
CARE: Computation for Advanced Reactor Engineering

Thread-Parallel Anisotropic Mesh Optimisation Using PRAgMaTIc

Georgios Rokos
Software Performance Optimisation Group,

Department of Computing,
Imperial College London

georgios.rokos09@imperial.ac.uk

http://www.doc.ic.ac.uk/~gr409/

Gerard Gorman
Applied Modelling and Computation Group,

Department of Earth Science and Engineering,
Imperial College London

g.gorman@imperial.ac.uk

http://www3.imperial.ac.uk/people/g.gorman/

The numerical methods used to model complex geometries required by many scientific applications
(e.g. climate prediction, simulation of cardiac electrophysiology) often favour the use of unstructured
meshes and finite element discretisation methods over structured grid alternatives. This flexibility
introduces complications, such as the management of mesh quality and additional computational
overheads arising from indirect addressing. Mesh adaptivity methods ([2, 3, 4]) provide an important
means to control solution error by focusing mesh resolution in regions of the computational domain
where it is required.
PRAgMaTIc (Parallel Anisotropic Adaptive Mesh Toolkit) is an open-source 2D/3D mesh adaptivity
framework, built with large-scale multiprocessing in mind. It is the first hybrid OpenMP/MPI
implementation of anisotropic mesh adaptivity, based on earlier work by Freitag et al. [3]. Although
mesh adaptivity has been successfully parallelised using MPI by a number of groups, thread-level
parallelism is significantly more challenging because each thread modifies mesh data and therefore
operations must be carefully marshalled to avoid data races while maintaining good load-balance and
ensuring enough parallelism is exposed to achieve good parallel efficiency. Currently, the main focus
of our work is on threaded (OpenMP) 2D mesh adaptivity [5]. PRAgMaTIc can be downloaded
from Launchpad: https://launchpad.net/pragmatic.

Introduction

Fig. 2: Edge collapse: vertex VB collapses onto VA,

removing the dashed edge and the corresponding

elements from the mesh.

Coarsening

Fig. 3: Edge swapping: edges shared between two

elements can be flipped if doing so produces elements

of higher quality than the original ones.

Swapping

Fig. 4: Edge refinement: edges are split, leading to 1:2

(bisection), 1:3 or 1:4 (regular refinement) division of

elements, which increases local mesh resolution.

Refinement

Fig. 5: Optimisation-based vertex smoothing: a vertex

ui is relocated to a new position so that the quality of

the worst element among {ei,0..ei,5} is maximised.

Smoothing

A heuristic method of improving mesh quality is the iterative application of the four adaptive
algorithms until the desired minimum quality is achieved. Mesh adaptation is driven by a posteriori
error estimations, encoded in the form of a metric tensor field which is discretised node-wise. In
essence, the metric tensor at each node shows how the euclidean space has been distorted (amount
and direction of distortion) at that point. The ideal mesh is the one in which all elements are
equilateral with edges of unit length in metric space.

Adaptive Algorithms

Mesh Data: The mesh is represented using a 1D Element-Node adjacency list, a 2D Node-Node
adjacency list and a 2D Node-Element adjacency list, alonside 1D arrays in which we store node
coordinates and metric tensor values.
Structural Hazards: When running adaptivity in parallel, unsafe operations which can result in
invalid mesh elements are avoided by using a fast graph colouring technique (an improved version of
[1]) and applying the algorithms to vertices in the maximal independent set.
Deferred Updates: Thread-safe updates to adjacency lists are guaranteed by deferring the up-
dates until the maximal independent set has been processed. All pending operations are distributed
to threads, with all operations pertaining to a specific vertex being applied by one and only one
thread.
Worklists: Colouring only the subset of the mesh which needs to be adapted has been shown to
improve performance significantly. Additionally, adaptive operations on a local mesh patch need
to be propageted to the wider neighbourhood. These two requirements suggest the use of work-
lists. Efficient parallel manipulation of worklists is achieved using atomic captures, an operation
introduced in OpenMP 3.1 to implement atomic fetch-and-add.

Under the Hood

A synthetic solution ψ is defined to vary in time and space for some value of the period T :

ψ(x, y, t) = 0.1 sin (50x + 2πt/T ) + arctan (−0.1/(2x− sin (5y + 2πt/T )))

Sample benchmark was run for t ∈ [0, 51) in increments of unity. The code was compiled with
Intel R©Compiler Suite 14.0.1 and with the -Ofast optimisation flag. The benchmark was executed
on a dual-socket Xeon R©E5-2650 system using Intel’s thread-core affinity support.

Fig. 6: Benchmark solution field Fig. 7: Initial auto-generated mesh Fig. 8: Adapted mesh for some t

Fig. 9: Quality of adapted mesh Fig. 10: Aggregated histogram of element qualities

Fig. 11: Total wall time per phase Fig. 12: Speedup per phase Fig. 13: Parallel efficiency per phase

Sample Benchmark

PRAgMaTIc produces high-quality adapted meshes from typical, auto-generated input meshes. Av-
erage element quality is > 0.9, whereas worst element quality is > 0.6 (ideal quality is 1.0). Perfor-
mance and scalability are high, given the inherent difficulty of parallelising complex, unstructured
algorithms which constantly modify mesh topology, therefore rendering classic parallel techniques
(Jones-Plassmann colouring, mesh partitioning etc.) inappropriate for such applications. Work on
further optimisations like custom for-loop scheduling and 2-stage thread barriers are the subject of
current research and preliminary results are very encouraging.

Conclusions

[1] ı. V. ÇAtalyüRek, J. Feo, A. H. Gebremedhin, M. Halappanavar, and A. Pothen. Graph coloring algorithms for
multi-core and massively multithreaded architectures. Parallel Comput., 38(10-11):576–594, Oct. 2012.

[2] L. Freitag, M. Jones, and P. Plassmann. An efficient parallel algorithm for mesh smoothing. In Proceedings of the
4th International Meshing Roundtable, Sandia National Laboratories, pages 47–58. Citeseer, 1995.

[3] L. F. Freitag, M. T. Jones, and P. E. Plassmann. The Scalability Of Mesh Improvement Algorithms. In IMA
VOLUMES IN MATHEMATICS AND ITS APPLICATIONS, pages 185–212. Springer-Verlag, 1998.

[4] X. Li, M. Shephard, and M. Beall. 3d anisotropic mesh adaptation by mesh modification. Computer methods in
applied mechanics and engineering, 194(48-49):4915–4950, 2005.

[5] G. Rokos, G. J. Gorman, J. Southern, and P. H. J. Kelly. A thread-parallel algorithm for anisotropic mesh adaptation.
CoRR, abs/1308.2480, 2013 (Under review, http://arxiv.org/abs/1308.2480).

We would like to thank Fujitsu Laboratories of Europe Ltd and EPSRC grant number EP/I00677X/1
for supporting this work.

References and Acknowledgements


