
Accelerating Anisotropic Mesh Adaptivity on

nVIDIA’s CUDA Using Texture Interpolation

Georgios Rokos1, Gerard Gorman2, and Paul H J Kelly1

1Software Performance Optimisation Group,
Department of Computing,

2Applied Modelling and Computation Group,
Department of Earth Science and Engineering,

Imperial College London,
South Kensington Campus, London SW7 2AZ, United Kingdom,

{georgios.rokos09,g.gorman,p.kelly}@imperial.ac.uk

Abstract. Anisotropic mesh smoothing is used to generate optimised
meshes for Computational Fluid Dynamics (CFD). Adapting the size and
shape of elements in an unstructured mesh to a specification encoded in
a metric tensor field is done by relocating mesh vertices. This computa-
tionally intensive task can be accelerated by engaging nVIDIA’s CUDA-
enabled GPUs. This article describes the algorithmic background, the de-
sign choices and the implementation details that led to a mesh-smoothing
application running in double-precision on a Tesla C2050 board. Engag-
ing CUDA’s texturing hardware to manipulate the metric tensor field
accelerates execution by up to 6.2 times, leading to a total speedup of
up to 148 times over the serial CPU code and up to 15 times over the
12-threaded OpenMP code.

Keywords: anisotropic mesh adaptivity, vertex smoothing, parallel ex-
ecution, CUDA, metric tensor field, texturing hardware.

1 Introduction

Mesh adaptivity is an important numerical technology in Computational Fluid
Dynamics (CFD). CFD problems are solved numerically using unstructured
meshes, which essentially represent the discrete form of the problem. In order
for this representation to be accurate and efficient, meshes have to be adapted
according to some kind of error estimation. Furthermore, this error estimation
may also encode information about a possible spatial orientation of the prob-
lem under consideration, in which case we say that the underlying dynamics is
anisotropic and the error estimation is described using a metric tensor field.

One sophisticated adaptation technique, suitable for anisotropic problems, is
Vertex Smoothing. Adapting a mesh to an error estimation involves an enormous
amount of floating-point operations which can push even the most powerful
processing units to their limits. The CUDA platform offers great computational
power at relatively low cost. These properties make it a perfect candidate for

accelerating mesh adaptation. We wrote a new application framework which
implements Pain’s smoothing algorithm [7] along with the proposal by Freitag
et al. [6] for its parallel execution, enabling mesh adaptation to be accelerated
on CUDA GPUs. The main objectives achieved through this project can be
summarised as follows:

– This is the first adaptive mesh algorithm implemented on CUDA as far as
the authors are aware.

– It resulted in an application running in double-precision on a Fermi-based
Tesla board up to 15 times faster than on a 12-core server.

– The key optimisation proved to be the use of texturing hardware to store
and interpolate the metric tensor field, which offered speed-ups of up to 6.2
times over the simple CUDA code.

The rest of the article is organised as follows: Section 2 contains a compre-
hensive description of the algorithmic background and Section 3 describes how
the application was designed and implemented. Section 4 presents performance
graphs comparing the serial code against OpenMP and CUDA versions. We
conclude this paper and discuss ideas for future work in Section 5.

2 Background

2.1 PDEs, meshes and mesh quality

The Finite Element Method (FEM) is a common numerical approach for the
solution of PDEs, in which the problem space is discretised into smaller sub-
regions, usually of triangular (in 2D) or tetrahedral (in 3D) shape. These sub-
regions, referred to as elements, form a mesh. The equation is then discretised
and solved inside each element. Common discretisation techniques often result in
low quality meshes and this affects both convergence speed and solution accuracy
[5]. A posteriori error estimations on the PDE solution help evaluate a quality
functional [10] and determine the low-quality elements, which a mesh-improving
algorithm tries to “adapt” towards the correct solution. Unstructured meshes,
i.e. meshes in which a node can be connected to an arbitrary number of other
nodes, offer greater numerical flexibility but their more complex representation
is followed by higher computational cost [8].

2.2 Anisotropic PDEs

A problem is said to be “anisotropic” if its solution exhibits directional depen-
dencies. In other words, an anisotropic mesh contains elements which have some
(suitable) orientation, i.e. size and shape. The process of anisotropic mesh adap-
tation begins with a (usually automatically) triangulated mesh as input and
results in a new mesh, the elements of which have been adapted according to
some error estimation. This estimation is given in the form of a metric tensor
field, i.e. a tensor which, for each point in the 2-D (or 3-D) space, represents

the desired length and orientation of an edge containing this point. As was the
case with the PDE itself, the metric tensor is also discretised; more precisely, it
is discretised node-wise. The value of the error at an in-between point can be
taken by interpolating the error from nearby nodes. An example of adapting a
mesh to the requirements of an anisotropic problem is shown in Figure 1.

Fig. 1. Example of anisotropic mesh adaptation. The initial red triangle is stretched
according to the metric tensor value (green arrow).

Adapting a mesh so that it distributes the error uniformly over the whole
mesh is, in essence, equivalent to constructing a uniform mesh consisting of equi-
lateral triangles with respect to the non-Euclidean metric M(x). This concept
can be more easily grasped if we give an analogous example with a distorted
space like a piece of rubber that has been stretched (see Figure 2). In this ex-
ample, our domain is the piece of rubber and we want to solve a PDE in this
domain. According to the objective functional we used, all triangles in the dis-
torted (stretched) piece of rubber should be equilateral with edges of unit length.
When we release the rubber and let it come back to its original shape, the tri-
angles will look compressed and elongated.

The metric tensor M can be decomposed as

M = QΛQT

where Λ is the diagonal matrix, the components of which are the eigenvalues of
M and Q is an orthonormal matrix consisting of eigenvectors Qi. Geometrically,
Q represents a rotation of the axis system so that the base vectors show the
direction to which the element has to be stretched and Λ represents the amount
of distortion (stretching). Each eigenvalue λi represents the squared ideal length
of an edge in the direction Qi [8].

Fig. 2. Example of mapping of triangles between the standard Euclidean space (left
shapes) and metric space (right shapes). In case (a), the elements in the physical space
are of the desired size and shape, so they appear as equilateral triangles with edges
of unit length in the metric space. In case (b), the triangle does not have the desired
geometrical properties, so it does not map to an equilateral triangle in the metric
space.(Figure from [8])

2.3 Vertex Smoothing and the algorithm by Pain et al.

Vertex smoothing is an adaptive algorithm which tries to improve mesh quality
by relocating existing mesh vertices. Contrary to other techniques, which we
discuss in Section 5, it leaves the mesh topology intact, i.e. connectivity between
nodes does not change. All elements affected by the relocation of one vertex
form an area called a cavity. A cavity is defined by its central, free vertex and
all incident vertices. A vertex smoothing algorithm tries to equidistribute the
quality among cavity elements by relocating the central vertex to a new position.
Optimisation takes into account only elements belonging to the cavity, which
means that only one vertex is considered for relocation at a time. An example
of optimising a cavity is shown in Figure 3 [9].

Fig. 3. Vertex smoothing example. The vertex under consideration is the one marked
with a big black circle. The local problem area is the light-orange one. Left figure shows
the cavity before smoothing. Right figure shows the result of local smoothing. (figure
from [9])

The scope of optimisation is the cavity, therefore vertex smoothing is a lo-
cal optimisation technique. The algorithm moves towards the global optimum
through a series of local optimisations. The local nature of vertex smoothing
leads to the need for optimising a cavity over and over again. After having
smoothed a vertex, smoothing an incident vertex in the scope of its cavity may
change the quality of the first cavity. Because of this property, the algorithm has
to be applied a number of times in order to bring things to an equilibrium.

Running a smoothing algorithm in parallel can be done as dictated by the
framework proposed by Freitag et al. [6]. In a parallel execution, we cannot
smooth arbitrarily any vertices simultaneously. When a vertex is smoothed, all
adjacent vertices have to be locked at their old positions. This means that no
two adjacent vertices can be smoothed at the same time. In order to satisfy this
requirement and ensure hazard-free parallel execution, mesh vertices have to be
coloured so that no two adjacent vertices share the same colour. All vertices of
the same colour form an independent set, which means that they are completely
independent from each other and can be smoothed simultaneously. This is a
classic graph colouring problem, with the graph being the mesh, graph nodes
being mesh vertices and graph edges being mesh edges.

Pain et al. proposed a non-differential method to perform vertex smoothing
[7]. A cavity Ci consists of a central vertex Vi and all adjacent vertices Vj . Let
Li be the set of all edges connecting the central vertex to all adjacent vertices.
The aim is to equate the lengths of all edges ∈ Li (recall that the optimal cavity
is the one in which all triangles are equilateral with edges of unit length with
respect to some error metric). The length of an edge l in metric space is defined
as rl =

(

uT
l Mlul

)

, where Ml is the value of the metric tensor field in the middle
of the edge.

Let p̂i be the initial position of the central vertex and pi the new one. Then,
the length of an edge in the standard Euclidean space is ul = pi − yil , where
yil is the position of a non-central cavity vertex Vj . Also, it is important to use
relaxation of pi for consistency reasons, using xi = wpi + (1 − w)pi, w ∈ (0, 1].
In this project, w = 0.5. We define qi =

∑

l∈Li
Mly

i
l and Ai =

∑

l∈Li
Ml and

introduce a diagonal matrix Di to ensure diagonal dominance and insensitivity
to round-off error:

Di
jk =

{

maxAi
jj , (1 + σ)

∑

m=1,m 6=j | A
i
jm |, if j = k

0, if j 6= k

In this project, σ = 0.01. Then, xi can be found by solving the linear system

(Di +Ai)(xi − p̂i) = w(qi −Aip̂i).

In the case of boundary vertices, i.e. vertices which are allowed to move only
along a line (the mesh boundary), a modification of the above algorithm has to
be used. The restriction that the vertex can only move along a line means that
the new position xi can be calculated using the equation

xi = aiCu
i
l + p̂i,

where ui
l is the unit vector tangential to the boundary line and aiC is the dis-

placement along this line measured from the initial position p̂i of the vertex. aic
can be calculated from the equation

(Di + M̂ i)aic = wgi,

where M̂ i = ui
l

T ∑

l∈Li
Mlu

i
l and gi =

∑

l∈Li
ui
l

T
Ml(x

i − p̂i).

2.4 CUDA’s Texturing Hardware

Texturing hardware is an important heritage left by the graphics-processing roots
of CUDA. Reading data from texture memory can have a lot of performance
benefits, compared to global memory accesses. Texture memory is cached in a
separate texture cache (optimised for 2D spatial locality), leaving more room in
shared memory/L1 cache. If memory accesses do not follow the patterns required
to get good performance (as is the case with unstructured problems), higher
bandwidth can be achieved provided there is some locality on texture fetches.
Additionally, addressing calculations are executed automatically by dedicated
hardware outside processing elements, so that CUDA cores are not occupied by
this task and the programmer does not have to care about addressing [3, 4].

The most important texturing feature is interpolation. Textures are discre-
tised data from a (theoretically) continuous domain. In graphics processing, a
texture value may be needed at a coordinate which falls between discretisation
points, in which case some kind of texture data filtering has to be performed.
Interpolating values from the four nearest discretisation points is the most com-
mon type of texture filtering, called linear filtering. In two dimensions, the result
tex(x, y) of linear filtering is:

tex(x, y) = (1− α)(1− β)T [i, j] + α(1− β)T [i+ 1, j]+

+ (1− α)βT [i, j + 1] + αβT [i+ 1, j + 1],

where α is the horizontal distance of point (x, y) from the nearest texture sample
(discretisation point) T [i, j] and β is the vertical distance. The key point is that
this calculation can be automatically performed by dedicated texturing hardware
outside multiprocessors. Interpolation performed by this specialised hardware is
done faster than performing it in software. Apart from freeing CUDA’s multi-
processors to perform other tasks, it also decreases the size of the computational
kernel by occupying fewer registers, which is quite important for the maximum
achievable warp occupancy.

3 Design and Implementation

The application we developed targets nVIDIA’s Fermi architecture (compute
capability 2.0). Double-precision arithmetic was preferred over single-precision
in order to make the algorithm more robust to the order in which arithmetic op-
erations take place (a quite common problem in numerical analysis) and reduce

Listing 1.1. Setting up texture memory.

#i f de f ined (USETEXTUREMEMORY)
texture<f l o a t 4 , 2 , cudaReadModeElementType> metricTex ;

cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc (32 , 32 , 32 , 32 , cudaChannelFormatKindFloat) ;

cudaMallocArray(&cudaMetr icFie ld , &channelDesc , textDim , textDim) ;
cudaMemcpyToArray (cudaMetr icFie ld , 0 , 0 , hostMetr i cF ie ld ,

textDim ∗ textDim ∗ s izeof (f l o a t 4) , cudaMemcpyHostToDevice) ;

metricTex . normal ized = true ;
metricTex . f i l t e rMode = cudaFi lterModeLinear ;
metricTex . addressMode [0] = cudaAddressModeClamp ;
metricTex . addressMode [1] = cudaAddressModeClamp ;

cudaBindTextureToArray (metricTex , cudaMetr icFie ld , channelDesc) ;
#else

cudaMalloc ((void ∗∗) &cudaMetr icFie ld ,
metricDim ∗ metricDim ∗ 4 ∗ s izeof (f loat)) ;

cudaMemcpy(cudaMetricValues , hostMetr icValues ,
metricDim ∗ metricDim ∗ 4 ∗ s izeof (f loat) , cudaMemcpyHostToDevice) ;

#endif

round-off errors. The application adapts 2D meshes using the vertex smoothing
scheme proposed by Pain et al. [7]. By performing vertex smoothing, node con-
nectivity remains constant and there is no need to re-colour the mesh after every
iteration. Graph colouring was implemented using a single-threaded and greedy
colouring algorithm, called First Fit Colouring [1], which runs adequately fast
and colours the mesh with satisfactorily few colours (7-8 on average).

The mesh is represented using two arrays: an array V of vertices (a vertex
is simply a pair of coordinates) and an array C of cavities. A cavity in the i-th
position of C is the cavity defined by vertex V[i], i.e. the cavity in which V[i] is
the central vertex, and (this cavity) is in turn an array containing the indices in
array V of all vertices which are adjacent to V[i]. E.g. if vertex V[0] is connected
to vertices V[3], V[5], V[10] and V[12], then C[0] is the cavity in which V[0] is
the free vertex and C[0] = 3, 5, 10, 12. There is also a simple representation of
independent sets, each one being an array containing the indices of all vertices
belonging to that set.

As was described in Section 2, the metric tensor field is discretised vertex-
wise, so it could be represented by extending the definition of a vertex to include
the metric tensor value associated with that vertex, in addition to the vertex’s
coordinates. However, looking at the smoothing algorithm, it becomes apparent
that the middle of an edge (where the metric value is needed) will most probably
not coincide with a discretisation point, so the metric value has to be found by
interpolating the values from nearby discretisation points. If the field is stored as
a texture, interpolation can be done automatically by CUDA’s texturing units.
Linear filtering is quite suitable and yields good interpolation results, even when
the metric tensor field has a lot of discontinuities.

More insight into the role of the metric tensor field reveals that it is just
an estimation or indication about the desired orientation of an element and we

Listing 1.2. Accessing a metric tensor field value.

#i f de f ined (USETEXTUREMEMORY)
f l o a t 4 f l o a tMe t r i c = tex2D (metricTex , iCoord , jCoord) ;

#else

double i Index = jCoord ∗ metricDim , j Index = iCoord ∗ metricDim ;
int i = f l o o r (((metricDim − 1) / metricDim) ∗ i Index) ;
int j = f l o o r (((metricDim − 1) / metricDim) ∗ j Index) ;
i Index −= i ; j Index −= j ;

i f (i == metricDim − 1) // top or bottom boundary
metr ic = cudaMetricValues [metricDim ∗(metricDim−1) + j] ∗ (1− j Index) +

cudaMetricValues [metricDim ∗(metricDim−1) + (j +1)] ∗ j Index ;
else i f (j == metricDim − 1) // l e f t or r i g h t boundary

metr ic = cudaMetricValues [(i +1)∗metricDim − 1] ∗ (1− i Index) +
cudaMetricValues [(i +2)∗metricDim − 1] ∗ i Index ;

else

metr ic = cudaMetricValues [i ∗metricDim + j] ∗ (1− i Index)∗(1− j Index) +
cudaMetricValues [i ∗metricDim + (j +1)] ∗ (1− i Index)∗ j Index +
cudaMetricValues [(i +1)∗metricDim + j] ∗ i Index ∗(1− j Index) +
cudaMetricValues [(i +1)∗metricDim + (j +1)] ∗ i Index ∗ j Index ;

#endif

have observed that it does not have to be as accurate as possible. For this reason,
single-precision representation (double-precision is not supported for textures)
is more than enough and the data structure used to store it can be a 2D array,
organised using the GPU’s blocked texture storage layout. In order to convert
the unstructured representation to an array, we super-sample the initial field
with adequate resolution and store these samples in an array. The initial, auto-
generated mesh is anyway quite uniform, i.e. elements tend to be equilateral
triangles and vertices are equally spaced from each other, a state which is not
very different from a 2D-array representation.

In 2D, the metric tensor field is a 2 × 2 matrix, so it can be represented as
a 4-element vector of single-precision floating-point values. Copying data from
host to device as textures is demonstrated in Listing 1.1. Retrieving the value
of the metric tensor field at any point in the mesh is just a texture fetch, as
can be seen in Listing 1.2, which also contrasts the addressing and interpolation
overhead we avoid.

Subsequent adaptation attempts will have to use the unstructured represen-
tation of the field. After adapting the mesh, we re-solve the PDE and make
new error estimations, which lead to a new metric tensor field, discretised at the
nodes of an anisotropic, non-uniform mesh. In this case, different resolution will
be needed in different areas of the mesh and we have to follow the unstructured
approach. This does not reduce the significance of using texturing hardware.
The first adaptation attempt is the one which really needs to be sped-up, as it
needs Θ(number of vertices) iterations to converge, inducing the most exten-
sive changes to the mesh. After that, the mesh will have, more or less, acquired its
final “shape”, so subsequent attempts will only need a few iterations to improve
it.

In devices of CUDA’s compute capability 2.0 and above, the on-chip mem-
ory is used both as shared memory and L1 cache. The unstructured nature of

Listing 1.3. OpenMP execution

for (int indSetNo = 0 ; indSetNo < numberOfSets ; indSetNo++) {
vertexID iS e t [] = indSet s [indSetNo] ;

#pragma omp p a r a l l e l for pr i va t e (s e t I t e r a t o r)
for (int s e t I t e r a t o r = 0 ; s e t I t e r a t o r < v e r t i c e s I n S e t ; s e t I t e r a t o r++) {

cavityID cav i ty = iS e t [s e t I t e r a t o r] ;
i f (! meshCavit ies [cav i ty] . isOnBoundary ())

newCoords = re l o ca t e Inne rVe r t ex (. . .) ;
else

newCoords = re locateOuterVertex (. . .) ;
}

}

Listing 1.4. CUDA execution

for (int indSetNo = 0 ; indSetNo < numberOfSets ; indSetNo++) {
dim3 numBlocks (c e i l ((double) v e r t i c e s I n S e t / threadsPerBlock)) ;
kerne l<<<numBlocks , threadsPerBlock>>>(indSet s [indSetNo]) ;
cudaThreadSynchronize () ;

}

d e v i c e void ke rne l (IndependentSet i S e t) {
int ver tex = blockIdx . x ∗ blockDim . x + threadIdx . x ;
i f (ver tex < v e r t i c e s I n S e t) {

cavityID cav i ty = iS e t [ve r tex] ;
i f (! meshCavit ies [cav i ty] . isOnBoundary ())

newCoords = re l o ca t e Inne rVe r t ex (. . .) ;
else

newCoords = re locateOuterVertex (. . .) ;
}

}

anisotropic mesh adaptivity has not allowed us to use shared memory explicitly.
On the other hand, a hardware-managed L1 cache exploits data locality more
conveniently. Configuring the on-chip memory as 16KB of shared memory with
48KB of L1 cache can be done [3] by preceding the kernel invocation with a
statement like:

cudaFuncSetCacheConfig(optimizationKernel, cudaFuncCachePreferL1); .

Parallel execution is based on the independent sets. The way cavities are
assigned to OpenMP resp. CUDA threads can be seen in Listing 1.3 resp. List-
ing 1.4. Recall from the description of the vertex smoothing algorithm that
boundary vertices are smoothed using a variation of the main algorithm. In order
to avoid thread divergence, which is problematic for a CUDA kernel, boundary
vertices are put into dedicated independent sets, so that a dedicated set contains
vertices of the same “kind”.

4 Experimental Evaluation

All experiments were run on node CX1 of Imperial College’s HPC supercom-
puter, hosting two Intel “Gulftown” six-core Xeon X5650 CPUs (2.8GHz), 24GB

RAM and a nVIDIA Tesla C2050 graphics board. The operating system was Red
Hat Enterprise Linux Client release 5.5 running Linux kernel 2.6.18. CPU code
was compiled with GCC version 4.1.2 giving the -O3 flag, whereas for GPU code
we used CUDA SDK 3.1 and CUDA compilation tools, release 3.1, V0.2.1221,
with the -O2 flag. Experiments were done using the nVIDIA Forceware driver,
version 260.19.29.

We have compared the running time between a single-threaded execution,
a 12-threaded OpenMP execution and CUDA execution with and without en-
gaging texturing hardware. Timing results include the time it takes to copy
data between host and device, but no measurement includes the time it takes
to read in the unstructured grid from the disk, construct the mesh, colour it
or write back the results to the disk, because these tasks are always performed
in a single-threaded fashion on the host side. On the other hand, the time to
copy data between host and device is trivial because these transfers take place
only twice during an execution (copying the initial mesh to the device at the
beginning and copying the adapted mesh back to the host at the end) and when
there are thousands of iterations this time is amortised.

The optimisation kernel occupies 59 registers in the non-textured version and
51 registers in the textured one. Using the Occupancy Calculator [2] and experi-
mental measurements, it was found that the best CUDA execution configuration
is 32 threads per block, which gives an occupancy of 33.3%. In both cases, oc-
cupancy is very low, suggesting the future optimisation of breaking down the
kernel into smaller parts.

Table 1 presents the amount of time each version of the code needs to per-
form 1, 000 iterations over various meshes. Figure 4 shows the relative speedup
between these versions. The 12-threaded OpenMP version is steadily ∼ 10 times
faster than the serial code. The non-textured CUDA version runs on average
24 times faster than the serial code (peaking at 42 times) and 2.5 times faster
than the OpenMP version (peaking at 4.7 times). Enabling texturing support,
the CUDA code runs on average twice as fast as its non-textured counterpart
(peaking at 6.2 times). Compared to the host side, it runs on average 60 times
faster than the serial CPU version (peaking at 148 times) and 6 times faster
than the OpenMP version (peaking at 15 times).

The high performance divergence and the unpredictable (to some extent)
behaviour of a CUDA implementation come as a consequence of the highly un-
structured nature of the problem. We expect substantial differences from one
mesh to another in terms of achievable data locality, partitioning of data in
global memory and degree of coalescence of memory accesses. This uncertainty
could be mitigated by implementing a two-level mesh partitioning scheme: one
topological partitioning of the mesh into mini-partitions, so that the whole mini-
partition fits in the on-chip memory, and a second logical partitioning (graph
colouring) inside each mini-partition for the purpose of correct parallel execu-
tion.

Number of CPU CPU CUDA CUDA
mesh vertices 1 Thread 12 Threads (no texturing) (texturing)

25,472 20.76 2.156 1.243 0.610

56,878 46.82 4.676 2.281 1.163

157,673 144.3 15.27 5.902 3.172

402,849 510.3 52.36 15.03 8.249

1,002,001 777.6 75.34 28.17 5.664

4,004,001 3,203 318.0 134.2 21.64

5,654,659 8,921 983.9 210.0 114.2
Table 1. Comparison of the execution time in seconds between the serial, the 12-
threaded OpenMP, the non-textured CUDA and the textured CUDA versions, per-
forming 1,000 iterations over meshes of variable size.

 0

 20

 40

 60

 80

 100

 120

 140

 160

25K 58K 158K 403K 1M 4M 5.65M

S
pe

ed
up

Mesh size (number of vertices)

Text. CUDA over Serial
non-text. CUDA over Serial

OpenMP over Serial

 0

 2

 4

 6

 8

 10

 12

 14

 16

25K 58K 158K 403K 1M 4M 5.65M

S
pe

ed
up

Mesh size (number of vertices)

Text. CUDA over OpenMP
Text. over non-text. CUDA

non-text. CUDA over OpenMP

Fig. 4. Relative speedup between the serial, the OpenMP, the non-textured CUDA
and the textured CUDA versions.

5 Conclusions and Future Work

The aim of this project was to determine the extent to which a Fermi-based GPU
can still be efficient when it has to deal with unstructured problems. The experi-
mental results show that the capabilities of this architecture extend well beyond
the borders of structured applications, which are the norm in evaluating and
demonstrating processing hardware. A single Tesla C2050 board outperformed
12 Nehalem cores by many times and there is still room for improvement, as is
suggested by the low warp occupancy and the scope for improved data locality.

When it comes to texturing hardware, it was shown that it offers substantial
amounts of computational power and can more than double performance in prob-
lems with appropriate characteristics, like the metric tensor field of anisotropic
mesh adaptivity. The assistance of texturing hardware in the 3D version of the
problem (a 3D implementation is planned for future work) is expected to be even

more valuable. In a 3D metric tensor field we have to interpolate the values from
the 8 nearest points and doing so requires (compared to 2D problems) double
the data volume to be fetched from memory and three times more arithmetic.

Apart from the aforementioned optimisations, this project leaves many other
topics open to further study. Perhaps, the most interesting direction is the imple-
mentation of a much heavier and of higher quality smoothing algorithm, based on
differential methods, which is called optimisation-based smoothing [5]. Addition-
ally, vertex smoothing is usually combined with other adaptive methods, such
as regular refinement, edge flipping and edge collapsing [6, 7]. The development
of a mesh improving application which manipulates all these techniques and the
assessment of its performance on CUDA (and possibly other high-performance
architectures through OpenCL) is in progress.

References

1. Al-Omari, H., Sabri, K.E.: New graph coloring algorithms. Journal of Mathematics
and Statistics (2006)

2. nVIDIA Corporation: CUDA GPU Occupancy Calculator, http://developer.

download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

3. nVIDIA Corporation: nVIDIA CUDA Programming Guide, Version 3.1. Tech. rep.
(2010)

4. nVIDIA Corporation: nVIDIA CUDA Reference Manual, Version 3.1. Tech. rep.
(2010)

5. Freitag, L., Jones, M., Plassmann, P.: An Efficient Parallel Algorithm for Mesh
Smoothing. In: INTERNATIONAL MESHING ROUNDTABLE. pp. 47–58 (1995)

6. Freitag, L.F., Jones, M.T., Plassmann, P.E.: The Scalability Of Mesh Improve-
ment Algorithms. In: IMA VOLUMES IN MATHEMATICS AND ITS APPLICA-
TIONS. pp. 185–212. Springer-Verlag (1998)

7. Pain, C.C., Umpleby, A.P., de Oliveira, C.R.E., Goddard, A.J.H.: Tetrahe-
dral mesh optimisation and adaptivity for steady-state and transient finite el-
ement calculations. Computer Methods in Applied Mechanics and Engineer-
ing 190(29-30), 3771 – 3796 (2001), http://www.sciencedirect.com/science/

article/B6V29-42RMN8G-5/2/8c901884db5fd4b67d19b63fb9691284

8. Piggott, M.D., Farrell, P.E., Wilson, C.R., Gorman, G.J., Pain, C.C.:
Anisotropic mesh adaptivity for multi-scale ocean modelling. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 367(1907), 4591–4611 (2009), http://rsta.royalsocietypublishing.org/
content/367/1907/4591.abstract

9. Rokos, G.: ISO Thesis: Study of Anisotropic Mesh Adaptivity and its Parallel
Execution. Imperial College London (2010)

10. Vasilevskii, Y., Lipnikov, K.: An adaptive algorithm for quasioptimal mesh gen-
eration. Computational Mathematics and Mathematical Physics 39(9), 1468–1486
(1999)

