
Book Title
Book Editors
IOS Press, 2003

1

A dialectic procedure for sceptical,
assumption-based argumentation

Phan Minh Dung a, Paolo Mancarella b,1 and Francesca Toni c

a AIT, Bangkok, Thailand
b Dipartimento di Informatica, Università di Pisa, Italy

c Department of Computing, Imperial College London, UK

Abstract. We present a procedure for computing the sceptical “ideal semantics” for
argumentation in assumption-based frameworks. This semantics was first proposed
for logic programming in [1], extending the well-founded semantics. The proof pro-
cedure is defined by means of a form of dispute derivations, obtained by modifying
the dispute derivations given in [2] for computing credulous admissible argumen-
tation. The new dispute derivations are sound for the “ideal semantics” in all cases
where the dispute derivations of [2] are complete for admissible argumentation. We
prove that this is the case for the special kind of assumption-based frameworks with
a finite underlying language and with the property of being “p-acyclic”.
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1. Introduction

We present a novel procedure for computing argumentation in the abstract, assumption-
based frameworks of [3]. In these frameworks, arguments are built by means of deduc-
tions from assumptions, which are the components of the argument to be disputed by
counter-arguments. These frameworks have been originally proposed for modelling de-
fault and legal reasoning [3,4], but have been equipped with powerful machinery for
general-purpose argumentation in [2]. This machinery amounts to a procedure, in terms
of dispute derivations, for computing arguments deemed acceptable according to the se-
mantics of admissible sets of assumptions. This procedure uses tight arguments, which
can be computed effectively by backward deductions.
The semantics of admissible sets of assumptions is credulous, in that it sanctions a set
as acceptable if it can successfully dispute every argument against it, without disputing
itself. However, there might be conflicting admissible sets. In some applications, it is
more appropriate to adopt a sceptical semantics, whereby only beliefs sanctioned by all
(maximally) admissible sets of assumptions are held. For example, in the legal domain,
different members of a jury could hold different admissible sets of assumptions but a
guilty verdict must be the result of sceptical reasoning. Also, in a multi-agent setting,
agents may have competing plans (arguments) for achieving goals, and, when negotiating
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resources, they may decide to give away a resource only if that resource is not needed to
support any of their plans.
Procedures for the computation of the sceptical semantics exist, e.g. the TPI procedure
[12] for coherent argumentation frameworks [13]. However, to the best of our knowledge,
no procedure exists for computing sceptical reasoning for non-coherent cases.
The procedure in this paper computes the sceptical ideal semantics for assumption-based
frameworks. This is adapted from a corresponding semantics for logic programming,
presented in [1]. The ideal semantics has the advantage of being easily computable, by a
simple modification of the dispute derivations of [2], but without being overly sceptical.
We prove that our procedure is sound for assumption-based frameworks with a finite
underlying language and with no positive cycles (we call such frameworks p-acyclic).
The proofs are omitted for lack of space, and are given in the accompanying report [5].

2. Background

In this section we briefly review the notion of assumption-based framework [3,4,6], how
it applies to argumentation [2], the semantics of admissible sets of assumptions [3,9],
and various possible sceptical semantics [3,9].
Any logic, viewed as a deductive system, can be extended to an assumption-based argu-
mentation framework.

Definition 2.1 A deductive system is a pair (L, R) where
• L is a formal language consisting of countably many sentences, and
• R is a countable set of inference rules of the form α ← α1, . . . , αn where

α, α1, . . . , αn ∈ L and n ≥ 0. 1 α is called the conclusion and α1, . . . , αn are
called the premises of the inference rule.

If n = 0, then the inference rule represents an axiom. For notational convenience, we
simply write α instead of α←.

Definition 2.2 A deduction of a conclusion α based on a set of premises P is a se-
quence β1, . . . , βm of sentences in L, where m > 0 and α = βm, such that, for all
i = 1, . . . ,m,
• βi ∈ P , or
• there exists βi ← α1, . . . , αn ∈ R such that α1, . . . , αn ∈ {β1, . . . , βi−1}.

If there is a deduction of a conclusion α based on a set of premises P , we say that the
deduction is supported by or based upon P .

Deductions are the basis for the construction of arguments, but to obtain an argument
from a deduction its premises are restricted to ones that are acceptable as assumptions.
In this paper, as in [2], we restrict ourselves to flat frameworks [3], whose assumptions
do not occur as conclusions of inference rules. To specify when one argument attacks
another, we need to determine when a sentence is the contrary of an assumption.

Definition 2.3 An assumption-based framework is a tuple 〈L, R, A, 〉 where

• (L,R) is a deductive system.

1[2] uses the equivalent notation
α1, . . . , αn

α
for inference rules.
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• A ⊆ L, A 6= {}. A is the set of candidate assumptions.
• If α ∈ A, then there is no inference rule of the form α← α1, . . . , αn ∈ R.
• is a (total) mapping from A into L. α is the contrary of α.

Notice that, given an assumption α, α may or may not be an assumption in general.
Throughout the paper, following [2], we will illustrate our computational techniques by
means of examples within simplified frameworks of the form 〈L, R, A, 〉where:

• All sentences in L are atoms or negations of atoms (i.e. L is a set of literals).
• The contrary of any assumption p is ¬p; the contrary of any assumption ¬p is p.

Definition 2.4 An argument is a deduction whose premises are all assumptions.

The only way to attack an argument is to attack one of its assumptions.

Definition 2.5
• An argument a attacks an argument b if and only if a attacks an assumption in

the set of assumptions on which b is based.
• An argument a attacks an assumption α if and only if the conclusion of a is the

contrary α of α.
• A set of assumptions A attacks a set of assumptions B if and only if there

exists an argument a based upon a set of assumptions A′ ⊆ A which attacks an
assumption in B.

Note that the attack relationship between arguments depends solely on sets of assump-
tions. In some other approaches, however, such as that of Pollock [7] and Prakken and
Sartor [8], an argument can attack another by contradicting its conclusion. Here, instead,
such “rebuttal” attacks are reduced to “undermining” attacks, as described in [4,2].
The attack relationship is the basis of the admissibility semantics, first introduced in [9].

Definition 2.6
• A set of assumptions A is admissible if and only if

A attacks every set of assumptions that attacks A, and
A does not attack itself.

• A belief α is admissible if and only if there exists an argument for α based on a
set of assumptions A0, and A0 is a subset of an admissible set A.

This semantics provides a non-constructive specification for which we need a practical,
constructive and efficient, procedure. A major source of the non-constructivity of the
specification is the monotonicity of deductive systems, implying that for every superset
A′ of the set of assumptions A that supports an argument a attacking another argument
b, there exists an argument a′ supported by A′ that also attacks b. Thus, in general, there
can be infinitely many arguments against another argument b. Moreover, for each such
attack, there is the need to search among infinitely many candidate counter-attacks to find
one that is successful. [2] proposes an alternative notion of argument, that lends itself to
effective computation while maintaining correctness. This notion relies upon the use of
a selection function, which, taken a (multi)set of sentences, returns a sentence in it.

Definition 2.7 Given a selection function:
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• A tight deduction of a conclusion α is a (possibly infinite) sequence of multisets
S1, . . . , Sm, . . ., where S1 = {α} and for every 1 ≤ i < m, where σ is the
selected sentence occurrence in Si:

1. If σ is not an assumption then Si+1 = Si − {σ} ∪ S for some inference rule
of the form σ ← S ∈ R 2.

2. If σ is an assumption then Si+1 = Si.

• A tight argument of a conclusion α based on (or supported by) a set of assump-
tions A is a finite tight deduction S1, . . . , Sm where Sm = A.

Tight arguments and ordinary arguments (as given in definition 2.4) are equivalent, as:
• for every tight argument of a conclusion α supported by a set of assumptions A

there exists an argument of α supported by A;
• for every argument for a conclusion α supported by a set of assumptions A and

for every selection function, there exists a tight argument of α supported by some
subset A′ ⊆ A.

Then, to show that a set of assumptions A is admissible, it suffices to consider only tight
attacks against A and tight counter-attacks supported by assumptions in A. Indeed:

Theorem 2.1 A set of assumptions A is admissible if and only if
for every tight argument a that attacks A there exists a tight argument supported
by A′ ⊆ A that counter-attacks a, and
no A′ ⊆ A supports a tight argument that attacks an assumption in A.

This theorem is the basis of the abstract procedure for argumentation via admissibility
proposed in [2]. Intuitively, this is based on constructing dispute derivations between two
players, the proponent P and the opponent O. Here, given a sentence α to be proven to
be an admissible belief, Pi intuitively corresponds to a multiset in a tight argument for
α or counter-attacking an attack against the argument for α being constructed. Also, Oi

corresponds to a set of multisets, each representing an argument potentially attacking the
proponent’s arguments. Ai is the set of all assumptions currently needed by the proponent
to support its arguments. Ci is the set of all assumptions used by the opponent currently
chosen to be counter-attacked by the proponent. Formally:

Definition 2.8 Given a selection function, a dispute derivation of a defence set A for a
sentence α is a finite sequence of quadruples〈

P0,O0, A0, C0

〉
, . . . ,

〈
Pi,Oi, Ai, Ci

〉
, . . . .,

〈
Pn,On, An, Cn

〉
where

P0 = {α} A0 = A ∩ P0 O0 = C0 = {}
Pn = On = {} A = An

and for every 0 ≤ i < n, only one σ in Pi or one S in Oi is selected, and:

1. If σ ∈ Pi is selected then

(i) if σ is an assumption, then

Pi+1 = Pi − {σ} Ai+1 = Ai Ci+1 = Ci Oi+1 = Oi ∪ {{σ}}

2We use the same symbols for multiset membership, union etc as for ordinary sets.
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(ii) if σ is not an assumption, then there exists some inference rule σ ← R ∈ R
such that Ci ∩R = {} and

Pi+1 = Pi − {σ} ∪ (R−Ai) Ai+1 = Ai ∪ (A ∩R)
Ci+1 = Ci Oi+1 = Oi.

2. If S is selected in Oi and σ is selected in S then

(i) if σ is an assumption, then

(a) either σ is ignored, i.e.

Oi+1 = Oi − {S} ∪ {S − {σ}} Pi+1 = Pi

Ai+1 = Ai Ci+1 = Ci

(b) or σ 6∈ Ai and σ 6∈ Ci and 3

(b.1) if σ is not an assumption, then

Oi+1 = Oi − {S} Pi+1 = Pi ∪ {σ}
Ai+1 = Ai Ci+1 = Ci ∪ {σ}

(b.2) if σ is an assumption, then

Oi+1 = Oi − {S} Pi+1 = Pi

Ai+1 = Ai ∪ {σ} Ci+1 = Ci ∪ {σ}

(c) or σ 6∈ Ai and σ ∈ Ci
4

Oi+1 = Oi − {S} Pi+1 = Pi Ai+1 = Ai Ci+1 = Ci

(ii) if σ is not an assumption, then

Pi+1 = Pi Ai+1 = Ai Ci+1 = Ci

Oi+1 = Oi − {S} ∪
{
S − {σ} ∪R

∣∣ σ ← R ∈ R, and R ∩ Ci = {}
}

Then, [2] proves that if there exists a dispute derivation for a sentence, then that sentence
is an admissible belief (and the defence set computed by the derivation is admissible).
The admissibility semantics is credulous, in that it deems a belief to be admissible when-
ever there exists one admissible set of assumptions supporting one argument for it. There
are many applications where a credulous semantics is not appropriate, though. Many
sceptical semantics for argumentation could be adopted, including

• the grounded semantics [3], defined in terms of all complete extensions. Complete
extensions are admissible sets of assumptions A containing all assumptions α
such that A counter-attacks all attacks against α;

• the sceptical preferred semantics [3], defined in terms of all preferred extensions,
namely maximally admissible sets of assumptions.

3In [2], the condition σ 6∈ Ci in case (b) and the case (b.2) were missing. Our new case here provides an
additional filtering of culprits by culprits without affecting the correctness of the procedure. Moreover, case
(b.2) takes into account the situation in which the contrary of the chosen culprit is an assumption in turn.

4In [2], this case (c) was missing. Our new case here provides an additional filtering of culprits by culprits
without affecting the correctness of the procedure.
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These semantics are sceptical in that they deem a belief to be held only if this belief is
“agreed upon” by all extensions sanctioned by the semantics. In [10], we give abstract
proof procedures for computing the grounded extension and the sceptical preferred se-
mantics of a given assumption-based framework. The procedure for the sceptical pre-
ferred semantics works as follows, given a sentence α:

1. determine whether α is an admissible belief, by determining an admissible set ∆
supporting an argument for α (this can be achieved by a dispute derivation);

2. let D be the set of all admissible sets of assumptions attacking ∆; check that, for
each element E of D, there exists an admissible set of assumptions E′ ⊇ E such
that E′ supports an argument for α;

3. if all tests at step 2. are successful, then succeed.

This abstract procedure is very expensive in practice, due to the need to compute D at
step 2. In [10] we attempt to optimise the search for D by considering only tight attacks
against ∆, namely by replacing step 2. above by

2′ let T be the set of all tight attacks against ∆; check that, for each element E of
T , there exists an admissible set of assumptions E′ ⊇ E such that E′ supports
an argument for α.

However, this optimisation is not correct in general, as shown by the following example.

Example 2.1 Let 〈L, R, A, 〉 be the assumption-based framework:

• L = {a, b, c, f,¬a,¬b,¬c,¬f}
• R consists of

¬a← f ¬a← b ¬b← c ¬c← b ¬f ← a

• A = {a, b, c, f}
• a = ¬a, b = ¬b, c = ¬c, f = ¬f .

It is easy to see that ¬a does not hold in all preferred extensions of 〈L, R, A, 〉,
as it does not hold in the preferred extension {c, a}. If we apply the optimised algorithm
above, though, this is not detected. Indeed, assume that ∆ = {b} at step 1. (it is easy to
see that this is admissible). b is attacked by the tight argument supported by the admissi-
ble {c}, thus T is {{c}} at step 2′. Since this set can be extended to the admissible set
{c, f} in which ¬a holds, the algorithm succeeds, giving an incorrect answer.

This example suggests that the sceptical preferred semantics is hard to compute in gen-
eral. On the other hand, the grounded semantics is efficiently computable, but may be
too sceptical, and thus not useful, in many cases, as illustrated by the following example.

Example 2.2 Let 〈L, R, A, 〉 be the assumption-based framework:

• L = {a, b, c,¬a,¬b,¬c}
• R consists of

a← b a← c ¬b← c ¬c← b

• A = {b, c}
• b = ¬b, c = ¬c.

There are two complete extensions, {b} and {c}, both supporting a. But the grounded
extension is {} and does not support a.

In this paper, we consider an alternative sceptical semantics, defined in the next section.
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3. The ideal semantics for argumentation

In [1] the ideal sceptical semantics for extended logic programs was introduced, gen-
eralising the well-founded semantics. Here, we adopt a similar approach to extend the
grounded semantics for argumentation frameworks. Intuitively, the ideal sceptical se-
mantics approximates better than the grounded semantics the intersection of all preferred
extensions.

Definition 3.1
• An admissible set S of assumptions is ideal if and only if it is a subset of every

preferred extension.
• A set of assumptions ∆ is an ideal extension if and only if it is a maximal ideal

set of assumptions.
• A belief α is ideal if and only if there exists an argument for α based on a set of

assumptions ∆0 and ∆0 is a subset of an ideal extension ∆.

The ideal extension is unique and is a superset of the grounded extension. Thus, the
ideal semantics is a good sceptical compromise. Moreover, as we will prove, it can be
computed effectively by a simple modification of dispute derivations for admissibility.
In example 2.1, ¬a is not an ideal belief. Consider the following additional example.

Example 3.1 Let 〈L, R, A, 〉 be the assumption-based framework:

• L = {a, b, c, d,¬a,¬b,¬c,¬d}
• R consists of

¬a← a ¬a← b ¬b← a ¬c← d ¬d← c

• A = {a, b, c, d}
• a = ¬a, b = ¬b, c = ¬c, d = ¬d.

There are two preferred extensions of 〈L, R, A, 〉: {b, c}, {b, d}. Hence b, and thus
¬a, hold in the sceptical preferred semantics. b and ¬a are also ideal beliefs, as {b} is
the ideal extension. Instead, the grounded extension is empty.

The following results are the basis for our proof procedure for the ideal semantics.

Theorem 3.1 α is an ideal belief if and only if the following conditions are both satisfied:
1. there is an admissible set ∆ such that ∆ supports an argument for α;
2. there is no admissible set of assumptions S such that S attacks ∆.

Theorem 3.2 α is an ideal belief if and only if the following conditions are both satisfied:

1. there is an admissible set ∆ such that ∆ supports an argument for α;
2. for each tight argument A attacking ∆ there exists no admissible set S such that

S ⊇ A .

A straightforward implementation of this result, whose correctness follows directly from
theorem 3.2, is the following abstract procedure:

Algorithm 3.1 Given a sentence α:

1. Determine whether α is an admissible belief, by determining an admissible set
∆ supporting an argument for α (this can be achieved by constructing a dispute
derivation for α).
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2. For each tight argument A attacking ∆ check that there is no admissible sets S
such that S ⊇ A.

3. If all tests at step 2. are successful, then succeed (α is an ideal belief).

We will use this procedure to provide a computational technique for sceptical argumen-
tation with the ideal semantics, in terms of a form of dispute derivations defined next.

4. IS-Dispute Derivation

Before we introduce a dispute derivation for the ideal semantics (IS-dispute derivation)
let us give a few new notations.
The notion of dispute derivation in definition 2.8 can be extended to a set of sentences S
instead of just a single sentence α, by setting P0 to S. Then:

Notation 4.1 Let S be a set of sentences in L. By Fail(S), we mean that there exists no
dispute derivation for S.

IS-dispute derivations are sequences of tuples of the form
〈
Pi,Oi, Ai, Ci,Fi

〉
, where

• the new component Fi holds all multisets S for which we want to prove that
Fail(S) (these are the potential tight attacks A in step 2. of procedure 3.1);

• Pi,Oi, Ai, Ci are as in ordinary dispute derivations, except that sentences occur-
ring in the multisets in Oi may be marked.

Notation 4.2 Given a set of sentences S:
• Su is the set of unmarked sentences in S;
• m(σ, S) is the set S where σ ∈ S becomes marked;
• u(S) is S where the marked sentences are unmarked.

Intuitively, IS-dispute derivations compute an admissible support for the given sentence
α while trying to check that no admissible set attacks it. As soon as a (potential) attack is
found, this is stored in the F component of the tuple to check that this fails to be/become
admissible. Whenever a potential culprit is ignored in a potential attack, this is marked
so that it will not be selected again. Selected elements in the potential attacks in the O
component are chosen amongst the unmarked elements. Thus, we will impose that, given
a multiset S in Oi, the selection function will only select unmarked sentences in Su.

Definition 4.1 Given a selection function, an IS-dispute derivation of an ideal support
A for a sentence α is a finite sequence of tuples〈

P0,O0, A0, C0,F0

〉
, . . . ,

〈
Pi,Oi, Ai, Ci,Fi

〉
, . . . .,

〈
Pn,On, An, Cn,Fn

〉
where

P0 = {α} A0 = A ∩ P0 O0 = C0 = F0 = {}
Pn = On = Fn = {} A = An

and for every 0 ≤ i < n, only one σ in Pi or one S inOi or one S in Fi is selected, and:

1. If σ ∈ Pi is selected then

(i) if σ is an assumption, then

Pi+1 = Pi − {σ} Ai+1 = Ai Ci+1 = Ci

Oi+1 = Oi ∪ {{σ}} Fi+1 = Fi
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(ii) if σ is not an assumption, then there exists some inference rule σ ← R ∈ R
such that Ci ∩R = {} and

Pi+1 = Pi − {σ} ∪ (R−Ai) Ai+1 = Ai ∪ (A ∩R) Ci+1 = Ci

Oi+1 = Oi Fi+1 = Fi

2. If S is selected in Oi and σ is selected in Su then

(i) if σ is an assumption, then

(a) either σ is ignored, i.e.

Oi+1 = Oi − {S} ∪ {m(σ, S)} Pi+1 = Pi Ai+1 = Ai

Ci+1 = Ci Fi+1 = Fi

(b) or σ 6∈ Ai and σ 6∈ Ci and

(b.1) if σ is not an assumption, then

Oi+1 = Oi − {S} Pi+1 = Pi ∪ {σ} Ai+1 = Ai

Ci+1 = Ci ∪ {σ} Fi+1 = Fi ∪ {u(S)}
(b.2) if σ is an assumption, then

Oi+1 = Oi − {S} Pi+1 = Pi Ai+1 = Ai ∪ {σ}
Ci+1 = Ci ∪ {σ} Fi+1 = Fi ∪ {u(S)}

(c) or σ 6∈ Ai and σ ∈ Ci and

Oi+1 = Oi − {S} Pi+1 = Pi Ai+1 = Ai

Ci+1 = Ci Fi+1 = Fi ∪ {u(S)}

(ii) if σ is not an assumption, then

Pi+1 = Pi Ai+1 = Ai Ci+1 = Ci Fi+1 = Fi

Oi+1 = Oi − {S} ∪
{
S − {σ} ∪R |σ ← R ∈ R

}
3. If S is selected in Fi and Fail(S) then

Oi+1 = Oi Pi+1 = Pi Ai+1 = Ai

Ci+1 = Ci Fi+1 = Fi − {S}

Example 4.1 Consider the assumption-based framework in example 3.1. An IS-dispute
derivation for ¬a is

〈
P0,O0, A0, C0,F0

〉
, . . . ,

〈
P6,O6, A6, C6,F6

〉
where

P0 = {¬a} A0 = {} O0 = C0 = F0 = {},
applying step (1.ii), with the second rule, we have

P1 = {b} A1 = {b} O1 = C1 = F1 = {},
applying step (1.i), we have

P2 = {} A2 = {b} O2 = {{¬b}} C2 = F2 = {},
applying step (2.ii), we have

P3 = {} A3 = {b} O3 = {{a}} C3 = F3 = {},
applying step (2.i.b.1), we have
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P4 = {¬a} A4 = {b} O4 = {} C4 = {a} F4 = {{a}},
applying step (1.ii) using the second rule, we have

P5 = {} A5 = {b} O5 = {} C5 = {a} F5 = {{a}},

applying step (3), Fail({a}) is called (giving rise to a Fail-dispute derivation of {a},
given in example 6.1) and

P6 = {} A6 = {b} O6 = {} C6 = {a} F6 = {},

Hence, {b} is the computed ideal support for ¬a.

5. Soundness of IS-dispute derivations

IS-dispute derivations can be guaranteed to be sound for the ideal semantics if dispute
derivation (for the computation of Fail) are complete for the admissibility semantics.
As discussed in [2], dispute derivations are not complete in general. In this paper, we
give a sufficient condition for their completeness, thus providing a sufficient condition
for the soundness of IS-dispute derivations. For simplicity, we will restrict ourselves to
the simplified frameworks used throughout the paper for the examples (see page 3).

Notation 5.1 Let AF be an assumption-based framework 〈L, R, A, 〉. By AF+, we
will denote the framework obtained by deleting all assumptions appearing in the premises
of the inference rules ofR.

Below, given AF , we use the notion of dependency graph of AF+, defined in a way
similar to the atom dependency graph for logic programming (see, e.g. the review in
[11]). The dependency graph of AF+ is a directed graph where:

• the nodes are the atoms occurring in AF+;
• a (directed) arc from a node p to a node q is in the graph if and only if there exists

a rule p← B in AF+ such that q occurs in B.

Definition 5.1 An assumption-based framework AF is positively acyclic (or p-acyclic
for short) if the dependency graph of AF+ is acyclic.

Lemma 5.1 Given a p-acyclic framework, there exists no infinite tight deduction.
In the case of p-acyclic frameworks with a finite underlying language L the dispute
derivations of definition 2.8 are complete, in the following sense:

Theorem 5.1 Let 〈L, R, A, 〉 be an p-acyclic assumption-based framework such that
L is finite. Then, for each literal α, if α is an admissible belief then

• there exists a dispute derivation for α;
• for each admissible set of assumptions ∆, if ∆ supports an argument for α then

there is a dispute derivation of defence set A for α such that A ⊆ ∆ and A
supports an argument for α.

We can then prove the correctness of IS-dispute derivation, for p-acyclic assumption-
based frameworks with a finite underlying language.

Theorem 5.2 Let 〈L, R, A, 〉 be p-acyclic with a finite L. Suppose that there exists
an IS-dispute derivation for α. Then α is an ideal belief.
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6. Computing Fail(S)

Fail(S) at step 3 of IS-dispute derivations can be computed by means of a new kind
of dispute derivations, that we refer to as Fail-dispute derivations, obtained again by
adapting the dispute derivations of [2].

Definition 6.1 Given a selection function, a Fail-dispute derivation of a multiset of
sentences S is a sequence D0, . . . ,Dn such that each Di is a set of quadruples of the
form

〈
P,O, A, C

〉
where

D0 = {
〈
S, {}, A ∩ S, {}

〉
}, Dn = {}

and, for every 0 ≤ i < n, if a quadruple Q =
〈
P,O, A, C

〉
is selected in Di then either

P 6= {} or O 6= {}, and

1. If an element S from O is selected, then

(a) If S = {} then Di+1 = Di − {Q}
(b) If S 6= {} then let σ ∈ S be the selected sentence in S:

i. if σ is not an assumption then Di+1 = Di − {Q} ∪ {Q′} where Q′ is
obtained from Q as in step (2.ii) of definition 2.8;

ii. if σ is an assumption then Di+1 = Di − {Q} ∪ {Q0, Q1} where Q0 is
obtained from Q as in step (2.i.a) and Q1 are obtained from Q as in steps
(2.i.b) or (2.i.c) (as applicable) of definition 2.8;

2. If an σ ∈ P is selected, then

(a) if σ is an assumption then Di+1 = Di − {Q} ∪ {Q′} where Q′ is obtained
from Q as in step (1.i) of definition 2.8;

(b) if σ is not an assumption then Di+1 = Di − {Q} ∪ {Q′ | there is a rule
σ ← R such that Q′ is obtained from Q as in step (1.ii) of definition 2.8}.

Theorem 6.1 There exists a Fail-dispute derivation for a multiset of sentences S if and
only if there is no dispute derivation for S.

Example 6.1 Consider the assumption-based framework in example 3.1. We show here
a Fail-dispute derivation of {a}.
D0 = {

〈
{a}, {}, {a}, {}

〉
} applying step 2, we have:

D1 = {
〈
{}, {{¬a}}, {a}, {}

〉
} applying step (1.b), we have:

D2 = {
〈
{}, {{a}, {b}}, {a}, {}

〉
} applying step (1.b) by selecting

S = {a} in {{a}, {b}} we have:

D3 = {
〈
{}, {{}, {b}}, {a}, {}

〉
} applying step (1.a) by selecting

S = {}, we have:5

D4 = {}.

7. Conclusions

We have proposed a new proof procedure for computing the ideal semantics for argu-
mentation in assumption-based frameworks, adapted from [1]. We have argued that this

5Notice that step (2.i.b) and (2.i.c) are not applicable in this case.
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is a good semantics for performing sceptical argumentation, as it is easily computed and
is not overly sceptical.
The proof procedure is defined in terms of IS-dispute derivations and Fail-dispute deriva-
tions, both adapted from the dispute derivations of [2]. All these derivations extend and
generalise standard SLD-based derivations in logic programming, as discussed in [2].
We have proven that it is sound for assumption-based frameworks with a finite underlying
language and p-acyclic. In order to prove this soundness result, we have proven a novel
completeness result, for p-acyclic frameworks, for the proof procedure proposed in [2].
There are a number of existing tools for computing sceptical argumentation, notably [12],
[13] and [14]. These tools are proven to be sound and complete for coherent frameworks
[9], i.e. frameworks for which the preferred and stable semantics coincide. Instead, our
procedure is sound for non-coherent frameworks too, as soon as they are p-acyclic.
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