) Before transformation (b) After transformation

Figure 2.9: An example of 2D non-rigid transformations [Haw00]

can be extended to non-rigid transformation models (Figure 2.9), giving over a million

DOF for typical images. Any non-rigid registration technique can be described by three

components [Haw00]: (a) a transformation which relates the target and source images; (b)

a similarity measure which measures the similarity between the target and source images

and (c) an optimisation method which determines the optimal transformation parameters

as a function of the similarity measure.

The most common mathematical or physical models that are used in non-rigid

registration include basic functions, spline, elastic-solid registration, viscous-fluid reg-

istration and smoothed displacement fields. In spline models (for example B-spline

[RSH+99, SRQ+01, LWS97] and thin-plate spline [Boo89, LK00, LP00]), the transfor-

mation can be separated into piecewise terms which are specified by local knots or control

points. Its DOF are decided by the number of control points and smoothness of the trans-

formed image is affected by the spacing of the control points. The theory is based on the

assumption that correspondent points can be identified in a source image and its target

image, and that the locations of the control points in the target can be mapped onto its

corresponding counterpart in the source.

2.6.2 Feature-based Registrations

In contrast to registration based on voxel intensities, which uses intensities of an image

alone without any requirement to segment or delineate corresponding structures of the
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object in the image, the majority of feature-based registration techniques, which use fea-

tures of the object in the image such as landmarks, surfaces and curves, can be divided

into four steps: feature detection, feature matching, transform model estimation and fi-

nal transformation. Correspondences and transformations are the two unknown variables

desirable in this type of registration. This section discusses two types of feature-based

registration methods, landmark-based registration and surface-based registration.

Landmark-based Registrations

A pair of specified 3D points, which could be point landmarks (such as surface points),

anatomical landmarks and markers (fiducials) attached to structures on a body which

would be made visible in imaging modalities, in a shape A and a shape B are the rep-

resentations of the same features of the object in both shapes. Registration using cor-

responding point sets is referred to as landmark based registration in the present work.

The transformation of shape B to shape A can be performed by transforming all of the

arbitrary points using the transformation of those landmarks.

The Procrustes Algorithm Drawing its name from the Procrustes area of statistics,

the Procrustes problem is widely used for determining rigid and affine transformations.

It is an optimal least square fitting problem. Given two sets of n corresponding points,

xB = {xBi} and xA = {xAi} (i = 0, 1, · · · , n), the Procrustes algorithm is able to seek the

transformation T which minimises G(T ) = |T (xB) ⇔ xA|2. As such, parameters for the

rigid transformation matrix Trigid can be estimated.

When T represents a rigid transformation, the classical Procrustes problem has

known solutions using SVD [DM98, FWMJ98]. A minimisation function is set as Equation

2.27 and the differentiation of this equation concerning transformation Trigid is set to zero.

G(Trigid) =
n∑

i=1

|xAi − Trigid(xBi)|2 =
n∑

i=1

|xAi −RxBi − t|2 (2.27)

Suppose a set of points x = {x1,x2, · · · ,xn} is to be rigidly transformed to its

corresponding target set of points y = {y1,y2, · · · ,yn}, the rigid registration algorithm
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aligns x to y as close as possible by minimising the least squares of their distances: C =

∑n
i=1 |yi − Trigid(xi)|2. Substituting the rotation matrix R and the translation matrix

T for the rigid registration transformation matrix Trigid and setting the differential of C

relating to the translation matrix T as zero, we have

∂C

∂T
= ∂

n∑

i=1

|yi −Rxi − T |2/∂T (2.28)

= −2
n∑

i=1

yi + 2R
n∑

i=1

xi + 2T
n∑

i=1

1

= 0

Solving the above equation gives T = y−Rx, where x is the mean point of point

set x, and y is the mean point of point set y. The mathematical solution for T = y−Rx

is known as the solution to the orthogonal procrustes problem involving the use of SVD.

Decomposing the covariance matrix K of x and y gives

K =

n∑

i=1

(y− y)(x − x)T = UV DT (2.29)

The rotation matrix R can then be obtained by

R = V UT (2.30)

Non-rigid Transformation Models Using B-spline Sederberg and Parry presented

a technique for deforming solid geometric models in a free-form manner based on trivariate

Bernstein polynomials [SP86]. Its basic idea was to embed an object in a control grid

which defines the continuous deformation field. Lee et al used B-spline to model the

deformations of multilevel control grids [LWCS96]. The mesh nodes were taken as the

control points that were interpolated by a set of B-spline basis functions. Frangi et al

[FRSN02] proposed a method to establish shape correspondences via a volumetric non-

rigid registration technique using multi-resolution B-spline free form deformation (FFD).

The study shape was non-rigidly registered in a coarse-to-fine manner by deforming its

control points at different resolution levels. Schnabel et al [SRQ+01] further developed
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an image-based registration algorithm proposed by Rueckert et al [RSH+99] to generate

a framework for non-rigid registration.

Even though a bone itself is a relatively rigid body that deforms little compared to

variations in shapes between individuals, rigid or even affine registration is not enough to

model the local differences. Non-rigid deformation is required to model the global as well

as the localised differences. The transformation function Tnon−rigid that registers a source

shape to its target shape is combined by a global transformation Tglobal, specifically a rigid

and affine transformation, and all local transformations Tlocal that transform localised

points of the source shape by deforming their respective surrounding mesh nodes:

Tnon−rigid = Tglobal + Tlocal (2.31)

Assuming a shape I is in domain Ω = {(x, y, z)|0 ≤ x ≤ X, 0 ≤ y ≤ Y, 0 ≤ z ≤ Z},

where X, Y and Z are the image dimensionalities, with nx × ny × nz uniform spacing

control points φ, the local transformation in the form of cubic B-spline function can be

written as

Tlocal(x, y, z) =

3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (2.32)

where i = ⌊x/nx⌋−1, j = ⌊y/ny⌋−1, k = ⌊z/nz⌋−1, u = x/nx−⌊x/nx⌋, v = y/ny−⌊y/ny⌋,

w = z/nz − ⌊z/nz and B(a) is defined as

B0(a) = (1− a)3/6

B1(a) = (3a3 − 6a2 + 4) 6

B2(a) = (−3a3 + 3a2 + 3a + 1) 6

B3(a) = a3/6 (2.33)

With the ability to have locally controlled functions, computational efficiency and

general applicability, non-rigid registration using B-spline is a powerful tool for modelling

deformable objects such as patients’ bone shapes.
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Multi-resolution B-spline Free Form Deformation In single level deformation,

size of a control volume largely influences the deformation results. Large size control

volumes lead to a smooth effect while small size volumes generate accurate point-to-point

deformation. To circumvent this trade-off, multi-resolution B-spline approximation was

devised so that the size of the control volume can be subdivided progressively at each

resolution level. Through defining a sequence of control meshes Φ0,Φ1, · · · ,ΦH , the local

transformation is the sum of the transformations at all levels of resolution.

Tlocal(x, y, z) =

H∑

h=0

T h
local(x, y, z) (2.34)

Surface-based Registration

Instead of using corresponding points of the shapes (or boundaries, surfaces), correspond-

ing anatomical structures can be used to register two shapes.

One of the surface fitting techniques to match a source surface to the target surface

is called the head and hat algorithm. It was proposed by Pelizzari and colleagues [LPC+88].

The algorithm tries to find the best transformation between a stack of disks being referred

to as the head and a list of unconnected 3D points on the other surface (the hat surface).

The hat surface is iteratively transformed with respect to the head surface until the best

fit of them is found. The performance of the algorithm was improved by using a distance

transform to pre-process the head. A widely used distance transform is the chamfer

filter proposed by Borgefors [Bor84]. This approach has been used for rigid registration

[JRH92, VHK94].

Iterative closest point algorithm The Iterative Closest Point (ICP) algorithm pro-

posed by Besl and McKay is a widely used surface matching algorithm [BM92]. It is applied

in a large range of representations that cover most applications of 3D shape registration:

point sets, line segment sets (polylines), implicit curves, parametric curves, triangle sets,

implicit surfaces and parametric surfaces. The algorithm always converges monotonically

to a close minimum of a mean square distance metric at a rapid rate during the first few
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iterations.

Given two surfaces described by two sets of surface points without correspon-

dences, P{p1, p2, · · · , pm} and Q{q1, q2, · · · , qn}, the Euclidean distance between point

pi ∈ P (i = 1, 2, · · · ,m) and point qj ∈ Q(j = 1, 2, · · · , n) is denoted as d(pi, qj).

In each of the iterations, find the closest point cj to every point qj in P so that

d(pj , cj) = mini∈{1,2,··· ,n} d(qj , pi). Taking cj as the corresponding point to qj, Q’s corre-

sponding point set C{c1, c2, · · · , cq} can be constructed. ICP estimates the rigid or non-

rigid transformation that best maps P and Q and the estimated transformation is then

applied to all points in P . A new corresponding point set C ′ is then further extracted from

the transformed P . The algorithm iterates until convergence or the maximum number of

iterations is achieved.

The ICP algorithm is simple and relatively easy to implement, and with a reason-

ably good starting estimation, the algorithm converges quickly. However, it is prone to

find a local minimum if the starting estimation is not good enough.

2.6.3 Point Matching Techniques

Identifying correspondences between features is a major problem frequently encountered

by feature-based registration techniques. Noise arising from image acquisition and feature

detection, as well as outliers - feature points that exist in one image but not in others,

degenerate the automatic correspondences establishment. ICP’s crude way of assigning

correspondence generates a lot of local minima and does not usually guarantee that the

correspondences are one-to-one [CR03].

Only a few methods have been developed to deal with identifying correspondences

and matching shapes at the same time. Jagannathan and Miller presented a thermo-

dynamically inspired graph theoretical algorithm to address the problem of matching a

scene and a point cloud [JM05]. A thermodynamically inspired objective function was

proposed to capture the structural nuances between a pair of graphs and the spatial dif-

ferences between the underlying point sets. Correspondences are obtained by tackling a

sequence of inexact graph matching problems that optimise the proposed objective func-
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tion. Rangarajan et al presented an extension of the Procrustes method to the point sets

of different point clouds without correspondences. The method iteratively combines the

search for correspondences, spatial mapping and Procrustes rescaling. Correspondences

are parameterised via a binary match matrix that assigns points in one set to points in

the other and discards non-homologies as outliers.

Following the work on the joint estimation of pose and correspondences using sof-

tassign [GRL+98] and deterministic annealing [GG91], Chui and Rangarajan developed

a robust point matching algorithm with thin-plate spline (TPS-RPM) as the parameter-

isation of non-rigid spatial mapping [CR03]. Given two sets of unstructured points, xi

(i = 1, 2, · · · , n1) and yj (j = 1, 2, · · · , n2), the robust point matching (RPM) algorithm

minimises the following objective function.

min
M,θ,t,s

E(M,θ, t, s) =

n1∑

i=1

n2∑

j=1

Mij‖xi − t− sR(θ)yj‖2 +
γ

2
(log s)2 − α

n1∑

i=1

n2∑

j=1

Mij (2.35)

subject to
∑n1+1

i=1 Mij = 1 (∀j ∈ 1, 2, · · · , n2),
∑n2+1

j=1 Mij = 1 (∀i ∈ 1, 2, · · · , n1) and

Mij ∈ 0, 1. Mij is the n1 + 1 × n2 + 1 match matrix that indicates when homologies

have been found or outliers are discarded. The minimisation function gives solutions

for the transformation parameters: rotation θ, translation t and scaling factor s. γ is a

regularisation parameter.

Instead of finding the closest point as the part counter in ICP algorithm, the robust

point matching algorithm iteratively updates the match matrix, which is called softassign,

to map the correspondences between two point sets.

The name thin-plate spline refers to a physical analogy involving bending of a thin

sheet of metal. When applied in a registration scenario, it fits a mapping function f(xa)

between corresponding point sets xa and ya by minimising the energy function 2.36.

ETPS(f) =

K∑

a=1

‖ya − f(xa)‖2 + λ

∫ ∫
[(

∂2f

∂x2
)2 + 2(

∂2f

∂x∂y
)2 + (

∂2f

∂y2
)2]dxdy (2.36)

The TPS-RPM algorithm has been successfully applied to align autoradiographs

and to compute registration of cortical anatomical structures. However, the algorithm has
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limitations in that it works generally on simple and clear data, not on complex and noisy

data.

2.7 Multiple Linear Regression

Both PCA and SSM only capture variabilities and inner relationships within a training

set as a whole. To model intrinsic morphological correlations between the bones of the

glenohumeral joint, multiple linear regression (MLR) will be used. The general purpose

of MLR is to model the relationship between several independent or predictor variables

and dependent or criterion variables by fitting a linear equation to observed data. To

address more sophisticated data analysis problems, MLR has been extended in a number of

multivariate methods, such as discriminant analysis, canonical correlation analysis (CCA),

principal components regression (PCR) and partial least square (PLS) regression.

Discriminant analysis is used to determine which variables discriminate between two

or more naturally occurring groups. Its aim is to determine the group of an observation

based on a set of variables (predictors). The discriminant model is built based on a

set of observations for which the groups are known. CCA is a procedure for assessing

and investigating linear relationships between variables. PCR estimates the values of a

response variable at the basis of selected principal components of the explanatory variables.

PLS regression is a method for modelling relations between sets of observed variables

by means of latent variables. It comprises regression and classification tasks as well as

dimension reduction techniques and modelling tools [RK06].

Two constraints are imposed to discriminant analysis, CCA and PCR: firstly, fac-

tors underlying the predictor variables and the criterion variables are extracted from inner-

product matrices but not their cross-product matrix; secondly, the number of observations

can never be less than the minimum number of the variables. PLS regression is less re-

strictive since it does not have the above two constraints.

This section discusses two MLR extensions, CCA and PLS, in details and sum-

marises the PCR method briefly.
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2.7.1 Canonical Correlation Analysis

CCA is a method to correlate linear relationships between two multidimensional variables.

It finds two basis vectors (bases), one for each variable, so that the projections of these

variables onto the basis vectors are maximally linearly correlated. Thus the invisible

correlation between two variables can be obtained by loading these two bases.

Let Xn×p and Yn×q be mean-centred matrices of p variables and q variables over n

representations. CCA seeks a pair of linear transformations wx and wy such that when

the X and Y are projected onto wx and wy, respectively, the correlations between the

projections (scores or canonical variates) Sx = Xwx and Sy = Y wy are maximized:

ρ = max
wx,wy

〈Sx, Sy〉
‖Sx‖ · ‖Sy‖

= max
wx,wy

E[wT
y Y T Xwx]

√
E[wT

x XT Xwx]E[wT
y Y T Y wy]

= max
wx,wy

wy
T Cxywx√

wx
T Cxxwxwy

T Cyywy

(2.37)

where the maximum of ρ with respect to wx and wy is the maximal canonical correlation.

Maximizing Equation 2.37 is subjected to the constraints wx
T Cxxwx = 1 and wy

T Cyywy =

1. The maximization problem can be written in Lagrangian form as following:

L(λx, λy, wx, wy) = wy
T Cxywx −

λx

2
(wx

T Cxxwx − 1)− λy

2
(wy

T Cyywy − 1) (2.38)

The derivatives with respect to wx and wy of the Lagrangian form result in the

generalized eigenproblems which can be solved by finding the eigenvalues for the correlation

coefficients and eigenvectors for the scores vectors of Equations 2.39 and 2.40

C−1
xx CxyC

−1
yy Cyxwx = ρ2wx (2.39)

C−1
yy CyxC−1

xx Cxywy = ρ2wy (2.40)

The above calculations involve within-sets covariance matrices inversions, which

may not be numerically stable. In order to solve the generalized eigenproblems in a robust
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manner and reduce the imprecision caused by matrix inversions and multiplications, the

SVD method can be used as an alterative solution. Let X = UxWxTx
T and Y = UyWyVy

T ;

the decompositions of their covariance matrices and their cross-covariance matrix are

Cxx = XT X = VxWx
2Vx

T

Cyy = Y T Y = VyWy
2Vy

T

Cxy = Y T X = VyWyUy
T UxWxVx

T (2.41)

Substituting the generalized eigenproblems (Equations 2.39 and 2.40) with the

Equation set 2.41, (W 2 − ρ2)UT WxVx
T wx = 0 can be derived, where W and U are

the singular values and the left singular vectors, respectively, for Uxy = Ux
T Uy. This

equation has eigenvalues ρ2 = W 2 and eigenvectors wx obtained from the columns of

(UT WxVx
T )−1 = VxWx

−1U . Similarly, the canonical scores for Y can be estimated by

finding the eigenvectors wy for (W 2 − ρ2)V T WyVy
T wy = 0.

2.7.2 Partial Least Squares Regression

The PLS regression method is a prediction technique based on correlations between two

sets of variables. It projects the independent variables onto a set of weighted vectors to

extract the latent vectors which are supervised by the desired response variables. It is

capable of predicting a set of response variables from a set of predictor variables. This

method has become a standard tool for processing a wide spectrum of problems and

has been applied in medicine [SBSB93], biology [RC00], and medical imaging [AGK+04]

amongst many other fields, because it comprises multiple regression, classification tasks,

dimension reduction techniques and modelling tools.

PLS has many variants which can be run in Mode A and Mode B with applications

to data that can be divided into two or more blocks [Wol84]. Most current work using the

PLS method is based on two-block PLS when data is divided into two sets of variables

(predictor variables and response variables). Its basic idea is to extract a set of orthogonal

score vectors (latent vectors) that explain as much as possible of the covariance between
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the two sets of variables, X and Y . The difference between Mode A and Mode B lies

in the way the coefficients are updated which relates an indicator variable to its latent

variable [Weg00]. In Mode A, each coefficient is computed by a simple linear model; in

Mode B, coefficients are computed by a multiple regression model. In contrast to various

multivariate extensions of the multiple linear regression models, PLS regression is probably

the least restrictive method.

Let X denote the first block and Y the second block of variables. X is a n ×mx

matrix with mx predictor variables over n data vectors, Y is a matrix with my response

variables over n data vectors corresponding to X’s n data vectors. Both X and Y are

zero-mean. Although PLS has many forms (reviewed by Rosipal and Kramer [RK06]),

it generally models the relations between these two blocks by finding latent vectors from

X that are also relevant for Y . The two data matrices are decomposed simultaneously

as X = TP T + E and Y = UQT + F so that the extracted latent vectors explain the

maximum covariance between them. T (T T T = I) and U are n × k matrices of the k

latent vectors of X and Y , respectively; Pmx×k and Qmy×k are the loading vectors; E and

F are residuals having the same dimensions as X and Y , respectively. PLS regression

selects components that give maximal reduction in the covariance ET F instead of using

the kernel method or penalties.

The latent vectors are selected as the linear combinations of the columns of X

and Y on their weight vectors W and C. The first pair of latent vectors t and u are

obtained from the first pair of weight vectors w and c such that t = Xw and u = Y c, with

constraints wT w = 1, tT t = 1 and tT u being maximal. The approximations of X based

on t is subtracted from X and the iteration continues until the residual of X become a

null matrix.

PLS Regression Algorithm

The classical algorithm for PLS is the nonlinear iterative partial least squares (NIPALS)

algorithm which contains two iterations. The inner iteration is to calculate the latent

vectors and the outer iteration is to decompose X until its residual becomes a null matrix.
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The algorithm presented here is known as PLS2.

Algorithm 1 Nonlinear iterative partial least squares algorithm

1: Initialization E = X, F = Y , u = a column vector with n random values.
2: i = 0.
3: ui = u, wi = ET ui/(ui

T ui).
4: ti = Ewi.
5: ci = F T ti/(ti

T ti).
6: ui = Fci.
7: if convergence then
8: goto 12
9: else

10: goto 3
11: end if
12: pi = ET ti/(ti

T ti).
13: bi = ui

T ti/(ti
T ti).

14: subtract the effect of latent vector t. E = E − tiPi
T , F = F − bitici

T .
15: if X becomes a null matrix or the algorithm meets the stopping criteria then
16: exit
17: else
18: goto 3, i = i + 1
19: end if

The proportions of the variance explained by a latent vector ti(i = 1, 2, ..., k) for X

and ui for Y are estimated by pi
T pi/Sx and b2/Sy, respectively, where Sx is the sums of

squares of X and Sy of Y . When the residual matrix E becomes a null matrix, all latent

vectors are found and the cumulated proportion of variance explained by these latent

vectors is 100%.

Prediction

The upgraded residual matrices are defined in different ways depending on the PLS variants

being used. In PLS-W2A variant [Wol84], the residual matrix of Y is upgraded as F =

F−uqT (q = F T u/(uT u)). In the PLS-SVD variant reported by Sampson et al [SSBB89] in

the use of modelling, the outer iteration starts with upgrading ET F instead of upgrading

E and F separately. Among the available variants, the PLS2 variant is used most widely.

The goal of PLS is to predict the response variables Y from the predictor variables

X. The estimation of Y is Ŷ = TBCT where T = [t1, t2, ..., tk] is the latent vector of X, B

is the diagonal matrix with diagonal elements bi (i = 0, 1, ..., k− 1), and C = [c1, c2, ..., ck]
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is the weight vector of Y . Since X = TP T , we have Ŷ = X(P T+)BCT . When the number

of variables is greater than the number of observations, we can always have an estimated

Ŷ being very close to the real Y (this proportion being nearly 100%). However, PLS does

not necessarily give satisfactory prediction results when the regression coefficient matrix

(Bpls = (P T+)BCT ) is applied to the new predictor variables. Statistically speaking, the

common structures between a small numbers of observations are easy to derive but become

difficult to describe as more observations are added.

2.7.3 Principal Components Regression

PCR is a two-step multivariate method. In the first step, PCA of the predictor data matrix

Xn×m is performed. Assuming Pk (k ≤ m) is the matrix of the eigenvectors corresponding

to the first k eigenvalues that account for the desired variations, the important features

of X have been retained by bk, the score matrix corresponding to Pk. The second step

is followed by an MLR model between the PCA scores obtained, bk, and the criterion

variables, Y .

2.8 Summary

This chapter has reviewed the bony anatomy of the primate humerus and scapula, the

definitions of the shoulder bony coordinate frames, the development and methodologies

of geometric morphometrics, and computational and statistical techniques applied or de-

veloped in this thesis. The crest line technique is modified in Chapter 4 to obtain the

geometrical features of the bone shapes; the registration methods, SSM and the bone

morphing are used in Chapter 5; multiple linear regression methods and the neighbour-

conditional models are applied in Chapter 6 to understand the morphological relationships

between the two shoulder bones.
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Chapter 3

Data Description

3.1 Specimen Selection

The humeri and scapulae analysed in this thesis were selected within a group of primates

from the osteological collection at the Natural History Museum, London. Briefly described,

they are shoulder bones from nine genera of primates, including Homo (human): Cebus

(Capuchin monkey), Colobus, Macaca (Rhesus monkey), Papio (baboon), Presbytis (Leaf

monkey), Pan (chimpanzee), Gorilla and Pongo (orangutan). These genera encompass

various locomotor types, such as quadrupedalism, bipedalism, and brachiation. The se-

lection and acquisition formed a significant part of a previous thesis [Hil06] and these are

described only briefly here.

3.1.1 Data Comprehension

Primates make up one of the orders of mammals. It can be divided informally into three

main groupings: prosimians, monkeys of the New World, and monkeys and apes of the Old

World. At present, monkeys and apes are believed to be genetically related to humans

as our closest relatives. Scientists have learned that chimpanzees are closest related to

humans with over 95% shared genes in general [Bri02], whilst gene similarities between

mice and humans range from 70% to 90% with an average of 85% [CCD+02].

Due to their phylogenetic proximity to humans, primates have been used in or-
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thopaedic related studies of limb anatomy [SF86, Ane93], gait [Kim92, SL92] and age

related bone loss [SML89, CLJ+94, JCR+94]. Kuo et al compared various external mor-

phological features between adult human, Pan and canine femora to assess the limitations

and benefits of canines and primates as the models for human total hip arthroplasty (THA)

[KSB98]. They found that the large morphological differences might be biomechanically

significant for interpreting stress transfer across the hip. Limited use of non-human pri-

mates in THA-related research can be attributed to the differences in locomotion and bone

physiology when compared to humans. Discretion must be exercised when extrapolating

experimental results using non-human models, even with primates.

Modern humans are more similar to apes in upper limb than in lower limb bony mor-

phology [WR00]. Kimura concluded that evolutionary developments from quadrupedal-

ism to bipedalism have caused the forelimbs of non-human primates to be primarily used

for steering and braking while the hindlimbs used for support and acceleration [Kim85].

Studies have suggested that differences between hindlimbs of modern humans and apes

are largely attributable to the bipedal locomotion of the former whilst differences between

forelimbs can be related to the loss of habitual weight-bearing function [WR00].

3.1.2 Selection Criteria

Table 3.1 displays the collection of the non-human primates and their available infor-

mation. All specimens examined have a specific catalogue identification often indicating

provenance of the primate with a limited history. The collection is thought to be a sig-

nificant representation of primate taxonomy [Hil06]. Apart from the described primate

specimens, the datasets in this thesis also contain four Homo humeri, four Homo scapulae,

and one complete articulating Pongo shoulder bone pair. Some of these shoulder bones in

the present datasets do not have the adjoining segments. There are a total of 28 pairs of

adjoining humeri and scapulae in this thesis (Table 3.2).

Species in Table 3.1 can be categorised into three groups according to their locomo-

tor types (Table 3.3). Papio has the fewest locomotor types: quadrupedalism and vertical

climbing; Cebus, Colobus, Macaca and Presbytis have quadrupedalism, non-vertical sup-
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Species Sex Specimen
Number

Country of Ori-
gin

Locomotor
Type a

Segment
b

Provenance

Cebus apella xan-
thosternos

N/A 1948.10.20.1 N/A q nvc vc S & H Wild

Cebus apella N/A 1948.10.20.3 N/A q nvc vc S & H Wild
Cebus apella xan-
thosternos

N/A 1948.10.20.2 Brazil (South
East)

q nvc vc S & H Wild

Colobus bodius
kirkii

F 72.132 Zanzibar q nvc vc S & H Wild

Colobus bodius
tephrosceles

M 72.133 Uganda q nvc vc S & H Wild

Colobus guereza
kikuyuensis

M 72.134 Kenya q nvc vc H Wild

Colobus guereza
uellensis

F 72.153 Uganda q nvc vc S & H Wild

Gorilla M 1948.436
(Box 1 & 2)

q nvc vc
br bi

S & H Wild

Gorilla F 1948.12.20.2
(Box 1)

French Congo q nvc vc
br bi

S & H Wild

Gorilla M 1948.5.4.1
(Box 1 & 3)

French Congo q nvc vc
br bi

S & H Wild

Macaca sylavana F 1854.3.20.1 N/A q nvc vc S & H Wild
Macaca mulatta M 30.g N/A q nvc vc S & H Wild
Macaca arctoides M 1866.4.25.3 N/A q nvc vc S & H Wild
Macaca [IRUS]
rascicularis

F 1894.6.12.13 N/A q nvc vc S & H Wild

Pan troglodytes F 39.3367 Gabon q nvc vc
br bi

S & H Wild

Pan troglodytes N/A 1948.7.8.2 Uganda q nvc vc
br bi

S & H Wild

Pan troglodytes N/A 1968.6.27.1 Cameroon q nvc vc
br bi

S & H Wild

Papio doguera M 1862.6.26.1 Angola
(Benguela)

q vc S & H Wild

Papio anubis fu-
rax

F 1901.8.9.23 Kenya (Baringo) q vc S Wild

Papio cyno-
cephalus

M 1962.7.6.13 Kenya (Tsaro
Park)

q vc S & H Wild

Papio cyno-
cephalus

M 1972.129 Kenya (Kwale,
Coast Province)

q vc H Wild

Papio hamadryas
anubis

N/A 1972.127 N/A q vc S & H Wild

Presbytis obscura N/A 1882.12.15.2 N/A q nvc vc S & H Wild
Presbytis obscura N/A 1971.721 N/A q nvc vc S & H Wild
Presbytis obscura N/A 1971.722 N/A q nvc vc S & H Wild
Presbytis obscura N/A 1971.724 N/A q nvc vc S & H Wild
Presbytis obscura N/A 1971.736 N/A q nvc vc S & H Wild

aq - quadrupedalism; nvc - climbing with non-vertical supports; vc - vertical climbing; br - brachiation;
bi - bipedalism

bS - scapula; H - humerus

Table 3.1: Collection of specimens used for development of the models [Hil06]. Prop-
erty of Natural History Museum, London
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Genus Number of Pairs

Cebus 3
Colobus 3
Gorilla 3
Macaca 4

Pan 3
Papio 3

Presbytis 5
Pongo 1
Homo 3

Table 3.2: Number of shoulder bone pairs from the same articulations

Group One Group Two Group Three

Cebus
Genus Papio Colobus Gorilla

Macaca Pan
Presbytis

quadrupedalism
Locomotor quadrupedalism quadrupedalism non-vertical climbing

Types vertical climbing non-vertical climbing vertical climbing
vertical climbing brachiation

bipedalism

Table 3.3: Groups of locomotor types in the present dataset

port climbing and vertical climbing locomotor types; Gorilla and Pan have two additional

locomotor types compared to the second group: brachiation and bipedalism. Pongo is

primarily arboreal. Quadrupedal locomotion on the ground is rare and usually short in

duration. Bipedal locomotion forms 7% of locomotion is rare. The genera used in this

thesis can also be categorised using Linnean classification (taxonomy [Mye]) (Table 3.4).

In order to choose suitable specimens for morphometric analysis, a bone survey of

the mammalian osseous collection at the museum was conducted and documentation of

Family Cercopithecidae Cebidae Hominidae
(Old World monkeys) (New World monkeys) (great apes and humans)

Subfamily Cercopithecinae Colobinae Cebinae Homininae Ponginae

Macaca Colobus Gorilla
Genus Papio Presbytis Cebus Pan Pongo

Homo

Table 3.4: Linnean classification of the species
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the reliability of this collection was also obtained.

To remove confounding factors due to developmental changes in morphology from

analysis and to ensuing interpretation, specimens must be chosen from an extended period

of relative morphological continuity within the life span of a species. Commonly, adulthood

is chosen to best suit this requirement prior to a decline in old age [Kir85]. The full

development of secondary sexual characteristics is often cited as proof of adulthood. Smith

and Jungers have shown that it is a reliable basis for characterising adulthood [SJ97], along

with epiphyseal fusion and eruption of complete permanent dentition.

Bones with previous fractures were excluded from the study. All bones in the anal-

ysis were from wild specimens with a known provenance, as zoo specimens are prone to

captivity related disorders such as vitamin-D deficiency, stemming from relative inactivity

and poor diet, and cage-bound trauma [Hil06]. Attention was confined to those adult

specimens devoid of apparent pathology which may have altered the osteological morphol-

ogy. This includes scurvy, demonstrable by observing gross curvature or deformation of

the bony shaft axes.

No sex-based selection bias was used since, firstly, the sex of only a few specimens

was known from field records, and secondly, previous work has demonstrated insignificant

differences between male and female morphology within the same species [AOS65].

3.2 Data Acquisition

The bones previously detailed in Table 3.1, including 32 humeri and 30 scapulae, were

CT scanned while mounted upon wooden rigs (Figure 3.1) in order to standardise spatial

variables. Imaging parameters are as follows: slice thickness 1mm; image matrix dimen-

sion 512 × 512; the in-plane resolution 0.35mm× 0.35mm. The outline of each bone was

segmented manually using the commercial software Amirar (Visage Imaging of Mercury

Computer Systems, Inc.) and then converted into a 3D triangulated mesh surface (see Fig-

ure 3.2 for a mesh surface example) using the marching cubes algorithm in software Image

Registration Toolkit (Visual Information Processing Group in Imperial College London).
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Decimation and smoothing were both implemented using Amirar.

Figure 3.1: Humeral and scapular CT mounting rig [Hil06]

Figure 3.2: A triangulated mesh surface

The generated bone surfaces at this stage have no point-to-point correspondences

across the datasets and they contain a great deal of artifacts and noise in the form of ex-

cessive surface points. Mesh decimation, which reduces redundant points, and smoothing

were therefore applied to all surfaces. A comparison before the decimation and smoothing

and after can be seen in Figure 3.3. In this demonstration, the decimated and smoothed

scapula can be seen not to vary in morphology when the number of surface points of the
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(a) Before decimation and smoothing (b) After decimation and smoothing

(c) Comparison between (a) and (b)

Figure 3.3: Comparison of a surface before and after decimation and smoothing. The
decimated and smoothed scapula is not changed in terms of morphology.

displayed humerus was reduced significantly from 30,007 to 8,977.

Figure 3.4 displays all the 32 scanned, segmented, reconstructed, decimated and

smoothed humeri in this thesis. They were aligned to the displaying position using a semi-

automatic method which will be discussed in Chapter 5, Section 5.3.1. It can be seen that

sizes vary largely from monkeys to great apes and humans. Although they were chosen

from adulthood, there is still size difference even within the same genus. For example,

the third Macaca humerus and the first Gorilla humerus are much smaller than the other

humeri in their same genera.

Figures 3.5 and 3.6 show all the 30 scapulae in this thesis. Size is also a major vari-

ation from monkeys to great apes and humans. In addition, bending of the scapular spine
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(a) Cebus (b) Colobus (c) Macaca

(d) Papio (e) Presbytis (f) Pan

(g) Gorilla (h) Homo (i) Pongo

Figure 3.4: All the humeri in the present dataset
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and the shapes of the two fossae are distinct within and among the genera (for example,

the infraspinous fossa difference between Cebus 2 and Cebus 3, and the supraspinous fossa

difference between Gorilla 1 and Gorilla 3; the spine difference between the Pongo and

other great apes).

3.3 Summary

In this chapter the Imperial College / Natural History Museum shoulder morphology

datasets were presented. These consist of 32 humeri and 30 scapulae, 28 pairs of which are

from the same shoulder articulations. Two shoulder bones from the Pongo were collected

for this thesis, and all the remainders were collected as part of a previous thesis [Hil06].

These imaged, segmented, reconstructed, decimated and smoothed shoulder bone shapes

form the dataset on which the remainder of this thesis is based.
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(a) Cebus 1 (b) Cebus 2 (c) Cebus 3

(d) Colobus 1 (e) Colobus 2 (f) Colobus 3

(g) Macaca 1 (h) Macaca 2 (i) Macaca 3

(j) Macaca 4 (k) Papio 1 (l) Papio 2

(m) Papio 3 (n) Papio 4 (o) Presbytis 1

Figure 3.5: Scapulae in the present dataset (Part I)
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(a) Presbytis 2 (b) Presbytis 3 (c) Presbytis 4

(d) Presbytis 5 (e) Pan 1 (f) Pan 2

(g) Pan 3 (h) Gorilla 1 (i) Gorilla 2

(j) Gorilla 3 (k) Homo 1 (l) Homo 2

(m) Homo 3 (n) Homo 4 (o) Pongo 1

Figure 3.6: Scapulae in the present dataset (Part II)
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Chapter 4

Describing Shoulder Bone Shapes

and Redefinition of Local

Coordinate Frames

4.1 Introduction

Shape is all the geometrical information that remains when location, scale and rotational

effects are filtered out from an object (for a definition of shapes, see Section 2.4.1 in

Chapter 2). Two objects that have a similar or the same shape can be matched to each

other by translations, scalings and rotations. It is essential not only to identify bones

that have similar shapes, but also to recognise their individual anatomical properties. For

example, the shaft of the humerus varies in the degree of torsion and bending amongst the

primate genera in this thesis dataset. These have played a significant role in evolutionary

adaptation and development [Mil32, ISDA44]. Robust measurements of the anatomical

properties can provide accurate estimation and help better understanding of shoulder bony

morphology.

Mathematical landmarks according to mathematical or geometrical properties are

particularly useful in shape analysis and automatic recognition. Feature lines connect-

ing those landmarks that carry the most prominent characteristics are also called ridges.
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These have numerous applications in image analysis [MB92, SF04], quality control of free-

form surfaces [Hos92], human perception [HR85], analysis and registration of anatomical

structures [PAT00] and non photorealistic rendering [DFS03]. Mathematical landmarks

have distinctive mathematical properties and can be identified automatically.

This chapter describes the implementation designed to detect feature lines automat-

ically using the crest line techniques, and presents a method to extract shape information

from shoulder bones based on the extracted feature lines. Redefinitions of the local coor-

dinate systems for shoulder bones are proposed utilising the crest line technique.

4.2 Crest Lines Extraction

Hamann proposed a sequence to compute the principal curvatures of a point x0 [Ham93],

using the fact that a 2D surface can locally be represented explicitly. The principal cur-

vature calculation here is based on Hamann’s sequence, in combination with, and with

modification of, some of the approaches that are involved in the crest line technique. Im-

plementations of the two main steps in the sequence, including the calculation of local

surface normals and the approximation of bivariate polynomials, were improved by ap-

plying more sophisticated and more stable methodologies, which were developed in other

techniques (details will be explained in Section 4.2.1).

Crest points can be classified after calculating the principal curvatures for each

surface point. Computational details were explained in Chapter 2, Section 2.3.2. The

discrete crest points were linked to form the crest lines, and short line branches were

truncated as noise. These two steps were implemented using different methods proposed

by different authors (a review in Chapter 2, Section 2.3.2). Among those methods, this

thesis utilises and combines the methods that provide the best results for the present

datasets. The implementation details will be described in Section 4.2.2.

To sum up, Figure 4.1 demonstrates the procedure for extracting crest lines.
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Triangulated mesh surface

Parameterising surface patches Section 4.2.1

Approximating local principal curvatures

Classifying crest points

Connecting crest points Section 4.2.2

Reducing short line branches

Crest lines

Figure 4.1: Flowchart of the extraction of crest lines

4.2.1 Approximating Principal Curvatures

The computational sequence resembling Hamann’s sequence to calculate the principal

curvatures is listed below:

• Determine the platelet points (first-order neighbours) associated with point x0 (black

solid points in Figure 4.2(a)).

• Compute the plane, P , passing through point x0 and with normal n0, where n0

is the normal of the surface patch formed by point x0 and its platelet points (also

called the normal of vertex x0).

• Define an orthogonal coordinate system in plane P , with x0 as its origin and two

arbitrary orthogonal unit vectors. The graph of a fitted bivariate polynomial is

independent of the orientation of the two unit vectors which determine the coordinate

system of the plane.

• Compute the distances of all platelet points from plane P .

• Project all platelet points onto plane P and calculate their projections with respect
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(a) Projecting the platelet points to the tangent plane
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(b) Projection on the tangent plane

Figure 4.2: Demonstration of constructing a bivariate polynomial for the platelet
points in a patch of the triangulated mesh surface

to the orthogonal coordinate system in plane P .

• Interpret the projections in plane P as abscissae values and the distances of the origi-

nal platelet points from plane P as ordinate values. Construct a bivariate polynomial

f approximating these ordinate values.

• Compute the principal curvatures at each platelet point xi using the bivariate poly-

nomial.

Assuming there are n first-order neighbours of point x0, the platelet points are

denoted as xi = {x1,x2, · · · ,xn}, and their projections on plane P are denoted as yi =

{y1,y2, · · · ,yn}. The implicit equation for plane P is thus written as

n0 · (y− y0) = nx(x− x0) + ny(y − y0) + nz(z − z0) = 0 (4.1)

The projection yi of xi is estimated as xi − din0, where di is the distance between

xi and yi. di equals to (nxxi + nyyi + nzzi + D)/
√

n2
x + n2

y + n2
z, where D = −(nxx0 +

nyy0 + nzz0). An arbitrary vector a1, lying on plane P and perpendicular to normal n0,

is first calculated as one of the orthogonal vectors on plane P . It can be obtained by one
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of the following three possibilities:

a1 =





(−(ny + nz), nx, nx)T /nx, nx 6= 0

(ny,−(nx + nz), ny)
T /ny, ny 6= 0

(nz, nz,−(nx + ny))
T /nz, nz 6= 0

(4.2)

The normalisation of a1 forms the first unit basis vector b1. Consequently, the

second unit basis vector b2 is defined as the cross product of n0 and b1. Now that

we have x0 as the origin, b1 and b2 as the two unit basis vectors of a local orthogonal

coordinate system on plane P , the local coordinates (ui, vi)
T of a point xi in terms of b1

and b2 is

(ui, vi)
T = (di · b1,di · b2)

T (4.3)

where di = yi − xi is the difference vectors between points yi and point xi.

Normal Calculation for a Surface Patch

Construction of the tangent plane, P , of a surface patch is sensitive to the calculation of its

normal vector, n0. Different normal vectors will consequently result in different projections

(ui, vi)
T on the plane as well as the distances di. A vertex normal is usually taken as a

weighted sum of the normals of the adjacent triangles (or facets sharing that vertex).

Gouraud suggested equal weights [Gou71]; Thurmer and Wuthrich suggested weighting

by the facet angles at the vertex [TW98]; Max proposed a set of weights depending on size

of the facets [Max99]. Figure 4.3 compares the projections on the tangent plane defined by

the normal vectors calculated using Gouraud’s method (Figure 4.3(a)) and Max’s method

(Figure 4.3(b)). The latter method, with the weight for facet i estimated as Equation 4.4,

is used in the present work.

wi = sin(αi)/(|Vi||Vi+1|) (4.4)

where Vi is the vector between vertex x0 and platelet point xi, αi is the angle between

vector Vi and vector Vi+1.
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Figure 4.3: Platelet points projected on the tangent plane

Smoothness of a surface largely affects the normal calculation and, consequently,

the crest point classification. All surfaces analysed in this thesis were smoothed using the

commercial software Amirar.

Normal Cubic Approximation Method

Methods for calculating and approximating curvatures affect the classification of crest

points. Therefore, appropriate calculations of a local surface normal and a parameterisa-

tion of a surface patch are essential. Three methods approximating principal curvatures

and principal directions are compared by Goldfeather and Interrante [GI04], including the

normal curvature approximation method, the quadratic surface approximation method,

and the adjacent normal cubic approximation method which can be further extended to

higher order methods. The construction of the corresponding Gauss-Weingarten map

(Equation 2.12, page 35) in the present work utilises the adjacent normal cubic approxi-

mation method, which fits a surface patch to a platelet point set using the approximation

function f :

f(u, v) =
A

2
u2 + Buv +

C

2
v2 + Du3 + Eu2v + Fuv2 + Gv3 (4.5)
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The normal vector to the surface patch is given by

N(u, v) = (fu(u, v), fv(u, v),−1) (4.6)

= (Au + Bv + 3Du2 + 2Euv + Fv2, Bu + Cv + Eu2 + 2Fuv + 3Gv2,−1)

Assuming that a platelet point (ui, vi, di) (i = 1, 2, · · · ,m) has a normal vec-

tor (nui, nvi, ndi) in the local coordinate system, we can rewrite the normal vector as

(−nui

ndi
,−nvi

ndi
,−1). The linear equation to be solved is thus




1
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(4.7)

The Gauss-Weingarten map W (Equation 4.8) can be produced using the values

A, B and C calculated from the above linear equation (see Equation 4.8 for the calcu-

lation of the Gauss-Weingarten map). Once the eigenvalues of matrix W are calculated,

eigenvectors corresponding to the largest and second largest eigenvalues, t1 and t2, can

be estimated for the purposes of crest point classification and crest line linkage.

W =




A B

B C


 (4.8)

4.2.2 Crest Point Classification and Tracing

Generally speaking, the crest points identified are surface points that have strong local

curvatures. Although the surfaces of the shoulder bones were smoothed before calculating

surface curvatures, noise and irregularities of the triangulated mesh surfaces still play an

important role in the calculation. Some points were identified as crest points that do not
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represent any prominent characteristics on a surface. However, some points lying on the

feature lines were not classified as crest points. To solve these problems, region growing

followed by a skeletonisation was performed. A line tracing algorithm to connect all the

skeleton points was developed. Short line segments and single points, with a small weight

under a defined threshold, were pruned as noise.

Region Growing

Region growing is able to implicitly connect many of the unconnected crest points to create

crest regions. If a crest point is grown with its kth order of neighbourhood, it means that

all points within the k-link neighbourhood would be classified as a crest point in the crest

region.

Skeletonisation

Skeletonisation (or Medial Axis Transformation) is the procedure to extract a region-based

shape feature representing the general form of an object. The extent and connectivity of

the original regions are preserved whilst the foreground regions are thrown away. There are

three major skeletonisation techniques: detecting ridges in distance map of the boundary

points, calculating the Voronoi diagram generated by the boundary point, and the layer-

by-layer erosion called thinning. Rossl et al presented a method to determine the skeleton

of the feature regions by morphological operators [RKS00].

All surface points of a bone are assigned binary values, with 1 denoting crest points

and 0 otherwise. A surface is thus represented by a feature vector F ∈ {0, 1}N containing

N vertices. Let vi ∈ F be any of the vertices with mi neighbour vertices (ui
µ)µ=mi−1

µ=0

ordered clockwise, vi is defined as complex if Fi = 1 and ci ≥ 4, where ci is the complexity

of vi defined as

ci :=

µ=mi−1∑

µ=0

|Fui
µ
− Fui

(µ+1)mod(ni)
| (4.9)

vi is said to be a centre if Fi = 1 and all its neighbour vertices (ui
µ)µ=mi−1

µ=0 have value 1.

Neighbour vertices surrounding the centres are defined as disk if they themselves are not
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centres. With the above definitions, the skeletonisation operator is thus defined as

skeletonise(F ) := F\(©∩ C ∪ ⊙) (4.10)

F is an alternative notation for the feature vector F with definition F := {i ∈

{1, · · · , N}|Fi = 1}; C ∈ F is the set of all complex vertices; © ∈ F is the union of

all disks and ⊙ ∈ F is the union of corresponding centres. The skeletonisation is an

iterative procedure. With every iteration of the operator, the outmost layer is scratched

off from the feature regions except for complex vertices. The complex vertices, the disks

and the centres have to be recalculated in each iteration. The procedure iterates until the

feature vector remains unchanged.

Line Tracing

Region growing and a skeletonisation only provide point clouds without point-to-point

linkage. The next step is to connect all those obtained skeleton points.

Some algorithms connecting all available crest points have been proposed but these

do not consider any geometrical property [SF03, OBS04, YBS05]. More sophisticated

methods have been suggested, such as the use of minimum spanning tree (MST) [PK03,

SC05] and principal directions [KK06]. The idea of the MST method is to assign three

types of weights to all edges connecting any two vertices. The edges with the smallest

weight are forced to form the spanning tree, which will be used to represent the crest

lines. This method does not take the local curvatures into account, and the weights are

determined empirically.

In this thesis, the method using principal directions, suggested by Kim [KK06], was

applied to link the skeleton points. Assuming the crest points are skeletonised, Algorithm

2 explains the implementation details of defining directions of the discrete skeleton points.

The direction of a skeleton point is the index of the next skeleton point on the same line.

Once the linkage of the skeleton points are defined, crest lines can be extracted. Algorithm

3 shows the pseudo-code of tracing crest lines using the defined directions.
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Algorithm 2 Defining the tracing directions of the skeleton points

1: Initialisation: create an N dimensional vector D. Its initial values are -1. N is the
number of surface points.

2: for each surface point vi do
3: calculate the number of feature points (ni) that are adjoining to vi

4: if there is only one adjoining feature point (ni == 1) then
5: set the direction pointing to this feature point: D[i] = j (j is the index of this

feature point)
6: else if there are at least two adjoining feature points (ni ≥ 2) then
7: obtain minimum principal direction ti2
8: for each adjoining feature point uj do
9: calculate the dihedral angle θj between edge |vi − uj | and ti2

10: end for
11: get the smallest dihedral angle θσ = min{θj}
12: set the direction pointing to the adjoining feature point with θσ: D[i] = σ (σ is

the index of this feature point)
13: else
14: do nothing
15: end if
16: end for

Algorithm 3 Tracing the discrete skeleton points to form crest lines

1: for each surface point vi do
2: Initialisation: traceID = D[i] (D is the N dimensional vector defined in Algorithm

2)
3: if vi is a feature point && vi is not visited && its next point is not pointing at

itself then
4: create a line starting with vi

5: while there is point to trace (traceID! = −1) do
6: if there is a line starting with vtraceID then
7: append this line to the current line starting with vi

8: set point vtraceID as visited, and clear the line starting with vtraceID

9: stop the while loop (let traceID = −1)
10: else
11: append point vtraceID to the line starting with vi

12: set point vtraceID as visited
13: end if
14: end while
15: end if
16: end for
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Thresholding for Simplification

To clear small line segments, a threshold that considers both curvatures κmax and the

lengths of the crest lines l is set [KK06]. It is defined as

T =
1

l

l∑

i=1

|vi+1 − vi|2κmax(vi) (1 ≤ i ≤ l) (4.11)

Lines having a smaller T than the pre-defined threshold, T , are truncated.

4.2.3 Results

Figure 4.4 shows the extracted crest points on a Homo humerus, with a threshold ǫ = 0.01

(refer to page 36, Chapter 2, for definition of ǫ); Region growing was performed with

second-order neighbourhood, and the skeleton (shown in blue) was obtained from these

grown surface points, which are in red. Figure 4.5(a) illustrates the linkage directions of

the discrete skeleton points on the distal Homo humerus, which were obtained by using

Algorithm 3. Figure 4.5(b) illustrates the crest lines extracted after thresholding (the

threshold for truncating line fractions is T = 1.5).

Figure 4.6 shows the extracted crest lines from a Homo scapula. The threshold

determining a crest point is 0.01; region growing expands to first-order neighbourhood;

the threshold for truncating line fractures is T = 1.5.

Figures 4.4 to 4.6 show that the extracted crest lines are able to capture the loci of

the surface where there are anatomical meanings, such as the medial edge of the trochlea

and the two epicondyles on a humerus, and the glenoid rim and the three borders on a

scapula.
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(a) Crest points (b) Region growing
(to second-order
neighbourhood)

(c) Skeleton (in blue)

Figure 4.4: The skeleton on a Homo humerus surface



4.2 Crest Lines Extraction 87

(a) Directions (pointed by arrow marks) of
skeleton points on the distal Homo humerus

(b) Extracted crest lines shown in points (left) and
shown in lines (some lines on the right figure are
invisible on the left figure because they lie on the
other side of the humerus)

Figure 4.5: Connecting crest lines from the discrete crest points on a Homo humerus
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(a) Crest points (b) Region growing (to first-order neighbourhood)

(c) Skeleton (d) Crest lines shown in points

(e) Crest line set (some lines on this sub-figure are in-
visible in (d) because they lie on the other side of the
scapula)

Figure 4.6: Extracted skeleton on a Homo scapula, the linkage of the skeleton points,
and the crest lines constructed
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4.3 Geometrical Variation of the Humerus

Some morphological features of the humeri are very different with great visual variations

in the presented datasets, for example bending of the humerus shaft and torsion between

the humeral head and the trochleae. However, these variations are difficult to measure

and to quantify. An automatic and stable method that involves little manual intervention

is proposed in this section. This reduces variability that is induced by the measurement

procedure.

4.3.1 Bending and Torsion

In the literature, the shaft of the human humerus is always described by an axis pass-

ing through the humeral shaft. This measurement ignores the bending of the humerus

and, therefore, is less accurate for, and is not applicable to, the humeri from non-human

primates, which have much greater bending (Figure 4.7). Two axes, Lh1 and Lh2, were

defined, one approximating the proximal humeral shaft and the other approximating the

distal humeral shaft. The angle between the two axes is considered as the degree of bend-

ing. The grey line in Figure 4.8 is obtained from the humeral shaft to approximate the

long axis of the humeral shaft; the two black lines are the two redefined axes, Lh1 and

Lh2. Angles can be seen between the grey line and the black lines and the angles become

larger on non-human primate humeri. These angles can be also used to measure proximal

and distal bending on a humerus.

If the humeral heads of the different genera are fixed in a certain position, the

positions of their trochlea and capitulum do not remain the same (Figure 4.9). Hertel

measured retrotorsion by projecting a humerus onto a equatorial plane [HK02]. The

orientation difference between the humeral head and the axis through the trochlea and

the capitulum was measured to describe torsion.

The axis through the trochlea and the capitulum was defined differently according

to different circumstances. Functionally speaking, the trochlea is sometimes considered

as a spiral and its spiral orientation allows flexion and extension about an oblique axis,
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Figure 4.7: Differences in bending of three scaled humeri. From left to right: Homo,
Colobus and Papio.

(a) Distal segment (b) Proximal segment

Figure 4.8: Distal axis (Lh2) and proximal axis (Lh1) on a Homo humerus. They were
fitted to the two point sets in the humeral shaft.

(a) Homo (b) Colobus (c) Papio

Figure 4.9: Transverse view of three humeri with their humeral heads fixed in a
certain position
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(a) Homo (b) Colobus

Figure 4.10: Manually selected surface points on the trochlea

which brings the forearm from a position parallel to the humerus in full flexion to a valgus

carrying angle of 15◦ in extension [RPW05]. In fact, the direction of the axis of flexion and

extension changes progressively between the two extreme positions of flexion and extension

[Kap82]. Some authors simply define the humeroulnar joint as a hinge joint with a rotation

axis passing through the medial epicondyle and the lateral epicondyle [WvdHV+05, OL07].

The humerus is articulated by the radius and the ulna at the trochlea and the capitulum,

it is intuitively more suitable to approximate the rotation axis using the trochleae and the

capitulum instead of simply connecting the epicondyles. Since this thesis is focussed on

the description of morphology of a humerus as a whole and the validation of the shape

prediction method (the prediction model will be explained in Chapter 6) rather than

finding a mechanical way to describe elbow function, the axis of flexion and extension is

defined as one fixed axis through the trochlea instead of an oblique axis.

The rotation axis of the elbow joint is sometimes defined as a line that passes

through the centre of the capitulum and the centre of the deepest points on the trochlea

(these deepest points form a concave ring on the trochlea) [DDKJ03]. To construct this

axis, a plane P was firstly fitted using the manually selected surface points on the concave

area on the trochlea (Figure 4.10(a)) and a circle was then fitted to the projections of these

surface points on the plane P . However, the monkey humeri do not have this concave ring.

A comparison between a Homo trochlea and a Colobus trochlea can be seen in Figure 4.10.

The points on both bones were labelled manually to approximate the trochlea rings.
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(a) Method one (b) Method two

Figure 4.11: Two methods defining the rotation axis of the elbow joint

To obtain the rotation axis in a stable way, two methods were proposed. Method

one is similar to Dunning’s method [DDKJ03]. It fits a sphere to the capitulum and a

circle to the medial edge of the trochlea instead of the deepest points on the trochlea

(Figure 4.11(a)). The rotation axis is defined as that which passes through the centre of

the sphere fitted to the capitulum and the centre of the circle fitted to the medial edge

of the trochlea. Method two considers the whole hinge area by fitting a cylinder to the

region combined by the trochlea and the capitulum (the area with darker colour in Figure

4.11(b)). The medial axis of the cylinder is calculated as the rotation axis.

4.3.2 Methodology

Figure 4.12 is a flowchart demonstrating how to obtain the geometrical parameters (e.g.

size of the humeral head) and the anatomical axes on the distal humerus.

To fit a sphere to the humeral head, manual selections of a few seed points were

conducted. The seed points are grown with a certain degree of neighbourhood to cover

the region of fitting using region growing. The degree of growing was determined so that

the grown points cover as much of the region of interest as possible. Figure 4.13(a) shows

the selected seed points and their grown points. The centre of the sphere fitted to the

grown points can be calculated.

To obtain the rotation axis on the distal humerus, by method one - sphere and circle

fitting - two centres should be calculated to form the axis on the distal humerus. A least
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Humerus Surface

Manual
Labelling

Humeral Head

Region Growing

Capitulum

Region Growing

Medial Edge
of Trochlea

Crest Line

Trochlea

Cylinder Fitting

Surface Points Surface Points Crest Points
Centroid &

Rotation Axis

Sphere Fitting Sphere Fitting Circle Fitting

Centre & Radius Radius Radius

Centre Centre

Rotation
Axis

Proximal

Distal
(Method 1)

Distal
(Method 2)

Figure 4.12: Obtaining the centre and size of the humeral head, and the rotation axis
on the distal humerus
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(a) Five seed points on the humeral head
(in green); five degrees of region growing.

(b) Five seed points on the capitulum
(in green); three degrees of region grow-
ing. Blue points are the crest line on the
trochlea.

Figure 4.13: Selected seed points and their grown surface points

square best-fit sphere was firstly fitted using the grown points on the capitulum (Figure

4.13(b)) and the centre of the fitted sphere was obtained as one point defining the axis. A

least square best-fit plane was then fitted to the nodes on the extracted crest lines on the

trochlea. Points lying on the edge of the trochlea in Figure 4.13(b) are the nodes of crest

lines extracted in this area, with parameters ǫ = 0.01, first-order neighbourhood for region

growing and T = 1.5. These automatically-extracted crest points are able to capture

anatomical features accurately such that manual labelling is not required. Projections of

the nodes onto the plane were fitted by a least square best-fit circle, and the centre of the

circle was obtained as another point defining the rotation axis.

Alternatively, by method two - cylinder fitting, the region of interest (the area of

darker colour in Figure 4.11(b)) was clipped manually using the open source software

ParaView and the axis was approximated by the medial axis of the cylinder fitted to

the area of interest. Instead of fitting a cylinder using a least square method, principal

component analysis (PCA) was applied to initiate the axis through the centre of the

clipped surface. The medial axis construction method here is similar to the method to

approximate the long axis through the humeral shaft, which will be described in the

following paragraphs. The initial axis was further refined using another PCA based on

the extracted centre points through the cylinder.
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(a) Two surfaces clipped from a Colobus humerus
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(b) Principal axes of the surface points (obtained using PCA)

Figure 4.14: Two clipped surfaces

A critical issue of the cylinder fitting method is that the cylinder has to be clipped

in a way such that the principal axis of its surface points traverses through the centre of

the cylinder. If the height of the clipped cylinder is not long enough, the principal axis

constructed by PCA is unlikely to lie along the median of the cylinder. An example can

be seen in Figure 4.14, which shows two surfaces clipped from the same Colobus humerus

and their principal axes. The resulting initial principal axis in the right figure in Figure

4.14(b) does not lie along the cylinder median.

Having the centre of the humeral head and the rotation axis of the distal humerus,

obtained from either method one or method two, allows the two axes in Figure ??, Lh1

and Lh2, to be estimated by the steps described below.

Initialise layers Let pm be the middle point between the centre of capitulum and the

centre of the circle (or the mean point of all surface points on the clipped surface). pm
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Figure 4.15: The construction of the initial layers along the humeral shaft. Layeri is
perpendicular to ling segment pstart - pend

is on the rotation axis of the distal humerus. Two-thirds of the line segment pm - oh1,

shown as the line segment pstart - pend in Figure 4.15, was computed to construct the

initial layers. Line segment pstart - pend lies on the middle of pm - oh1. Figure 4.16(a)

shows the first and the fourth layers constructed perpendicular to pstart - pend. There are

30 of these initial layers along line segment pstart - pend in this thesis.

Extracting the centres of layers A plane was fitted to each layer using all surface

points belonging to this layer. These were projected to this plane and a circle was fitted

to the projection points; the centre of the fitted circle is calculated as the centre of the

current layer (Figure 4.16).

Layers reconstruction Line Lshaft was fitted to the centres of all layers using PCA to

approximate the medial axis (Figure 4.17). This line is the new direction to reconstruct

the layers on the humeral shaft. In Figure 4.18, point Pm and point oh1 are the projected

axis Lshaft. rh is the radius of the approximated sphere for the humeral head and rc is the

radius of the approximated circle or the radius of the approximated cylinder. a3 and a4

(a3 = 2 and a4 = 1 in this thesis) are constants deciding the areas of axis reconstruction.
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(c) Fit a circle to the projected points

Figure 4.16: Steps to obtain the centre of a layer on the humeral shaft

Figure 4.17: Construction of the long axis using the centres of all layers
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Figure 4.18: Axis reconstruction areas. a1rh and a2rc are the ranges to construct the
proximal axis and the distal axis.
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(a) Homo

(b) Colobus

Figure 4.19: Centre points of the humerus shaft and all the constructed axes

a1 and a2 are determined so that a1rh and a2rc are both equal to one quarter of the

length between P ′
start and P ′

end. The areas marked by a1rh and a2rc are the ranges of

reconstruction of the layers for the proximal and distal humerus, respectively.

Constructing Lh1 and Lh2 Given the reconstruction ranges a1rh and a2rc, axes Lh1

and Lh2 can be constructed using the same procedure as for Lshaft in Figure 4.17. For

each line segment, ten layers were divided for reconstruction.

4.3.3 Results

A demonstration of all the axes estimated on a Homo humerus and a Colobus humerus

using the described method is shown in Figure 4.19. Let Lr denote the elbow rotation axis

(Figure 4.11), Lc a line passing the centre of the humeral head, oh1, and perpendicular to

axis Lh1. Morphological parameters calculated on this Homo humerus are shown in Table

4.1.

All humeri in the present work were analysed. The average morphological parame-

ters for each genus, and the standard deviations (std), are shown in Table 4.2. Since there

is only one pair of Pongo shoulder bones in the datasets, parameters in the Pongo column
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Size of the humeral head (Sh) 16.10mm
- radius of the fitted sphere

Radius of the elbow hinge (Sr) 7.07mm
- average distance of points on the clipped area to axis Lr

Degree of bending (Db) 7.10◦

- angle between Lh1 and Lh2

Degree of torsion (Dt) 48.87◦

- angle between Lr and Lc

Offset of axis Lh2 (Dh2) - distal bending 6.39◦

- angle between Lh2 and Lshaft

Offset of axis Lh1 (Dh1) - proximal bending 4.24◦

- angle between Lh1 and Lshaft

Table 4.1: Morphological parameters of a Homo humerus (Homo 1 in Figure 3.4,
page 71)

are calculated from only one Pongo humerus. It can be seen that the great apes have

much larger humeral heads compared to the monkeys (greater radius of the fitted sphere),

whilst they are less twisted between the humeral head and the epicondyle (torsion) and

less bent at the proximal end (Dh1).

4.3.4 Validation

In order to assess the accuracy of size of the humeral head, ten sets of seed points were

selected on a Colobus humeral head and ten sets of corresponding surface points were gen-

erated by the seed points. The average distance between each approximated sphere centre

and the mean centre from all approximated spheres is 0.36mm with standard deviation

0.33mm. The average radius of the fitted spheres is 13.25mm with standard deviation

0.37mm.

The trochlea is a very smooth structure, which can be seen in Figure 2.2, page

27, and therefore it has no distinct concave feature to be identified automatically using

the crest line technique. Manual manipulation of landmark data is tedious and time

consuming, and it has both inter- and intra- observer reliability problems. Apart from

the above facts, the main reason why Dunning’s method [DDKJ03] cannot be used here

is because of the trochlear differences between the great apes and the monkeys. The

methodologies developed here reduce manual involvement and also lessen these types of
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Monkeys Cebus Colobus Macaca Papio Presbytis
mean std mean std mean std mean std mean std

Sh(mm) 7.5 2.6 8.9 0.3 9.9 2.6 12.3 0.4 8.2 0.8
Sr(mm) 3.4 0.2 5.6 0.4 6.0 1.2 9.0 0.6 4.9 0.4
Db(

◦) 28.1 3.8 11.9 1.6 14.2 2.9 13.6 2.9 10.7 4.3
Dt(

◦) 73.3 7.3 81.4 6.9 70.9 14.8 82.8 4.9 81.4 7.7
Dh2(

◦) 29.8 5.7 7.7 0.2 6.5 3.2 4.6 1.7 7.3 1.9
Dh1(

◦) 9.6 0.4 11.2 2.8 12.8 1.8 13.4 3.3 11.8 2.6

Great apes Pan Gorilla Homo Pongo
mean std mean std mean std

Sh(mm) 20.0 3.6 30.3 3.7 21.0 1.6 18.3
Sr(mm) 10.2 1.1 16.1 2.8 9.6 0.8 10.7
Db(

◦) 6.8 1.7 11.0 0.8 6.2 1.4 15.7
Dt(

◦) 22.1 14.6 33.0 16.8 42.6 11.3 70.4
Dh2(

◦) 6.4 1.6 7.9 2.1 7.7 1.3 12.9
Dh1(

◦) 2.0 1.9 3.9 1.3 2.7 0.8 4.9

Table 4.2: Average morphological parameters of humeri of the present genera

variations. Moreover, they are applicable to the present primate-humerus dataset.

To investigate robustness of Dunning’s method and the cylinder fitting method,

the two measurements were repeated on the same Colobus humerus. Ten cylinders were

clipped; ten sets of seed points on the capitulum (as shown in Figure 4.13(b)) and ten sets

of surface points on the trochlea (points in Figure 4.10(b)) were selected. The average

distance between the centres of the fitted spheres on the capitulum and the mean centre of

those spheres is 0.43mm, with standard deviation 0.33mm. The average distance between

the centres of the fitted circles on the trochlea and the mean centre of those circles is

0.42mm, with standard deviation 0.12mm. These values indicate that the circle fitting on

the concave ring of the trochlea is slightly more stable when approximating geometrical

parameters on this Colobus.

Ten axes were fitted to the clipped cylinders, and ten axes were constructed to

connect the sphere centres of the capitulum and the circle centres of the trochlea. Figure

4.20 shows the mean axes of these two repeated measurements on the Colobus humerus

shown in Figure 4.10(b). The 3D angle between them is 6.6◦ and their direction difference

is more obvious at the medial side of the humerus. The angle between the constructed axes

in the measurements and the mean axes of the measurements were calculated to assess
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Figure 4.20: Mean axes of ten repeated measurements on a Colobus distal humerus

Parameters Cylinder method Dunning’s method
mean std mean std

Db(
◦) 10.76 0.21 10.46 0.27

Dt(
◦) 79.61 1.12 85.83 1.77

Dh2(
◦) 8.31 0.15 8.71 0.25

Dh1(
◦) 10.88 0.02 10.86 0.03

db(mm) 13.86 0.19 14.65 0.46

Table 4.3: Morphological parameters of a Colobus humerus from ten measurements.
Definitions of the parameters are in Table 4.1.

the stability of the two methods. The average values of the angle differences are 2.2◦ and

2.5◦ in the cylinder fitting method and in Dunning’s method, respectively, with standard

deviations 0.4◦ and 0.7◦. Both methods are stable and the cylinder fitting method shows

more statistical stability.

Morphological parameters in Table 4.1 were estimated based on the constructed

anatomical axes and they are the parameters to be validated. Table 4.3 shows the average

values of these parameters and the standard deviations of them (db is the distance between

the two axes approximating the proximal and distal humeral shaft). Dunning’s method

shows more variability for all the estimated parameters.

The remainder of this thesis estimates the rotation axis using the cylinder fitting
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method (method two in Figure 4.11).

4.4 Geometrical Variation of the Scapula

The scapula is a complex bone with very complicated structures that are difficult to

describe. Its inferior and medial angles, spine, acromion process and glenoid vary largely

even within the same genus. Three axes were constructed on each scapula in the present

work: one describing the orientation of the glenoid, one describing the orientation of the

infraspinous fossa, and one approximating the lateral border.

Another axis can be constructed to approximate reliably the scapular spine of

great apes (Figure 4.28 shows the spine axis on a Homo scapula). The basic idea of the

construction method is to extract surface points on the spine satisfying some predefined

conditions (Section 4.4.1 describes how to choose these surface points), and to fit a line to

these surface points using PCA. Due to the large difference between the great apes and

the monkeys on the spine, this axis is not utilised to measure the geometrical feature in

this thesis.

Amadi and Hill describe the glenoid as a plane [Ama06, Hil06]. The normal of this

plane was suggested as the orientation of the scapula. However, as described in Chapter

2, Section 2.2, the glenohumeral joint is regarded as a synovial ball and socket joint. It is

inaccurate to describe the glenoid simply as a plane. Amadi proposed fitting an ellipse to

the cross section of the lateral border (highlighted area in Figure 4.21(a)) [Ama06]. An

axis approximating the lateral border was then fitted to all the centres of the fitted ellipses.

The non-human primate humeri do not have the same discrete anatomical properties as the

human humeri. It is obvious from Figure 4.21 that the cross section of the lateral border

of a Colobus scapula could not appropriately usefully be fitted by an ellipse (highlighted

area in Figure 4.21(b)).

This section suggests the description of the glenoid by a sphere and proposes a semi-

automatic method to estimate the geometrical axes on a primate scapula. These axes can

be used to describe the spatial relationships between the glenoid, the infraspinous fossa
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Figure 4.21: Cross sections of two scapulae
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Figure 4.22: Obtaining geometrical variation of the scapula

and the lateral border. The implementation procedure is explained below.

4.4.1 Methodology

The computational procedure can be summarised in the flowchart in Figure 4.22. A

suggestion for obtaining the axis of the scapular spine on great ape scapulae is presented.

Although the method was applied to monkey scapulae in the dataset, a more general and

reliable approximation of this axis is required in the future.

Manual labelling

Five surface points were labelled manually on a Homo scapula (Figure 4.23): two of them

are on the glenoid surface, three are on the lateral border and one is on the intersection

between the scapular spine and the medial border.
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Figure 4.23: Manually labelled surface points on a Homo scapula

Fitting a sphere to the glenoid

A least square best-fit sphere, instead of a plane, was fitted to the surface points of the

glenoid. The radius of the fitted sphere is calculated as a surrogate measure of size for

the socket of the three-degree of freedom (DOF) spherical joint. The surface points were

extracted by region growing starting from two seed points, LM5 and LM6, as shown in

Figure 4.24.

Since the crest lines obtained on the glenoid rim may be unclosed (there may be gaps

between crest lines such that the grown points would leak out of the region of interest), a

modified region growing algorithm (Algorithm 4) was developed. In Figure 4.24, the green

points on the glenoid are the grown points from the two seed points. They are to be used

to represent the glenoid surface. Let os be the average point of all points on the glenoid

surface, and c be the centre of the fitted sphere, the direction of vector |−−−→os − c| defines the

orientation of the glenoid and, consequently, the orientation of the scapula. The degree

of growing is restricted by the crest lines on the rim of the glenoid (blue points in Figure

4.24).
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Algorithm 4 Region growing on the glenoid, constrained by the crest lines on the glenoid
rim
1: Initialisation: create a column vector to record the indexes of the grown surface points

on the glenoid (gi=0,1,··· ,n−1 = false); create a column vector to record the stopping
point of region growing (fi=0,1,··· ,n−1 = false); set the maximum degree of region
growing (m = 6)

2: for each degree of region growing (it = 0 to m− 1) do
3: for each surface point (id = 0 to n− 1) do
4: if the surface point vid is on a crest line (Fid == true) && it is not a stopping

point (fid == false) then
5: set this point as a grown point (gid = true)
6: let l equals to the number of first-order neighbour vertices of vertex vid

7: for each first-order neighbour vertex uid
i (i = 0 to l − 1) do

8: if uid
i is not on a crest line then

9: set this neighbour vertex as a grown point (findex(uid
i ) = true)

10: else
11: set point vid as a stopping point (fid = true)
12: stop the current for loop
13: end if
14: end for
15: if point vid is a stopping point (fid == true) then
16: set each of its first-order neighbour vertex as a stopping point (gindex(uid

i ) =

true)
17: end if
18: end if
19: end for
20: end for
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Figure 4.24: Surface points extracted from the glenoid (in green). They were grown
from the two seed points which were manually labelled (in red), and were constrained
by the crest lines on the glenoid rim. The light blue points are crest points on all
crest lines.

Fitting an axis to the lateral border

The lateral border is approximated by an axis constructed from applying PCA to the

surface points on the lateral border, which are extracted by region growing the crest lines

obtained on the border (Figure 4.25). They are the closest crest lines to points LM1,

LM2 and LM3. The degree of region growing is determined so that the grown points only

cover the thickened area of the border. The angle between this axis and the vector |−−−→os − c|

(direction of the glenoid) describes the orientation of the lateral border with regard to the

glenoid.

Fitting a plane to the infraspinous fossa

The scapular fossa is approximated by a plane, which is the least square best-fit plane to

the surface points on the infraspinous fossa (on both the costal and dorsal surfaces, Figure
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Figure 4.25: Surface points extracted from the lateral border (in green) and the spine
(in blue)

4.26). The angle between the normal vector of the fitted plane and the direction of the

glenoid, |−−−→os − c|, defines the orientation of the fossa with regard to the glenoid.

Fitting an axis to the spine

The direction of the scapular spine is estimated by an axis fitted to the surface points

(shown as the blue points in Figure 4.25) on the spine using PCA. These surface points

are within a right circular cone, whose radius and height were determined individually.

The neck points in Figure 4.25 were firstly extracted and a circle was fitted to the

points. A right circular cone was generated with its base radius equal to 2rn, where rn

is the radius of the fitted circle, and its peak point lying on the intersection between the

medial border and the scapular spine. Surface points of the scapula inside this cone were

extracted to construct the spine axis.

Figure 4.27 shows the extracted surface points on a Papio scapular spine. The

surface points extracted are on a different area of the spine compared to those points in

Figure 4.26. A more general and reliable method is required to describe the scapular spine
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Figure 4.26: Surface points extracted from the infraspinous fossa

Figure 4.27: Surface points on a Papio scapular spine

in this primate dataset, or more manual manipulation should be involved to identify the

feature.

4.4.2 Results

Figure 4.28 shows the sphere fitted to the glenoid of a Homo scapula, and the axes ap-

proximating the scapular spine and the lateral border. A demonstration of the estimated

axes on this scapula can be seen in Figure 4.29. Table 4.4 shows the calculated anatomical

parameters from this scapula.
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Figure 4.28: Approximation axes constructed on a Homo scapula

Figure 4.29: Demonstration of the scapula axes
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(Sg): radius of fitted sphere 43.63mm
(Dgn): angle between glenoid axis and fossa normal 96.50◦

(Dsn): angle between spine axis and fossa normal 78.60◦

(Dsb): angle between spine axis and lateral border axis 52.20◦

(Dgb): angle between glenoid normal and lateral border axis 127.96◦

(Dgs): angle between glenoid normal and spine axis 175.02◦

Table 4.4: Morphological parameters of a Homo scapula

Monkeys Cebus Colobus Macaca Papio Presbytis
mean std mean std mean std mean std mean std

Sg(mm) 9.7 1.5 20.0 6.5 12.7 3.3 20.3 3.2 12.6 1.5
Dgn(◦) 85.0 6.4 87.8 3.7 81.9 9.9 74.5 17.3 87.3 7.0
Dsn(◦) 85.6 6.1 85.8 5.3 87.6 2.9 88.3 2.2 89.1 3.3
Dsb(

◦) 31.1 7.7 32.8 1.4 31.3 2.0 35.9 5.3 31.8 3.0
Dgb(

◦) 35.1 3.5 52.0 3.7 35.6 7.7 46.7 3.6 81.8 3.7
Dgs(

◦) 11.5 3.1 21.2 3.4 13.1 5.4 22.9 2.0 75.4 2.5

Great apes Pan Gorilla Homo Pongo
mean std mean std mean std mean std

Sg(mm) 34.8 7.5 36.8 2.1 40.6 10.2 22.9
Dgn(◦) 86.9 2.0 83.3 8.6 85.8 5.2 82.5
Dsn(◦) 62.2 6.2 83.7 9.1 79.9 10.9 82.3
Dsb(

◦) 40.1 6.6 33.1 6.7 46.7 6.3 25.0
Dgb(

◦) 32.3 2.0 32.3 9.4 51.1 13.4 20.4
Dgs(

◦) 35.8 2.1 10.7 1.4 11.2 5.7 5.0

Table 4.5: Average morphological parameters of scapulae of all the present genera

All the 30 scapulae in the dataset were analysed. The average estimations of geo-

metrical parameters are listed in Table 4.5. The parameters vary greatly across the dataset

without obvious commonality within the great apes or within the monkeys. The difference

of the radii of the fitted spheres on the glenoid is the only direct difference between the

monkeys and the great apes.

4.5 Redefinitions of the Coordinate Frames

Crest lines are utilised to differentiate feature areas on the surfaces to semi-automatically

construct the coordinate frames. Instead of working on every single 2D slice, the proposed

definitions obtain geometrical parameters from 3D shapes directly.



4.5 Redefinitions of the Coordinate Frames 112

(a) Proximal humerus frame (frameh1) (b) Distal humerus frame (frameh2)

Figure 4.30: Two coordinate frames on a Homo humerus

4.5.1 Coordinate Frames on the Humerus

Two coordinate frames on the humerus were established, one for the proximal humerus

referred to as frameh1 (Figure 4.30(a)) and the other for the distal humerus referred to

as frameh2 (Figure 4.30(b)).

Frame One - Proximal Humerus

The origin oh1 of frame one is set as the centre of the humeral head. It is the centre of the

sphere which is fitted to the surface of humeral head. Details of how to obtain this centre

were described in Section 4.3.2. The first axis xh1 is set to be parallel to the medial axis

Lh1 of the humeral shaft near the proximal end, pointing laterally. The second axis yh1 is

perpendicular to the line Lh1 and it passes through the origin oh1. The third axis zh1 is

perpendicular to the plane defined by xh1 and yh1, passing through the origin oh1. It is

obtained by calculating the cross product of xh1 and yh1.

Frame Two - Distal Humerus

Two methods constructing the elbow rotation axis were described in Section 4.3.1. Since

the structure of the capitulum does not always resemble a sphere, especially in non-
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Figure 4.31: Scapular coordinate frame

human primate humeri, the rotation axis was constructed using method two - the clipped

cylinder method. The unit vector of the constructed rotation axis, pointing to the medial

epicondyle, is taken as the second axis yh2 of the coordinate frame frameh2. The origin

oh2 is defined as the projection point from axis Lh2 to the second axis yh2. The first axis

xh2 is parallel to axis Lh2. The third axis zh2 is thus the perpendicular line to the plane

defined by xh2 and yh2. Axis zh2 lies on the perpendicular line l between axes Lh2 and

yh2.

4.5.2 Coordinate Frames on the Scapula

The origin of the scapular coordinate frame is set at the centre of the glenoid, which

is defined as the average point of the surface points obtained from the glenoid (region

growing points in Figure 4.13). The direction of the first axis xs points to the centre of

the sphere that fitted to the glenoid surface points. Let ns be the normal vector of the

plane fitted to the fossa, the second axis ys is defined as the perpendicular vector to both

axes xs and ys (cross product between them), pointing proximally. The cross product

between axis xs and axis ys thus gives the third coordinate axis zs. A demonstration is

shown in Figure 4.31.
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4.6 Summary

An improved method to extract crest lines on the shoulder bone surfaces has been pro-

posed. The implementation sequence was determined so that the surface curvatures can

be estimated more accurately. The crest lines automate the calculation of the bony geo-

metrical parameters, such as glenoid size and its orientation. With the constructed axes

inside the bones, other geometrical parameters can be easily obtained.

The chapter also redefines the coordinate frames on both of the shoulder bones.

The proposed definitions are based on automatic calculation instead of relying on massive

manual labelling as in traditional methods. Little manual manipulation was involved and

the resulting variations due to this manual intervention affect the parameter calculations

only slightly. The surface local features (such as the edge of the trochlea) used to extract

global shape information were chosen carefully so that they can not only describe shape

information from human datasets but also from non-human datasets.

The proposed definitions are applicable to all the shoulder bones in the present

datasets. The chosen features are reliable and the extracted parameters are comparable

across the genera. However, the tradeoff is the lack of information on some specific bony

morphological features which are uniquely present in human shoulders.

The methods developed in this chapter will be used in Chapter 6 to assess the

accuracy of the shape prediction method.
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Chapter 5

3D Statistical Shape Modelling of

Shoulder Bones

5.1 Introduction

This chapter proposes and uses robust methods for the construction of 3D statistical shape

models (SSM) of the primate humeri and scapulae. The point-to-point correspondence es-

tablishment is addressed by the B-spline multi-resolution free form deformation (FFD)

algorithm proposed by Rueckert et al [RSH+99]. Two applications of the constructed

shape models of the primate shoulder bone shapes are demonstrated. The first appli-

cation is the classification of a shoulder bone without taxonomical information by using

principal component analysis (PCA). The results demonstrate significant variability be-

tween clusters of the great apes and the monkeys, clearly distinguishable in the coordinate

systems formed by the principal axes. Leave-one-out validations were conducted. The

second application is the description of morphological variations of the shoulder bones.

No prior knowledge about anatomy was required or used.

Recent studies on bony morphology have demonstrated methodologies of building

an SSM of human femora [CBE+04, RNS04]. An application of the SSM is to reconstruct

a whole femur shape using a set of sparse points on the bone surface. This application is

also called bone morphing and it is highly useful for intra-operative visualisation of bone
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structures in image-free surgery [RNS04, SBM+02]. An iterative optimisation method

was developed to reconstruct a complete surface by fitting a constructed shape model to

a set of sparse surface points. Leave-one-out validations were also performed to assess the

accuracy of the surface reconstruction.

5.2 Correspondence Establishment

The basic idea of establishing point-to-point correspondences between two surfaces is simi-

lar to the one proposed by Frangi et al [FRSN02], which is to relate the position of features

or coordinate space in a source shape with the position of the corresponding feature or

coordinate space in its target shape. A shape in the dataset is chosen as the reference

(atlas), and it is transformed globally and deformed locally with regard to the remainders

of the shapes (targets).

The deformed reference shape is thus close enough to one of its target shapes so

that the corresponding surface point set can be identified. For a global transformation,

rigid surface registration based on the iterative closest point (ICP) algorithm [BM92] was

used to align the reference to its target; for local transformations, non-rigid registration

based on the B-spline multiresolution FFD, an extension of the image-based registration

algorithm proposed by Rueckert et al [RSH+99] and further developed by Schnabel et al

[SRQ+01], was used.

5.2.1 Humerus Dataset

Since the present datasets include various genera, the size of the bones is very different.

For example, a Gorilla humerus can be about five times longer than a Cebus humerus

in the dataset. A direct rigid transformation, followed by an affine transformation, may

fail to align the reference shape properly for further local non-rigid registration. An easy

and appropriate way to deal with this is to initialise the rigid deformation by scaling

the reference shape to the same size as its current target shape. A shape satisfying the

following two conditions is chosen as the reference shape: its number of surface points is
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(a) Reference (smaller) and its target (pink) (b) Scaled reference (below) and its target (pink)

(c) Rigid transformation to the target (pink) (d) Non-rigid deformation to the target (pink)

Figure 5.1: Scaling, alignment and deformation of the reference shape. The target
shape (pink) is unchanged from (a) to (d).

close to the average number of surface points across the dataset; its surface is visually

smooth.

Assuming the reference shape and the current target shape are in a common coor-

dinate system and that the longest axes of their bounding boxes lie on the same or similar

directions (direction difference must be less than 90 degrees), the scaling factors in x, y

and z directions are all defined with regard to the difference between the reference shape

and the target shape on the longest axes of their bounding boxes. The scaled reference

shape is only changed in size but not in the shape. The scaled reference shape is then

aligned to the target shape using rigid surface registration based on the ICP algorithm

[BM92].
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Figure 5.1 shows the procedure by which the reference humerus shape (from a

Macaca) is aligned and deformed to the current target humerus shape (from a Homo).

As can be seen, the surface of the reference shape is very close to the surface of the

target shape after scaling and rigid alignment. Therefore, a local multi-resolution B-spline

deformation without global affine registration is sufficient to deform the source shape to

the target shape finely. The deformation shown in Figure 5.1(d) is completed by an initial

control grid resolution of 40mm × 40mm × 40mm and four control grid subdivisions.

The resolution of the control point grid and the number of subdivisions are determined

empirically, so that the values provide a compromise between smoothness and accuracy.

One can either use the deformed reference shape directly as one of training samples,

or find the closest surface point set of the target shape to the reference shape. The first

method produces very smooth surfaces for training whilst the latter produces sometimes

very bumpy but comparatively accurate surfaces. Shapes produced by these two methods

are shown in Figure 5.2, where the left shape is constructed using the closest point set

to the deformed reference shape and the right one is the deformed reference. No obvious

differences between these two surfaces can be identified. As such the deformed reference

shapes were taken as the training samples.

5.2.2 Scapula Dataset

The humerus belongs to the catalogue of long bones, which is a relatively simple anatom-

ical form, whilst the scapula belongs to the catalogue of flat bones, which have complex

structures expanding into broad, flat plates. The other three types of bones in the human

body include short bones, irregular bones and sesamoid bones. The flat and irregular bony

structures challenge all non-rigid deformation methods which utilise closest point analysis.

Figures 3.5 and 3.6 in Chapter 3 (on pages 73 and 74) display all scapulae of the present

datasets. They were aligned into the same position. Both size and the shape vary signif-

icantly from one genus to the other. As in the humerus set, the reference scapula shape

was scaled to the current study shape using their bounding boxes during correspondence

establishment.
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(a) (b)

Figure 5.2: Two representations of the same bone shape that are almost identical.
(a) Deformed reference shape (b) Closest point set to the reference shape (they are
surface points on the target shape)

In the present dataset, scapulae are similar at the acromion, the coracoid and the

glenoid areas within the category of monkeys or within the category of great apes. A global

transformation Tglobal and a local surface-based FFD are sufficient to deform a monkey

scapula shape to another monkey scapula shape (Figure 5.3 shows a Macaca scapula shape

being deformed to a Papio scapula shape which is in the same coordinate system), or a

great ape scapula shape to another great ape scapula shape. However, these scapulae have

very different acromion, coracoid and glenoid features in different categories, which make

it insufficient to use a direct surface-based B-spline FFD following a global transformation.

For example, a Gorilla scapula has a more extended acromion surrounding the humeral

head than a Macaca scapula. The highlighted area in Figure 5.4 shows the incorrect

registration area when deforming a Macaca scapula shape to a Gorilla scapula shape

using a surface-based FFD.

To establish correct correspondences, this thesis proposes to initialise the B-spline

deformation by matching a few point landmarks on the reference shape to their correspond-

ing point landmarks on the target shape. These landmarks are the anatomical landmarks
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(a) After global transformation,
including rigid and affine trans-
formations. The Papio scapula
is in khakis and it is the target
shape.

(b) Subdivision level one to level four (left to right). The Papio scapula (in khakis) is the target
shape, and it is unchanged from left to right.

Figure 5.3: Multiresolution free form deformation. The control point resolution is
40mm× 40mm× 40mm in subdivision level one. A Macaca scapula is transformed and
deformed to a Papio scapula (in khakis and unchanged in all subfigures). With more
subdivisions, the reference shape is closer to the target shape.

(a) Deformed shape (in khakis) shown in surface (b) Deformed shape (in khakis) shown in mesh

Figure 5.4: A Macaca scapula (in khakis) incorrectly deformed to a Gorilla scapula
(target, in pink)
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(a) Anatomical landmarks on a study shape
(from a Gorilla)

(b) Anatomical landmarks on the reference shape
(from a Macaca). It is transformed rigidly and
affinely to the study shape.

Figure 5.5: Corresponding anatomical landmarks labelled on two aligned scapulae.
They were selected manually.

located on the medial angle, the glenoid rim near the supraglenoid and the infraglenoid

tubercles, the lateral edge of the acromion, and the region on the coracoid process at-

tached to the biceps brachii. A demonstration of these anatomical landmarks is shown

in Figure 5.5. The points in the figure were labelled manually on both the target (left)

and the reference (right) scapula shapes. After the initialisation procedure, the reference

shape resembles the target shape at the areas which contain those anatomical landmarks.

A further refined surface-based B-spline deformation was then applied to the initialised

shape. In the present work, the scapula from Macaca 2 was selected as the reference shape.

Therefore, the initialisation step was only utilised when establishing correspondences of

scapula shapes from the great apes in the dataset.

Given a reference shape Sr and a study shape Ss which is in a different category

(category of the monkeys versus category of the great apes) from shape Sr, the implemen-

tation procedure is listed as follows:

• Sr was firstly scaled with regard to Ss and then transformed rigidly to Ss: Sr−global =

Tglobal(Sr). The scaling factor is determined by the size difference between their

bounding boxes (Section 5.2.1). A rigid transformation is performed based on the

ICP algorithm.
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(a) Two sets of anatomical landmarks. Red
points are on the target shape; green points
are on the transformed reference shape.

(b) One landmark set deformed to the
other. Green points (become blue points in
the figure) are deformed to the red points.
Red points are almost invisible.

Figure 5.6: Matching corresponding landmarks using B-spline free form deformation.
The two point sets in (a) are the same point sets shown in Figure 5.5

• Manual selection of the corresponding anatomical landmarks, mainly selected on the

acromion and the coracoid process, was conducted on Ss and Sr−global. Figure 5.5

shows an example of the two sets of corresponding landmarks, LMs (red points) and

LMr (green points), which were manually selected on Ss and Sr−global.

• The two sets of corresponding anatomical landmarks were matched. In Figure 5.6,

LMr (the green point set in Figure 5.6(a), the blue point set in Figure 5.6(b)) is

deformed to LMs (the red point set in both subfigures) non-rigidly using multires-

olution B-spline FFD with a 20mm × 20mm × 20mm control point grid and four

subdivisions. The red points are selected from the study shape; the green points

are selected from the rigidly and affinely transformed reference shape. In Figure

5.6(b) the green points are deformed to the red points, and the blue points are the

anatomical landmarks after the deformation.

• Sr−global is embedded into the deformation field of the control point mesh, which

is obtained by matching the two sets of landmarks, so that the acromion and the
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(a) Two shapes and their point landmarks from two angles of view. These are the same shapes and
point sets as shown in Figure 5.5

(b) The reference shapes are embedded into the deformation field defined by matching the anatomical
landmarks. The green scapulae are the deformed reference shape from two angles of view.

Figure 5.7: Initialising surface-based free form deformation. The reference shape
(pink shape in (a)) is deformed approximately to a study shape (in khakis)

coracoid are extended to those of Ss. Other areas (e.g. vertebral border) remain the

same (Figure 5.7).

• The embedded shape Sr−em is now morphometrically close enough to Ss. A further

refined surface-based FFD is able to deform Sr−em to Ss accurately. The deformation

results shown in Figure 5.8 were attained using four control points subdivisions and a

starting resolution 40mm×40mm×40mm. The selected landmarks on both shapes

do not necessarily match each after the surface-based deformation.

As in building the humerus training set, one can either use the deformed reference
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Figure 5.8: Illustration of surface-based B-spline free form deformation from two
angles of view. The khakis shape is the same Gorilla scapula shape in Figures 5.5
and 5.7. The purple shape is the final deformation.

scapula shape (for example the purple scapula in Figure 5.8) directly as one of the training

samples, or find the closest surface point set of the target scapula shape (the khakis scapula

in Figure 5.8) to the reference shape. No obvious differences between these two types of

scapula surfaces can be identified. This thesis uses the deformed reference scapula shapes

as the training samples.

5.3 Rigid Alignment

Size information is comparatively easy to obtain, but represents a significant portion of

variance, and shape variability is of more importance yet more subtle in magnitude. Due

to the substantial size variation in the datasets, other (shape) variations are comparatively

less explicit. To better understand both size variation and shape variation, two models

were built in this thesis: in model one, the training set was built from the bone shapes in

their original size; in model two, all the bones were scaled to the reference shape so that

there is no size variation in the training set.

Before constructing the two models, it is assumed that point-to-point correspon-

dences have been established. This section explains how to align all the shapes into the

common coordinate systems. The two training sets (with point-to-point correspondences)

are used in the classification application in this chapter and will be used in Chapter 6.
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5.3.1 Model One - Including Size Variation

Although bones were fixed in a certain position during CT scanning, there are still large

location errors due to the manual positioning. Given a set of shapes with n corresponding

surface points, in order to minimize the variations caused by different positions, they are

aligned to a pre-defined coordinate system.

Humerus Model

The centre of the humeral head oh1 (definition of oh1 is in Chapter 4, Section 4.5.1) is

defined as the origin of the local coordinate system of a humerus. All humerus shapes in

the training set were aligned in a way such that (i) the centres of their humeral heads

are fixed to a certain point (origin), (ii) the humeral shaft, which is represented by a

line connecting the centre of the humeral head and the middle point between the two

epicondyles in this section, were aligned, and (iii) the epicondylar axis, determined by the

medial epicondyle and lateral epicondyles, are placed on the same plane. The humeral

shaft representation in point (ii) is different from the one described in Chapter 4. It is

only used for alignment purposes only in this chapter.

More specifically, let’s assume P1, P2 and P3 (origin) are three points on the

reference shape, denoting the medial epicondyle, the middle point of the two epicondyles

and the centre of the humeral head respectively, and Q1, Q2 and Q3 denote the three

corresponding points on a study shape. The study shape was aligned to the reference

shape so that Q3 was moved to the origin, Q2 was located on line P2 - P3 and Q3 was

placed on the plane determined by P1, P2 and P3. A demonstration of the alignment is

shown in Figure 5.9.

The three points are obtained semi-automatically. The calculation of the centre

of the humeral head is described in Chapter 4, Section 4.3.2. The two outermost points

on the epicondyles were obtained by getting two points with extreme coordinates. Figure

5.9(d) shows a Cebus humerus shape being aligned to a Macaca humerus shape using the

three alignment points.
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(c) Alignment points on a Macaca humerus

(d) A Cebus humerus (smaller) aligned to a Macaca humerus
using the two alignment point sets

Figure 5.9: Alignment based on three alignment points
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(a) Origin (b) Two of the three alignment points

(c) A Presbytis scapula (smaller) is aligned to a
Papio scapula

Figure 5.10: Three points defining alignment coordinate system

Scapula Model

A study scapula shape was aligned to the reference scapula shape with its centre of the

glenoid cavity located at the predefined origin (Figure 5.10(a)). The other two points

determining alignment are located at the inferior angle and the intersection shared by the

medial border and the scapular spine. The three alignment points shown in the figure

were selected manually. The idea of alignment is the same as that in the humerus model,

which is shown in Figure 5.9. P1, P2 and P3 (origin) are the three alignment points on

the reference shape whilst Q1, Q2 and Q3 are the three corresponding points on the study

shape. The study shape was aligned to the reference shape so that Q3 was moved to the

origin, Q2 was located on line P2 - P3 and Q3 was placed on the plane determined by P1,
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P2 and P3. The result of aligning a Presbytis scapula shape to a Papio scapula shape is

shown in Figure 5.10(c).

5.3.2 Model Two - Excluding Size Variation

Before aligning the shapes into the same coordinate system, they were scaled into the

same size as the reference shape. Alignment in model two is implemented automatically

using a rigid transformation. The solution for the transformation function Trigid, which

is known as the solution to the orthogonal Procrustes problem, can be obtained using the

Procrustes algorithm [KIMW00].

Humerus Model

Two humeri are considered to have the same size if they have the same length from the

humeral head to the trochlea. To scale a study humerus shape to the reference humerus

shape, the bounding box was utilised (described in Section 5.2.1). If the reference humerus

R is in a ∆x × ∆y × ∆z bounding box with ∆z denoting the length of its longest axis,

and the study humerus Hi is in a ∆xi ×∆yi ×∆zi bounding box with ∆zi denoting the

length of its longest axis, Hi is scaled with a scaling factor t = ∆z/∆zi in all the three

directions. The scaled study humerus shape Hi was thereafter aligned to the reference

humerus shape using the ICP algorithm.

The scaling method using bounding boxes is a rough method to eliminate size

variation in the humerus dataset, because the longest axis of a humerus’ bounding box is

not equal to the longest axis of the local coordinate system of the humerus. To remove

more size effect, the procedure of scaling and alignment was repeated twice (Figure 5.11).
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(a) A Colobus humerus (pink) and a Papio humerus

(b) The Colobus humerus (pink) is scaled using its current bounding box; the Papio humerus is
unchanged.

(c) The scaled Colobus humerus (in green) is aligned to the Papio humerus,
which is shown in khakis triangular mesh surface.

(d) The Colobus humerus (in purple) is scaled a second time using its mod-
ified bounding box. Then it is aligned rigidly again to the Papio humerus,
which is shown in khakis triangular mesh surface.

Figure 5.11: Repeated scaling and alignment of a Colobus humerus
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Scapula Model

The scaling factor is computed in a such way that any two scapulae have the same length

between point 2 and point 3 as shown in Figure 5.10. That is to say, line Q2 − Q3 in

Figure 5.9 is scaled so that it has the same length as line P2 − P3. The scaling factor

obtained was then applied to the other two directions. In Figure 5.12, a Colobus scapula

is firstly scaled to a Papio scapula using the manually selected points defined in Figure

5.10, and then aligned to the Papio scapula rigidly using the ICP algorithm.

5.4 Results and Applications

Once the surface point correspondences are identified and the shapes are aligned in a

common coordinate system, a shape xi(i = 0, 1, · · · , n− 1) is denoted by a column vector

of all its surface point coordinates: xi = (xi1, yi1, zi1, xi2, yi2, zi2, · · · , xin, yin, zin)T .

The eigenvalues of the covariance matrix C are the measurements of the varia-

tions described by the corresponding eigenvectors. They decrease rapidly, which means

the variations described by the corresponding principal axes also decrease rapidly. The

cumulative percentage of eigenvalues of the first few principal components in model one

(including size variation) is much greater when compared to model two (excluding size

variation), which can be seen in Figure 5.13. In the humerus models, the first three prin-

cipal modes of model one contribute more than 99% of the shape variability whilst the

first three principal modes of model two contribute 73%. In the scapula models, the first

three principal modes of model one contribute 97% of the scapula shape variability whilst

the first three principal modes of model two contribute 83%.

Since different genera in the datasets have different numbers of samples, the overall

mean shape x in Equation 2.16 was calculated from the mean shapes of every genus.

Projections of all the humerus shapes onto the first three principal axes (transformed

shape vectors) are shown in Figures 5.14 and 5.15 and projections of all the scapula

shapes are shown in Figures 5.16 and 5.17. Each point in the figures represents a humerus

or a scapula shape.
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(a) A Papio scapula (right) and a Colobus scapula in their
bounding boxes

(b) The Colobus scapula (left) is scaled using its bounding
box

(c) The scaled Colobus scapula (in purple) is aligned
to the Papio scapula

Figure 5.12: Scaling and alignment of a Colobus scapulae. The reference shape is a
Papio scapula shape.
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(b) Scapula dataset

Figure 5.13: Cumulative percentages of eigenvalues of the humerus models and the
scapula models

Figure 5.14(a) shows three clusters, one of which contains four types of the great

apes including the humans, one of which contains only the Papio humeri and one of

which consists of all the remaining monkey humeri. The great ape cluster can be further

classified into two sub-clusters, one of which consists of only the Gorilla humeri. This

clustering pattern is consistent with the locomotor grouping in Table 3.3 (page 67). The

Homo and the Pongo in the figure can be categorised into group three according to Table

3.3. In Figure 5.14(b), the group of Papio which encompasses the fewest locomotor types

(quadrupedalism and vertical climbing), separates itself from all the other genera in the

dataset.

When size variation is excluded, the first principal components distinguish the

great apes from all the monkeys (Figure 5.15(a)). The genera encompassing bipedalism

and brachiation locomotor types are different in morphology from the genera that do

not encompass these locomotor types. No obvious clusters can be identified from the

projections on the second and the third principal axes (Figure 5.15(b)).

In scapula model one, the human scapulae are distinguishable in both Figures

5.16(a) and 5.16(b), and they separate themselves from all the remaining genera in the

dataset on the plane formed by the second and the third components (Figure 5.16(b)).

The Gorilla are separated by the first principal component (Figure 5.16(a)). The Pongo,

primarily arboreal, in Figure 5.16(b) belong neither to the Homo group, nor to that of

any other genus.
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∗ Cebus; ◦ Pan; � Colobus ⊲ Gorilla; ♦ Homo; ▽ Macaca; + Pongo; ⋆ Papio; • Presbytis

Figure 5.14: Quantification of the humeri - Model One (Including size variability)
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∗ Cebus; ◦ Pan; � Colobus ⊲ Gorilla; ♦ Homo; ▽ Macaca; + Pongo; ⋆ Papio; • Presbytis

Figure 5.15: Quantification of the humeri - Model Two (Excluding size variability)
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∗ Cebus; ◦ Pan; � Colobus ⊲ Gorilla; ♦ Homo; ▽ Macaca; + Pongo; ⋆ Papio; • Presbytis

Figure 5.16: Quantification of the scapulae - Model One (Including size variability)
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∗ Cebus; ◦ Pan; � Colobus ⊲ Gorilla; ♦ Homo; ▽ Macaca; + Pongo; ⋆ Papio; • Presbytis

Figure 5.17: Quantification of the scapulae - Model Two (Excluding size variability)
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In scapula model two, the group consisting of the great apes is located on the

positive side of the first principal axis whist the group consisting of monkeys is located

on the negative side (Figure 5.17(a)). Four clusters can be identified: one consists of the

Papio only, one consists of all the remaining monkeys, one contains the Pongo and the

Pan, and one contains the other two types of great ape, the Homo and the Gorilla. If we

group the remaining two clusters (both located on the positive size of the first principal

axis), the clustering pattern is also consistent with the locomotion grouping in Table 3.3.

On the plane formed by the second and the third principal axes (Figure 5.17(b)), the

monkey scapulae tend to gather at the centre of the cluster whilst the great ape scapulae

take up a larger area around the monkey scapulae. This suggests that the morphological

variation of large primate genera is greater than those from smaller primate genera.

The present datasets contain a large number of variables. Each coordinate of a

surface point is a variable (number of variables = 3 × number of surface points). However,

the sample size of the dataset is small. Validation of applying PCA to this kind of dataset

is out of the scope of this thesis. To assess the robustness of the proposed methodologies,

all applications involving PCA results (including shape models, genus classifications, and

the prediction models in Chapter 6) are validated instead.

5.4.1 Classification

Using a transformed shape vector in the coordinate system formed by the principal axes

(b in Equation 2.16, page 44), a given shoulder bone shape B without any prior knowledge

can be classified. Assuming Mi (i = 1, 2, · · · , 9) is the mean projection of each genus, and

Bp is the transformed B vector, the most possible group that B belongs to is the genus

whose mean vector Mi is closest to vector Bp (the shortest Euclidean distance along the

first three principal axes).

Due to orthogonality of the eigenvectors P in Equation 2.16, distribution bi on the

principal axes Pi can be calculated as bi = P T
i (x − x) and scaled by bi = bi/

√
λi, where

λi is the eigenvalue corresponding to eigenvector Pi. Scaling of b is linear and it does not

change the pattern of distribution. Two identical distribution patterns, with and without
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the eigenvalue scaling, are shown in Figure 5.18. The Euclidean distance between any two

points in projection space is calculated based on the scaled axes.

Leave-one-out validations of the classification were conducted. In each validation,

one of the humerus shapes was taken out and an SSM was built on the remainder of the

shapes. The left-out humerus shape was then classified based on the constructed model.

Since there are 32 humeri and 30 scapulae and there is only one pair of Pongo shoulder

bones available, 31 humerus classifications and 29 scapula classifications were conducted.

Classifying the Humeri

As mentioned above, two clusters, but no further sub-clusters, are distinguishable in the

coordinate system constructed by the principal axes of humerus model two. Consequently,

classification of the humeri without size variation shows poor results, with only 12 accurate

classifications out of 31 (38.7% correctness). Though most of the humeri are inaccurately

classified to genus, they were classified to a genus belonging to the same higher taxon

(the monkey category or great ape category). For example, in model two, Cebus 1 was

classified as Papio but both of them belong to the monkey category. Pan 1 was classified

as Gorilla but they both belong to the great apes. All 31 primate humeri are classified

within the correct higher taxon.

When size variation is included, humerus shapes from the same genus tend to group

together in the coordinate system (Figure 5.15) and, consequently, the classification based

on model one shows much more promising results, with 25 accurate classifications out of

31 (80.6% correctness). Table 5.1 gives the classification results on the humerus dataset.

Classifying the Scapulae

Table 5.2 gives the classification results of the scapula dataset. 21 out of 29 classifications

are accurate when size variation is included and 23 out of 29 classifications are correct

when it is excluded, claiming 72% and 79% correctness. For those scapulae that are

inaccurately classified, they are classified to the genus which belongs to the same higher

taxon (the monkeys or the great apes) of themselves. In model two, only Papio 4 (the
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∗ Cebus; ◦ Pan; � Colobus ⊲ Gorilla; ♦ Homo; ▽ Macaca; + Pongo; ⋆ Papio; • Presbytis

Figure 5.18: Comparison of the quantification distribution patterns with and without
scalings. In (a), the coordinates bi on the principal axes are calculated by bi = PT

i (x−x);
in (b), the coordinates are scaled by bi = bi/

√
λi.
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Specimen Model One Model Two
(Excluding size) (Including size)

Cebus 1 Cebus Papio
Cebus 2 Cebus Macaca
Cebus 3 Cebus Presbytis

Colobus 1 Presbytis Presbytis
Colobus 2 Colobus Colobus
Colobus 3 Colobus Papio
Colobus 4 Colobus Presbytis

Macaca 1 Macaca Macaca
Macaca 2 Macaca Macaca
Macaca 3 Cebus Papio
Macaca 4 Macaca Macaca

Papio 1 Papio Colobus
Papio 2 Papio Cebus
Papio 3 Papio Colobus
Papio 4 Papio Papio

Presbytis 1 Presbytis Presbytis
Presbytis 2 Colobus Colobus
Presbytis 3 Colobus Papio
Presbytis 4 Presbytis Colobus
Presbytis 5 Presbytis Cebus

Pan 1 Pan Gorilla
Pan 2 Homo Gorilla
Pan 3 Pan Homo

Gorilla 1 Gorilla Gorilla
Gorilla 2 Gorilla Gorilla
Gorilla 3 Gorilla Pan

Homo 1 Homo Homo
Homo 2 Homo Homo
Homo 3 Homo Homo
Homo 4 Pan Homo
Homo 5 Homo Pan

Table 5.1: Leave-one-out validations of the humerus classification
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Specimen Model One Model Two
(Excluding size) (Including size)

Cebus 1 Cebus Cebus
Cebus 2 Cebus Macaca
Cebus 3 Cebus Cebus

Colobus 1 Prebytis Colobus
Colobus 2 Macaca Presbytis
Colobus 3 Colobus Presbytis

Macaca 1 Macaca Macaca
Macaca 2 Macaca Macaca
Macaca 3 Cebus Macaca
Macaca 4 Macaca Cebus

Papio 1 Papio Papio
Papio 2 Papio Papio
Papio 3 Papio Papio
Papio 4 Pongo Papio

Presbytis 1 Presbytis Presbytis
Presbytis 2 Colobus Colobus
Presbytis 3 Colobus Presbytis
Presbytis 4 Presbytis Colobus
Presbytis 5 Presbytis Presbytis

Pan 1 Pan Pan
Pan 2 Pongo Pan
Pan 3 Pan Pan

Gorilla 1 Gorilla Gorilla
Gorilla 2 Gorilla Gorilla
Gorilla 3 Gorilla Gorilla

Homo 1 Homo Homo
Homo 2 Homo Homo
Homo 3 Pongo Homo
Homo 4 Homo Homo

Table 5.2: Leave-one-out validations of the scapula classification

monkeys) was classified as Pongo (great apes), giving 96.6% correct classification of the

categories. Classification accuracy of the scapula dataset is much higher than that of the

humerus dataset when size is included, and it is slightly worse when size is excluded.

5.4.2 Plausible Shapes

According to Equation 2.16, changes of the latent variable b within a certain range of

distribution can reconstruct the plausible shapes. These reconstructed shapes are able to

demonstrate the morphological variation visually corresponding to each principal mode.
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The results show that, in model one (including size), the first principal modes in the

humerus model and the scapula model are related to size variation (Figures 5.19 and

5.20).

Coronal View Sagittal View
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λ mean √
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Figure 5.19: Humerus morphological variation described by the first principal mode
(model one - including size)
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Figure 5.20: Scapula morphological variation described by the first principal mode
(model one - including size)

Humerus Model

Size is an important variable in the analysis of the primate humerus shape. It claims

99.7% of variability in the present humerus shape model. When size was removed, the

humerus shapes within the same category (the monkeys or the great apes) are barely

distinguishable. When comparing Figure 5.21 with Figure 5.22, it can be seen that the

variation of the first principal mode in model two (excluding size) is similar to that of

the second principal mode in model one (including size), which is related to bending of

the humeral shaft. Furthermore, the variation of the second principal mode in model two
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Figure 5.21: Humerus morphological variations described by the 2nd, 3rd and 4th

principal modes (model one - including size)

(excluding size) is similar to that of the third principal mode in model one (including size),

regarding the width of the humeral shaft.

According to the morphological variations and the distribution patterns (Figures

5.14 and 5.15), one can tell that bending is the main morphological variation distinguish-

ing the humeri from the monkeys and the humeri from the great apes. This can be a

key element in analysing shape changes relating to the development of bipedalism and

brachiation. Relating Figure 5.19 to Table 3.3 and Figure 5.14 shows that difference in

humerus size is an important variable characterising to the three locomotor groups.
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Figure 5.22: Humerus morphological variations of the first three principal modes
(model two - excluding size)
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Figure 5.23: Scapula morphological variations described by the 2nd, 3rd and 4th prin-
cipal modes (model one - including size)

Scapula Model

Morphological variations of the scapulae are demonstrated in Figures 5.23 and 5.24. In

model one (including size), the shape variations of the second principal mode are related

to the relationship of length to breadth of the bone, and to the extent of the acromion.

The long, narrow scapula becomes progressively broader, primarily due to the increase of

size of the infraspinous fossa, and the acromion becomes more extended. This is consistent

with the alterations of the scapula shape with the change from pronograde to orthograde

posture as suggested by Inman et al [ISDA44]. In model two (excluding size), the first

principal mode corresponds to the size of the infraspinous and supraspinous fossae. Similar

to the second principal mode in model one, the acromion becomes more extended as the

scapula blade becomes broader.

Compared to the humerus-shape model, the size of the scapulae in the dataset is

less dominant although the first principal mode accounts for 88.4% total variance. When
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Figure 5.24: Scapula morphological variations of the first four principal modes (model
two - excluding size)

size variation is excluded, the classification of the scapulae shows 71% accuracy in the

leave-one-out validations (Table 5.2), which is more accurate than was the classification of

the humeri (Table 5.1). When analysing correlations between shoulder bone morphology

and locomotion, the scapulae are likely to provide more morphological information than

the humeri, since they are more distinguishable between genera.

5.5 Statistical Shape Models of the Human Femora

The methodology developed to build a 3D SSM for the humeri was applied to a set of hu-

man femora. Size variation is essential and therefore included in the model. Point-to-point
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correspondence establishment of the bone surfaces are obtained using multi-resolution B-

spline FFD (Section 5.2). Two shape models were built - one aligned the training shapes

with the centres of femoral heads fixed, and the other without the centres being fixed.

Both alignments utilised the ICP algorithm. In the former model, ICP was applied using

the centre of the femoral head as the centre of rotations and translations; in the latter

model, the centroid of all surface points was taken as the centre of rotations and transla-

tions. Assuming the femoral head is a perfect sphere, the centre point can be calculated

by fitting a sphere to the femoral head (implementation in Chapter 4, Section 4.3.2). The

alignments of both models are displayed in Figure 5.25.

(a) (b)

Figure 5.25: ICP alignment of the femur shapes. Khakis shapes in both (a) and (b)
are reference shapes. (a) centre of the femoral head fixed, (b) ICP rigid alignment.

The two models are built from 24 adult human femora, 17 left femora and seven

right femora. They were CT scanned with imaging parameters as follows: slice thickness

1mm; image matrix dimension 512 × 512, with in-plane resolution 0.39mm × 0.39mm.

The outline of each femur was segmented manually using the software Amirar and then

converted into a 3D triangulated mesh surface using the marching cubes algorithm in the
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software Image Registration Toolkit. Decimation and smoothing were both implemented

using Amirar. The seven right femora were flipped to the left femora using their mirror

shapes.

1st principal mode

2nd principal mode

−3
√

λ −2
√

λ −
√

λ mean
√

λ 2
√

λ 3
√

λ

Figure 5.26: Femur morphological variations of the first two principal modes (model
one - without fixing the femoral head)

The initial resolution of the mesh grid in the multi-resolution B-spline FFD was

40mm × 40mm × 40mm with four subdivisions. Shape variations of the femora, corre-

sponding to the first two principal modes, are shown in Figures 5.26 and 5.27. In model

one (with the centre of the femoral head fixed), the first three principal modes represent

98% shape variance and its first principal mode accounts for 94% of the total variance.

According to Figure 5.26, size is the most prominent variation and the extension of the

femoral neck is the second most important component. In model two, the first three princi-

pal modes explain 95% of the total shape variations and the first principal mode describes
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Figure 5.27: Femur morphological variations of the first two principal modes (model
two - fixing the femoral head)

89% of the total variance. The first component is also related to size of the femora and

the second component is related to the extension of the femoral head.

5.6 Bone Morphing with Statistical Shape Models

Bone morphing enables a complete surface to be reconstructed from a set of extremely

sparse 3D digitised anatomical landmarks or surface points on the bone. Only a set of

points on the bone surface is required to instantiate its bony structure without scanning

the complete bone. This technique is useful in reconstructing a whole bone with discrete

bone segments or with bone tumors. This section simulates the surface point digitisation

procedure and describes how to reconstruct a complete femur surface on the sparse surface

points.
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5.6.1 Simulation of Digitising Surface Points

The reproduction of the surface around the femoral neck, the greater trochanter and the

anterior border of the femoral notch is of importance and geometric surface points are

therefore digitised on those areas. To reduce a massive manual digitising work, surface

points are obtained automatically using the skeleton of the crest points. Details concerning

the extraction of crest points and the skeletonisation are in Chapter 4, Section 4.2. A

demonstration of the selected surface points is shown in Figure 5.28.

Figure 5.28: Simulation of digitised point landmarks
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5.6.2 Methodology

The morphing procedure involves two steps: global rigid registration and local morpholog-

ical deformations. Given a set of sparse points on a femur surface which was not used in

the shape model construction, the ICP algorithm was applied to rigidly register the point

cloud to the mean shape of the training set. Starting from the mean shape which has zero

weights on all principal components, a new shape fitting the point cloud is reconstructed

by changing the weights of the principal components (latent variables) so that the root

mean square (RMS) distance between the point cloud and the resulting surface is smaller

than a pre-defined threshold.

Global Registration

Two different rigid alignments, corresponding to the two models described in Section 5.5,

were applied in different circumstances. If the centre of the femoral head is not provided

(for example the femoral head is incomplete), the point cloud is translated and rotated to

the mean shape with the centroid of the point cloud (result shown in Figure 5.29(a)).

When the centre of the femoral head is available (if the hip joint is not widely

opened, this centre can be considered as the centre of the sphere that best fits the cloud of

points obtained during motions (this is known as the functional method [SBM+02]; if the

joint is physically opened, the digitisation of geometric surface points is easy), it acts as

the translation and rotation centre in global rigid registration (Figure 5.29(b)). To obtain

the centre of the femoral head from a study-femur shape, 20 surface points were randomly

picked to simulate the digitised surface points (right top sub-figure in 5.29(b)). To obtain

the centre of the femoral head of the mean femur shape of the training set, a sphere can

be fitted to surface points on the femoral head, which can be obtained by region-growing

of a few manually-selected seed points (seed points are shown in green in the right bottom

sub-figure in Figure 5.29(b)).
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(a) Without centre of the
femoral head fixed (model
one)

Manually selected geometric
surface points on a study femur

Region growing from the green
seed points on the mean shape

(b) Centre of the femoral head fixed (model two)

Figure 5.29: Global rigid registration in femur morphing
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Local Deformations

The surface of the mean shape (starting shape) is deformed to the point cloud iteratively

until convergence. The deformation procedure is formulated as a linear equation system

and the solution to the system is a set of weights on the principal components that best

fit the deformed shape to the point cloud. The objective function to minimise the surface-

points distance is defined as [rSJ04]

f = γ
N∑

k,j=1

‖~Yk − ( ~Xj +
m∑

i=1

αi~pi(j))‖2 +
m∑

i=1

α2
i

λ2
i

(5.1)

where N the number of points that are digitised, ~Yi is the kth digital point, ~Xi is the

point in the starting shape that closest to ~Yi, ~pi(j) is the jth tuple of the ith shape basis

vector, λi is the ith eigenvalue and αi are the weights on principal modes of the m shape.

The first term minimises the distance between the reconstructed shape and the cloud of

points; the second term controls the probability of the reconstructed shape. The factor γ

is a parameter that balances the two terms of the function. Its optimal value is dependent

on individual applications and it is determined empirically as 1e− 5 in the present work.

To solve this equation and determine the weights αi, function f is differentiated

with respect to αi and equated to zero, which gives

2γ

N∑

k,j=1

(~Yk − ~Xj −
m∑

i=1

αi~pi(j))(−~pi(j)) +
2αi

λ2
i

= 0 (5.2)

The linear equation system can be written as Aα = b, where

A =




2γ
∑N

j=1(~p1(j))
2 + 2

λ2
1

2γ
∑N

j=1 ~p2(j)~p1(j) · · · 2γ
∑N

j=1 ~pm(j)~p1(j)

2γ
∑N

j=1 ~p1(j)~p2(j)
. . .

...

...
. . .

...

2γ
∑N

j=1 ~p1(j)~pm(j) · · · · · · 2γ
∑N

j=1(~pm(j))2 + 2
λ2

m
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and

b =




2γ
∑N

k,j=1 ~p1(~Yk − ~Xj)

...

...

2γ
∑N

k,j=1 ~pm(~Yk − ~Xj)




(5.3)

A method to iteratively generate a surface to best fit the selected point set has been

developed (implementation described in Algorithm 5 shown below). In each iteration, a

surface is reconstructed by minimising the linear equation system Aα = b. Given a cloud

of digitised points (surface points or anatomical landmarks) ~Y and a shape model ~X,

the iterative morphing procedure can be described as the following algorithm. ǫ is the

threshold deciding if the a local minimum is reached (convergent) and it is determined

empirically.

Algorithm 5 Morphing procedure

1: Initialization: i = 0. αi = 0. Align the point cloud to the mean shape of the model
using ICP algorithm. The mean shape is set as the starting shape ~Xi.

2: i = i + 1. ~Xi = ~Xi−1. Calculate the weights αi that best fit ~Xi to ~Y by minimising
Equation 5.1.

3: Deform ~Xi to ~Xi∗: ~Xi∗ = ~Xi + ~pα, where α the weight vector calculated from step 2.
4: Calculate the RMS distance between αi and αi−1: Ei = RMS(αi − αi−1).
5: if Ei ≤ ǫ then
6: End of algorithm. Result is ~Xi∗.
7: else
8: Goto step 2.
9: end if

5.6.3 Results

A femur Fi(i = 1, 2, · · · , 24) was taken out of the dataset whilst the 23 remaining femora

were used to build the SSM. Fi is digitised (simulative digitisation described in Section

5.6.1) using the crest line technique. A reconstructed surface fitting the aligned sparse

point set is shown in Figure 5.30. The threshold ǫ of convergence is 0.15 here.

Figure 5.30(b) shows the reconstructed surface with incorporation of the centre of

the femur whilst Figure 5.30(a) shows the reconstructed surface without incorporation of

this point. The weights on the first five principal modes, describing 96.6% and 98.9%
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(a) Without centre of the femoral head fixed (model one)

(b) Centre of the femoral head fixed (model two)

Figure 5.30: Femur morphing
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total variance respectively, were calculated to generate the surfaces in both models. The

reconstructed femur surface was compared to the real surface (the one left out from the

model construction) to assess accuracy. RMS distance between the reconstructed shape

and the real shape was estimated. Results shown in Figures 5.30(a) and 5.30(b) have RMS

distances 2.09mm and 2.69mm respectively.

Leave-one-out validations were performed. Since changes of ǫ and λ in Equation

5.1 within a certain range do not generate much variability in the resulting surface, they

are set as 0.15 and 1e− 5, respectively. The average RMS distances of the reconstructed

femur shapes are 2.35mm using femur model one and 2.82mm using femur model two.

The standard deviations of the distances in the two models are 1.24mm and 1.11mm

respectively.

5.7 Summary

This chapter demonstrates methodologies to build an SSM for long bones and for complex

plate-like bones. Point-to-point correspondences amongst a training set are established

by applying multi-resolution B-spline FFD. Due to the large size variation across different

primate genera in this thesis, two models were built for each shoulder bone, one includes

size variation using bones in their original size, the other removes size variation by scaling

the bones to the same size.

The major advantage of building shape models based on all available surface points

compared with estimating morphological variations using traditional geometric morpho-

metrics, which utilises a few corresponding anatomical landmarks on the subjects, is that

the shape model measures the overall variation as a whole bone instead of the areas of

interest defined by landmarks, which can be different from individual studies. As a re-

sult, the estimated shape variations using the shape models are not restricted to specific

locations with landmarks. Another advantage is that no prior knowledge about anatomy

and no manual selections are required. Even in the initialisation of deforming a monkey

scapula to an ape scapula, or vice versa, labelling of the corresponding landmark sets does
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not have to be very accurate. Moreover, the use of bone surfaces enables visualisation

of the estimated variations (Figures 5.19 to 5.24), such that prominent variability in the

training set can be easily identified. However, disadvantages come from the automation

of the model construction. Since there are no correspondences provided from the bone

shapes, the registration procedure is likely to miss-match some important anatomical ar-

eas, although the matching error is small.

Quantification based on PCA implies that the humeri from the different genera in

the datasets cannot be easily classified if size variation is eliminated. Although the scapulae

in the same size can be better classified compared with the humeri, the classification using

size variation has higher accuracy. Leave-one-out validations of the classification were

performed. The shapes of the shoulder bones are nearly 100% correctly classified between

great apes and monkeys. By changing the weights on the PCA axes, one can see that

the principal component corresponds to size variation if the shapes in the training set

are in their original size. Bending of the humeral shaft and the extension of the scapular

acromion are very important variations.

The methodology developed to build the SSM for long bones is applied to a set

of human femora. Consideration of the centre of the femoral head provides important

surgical information; all femora in the training set were aligned to the reference femur in

a such way that the centre of the femoral head is taken as the translation and rotation

centroid. Another alignment method was also applied, with the average surface point as

the centre of translations and rotations.

An improved optimisation method for bone morphing was introduced. It iteratively

deforms the shape of the model to a cloud of selected surface points until convergence.

A simulation of digitising surgical anatomical landmarks is implemented using the crest

line technique. It largely reduces the time involved to select landmarks. RMS errors

between the reconstructed surfaces and their real surfaces were calculated in leave-one-out

validations. Results of the validations indicate that the reconstructed surfaces can predict

the whole surface from a set of sparse points.
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Chapter 6

Predicting the Shape of a Shoulder

Bone from the Adjoining Segment

6.1 Introduction

The ability to predict the shape of one bone from its neighbour at a joint could be beneficial

in many areas, such as orthopaedics, palaeontology and taxonomy. In particular, the

morphological variation of the humerus and scapula are important in the analysis of joint

mechanics in anatomy and pathology. The intrinsic morphological relationship between

these two bones has previously not been described in a numerical way and neither has

a method been devised for predicting the shape of one bone from its neighbour. Recent

studies on bony morphology have focused on the hip [CBE+04, RNS04, SBM+02, LSHD04,

MK04]. The application of the studies to the shoulder are limited largely due to its

complexity, high mobility and much greater range of movement than other synovial joints.

The geometry of the shoulder articulation provides little passive stabilising effect

to the joint. An additional osteological constraint is provided superiorly by the acromion

and the coracoid process of the scapula. Because of this intimate relationship between the

two bones, the hypothesis of this study is that the shape of one would be able to predict

the shape of the other.

The aims of this chapter are to (i) devise and test a new computational approach



6.2 Methodology 159

to extract the linear correlations between a set of humeri and its corresponding set of

scapulae using their respective shape variation which is described by a statistical shape

model (SSM); and (ii) develop a robust method to construct a bone shape from the

adjoining segment.

To address the two main aims, canonical correlation analysis (CCA) was chosen

as the tool to represent the visible and hidden correlations between how the changes in

the shape of a certain part of the scapula affect the humerus as an entire shape or vice

versa. Assuming that the humerus dataset and the scapula dataset are described by two

sets of multivariables, partial least square (PLS) regression was chosen to predict a set of

response variables from a set of predictor variables.

A neighbour-conditional shape model was also built on the datasets. Given a

scapula shape, a shape model of its adjacent humerus can be constructed conditioned on

this scapula. Instead of describing morphological variation within the humerus dataset,

the conditional shape model predicts the shape variation of an unknown shoulder bone

based on the morphology of the other segment.

6.2 Methodology

The methodological framework is presented in Figure 6.1. The size of the shoulder bones

across the present datasets varies by approximately 500%. Since shape variation is the

key factors of interest in this study, CCA was applied to the shoulder bone shapes both in

their original size and in their scaled size. Similar to Chapter 5, Section 5.3, two types of

models were constructed, one includes size variation (model one) while the other excludes

size variation (model two). Point-to-point correspondences are required in both CCA and

PLS, which can be obtained using multiresolution B-spline free form deformation (FFD)

(details explained in Chapter 5, Section 5.2).

Each shape in the training sets contains a large number of surface points. The

number of the shoulder bone pairs (number of observations) is too small compared with

the number of surface points (number of variables). As underlined in Chapter 2, Section
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Figure 6.1: Implementation framework of canonical correlation analysis and partial
least squares regression to predict bone shapes

2.7.1 and Section 2.7.2, the large number of variables makes it difficult for the analysis to be

conducted using both PLS and CCA. If all the surface points are considered directly as the

variables, the resulting linear equation system is indeterminate. In principal component

regression (PCR), principal component analysis (PCA) is performed on the observation

data matrix so that the high dimensional samples can be described by a few orthogonal

(uncorrelated or independent) components. The number of predictor variables is thus

reduced in the linear system and is less than the number of equations. Based on this idea,

PCA was applied to reduce dimensionality of both the observation and the response data

matrices.

6.2.1 Extracting Linear Correlations

A shape with surface point correspondences across the training set can be defined by

a data vector x. Assuming x is the mean vector of the humerus or scapula training

set, C is the corresponding covariance matrix and P is the eigenvectors of matrix C, a

shape x can be transformed to the orthogonal coordinate system defined by the principal

axes: b = P T (x − x). Components of b are the coordinates in the orthogonal system. In

Chapter 5, Section 5.4.1, b was utilised to quantify bone shapes in the training set. Details
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concerning calculations of x, C and P (from indeterminate data vectors) are explained in

Chapter 2, Section 2.5.1.

Suppose there are n pairs of shoulder bone shapes (each pair consists of the two

shoulder bones from the same subject), one pair is left out for testing and PCA is conducted

separately on the remaining n−1 humeri and scapulae. The resulting PCA latent variables

of the humerus set and the scapula set, which can be denoted as bh(n−1×mh) (1 ≤ mh <

n − 1) and bs(n−1×ms) (1 ≤ ms < n − 1), are used as the observation variables and the

response variables, respectively, for CCA and PLS calculations.

Let X = bh and Y = bs, the maximal canonical correlation ρ between variables

bh and bs can be calculated by Equation 2.37. The solution to this equation is provided

in Chapter 2, Section 2.7.1. The value of ρ is between zero and one inclusive, with zero

indicating no correlation and one indicating perfect linear correlation.

6.2.2 Implementation of Shape Prediction

PLS regression is widely used as a prediction technique based on correlations between two

sets of variables. Similarly, the linear correlations extracted from CCA can be also used

for prediction purposes. Both prediction methods are discussed in this section.

Based on PLS Model

Given a training set of humerus shapes X, a training set of scapula shapes Y and an

individual humerus shape x, implementation of the PLS regression method is described

in the following steps:

I Apply a PCA to X and a PCA to Y . The reduced data vectors (also called

latent variables in this thesis) for X and Y are denoted by bx and by.

II Establish surface point-to-point correspondences between the humerus shape

x and the mean shape x of the humerus shape model (correspondence identi-

fication is described in Chapter 5, Section 5.2).
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III Align shape x to x using rigid registration or by defining three anatomical

points (these alignment methods are explained in Sections 5.3.1 and 5.3.2 in

Chapter 5).

IV Transform the shape x onto the orthogonal coordinate system defined by the

principal axes calculated from X: bx = P T
x (X − x) where bx is the reduced

data vector representing X.

V Implement PLS regression using the NIPALS algorithm described on page 62.

Obtain the regression coefficient matrix Bpls.

VI Predict the response variable by by by = bxBpls. Since the regression coeffi-

cient matrix Bpls is calculated from the principal scores of the observation and

response variables, by is the reduced data vector of the response scapula shape

y. Transform by to the Cartesian coordinate system by y = y + Pyby.

Based on Linear Correlations

If the linear relationship between the two sets of variables can be modelled, the variables

can be predicted given the relationship. Graphical demonstrations of the linear correlations

(canonical scores) are shown from Figures 6.2 to 6.7 (pages 166 to 171), which correspond

to the largest canonical correlation ρ between the two sets of variables. This linear property

can be expressed by a linear equation system using least square regression. Let A be the

coefficient matrix, the linear equation is in the form bywy = Abxwx. A can be estimated

by A = Cxy/Cxx where Cxy is the cross covariance matrix between bx and by, Cxx is the

covariance matrix of bx. Therefore, the predicted value of by from the predictor bx is

by = (Abxwx)w−1
y (6.1)

6.3 Results

As shown in Tables 3.1 and 3.2, there are 32 humeri and 30 scapulae in total, but only

28 complete pairs of shoulder bones. To perform the leave-one-out validations, one pair
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of shoulder bones, for example the pair from Cebus 1, was taken out of the model con-

structions. PCA was applied to the remaining 31 humeri and 29 scapulae respectively.

The resulting latent variables, b′
h and b′

s, of these two shape models are in the dimension-

alities of 31 × 31 and 29 × 29. 27 pairs of corresponding latent variables were extracted

from b′
h and b′

s to form the two blocks of variables, bh(27×i) (i = 1, · · · , 26) and bs(27×j)

(j = 1, · · · , 26). To solve the indeterminate problem of the linear system, only the first 26

principal modes are used at most.

The results in the remainder of this section are based on the 27 pairs of primate

shoulder bone shapes, with one pair of the Cebus shoulder bone shapes being taken out

of the model constructions.

6.3.1 Linear Correlations

According to Equation 2.37, page 59, scalings of variables bh and bs do not change the

results of correlation coefficient ρ. This is to say, using the standard deviations, denoted

as d, of variables b as the CCA input gives the same result as using the variables b. d is

defined as d = b/
√

λ, where λ is the corresponding eigenvalues to eigenvectors P .

PCA describes variability within the training set whilst CCA describes the linear

interrelationships between two training sets. Therefore, the ith principal mode of the

humerus model (the ith column of bh) is not necessarily correlated to the ith principal

mode of the scapula model (the ith column of bs). As shown in Table 6.1, the percentage of

total variance described by principal modes decreases rapidly, but the canonical correlation

coefficient ρ between each pair of principal modes does not decrease. Only the first pairs

of the principal modes are considered to be linearly correlated in both models according

to their correlation coefficients 0.96 and 0.85. The correlation coefficients of other pairs

are too small to claim their linear interrelationships. However, it is possible that bh(i) and

bs(j) (i 6= j, j = 1, 2, ..., n) are linearly correlated.

Correlations between all first i pairs of principal modes were also calculated. Tables

6.2 and 6.3 show the first ten coefficients as different numbers of principal modes were

applied. Apparently, more principal modes improved the extracted linear relationship



6.3 Results 164

Model One (Including size) Model Two (excluding size)
Modes humerus scapula CC a humerus scapula CC

PTV b (%) PTV (%) PTV (%) PTV (%)

1st 99.67 87.82 0.96 45.82 58.63 0.85
2nd 0.14 7.10 0.32 21.15 13.11 0.12
3rd 0.06 2.20 0.14 6.80 11.83 0.38
4th 0.04 1.19 0.40 4.99 3.73 0.07
5th 0.02 0.55 0.16 2.99 3.05 0.23
6th 0.02 0.28 0.60 2.95 1.86 0.23
7th 0.01 0.23 0.12 2.14 1.58 0.06
8th 0.01 0.13 0.19 1.57 1.16 0.32
9th 0.01 0.10 0.02 1.47 0.77 0.41
10th 0.01 0.08 0.22 1.43 0.62 0.38

aCorrelation Coefficient
bPercentage of Total Variance

Table 6.1: Percentage of the variation described by each principal mode and the
correlation coefficient of each pair of the principal modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

1a 0.9596
2 0.9829 0.3352
3 0.9856 0.8340 0.6732
4 0.9895 0.8563 0.7731 0.3118
5 0.9926 0.8902 0.8340 0.7015 0.0832
6 0.9965 0.9672 0.9032 0.8448 0.7736 0.0023
7 0.9980 0.9714 0.9338 0.9040 0.8165 0.5225 0.4356
8 0.9982 0.9860 0.9668 0.9194 0.8678 0.6633 0.5209 0.3893
9 0.9988 0.9883 0.9802 0.9584 0.9211 0.8223 0.6818 0.4026 0.2115
10 0.9992 0.9961 0.9868 0.9787 0.9563 0.9221 0.8190 0.4383 0.3083 0.1455
...

...
...

...
...

...
...

...
...

...
...

26 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

aNumber of principal modes used

Table 6.2: Canonical correlation coefficients between shoulder bone shapes (model
one - including size)
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1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

1a 0.8451
2 0.8611 0.1332
3 0.8989 0.5403 0.1568
4 0.9462 0.7787 0.2618 0.0702
5 0.9745 0.8196 0.6532 0.3289 0.0340
6 0.9832 0.8338 0.7251 0.5834 0.2031 0.1050
7 0.9923 0.8966 0.8464 0.7254 0.5782 0.2532 0.0976
8 0.9971 0.9283 0.8705 0.8277 0.602 0.2665 0.2466 0.0646
9 0.9971 0.9753 0.9193 0.8458 0.7028 0.6118 0.2611 0.1956 0.0620
10 0.9979 0.9880 0.9752 0.8489 0.8182 0.6491 0.5931 0.2888 0.1987 0.0738
...

...
...

...
...

...
...

...
...

...
...

26 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

aNumber of principal modes used

Table 6.3: Canonical correlation coefficients between shoulder bone shapes (model
two - excluding size)

between them, and the coefficients increase along with the number of principal modes.

With the current input, the first coefficient became one when at least 14 principal modes

were used.

Figures 6.2 to 6.7 plot the relations between the first pair of canonical variates (Sh

and Ss in Equation 2.37, page 59). Sh and Ss are the projections of the principal modes

onto the first column of the linear transformation matrices wh and ws. Each point in the

figures states the projection of one pair of shoulder bones. These points lie on straight

lines when the number of principal modes is large enough (Figures 6.4 and 6.7).

Figures 6.2, 6.3, 6.5 and 6.6 also demonstrate a clustering pattern of the projected

variables. There are three obvious clusters in Figures 6.2 and 6.3 when size variation

is included, one belonging to all the monkeys in the present datasets, one being formed

by the Pan, the Homo and the Pongo, and one only containing the Gorilla. When size

variation is excluded, the plots show two clear clusters, one being formed by the great

apes and the other being formed by monkeys (Figures 6.5 and 6.6). This result illustrates

CCA’s ability to act as a data classifier.
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Figure 6.2: Linear correlation representations of the first canonical variate using one
and two pairs of principal modes (model one - including size)
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Abscissa: canonical scores for the humerus set; ordinate: canonical scores for the scapula set; lines
obtained by ordinary least squares regression.

Figure 6.3: Linear correlation representations of the first canonical variate using three
and four pairs of principal modes (model one - including size)
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Abscissa: canonical scores for the humerus set; ordinate: canonical scores for the scapula set; lines
obtained by ordinary least squares regression.

Figure 6.4: Linear correlation representations of the first canonical variate using 24
and 25 pairs of principal modes (model one - including size)
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Abscissa: canonical scores for the humerus set; ordinate: canonical scores for the scapula set; lines
obtained by ordinary least squares regression.

Figure 6.5: Linear correlation representations of the first canonical variate using one
and two pairs of principal modes (model two - excluding size)
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Abscissa: canonical scores for the humerus set; ordinate: canonical scores for the scapula set; lines
obtained by ordinary least squares regression.

Figure 6.6: Linear correlation representations of the first canonical variate using three
and four pairs of principal modes (model two - excluding size)
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Abscissa: canonical scores for the humerus set; ordinate: canonical scores for the scapula set; lines
obtained by ordinary least squares regression.

Figure 6.7: Linear correlation representations of the first canonical variate using 24
and 25 pairs of principal modes (model two - excluding size)
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6.3.2 Predictions

The shape prediction method based on PLS regression contains three main steps: 1)

obtain projected data vectors b by transforming the shape vectors onto the PCA axes, 2)

apply PLS regression and 3) project the predicted data vectors onto the original Cartesian

coordinate system. Figures 6.8 and 6.9 show the predicted humerus shape from Cebus 1,

which was left out during the model construction. Figures 6.10 and 6.11 show the predicted

shape of the Cebus scapula from its humerus. The number of principal modes used are,

from left to right, one, two and three. The graphical results demonstrate that the shape

prediction model based on model two (excluding size variation) gives better prediction

results.

Linear correlations between the two shoulder bone shapes based on CCA, combined

with least square regression (or a PLS regression) on the canonical variates, were also

utilised to predict one shape from the other (details are in Section 6.2.2). The two results

show the same prediction results as those obtained using the NIPALS algorithm.

The linear relationship can be used to explore the pattern of variation between

the two datasets. Recreating the humerus shapes by changing their principal modes,

the corresponding scapula shapes were predicted from the reconstructed humerus shapes.

Figures 6.12 and 6.13 show the morphological relationship based on the first and second

canonical variates (also called CCA modes in this thesis) using the first three principal

modes. In the first canonical variate, the volume of the scapular socket and size of the

supraspinous and infraspinous fossae increase as the degree of bending decreases. In the

second canonical variate, the width of the humeral shaft is mostly related to the shape

of the supraspinous and infraspinous fossae. From Table 6.3, the canonical coefficients of

these two figures are 0.8989 and 0.5403.
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Coronal View

1 PMa 2 PMs 3 PMs

Sagittal View
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aprincipal mode

Figure 6.8: Predicted Cebus humerus shapes (model one - including size). Warmer
colour indicates closer point-to-point distance to the real Cebus humerus shapes.



6.3 Results 174
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Sagittal View
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Figure 6.9: Predicted Cebus humerus shapes (model two - excluding size). Warmer
colour indicates closer point-to-point distance to the real Cebus humerus shapes.
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one PM two PMs three PMs
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Figure 6.10: Predicted Cebus scapula shapes (model one - including size). Warmer
colour indicates closer point-to-point distance to the real Cebus scapula shapes.
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one PM two PMs three PMs

aprincipal mode

Figure 6.11: Predicted Cebus scapula shapes (model two - excluding size). Warmer
colour indicates closer point-to-point distance to the real Cebus scapula shapes.
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Figure 6.12: Corresponding linear morphological variation based on the first CCA
mode using the first three principal modes
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Figure 6.13: Corresponding linear morphological variation based on the second CCA
mode using the first three principal modes
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6.3.3 Discussion

Results have shown that both the PLS regression method and the CCA method combined

with a least square regression gave the same predicted shapes with the present datasets. It

is not true that the two methods always produce the same results if PCA is not performed

to reduce data dimensionality.

For example, there is a function f that maps a point set in a cubic to a point set

on a 3D line (as shown in Figure 6.14). PLS regression is able to capture the nonlinear

correlations between the two point sets but CCA cannot. Take a random point in the

cubic (the star in Figure 6.14(a)) as the predictor, its corresponding point on the 3D

line predicted using PLS regression is shown as the star on the line in Figure 6.14(b).

However, least square regression on the extracted canonical variates (projections shown

in Figure 6.15) and PLS regression on the canonical variates are both unable to estimate

a correct function f . Their corresponding prediction estimations, shown as the circle and

the square, respectively, in Figure 6.14(b), do not lie on the line. In this example, the

PLS regression prediction method alone is superior to the CCA method with least square

regression.

Only one pair of latent vectors is extracted for each iteration in the NIPALS algo-

rithm. This is based on the inequality si
2(A−B) ≥ si+k

2(A) [Rao79], where si(A) is the

ith singular value of A and B is a matrix of rank k. Replacing matrices A and B by the

described variables, E2 and F , respectively, the following equation is obtained:

Si
2(Ei+1

2F ) = s2(Ei
T F − piti

T F ) ≥ S2
2(Ei

T F ) (6.2)

The second largest singular value of ET F at iteration i is smaller than the largest

singular value at iteration i + 1. Therefore, the selection of one pair of latent vectors at

each time gives maximum variance of the weighted covariance matrix.



6.3 Results 179

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.5

0

0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

z

y

(a) Ordered point set (the star is the predictor point)

−40 −30 −20 −10 0 10 20 30 40
−50

0

50

−60

−40

−20

0

20

40

60

(b) Another ordered point set on a 3D line (⋆ predicted point based on PLS regression; � partial least
squares regression on canonical variates; ◦ least squares regression on canonical variates)

Figure 6.14: A prediction example of two sets of variables
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Figure 6.15: Canonical variates of the two sets of variables and their least squares
lines
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6.4 Prediction Validation

Apart from visually viewing the results of the shape prediction models, the prediction

errors were also estimated by root mean square (RMS) distance between surface points.

When RMS distance (error) between the real shape and the predicted shape is less than

the RMS error between the real shape and the mean shape of the training set, it means

that the PLS method is better than using the mean shape as an estimate of this specific

shape. In order to assess the robustness of the PLS prediction method, two prediction

models were validated using leave-one-out validations.

6.4.1 Root Mean Square Errors

In the training sets constructed earlier, a humerus or a scapula shape x is denoted by a col-

umn vector of all its surface points coordinates: x = (x1, y1, z1, x2, y2, z2, · · · , xn, yn, zn)T ,

where n is the number of surface points on each humerus or scapula shape in the training

set. Let x′ = (x′
1, y

′
1, z

′
1, x

′
2, y

′
2, z

′
2, · · · , x′

m, y′m, z′m)T be a predicted shape, the RMS error

between this predicted shape and the real shape x in the training set is estimated by

e =

√√√√ 1

n

n∑

i=1

[(xi − x′
i)

2 + (yi − y′i)
2 + (zi − z′i)

2] (6.3)

A comparison between the RMS errors from the predicted shapes and the RMS

errors from the mean shapes can be seen in Figures 6.16 and 6.17, the abscissa representing

the 28 specimens. The first three principal modes were used for the PLS prediction in

these figures. The order of the genera from left to right is: Cebus (three pairs), Colobus

(three pairs), Pan (three pairs), Gorilla (three pairs), Homo (three pairs), Macaca (four

pairs), Pongo (one pair), Papio (three pairs) and Presbytis (five pairs).

When size variation is included in the models, there are 25 better predictions using

the PLS method to predict a humerus shape from a scapula shape among the 28 leave-

one-out validations, whilst there are 28 better predictions predicting a scapula shape from

a humerus shape. As mentioned above, size varies largely from genus to genus, the mean
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(a) Predicted humerus shapes

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Species

R
M

S

predicted vs real
mean vs real

(b) Predicted scapula shapes

Figure 6.16: RMS errors between the predicted shape and the real shape, compared
to RMS errors between the mean shape of the shape mode and the real shape. The
order of the genus from left to right is: Cebus (three pairs), Colobus (three pairs), Pan

(three pairs), Gorilla (three pairs), Homo (three pairs), Macaca (four pairs), Pongo

(one pair), Papio (three pairs) and Presbytis (five pairs). (model one - including size)
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(a) Predicted humerus shapes
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Figure 6.17: RMS errors between the predicted shape and the real shape, compared
to RMS errors between the mean shape of the shape mode and the real shape. The
order of the genus from left to right is: Cebus (three pairs), Colobus (three pairs), Pan

(three pairs), Gorilla (three pairs), Homo (three pairs), Macaca (four pairs), Pongo

(one pair), Papio (three pairs) and Presbytis (five pairs). (model two - excluding size)
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shapes of the models can be very different from some bone shapes in the datasets due

to the size difference. As such, RMS error between the mean shape and those shapes

can be large. Once size variation is predicted correctly, the predicted shape is very likely

to have much less RMS error compared to the mean shape. In the models without size

variation, there are also 25 better-predicted humerus shapes. Although there are less

better predicted scapula shapes (showing 21 better predictions), the RMS errors have

shown that this model produces more accurate prediction results.

The prediction behaviour is different when different numbers of principal modes

were applied. Jeffers suggested that the number of samples should always exceed the

number of variables, and, ideally, should be at least four times the number of variables

[Jef02]. Most authors recommend that one should have at least ten to 20 times as many

observation samples as one has variables, otherwise the estimates of the regression line are

probably very unstable and unlikely to replicate if one were to repeat the study [tex08].

Since there are only 27 shoulder bone pairs in the datasets, the recommended number of

principal modes applied is thus one or two according to this theory.

Figures 6.18 and 6.19 show the RMS errors of the predicted humerus shape and

scapula shape of Cebus 1 using different numbers of principal modes, the abscissa repre-

senting the number of principal modes applied and the ordinate representing the values of

RMS errors. The prediction results of this shoulder pair become inaccurate as there are

more than a certain number of principal modes being used in PLS regression. To explore

the relationship between the prediction behaviour and the number of principal modes ap-

plied to the prediction, the average RMS error of the predicted shapes were calculated

for each specimen when different numbers of principal modes were used in PLS regres-

sion. A demonstration of these average errors is shown in Figure 6.20, with the abscissa

representing the number of principal modes.
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Figure 6.18: RMS errors of the predicted Cebus humerus and scapula using different
numbers of principal modes (model one - including size)
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(b) Predicted scapula shape

Figure 6.19: RMS errors of the predicted Cebus humerus and scapula using different
numbers of principal modes (model two - excluding size)
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(a) Model One (Including size)
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(b) Model Two (Excluding size)

Figure 6.20: Average RMS errors when different numbers of principal modes are
applied
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In the leave-one-out validations, RMS errors of the mean shapes of the models

were calculated. Table 6.4 lists the RMS errors of the mean shapes of the models. It can

be seen that the mean shapes are not good prediction estimations when size variation is

included in the models. In the present datasets, the mean shapes of the scapula models

have larger RMS errors than those of the humerus models. All RMS errors of the predicted

shapes were calculated to compare to the RMS errors of the mean shapes. They are listed

from Tables C.1 to C.4 in Appendix C. The number of principal modes applied in PLS

regression ranges from one to 20 in those tables.

Model One (mm) Model Two (mm)
Specimen (Including size) (Excluding size)

humerus scapula humerus scapula

Cebus 1 72.8547 31.0723 2.4433 6.8595
Cebus 2 78.8011 29.7106 4.5760 7.7828
Cebus 3 75.3217 31.5684 2.9200 7.2789
Pan 1 42.4614 17.6824 3.2185 12.4867
Pan 2 25.9162 9.9278 2.3103 19.5621
Pan 3 35.8626 20.9433 3.8902 10.9274

Colobus 1 53.0795 21.4632 2.4840 4.4637
Colobus 2 43.2643 16.5659 1.9738 6.9576
Colobus 3 45.6630 19.3828 2.2180 5.8869
Gorilla 1 89.3229 36.3328 3.3561 15.6347
Gorilla 2 135.5530 62.8350 3.0565 15.6951
Gorilla 3 122.6820 55.1760 3.5151 8.8711
Homo 1 47.9850 13.4010 2.5910 12.1306
Homo 2 32.0940 22.2910 3.3905 19.0028
Homo 3 28.6469 12.6299 3.3862 15.3608
Macaca 1 51.0209 12.7612 5.9201 7.8730
Macaca 2 51.9230 13.8414 2.9463 8.8560
Macaca 3 67.4287 28.8807 2.7857 8.1758
Macaca 4 47.3334 9.9949 4.1768 7.4291
Pongo 1 49.6868 14.0315 3.7174 11.5234
Papio 1 5.1874 12.0186 2.6181 11.5251
Papio 2 8.0394 21.7337 3.7323 13.7378
Papio 3 8.3631 12.1293 2.7847 13.9590

Presbytis 1 52.6649 23.9471 2.9415 5.4356
Presbytis 2 46.3060 19.0304 2.6313 5.2733
Presbytis 3 47.2642 20.1852 3.5049 5.8198
Presbytis 4 52.5121 22.1631 2.6917 4.8911
Presbytis 5 57.7301 22.1521 2.0083 5.1300

Table 6.4: RMS errors of the mean shapes of the models
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Although the more principal modes are used the more morphological variation of

the training set are described, this does not mean that the more principal modes applied

to PLS regression the better prediction behaviour we will have. The number of better

predictions is plotted in Figure 6.21, the abscissa representing the number of principal

modes.

When predicting the humerus shapes from their corresponding scapula shapes with-

out size variation, the best prediction results are attained when the first two principal

modes are used, claiming 28 better predictions out of the 28 leave-one-out experiments

(100%) than using mean shapes. However this number drops when more principal modes

were applied, 15 better predictions remaining when the first 17 principal modes are used.

When predicting the scapula shapes from their corresponding humerus shapes, the figure

shows that the first 11 principal modes produce the best prediction behaviour, with 24

better predictions (86%) than using the mean shape. According to the figures, there is a

descending tendency when more principal modes are applied. In model one (including size

variation), since the mean shape of the model differs from many single shapes in the train-

ing set due to the large size difference, the comparison between the RMS from the PLS

predicted shapes and the RMS from the mean shapes does not directly reflect prediction

accuracy.

If the number of samples is relatively small, PLS regression cannot extract sufficient

correlations due to the lack of data description. This results in worse prediction behaviour

when more principal modes are applied to the correlation analysis.
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Figure 6.21: Number of better predictions using the PLS regression method when
different numbers of principal modes were applied (model two - excluding size)
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6.4.2 Standard Morphological Measurements

The RMS error of the surface points can measure closeness between two surfaces but cannot

estimate the anatomical differences in a way that relates joint mechanics. To validate the

accuracy of the prediction models in terms of joint mechanics, the bony features (such

as bending of the humeral shaft and size of the scapular glenoid) of the predicted shapes

were measured to compare to those of the real shapes. The morphological measurement

method is described in Chapter 4, Sections 4.3 and 4.4.

Predicting the Humerus

The radius of the fitted sphere on the humeral head is used to describe size of the humeral

head, and the radius of the fitted sphere on the scapular glenoid is used to describe size of

the glenoid. The radii were calculated from the predicted shapes to compare with those

of the real shapes. Table 6.5 lists the calculated radii of the predicted shapes, the real

shapes, and of the mean shapes of the training sets. The predicted shapes were based on

the first three principal modes.

Figure 6.22 compares the size differences between the predicted shapes based on

prediction model one (including size variation) and the real shapes, and the differences

between the mean shapes and the real shapes. The minimum error of size of the predicted

humeral head is 0.01mm (from Presbytis 1), and the minimum error of size of the predicted

glenoid is 0.02mm (from Cebus 2). The average errors of the predicted humeral head and

the predicted glenoid are 1.51mm and 3.42mm respectively. Homo 1 and Homo 2 have the

greatest prediction errors. 26 predicted humerus shapes in the 28 leave-one-out validations

(93%) have a humeral head size closer to the real humerus shapes than the mean shapes

of the training sets; 27 predicted scapula shapes (96%) are closer in glenoid size to the

real scapula shapes than the mean shapes of the training sets.
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Humeral head (mm) Scapular glenoid (mm)
Specimen Predicted Real Mean Predicted Real Mean

Cebus 1 6.32 6.73 15.11 8.16 11.32 20.50
Cebus 2 6.22 10.38 14.99 6.38 9.51 20.56
Cebus 3 6.05 5.35 15.22 8.37 8.35 20.53
Pan 1 19.38 23.04 14.79 33.38 42.18 20.92
Pan 2 18.10 15.98 14.69 25.06 34.83 19.95
Pan 3 21.18 20.96 14.92 27.08 27.25 20.22

Colobus 1 8.94 9.00 15.22 12.44 12.59 19.45
Colobus 2 10.09 8.47 14.63 13.31 13.89 20.41
Colobus 3 9.34 8.95 15.14 12.59 12.53 19.30
Gorilla 1 24.41 26.07 15.54 31.32 34.98 19.27
Gorilla 2 35.44 33.25 15.07 42.89 39.04 19.23
Gorilla 3 27.76 31.65 15.23 40.64 36.41 19.38
Homo 1 18.06 22.78 14.95 28.42 34.02 20.43
Homo 2 23.03 21.26 15.36 27.65 49.53 19.50
Homo 3 16.70 18.97 15.50 31.31 29.74 20.61
Macaca 1 9.80 13.10 14.92 13.00 13.93 20.61
Macaca 2 9.81 9.76 15.02 13.75 12.70 20.62
Macaca 3 6.40 6.74 14.73 11.37 8.20 21.94
Macaca 4 10.70 9.90 14.52 14.04 16.01 20.56
Pongo 1 17.98 18.29 14.89 28.49 21.48 20.23
Papio 1 13.19 11.73 14.63 20.49 15.99 20.75
Papio 2 15.87 12.56 14.62 18.99 18.80 20.61
Papio 3 11.68 12.38 14.56 20.33 17.92 20.65

Presbytis 1 7.66 6.96 14.66 13.65 11.09 20.42
Presbytis 2 9.58 9.06 15.00 12.84 12.71 20.65
Presbytis 3 9.16 8.34 14.98 13.77 13.38 21.33
Presbytis 4 8.22 8.13 15.22 13.21 11.09 20.75
Presbytis 5 8.64 8.63 15.30 12.05 14.65 21.28

’Predicted’ column: size of the predicted shapes
’Real’ column: size of the real shapes
’Mean’ column: size of the mean shapes of the training sets

Table 6.5: Size (radius of the best fitted sphere) of humeral head and scapular glenoid.
The first three principal modes were used in the prediction models. (Model one -
including size)
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(b) Scapular glenoid

The order of the genus from left to right is: Cebus (three pairs), Colobus (three pairs), Pan (three
pairs), Gorilla (three pairs), Homo (three pairs), Macaca (four pairs), Pongo (one pair), Papio (three
pairs) and Presbytis (five pairs)

Figure 6.22: Size differences when the first three principal modes were used (model
one - including size)
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Other geometrical parameters were calculated when size variation was excluded.

In the humeri, bending of the humeral shaft was estimated on the proximal end (angle

between axis Lshaft and axis Lh1). Torsion was estimated by the angle between axis Lr

and axis Lc (definitions are in Chapter 4, Section 4.3.3). In the scapulae, the spatial

relationship between the glenoid and the infraspinous fossa was investigated by the angle

between the normal vector of the glenoid and the normal vector of the infraspinous fossa.

Degrees of torsion, mid-shaft bending and proximal bending of the predicted

humerus shapes are listed in Tables 6.6 to 6.8. These parameters were calculated based

on different numbers of principal modes - from one mode to eight. Parameters from the

real shapes and the mean shapes are also presented in these tables. Table 6.9 shows the

numbers of better predictions of the humerus shapes. There are 22 predicted humeri that

have a torsion feature closer to the targets than the mean shapes when four or six principal

modes were used (78.6% better prediction). There are 21 (75%) predictions having closer

mid-shaft bending when four, five, six or seven principal modes were applied, while there

are 25 (89.3%) predictions having closer proximal bending when the first or the first two

principal modes were applied. From these tables, the PLS regression method provides

the best humerus prediction from the scapula when the first four principal modes were

applied.

Figure 6.23 shows the morphological differences between the predicted humerus

shapes and the real shapes. The first four principal modes were used in the prediction

validations as the prediction model behaves best in terms of torsion when the first four

principal modes were applied. The figure shows that the predicted humerus shapes have

more accurate degrees of bending than degrees of torsion. Degrees of proximal bending is

more accurate compared to mid-shaft bending.
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Specimen Degrees of torsion of the predicted shapes (◦) Real Mean
1 2 3 4 5 6 7 8 (◦) (◦)

Cebus 1 76.62 76.80 77.22 77.53 74.68 74.97 75.07 75.10 66.02 64.97
Cebus 2 77.54 76.73 77.26 77.16 68.30 67.44 65.72 64.69 76.99 63.36
Cebus 3 76.97 77.70 78.16 79.79 80.55 83.70 88.86 87.02 66.09 64.54
Pan 1 55.91 60.13 51.43 56.71 44.05 37.73 38.00 34.70 13.77 64.58
Pan 2 31.02 37.41 22.49 30.10 36.52 45.25 49.26 30.42 37.17 62.75
Pan 3 55.29 61.89 55.60 60.73 55.19 54.98 59.77 61.68 21.98 64.19

Colobus 1 69.69 70.49 71.55 72.19 78.80 81.17 82.32 82.56 74.42 63.56
Colobus 2 73.01 73.17 76.04 71.50 81.19 85.79 85.42 90.97 79.81 64.28
Colobus 3 71.09 71.55 72.39 72.96 78.46 78.70 80.45 81.87 89.33 63.82
Gorilla 1 60.46 62.76 37.97 40.59 28.15 28.86 26.12 9.89 28.71 63.88
Gorilla 2 42.39 48.00 26.08 20.91 35.20 45.47 51.12 39.54 49.69 63.23
Gorilla 3 62.33 64.64 54.77 50.17 48.79 54.85 59.71 57.70 15.92 64.37
Homo 1 46.51 45.47 59.38 57.76 45.47 43.47 42.01 46.41 51.84 63.83
Homo 2 22.20 19.25 30.23 53.94 40.24 33.56 30.19 26.50 48.27 64.21
Homo 3 39.20 39.79 53.89 56.03 53.12 49.20 40.83 45.32 30.72 63.99
Macaca 1 78.45 78.23 79.20 78.96 77.44 74.67 74.62 71.64 61.22 64.90
Macaca 2 80.01 80.06 79.44 80.26 78.02 74.20 74.33 73.95 87.37 63.58
Macaca 3 79.31 79.67 79.69 78.97 78.80 80.37 79.88 77.48 67.83 64.56
Macaca 4 75.53 74.71 75.53 77.16 77.32 76.72 77.43 76.97 78.50 62.53
Pongo 1 56.41 58.76 63.88 66.62 54.54 49.42 48.65 32.78 74.03 64.45
Papio 1 83.10 80.85 82.49 81.22 80.17 76.75 78.62 76.61 68.62 63.48
Papio 2 86.11 83.60 83.97 83.87 77.90 77.95 76.12 76.61 76.90 64.07
Papio 3 82.94 80.88 81.59 79.16 75.45 68.38 66.97 66.54 80.43 63.57

Presbytis 1 65.31 65.75 65.88 67.57 73.11 77.86 77.38 76.99 91.66 63.79
Presbytis 2 71.33 71.29 72.95 74.27 79.94 79.44 80.21 81.39 92.41 63.86
Presbytis 3 70.26 71.36 71.99 72.89 78.34 81.59 83.03 84.75 73.74 62.72
Presbytis 4 68.60 69.12 69.28 71.85 72.06 71.95 71.14 71.09 75.43 64.32
Presbytis 5 74.84 75.30 77.91 78.24 81.07 80.63 81.45 81.72 78.92 64.64

Table 6.6: Degrees of torsion of the predicted humeri using one to eight principal
modes (model two - excluding size)
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Specimen Degrees of mid-shaft bending of the predicted shapes (◦) Real Mean
1 2 3 4 5 6 7 8 (◦) (◦)

Cebus 1 11.83 11.91 11.69 11.60 11.34 11.14 10.85 10.83 14.15 8.87
Cebus 2 12.18 12.43 12.14 12.11 11.04 10.90 10.80 10.63 13.44 8.80
Cebus 3 12.27 12.36 12.18 12.11 12.05 12.48 13.46 13.15 40.64 9.22
Pan 1 8.12 7.45 9.84 9.62 10.08 8.40 8.68 9.87 6.15 8.89
Pan 2 9.46 8.37 11.69 11.94 11.35 11.73 11.48 12.26 5.59 8.78
Pan 3 8.21 7.51 9.29 8.97 9.09 8.73 8.67 9.11 9.02 9.17

Colobus 1 10.14 10.14 9.54 9.38 10.03 10.68 10.32 10.34 10.95 9.03
Colobus 2 10.10 10.11 9.54 9.69 11.46 11.80 12.17 12.89 11.40 8.86
Colobus 3 10.65 10.59 10.31 10.11 10.73 10.91 10.16 9.98 11.67 8.98
Gorilla 1 8.47 8.00 9.61 8.94 9.27 10.48 11.98 12.54 11.68 8.87
Gorilla 2 7.63 6.93 9.09 10.26 11.06 11.07 11.00 8.18 11.71 8.95
Gorilla 3 8.49 8.41 8.67 10.64 10.44 11.17 11.67 11.34 12.42 9.09
Homo 1 7.69 7.52 3.56 4.14 4.68 5.72 6.02 6.53 5.98 8.91
Homo 2 10.79 11.02 9.20 6.09 8.21 7.78 9.02 6.60 6.98 9.19
Homo 3 8.67 8.39 3.62 3.95 4.38 3.33 2.09 3.01 4.96 9.03
Macaca 1 12.19 12.35 12.39 12.15 11.87 11.83 11.84 12.03 13.50 8.92
Macaca 2 12.88 13.03 12.97 12.99 12.53 12.05 12.08 11.77 16.87 8.84
Macaca 3 12.60 12.82 12.83 12.72 12.69 13.05 13.47 13.43 11.79 9.18
Macaca 4 12.17 12.29 11.97 11.93 11.73 11.64 11.59 11.55 16.94 9.00
Pongo 1 7.07 7.09 6.82 7.28 6.57 6.29 5.95 3.46 15.58 8.33
Papio 1 14.91 14.87 14.71 14.66 14.54 14.59 14.54 14.94 15.07 8.91
Papio 2 15.80 15.86 15.99 15.86 15.22 14.39 14.53 14.50 17.64 8.92
Papio 3 16.73 16.94 17.26 17.25 16.44 16.44 16.67 17.66 11.00 9.08

Presbytis 1 11.00 11.13 10.55 10.39 11.33 11.53 11.56 11.52 9.43 8.96
Presbytis 2 10.42 10.42 9.83 9.58 10.52 10.72 10.86 10.67 13.35 8.89
Presbytis 3 10.30 10.44 10.31 10.26 10.92 11.06 10.79 10.80 16.47 8.81
Presbytis 4 11.22 11.55 12.37 13.16 14.03 14.03 13.71 13.69 6.27 9.12
Presbytis 5 11.25 11.34 11.20 11.08 11.53 11.55 11.49 11.47 7.68 9.09

Table 6.7: Degrees of mid-shaft bending of the predicted humeri using one to eight
principal modes (model two - excluding size)



6.4 Prediction Validation 197

Specimen Degrees of proximal bending of the predicted shapes (◦) Real Mean
1 2 3 4 5 6 7 8 (◦) (◦)

Cebus 1 11.04 11.16 11.23 11.42 11.06 10.85 11.22 11.25 10.46 7.74
Cebus 2 11.35 11.48 11.54 11.63 10.69 10.63 10.88 10.74 9.73 7.64
Cebus 3 11.13 11.31 11.17 11.78 11.85 11.62 12.24 12.14 9.38 7.81
Pan 1 5.09 5.34 4.22 4.32 3.04 3.20 2.95 2.47 1.20 7.83
Pan 2 1.83 1.21 3.81 3.50 2.89 2.88 3.11 4.87 3.46 7.60
Pan 3 4.97 5.55 4.87 5.37 5.10 5.33 5.40 5.13 1.06 7.78

Cobolus 1 9.17 9.20 9.33 9.63 10.75 10.65 10.43 10.48 10.80 7.79
Cobolus 2 9.49 9.54 10.27 9.35 10.81 10.66 10.87 10.82 10.47 7.76
Cobolus 3 9.66 9.71 9.72 10.11 10.88 10.87 10.65 10.48 8.68 7.87
Gorilla 1 6.60 6.66 3.92 3.99 3.14 3.23 3.69 4.86 2.65 7.68
Gorilla 2 3.13 3.02 1.39 2.17 2.16 1.90 1.67 0.91 5.26 7.74
Gorilla 3 6.96 6.96 5.38 4.86 4.58 4.58 4.58 5.11 3.80 7.83
Homo 1 3.77 3.09 4.66 4.47 3.14 2.56 2.79 2.99 3.19 7.76
Homo 2 2.57 2.93 1.50 1.68 1.53 1.84 1.56 1.46 1.89 7.84
Homo 3 2.41 1.96 3.49 3.42 3.16 3.48 4.52 5.69 3.41 7.75
Macaca 1 11.59 11.64 11.79 11.85 11.56 11.82 11.78 11.82 12.27 7.72
Macaca 2 12.17 12.36 12.11 12.40 12.04 12.17 12.21 12.01 14.52 7.72
Macaca 3 12.02 12.24 12.27 12.20 12.14 11.98 12.34 12.41 11.11 7.87
Macaca 4 11.59 11.65 11.86 12.28 12.26 12.30 12.17 12.15 14.47 7.70
Pongo 1 6.44 6.64 8.24 8.39 7.83 7.59 7.32 2.64 5.00 8.15
Papio 1 14.08 14.07 14.45 14.07 13.97 14.27 14.24 14.58 10.98 7.80
Papio 2 14.70 14.59 14.69 14.51 13.50 13.15 13.60 13.69 17.49 7.62
Papio 3 15.66 15.78 16.01 15.35 14.56 15.02 15.42 15.95 10.87 7.86

Presbytis 1 9.93 10.10 10.41 10.88 11.96 11.75 11.95 11.85 10.78 7.77
Presbytis 2 9.69 9.68 9.93 10.37 11.44 11.58 11.39 11.25 12.99 7.71
Presbytis 3 9.70 9.84 9.86 10.25 11.27 10.96 10.71 10.53 15.52 7.61
Presbytis 4 10.25 10.42 10.88 11.34 12.01 12.01 11.88 11.87 9.70 7.84
Presbytis 5 10.22 10.35 10.61 11.02 11.54 11.48 11.35 11.34 10.21 7.83

Table 6.8: Degrees of proximal bending of the predicted humeri using one to eight
principal modes (model two - excluding size)

number of torsion bending
modes mid-shaft proximal

1 21 17 25
2 20 18 25
3 20 18 22
4 22 21 23
5 21 21 23
6 22 21 22
7 21 21 22
8 21 20 22
9 19 19 23
10 21 20 23

Table 6.9: Number of predicted humerus shapes that have closer torsion and bending
features to the real shapes than the mean humerus shapes of the training sets to
the real shapes. Result vary when different numbers of principal modes were used.
(model two - excluding size)
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The order of the genus from left to right is: Cebus (three pairs), Colobus (three pairs), Pan (three

pairs), Gorilla (three pairs), Homo (three pairs), Macaca (four pairs), Pongo (one pair), Papio (three
pairs) and Presbytis (five pairs)

Figure 6.23: Morphological differences between the predicted humerus shapes and
the real shapes (model two - excluding size)

Predicting the Scapula

In order to validate the predictions of the scapula shapes, Dgn (angle between the normal

of the glenoid and the normal of the infraspinous fossa) and Dgb (angle between the

glenoid normal and the lateral border axis) of the predicted shapes were calculated. The

definitions of Dgn and Dgb are shown in Table 4.4, page 111; a demonstration of these

normal vectors and anatomical axes is shown in Figure 4.29.

Tables 6.10 and 6.11 list the angles of the predicted scapulae using different numbers

of principal modes - from one mode to eight modes. Parameters of the real scapula shapes

and the mean shapes are listed, to compare with those of the predicted shapes.
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Specimen Predicted shapes (◦) Real Mean
1 2 3 4 5 6 7 8 (◦) (◦)

Cebus 1 83.36 83.39 83.11 83.79 83.95 84.69 86.33 86.66 83.76 85.03
Cebus 2 82.69 81.02 81.95 86.21 86.80 87.05 87.02 89.56 89.32 85.27
Cebus 3 84.50 85.07 86.19 88.14 86.50 87.29 88.97 89.40 84.65 85.73
Pan 1 87.23 86.82 86.08 84.42 84.80 84.53 84.89 85.21 89.46 84.24
Pan 2 86.24 86.42 86.10 85.56 85.76 85.97 87.34 87.01 84.97 84.35
Pan 3 87.37 87.26 88.07 88.12 88.14 87.45 89.68 87.17 89.05 84.19

Colobus 1 82.26 82.53 82.94 84.83 84.10 84.77 84.65 85.76 88.50 84.71
Colobus 2 83.66 84.46 85.06 86.11 85.96 85.05 85.81 86.43 84.58 85.83
Colobus 3 83.76 84.09 83.40 84.75 84.07 84.26 84.11 84.30 88.42 85.50
Gorilla 1 88.93 88.69 87.57 86.06 85.30 85.40 84.96 85.22 87.24 85.79
Gorilla 2 88.15 87.80 87.92 87.35 87.72 85.85 86.37 84.88 85.16 85.50
Gorilla 3 87.13 86.81 87.25 87.02 87.00 86.74 86.32 87.44 78.31 84.15
Homo 1 86.80 86.86 87.14 87.76 88.10 87.90 88.23 89.27 83.50 85.03
Homo 2 87.20 87.70 88.43 89.85 89.27 89.19 89.04 86.15 86.05 85.39
Homo 3 87.73 88.03 88.58 89.73 89.91 89.04 89.42 89.77 87.67 85.38
Macaca 1 82.96 79.53 82.15 81.82 82.27 79.86 80.84 78.98 79.34 85.52
Macaca 2 82.31 82.15 81.56 81.69 81.89 80.83 81.00 78.95 80.40 85.71
Macaca 3 83.39 83.66 82.94 83.16 83.22 83.75 84.53 84.01 83.16 85.65
Macaca 4 81.46 80.44 80.59 80.49 80.55 77.30 77.06 77.18 84.73 85.56
Pongo 1 88.69 88.60 85.69 85.66 85.35 86.47 87.18 88.06 82.96 85.65
Papio 1 83.52 83.54 82.76 82.51 82.35 81.99 81.89 80.81 71.04 85.69
Papio 2 82.41 82.44 81.87 81.65 81.63 81.64 81.47 81.11 71.39 85.64
Papio 3 82.23 82.40 82.53 84.20 83.52 83.02 82.96 82.33 70.96 85.08

Presbytis 1 83.11 83.78 83.86 85.80 85.35 86.12 86.85 87.36 85.28 85.32
Presbytis 2 82.08 82.20 82.11 83.97 83.07 83.67 84.25 85.05 83.22 85.07
Presbytis 3 81.53 81.82 80.59 81.36 80.65 80.75 80.61 80.27 81.02 85.61
Presbytis 4 84.47 84.84 86.27 87.99 87.96 87.17 87.89 88.00 89.38 85.50
Presbytis 5 84.13 84.22 85.64 86.71 85.86 85.40 85.41 86.34 83.49 85.47

Table 6.10: Angles between the normals of the glenoid and the normals of the in-
fraspinous fossa (Dgn) on the predicted scapulae. One to eight principal modes were
applied. (model two - excluding size)
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Specimen Predicted shapes (◦) Real Mean
1 2 3 4 5 6 7 8 (◦) (◦)

Cebus 1 34.90 35.00 35.02 35.84 36.15 33.63 35.55 35.27 29.91 36.09
Cebus 2 37.15 37.25 37.75 43.07 43.96 42.76 41.49 41.22 31.85 38.81
Cebus 3 37.50 37.41 40.00 43.97 43.00 44.79 42.80 42.49 32.70 37.89
Pan 1 39.06 40.20 35.75 31.70 34.49 32.73 30.77 31.22 33.72 38.45
Pan 2 36.36 35.98 35.08 35.22 36.41 36.81 32.24 32.22 31.89 35.80
Pan 3 38.45 39.13 40.47 40.60 42.57 46.10 45.04 45.78 25.45 37.40

Colobus 1 33.43 33.84 36.58 39.97 40.01 38.94 39.28 38.70 40.71 36.94
Colobus 2 36.66 39.56 38.14 39.85 40.11 37.83 41.63 41.73 40.80 40.51
Colobus 3 39.12 39.24 38.07 40.58 38.05 36.47 36.33 36.23 35.85 40.51
Gorilla 1 38.97 37.41 34.05 29.87 28.47 28.25 29.44 30.49 32.09 39.11
Gorilla 2 38.64 37.53 35.73 32.66 34.71 30.56 32.68 30.65 33.18 36.97
Gorilla 3 36.61 36.19 35.64 35.18 32.94 32.57 39.04 36.87 21.02 35.92
Homo 1 37.79 38.00 36.86 38.76 41.39 40.56 40.44 40.07 52.04 35.80
Homo 2 32.54 33.95 34.10 36.14 38.61 39.69 42.31 45.79 58.85 33.95
Homo 3 36.03 36.00 36.40 38.62 39.46 40.46 42.30 43.21 38.36 33.86
Macaca 1 32.91 33.55 26.36 26.09 27.85 34.40 36.81 38.98 42.66 36.40
Macaca 2 32.27 32.67 32.50 33.19 32.92 34.37 35.70 33.69 38.08 37.60
Macaca 3 32.24 32.46 31.77 32.56 32.47 33.30 35.87 36.45 35.69 36.47
Macaca 4 31.89 31.79 33.10 40.06 37.80 36.46 37.98 38.59 30.90 37.14
Pongo 1 36.62 36.43 29.35 28.90 29.76 29.49 27.77 29.92 10.84 34.58
Papio 1 33.03 32.98 30.33 31.23 29.50 30.46 31.58 33.04 42.92 36.67
Papio 2 31.67 31.66 33.00 39.30 39.34 42.87 44.34 44.41 48.06 36.46
Papio 3 33.18 33.17 35.98 42.40 40.75 43.00 43.49 42.33 35.80 37.66

Presbytis 1 31.72 32.02 35.37 38.07 38.10 37.85 38.89 38.86 37.27 35.04
Presbytis 2 34.16 33.91 35.38 37.94 37.42 35.73 37.50 37.65 36.53 38.52
Presbytis 3 30.69 30.50 31.35 32.32 50.16 27.76 27.56 20.39 30.24 35.79
Presbytis 4 35.76 35.85 41.04 46.12 46.27 44.47 41.87 40.85 36.27 36.44
Presbytis 5 34.25 34.41 37.84 39.72 37.62 36.84 35.52 35.59 37.59 35.36

Table 6.11: Angles between the normals of the glenoid and the axes approximating
the lateral border (Dgb) on the predicted scapulae. One to eight principal modes were
applied (model two - excluding size)
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number of Dgn Dgb

modes

1 16 11
2 16 11
3 17 19
4 21 15
5 18 14
6 19 16
7 16 18
8 20 16
9 21 18
10 20 17

Dgn: the angle between the normal of the glenoid and the normal of the infraspinous fossa
Dgb: the angle between the normal of the glenoid and the axis approximating the lateral border

Table 6.12: Number of predicted scapula shapes that have closer Dgn and Dgb to the
real shapes than the mean scapula shapes of the training sets to the real shapes.
The results vary when different numbers of principal modes were used. (model two -
excluding size)

Table 6.12 shows the number of predicted shapes which have closer Dgn and Dgb

to the real shapes than the mean shapes. There are 21 predictions (75%) that have closer

Dgn when four or nine principal modes were applied, while there are 19 predictions (68%)

that have closer Dgb when the first three principal modes were used. Results show that

the predicted scapula shapes are less accurate than the predicted humerus shapes.

6.4.3 Summary

Two prediction validation methods are provided, one calculating the RMS distance of

surface points whilst the other utilises morphological features. Leave-one-out validations

on both error estimations show that the prediction method using PLS regression is able to

predict a shoulder bone shape from its adjacent segment. In the latter validation method,

3D angles between anatomical axes were used to indicate the relationship between the axes.

However, these angles are insufficient to describe the spatial relationship. For example, the

angle between an axis and any axis on its perpendicular plane is 90 degrees. A potential

problem of the use of 3D axes is the lack of spatial information.

Since the humerus and the scapula are more related to each other around the regions
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(a) mean shape (green) vs real shape (pink)

(b) predicted shape (khakis) vs real shape (pink)

Figure 6.24: A Pan scapula shape and its predicted shape using the first three prin-
cipal modes. The mean shape of the training set (built without this Pan scapula
shape) is displayed. The predicted shape has a more similar area around the glenoid,
acromion and coracoid process.

of the humeral head and the glenoid but not of the distal humerus and the scapular blade,

it is feasible to estimate the RMS distance on the region of interest, instead of the whole

bone, between the predicted shapes and the real shapes. Figure 6.24 shows a predicted

Pan scapula and the mean scapula from the training set over the real scapula. Although

the scapular blade of the predicted shape does not match the real one, the region of the

glenoid, the acromion and the coracoid process is very close to the real one. The RMS

distance on this region is much less than that of the blade. A remaining question is how

to define those regions across different genera.
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6.5 Neighbour-Conditional Shape Models

Chapter 5 has built SSMs for the humerus dataset and the scapula dataset. To describe

the morphological variations of a shoulder bone conditioned on the adjoining segment,

a neighbour-conditional shape model was applied. Given two training sets of shoulder

bone shapes and a predictor shape, the mean shape (x in Equation 2.16, page 44) of the

neighbour-conditional shape model is the maximum likelihood estimation conditioned on

the predictor shape, using Equation 2.17 (page 45). The conditional covariance matrix C

is calculated by Equation 2.18. Eigenvalues P (in Equation 2.16) and eigenvectors λ of

matrix C can be obtained.

As underlined above, the number of variables compared to the number of observa-

tion samples has an influence on multivariate regression. Therefore, PCA was applied to

reduce dimensionality of the data vectors. In the construction of the conditional shape

model, the described method is numerically unstable if the number of variables is greater

than the number of samples. To build a numerically stable model, each shape was de-

scribed by the PCA scores of its surface points instead of the vectors of all surface points.

Details about reducing dimensionality using PCA are explained in Section 6.2. As in the

PLS prediction method, the estimated PCA scores can be transformed to its corresponding

shape vectors.

Morphological variation demonstrations of the conditional shape models are shown

in Figures 6.25 and 6.26, conditioned on a Homo scapula and a Homo humerus. In

these demonstrations, size variation was excluded and the first three principal modes were

applied to construct the models. The first shape variation of the estimated humerus is the

width and the second variation is bending, which are different from the variation obtained

in Chapter 5, Section 5.3.2.

In conditional shape models, the recreated shapes are only plausible in a small

range of distribution. Once a conditional shape model is built, the corresponding real

shape can be fitted into the model to calculate its distribution in the PCA orthogonal

coordinate system (parameter b in Equation 2.16). The distance between b and the origin
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Coronal View Sagittal View

(a) 1st Principal Mode

(b) 2nd Principal Mode

(c) 3rd Principal Mode
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Figure 6.25: Morphological variations of a Homo humerus given the adjoining scapula
shape. The first three principal modes were used. (model two - excluding size)
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(a) 1st principal mode

(b) 2nd principal mode

(c) 3rd principal mode
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Figure 6.26: Morphological variations of a Homo scapula given the adjoining humerus
shape. The first three principal modes were used. (model two - excluding size)

of the system indicates how close the maximum likelihood estimation is to the real shape.

Leave-one-out validations were performed. The distribution of the estimated

humerus and scapula shapes on principal axes were scaled by multiplying 1/
√

λ (Fig-

ures 6.27 and 6.28 show the distribution patterns). The average b vectors are

{−0.039, 0.008,−0.063}T and {−0.018, 0.013,−0.063}T . Both are very close to the ori-

gin {0.0, 0.0, 0.0}T .

The maximum likelihood estimations (or the mean shapes of the conditional shape

models) were compared to the predicted shapes using PLS regression method. The results

show that there is no difference between the estimated shapes and the predicted shapes

in the present work.

A potential application of the neighbour-conditional shape model is to combine

the model with the bone-morphing technique. Deformation of the mean shape to a set

of sparse points, which can be obtained from an incomplete bone, can be constrained by



6.5 Neighbour-Conditional Shape Models 206

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

28 validations

P
ro

je
ct

io
ns

 o
n 

th
e 

fir
st

 p
rin

ci
pa

l a
xi

s

(a) mode one

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

28 validations

P
ro

je
ct

io
ns

 o
n 

th
e 

se
co

nd
 p

rin
ci

pa
l a

xi
s

(b) mode two

Figure 6.27: Distributions of the maximum likelihood estimations of humeri condi-
tional on the corresponding scapulae
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(b) mode two

Figure 6.28: Distributions of the maximum likelihood estimations of scapulae condi-
tional on the corresponding humeri
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variance of the maximum likelihood estimation.

6.6 Summary

This chapter has described a method to derive the morphological relationship between the

glenohumeral joint bones using CCA and a method to predict one bone shape efficiently

from its neighbour using PLS regression. The proposed methods are totally automatic

apart from a semi-manual labelling procedure of surface points in the establishment of

surface point-to-point correspondences of the scapulae. No prior knowledge about anatomy

of shoulder bones is required or incorporated in these methods.

PCA was applied to both training sets to reduce the dimensionality of the data

vectors before performing CCA, PLS regression and conditional shape modelling. There

are two main reasons for regressing the predictor variables on the principal components

rather than directly on the explanatory variables. Firstly, the explanatory variables are

often highly correlated (multi-collinearity) which may cause inaccurate estimations of the

least square regression coefficients. This can be avoided by using the principal components

in place of the original variables since the principal components are uncorrelated. Sec-

ondly, the dimensionality of the regressors is reduced by taking only a subset of principal

components for prediction.

The shoulder bones in the training sets show highly linear morphological interre-

lationship according to the canonical coefficients ρ. The first shape variation of the two

datasets were correlated and the relationship between their principal modes were able to

estimate how one shape was influenced by the other numerically. Clusters of different

genera can be identified lying approximately on a line defined by two canonical variates.

Therefore, a classifier could be trained and the morphological parameters were predictable

from each other.

The prediction results demonstrate that the two shoulder bones can be predicted

from each other. In statistical shape analysis, the mean shape is an estimation of a

single data sample. The leave-one-out validations have shown that the overall prediction
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behaviour using PLS regression on PCA latent variables was better than using the mean as

an estimation. In RMS distance validations of predictions without size variation, the best

humerus and scapula prediction results were obtained when the first two principal modes

(66.3% humerus shape variability) and the first 11 principal modes (96.2% scapular shape

variability) were used to form the PLS data blocks. In validations using morphological

features, the size of humeral head and size of scapular glenoid of the predicted shapes

are very close to those of the real shapes, claiming 89.3% and 96.4% better estimations

than the mean shapes when the first three principal modes were applied. Other features

(torsion and bending of the humerus, the relationship between the glenoid normal vector

and orientation of the infraspinous fossa) were also maintained in the predicted shapes.

Neighbour-conditional shape models were constructed with the present shoulder

bone pairs. Instead of describing variations within the same bones, the models described

bony morphological variability conditioned on the adjoining segment. The models provide

a range of possible shapes given the neighbour bone shape. The maximum likelihood

shape estimations were taken as the mean shapes of the models. They are the same as

the predicted shapes using PLS regression. Leave-one-out validations have shown that the

real shapes are very close to the likelihood estimations.

The applications of this chapter can be generally extended to human-only datasets

and other joint shapes predictions (such as the knee joint and the hip joint). Moreover,

the large variations of the scapula’s thin blade in the dataset, which has an influence on

the humerus analysis, induced errors in the prediction results. If the dataset only contains

human shoulder bones, it is likely that the prediction behaviour will be better.

The method could be also applied to reconstruct fossil shapes. Given a complete

fossil of a joint bone from an extinct primate would allow its adjoining segment to be

predicted. The problem is that the method requires a good training set, which can be

difficult to construct due to the lack of available sample fossils. Moreover, the method is

not constrained to determining morphological interrelationships and it can be applied to

many other fields, such as exploring the relationship between morphology and kinematics.
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Chapter 7

Discussion and Perspectives

7.1 Conclusions

This thesis applied some mathematical methods and models to analyse the morphology of

the two main shoulder bones, the humerus and the scapula, from nine genera of primates

that encompass terrestrial and arboreal locomotor types. Many techniques were used,

including crest line extraction, rigid and non-rigid registration, principal component anal-

ysis (PCA), statistical shape models (SSM), bone morphing, canonical correlation analysis

(CCA), partial least square (PLS) regression and neighbour-conditional shape models.

Morphological features of the bones can be extracted robustly and automatically.

Manual manipulation was highly reduced compared to traditional bone shape measure-

ments in morphometrics and therefore minimised resulting variations. Redefined local

coordinate frames were proposed that utilise stable bony structure instead of a few man-

ually labelled anatomical landmarks.

The shape variations of the humerus set and the scapula set can be described by

a few principal modes based on which a classification model can be built. Size is a very

important variation when distinguishing genera in the present datasets. Bending of the

humeral shaft plays a significant role across specimens, representing the first component.

The region composed of the glenoid, the acromion and the coracoid process is the major

difference amongst these primate scapulae, providing valuable information for taxonomy.
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To verify the robustness of the proposed SSM construction method, an SSM was

built on a set of human femora using the methodology pipeline applied to the humerus

dataset. According to the plausible shapes, length is the first component and the extension

of the femoral neck is the second component. An iterative optimisation method was

proposed to implement bone morphing, which is a technique to reconstruct a whole bone

surface using a set of sparse surface points.

Morphological interrelationships between the two shoulder bones can be extracted.

Prediction models were built so that one bone shape can be predicted from its neighbour

bone shape. Leave-one-out validations of the RMS distance between surface points has

shown that the prediction method provides the best results when the first two principal

modes were applied to the model. This is similar to the recommendation by many authors

(Chapter 6, Section 6.4.1). Validation of the morphological features has shown that the

predicted shapes have more accurate degrees of bending compared to the real shapes than

the mean shapes of the training sets do. Neighbour-conditional shape models were also

constructed to investigate shape variations of a shoulder bone conditioned on its adjoining

segment.

7.2 Future Work

A major limitation of this thesis is the lack of observation samples. There are only max-

imally five samples for each genus and only one pair of Pongo shoulder bones available.

To analyse primate shoulder bone shapes statistically, more samples should be provided

in the future. The remainder of this section mainly discusses two parts of future work,

one relating to methodology developments and the other relating to applications.

7.2.1 Methodology

In the current study, proximal and distal axes describing the humeral shaft were con-

structed using predefined portions of the shaft (Chapter 4, Figure 4.18). Due to the

different locations of the deltoid tuberosity (the point of insertion of the deltoid muscle,
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see Figure 2.2 on page 27), humeri in the current dataset have different bending points

on the humeral shaft. A disadvantage of this axis construction method using a predefined

portion on the humeral shaft is that the shaft within the predefined portion may have

different anatomical meaning across the dataset. For example (see Figure 3.4 on page 71),

the proximal third of the proximal shaft of a Macaca humerus contains the deltoid tuberos-

ity but the same portion of the proximal shaft of a Papio humerus does not. Definitions

of the axes describing the humeral shaft can be further improved by fitting a curve to the

centres along the humeral shaft. Humeri from different genera tend to bend at different

positions along the shaft, which can be seen in Figures 4.7 (page 90, the middle and the

right humeri) and 4.19 (page 98). Therefore, the areas used to approximate two axes, Lh1

and Lh2, shown in Figure 4.18 on page 97 are not accurate enough to differentiate the

two parts of the humeral shaft. To describe bending and to obtain the largest bending

point, local curves can be fitted to approximate the centres along the humeral shaft and

the principal curvatures of the curves can be calculated.

PLS is an essential technique utilised in Chapter 6. In PLS regression, PCA was

applied to reduce data dimensionality and the reduced data vectors were used to build

the prediction model. PCA is a linear technique, and nonlinear (or kernel) PCA would be

desirable in the future.

Some other studies have been performed concerning non-rigid registration and the

construction of SSM, but they are not robust enough for the present datasets, which

include large shape variations. Details of implementation of these studies are described

below.

Automation

When establishing correspondences among flat bones or complex bones, one problem is

that the flat or irregular bony structures challenge all non-rigid deformation methods

which utilise the closest point analysis. Section 5.2.2 in Chapter 5 addressed this problem

by initialising non-rigid registration by matching a few manually selected surface points.

Since crest points are detected on a surface where there is large curvature, they contain
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most of the anatomical landmarks. A more automatic method can be developed utilising

the crest points on the bone surface.

(a) Before registration (b) After registration

(c) Registration initialisation (d) After non-rigid registration

Figure 7.1: Initialising surface-based registration by matching two sets of crest points

Instead of using the manually selected surface points, two sets of crest points can

be extracted from the source shape and the target shape. Surface-based non-rigid regis-

tration can be initialised by matching the two sets of crest points. The TPS-RPM method

proposed by Chui and Rangarajan is a point matching algorithm to register two clouds of

point sets [CR03]. However, this method only works on point clouds with simple struc-

tures. It is also prone to generate incorrect correspondences. Landmark-based registration

with B-spline FFD was applied. Subsol et al proposed a line matching method to match

the crest lines on two skulls [STA98]. The method requires point correspondences before
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identifying line correspondences. B-spline FFD is capable of registering a cloud of points

to another point cloud (Figure 7.1). A shape can be initialised using the deformation field

of the registered points.

However, this method still failed to register a complex bone shape to its target bone

shape which has different morphological features (for an extreme example, to register a

triangle to a star). Point matching is thus error prone in the registration initialisation

and further introduces problems in non-rigid surface deformation. Further development

in deforming a very complex bone shape to its target can be beneficial.

7.2.2 Extension in Total Shoulder Replacement

Image-free techniques that build mathematical models to provide surgical guidance are ap-

plicable in surgeries such as total knee arthroplasty (TKA), total hip arthroplasty (THA),

anterior cruciate ligament reconstruction (ACL) and total shoulder replacement (TSR).

TSR is much less common than TKA and THA. In UK approximately 2400 - 2500 shoul-

der prostheses are implanted every year and the number of replacements is increasing only

slowly [RC04, MHW01].

Implantation of a total shoulder system involves replacement of the glenohumeral

joint. The limited applications of studies of the glenohumeral joint is largely due to its

complexity, high mobility and much greater range of movement than other synovial joints,

and therefore high susceptibility to soft tissue pathology and instability. Contrary to the

widespread belief, total surgical replacement of arthritic shoulder joints carries no greater

risk of complications than replacement of other major joints. This was recently suggested

by a research group in Johns Hopkins Hospital after their analysis on anonymous patient

information provided by the Maryland Health Services Cost Review Commission [Ven07].

Traditional joint replacement surgeries require X-rays to be taken pre-operatively.

Conventional image-guided joint replacement surgery require expensive CT scans for plan-

ning purposes, but have the potential to minimise invasive procedures and surgical expo-

sure of bone, and therefore reduce disruption of the soft tissues. Although they increase

accuracy and reduce failure rate, they deliver a high radiation dose to the patient.
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To obtain a good guidance system for TSR with minimally invasive methods and to

overcome some of the problems encountered frequently in the system, analysis of shoulder

bony morphology is important for better understanding of the shoulder joint. Accurate

computer models for shoulder bone shapes can be built using the techniques described in

this thesis, which provides information for patient-specific models.

7.2.3 Bone Morphing

Bone morphing is an extrapolation procedure for intra-operative visualisation of bony

structures in image-free surgeries. Bone morphing enables a complete surface to be re-

constructed from extremely sparse 3D digitised landmarks or surface points on the bone.

Reconstruction of the 3D bone shapes from a set of sparse points provides valuable infor-

mation to the surgeon during arthroplasty. SSM has been successfully incorporated with

bone morphing techniques to provide accurate surface models in hip and knee replacements

[FL98, SBM+02, YT03, CBE+04]. In practice, landmarks can be collected by a optical

pointer [FL98, SBM+02] easily since the hip or knee joint is widely opened. However,

image-free techniques such as bone morphing and SSM are not as developed in shoulder

replacements as those in the hip and knee replacements because shoulder replacement is

less common. The developed methodologies in Chapter 5, Section 5.6, can be extended to

shoulder bone morphing.

For a more accurate surface reconstruction, the local deformation step in bone

morphing can be modified by incorporating a neighbour-conditional shape model (details

are explained in Chapter 6, Section 6.5) instead of an SSM. Given a set of sparse surface

points on an incomplete bone, the deformation of the mean shape to the sparse point

set can be constrained by variance (calculated from Equation 2.19 in Chapter 2) of the

maximum likelihood estimation.
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Appendix A

Anatomical Planes and ISB

Definitions of a Shoulder Joint

Coordinate System

A.1 Anatomical Directions and Planes

Directional terms used in describing anatomy:

• Superior Closer to the Head

Inferior Closer to the Feet

• Anterior Towards the Front

Posterior Towards the Back

• Medial Closer to the Median Plane

Lateral Farther from the Median Plane

• Proximal Closer to the Trunk

Distal Farther from the Trunk

• Superficial Closer to the Surface

Deep Farther from the Surface
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• Dorsum Posterior aspect of the hand or Anterior aspect of the foot

Palmar Anterior aspect of the hand

Plantar Posterior aspect of the foot

Figure A.1: Anatomical reference planes

A.2 ISB Recommendation on Definitions of Joint Coordi-

nate System of Shoulder

For interpretation of Euler angles, it is suggested that two coordinate systems (proximal

and distal) are initially (by introduction of anatomical orientations of these coordinate

systems) aligned to each other. The rotation method is exactly equal to the method of

Grood and Suntay [GS83] using floating axes. The anatomical landmarks used are shown

in Figure A.2.
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Figure A.2: Illustration of anatomical landmarks used for the definition of shoulder
joint coordinate system [vdHCM+04]

Humerus

GH: Glenohumeral rotation centre, estimated by regression or motion recordings

EM: Most caudal point on Medial Epicondyle

EL: Most caudal point on Lateral Epicondyle

Scapula

AC: Most dorsal point on Acromioclavicular joint (shared with clavicula)

TS: Trigonum Spinae Scapulae, mid point of triangular surface on medial border of

the scapula in line with the scapula spine

AI: Angulus Inferior, most caudal point of scapula

AA: Angulus Acromialis, most latero-dorsal point of scapula

PC: Most ventral point of processus coracoideus
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A.2.1 Scapula Coordinate System - XsYsZs

Os: The origin coincident with AA

Zs: The line connecting AA and TS, pointing to AA

Xs: The line perpendicular to the plane formed by AI, AA and Zs, pointing forward

Ys: The common line perpendicular to Xs− and Ys− axis

A.2.2 Humerus First Degree Coordinate System - Xh1Yh1Zh1

Oh1: The origin coincident with GH

Yh1: The line connecting GH and the midpoint of EL and EM, pointing to GH

Xh1: The line perpendicular to the plane formed by EL, EM and Yh1, pointing

forward

Zh1: The common line perpendicular to Yh1− and Xh1− axis

A.2.3 Humerus Second Degree Coordinate System - Xh2Yh2Zh2

Oh2: The origin coincident with GH

Yh2: The line connecting GH and the midpoint of EL and EM

Zh2: The line perpendicular to the plane formed by Yh2 and Yh2 (see below), pointing

laterally

Xh2: The common line perpendicular to Xh2− and Yh2− axis

N.B.1. The Zh2 axis depends on the position of the upper arm and forearm, since it

can not assured that it is equal to the joint rotation axis. Therefore, by definition,

the Zh2 axis is taken with 90 degrees flexed elbow

N.B.2. The 1st and 2nd degree definitions of the humerus coordinate system do

not exactly agree, since the longitudinal axis of the forearm is not necessarily per-
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pendicular to the flexion-extension axis, and the line EM - EL is not necessarily

perpendicular to the longitudinal axis of the humerus

A.2.4 JCS and Motion for the Glenohumeral Joint (X - Y - Z Order)

For joint displacements one common point to both proximal and distal coordinate system

and preferably the (initial) rotation centre (or a point on the fixed rotation axis in case of

a hinge joint), should be taken.

e1: The axis fixed to the scapula and coincident with the Ys axis of the scapula

coordinate system. Rotation βGH1: GH pole angle or plane of elevation

e2: The axis fixed to the humerus and coincident with the Xh axis of the humerus

coordinate system. Rotation αGH : GH elevation (negative)

e3: Axial rotation around the Yh axis. Rotation βGH2: GH axial rotation, endoro-

tation (positive) and exorotation (negative)
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Appendix B

Library Packages and Software

B.1 C++ Library Packages

• Visualisation Toolkit (VTK) 5.1.0

• Fast Light Toolkit (FLTK) 1.1.7

• Image Registration Toolkit (VTK) by Daniel Rueckert and Julia Schnabel

B.2 Software Used

• Amira 3.1.1 – for surface segmentation, decimation and smoothing

• ParaView 1.4 – for cylinder clipping on a humerus shape

B.3 Software Developed in C++

• BonBon (Figure B.1)

Tab View – compares maximally five shapes, with transparent function.

Tab SemiLabel – displays shapes and surface points.

Tab Setting – functions including landmark labelling, manual transformation (rota-

tions and translations), bone size scaling, identifying humeral epicondyle, etc.
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Figure B.1: Interface of the visualisation tool developed in this work

Tab Models – creates SSM plausible shapes.

Tab CCA – performs CCA and predicts a shapes from its neighbour segment.

• Snack

The software package mainly includes the following executable files:

align h – Use three manually selected point landmarks to align a humerus (Section

5.3.1, Chapter 5)

cca loo – implement CCA and predict a shoulder bone from its adjacent segment

based on the extracted linear correlation; perform leave-one-out experiment to each

pair of shoulder bones

conditionSSM – implement conditional shape models

consAxis H – construct and show morphological axes for a humerus based on Dun-
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ning’s method [DDKJ03]

consAxis H cyl – construct and show morphological axes for a humerus based on

the cylinder clipping method

consAxis S moreLM – construct morphological axes for a scapula

conv2points – convert all kinds of vtk data formats to vtkPoints

fitCylinder – fit a cylinder to the point set of the clipped surface using the method

described in Section 4.3.2, Chapter 4

formshape – reconstruct a shape given the mean shape, eigenvectors and PCA

scores

getaxis h – get the long axis and the elbow joint axis from a humerus shape

getClosestPnt – given two shapes or two sets of point, find the closest point sets

from the other shape or point set

getcrest – get the crest lines of a shape

getdiff – calculate the RMS distance between two shapes

getsingleb – calculate the PCA scores of a shape given the mean shape and the

eigenvectors of a shape model

manualalign S – use three manually selected point landmarks to align the source

scapula shape to its target shape

morphing – implement bone morphing

mymirror – get the mirror shape of a shape

mypca – implement PCA using the weighted mean shape

regionGrow – implement region growing on a shape

rreg f – align the source humerus/femur shape to its target shape using ICP with

the humeral/femoral head fixed

smoothShape – get the smoothed shape

stl2vtk – convert stl format to vtk format
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vq – vector quantisation

writeSTL – convert vtk format to stl format
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Appendix C

Root Mean Squares Errors in

Leave-one-out Validation of the

Shoulder Bone Shape Prediction

Models
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ce1 3.67 5.16 2.77 3.29 1.70 2.01 1.92 1.73 1.89 1.81 1.43 1.37 1.79 1.37 1.59 3.39 3.42 5.67 4.80 5.14

ce2 8.01 4.83 6.94 6.55 5.34 9.84 8.31 7.33 7.23 11.91 12.34 12.49 11.72 10.58 9.72 11.20 14.04 13.88 16.62 20.32

ce3 2.68 3.98 2.34 2.93 2.46 2.76 1.87 1.91 2.07 1.95 1.77 1.79 3.36 3.07 6.05 3.45 3.26 3.33 3.70 3.31

ch1 13.89 15.84 10.54 4.84 18.56 14.20 8.74 10.30 12.02 14.56 12.73 12.80 13.13 23.78 24.73 26.35 26.04 32.18 32.29 30.97

ch2 14.91 10.43 5.76 4.64 6.04 4.56 7.98 8.80 15.26 14.88 6.98 7.04 6.42 18.27 13.55 10.24 10.36 13.28 11.83 11.72

ch3 7.04 6.39 10.92 20.46 17.46 17.32 12.59 13.69 13.63 15.24 12.57 11.85 11.03 16.67 15.13 15.35 19.37 19.74 19.44 17.82

co1 1.55 1.68 1.72 1.56 2.89 2.30 2.36 2.30 2.29 3.83 3.08 3.49 3.26 2.06 3.04 4.08 3.17 5.11 4.33 4.99

co2 2.79 2.68 4.01 3.52 5.15 3.65 9.27 10.99 11.69 10.49 11.72 11.91 11.92 10.79 9.06 14.24 14.09 14.45 14.64 10.97

co3 2.61 5.74 4.27 4.55 4.34 4.83 4.10 4.41 4.63 4.59 9.11 10.16 11.41 15.99 14.30 12.18 13.17 14.50 14.53 11.44

go1 12.10 26.60 22.68 23.77 27.17 27.04 16.81 15.42 11.90 10.74 10.57 13.59 19.40 34.22 31.03 28.17 25.55 23.09 22.54 14.15

go2 8.79 13.67 22.60 40.00 36.02 34.10 35.38 31.80 23.05 23.46 22.96 21.35 22.59 40.80 35.79 34.80 13.22 10.50 11.48 24.23

go3 5.12 9.45 13.32 13.78 8.33 6.00 6.39 5.21 5.36 8.16 4.79 10.10 14.29 34.00 30.74 20.39 21.85 23.44 20.87 22.74

ho1 31.66 13.59 18.53 19.20 17.26 14.65 11.44 9.05 4.29 5.42 7.81 12.86 12.00 20.60 22.60 18.86 18.80 18.56 18.26 23.91

ho2 13.91 46.26 42.83 43.23 36.55 41.03 33.80 33.32 46.00 48.27 41.84 41.86 43.56 41.11 35.18 31.02 29.79 34.49 31.20 41.80

ho3 40.56 19.59 20.63 21.02 28.85 26.67 23.38 22.75 23.08 23.18 22.51 22.28 22.16 21.01 19.24 20.93 16.67 17.40 18.07 16.53

ma1 21.33 15.14 13.28 13.06 11.44 14.31 12.46 12.55 12.43 15.13 13.73 14.63 14.23 14.97 14.55 13.41 14.02 13.74 13.73 10.82

ma2 19.56 11.59 10.53 10.53 10.20 9.22 7.51 8.25 8.21 10.12 8.46 8.55 7.85 10.12 8.61 10.30 3.22 2.23 2.95 2.80

ma3 3.57 6.67 4.67 5.23 4.14 3.41 3.96 4.78 4.60 4.65 5.20 5.24 4.76 7.27 6.70 5.95 6.10 6.24 4.31 4.01

ma4 23.23 19.63 17.97 18.23 15.55 13.41 16.68 16.07 16.07 15.35 14.37 15.31 15.50 15.49 20.37 15.03 13.75 15.99 14.31 21.69

or1 25.77 18.02 21.54 22.04 16.27 20.25 15.39 16.21 18.53 18.92 17.13 17.75 18.45 9.35 8.49 6.19 15.00 17.24 6.97 14.33

pa1 18.70 12.11 2.79 2.60 2.87 5.82 14.25 15.55 15.47 14.64 15.74 16.85 17.09 17.46 16.67 14.98 13.25 9.45 10.70 8.85

pa2 44.43 30.99 22.39 23.82 18.38 10.99 12.87 16.15 16.03 13.46 17.10 17.84 18.63 19.44 19.42 14.33 15.14 12.88 14.92 19.29

pa3 16.12 4.46 11.22 11.13 18.23 16.98 16.54 16.83 16.54 15.42 13.30 13.23 14.11 16.25 18.96 17.33 19.35 19.55 19.48 21.49

pr1 6.71 7.18 5.99 6.46 6.15 6.39 7.22 7.25 7.47 9.31 7.17 7.09 6.24 6.25 7.55 4.82 5.46 3.84 2.37 2.50

pr2 1.68 1.62 1.83 1.75 2.01 2.97 4.84 5.61 5.48 5.19 6.01 5.96 7.89 7.65 6.45 6.21 5.24 2.92 4.55 4.74

pr3 3.81 5.13 4.13 4.16 4.52 6.66 5.27 6.08 6.04 5.66 5.10 5.05 5.69 6.33 7.27 9.21 8.35 7.90 12.69 13.83

pr4 3.06 2.74 2.46 2.49 2.95 3.27 2.93 3.66 3.59 4.69 2.90 2.74 2.79 2.38 2.97 3.75 2.95 4.41 3.62 3.48

pr5 3.30 3.89 4.60 4.48 3.50 3.02 3.54 2.68 2.76 1.64 3.65 3.94 3.82 5.19 7.16 8.27 7.27 9.20 8.28 8.32

ce - Cebus; ch - Pan; co - Colobus; go - Gorilla; ho - Homo; ma - Macaca; or - Pongo; pa - Papio; pr - Presbytis

Table C.1: RMS errors of the predicted humerus shapes when using different numbers of principal modes (model one - including
size)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ce1 4.72 3.50 3.24 3.07 3.17 3.69 3.66 2.72 2.70 2.51 2.51 2.59 2.47 2.20 2.24 2.28 2.22 2.19 1.99 1.89

ce2 4.68 7.30 6.37 5.60 6.60 7.95 7.74 8.19 7.71 6.71 6.48 6.30 5.21 5.77 6.04 5.74 5.50 5.66 5.98 6.01

ce3 4.47 3.53 3.95 3.95 4.17 4.46 4.48 4.53 3.98 4.00 4.08 4.11 4.12 3.62 3.52 3.31 3.34 3.83 3.44 2.61

ch1 11.97 11.91 11.58 11.87 10.53 10.26 10.64 10.05 10.10 9.74 9.60 9.60 9.11 7.92 7.96 7.95 8.22 8.35 8.11 8.09

ch2 9.42 9.51 8.38 8.91 8.62 8.79 8.41 7.13 7.06 7.07 7.05 7.50 7.75 7.37 8.82 8.96 9.10 9.04 9.08 8.07

ch3 9.71 13.25 12.80 11.75 11.71 11.91 13.70 13.99 13.34 7.86 8.30 7.59 6.55 6.89 9.10 8.95 9.12 9.06 9.15 9.42

co1 2.95 3.28 2.87 3.00 3.34 3.34 3.08 3.38 2.66 2.18 2.41 2.48 2.61 2.78 2.52 2.28 2.29 2.31 2.06 1.94

co2 3.53 3.67 4.54 3.45 4.58 4.57 4.47 4.64 4.54 4.62 5.07 4.72 3.91 4.01 3.98 3.54 4.33 4.17 3.83 3.93

co3 4.18 3.95 4.36 2.69 2.58 2.74 3.18 3.19 3.29 3.42 3.48 3.05 2.91 2.89 2.89 2.86 3.80 4.06 4.02 3.64

go1 11.14 13.86 10.34 10.08 9.97 10.18 10.93 12.17 12.06 11.02 10.64 10.69 13.19 13.25 13.16 13.17 13.51 14.86 14.80 15.08

go2 17.49 16.78 15.75 16.42 16.17 16.62 18.25 21.30 19.74 17.06 16.87 17.60 19.41 19.13 17.09 18.13 18.27 18.14 17.15 16.50

go3 12.70 16.15 13.07 11.62 12.09 12.01 11.49 11.21 10.76 11.27 11.22 11.21 10.32 10.35 9.34 9.08 9.57 9.66 9.98 9.53

ho1 15.61 16.88 10.79 13.08 13.18 13.02 12.99 13.09 11.22 8.39 8.53 8.57 7.81 8.35 9.77 8.76 8.88 7.87 7.02 7.88

ho2 20.61 20.28 17.05 16.54 13.35 13.87 13.62 12.76 12.90 12.92 13.05 13.14 12.92 13.04 13.45 13.15 13.13 12.92 12.94 12.89

ho3 20.20 18.85 7.84 7.28 7.30 6.53 6.35 10.00 9.49 9.41 9.47 10.64 11.73 10.29 11.49 9.41 8.51 8.25 8.32 7.78

ma1 8.97 8.66 6.61 11.38 11.26 12.29 12.13 13.30 14.00 9.55 7.79 8.39 10.08 7.55 16.65 15.12 16.08 13.12 13.25 14.80

ma2 8.60 8.14 4.14 3.14 3.07 3.10 3.85 3.77 4.04 4.34 4.58 4.34 4.36 3.97 3.96 3.69 3.71 3.77 3.91 4.07

ma3 4.59 3.87 3.14 2.93 3.02 3.16 4.59 4.53 4.35 4.46 4.13 3.85 3.82 4.04 4.33 4.35 3.96 4.02 3.38 3.89

ma4 9.36 7.95 5.96 5.52 5.69 5.95 5.99 5.18 5.43 5.53 4.94 4.88 5.20 5.17 5.35 4.58 3.63 3.64 3.05 3.60

or1 12.95 12.52 13.31 13.43 13.52 14.25 15.75 15.88 16.05 16.00 14.02 13.77 13.70 13.69 13.52 11.67 11.91 11.78 11.88 10.83

pa1 12.11 8.32 4.55 4.84 5.25 6.57 7.44 7.12 10.18 9.27 8.00 6.57 6.68 6.93 5.52 5.52 6.38 6.18 6.37 8.29

pa2 22.92 17.42 15.93 14.18 13.99 13.75 13.63 12.24 11.53 11.10 11.06 10.84 13.90 11.83 11.51 11.29 12.03 10.32 10.33 8.52

pa3 13.04 9.16 8.85 8.87 7.80 7.96 7.92 8.03 6.86 6.64 7.95 8.96 8.85 8.99 9.06 9.37 9.39 9.37 9.54 9.09

pr1 4.85 5.44 4.12 2.95 2.76 2.83 3.14 3.00 2.64 2.63 2.77 2.46 2.50 2.26 2.26 2.22 2.40 2.39 3.02 3.02

pr2 2.80 4.00 4.49 2.87 2.79 2.86 2.93 3.08 3.37 3.41 3.58 3.41 3.45 3.35 3.56 2.42 2.60 2.60 2.63 3.00

pr3 3.36 5.73 6.14 3.82 4.45 4.68 4.79 5.52 5.57 5.24 5.43 5.74 5.57 5.17 5.28 3.99 4.02 2.81 3.16 2.85

pr4 3.03 2.01 1.67 2.60 3.33 3.73 3.71 3.40 3.54 2.98 3.18 3.50 3.30 3.16 3.17 3.31 3.35 3.62 3.59 3.56

pr5 1.85 2.11 2.46 2.59 2.48 2.42 2.34 2.35 1.97 2.39 2.12 2.19 2.22 2.67 2.82 2.84 2.89 3.16 2.49 2.67

ce - Cebus; ch - Pan; co - Colobus; go - Gorilla; ho - Homo; ma - Macaca; or - Pongo; pa - Papio; pr - Presbytis

Table C.2: RMS errors of the predicted scapula shapes when using different numbers of principal modes (model one - including
size)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ce1 2.02 2.02 2.03 2.06 2.09 1.97 1.88 1.89 1.87 1.85 1.82 1.85 2.00 1.98 1.98 1.92 2.06 2.10 2.14 2.17

ce2 4.20 4.08 4.07 4.06 4.03 4.09 4.28 4.28 4.25 4.70 4.71 4.98 4.95 4.64 4.52 4.57 4.68 4.68 4.73 4.70

ce3 2.76 2.75 2.76 2.73 2.73 2.57 2.44 2.48 2.27 2.35 2.33 2.33 2.56 3.08 2.82 2.70 3.00 2.85 3.11 3.20

ch1 2.43 2.73 2.04 2.38 2.01 2.06 2.07 2.25 2.27 2.25 2.24 2.12 2.12 2.11 2.68 3.06 3.70 3.69 3.75 3.88

ch2 2.36 1.93 3.13 2.93 2.67 2.70 2.76 3.16 2.86 3.05 2.78 3.29 3.29 3.00 2.99 3.00 3.36 3.39 3.40 3.79

ch3 3.02 3.47 3.13 3.34 3.23 3.20 3.10 3.09 2.95 2.94 2.93 2.88 2.98 2.90 3.10 3.13 3.74 3.79 3.79 3.85

co1 2.14 2.08 1.98 1.85 1.50 1.43 1.42 1.42 1.48 1.57 1.60 1.60 1.61 1.56 1.56 1.66 1.70 1.70 1.72 1.97

co2 1.62 1.60 1.38 1.61 1.42 1.40 1.38 1.48 1.64 1.65 1.63 1.62 1.73 2.17 1.98 2.06 1.62 2.84 2.80 2.72

co3 1.88 1.84 1.85 1.80 1.62 1.61 1.70 1.68 1.68 1.66 1.65 1.71 2.10 1.75 2.20 2.37 2.55 2.36 2.50 2.22

go1 3.01 3.14 2.68 2.79 3.19 2.96 2.83 3.32 3.77 3.70 3.92 3.88 4.06 2.72 3.21 3.87 4.56 3.77 3.68 3.68

go2 2.09 2.45 2.22 2.30 2.67 2.43 2.60 2.75 2.59 2.82 2.82 3.10 3.23 2.35 2.31 2.70 4.80 4.44 4.18 3.89

go3 3.28 3.42 2.66 2.41 2.31 2.34 2.33 2.44 2.38 2.21 2.28 2.22 2.47 2.93 2.43 2.67 3.39 3.85 3.93 3.44

ho1 1.91 1.81 1.86 1.81 1.59 1.52 1.72 1.78 1.77 1.87 1.88 1.98 2.27 2.39 2.18 2.11 2.29 2.07 1.91 2.14

ho2 3.23 3.24 2.42 1.97 1.82 1.79 1.68 1.34 1.58 1.85 1.88 2.28 3.11 2.94 3.77 3.06 4.92 3.53 3.84 4.30

ho3 2.82 2.57 2.03 2.03 2.01 2.12 2.29 2.71 2.67 2.50 2.48 2.70 2.52 3.40 3.62 3.63 3.66 3.84 3.36 3.47

ma1 5.68 5.60 5.66 5.67 5.60 5.45 5.44 5.44 5.41 5.59 5.58 5.59 5.54 5.48 5.25 5.25 4.85 4.84 4.97 4.51

ma2 1.81 1.75 1.71 1.75 1.73 1.63 1.63 1.66 1.53 1.49 1.45 1.48 1.49 1.51 1.67 1.77 1.68 1.85 1.80 1.81

ma3 2.33 2.34 2.36 2.35 2.37 2.29 2.26 2.28 2.26 2.25 2.49 2.46 2.65 2.52 2.54 2.82 2.86 2.84 2.83 2.73

ma4 3.35 3.28 3.26 3.24 3.24 3.22 3.21 3.19 3.16 3.26 3.28 3.36 3.22 3.18 3.02 2.92 2.98 2.94 2.81 2.85

or1 3.32 3.38 4.12 4.20 3.72 3.71 3.66 3.17 3.12 3.09 3.08 3.11 2.90 3.22 3.35 3.53 3.94 3.91 3.68 4.22

pa1 2.12 2.17 2.30 2.17 2.17 2.36 2.43 2.56 2.56 2.70 2.70 2.66 2.69 2.54 2.22 2.27 2.29 2.25 2.42 2.43

pa2 2.55 2.60 2.60 2.64 2.72 2.87 2.90 2.97 2.97 3.04 3.02 2.98 2.86 2.59 2.37 2.47 2.62 2.60 2.56 2.54

pa3 2.24 2.40 2.42 2.43 2.55 2.92 3.13 3.35 3.19 3.00 2.99 3.00 2.64 2.65 2.80 3.09 3.02 3.12 3.13 3.09

pr1 2.62 2.58 2.42 2.33 2.07 1.81 1.79 1.79 1.71 1.59 1.57 1.60 1.71 1.92 1.56 1.56 1.42 1.34 1.44 1.54

pr2 2.10 2.10 1.95 1.84 1.55 1.63 1.74 1.73 1.72 1.67 1.67 1.68 1.69 1.69 1.69 1.72 1.67 1.68 1.67 1.84

pr3 2.90 2.80 2.82 2.73 2.33 2.21 2.28 2.28 2.21 2.23 2.20 2.18 2.12 2.30 2.36 2.35 2.20 2.21 2.10 2.40

pr4 2.53 2.55 2.72 2.86 3.01 3.02 2.99 2.99 2.90 3.03 3.15 3.16 3.33 3.36 3.28 3.28 3.32 3.33 3.34 3.30

pr5 1.62 1.61 1.52 1.48 1.52 1.54 1.50 1.49 1.58 1.60 1.68 1.64 1.65 1.68 1.66 1.65 1.66 1.65 1.66 1.75

ce - Cebus; ch - Pan; co - Colobus; go - Gorilla; ho - Homo; ma - Macaca; or - Pongo; pa - Papio; pr - Presbytis

Table C.3: RMS errors of the predicted humerus shapes when using different numbers of principal modes (model two - excluding
size)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ce1 4.26 4.29 4.04 4.23 4.90 4.90 4.63 4.53 3.76 3.73 3.73 4.48 4.94 4.94 5.61 5.61 5.88 5.87 5.76 5.79

ce2 4.54 4.70 4.39 5.70 6.16 6.48 6.58 6.73 6.76 7.09 6.78 8.19 10.10 9.43 9.56 9.76 9.37 9.69 9.82 8.46

ce3 5.40 6.16 6.58 6.70 7.56 7.89 7.50 7.30 5.91 5.97 5.63 5.69 3.87 3.77 3.81 4.73 4.89 5.37 6.38 6.89

ch1 11.24 11.61 10.17 10.85 11.23 11.90 11.14 11.56 11.58 11.84 10.91 10.93 10.88 11.58 11.74 11.77 11.98 12.22 12.23 12.31

ch2 16.46 16.15 16.55 16.85 16.71 16.84 16.06 16.04 16.64 16.67 16.73 16.80 16.58 16.65 16.13 15.33 14.90 14.84 14.57 14.52

ch3 9.88 10.73 12.41 12.31 12.75 13.67 13.86 13.84 10.44 10.10 9.70 11.05 11.11 11.22 10.56 10.63 10.87 12.40 18.63 17.45

co1 5.02 4.65 4.58 4.10 3.70 3.63 3.75 3.56 3.67 3.57 4.07 3.94 4.27 4.24 4.09 3.80 3.96 4.45 4.76 4.67

co2 6.52 6.46 6.08 6.39 6.28 6.12 5.92 5.84 5.93 5.83 6.03 5.96 6.19 6.23 6.16 6.19 6.73 6.60 6.57 6.61

co3 5.30 5.19 5.35 5.05 5.07 5.13 5.02 5.00 4.94 4.92 4.77 4.74 5.74 5.80 5.84 5.71 5.50 5.51 5.67 5.51

go1 16.61 16.58 15.31 15.83 14.83 14.78 14.39 15.40 15.35 15.22 14.87 14.91 14.56 14.52 14.50 13.92 13.60 13.30 13.41 13.38

go2 12.42 12.77 11.84 11.81 11.80 11.68 10.46 11.56 11.51 11.50 11.59 11.22 11.20 11.12 10.78 10.79 10.94 11.15 11.05 10.83

go3 10.98 10.67 9.45 9.63 9.16 9.24 9.95 10.02 9.92 9.86 10.32 10.30 10.95 10.88 10.63 10.25 10.43 10.42 10.23 10.32

ho1 9.21 8.98 8.93 9.02 8.99 9.06 8.44 8.35 8.32 8.43 8.38 8.95 8.70 8.48 8.88 9.85 9.76 9.86 9.35 9.43

ho2 14.38 13.83 11.95 11.86 11.47 11.81 10.52 8.93 9.05 9.08 9.23 10.25 10.25 10.22 10.25 9.78 9.77 9.70 9.93 9.79

ho3 11.48 11.01 10.01 10.28 9.83 10.40 10.06 9.93 9.06 9.38 8.78 8.93 8.08 8.08 8.11 8.02 8.28 8.57 8.78 8.56

ma1 4.26 7.13 8.73 8.52 7.67 8.83 8.77 8.26 8.06 7.77 7.52 9.45 9.63 9.73 10.31 8.52 9.02 7.93 8.40 8.54

ma2 4.05 4.08 4.33 4.30 4.49 4.47 4.57 4.54 4.53 4.49 4.50 4.45 4.61 4.82 4.08 4.96 4.70 4.60 4.56 4.31

ma3 4.79 5.19 4.25 4.13 4.57 4.62 4.47 4.16 4.16 3.85 4.29 4.56 5.92 6.24 6.48 5.86 5.34 4.87 5.00 5.03

ma4 3.56 5.03 4.07 4.41 4.70 6.18 6.04 5.71 5.68 7.76 7.02 7.63 7.69 9.37 8.63 8.44 8.30 8.62 8.01 7.71

or1 12.48 12.32 15.21 15.07 14.29 15.22 15.19 15.01 15.17 15.65 15.68 15.68 14.76 14.16 14.19 14.24 14.46 14.55 13.48 13.94

pa1 7.21 7.35 6.54 6.30 6.30 7.14 6.45 6.47 6.39 7.03 6.65 7.18 6.51 6.54 7.10 7.72 7.58 6.98 7.15 7.50

pa2 6.85 6.93 6.94 7.80 7.96 7.75 7.30 7.32 6.72 8.63 6.25 8.46 9.74 8.35 8.20 8.40 8.99 8.88 8.82 9.69

pa3 8.48 8.98 9.49 9.83 9.69 9.48 9.56 9.05 8.28 7.66 7.54 6.70 6.60 6.06 6.93 6.96 6.95 7.25 6.83 7.48

pr1 4.52 4.33 4.41 4.05 3.46 3.26 3.39 3.45 3.59 3.60 3.68 3.92 4.58 4.54 4.16 4.26 4.67 4.75 4.74 5.02

pr2 5.21 4.92 4.87 4.39 3.94 4.13 4.29 3.89 3.81 3.77 4.30 4.30 4.06 4.00 4.72 4.13 4.43 4.46 4.68 4.70

pr3 7.10 6.55 8.01 7.76 8.59 9.03 8.85 8.19 8.02 7.69 7.69 7.14 7.21 7.50 8.03 7.95 7.12 7.11 6.49 5.43

pr4 4.59 4.47 5.54 5.24 5.02 5.72 4.74 4.90 4.94 5.60 5.39 5.33 5.08 5.22 4.74 4.50 4.83 4.79 4.96 4.97

pr5 3.35 3.42 3.72 3.52 3.71 3.77 3.18 3.33 3.44 3.54 3.53 3.39 3.85 3.67 5.22 5.10 5.13 5.25 5.21 5.12

ce - Cebus; ch - Pan; co - Colobus; go - Gorilla; ho - Homo; ma - Macaca; or - Pongo; pa - Papio; pr - Presbytis

Table C.4: RMS errors of the predicted scapula shapes when using different numbers of principal modes (model two - excluding
size)


