
Stable Multi-agent Systems

Andrea Bracciali1, Paolo Mancarella1, Kostas Stathis2,1, and Francesca Toni3,1

1 Dipartimento di Informatica, Università di Pisa {braccia,paolo}@di.unipi.it
2 Department of Computing, City University London kostas@soi.city.ac.uk

3 Department of Computing, Imperial College London ft@doc.ic.ac.uk

Abstract. We present an abstract declarative semantics for multi-agent
systems based on the idea of stable set, and argue that it can be suit-
ably employed to describe, and to some extent verify, the dynamics of
complex systems of autonomous and heterogeneous interacting agents.
We view agents as black-boxes, whose semantics is abstractly understood
as an input-output transformation from the agents’ observations about
their environment, to the actions they perform. Stable sets (of actions)
characterise multi-agent systems able to reach an equilibrium point. Our
semantics via stable sets takes into account the possibility that agents
may fail. We illustrate how stability can characterise multi-agent systems
by means of examples. We also draw considerations about how stable sets
can be effectively approximated.

1 Introduction

The increasing complexity of software development calls for enhanced methods
supporting the design, development and verification phases in the life-cycle of
applications. Such methods are required to be formal, possibly supported by
automated tools, and at an architectural level. Indeed, coding is no longer the
main activity in building applications, but rather the emphasis is on the defini-
tion of the components which constitute an application and their relationships
within an overall architecture. This approach requires models and verification
tools, which are neither applicable, nor needed, when developing code. Moreover,
the advent of a network-centric model of computation fosters the development of
applications based on interacting components that may be autonomous, i.e. inde-
pendent computational units with their own goals, possibly belonging to different
domains, and heterogeneous, e.g. following different programming paradigm.
Many of the models and techniques developed within the field of Multi-agent sys-
tems (MAS) appear to be successfully applicable in the aforementioned context.
Indeed, MAS feature architectures of autonomous and heterogeneous “intelli-
gent components,” which interact with one another in the environment where
they are situated. There are competing models for agent programming (such
as BDI[1], AgentSpeak(L)[2], 3APL[3], IMPACT[4], KGP[5], to cite but a few),
and MAS design methodologies (such as Gaia [6] and Prometheus [7]), as well
as paradigms to describe and reason about the way in which they can interact
and coordinate their tasks, possibly in cooperative or competitive ways (such as

LAILA [8]). Moreover, a lot of research in MAS has been traditionally influenced
by other disciplines, like economics, ecology, psychology, which have contributed
to better understand the “organisational” aspects of such systems.

Taking into consideration the amount of different agent programming models
proposed, we aim at developing a high-level description framework, which, by
reasoning at an abstract semantical level, allows us to formally model the evo-
lution of a MAS, by abstracting away from the peculiarities of a specific agent
programming model, paradigm, or methodology. In this paper we show how our
abstract approach, originally introduced in [9], can be adapted to the study of
MAS, as well as distributed applications in general, where agents/components
interact in order to fulfill their own goals, but may fail under certain conditions.

We view agents as “black-boxes”, whose “semantics” is expressed as an input-
output transformation describing the behaviour of agents in their environment.
Given the environment of the agent, which may contain the “observable be-
haviour” of the other agents in the MAS, and an initial plan (i.e. a set of actions
the agent intends to execute in order to accomplish its goals), the semantics of
an agent determines (i) its observable behaviour, as an output set of actions from
the pool of actions that the agent can perform, and (ii) its mental state, which is
private and thus inaccessible to other agents. This consists of a representation of
the knowledge of the agent, which may include its goal, plans, constraints, etc.
In addition, the mental state of an agent and its beliefs about the environment in
which it is situated may report a failure condition, for instance when the agent is
not able to plan for its goal with respect to a dynamically changing and possibly
partially accessible environment. The framework we propose is intended to be
instantiated for any concrete agent architecture/theory that can be abstracted
away in terms of the aforementioned “semantics”.

Building on top of the above agent semantics, we define a notion of stability on
the set of all actions performed by all agents in the system, and we characterise
“good” MASs, as those reaching, by means of the “coordinated contribution” of
their agents, an equilibrium point, where, intuitively speaking, no agent needs
to further operate within the system and accepts the currently reached state.
A set of actions (by the different agents) is stable if, assuming that an “oracle”
could feed each of the agents with all the actions in the set performed by the
other agents (and all events happening in the world), then each agent would do
exactly what is in the set, namely their observable behaviour would be exactly
what the set envisages. This notion of stability is reminiscent of that of Nash
equilibrium state in economics game-theory [10], where players accept a sort of
“optimal compromise”, and has been also inspired by the notion of stable model
semantics for non-monotonic logic [11], according to which a model for a non-
monotonic knowledge base exists if a “coherent compromise” between positive
and negative knowledge can be reached (the detailed comparison with these
works is out of the scope of this paper).

For the purpose of verification, in [9] we have shown how this kind of approach
can be used to formalise properties, like individual success of agents and overall
success, robustness and world-dependence of a MAS. Moreover, we have also

shown how, in a specific case of “well-behaved” logic-based agents, stable sets
can be constructively approximated (by adapting well known semantic approx-
imation techniques of Computational Logic, viz. the TP bottom-up operator
[12]).

Here, we extend the approach of [9] by considering the possibility that agents
may fail at some stage, a possibility which appears relevant from the viewpoint
of engineering complex systems. An agent is in a failure state when it is not able
to “properly” operate within its environment. The new approach is illustrated
by examples in the context of the well-known Blocks World, chosen as a simple
and paradigmatic scenario for the interaction of planning agents. Specifically for
this context, an agent may fail when its planned course of actions would lead to
a violation of some physical law, like the impossibility for two different blocks to
be in the same position. This situation, which may be temporary, is represented
by the agent semantics as a failure mental state (⊥) and an empty set of actions
in response of the current environment and plan. It is worth noting that the
agent metaphor we use in the rest of the paper, could be recast in terms of more
generic components and adapted to different verification scenarios.

We first define the agent semantics and the notion of stable set, showing an
example of successful cooperation for agents in a MAS, which corresponds to the
existence of a stable set, and an example of failure, for which a stable set does
not exists. Then we discuss how stable sets can be approximated by temporarily
suspending failing agents, until they are able to reconcile their mental states
with the current environment, and letting the successful ones operate. If all the
agents are in a failure state we say that the MAS is compromised. Few simple
examples show cases in which this way of operating may or may not lead to the
construction of stable sets, according to which the MAS can evolve. To illustrate
the generality of the approach in a simple way, we have abstracted away from
modeling the details of time evolution and interleaving of actions. Finally, a brief
comparison with similar approaches and some concluding remarks are reported.

2 Single Agent Abstract Semantics

The semantics of single agents is defined in an input-output style, by abstract-
ing away from the agents’ internals and, in particular, independently of any
programming paradigm. We also refer informally to goals, plans and knowledge
of agents, as well as failure and success of agents.

The input for an agent semantics consists of (i1) a representation of the world
in which the agent is situated (referred to as its environment), which may en-
compass events occurred in the world and actions performed by other agents
in the system, and (i2) an initial plan, namely a set of actions, that the agent
has decided to execute in order to fulfill its goals. The output consists of (o1)
the information that the agent is able to derive, (referred to as the knowledge
or mental state of the agent), possibly encompassing both its goals and a rep-
resentation of the world that it has observed, and (o2) the set of actions that

the agent decides to perform as a consequence of its inputs (typically, this set
includes the actions of the original plan).
Moreover, each agent is equipped with a notion of failure, represented as ⊥. This
is used to represent any circumstance in which the agent is not able to cope with
the environment, e.g. it is not able to devise any plan, or its observations are not
coherent with some of its constraints. A failed agent is required not to commit to
the execution of any action. For the sake of simplicity, we do not explicitly deal
with the representation of time, but we assume that actions are distinguished
by their execution time (i.e. the same action executed at different instants will
be represented by different items in A(i)) and executed in the “proper” order.
We indicate agents with 1, 2, . . . i, . . . n, and with A(i) and O(i) the set of actions
and observations of agent i, respectively. Given a set ∆ ⊆ ∪i(A(i) ∪ O(i)),
∆(j) = ∆ ∩ A(j) is the set of actions in ∆ pertaining to agent j.

Definition 1. Given an agent i, its input-output semantics is indicated as

Si(∆in, ∆0) =< M, ∆out >,

where ∆in ⊆ O(i) and ∆0 ⊆ A(i) are the observations and initial plan of the
agent, respectively, ∆out is the set of actions of the agent, and M is the mental
state of the agent, such that either 1) M = ⊥ and ∆out = ∅, and the agent is
failed, or 2) M 6= ⊥ and ∆0 ⊆ ∆out ⊆ A(i), and the agent is successful.

The mental state M , that can be logically understood as a model for the agent,
is typically private to the agent itself, while the set of output actions ∆out is the
public side of the agent, observable by all the other agents in the system. The
initial plan ∆0 of the agent can be thought of as being determined by the agent
itself, whereas the observations ∆in might be about other agents. Notice that,
given ∆in and ∆0, Si(∆in, ∆0) might not be unique (namely Si may not be
a function), since in general agents may exhibit non-deterministic behaviours.
However, in all the examples in this paper, the agent semantics will always be
uniquely determined. The following example illustrates Definition 1.

Example 1. In the well-known Blocks World, blocks are piled in stacks, with
the usual constraints that a block can be moved only if it is on top of a stack,
two blocks can not be in the same place, etc. Since our framework abstracts
away from the specific paradigms used to build agents, we adopt an informal,
self-explaining, language to describe the mental states and actions of the agents,
while the world is represented in pictorial form. We also assume that actions
are performed in sequence, abstracting away from any formal representation of
temporal ordering. Consider the situation in the figure, with blocks 1, 2 and 3
on stack A, and an agent i with the initial plan of moving block 2 to stack C,
represented as ∆0 = {2toC}. This plan is unfeasible since the planned action
2toC violates a law of the physical world (that one cannot move a block which
is not clear). Let W be an appropriate representation of this situation. Then:

(a) The agent may be able to extend its plan, e.g. by first moving block 1 to
B. Hence, we will have Si(W , {2toC}) = < M, {1toB, 2toC} >, where M is any

appropriate mental state. In this case, the agent is successful.

(b) On the other hand, the agent may not be
able to suitably revise ∆0 to render it feasible, and
it may end up in what we consider a failure state,
whereby the planned action 2toC violates some in-
ternal constraint of the agent intended to enforce
coherence with the physical world. In this case,
Si(W , {2toC}) = < ⊥, ∅ >, and the agent is failed.

1

2

3

A B C

3 MAS Declarative Semantics and Stability

We consider a multi-agent system (MAS) as a collection of n agents, n ≥ 2, situ-
ated in a world W . The semantics of the MAS is given in terms of the semantics
of the agents that constitute it. We indicate with W i the set of observations
that agent i is able to draw from W , namely W i = W ∩ O(i). In the follow-
ing we will use the shorthand < X >Y for the tuple < X i1 , . . . , X ik >, with
Y = {i1, . . . , ik} ⊆ {1, .., n}. Given < X >Y , X i is the i-th element of the tu-
ple. The semantics of a MAS can then be defined on top of the single-agent
semantics, as follows.

Definition 2. A multi-agent system MAS =< A,W > consists of a set of
agents A = {1, . . . , n}, n ≥ 2, and a world W. Given the tuple < ∆in∪W , ∆0 >A

of observations and initial plans for each agent, the semantics of MAS is

< M, ∆out >A,

where, for all i ∈ A, Si(∆i
in ∪ W i, ∆i

0) =< M i, ∆i
out >. A multi-agent system

is compromised if, for all i ∈ A, M i = ⊥.

In a compromised MAS, all the agents are failed. However an autonomously
changing environment might allow some of the agents to recover from failure.
The input observations of the agents, ∆i

in, refer to events in the world as well
as actions by other agents. It is legitimate to characterise these observations so
that each agent is aware of what all the others are doing within the system. This
can be done by recursively defining the input observations of each single agent as
depending on the output actions of all the other agents and those performed by
the agent itself. The existence of a solution of such recursive definition of the se-
mantics represents a stability condition of the system. Indeed, all the agents have
agreed in a coordinated manner on a course of actions. Such stability condition
can be defined as follows.

Definition 3. A multi-agent system MAS =< A,W > is stable if there exists
∆ =

⋃

i∈A

∆i
out, such that, for each i ∈ A,

Si(∆−i ∪Wi
, ∆

i

0) =< M
i
, ∆

i

out >

where ∆−i =
⋃

j ∈ A

j 6= i

∆(j). The set ∆ is called a stable set for MAS.

Notice that ∆−i is the set of all actions performed by all the agents except agent
i. By the previous definition, the sets ∆1

out, . . . , ∆
n
out are a solution for the set of

mutually recursive equations

S1(∆−1 ∪W1, ∆1
0) =< M1, ∆1

out >

...
Sn(∆−n ∪Wn, ∆n

0) =< Mn, ∆n

out >

where each ∆−i occurring on the left-hand side of the i− th equation is defined
in terms of the ∆

j
out sets, occurring in all the other equations. Intuitively, a

set of actions (by the different agents) is stable if, assuming that an “oracle”
could feed each of the agents with all the actions in the set performed by the
other agents (and all events happening in the world), then each agent would do
exactly what is in the set, namely their observable behaviour would be exactly
what the set envisages. Note that stability could consists in an infinite course
of actions (e.g. when agents “steadily” keep on repeating their behaviour) and
that stability does not imply the success of all the agents, indeed a failed agent
might be part of a stable MAS. The following example illustrates a stable MAS.

Example 2. Consider again the Blocks World situation of Example 1, with the
difference that now we have two agents operating according to the picture below.

Agent 1 is responsible to move odd-numbered blocks
in the stack B, while agent 2 is responsible to put
even-numbered blocks in the stack C. Let us suppose
that the agents have initially the goals mvToB and
mvToC, respectively. Trivially, the set:

∆ = {1toB1, 2toC2, 3toB1}

1
1

��

2 2

��

3
1

��

A B C

where each action is indexed according to its executor, is a stable set for the
system. Indeed, being W an appropriate representation of the world

S1({2toC2} ∪W1, {1toB1, 3toB1}) = < M1, {1toB1, 3toB1} >

S2({1toB1, 3toB1} ∪W2, {2toC2}) = < M2, {2toC2} >

where M1 |= mvToB and M2 |= mvToC (i.e. goals are satisfied). The previous
equations can be read as “If agent 1 observes that agent 2 is moving block 2 to
C, then it will move blocks 1 and 3 to B, while if agent 2 observes that blocks 1
and 3 are moved by agent 1, then it will move block 2 to C”. Finally, note that
we overlook here, as in the rest of the paper, issues concerning the treatment of
time and ordering between actions.
The relevance of the existence of stable sets for a MAS is due to their inter-
pretation as viable courses of actions that satisfy all the agents present in the
system, given the current state of the world. The next example illustrates a case
where the lack of a stable set corresponds to the impossibility for the agents in
the system to coordinately accomplish their tasks, without resulting in a failure.
Here, failure is due to the violation of a physical law of the world, which occurs
as a consequence of the sum of the actions performed by the agents.

Example 3. Let us consider the different situation of the Blocks World illus-
trated below, where block 1 is on stack A and block 2 is on stack B. It is easy
to agree on the fact that, being ∆1

0 = {1toB1}, and ∆2
0 = {2toB2}, there is no

stable set for the system. Indeed both agents would like to place their block in the
same position, ending up in a failure state. Differ-
ently from Example 2, where agent 2 resolves its ini-
tial failure state by coordinating its behaviour with
that of agent 1, the MAS is here compromised.

1
1

��

22

��

A B C

4 Constructing Stable Sets by means of Successful Agents

In [9] we have shown how stable sets can be constructed for the case of a simple
agent programming language based on Abductive Logic Programming. In that
context, stable sets can be approximated by exploiting well known bottom-up
techniques, traditionally used in Computational Logic. Here, we illustrate how
stable set construction can be approached by means of a modification of the
same technique, with respect to any agent architecture and language that can
be understood abstractly in terms of the defined input-output semantics.
Informally speaking, starting from a current partial state of a system, the input
for the single agent semantics is extracted, and, if possible, a more defined se-
mantics for the system is returned, taking into consideration the actions executed
by the agents according to their semantics and the current inputs. A bit of care
is necessary in order to select a (maximal) subset of agents that can successfully
operate within the system. This step can be (possibly infinitely) repeated to
constructively approximate, if any, a stable set. Suitable assumptions on agent
languages may guarantee the convergence of the method, as shown in [9].
The construction of the stable set in Example 2 relies upon agent 2 “waiting”
until the state of the world has become consistent with its plans. Recall that
failed agents, whose mental state can not deal with the current state of the
world, could play a part in future states that the MAS can reach. In a sense, we
impose that the set of executed actions at each step represents a stable set for the
restricted system of currently successful agents. If the system is compromised,
the semantics results in empty sets of actions and all the mental states are
⊥. The step-wise semantic approximation is defined as follows in terms of the
T A operator, which maps (tuples of) observations (actions by other agents and
events in the world) onto (tuples of) mental states and new observations.

Definition 4 (T A operator). Let MAS =< A,W > be a multi-agent system,
and < ∆ >A be a tuple of sets of actions. The T A operator is defined as follows:

T A(< ∆ ∪W >A) =

{

< J, Γ >A if A+ = A

T A(< ∆ ∪W >A+) ⊕ < ⊥, ∆ >A− otherwise

where A = A+ ∪ A− such that

∀k ∈ A+. Sk(Wk ∪ ∆−k, ∆k) = < Jk, Γ k > 6= < ⊥, ∅ >

∀k ∈ A−. Sk(Wk ∪ ∆−k, ∆k) = < ⊥, ∅ >

and ⊕ merges tuples according to the order induced by agent names.

The previous definition can be read as follows. Given the observations < ∆ >A

of the agents and the environment W (which, for simplicity, we assume to be
fixed and unchanging), the MAS is partitioned into:

1. the set A+ of agents that, taking into consideration the up-to-now plans
of the other agents, the world and their own committed actions (at some
previous step) Sk(Wk ∪ ∆−k, ∆k), are successful (Jk 6= ⊥), and

2. the set A− of agents that, taking into consideration the up-to-now plans of
the other agents, the environment and their own committed actions (at some
previous step) Sk(Wk ∪ ∆−k, ∆k), are failed (Jk = ⊥).

The T A operator returns a “more defined” semantics for the overall MAS ob-
tained by recursively seeking (T A(< ∆ ∪W >A+)) whether the restricted set
of potentially successful agents A+ may successfully agree on a set of actions,
without taking into consideration the actions of the currently failing agents in
A−. The more defined semantics for the overall MAS is returned as soon as a
(sub-)set of “reciprocally” successful agents is found (and in this case their con-
tribution to the system is recombined with the previous one by the idle agents,
⊕), or all the agents are failed and the MAS is compromised (A− = A).
The world is a parameter of T A, which is supposed not to change while agents
are coordinating themselves, while the mental states are recomputed at each
successive application of T A for the successful (active) agents. In this way, re-
computing at each iteration their mental states, agents are forced to check their
consistency against the new situations. The performed actions are recorded in
the output of the operator and then used as input at the next application of
T A, and hence, following the idea of stability, notified to all the agents. More
precisely,

T A
i+1(< ∆ ∪W >A) = T A(< Γ ∪W >A),

where T A
i (< ∆ ∪W >A) =< J, Γ >A.

In [9] we have shown that, having chosen a specific agent language based on
Abductive Logic Programming, the corresponding T A operator enjoys conver-
gence properties to a minimal fix-point, from which a stable set can be extracted.
However, notice that in [9] consistency issues were not taken into account.

Provided that, for a chosen agent language, the T A operator of Definition 4
does converge, we can give the following Definition 5, where T A

∞ denotes the
fix-point of T A, as a constructive way of approximating, if any, a stable set.
This definition is relevant as a basis on which a verification methodology can be
developed, according to the idea that the existence of stable sets guarantees the
overall good engineering of the system. The study of general conditions for the
convergence of T A to a stable set is scope for future work. However, we will give
an example to show how Definition 5 captures the construction of a stable set
for a Blocks World which has a stable set, and another one which shows how
Definition 5 correctly fails to produce a stable set in a case where a stable set
does not exist.

Definition 5. Given a multi-agent system MAS =< {1, . . . , n},W > and a
set of initial plans < ∆0 >A, the concrete semantics of MAS is defined as

< J, ∆ >A= T A

∞ (< ∆0 ∪W >A).

The next example shows how a stable set can be derived from < J, ∆ >A, the
result of the application of T A

∞ . More precisely, the iteration of the application
of T A converges to a fix-point after few iterations.

Example 4. The stable set of the MAS in Example 2 can be approximated, and,
actually, constructed, by few applications of the T A operator. Assuming that
the agents have the goals of Example 2, and are not provided with an initial
plan, the concrete semantics of the MAS is given by

T A

∞ (<< W >, < W >>).

While calculating T A
1 (<< W >, < W >>), the second agent can not find

a partial plan, i.e. S2(W , ∅) =< ⊥, ∅ >, indeed there is nothing it can do at
present. Hence A+ = {1} and A− = {2}:

T A(<< W >, < W >>) = << M1
1 , {1toB1} >, < ⊥, ∅ >> .

Analogously, at the next step agent 2 moves block 2 (accomplishing its goal),
and agent 1 is suspended (W is updated with executed actions):

T A(<< {1toB1} ∪W >, < {1toB1} ∪W >>) = << ⊥, ∅ >, < M2
1 , {2toC2} >> .

Finally, also agent 1 completes its task mvToB (since S1(W∪{2toC2}, {1toB1}) =
< M1

2 , {1toB1, 3toB1} >):

T A(<< {2toC2, 1toB1} ∪W >, < {2toC2, 1toB1} ∪W >>) =
<< M1

2 , {1toB1, 3toB1} >,< M2
2 , {2toC2} >> .

which is a fix-point of T A, unless the world changes or agents introduce new
plans. The union of the output actions of the agents is the stable set of Example 2.

It is also interesting to verify that a stable set cannot be constructed for the
case of Example 3, where two agents are attempting to execute plans that make
both the agents not consistent, when executed in the same environment.

Example 5. Let us try to construct a stable set for the Blocks World of Exam-
ple 3, whose concrete semantics, given the initial plans of the agents, is:

T A

∞ (<< {1toB1} ∪W >, < {2toB2} ∪W >>).

Let us assume that, given the current state of the world, neither agents need
to generate further actions in order to accomplish their tasks, and that, without
knowing what the other agent is doing, each one can reach a successful mental
state encompassing the actions performed in this first step: S1(W , {1toB1}}) =
< M1, {1toB1} >, and S2(W , {2toB2}) =< M2, {2toB2} >. We have that in
two steps, the agents, aware of each other’s actions, end up in a failure state,
and the MAS is compromised:

T A(<< {1toB1} ∪W >, < {2toB2} ∪W >>) =<< M1, {1toB1} >,< M2, {2toB2} >> .

T A(<< {2toB2, 1toB1} ∪W >, < {2toB2, 1toB1} ∪W >>) =<< ⊥, ∅ >, < ⊥, ∅ >> .

5 Related Work

The work we present in this paper is close to several approaches, based on Com-
putational Logic, whose aim has been to provide formal models to understand
MAS environments, like [13–15]. While we share with many of these proposals
the use of well known logic-based techniques, like bottom-up approximations and
the idea itself of stability, the distinguishing aim of our work has been to devise
a model for MAS, which, independently of specific agent paradigms, allows us to
reason at an abstract and “declarative” level. Moreover, we also aim to define, in
agreement with the Computational Logic tradition, an operational counterpart
for the declarative settings. This will enable us to support forms of automated
verifications.
Modal logic approaches whose aim has been to provide frameworks for prov-
ing properties of MAS are also well-documented, for example, see the frame-
work of Lomuscio and Sergot [16] on deontic interpreted systems. Earlier work of
Wooldridge and Lomuscio [17] define a family of multi-modal logics for reason-
ing about the information properties of computational agents situated in some
environment. We differ from these approaches in the way we understand an envi-
ronment. Their defininion of an environment is based on a definition often found
in distributed systems [18], in that an environment does not contain the other
agents. Instead in our approach the environment of an agent contains the state
of the world and the other agents, and is closer to [19].
Other formal frameworks exist, for example, Viroli and Omicini in [20] view
MAS as the composition of observable systems. These systems are based, like in
our framework, on the assumption that the hidden part of an agent manifests
itself through interactions with the environment, and on how an agent makes
its internal state perceivable in the outside. However, we differentiate ourselves
from them by the kind of environment accessibility by agents, i.e. the way agents
perceive other agents in terms of their performed actions.

6 Final Remarks

We have illustrated how a semantic characterisation of MAS can be used for
checking whether the agents in the system can successfully cooperate, and hence
the system can be considered well designed. In particular, in this paper, extend-
ing the approach previously introduced in [9], we have addressed the issue of
dealing with agents that may temporarily fail, not being “consistent” with the
environment in which they operate. We have shown how the notion of stable
set, on which the approach is based, can be adapted to deal with this case. Both
the semantics and the methodologies adopted are inspired mainly by the field of
Computational Logic, but they also appear in other areas, like Economics and
Game Theory. We have illustrated the proposed notions by applying them to
the simple scenario of Blocks World.
Approaching the modeling of a complex system, like a MAS, at a semantic level
allows us to define an abstract framework, which does not depend on the specific,

possibly different, agent programming paradigms. However, further (semantical)
characterisation of agents would be useful in order to better specify the properties
that can be verified by means of the framework, and, also, the computational
aspects of such verification. For instance, the choice of a specific agent language
in [9] granted some preliminary results about the convergence of the bottom-up
approximation of semantics. General conditions for the convergence of T A, and
more general properties of MAS and their stable sets, are scope for future work.
A characterization of time at the agent language level, allowing for a more precise
representation of plans as ordered sequence of actions, would add expressiveness
to the framework, tightening the relation between agent and system semantics.
The stable set represents an “ideal” course of actions, on which all the agents
in the system agree, given the current state of the environment. This notion
could be further exploited in order to characterise evolutions of MAS through
stability conditions: the system evolves by means of agents aiming to stability,
which may be compromised by either a variation in the environment or new
plans/actions introduced by some of the agents in the system. Importantly, our
declarative approach is provided with a computational counterpart, which seems
amenable, under certain assumptions on agent semantics, to support automated
verification. This issues, as well as its computational costs (for given classes of
agent semantics) is currently under investigation.
Moreover, the relationships between our notion of stability and of that of Nash
equilibrium [10], from the field of Economics, are worth being further studied.
Another interesting line of research is the study of the relations between stability
and negotiation among agents. Actually, stable sets, when they exist, can be
interpreted as a sort of shared agreement between agents. It would be interesting
to study how agents can cooperate to the construction of a “preferred” stable
set, by coordinating the course of actions they perform. Economics and Game
Theory might also be applied.
Finally, we plan to extend our framework in order to incorporate social notions,
such as social goals, joint goals amongst agents, social rules, conformance to
them, and adoption of multi-agent system’s expectations by individual agents.
Also, we intend to adopt this extended framework for KGP agents, as defined
in [5], and study the problem of properties verification in that context.

References

1. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Pro-
ceedings of the Third International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KRR92), Boston, MA (1992)

2. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In van Hoe, R., ed.: MAAMAW96. Volume 1038 of LNCS., Springer-Verlag (1996)
42–55

3. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.C.: Agent programming
in 3APL. Autonomous Agents and Multi-Agent Systems 2(4) (1999) 357–401

4. Arisha, K.A., Ozcan, F., Ross, R., Subrahmanian, V.S., Eiter, T., Kraus, S.: IM-
PACT: a Platform for Collaborating Agents. IEEE Intelligent Systems 14 (1999)
64–72

5. Kakas, A., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The kgp model of agency.
In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI).
(2004)

6. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems 3
(2000) 285–312

7. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelligent
agents. In: Proceedings of the Third International Workshop on AgentOriented
Software Engineering at AAMAS 2002, (2002)

8. Ciampolini, A., Lamma, E., Mello, P., Torroni, P.: LAILA: A language for coor-
dinating abductive reasoning among logic agents. Computer Languages 27 (2002)
137–161

9. Bracciali, A., Mancarella, P., Stathis, K., Toni, F.: On modelling declaratively
multi-agent systems. In: Proc. of Declarative Agent Languages and Technologies
(DALT 2004). LNCS, To appear (2004)

10. Nash, J.: Equilibrium points in n-person games. Proceedings of the National
Accademy of Science (1950)

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In
Kowalski, R., Bowen, K.A., eds.: Proceedings of the 5th International Conference
on Logic Programming, MIT Press (1988) 1070–1080

12. Apt, K.R.: Logic programming. In: Handbook of Theoretical Computer Science.
Volume B. Elsevier Science Publishers (1990) 493–574

13. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Co-operation and
competition in ALIAS: a logic framework for agents that negotiate. Computational
Logic in Multi-Agent Systems. Annals of Mathematics and Artificial Intelligence
37 (2003) 65–91

14. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Computing environment-aware
agent behaviours with logic program updates. In Pettorossi, A., ed.: Logic Based
Program Synthesis and Transformation, 11th International Workshop, (LOP-
STR’01), Selected Papers, Springer-Verlag (2002) 216–232

15. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In
Flesca, S., Greco, S., Leone, N., Ianni, G., eds.: Proceedings of the 8th European
Conference on Logics in Artificial Intelligence (JELIA’02). Volume 2424 of LNCS,
Springer-Verlag (2002) 50–61

16. Lomuscio, A., Sergot, M.: Deontic interpreted systems. In van der Hoek, W.,
Wooldridge, M., eds.: Studia Logica 75 (Special Issue on The Dynamics of Knowl-
edge). Kluwer Academic Publishers (2003)

17. Wooldridge, M., Lomuscio, A.: A logic of visibility, perception, and knowledge:
completeness and correspondence results. Journal of the IGPL 9 (2001)

18. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press (1995)

19. Abramsky, S.: Semantics of Interaction. (Technical report) Available at
http://www.dcs.ed.ac.uk/home/samson/coursenotes.ps.gz.

20. Viroli, M., Omicini, A.: Multi-agent systems as composition of observable systems.
In Omicini, A., Viroli, M., eds.: AI*IA/TABOO Joint Workshop - Dagli oggetti
agli agenti: tendenze evolutive dei sistemi software” (WOA). (2001)

