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Abstract

Active libraries can be defined as libraries which play an active part in the compi-
lation, in particular, the optimisation of their client code. This paper explores the
implementation of an active dense linear algebra library by delaying evaluation of
expressions built using library calls, then generating code at runtime for the compo-
sitions that occur. The key optimisations in this context are loop fusion and array
contraction.

Our prototype C++ implementation, DESOLA, automatically fuses loops aris-
ing from different client calls, identifies unnecessary intermediate temporaries, and
contracts temporary arrays to scalars. Performance is evaluated using a benchmark
suite of linear solvers from ITL (Iterative Template Library), and is compared with
MTL (Matrix Template Library), ATLAS (Automatically Tuned Linear Algebra)
and IMKL (Intel Math Kernel Library). Excluding runtime compilation overheads
(caching means they occur only on the first iteration), for larger matrix sizes, per-
formance matches or exceeds MTL; when fusion of matrix operations occurs, per-
formance exceeds that of ATLAS and IMKL.
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1 Introduction

The idea of an “active library” is that, just as the library extends the language
available to the programmer for problem solving, so the library should also
extend the compiler. The term was coined by Czarnecki et al. [7], who observed
that active libraries break the abstractions common in conventional compilers.
Active libraries are described in detail by Veldhuizen and Gannon [26].

This paper presents DESOLA (Delayed Evaluation Self Optimising Linear
Algebra), a prototype linear algebra library which we have developed in order
to explore one interesting approach to building active libraries. The idea is to:

Delay library call execution Calls made to the library are used to build a
“recipe” for the delayed computation. When execution is finally forced by
the need for a result, the recipe will often represent a complex composition
of primitive calls.

Generate optimised code at runtime Code is generated at runtime to
perform the operations present in the delayed recipe. In order to improve
performance over a conventional library, it is important that the generated
code should execute faster than a statically generated counterpart in a con-
ventional library. To achieve this, we apply optimisations that exploit the
structure, semantics and context of each library call. Compiled recipes are
cached to limits overheads, but need to be executed enough times to offset
the cost of the initial compilation.

This approach has a number of advantages. It does not need to analyse the
client source code but is still able to optimise across statement and procedural
bounds. DESOLA is implemented in standard C++ and uses a standard C
compiler for runtime code compilation so the library user is not tied to a
specific compiler.

One aspect of this approach is that the library interface remains isolated from
the concerns of achieving high performance. As we discuss later in Section 2.1,
the evolution of high performance numerical libraries has been accompanied
by a corresponding increase in the complexity of their interfaces. By allowing
the library implementation to take more responsibility for optimisation, we
aim to provide a more appropriate interface to the user, a similar goal to the
Matrix Template Library [21].

Another aspect of this approach is that the code generated for a recipe is
isolated from client-side code - it is not interwoven with non-library code.
This is particularly important because the structure of the code for a recipe is
restricted in form which enables us to introduce compilation passes specially
targeted to achieve particular effects.
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The disadvantage of this approach is the overhead of runtime compilation and
the infrastructure to delay evaluation. In order to minimise the first factor, we
maintain a cache of previously generated code along with the recipe used to
generate it. This enables us to reuse previously optimised and compiled code
when the same recipe is encountered again.

There are also more subtle disadvantages. In contrast to a compile-time so-
lution, we are forced to make online decisions about what to evaluate, and
when. Living without static analysis of the client code means we don’t know,
for example, which variables involved in a recipe are actually live when the
recipe is forced. We return to these issues later in the paper.

Our exploration covers the following ground:

(1) We present an implementation of a C++ library for dense linear algebra
which provides functionality sufficient to operate with the majority of
methods available in the Iterative Template Library [16] (ITL), a set of
templated linear iterative solvers for C++.

(2) This implementation delays execution, generates code for delayed recipes
at runtime, and then invokes a vendor C compiler at runtime - entirely
transparently to the library user.

(3) To avoid repeated compilation of recurring recipes, we cache compiled
code fragments (see Section 5).

(4) We implemented two optimisation passes which transform the code prior
to compilation: loop fusion, and array contraction (see Section 6).

(5) We introduce a scheme to attempt to predict, statistically, which inter-
mediate variables are likely to be used after recipe execution; this is used
to increase opportunities for array contraction (see Section 7).

(6) We evaluate the effectiveness of the approach using a suite of iterative
linear system solvers, taken from the Iterative Template Library (see
Section 8).

Although the exploration of these techniques has used only dense linear al-
gebra, we believe these techniques are more widely applicable. Dense linear
algebra provides a simple domain in which to investigate, understand and
demonstrate these ideas. Other domains we believe may benefit from these
techniques include sparse linear algebra (work in progress) and image process-
ing [6].

The contributions we make with this paper are as follows:

• Compared to the widely used Matrix Template Library [21], we demonstrate
performance improvements across our benchmark suite of dense linear iter-
ative solvers from the Iterative Template Library.

• We present a cache architecture that finds applicable pre-compiled code
quickly, and which supports annotations for adaptive re-optimisation.
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• Using our experience with this library, we discuss some of the design issues
involved in using the delayed-evaluation, runtime code generation technique.

2 Background

We begin with numerical libraries and issues related to their performance, then
the techniques we employ in DESOLA to enable it to be “active”, and lastly,
the compiler optimisations we use to improve the performance of our runtime
generated code. We assume that the reader already has a basic familiarity
with dependence analysis. Those unfamiliar are invited to consult Bacon et
al. [2].

2.1 BLAS

The Basic Linear Algebra Subprograms [15] are routines written in Fortran
which provide basic building blocks for vector and matrix operations. They
are frequently used in high-performance numerical computing. Processor ven-
dors commonly supply tuned BLAS implementations targeted towards the
architectures they manufacture.

BLAS routines are classified into three levels:

Level 1 The original set of BLAS routines. They perform vector, scalar and
vector-vector operations.

Level 2 Matrix-vector operations.
Level 3 Matrix-matrix operations.

BLAS functions typically accumulate their result into one of the operands
to aid memory reuse. The Level 2 and Level 3 BLAS also contain routines
optimised for symmetric, triangular and Hermitian matrices, as well as banded
and packed matrix storage formats, although the burden is placed on the
programmer to ensure that they use the correct routines to do this.

In their paper on BLAS level 2 [11], Dongarra et al. note that Level 1 BLAS
is not the most effective way to improve the efficiency of higher level code on
modern architectures. They state that this is due to the BLAS level 1 interface
inhibiting optimisations. In particular, on vector machines, the full nature
of the matrix-vector operations is not apparent to the compiler, hence the
development of Level 2 BLAS which encapsulated matrix-vector functionality.
Similarly, in their paper on Level 3 BLAS [10], Dongarra et al. note that Level 2
BLAS does not translate well to computers with a memory hierarchy because
data is not reused effectively. Level 3 BLAS allows higher performance by
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using blocked algorithms, which exploit the memory hierarchy. The evolution
of BLAS clearly shows that by optimising across a series of smaller operations,
benefits can be achieved that were previously unavailable.

The BLAS interfaces were designed for performance. Each function, especially
those at the higher levels, takes a large number of parameters, and performs
a number of more fundamental operations simultaneously. While the higher
level BLAS functions have been chosen to be those most useful to the scientific
computing community, it is still clear that the higher levels of performance
one wishes to achieve with BLAS, the more specific routines one must use,
and the more complicated the development of numerical software.

Blackford et al. have proposed an updated BLAS [5] which adds new opera-
tions, and extends existing ones included some which perform level 1 and level
2 BLAS operations simultaneously. Although new BLAS interfaces can be de-
vised each time a particular set of computations are recognised as performance
critical kernels, we believe such an approach is not sustainable.

The addition of new composed kernels with each extension of the BLAS in-
terface enables the reduction of memory traffic and provides greater scope for
optimisation. It also indicates the need for a mechanism that enables the com-
position and optimisation of arbitrary combinations of kernels as can occur in
different numerical applications.

One of the aims of this project is to investigate whether our approach al-
lows the creation of high performance numerical libraries. We want to be able
to create composed and optimised kernels without having to sacrifice inter-
face usability as in the case of BLAS. Another technique is C++ template
metaprogramming as used by the Matrix Template Library [21], described in
Section 2.3.

2.2 Cross Component Optimisation

Good software engineering practice dictates that software should be written
in a modular manner. Software components often simplify testing and debug-
ging, enable abstractions to be defined at component boundaries and promote
encapsulation and re-usability.

In the context of cross component optimisation, we define components as any
form of software building block from procedure calls to library code. While the
use of components in software engineering has many useful benefits, it is often
the case that components inhibit the optimisations that can be applied when
they are composed together. When we talk about cross-component optimisa-
tion, we refer to optimisations that improve the performance of a composition
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of software components.

We have already discussed the evolution of BLAS, and the benefits possible
by optimising across different linear algebra operations. Work showing the
effectiveness of cross component optimisation is presented by Ashby et al. [1]
in which the performance of an iterative solver, is analysed when implemented
with ATLAS, Fortran and Aldor.

The Aldor algorithm implementation of the iterative solver uses level 1 BLAS
routines, also implemented in Aldor. The Aldor compiler generates an interme-
diate representation called FOAM, which during linking allows the compiler
to perform extensive levels of cross component optimisation. After optimisa-
tion, the FOAM representation is translated to C and linked against a small
runtime library.

A comparison is made between the solvers using ATLAS, Fortran and opti-
mised/unoptimised Aldor implementations. Analysis of the optimised Aldor
solvers showed that the compiler had fused many of the function calls together,
with more fusions and increasingly aggressive code rearrangement occurring
at the higher optimisation levels.

Results show that for larger problems sizes (those incapable of being effectively
cached by the processor) that a significant speed up is possible over both the
ATLAS and Fortran implementations. It should be noted that these optimisa-
tions were compared against ATLAS’s Level 1 BLAS. The performance against
higher BLAS levels is not analysed.

It is these types of optimisations we wish to be able to exploit in DESOLA.
In particular, we aim to exploit loop fusion and array contraction. In order to
do this in a C++ library without using a custom compiler, we perform these
operations at runtime. This has both benefits and disadvantages compared to
the approach taken by Ashby et al. [1]. By delaying optimisation and code
generation until runtime, we incur a significant overhead, however, we also get
access to runtime values that would have been unknown at link time.

2.3 Template Metaprogramming and the Matrix Template Library

Template metaprogramming [23] is a C++ technique that uses the compiler as
a compile-time interpreter. Runtime for loops and if statements are replaced
by compile-time template specialisation and recursion. These techniques have
proved useful for writing high performance numerical libraries in C++ such
as Blitz++ [25] and MTL [21].

A technique called expression templates [24] allows C++ libraries to control
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the parsing of expressions. This is extremely useful for numerical applications
where a naive C++ implementation of matrices and vectors results in code
that contains numerous loops and temporary array allocations.

One numerical library using these techniques is Blitz++ [25] which uses tem-
plate metaprogramming to perform optimisations such as loop interchange,
collapsing and partial unrolling of inner loops, hoisting of invariant stride
computations and tiling to optimise cache use.

It is worth noting that libraries such as MTL and Blitz++ use template
metaprogramming to overcome the usual restrictions imposed by software en-
gineering abstractions. The object code for performing numerical operations
is generated in the client executable at compile time, rather than in a pre-
compiled library that it links against.

We now describe the Matrix Template Library [21], a state of the art numerical
library for C++ using template metaprogramming techniques. We compare
the performance of DESOLA to MTL using a suite of dense iterative solvers
later in this paper. The Matrix Template Library is written in C++ and aims
to attain both appropriate abstractions and performance though the use of
generic programming.

Algorithms are expressed independently of data storage formats using iterators
to traverse the data stored in containers. In this way, algorithms are unaware of
the indexing in the object they are operating on. MTL relies on the optimising
abilities of the compiler to remove this level of abstraction.

MTL is built on top of BLAIS [22], the Basic Linear Algebra Instruction
Set, which is layered on top of FAST, the Fixed Algorithm Size Template li-
brary. BLAIS provides functionality similar to Level 1, 2, & 3 BLAS. FAST is
basically an implementation of the Standard Template Library but for com-
putations whose size is known at compile time.

// STL

int len = 4;

int* x = new int[len];

int* y = new int[len];

fill(x, x+len, 1);

fill(y, y+len, 3);

std::transform(x, x+len, y, y, plus<int>());

// FAST

const int LEN = 4;

int* x = new int[LEN];

int* y = new int[LEN]:

fill(x, x+LEN, 1);
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fill(y, y+LEN, 3);

fast::transform(x, cnt<LEN>(), y, y, plus<int>());

Both implementations iterate though the arrays x and y, summing the values
at each index, and storing each result at the index in y. The primary difference
between the two calls is that the number of operations to be done has been
supplied as a template parameter. The FAST implementation of the transform
function is recursive, resulting in inlined code on compilation, and no loops.

Through the use of templates as a compile time code generation mechanism
and generic programming as an abstraction mechanism, MTL has been able
to attain high levels of performance for many mathematical operations while
maintaining abstractions. Thus, MTL demonstrates that high performance
numerical code in C++ using abstractions is possible.

MTL has the same goals as our research, to provide a numerical library with
a simple interface capable of achieving high performance. MTL uses template
metaprogramming to achieve greater control over the generated code than
other libraries. In contrast, our approach which uses runtime code generation
to achieve this greater level of control.

2.4 Delayed Evaluation, Self-Optimising Software Components

Beckmann and Kelly describe a delayed-evaluation self-optimising linear al-
gebra library [4] for a distributed memory multicomputer. Through delayed
evaluation, a directed acyclic graph is built which represents the computation
to be performed.

The point where execution can be delayed no further is known as a force point.
In the library described, the encounter of a force point triggers the construction
of an optimised execution plan. The plan stores data redistributions which are
defined as affine functions mapping array index vectors onto virtual processor
indices. Building an execution plan entails minimising the cost of the different
data redistributions.

The authors also present a strategy for reusing execution plans. As the op-
timisation problem characterised by the DAG of operations is complex and
traversal to check for cache hits expensive, a hash value is calculated for each
node which encodes the placement or placement constraints of that node. For
each execution plan, additional information is stored with regards to whether
it is believed the plan can be optimised further and whether or not its last
usage was sub-optimal.

Beckmann and Kelly’s library effectively demonstrates that delayed-evaluation
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self-optimising software components can obtain context information only present
at runtime. It also shows that the collected runtime context information can
be used to improve performance.

Further work by Liniker et al. [18] demonstrates that this technique is effective
in separating the interface to a linear algebra library from the concerns of
performance by presenting a C++ interface to the library that provides the
functionality required by IML++ [9], a set of templates for iterative solving
methods in C++.

We use a similar approach to attempt to improve performance in DESOLA.
However, we use runtime code generation and transformation, as opposed to
data placement, as the mechanism for improving the performance of our code.

2.5 Runtime Code Generation

Runtime code generation enables applications to specialise themselves more
effectively to their input. DESOLA uses runtime code generation to allow it
to generate more optimised and specialised code than would be possible at
runtime. We briefly compare the TaskGraph approach to two other systems
for runtime code generation.

Fabius [17] A prototype compiler developed to research the notion of de-
ferred compilation. The Fabius compiler compiles a rudimentary, strict,
first-order functional language.

Tick C [12] A superset of ANSI C designed to allow high level, efficient
machine-independent specification of dynamic code.

Comparing TaskGraph, Tick C and Fabius shows the variability in possible
approaches to runtime code generation. They differ in a number of important
aspects including:

Programmer Involvement In the TaskGraph system, the programmer has
to explicitly construct the runtime generated code and controls the optimisa-
tion. Tick C also requires the programmer to specify the runtime generated
code using the additional language constructs. Fabius does this less explic-
itly, using programmer hints and syntactic cues to determine what code
should be subjected to runtime code generation.

Overhead TaskGraph runtime code generation incurs a significant overhead.
TaskGraph requires that the abstract syntax tree of the runtime generated
code be manipulated at runtime and invokes a stand-alone C compiler to
perform its compilation. Fabius uses a much more “lightweight” approach.
Compiled code performing code generation in Fabius is “hardwired” to pro-
duce code for a small portion of the input program. tcc [19], a compiler for
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Tick C has two runtime backends allowing the user to choose between speed
or quality of code generation. The higher quality code generation processes
an intermediate form to provide efficient register allocation while the faster
backend generates code without analysis.

Language Support Tick C takes the approach of extending the C language
thus requiring a custom compiler to support it. Fabius uses programmer
hints to determine what code should be generated at runtime, and as such
also depends upon language support. The TaskGraph approach implements
a C-like sub-language in C++ using macros and templates and avoids the
requirement of a custom C++ compiler.

Portability Fabius and Tick C portability depends on their respective com-
pilers and code generation mechanisms. TaskGraph uses a stand-alone C
compiler to compile its code and thus is portable to any platform where a
C compiler already exists. This also enables us to leverage the optimisation
abilities of commercial C compilers such as ICC.

Previous work by Beckmann [3] using the TaskGraph library demonstrates the
effectiveness of specialisation and runtime code generation as a mechanism for
improving the performance of various applications. The TaskGraph library is
used to generate specialised code for the application of a convolution filter to
an image. As the size and the values of the convolution matrix are known at
the runtime code generation stage, the two inner loops of the convolution can
be unrolled and specialised with the values of the matrix elements.

With previous research involving TaskGraph showing promising results with
runtime code generation, we decided to see if the performance benefits pro-
vided by runtime code generation could be employed in a numerical library in
a transparent manner.

2.6 Loop Fusion

Loop fusion [2] can improve performance by reducing loop overhead, increasing
instruction parallelism and improving locality in the registers, data cache, TLB
or page if both loops use the same data.

Loop fusion requires that the loops being fused have the same bounds. If they
do not, they can sometimes be made to match by loop peeling, or introducing
a conditional. Two loops may be fused so long as there are no statements S1

in the first loop and S2 in the second loop such that S1 has a dependence on
S2.

Of course, it is also possible for loop fusion to decrease performance. This
could occur if the loop instructions can no longer fit into the instruction cache
or register pressure increases to the extent that values must be “spilled” into
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main memory.

In general, optimal loop fusion for maximising parallelism or locality is NP-
complete [8]. However, there exist optimal algorithms for subsets of the loop
fusion problem and heuristics for the more general problem. Kennedy has pro-
posed a greedy algorithm for maximising memory reuse between loops [14].
Gao et al. have proposed a heuristic for fusing loops to maximise array con-
traction [13]. Yi and Kennedy have proposed a transformation they call de-
pendence hoisting that combines loop interchange and fusion for nested loops
to improve memory hierarchy performance [29].

We use loop fusion in DESOLA in an attempt to improve cache locality and
reduce loop overhead. In particular, we observe that the runtime generated
code contains large numbers of fusible vector-vector operations. Loop fusion
facilitates array contraction [2], which we implement as well.

2.7 Array Contraction

Array contraction [2] is one of a number of memory access transformations
designed to optimise the memory access of a program. It allows the dimen-
sionality of arrays to be reduced, decreasing the memory taken up by compiler
generated temporaries, and the number of cache lines referenced. It is often
facilitated by loop fusion. For details of other memory access transformations,
consult Bacon et al. [2].

If the iteration variable of the pth loop in a loop nest is being used to index
the kth dimension of an array x, then dimension k may be removed from x if:

• Loop p is not in parallel.
• All distance vectors involving x have their distance for iteration variable of

p equal to 0.
• x is not used subsequent to the loop.

We use array contraction in DESOLA to attempt to reduce the memory usage
of the loops we have fused together. Our experimental results presented later
show that after loop fusion, we were able to remove significant numbers of
temporary vectors from our benchmark applications.

3 Delaying Evaluation

Delayed evaluation provides the mechanism whereby we collect the sequences
of operations we wish to optimise. We call the runtime information we obtain
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about these operations runtime context information.

This information may consist of values such as matrix or vector sizes, or the
various relationships between successive library calls. Knowledge of dynamic
values such as matrix and vector sizes allows us to improve the performance
of the implementation of operations using these objects. For example, the
runtime code generation system (see Section 4) can use this information to
specialise the generated code. One specialisation we do is with loop bounds.
We incorporate dynamically known sizes of vectors and matrices as constants
in the runtime-generated code.

DESOLA clients pass around handles to delayed expressions. The client can
use these handles to build and assign expressions, and determine their values
when needed. The library client need not be aware that delayed evaluation
is occurring. Building and assigning numerical expressions with the handles
causes them to be delayed by the library. Only when the client performs an
operation that requires knowledge of the value of an expression is it calculated.

The delayed expressions are represented as Directed Acyclic Graphs (DAGs).
Arcs in the DAG are directed in the direction of data dependence. Leaves
in the DAG are data values (literals) and the other nodes represent delayed
operations involving them. When the client forces evaluation of an expression
node referenced by a handle, the node is replaced by a literal value. A literal
value has no dependencies on other nodes so it is possible that sections of the
DAG are orphaned. A simple reference counting scheme is used to determine
when expression DAG nodes are no longer referenced by either other nodes or
client handles, and reclaim them automatically.

An example DAG is illustrated in Figure 1. The rectangular node represents
a handle held by the library client, and the other nodes represent delayed
expressions. The three multiplication nodes do not have a handle referenc-
ing them. This makes them in effect, unnamed. When the expression DAG
is evaluated, it is possible to optimise away the storage for these values en-
tirely (their values are not required outside the runtime generated code). For
expression DAGs involving matrix and vector operations, this enables us to
reduce memory usage and improve cache utilisation.

Delayed evaluation allows DESOLA to perform cross component optimisation
at runtime, and also allows us to equip it with a simple interface, such as the
one required by the ITL set of iterative solvers.
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Fig. 1. An example DAG. The rectangular node denotes a handle held by the library
client. The expression represents the matrix-vector multiply function from Level 2
BLAS, y = αAx+ βy.

4 Runtime Code Generation

Runtime code generation is performed using the TaskGraph [3] system. The
TaskGraph library is a C++ library for dynamic code generation. A Task-
Graph represents a fragment of code which can be constructed and manipu-
lated at runtime, compiled, dynamically linked back into the host application
and executed. TaskGraph enables optimisation with respect to:

Runtime Parameters This enables code to be specialised to its parameters
and other runtime contextual information.

Platform SUIF-1, the Stanford University Intermediate Format is used as
an internal representation in TaskGraph, making a large set of dependence
analysis and restructuring passes available for code optimisation.

Characteristics of the TaskGraph approach include:

Simple Language Design TaskGraph is implemented in C++ enabling it
to be compiled with a number of widely available compilers.

Explicit Specification of Dynamic Code TaskGraph requires the appli-
cation programmer to construct the code explicitly as a data structure, as
opposed to annotation of code or automated analysis.

Simplified C-like Sub-language Dynamic code is specified with the Task-
Graph library via a sub-language similar to C. This language is implemented
though extensive use of macros and C++ operator overloading. The lan-
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guage has first-class arrays, which facilitates dependence analysis.

An example function in C++ for generating a matrix multiply in the Task-
Graph sub-language resembles a C implementation:

void TG_mm_ijk(unsigned int sz[2], TaskGraph &t)

{

taskgraph(t) {

tParameter(tArrayFromList(float, A, 2, sz));

tParameter(tArrayFromList(float, B, 2, sz));

tParameter(tArrayFromList(float, C, 2, sz));

tVar(int, i); tVar(int, j); tVar(int, k);

tFor(i, 0, sz[0]-1)

tFor(j, 0, sz[1]-1)

tFor(k, 0, sz[0] -1)

C[i][j] += A[i][k] * B[k][j];

}

}

The generated code is specialised to the matrix dimensions stored in the array
sz. The matrix parameters A, B, and C are supplied when the code is executed.

A code generation visitor visits nodes from the delayed expression DAG in
reverse topological order to generate TaskGraph code. In order to calculate the
value of the node that has been forced, the only nodes we need to evaluate are
those that form the dependency tree from that node. However, as we want to
maximise the opportunities for optimisation, we evaluate all nodes transitively
connected to the one being evaluated. This heuristic is intended to maximise
optimisation opportunities by evaluating all expressions that use the same
data at the same time, possibly allowing loop fusion and array contraction to
occur between loops using the same data.

Code generated by DESOLA is specialised to matrix and vector sizes as in
the example above. The constant loop bounds and array sizes make it much
simpler to apply our loop fusion and array contraction optimisations. These
are described in Section 6.

5 Code Caching

As the cost of compiling the runtime generated code is extremely high (com-
piler execution time in the order of tenths of a second) it was important that
this overhead be minimised.
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Related work by Beckmann [4] on the efficient placement of data in a parallel
linear algebra library cached execution plans in order to improve performance.
We adopt a similar strategy in order to reuse previously compiled code. We
maintain a cache of previously encountered recipes along with the compiled
code required to execute them. As any caching system would be invoked at
every force point within a program using the library, it was essential that
checking for cache hits would be as computationally inexpensive as possible.

As previously described, delayed recipes are represented in the form of directed
acyclic graphs. In order to allow the fast resolution of possible cache hits, all
previously cached recipes are associated with a hash value. If recipes already
exist in the cache with the same hash value, a full check is then performed to
see if the recipes match.

Time and space constraints were of paramount importance in the development
of the caching strategy and certain concessions were made in order that it could
be performed quickly. The primary concession was that both hash calculation
and isomorphism checking occur on flattened forms of the delayed expression
DAG ordered using a topological sort.

This causes two limitations:

• We do not detect where the presence of commutative operations allow two
differently structured delayed expression DAGs to be used in place of each
other.

• As there can be more than one valid topological sort of a DAG, it is possible
for multiple identically structured expression DAGs to exist in the code
cache.

As we will see later, neither of these limitations significantly affects the useful-
ness of the cache, but first we will briefly describe the hashing and isomorphism
algorithms.

Hashing occurs as follows:

• Each DAG node in the sorted list is assigned a value corresponding to its
position in the list.

• A hash value is calculated for each node with references to other nodes
encoded using the values assigned to them in the previous step.

• The hash values of all the nodes in the list are combined together in list
order using a non-commutative function.

Isomorphism checking works similarly:

• Nodes in the sorted lists for each graph are assigned a value corresponding
to their location in their list.
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• Both lists are checked to be the same size.
• The corresponding nodes from both lists are checked to be the same type,

and any nodes they reference are checked to see if they have been assigned
the same numerical value.

Isomorphism checking in this manner does not require that a mapping be
found between nodes in the two DAGs involved (this is already implied by each
node’s location in the sorted list for each graph). It only requires determining
whether the mapping is valid.

As the maximum number of other nodes a node can depend on is bounded
(maximum of two for a library with only unary and binary operators) then
both hashing and isomorphism checking between delayed expression DAGs
can be performed in linear time with respect to the number of nodes in the
DAG.

We previously stated that the limitations imposed by using a flattened rep-
resentation of an expression DAG do not significantly affect the usefulness of
the code cache. We expect the code cache to be at its most useful when the
same sequence of library calls are repeatedly encountered (as in a loop). In
this case, the generated DAGs will have identical structures, and the ability
to detect non-identical DAGs that compute the same operation provides no
benefit.

The second limitation, the need for identical DAGs matched by the caching
mechanism to also have the same topological sort is more important. To ensure
this, we store the dependency information held at each DAG node using lists
rather than sets. By using lists, we can guarantee that when two DAGs are
constructed in the same order they will also be traversed in the same order.
Thus, when we come to perform our topological sort, the nodes from both
DAGs will be sorted identically.

The code caching mechanism discussed, while it cannot recognise all opportu-
nities for reuse, is well suited for detecting repeatedly generated recipes from
client code. For the ITL set of iterative solvers, compilation time becomes a
constant overhead, regardless of the number of iterations executed.

6 Loop Fusion and Array Contraction

We implemented two optimisations using the TaskGraph back-end, SUIF [28].
Both loop fusion and array contraction are applied to the runtime generated
code. As loop fusion often facilitates array contraction, the loop fusion pass
precedes the array contraction pass.
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Loop fusion [2] can lead to an improvement in performance when the fused
loops use the same data. As the data is only loaded into the cache once, the
fused loops take less time to execute than the sequential loops. Alternatively,
if the fused loops use different data, it can lead to poorer performance, as the
data used by the fused loop displace each each other in the cache. Loop fusion
is described in more detail in Section 2.6.

A brief example involving two vector additions. Before loop fusion:

for (int i=0; i<100; ++i)

a[i] = b[i] + c[i];

for(int i=0; i<100; ++i)

e[i] = a[i] + d[i];

After loop fusion:

for (int i=0; i<100; ++i) {

a[i] = b[i] + c[i];

e[i] = a[i] + d[i];

}

In this example, after fusion, the value stored in vector a can be reused for
the calculation of e.

In DESOLA, we use a rather simple loop fusion algorithm which does not take
into account cache locality and could be improved (although the fusions are
always correct). We require that the loop bounds of the loops to be fused are
constant but this does not limit us because our runtime generated code has
already been specialised with loop bound information.

As discussed in Section 4 we employ a heuristic to generate code where loops
are likely to reference the same data. Visual inspection of the code generated
during execution of the iterative solvers indicates that the fused loops com-
monly use the same data. We believe this is likely due to the structure of the
dependencies involved in the operations required for the iterative solvers.

We follow loop fusion by array contraction. Array contraction [2] is one of a
number of memory access transformations designed to optimise the memory
access of a program. It allows the dimensionality of arrays to be reduced,
decreasing the memory taken up by compiler generated temporaries, and the
number of cache lines referenced. Array contraction is described in more detail
in Section 2.7. We also provide results on the number of array contractions we
perform on our benchmarks in Section 8.

Another example. Before array contraction:
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for (int i=0; i<100; ++i) {

a[i] = b[i] + c[i];

e[i] = a[i] + d[i];

}

After array contraction:

for (int i=0; i<100; ++i) {

a = b[i] + c[i];

e[i] = a + d[i];

}

Here, the array a can be reduced to a scalar value as long as it is not required
by any code following the two fused loops.

We use this to technique to optimise away temporary matrices or vectors in the
runtime generated code. This is important because the DAG representation
of the delayed operations does not hold information on what memory can be
reused. However, we can determine whether or not each node in the DAG is
referenced by the client code, and if it is not, it can be allocated locally to
the runtime generated code and possibly optimised away. For details of other
memory access transformations, consult Bacon et al. [2].

7 Liveness Analysis

When analysing the runtime generated code produced by the iterative solvers,
it became apparent that a large number of vectors were passed in as parame-
ters. Their initial values were not being used by the runtime generated code,
instead, they were being passed in so they could be assigned to and propagate
values out of the runtime generated code.

On further investigation we discovered that a number of these vectors were not
used outside the runtime generated code, but our library could not determine
this because handles to the vectors were still held by the iterative solver. This
meant that our library could not optimise them away because they were not
being allocated locally to the runtime generated code. We realised that by
designing a system to recover runtime information, we had lost the ability to
use static information, in particular the liveness information of variables.

Consider the following code that takes two vectors, finds their cross product,
scales the result and prints it:

void printScaledCrossProduct(Vector<float> a,

Vector<float> b,
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Fig. 2. A DAG representing the cross product of two vectors multiplied by a scalar.
Upon evaluating the multiplication, the library must assume that the cross product
could be used later as the client still holds a handle to it.

Scalar<float> scale)

{

Vector<float> product = cross(a, b);

Vector<float> scaled = mul(product, scale);

print(scaled);

}

This operation can be represented with the DAG in Figure 2. The value
pointed to by the handle product is never required by the library client. From
the client’s perspective the value is dead, but the library must assume that
any value which has a handle may be required later on. Values required by
the library client cannot be allocated locally to the runtime generated code,
and therefore cannot be optimised away through techniques such as array
contraction. Runtime liveness analysis permits the library to make estimates
about the liveness of nodes in repeatedly executed DAGs, and allow them to
be allocated locally to runtime generated code if it is believed they are dead,
regardless of whether they have a handle.

Having already developed a system for recognising repeatedly executed de-
layed expression DAGs, we developed a similar mechanism for associating
collected liveness information with expression DAGs.

Nodes in each generated expression DAG are instrumented and information
collected on whether the values are live or dead. The next time the same DAG
is encountered, the previously collected information is used to annotate each
node in the DAG with an estimate with regards to whether it is live or dead.
As the same DAG is repeatedly encountered, statistical information about the
liveness of each node is built up.
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If an expression DAG node is estimated to be dead, then it can be allocated
locally to the runtime generated code and possibly optimised away. This could
lead to a possible performance improvement. Alternatively, it is also possible
that the expression DAG node is not dead, and its value is required by the
library client at a later time. As the value was not saved the first time it was
computed, the value must be computed again. This could result in a perfor-
mance decrease of the client application if such a situation occurs repeatedly.

8 Performance Evaluation

We evaluated the performance of DESOLA using solvers from the ITL set of
templated iterative solvers running on dense asymmetric matrices of differ-
ent sizes. The ITL provides templated classes and methods for the iterative
solution of linear systems, but not an implementation of the linear algebra op-
erations themselves. ITL is capable of utilising a number of numerical libraries,
requiring only the use of an appropriate header file to map the templated types
and methods ITL uses to those specific to a particular library. ITL was mod-
ified to use DESOLA through the addition of a header file and other minor
modifications.

We compare the performance of our library against the Matrix Template Li-
brary [21], Intel’s Math Kernel Library and ATLAS [27]. We compare against
MTL because it has a similar goal of trying to provide high performance code
in C++ with an elegant interface. Comparisons against ATLAS and Intel’s
MKL are provided as a performance baseline.

ITL already provides support for using MTL as its numerical library. We
adapted ITL’s existing interface for Sparse BLAS to dense BLAS allowing
the ITL solvers to work with ATLAS and Intel’s Math Kernel Library. We
analysed the performance of five iterative solvers suitable for asymmetric ma-
trices, namely Conjugate Gradient Squared, BiConjugate Gradient, BiConju-
gate Gradient Stabilised, Quasi-Minimal Residual and Transpose Free Quasi-
Minimal Residual. The Chebyshev Iteration and Preconditioned Richardson
solvers were not benchmarked due to the need to generate coefficient matrices
with appropriate spectral properties. We did not implement the Generalised
Conjugate Residual and Generalised Minimum Residual because they required
additional matrix-class functionality. Additionally, all benchmarks used the
identity preconditioner as all other ITL preconditioners required MTL-specific
functionality.

The version of ITL used was 4.0.0-1. The version of MTL used was 2.1.2-23
of MTL2. Version 10.1 of the Intel C and C++ Compilers was used for both
the runtime compiled code generated by our library and the compilation of
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Solver Compiler Invo-
cations

Total Compila-
tion Time

Total Execution
Time (size 500)

Total Execution
Time (size 5000)

bicg 9 0.929 0.999 20.340

bicgstab 10 0.942 1.033 36.170

cgs 9 0.930 1.025 35.977

qmr 12 1.120 1.237 20.659

tfqmr 9 0.887 1.056 36.292
Table 1
The number of compiler invocations in each iterative solver, the total compiler over-
head in seconds and total execution time (including compilation) for 256 iterations
of each solver with a problem size of 500 and 5000 for architecture 1. Liveness
analysis (Section 7) is disabled.

the MTL benchmarks, respectively. The options passed to the Intel C and
C++ compilers are described in Table 2. The version of Intel’s MKL library
was 10.0.2.018. Version 3.8.1 of ATLAS was used on architecture 1 (Xeon, see
below). On architecture 2 (Pentium IV, see below) we take the slightly unusual
step of comparing against ATLAS 3.6.0 with pre-collected tuning results from
the Ubuntu Linux distribution for the Pentium IV with SSE2 support. We did
this because we found that this outperformed any locally tuned ATLAS we
could build. Both ATLAS builds used GCC 4.2.1 for kernel code compilation.
We note that at the time of writing the online ATLAS installation guide
advocates the use of GCC 4.2 over previous series 4 and 3 versions and also
advises against the use of Intel’s C Compiler for compiling ATLAS kernel code.

In order to show trends more clearly, we show throughput. The number of
floating point operations required have been estimated from the ITL imple-
mentation of the iterative solvers. It is important to note that our library
requires that we invoke a compiler at runtime and hence incur a compilation
overhead. We omit this from the throughput graphs as the relative effect of this
overhead is dependent on numerous factors including the size of the matrices
involved and the number of iterations the solvers are run for. An indication
of the compilation overhead for one of our architectures is given in Table 1.

We will discuss the observed effects of the different optimisation methods we
implemented, and we conclude with a comparison against the same bench-
marks using MTL, ATLAS and Intel’s MKL. We evaluated the performance
of the solvers on two architectures. All the solvers are single threaded and use
double precision.

(1) Intel Xeon “Clovertown” processor running at 2.66GHz, 4096 KB L2
cache with 4 GB RAM running 64-bit Ubuntu 7.04.

(2) Pentium IV “Prescott” processor running at 3.2GHz with Hyper-threading
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Option Description

-O3 Enables the most aggressive level of optimisation including loop
and memory access transformations, and prefetching.

-restrict Enables the use of the restrict keyword for disambiguating pointers.
The restrict keyword is not used in MTL but is used in our runtime
generated code.

-ansi-alias Allows icc to perform more aggressive optimisations if the program
adheres to the ISO C aliasing rules.

-xT Generate code specialised for Intel Core2 Duo (for architecture 1).

-xP Generate code specialised for Intel Pentium 4 with SSE3 (for ar-
chitecture 2).

Table 2
The options supplied to Intel C/C++ compilers and their meanings.

disabled, 2048 KB L2 cache with 2 GB RAM running 32-bit Ubuntu 7.04.

The first optimisation implemented was loop fusion. Three of five of the bench-
marks did not show any noticeable improvement with this optimisation. Vi-
sual inspection of the runtime generated code showed multiple loop fusions
had occurred between vector-vector operations but not between matrix-vector
operations. As we are working with dense matrices, these fusions are unable
to contribute any significant performance effects given that vector-vector op-
erations are O(n) and the matrix-vector multiplies present in each solver are
O(n2).

We obtained significant speedups from loop fusion between matrix-vector mul-
tiply operations on two benchmarks, the BiConjugate Gradient solver and the
Quasi-Minimal Residual solver. The first required no modification to ITL, but
the latter 1 required minor changes to ITL. We observed that the checks for
QMR breakdown forced the evaluation of a matrix-vector multiply before a
second matrix-vector multiply, making fusion impossible. Data dependencies
permitted moving the second (transpose) matrix-vector multiply to be ad-
jacent to the first, enabling fusion. We note that as this move disregarded
the control dependence between the transpose matrix-vector multiply and the
QMR breakdown check, our changes also had the minor effect of the multiply
being executed unnecessarily in the instance of the breakdown of the solver.

In both these cases the loop fuser was able to fuse a matrix-vector multiply and
a transpose matrix-vector multiply with the result that the matrix involved
was only iterated over once for both operations. A graph of the speedup ob-
tained across matrix sizes is shown in Figure 3.

1 the QMR matrix-vector multiply fusion result was not yet achieved in the
LCSD’06 paper [20].
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Fig. 3. Throughput of the BiConjugate Gradient (BiCG) and Quasi-Minimal Resid-
ual solvers running on architecture 2 with and without loop fusion.

The second optimisation implemented was array contraction. We only eval-
uated this in the presence of loop fusion as the former is facilitated by the
latter. The array contraction pass did not show any noticeable improvement
on any of the benchmarks applications. On visual inspection of the runtime
generated code we found that the array contractions had occurred in all the
iterative solvers. The number of array contractions for each iterative solver are
listed in Table 3. However, these only occurred on vectors, and affected only
vector-vector operations. This is not surprising since only one matrix is used
during the execution of the linear solvers and as it was required for all itera-
tions, could not be optimised away in any way. Future work includes extending
our library to sparse matrices, which would make the effect of the loop fusion
passes and array contraction more apparent as the cost of the matrix-vector
multiply operations becomes O(n) instead of O(n2).

The last technique we implemented was runtime liveness analysis. This was
used to try to recognise which expression DAG nodes were dead to allow them
to be allocated locally to runtime generated code.

The runtime liveness analysis mechanism was able to find vectors in three
of the five iterative solvers that could be allocated locally to the runtime
generated code. The three solvers had an average of two vectors that could be
optimised away, located in repeatedly executed code. Unfortunately, usage of
the liveness analysis mechanism resulted in an overall decrease in performance.
We discovered this to be because the liveness mechanism resulted in extra
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Solver Total array contractions Array contractions in repeatedly
executed code

bicg 13 5

bicgstab 12 7

cgs 17 7

qmr 10 9

tfqmr 13 10
Table 3
Number of array contractions occurring in each iterative solver. Total array con-
tractions refers to the number of array contractions performed in code generated
during the execution of the solver. Array contractions in repeatedly executed code
refers to the number of array contractions that occurred in code executed by the
solver each iteration. Liveness analysis (Section 7) is disabled.

constant overhead due to more compiler invocations at the start of the iterative
solver. This is due to the statistical nature of the liveness prediction, and the
fact that as it changed its estimates with regard to whether a value was live
or dead, a greater number of runtime generated code fragments had to be
compiled.

We also compared DESOLA against the Matrix Template Library, Intel’s
Math Kernel Library and ATLAS, running the same benchmarks. We en-
abled the loop fusion and array contraction optimisations, but did not enable
the runtime liveness analysis mechanism because of the overhead already dis-
cussed.

We observe that on the BiCG and QMR benchmarks, on which we were able to
perform matrix-vector loop fusion, we outperform the other implementations
on both architectures at matrix sizes above 1500. We show the performance
of the different implementations with the BiCG benchmark running on archi-
tecture 1 in Figure 4 and QMR on architecture 2 in Figure 5. Performance
results for the QMR and BiCG benchmarks are similar on both architectures.

On architecture 1, we note that IMKL and ATLAS appear to perform partic-
ularly well with matrix sizes smaller than 1000. On the BiCGSTAB, TFQMR
and CGS benchmarks, we can outperform MTL and ATLAS for matrix sizes
above 2000, but do not achieve the performance of IMKL. Performance com-
parisons for the TFQMR benchmark are shown in Figure 6. Results for the
BiCGSTAB and CGS benchmarks are similar.

On architecture 2, on the BiCGSTAB, TFQMR and CGS benchmarks, we
outperform IMKL and MTL at matrix sizes above 1500. ATLAS consistently
outperforms all other implementations at all matrix sizes. Performance com-
parisons for the TFQMR benchmark are shown in Figure 7. Results for the
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Fig. 4. Throughput of the BiConjugate Gradient (BiCG) solver using DESOLA,
MTL, ATLAS and IMKL running on architecture 1. Estimated throughput for
IMKL at matrix size 500 is 4504 MFLOPs. Throughput for DESOLA ignores the
constant compilation overhead (see Table 1).

BiCGSTAB and CGS benchmarks are similar.

Once again, we stress that these graphs ignore the compilation overhead which
is a constant in the case of the iterative solvers (see Table 1). Therefore, the
relative effects of this overhead on performance will vary depending on the size
of the problem, and the number of iterations required to meet convergence.
We also note that mechanisms such as a persistent code cache could allow
the compilation overheads to be significantly reduced. These overheads will
be discussed in Section 10.

9 Discussion

In this section we discuss our work and its relationship to other work in this
area and other questions that have been raised.

9.1 Is this a job for the compiler?

Ideally, at least some of the work we do in DESOLA could be performed by a
conventional compiler. The techniques we seek to exploit such as loop fusion
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Fig. 5. Throughput of the Quasi-Minimal Residual (QMR) solver using DESOLA,
MTL, ATLAS and IMKL running on architecture 2. Throughput for DESOLA
ignores the constant compilation overhead (see Table 1).
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Fig. 6. Throughput of the Transpose Free Quasi-Minimal Residual (TFQMR) solver
using DESOLA, MTL, ATLAS and IMKL running on architecture 1. Estimated
throughput for IMKL at matrix size 500 is 4233 MFLOPs. Throughput for DESOLA
ignores the constant compilation overhead (see Table 1).
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Fig. 7. Throughput of the Transpose Free Quasi-Minimal Residual (TFQMR) solver
using DESOLA, MTL, ATLAS and IMKL running on architecture 2. Throughput
for DESOLA ignores the constant compilation overhead (see Table 1).

and array contraction are well known and have been researched for a significant
period. However, from the output of ICC running on our runtime-generated
code, we were able to observe two aspects of ICC’s behaviour. Firstly, when
compiling code targeting machines with SSE support, ICC would choose not
to fuse performance critical loops in our BiCG and QMR benchmarks due to
the belief that it would reduce performance. Secondly, when we told ICC to
target an architecture without SSE support, it would perform loop fusion in
our QMR and BiCG benchmarks, but would fuse vector-matrix and vector-
vector operations together rather than the matrix-vector operations required
to significantly improve performance.

This indicates a flaw in ICC’s fusion heuristics rather than in ICC’s ability
to fuse loops. As our runtime-generated code takes a restricted form, we can
choose to apply optimisations targeted to achieve specific effects. Our library
enables us to deliver optimisations that the compiler used for code generation
may not yet possess or have the ability to apply effectively.

The ability of our system to optimise across library calls regardless of their
location in the client application allows for a greater scope of optimisations to
be performed. However, at least some inter-statement optimisation should be
possible with MTL. As MTL generates code at compile time inside the client
application rather than in a library, it should also be possible for a compiler
to exploit inter-statement optimisations between MTL calls. However, until
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compilers can apply well known techniques like loop fusion and array contrac-
tion effectively, we believe our library provides a useful means to bring these
optimisations to numerical code irrespective of compiler quality.

9.2 What is the difference between our approach and JIT?

Our approach to generating code has also been compared to Just-in-Time
compilation. JIT compilation can make effective use of runtime information
to optimise execution performance in the same way we seek to. The quality
of the JIT compiler is of course an important issue. JIT compilers typically
do not have access to a high level representation of the code making it much
more difficult to apply the optimisations we want. Furthermore, we would also
need the JIT to optimise across specific sequences of library calls.

It is also possible to argue that a static analysis beforehand could be used to
determine information required for the desired optimisations and this informa-
tion passed to the JIT compiler at runtime. This would provide the benefits
of the applied optimisations without the full cost of a runtime analysis. Of
course, all these approaches require a C++ JIT compiler whereas one of our
aims was to create a C++ library with high portability rather than modify
the compiler.

10 Conclusions and Further Work

We have presented DESOLA, a prototype library that allows the composition
and optimisation of arbitrary sequences of kernels. The experimental results
from Section 8 show that for larger matrix sizes we match or exceed the
performance of MTL, and when fusion of matrix operations occurs, we exceed
the performance of ATLAS and IMKL.

Furthermore, we do this while providing a relatively simple library interface,
because by handling kernel composition at runtime, the library user is not
required to assist the library by mapping their application onto a specific set
of kernels.

Numerical libraries such as BLAS have had to adopt a complex interface to
obtain the performance they provide. Libraries such as MTL use unconven-
tional techniques to work around the limitations of conventional libraries to
provide both simplicity and performance. The library we developed also uses
unconventional techniques, namely delayed evaluation and runtime code gen-
eration, to work around these limitations. The effectiveness of this approach
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provides more compelling evidence towards the benefits of Active Libraries [7].

We have shown how a framework based on delayed evaluation and runtime
code generation can achieve high performance on certain sets of applications.
We have also shown that this framework permits optimisations such as loop
fusion and array contraction to be performed on numerical code where it would
not be possible otherwise, due to either compiler limitations or the difficulty
of performing these optimisations across procedural boundaries.

While we have concentrated on the benefits such a framework can provide,
we have paid less attention to the situations in which it can perform poorly.
The overhead of the delayed evaluation framework, expression DAG caching
and matching and runtime compiler invocation will be particularly significant
for programs which have a large number of force points, and/or use small
sized matrices and vectors. Some of these overheads can be reduced. Methods
include:

Persistent code caching This would allow cached code fragments to per-
sist across multiple executions of the same program and avoid compilation
overheads on future runs.

Evaluation using BLAS or static code Evaluation of the delayed expres-
sion DAG using BLAS or a statically compiled code variant would allow the
overhead of runtime code generation to be avoided when it is believed that
runtime code generation would provide no benefit.

Investigation of other applications using numerical linear algebra would be
required before the effectiveness of these techniques can be evaluated.

We also note that while we aim for our system to be transparent to the library
user, the placement of force points can have a significant effect on performance.
As we observed in the Quasi-Minimal Residual solver, force points place a bar-
rier between the operations that can be optimised together which can result
in lost optimisation opportunities. One method to combat this is to perform
speculative evaluation based on detecting repeated evaluated sequences of ex-
pressions.

Other plans for future work for this research include:

Sparse Matrices Linear iterative solvers using sparse matrices have many
more applications than those using dense ones, and would allow the benefits
of loop fusion and array contraction to be further investigated.

Client Level Algorithms Currently, all delayed operations correspond to
nodes of specific types in the delayed expression DAG. Any library client
needing to perform an operation not present in the library would either need
to extend it (difficult), or implement it using element level access to the
matrices or vectors involved (poor performance). The ability of the client to
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specify algorithms to be delayed would significantly improve the usefulness
of this approach.

Improved Optimisations We implemented restricted methods of loop fu-
sion and array contraction. Improvements to these optimisation or applying
others such as skewing or tiling could improve the code’s performance fur-
ther, and/or reduce the dependence of the quality of the runtime generated
code on the quality of the vendor compiler used.

Parallelisation This provides a number of interesting research topics. Loop
fusion can inhibit parallelisation when sequential and parallel loops are
fused. We need to able to choose when to fuse and when to parallelise
taking into account these interactions. In addition, there is also the issue of
data alignment when parallelisation is considered in a distributed memory
setting. Work by Beckmann and Kelly [4] has already investigated these
issues in the context of delayed evaluation.
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