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Abstract

We address the problem of characterising the security of a program against
unauthorised information flows. Classical approaches are based on non-inter-
ference models which depend ultimately on the notion of process equivalence. In
these models confidentiality is an absolute property stating the absence of any ille-
gal information flow. We present a model in which the notion of non-interference
is approximated in the sense that it allows for some exactly quantified leakage of
information. This is characterised via a notion of process similarity which replaces
the indistinguishability of processes by a quantitative measure of their behavioural
difference. Such a quantity is related to the number of statistical tests needed to
distinguish two behaviours. We also present two semantics-based analyses of ap-
proximate non-interference and we show that one is a correct abstraction of the
other.



1 Introduction
Non-interference was introduced by Goguen and Meseguer in their seminal paper [14]
in order to provide an appropriate formalism for the specification of security policies.
In its original formulation it states that:

“One group of users, using a certain set of commands, is noninterfer-
ing with another group of users if what the first group does with those
commands has no effect on what the second group of users can see”.

This notion has been widely used to model various security properties. One such prop-
erty is confidentiality which is concerned with how information is allowed to flow
through a computer system. In recent years, there has been a proliferation of definitions
of confidentiality, all based on the central idea of indistinguishability of behaviours: In
order to establish that there is no information flow between two objects A and B, it
is sufficient to establish that for any pair of behaviours of the system that differ only
in A’s behaviour, B’s observations cannot distinguish these two behaviours [27]. A
classification of security properties based on different notions of behavioural equiva-
lence is given in [12, 13]. For systems where nondeterminism is present, the problem
of characterising the equality of two behaviours is not a trivial one. In fact, there is no
notion of system equivalence which everybody agrees upon; which notion is appropri-
ate among, for example, trace or failure equivalence, (various forms of) bisimulation
and (various forms of) testing equivalence, depends on the context and application in
question.

Another common aspect of these various formulations of confidentiality is that
they all treat information flows in a binary fashion: they are either allowed to flow
or not. Models for confidentiality typically characterise the absence of information
flow between objects (across interfaces or along channels) by essentially reducing non-
interference to confinement. Depending on the nature of the information flow one can
characterise different confinement properties, namely deterministic, nondeterministic,
and probabilistic confinement [37].

It is important to notice that nondeterministic confinement is weaker than prob-
abilistic confinement, as it is not able to capture those situations in which the prob-
abilistic nature of an implementation may allow for the detection of the confidential
information, e.g. by running the program a sufficient number of times [15]. In the
context of imperative programming languages, confinement properties with respect to
the value of high and low level variables, have been recently discussed in [33, 38, 34]
where a type-system based security analysis is developed. Another recent contribution
to this problem is the work in [28, 29], where the use of probabilistic power-domains
is proposed, which allows for a compositional specification of the non-interference
property underlying a type-based security analysis.

Although non-interference is the simplest characterisation of confidentiality, it has
several problems [26]. One of these is that absolute non-interference can hardly ever be
achieved in real systems. On the other hand, often computer systems “are not intended
to be completely secure” [39]. As a consequence, notions of non-interference such
as confinement turn out to be too strong as characterisation of the non-interference
criterion effectively used in practice (especially in their non-deterministic version).
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In this work we approach the problem of confidentiality by looking at models which
are able to give a quantitative estimate of the information flowing through a system.
Such models abandon the purely qualitative binary view of the information flow by
characterising how much information is actually “leaking” from the system rather than
the complete absence of any flow. This allows us to define a notion of non-interference
which is approximate and yet able to capture the security properties of a system in a
more “realistic” way: in real systems high-level input interferes with low-level output
all the time [26].

The key idea of our approach is to replace indistinguishability by similarity in the
basic formalisation of non-interference. As a result, two behaviours though distin-
guishable might still be considered as effectively non-interfering provided that their
difference is below a threshold ε. A similarity relation can be defined by means of an
appropriate notion of distance and provides information (the ε) on “how much” two
behaviours differ from each other. This information is not relevant in equivalence rela-
tions such as observational equivalence or bisimilarity, where the comparison between
two behaviours is aimed to establish whether they can be identified or not.

We will formalise our approach in a particular process algebraic framework in-
cluding probabilistic constructs which allow us to deal with probabilistic information
flows. Such a framework is Probabilistic Concurrent Constraint Programming (PCCP)
and will be presented in Section 2. The notion of identity confinement expressing
confidentiality in PCCP is then defined in Section 3. In Section 4 we introduce an ap-
proximate version of the identity confinement and give a statistical interpretation of the
quantity ε measuring the approximation. Finally, we will propose two analyses of the
approximate confinement property based respectively on a concrete (Section 5) and an
abstract (Section 6) semantics, and show the correctness of the abstract analysis with
respect to the concrete semantics. We conclude with a summary and a discussion of
related works and some further research directions in Section 7.

2 Probabilistic CCP
We illustrate our approach by referring to a probabilistic declarative language, namely
Probabilistic Concurrent Constraint Programming (PCCP), which was introduced in
[9, 10] as a probabilistic version of the Concurrent Constraint Programming (CCP)
paradigm [31, 30]. This language can be seen as a kind of process algebra enhanced
with a notion of computational state.

2.1 Syntax of Agents
The syntax and the basic execution model of PCCP are very similar to CCP. Both
languages are based on the notion of a generic constraint system C, defined as a cylin-
dric algebraic complete partial order (see [31, 6] for more details), which encodes the
information ordering. This is referred to as the entailment relation ` and is some-
times denoted byw. A cylindric constraint system includes constraints of the form ∃xc
(cylindric elements) to model hiding of local variables, and constraints of the form dxy
(diagonal elements) to model parameter passing. The axioms of the constraint system
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include laws from the theory of cylindric algebras [17] which model the cylindrification
operators ∃x as a kind of first-order existential quantifiers, and the diagonal elements
dxy as the equality between x and y.

In PCCP probability is introduced via a probabilistic choice and a form of prob-
abilistic parallelism. The former replaces the nondeterministic choice of CCP, while
the latter replaces the pure nondeterminism in the interleaving semantics of CCP by
introducing a probabilistic scheduling. This allows us to implement mechanisms for
differentiating the relative advancing speed of a set of agents running in parallel.

The concrete syntax of a PCCP agentA is given in Table 1, where c and ci are finite
constraints in C, and pi and qi are real numbers representing probabilities. Note that
at the syntactic level no restrictions are needed on the values of the numbers pi and qi;
as explained in the next section, they will be turned into probability distributions by a
normalisation process occurring during the computation. The meaning of p(x) is given
by a procedure declaration of the form p(y) :−A, where y is the formal parameter. We
will assume that for each procedure name there is at most one definition in a fixed set
of declarations P (the program).

2.2 Operational Semantics
The operational model of PCCP can be intuitively described as follows: All processes
share a common store consisting of the least upper bound, denoted by t, (with respect
to the inverse v of the entailment relation) of all the constraints established up to that
moment by means of tell actions. These actions allow for communication. Synchroni-
sation is achieved via an ask guard which tests whether the store entails a given con-
straint. The probabilistic choice construct allows for a random selection of one of the
different possible synchronisations making the program similar to a random walk-like
stochastic process. Parts of the store can be made local by means of a hiding operator
corresponding to a logical existential quantifier.

The operational semantics of PCCP is formally defined in terms of a probabilistic
transition system, (Conf,−→p), where Conf is the set of configurations 〈A, d〉 repre-
senting the state of the system at a certain moment and the transition relation −→p is
defined in Table 2. The state of the system is described by the agent A which has still
to be executed, and the common store d. The index p in the transition relation indicates
the probability of the transition to take place. In order to describe all possible stages of
the evolution of agents, in Table 2 we use an extended syntax by introducing an agent
stop which represents successful termination, and an agent ∃dxA which represents the
evolution of an agent of the form ∃xB where d is the local information on x produced
during this evolution. The agent ∃xB can then be seen as the particular case where the
local store is empty, that is d = true . In the following we will identify all agents of
the form ‖ni=1 qi : stop and ∃dxstop with the agent stop as they all indicate a successful
termination.

The rules of Table 2 are closely related to the ones for nondeterministic CCP, and
we refer to [6] for a detailed description. The rules for probabilistic choice and priori-
tised parallelism involve a normalisation process needed to re-distribute the probabil-
ities among those agents Ai which can actually be chosen for execution. Such agents
must be enabled (i.e. the corresponding guards ask(ci) succeed) or active (i.e. able to
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make a transition). This means that we have to re-define the probability distribution so
that only enabled/active agents have non-zero probabilities and the sum of these prob-
abilities is one. The probability after normalisation is denoted by p̃j . For example, in
rule R2 the normalised transition probability can be defined for all enabled agents by

p̃i =
pi∑
`cj pj

,

where the sum
∑
`cj pj is over all enabled agents. When there are no enabled agents

normalisation is not necessary. We treat a zero probability in the same way as a non-
entailed guard, i.e. agents with zero probability are not enabled; this guarantees that
normalisation never involves a division by a zero value. Analogous considerations ap-
ply to the normalisation of active agents in R3. It might be interesting to note that there
are alternative ways to deal with the situation where

∑
`cj pj = 0 (all enabled agents

have probability zero). In [11] normalisation is defined in this case as the assignment
of a uniform distribution on the enabled agents; such a normalisation procedure allows,
for example, to introduce a quasi-sequential composition.

The meaning of rule R4 is intuitively explained by saying that the agent ∃dxA be-
haves “almost” like A, with the difference that the variable x which is possibly present
in A must be considered local, and that the information present in d has to be taken
into account. Thus, if the store which is visible at the external level is c, then the store
which is visible internally by A is d t (∃xc). Now, if A is able to make a step, thus
reducing itself to A′ and transforming the local store into d′, what we see from the ex-
ternal point of view is that the agent is transformed into ∃d′x A′, and that the information
∃xd present in the global store is transformed into ∃xd′.

The semantics of a procedure call p(x), modelled by Rule R5, consists in the ex-
ecution of the agent A defining p(x) with a parameter passing mechanism similar to
call-by-reference: the formal parameter x is linked to the actual parameter y in such a
way that y inherits the constraints established on x and vice-versa. This is realised in
a way to avoid clashes between the formal parameter and occurrences of y in the agent
via the operator ∆x

y defined by:

∆x
yA =

{
∃dxyy A if x 6= y
A if x = y.

2.3 Observables
The notion of observables we consider in this paper refers to the probabilistic in-
put/output behaviour of a PCCP agent. We will define the observables O(A, d) of an
agent A in store d as a probability distribution on constraints. Formally, this is defined
as an element in the real vector space:

V(C) =
{∑

xcc
∣∣∣ xc ∈ R, c ∈ C

}
,

that is the free vector space obtained as the set of all formal linear combinations of
elements in C. The coefficients xc represent the probability associated to constraints c.
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Operationally, a distributionO(A, d) corresponds to the set of all pairs 〈c, p〉, where
c is the result of a computation of A starting in store d and p is the probability of com-
puting that result. For the purpose of this paper we will restrict to agents which only ex-
hibit computations whose length is bounded. Note that since our programs are finitely
branching this implies by the König’s lemma that the vector space of constraints is
finite-dimensional. We will also exclude those situations in which the final configura-
tion does not correspond to successful termination and yet no transitions are possible,
i.e. the case of suspended computations. These assumptions allow for a simpler pre-
sentation of the ideas and techniques at the base of the analysis proposed later on. The
results presented can nevertheless be extended to the general case by considering an
appropriate topology on the (possibly infinite-dimensional) vector space of constraints
and appropriate adjustments to the analysis techniques so as to account for deadlock.

We formally define the set of results for an agent A as follows.

Definition 1 Let A be a PCCP agent. A computational path π for A in store d is
defined by

π ≡ 〈A0, c0〉 −→p1 〈A1, c1〉 −→p2 . . . −→pn 〈An, cn〉 ,

where A0 = A, c0 = d, An = stop and n <∞.

We denote by Comp(A, d) the set of all computational paths for A in store d.

Definition 2 Let π ∈ Comp(A, d) be a computational path for A in store d,

π ≡ 〈A, d〉 = 〈A0, c0〉 −→p1 〈A1, c1〉 −→p2 . . . −→pn 〈An, cn〉 .

We define the result of π as res(π) = cn and its probability as prob(π) =
∏n
i=1 pi.

Because of the probabilistic choice, there might be different computational paths
for a given PCCP program which lead to the same result. The probability associated
to a given result c is then the sum of all probabilities prob(π) associated to all paths
π such that res(π) = c. This suggests that we introduce the following equivalence
relation on Comp(A).

Definition 3 Let π, π′ ∈ Comp(A) be two computational paths for A in store d. We
define π ≈ π′ iff res(π) = res(π′). The equivalence class of π is denoted by [π].

The definitions of res(π) and prob(π) are extended to Comp(A)/≈ in the obvious
way by res([π]) = res(π) and prob([π]) =

∑
π′∈[π] prob(π

′).
We can now define the probabilistic input/output observables of a given agent A in

store d as the set

O(A, d) =
{
〈res([π]), prob([π])〉 | [π] ∈ Comp(A)/≈

}
.

In the following we will adopt the convention that whenever the initial store is
omitted then it is intended to be true .
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3 Identity Confinement
The original idea of non-interference as stated in [14] can be expressed in the PCCP for-
malism via the notion of identity confinement. Roughly, this notion establishes whether
it is possible to identify which process is running in a given program. Therefore, given
a set of agents and a set of potential intruders, the latter cannot see what the former set
is doing, or more precisely, no spy is able to find out which of the agents in the first
group is actually being executed.

We illustrate the notion of identity confinement via an example borrowed from
[29] where the setting is that of imperative languages. This example also shows the
difference between non-deterministic and probabilistic (identity) confinement.

Example 1 In an imperative language, confinement — as formulated for example in
[28, 29] — usually refers to a standard two-level security model consisting of high and
low level variables. One then considers the (value of the) high variable h as confined
if the value of the low level variable l is not “influenced” by the value of the high
variable, i.e. if the observed values of l are independent of h.

The following statement illustrates the difference between non-deterministic and
probabilistic confinement:

h := h mod 2; (l := h 1
2

1
2

(l := 0 1
2

1
2
l := 1))

The value of l clearly depends “somehow” on h. However, if we resolve the choice
non-deterministically it is impossible to say anything about the value of h by observing
the possible values of l. Concretely, we get the following dependencies between h and
possible values of l:

• For h mod 2 = 0: {l = 0, l = 1}

• For h mod 2 = 1: {l = 1, l = 0},
i.e. the possible values of l are the same independently from the fact that h is even or
odd. In other words, h is non-deterministically confined.

In a probabilistic setting the observed values for l and their probabilities allow us
to distinguish cases where h is even from those where h is odd. We have the following
situation:

• For h mod 2 = 0:
{〈
l = 0, 34

〉
,
〈
l = 1, 14

〉}
• For h mod 2 = 1:

{〈
l = 0, 14

〉
,
〈
l = 1, 34

〉}
Therefore, the probabilities to get l = 0 and l = 1 reveal if h is even or odd, i.e. h is
probabilistically not confined.

Example 2 We can re-formulate the situation above in our declarative setting by con-
sidering the following agents:

hOn ≡ ask(true)→ 1

2
: tell(on) ask(true)→ 1

2
: Rand

hOff ≡ ask(true)→ 1

2
: tell(off) ask(true)→ 1

2
: Rand

Rand ≡ ask(true)→ 1

2
: tell(on) ask(true)→ 1

2
: tell(off)
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The constraint system consists of four elements:

C = {true,on,off, false = on t off} ,

where true v on v false and true v off v false .
The constraints on and off represent the situations in which the low variable

l = 1 or l = 0 respectively. The agent hOn corresponds then to the behaviour of the
imperative program fragment in case that h mod 2 = 1, while hOff corresponds to
the case where h mod 2 = 0. The auxiliary agent Rand corresponds to the second
choice in the above imperative fragment. The imperative notion of confinement now
translate in our framework into a problem of identity confinement: Getting informa-
tion about h in the previous setting is equivalent to discriminating between hOn and
hOff, i.e. revealing their identity. The two agents will be identity confined if they are
observationally equivalent in any context.

As explained in Section 2.3, the observables of a PCCP agent correspond to a distri-
bution on the constraint system, that is a vector in the space V(C). Thus, the difference
between two observables corresponds to the vector difference between the given ob-
servables and can be measured by means of a norm. We adopt here the supremum norm
‖ · ‖∞ formally defined as

‖(xi)i∈I‖∞ = sup
i∈I
|xi|,

where (xi)i∈I represents a probability distribution. However, as long as we are inter-
ested in defining the identity of two vectors, any p-norm: ‖(xi)i∈I‖p = p

√∑
i∈I |xi|p

would be appropriate.
Probabilistic identity confinement is then defined as follows [7]:

Definition 4 Two agents A and B are probabilistically identity confined iff their ob-
servables are identical in any context, that is for all agent S,

O(p : A ‖ q : S) = O(p : B ‖ q : S)

or equivalently, ∥∥∥O(p : A ‖ q : S)−O(p : B ‖ q : S)
∥∥∥ = 0,

for all scheduling probabilities p and q = 1− p.

Example 3 It is easy to check that any context can distinguish between the agents hOn
and hOff of Example 2. In fact, even if executed on their own their observables are
different (cf Figure 1): ∥∥∥O(hOn, true)−O(hOff.true)

∥∥∥ =∥∥∥∥{〈on, 3

4

〉
,

〈
off,

1

4

〉}
−
{〈

on,
1

4

〉
,

〈
off,

3

4

〉}∥∥∥∥ =
1

2
.

Therefore hOn and hOff are not probabilistically identity confined.

8



Example 4 Consider the following two PCCP agents [7]:

A ≡ 1

2
: tell(c) ‖ 1

2
: tell(d)

B ≡ tell(c t d).

It is easy to see that in their non-deterministic versionsA andB executed in any context
give the same observables. A and B are thus non-deterministically identity confined.

Treating the choice probabilistically still gives us the same observables for A and
B if they are executed on their own (cf. Figure 2), but they are not probabilistically
confined. A context which reveals the identity of A and B is for example the agent:

C ≡ ask(c)→ 2

3
: tell(e) ask(d)→ 1

3
: tell(f),

as the executions of A and B in this context give different observables (cf. Figure 3
and Figure 4):

O
(

1

2
: A ‖ 1

2
: C

)
=

{〈
c t d t e, 7

12

〉
,

〈
c t d t f, 5

12

〉}

O
(

1

2
: B ‖ 1

2
: C

)
=

{〈
c t d t e, 2

3

〉
,

〈
c t d t f, 1

3

〉}
.

We observe that if we restrict to a particular class of contexts, namely those of the
form:

D ≡ ask(g)→ 1 : tell(h),

then A and B are probabilistically identity confined with respect to these agents: for
any choice of the scheduling probabilities p and q = 1−p, we obtain the same observ-
ables for the parallel compositions of D with A and B respectively.

If neither c nor d entails g then D will never be executed, and the executions of
p : A ‖ q : D and p : B ‖ q : D are essentially the same as for A and B alone (cf.
Figure 2).

If only d entails g we obtain the derivations in Figure 5. The case where g is
entailed by c alone is analogous. In all cases we end up with a single result c t d t h
with probability one.

The derivations of p : A ‖ q : D and p : B ‖ q : D in the case that both c and
d entail g are depicted in Figure 6: Again we obtain the same result c t d t h with
probability one.

In general, identical behaviour in all contexts is hardly ever achievable. It therefore
makes sense to ask for identical observables if A and B are executed in parallel with
agents with only limited capabilities. Moreover, the power of a context can be evaluated
in terms of its ability to distinguish the behaviours of two agents. It is also reasonable
to think that its effectiveness will depend on the probabilities of the scheduling in the
interleaving with the given agents. This leads to the definition of a weaker (and yet
more practical) notion of probabilistic identity confinement which is parametric in the
type of context S and the scheduling probability p. We will introduce such a notion,
which we call approximate identity confinement, in Section 4.2.
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4 Approximate Confinement
The confinement notion discussed above is exact in the sense that it refers to the equiv-
alence of the agents’ behaviour.

However, sometimes it is practically more useful to base confinement on some
similarity notion. The intuitive idea is that we look at how much the behaviours of two
agents differ, instead of qualitatively asserting whether they are identical or not. In
particular, in the probabilistic case we can measure the distance ε between the distribu-
tions representing the agents’ observables instead of checking whether this difference
is 0. We can then say that the agents are ε-confined for some ε ≥ 0.

Example 5 [4] Consider an ATM (Automatic Teller Machine) accepting only a single
PIN number n out of m possible PINs, e.g. m = 10000:

ATMn ≡
m

i=1,i6=nask(PINi)→ 1 : tell(alarm)

ask(PINn)→ 1 : tell(cash)

This agent simulates an ATM which recognises PINn: if PINn has been told the
machine dispenses cash, otherwise — for any incorrect PINi — it sounds an alarm.
The (active) spy S tries a random PIN number i:

S ≡
m

i=1ask(true)→ 1 : tell(PINi)

If we consider two such machines ATMn1 and ATMn2 for n1 6= n2 and execute
them in context S we obtain two slightly different observables O(p : ATMn1 ‖ q : S)
and O(p : ATMn2 ‖ q : S):

O (p : ATMn1 ‖ q : S) =

{〈
PINn1 t cash,

1

m

〉}
∪

m⋃
i=1,i6=n1

{〈
PINi t alarm, 1

m

〉}

O (p : ATMn2 ‖ q : S) =

{〈
PINn2 t cash,

1

m

〉}
∪

m⋃
i=1,i6=n2

{〈
PINi t alarm, 1

m

〉}
.

Clearly, O(p : ATMn1 ‖ q : S) and O(p : ATMn2 ‖ q : S) are different.
For most PINs both machines will sound an alarm in most cases, but if we are

lucky, the spy will use the correct PINs in which case we are able to distinguish the
two machines (besides earning some cash). The chances for this happening are small
but are captured essentially if we look at the difference between the observables:∥∥∥O(p : ATMn1 ‖ q : S)−O(p : ATMn2 ‖ q : S)

∥∥∥ =
1

m
.
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The set {ATMn}n is ε-confined with respect to S with ε = 1
m but not strictly

confined. In the practical applications, m is usually very large, that is ε is very small,
which makes it reasonable to assume theATM ’s agents as secure although not exactly
confined.

The notion of approximate confinement we will define in the following is based on
the idea of measuring how much the behaviour of two agents differs if we put them in
a certain context. In the next section we will discuss different kinds of such contexts,
which we will refer to as spies or attackers.

4.1 Admissible Spies
Security depends on the quality of the possible attacker. Clearly, no system is secure
against an omnipotent attacker. Therefore, it makes sense to restrict our consideration
to particular classes of spies [22].

As an example, will discuss here a class of attackers expressed in PCCP by:

Sn =
{ n

i=1ask(ci)→ pi : tell(fi)
}
,

where fi ∈ C are fresh constraints, that is constraints which never appear in the execu-
tion of the host agents, and ci ∈ C. These agents are passive and memoryless attackers:
They do not change the behaviour of the hosts, and are only allowed to interact with
the store in one step. Nevertheless, they are sufficient for formalising quite powerful
attacks such as the timing attacks in [20].

A generalisation of this class is to consider active spies (e.g. Example 6 and Exam-
ple 5) and/or spies with memory such as ask(c)→ p : ask(d)→ q : tell(f).

Example 6 Consider the two agents:

A ≡ ask(c)→ 1 : tell(d)

B ≡ stop.

If executed in store true , A and B are obviously confined with respect to any passive
spy: They both do nothing, and it is therefore impossible to distinguish them by just
observing. However, for an active spy like S ≡ tell(c) it is easy to determine if it is
being executed in parallel with A or B. Note that if executed in any store d such that
d ` c, the two agents A and B are always distinguishable because their observables
are different.

4.2 Approximate Identity Confinement
We introduce a notion of approximate confinement which is a generalisation of the
identity confinement introduced in [7] and defined in Section 3. The definition we give
is parametric with respect to a set of admissible spies S and scheduling probabilities
p and q = 1 − p. We say that two agents A and B are approximately confined with
respect to a set of spies S iff there exists an ε ≥ 0 such that for all S ∈ S the distance
between the observables of p : A ‖ q : S and p : B ‖ q : S is smaller than ε. We
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consider as a measure for this distance the supremum norm ‖ · ‖∞ as in Definition 4.
In this case, the choice of this norm is particularly appropriate because it allows us
to identify a single constraint c for which the associated probabilities are maximally
different. In the following we will usually omit the index∞.

Definition 5 Given a set of admissible spies S, we call two agentsA andB ε-confined
for some ε ≥ 0 iff:

sup
S∈S

∥∥∥O(p : A ‖ q : S)−O(p : B ‖ q : S)
∥∥∥ = ε.

This definition can be generalised to a set of more than two agents.
The number ε associated to a given class of spies S can be seen as a measure of

the “power” of S . In fact, it is strongly related to the number of tests a spy needs to
perform in order to reveal the identity of the host agents. We will make this argument
more precise in the next section. Note that this number depends on the scheduling
probability. This is because the effectiveness of a spy can only be evaluated depending
on the internal design of the host system which is in general not known to the spy.

Obviously, if two agents A and B are ε-confined with ε(p) = 0 for all scheduling
probability p then they are probabilistically identity confined.

4.3 Statistical Interpretation of ε
The notion of approximate confinement is strongly related to statistical concepts, in
particular to so-called hypothesis testing (see e.g. [32]).

4.3.1 Identification by Testing

Let us consider the following situation: We have two agents A and B which are at-
tacked by a spy S. Furthermore, we assume that A and B are ε-confined with respect
to S. This means that the observables O(p : A ‖ q : S) and O(p : B ‖ q : S) are ε-
similar. In particular, as the observables do not include infinite results, we can identify
some constraint c ∈ C such that |pA(c) − pB(c)| = ε, where pA(c) is the probability
of the result c in an execution of p : A ‖ q : S and pB(c) is the probability that c is a
result of p : B ‖ q : S.

Following the standard interpretation of probabilities as “long-run” relative fre-
quencies, we can thus expect that the number of times we get c as result of an execution
of p : A ‖ q : S and p : B ‖ q : S will differ “on the long run” by exactly a factor
ε. That means if we execute p : A ‖ q : S or p : B ‖ q : S “infinitely” often we can
determine pA(c) and pB(c) as the limit of the frequencies with which we obtain c as
result.

In fact, for any unknown agent X we can attempt do determine pX(c) experimen-
tally by executing p : X ‖ q : S over and over again. Assuming that X is actually
the same as either A or B we know that the pX(c) we obtain must be either pA(c) or
pB(c). We thus can easily determine this way if X = A or X = B, i.e. reveal the
identity of X (if ε 6= 0), simply by testing.
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Unfortunately — as J.M. Keynes pointed out — we are all dead on the long run.
The above described experimental setup is therefore only of theoretical value. For
practically purposes we need a way to distinguish A and B by finite executions of
p : A ‖ q : S and p : B ‖ q : S. If we execute p : A ‖ q : S and p : B ‖ q : S only
a finite number of — say n — times, we can observe a certain experimental frequency
pnA(c) and pnB(c) for getting c as a result. Each time we repeat this finite sequence
of n executions we may get different values for pnA(c) and pnB(c) (only the infinite
experiments will eventually converge to the same constant values pA(c) and pB(c)).

Analogously, we can determine the frequency pnX(c) for an unknown agent X by
testing, i.e. by looking at n executions of p : X ‖ q : S. We can then try to compare
pnX(c) with pnA(c) and pnB(c) or with pA(c) and pB(c) in order to find out if X = A or
X = B. Unfortunately, there is neither a single value for either pnX(c), pnA(c) or pnB(c)
(each experiment may give us different values) nor can we test if pnX(c) = pnA(c) or
pnX(c) = pnB(c) nor if pnX(c) = pA(c) or pnX(c) = pB(c).

For example, it is possible that c is (coincidental) not the result of the first execution
of p : X ‖ q : S, although the (long-run) probabilities of obtaining c by executing
p : A ‖ q : S or p : B ‖ q : S are, let’s say, pA = 0.1 and pB = 0.5. If we stop
our experiment after n = 1 executions we get p1X(c) = 0. We know that X = A or
X = B but the observed p1X(c) is different from both pA and pB .

Nevertheless, we could argue that it is more likely that X = A as the observed
p1X(c) = 0 is closer to pA = 0.1 than to pB = 0.5. The problem is now to determine,
on the basis of such experiments, how much the identification of X with A is “more
correct” than identifying X with B on the basis of such experiments.

For finite experiments we can only make a guess about the true identity of X ,
but never definitely reveal its identity. The confidence we can have in our guess or
hypothesis about the identity of an unknown agent X — i.e. the probability that we
make a correct guess — depends obviously on two factors: The number of tests n and
the difference ε between the observables of p : A ‖ q : S and p : B ‖ q : S.

4.3.2 Hypothesis Testing

The problem is to determine experimentally if the unknown agent X is one of two
known agents A and B. The only way we can obtain information about X is by ex-
ecuting it in parallel with a spy S. In this way we can get an experimental estimate
for the observables of p : X ‖ q : S. We then can compare this estimate with the
observables of p : A ‖ q : S and p : B ‖ q : S.

That means: based on the outcome of some finite experiments (involving an un-
known agent X) we formulate a hypothesis H about the identity of X , namely either
that “X is A” or that “X is B”. Our hypothesis about the identity of X will be for-
mulated according to a simple rule: depending if the experimental estimate for the
observables of p : X ‖ q : S are closer to O(p : A ‖ q : S) or to O(p : B ‖ q : S) we
will identify X with A or B respectively.

More precisely, the method to formulate the hypothesis H about the identity of the
unknown process X consists of the two following steps:

1. We execute p : X ‖ q : S exactly n times in order to obtain an experimental

13



approximation, i.e. average, for its observables

On(p : X ‖ q : S) =

{〈
c,

# of times c is the result
n

〉}
c∈C

,

2. Depending if On(p : X ‖ q : S) is closer to the observables On(p : A ‖ q : S)
or On(p : B ‖ q : S) we formulate the hypothesis

H :


X = A if

∥∥∥On(p : X ‖ q : S)−O(p : A ‖ q : S)
∥∥∥ ≤

≤
∥∥∥On(p : X ‖ q : S)−O(p : B ‖ q : S)

∥∥∥
X = B otherwise.

The question is now whether the guess expressed by the hypothesisH about the true
identity of the black box X , which we formulate according to the above procedure, is
correct; or more precisely: What is the probability that the hypothesis H holds? To do
this we have to distinguish two cases or scenarios:

X is actually A: What is the probability (in this case) that we formulate the correct
hypothesis H : X is A and what is the probability that we formulate the incor-
rect hypothesis H : X is B?

X is actually B: What is the probability (in this case) that we formulate the correct
hypothesis H : X is B and what is the probability that we formulate the incor-
rect hypothesis H : X is A?

Clearly, in each case the probability to formulate a correct hypothesis and the prob-
ability to formulate an incorrect hypothesis add up to one. Furthermore, it is obvious
that both scenarios “X is actually A” and “X is actually B” are symmetric. We will
therefore investigate only one particular problem: Suppose that X is actually agent A,
what is the probability that — according to the above procedure — we formulate the
— in this case — correct hypothesis H : X is A.

In the following we use the notation pX(c) and pnX(c) to denote the probability
assigned to c ∈ C in the distribution representing the observables O(p : X ‖ q : S)
and in the experimental average On(p : X ‖ q : S) respectively. Furthermore, we
look at a simplified situation where we are considering only a single constraint c where
the difference between pA(c) and pB(c) is maximal. Let us assume without loss of
generality that pA(c) < pB(c) as in the diagram below:

0 1
pA(c) pB(c)

-� ε

-�-�
“X is A” ‘X is B”

If the experimental value pnX(c) = pnA(c) we obtained in our test is anywhere to the
left of pA(c) + ε/2 then the hypothesis H we formulate (based on pnA(c)) will be the
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correct one: “X is A”; if the experimental value is to the right of pA(c) + ε/2 we will
formulate the incorrect hypothesis: “X is B”.

Under the assumption that “X is actually A” the probability P(H) that we will
formulate the correct hypothesis “X is A” is therefore:

P
(
pnA(c) < pA(c) +

ε

2

)
= 1−P

(
pA(c) +

ε

2
< pnA(c)

)
.

To estimate P(H) we have just to estimate the probability P(pnA(c) < pA(c) + ε/2),
i.e. that the experimental value pnA(c) will be left of pA(c) + ε/2.

4.3.3 Confidence Estimation

The confidence we can have in the hypothesisH we formulate is true can be determined
by various statistical methods. These methods allow us to estimate the probability that
an experimental average Xn — in our case pnA(c) — is within a certain distance from
the corresponding expectation value E(X) — here pA(c) — i.e. the probability

P (|Xn −E(X)| ≤ ε)

for some ε ≥ 0. These statistical methods are essentially all based on the central limit
theorem, e.g. [3, 16, 32].

The type of tests we consider here to formulate a hypothesis about the identity of the
unknown agent X are described in statistical terms by so called Bernoulli Trials which
are parametric with respect to two probabilities p and q = 1−p (which have nothing to
do with the scheduling probabilities above). The central limit theorem for this type of
tests [16, Thm 9.2] gives us an estimate for the probability that the experimental value
Sn = n ·Xn after n repetitions of the test will be in a certain interval [a, b]:

lim
n→∞

P(a ≤ Sn ≤ b) =
1√
2π

∫ b∗

a∗
exp

(
−x2

2

)
where

a∗ =
a− np
√
npq

and b∗ =
b− np
√
npq

.

Unfortunately, the integral of the so called standard normal density on the right
hand side of the above expression is not easy to obtain. In practical situations one
has to resort to numerical methods or statistical tables, but it allows us — at least in
principle — to say something about P(H).

Identifying Sn with n · pnA we can utilise the above expression to estimate the
probability P(pA(c) + ε/2 ≤ pnA) which determines P(H). In order to do this we
have to take:

a = pA(c) +
ε

2
b = ∞
p = pA(c)

q = 1− pA(c).
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This allows us — in principle — to compute the probability:

lim
n→∞

P
(
pA(c) +

ε

2
≤ pnA(c) ≤ ∞

)
.

Approximating — as it is common in statistics — P(pA(c) + ε/2 ≤ pnA) by
limP(pA(c) + ε/2 ≤ pnA) we get:

P(H) = 1−P
(
pA(c) +

ε

2
≤ pnA(c)

)
≈ 1− lim

n→∞
P
(
pA(c) +

ε

2
≤ pnA(c)

)
= 1−

∫ ∞
a0

exp

(
−x2

2

)
with

a0 =
nε

2

1
√
npq

=
ε
√
n

2
√
pq

=
ε
√
n

2
√
pA(c)(1− pA(c))

.

We see that the only way to increase the probability P(H), i.e. the confidence that
we formulate the right hypothesis about the identity ofX , is by minimising the integral.
In order to do this we have to increase the lower bound a0 of the integral. This can be
achieved — as one would expect — by increasing the number n of experiments.

We can also see that for a smaller ε we have to perform more tests n to reach the
same level of confidence, P(H): The smaller n the harder it is to distinguish A and
B experimentally. Note that for ε = 0, the probability of correctly guessing which of
the agents A and B is in the black box is 1

2 , which is the best blind guess we can make
anyway. In other words: for ε = 0 we cannot distinguish between A and B.

Example 7 Consider the agents in Example 4. The problem is to determine from the
experimentally obtained approximations of the observables On

(
1
2 : X ‖ 1

2 : C
)

for
X = A or X = B the true identity of X . If, for example, X is actually agent A and if
we concentrate on the constraint c t d t e we have

ε =
1

12
and p = pA(c t d t e) =

7

12

The probability P(H) to formulate the correct hypothesis H depends on the lower
bound a0 of the above integral, i.e. the normal distribution N(a0,∞):

P(H) = 1−
∫ ∞
a0(n)

exp

(
−x2

2

)
= 1−N(a0,∞).

The bound a0 in turn depends on the number n of experiments we perform: The value
of a0 for 9 tests is:

a0(9) =

√
9

24

1√
7
12 − ( 7

12 )2
=

1

8

12√
35

=
3√
140
≈ 0.25355
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while for 144 tests we get:

a0(144) =

√
144

24

1√
7
12 − ( 7

12 )2
=

1

2

12√
35

=
6√
35
≈ 1.0142

In other words, if we repeat the execution of 1
2 : X ‖ 1

2 : C exactly 9 times,
the probability of formulating a correct hypothesis H about the identity of X is about
(using a normal distribution table, e.g. [16, p499]):

P(H) = 1−
∫ ∞
0.25

exp

(
−x2

2

)
≈ 0.5987,

but if we perform 144 test our confidence level will rise to

P(H) = 1−
∫ ∞
1.0

exp

(
−x2

2

)
≈ 0.8413.

For 9 tests the hypothesis formulated will be right with an about 60% chance, while for
144 tests it will be correct with about 85%.

5 Analysis: Concrete Semantics
The ε-confinement property of a PCCP program can be checked by means of a seman-
tics-based static analysis of the program. In this section we will consider a concrete
collecting semantics which turns out to be more appropriate for the analysis we present.
This semantics describes in a slightly more abstract way the same observables defined
in Section 2.3. The analysis will allow us to calculate an exact ε for measuring the
confinement of a set of agents. In Section 6 we will present a compositional semantics
for PCCP which will allow us to calculate a correct approximation of the ε in a more
abstract and simplified way.

5.1 A Collecting Semantics
We will base our analysis on a collecting semantics consisting of the sequence of the
“fronts” in the computational tree of a given agent A. Each front represents all the pos-
sible configurations which are reachable in one step from a node in the previous front
of the tree, and can be described as a family of pairs of configurations and associated
probabilities.

The sequence of fronts can be constructed via the transition relation−→ defined by
the rules in Table 3. These rules define an operator G on multi-sets of pairs 〈〈B, c〉 , p〉,
where 〈B, c〉 ∈ Conf is a configuration and p is the probability of reaching that config-
uration. The semantics of an agent A is obtained by iteratively applying the transition
rules starting from an initial configuration 〈A, d〉. This yields the sequence

[[A, d]]coll = {Φi(A, d)}i = {Gi(Φ0(A, d))}i,

with Φ0(A, d) = 〈〈A, d〉 , 1〉 and Φi−1(A, d) −→ Φi(A, d) for all i ≥ 1.
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When the store d is omitted it will be intended to be true . We will also omit the
specification of A when it is clear from the context.

Example 8 The collecting semantics for the two agents A and B in Example 4 is
depicted in Table 4.

The reason why G operates on multi-sets is that due to the probabilistic choice a
configuration can occur more than once in a front with an associated possibly different
probability. This semantics is correct with respect to the notion of observablesO(A, d)
defined in Section 2.3 in the sense stated by the following Propositions.

Proposition 1 Let A be an agent with collecting semantics [[A, d]]coll = {Φi(A, d)}i,
and let π ∈ Comp(A, d) be the computational path for A in store d

π ≡ 〈A, d〉 = 〈A0, c0〉 −→p1 〈A1, c1〉 −→p2 . . . −→pn 〈An, cn〉 = 〈stop, cn〉 .

Then we have that 〈〈A0, c0〉 , 1〉 ∈ Φ0(A, d), and for all 1 ≤ i ≤ n, 〈〈Ai, ci〉 , pi〉 ∈
Φi(A, d). Moreover, 〈〈stop, cn〉 , pn〉 ∈ Φj(A, d) for all j ≥ n.

Proof
By induction on the length n of π.

(n = 1) : In this case we have that A ≡ tell(c) and

π ≡ 〈tell(c), d〉 = 〈A0, c0〉 −→1 〈stop, d t c〉 .

On the other hand, by applying G to Φ0 = 〈〈tell(c), d〉 , 1〉 we get

Φ1 = 〈〈stop, d t c〉 , 1〉 = Φj ,

for all j ≥ 1.

(n > 1) : The proof is by cases. We show the assertion for the choice and parallel con-
structs. The proof is similar in the remaining two cases of hiding and procedure
call. We will use the notation π · π′ to indicate the concatenation of two paths π
and π′.

A ≡ m
s=1 ask(cs)→ ps : As : A path π ∈ Comp(A, d) of length n is of the

form
π ≡ 〈A, d〉 = 〈A0, c0〉 −→p̃k 〈Ak, d〉 · π′,

where k ∈ [1, s], d ` ck and π′ ∈ Comp(Ak, d) is of the form

π′ ≡ 〈Ak, d〉 −→q1

〈
A1
k, d

1
k

〉
−→q2 . . . −→qnk

〈Ankk , dnkk 〉 ,

with nk = n− 1.
By applying G to Φ0 = 〈〈A, d〉 , 1〉 we have that 〈〈Ak, d〉 , 1 · p̃k〉 ∈ Φ1.

By the Induction Hypothesis,
〈〈
Ajk, d

j
k

〉
, qj

〉
∈ Φj+1, for all 1 ≤ j ≤ nk

and 〈〈stop, dnkk 〉 , qk〉 ∈ Φt, for all t > nk.
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A ≡‖ms=1 ps : As : We have that π is of the form

π ≡ 〈A, d〉 = 〈A0, c0〉 −→p·p̃k
〈
‖mk 6=s=1 ps : As ‖ pk : A′k, d

′〉 · π′,
for some k ∈ [1, s], if 〈Ak, d〉 −→p 〈A′k, d′〉 and π′ ∈ Comp(‖mk 6=s=1 ps :
As ‖ pk : A′k, d

′) is a computational path of length n′ = n− 1.
By applying G to Φ0 = 〈〈A, d〉 , 1〉 we have that 〈〈B, d′〉 p · p̃k〉 ∈ Φ1,
where B =‖mk 6=s=1 ps : As ‖ pk : A′k.
Suppose that π′ is of the form

π′ ≡ 〈B, d′〉 −→q1 〈B1, d
′
1〉 −→q2 . . . −→qn′ 〈Bn′ , d

′
n′〉 .

Then by the Induction Hypothesis, we have that
〈〈
Bj , d

′
j

〉
, qj
〉
∈ Φj+1 for

all 1 ≤ j ≤ n′, and 〈〈stop, d′n′〉 , qn′〉 ∈ Φt, for all t > n′.

2

Since we consider only computations of bounded length, we can fix for each agent
A the maximal number of iterations of G:

lA = max{n | π ≡ 〈A0, c0〉 −→p1 〈A1, c1〉 . . . −→pn 〈An, cn〉 ∈ Comp(A, d)}.

Moreover, we can “compactify” the last front by considering one only occurrence
of each configuration with a probability given by the sum of all the probabilities asso-
ciated to its different occurrences. This operation can be defined in general as follows.

Definition 6 Let Φ = {〈〈Aj , cj〉 , pj〉}j be a front and let
{〈
〈Aj , cj〉k , pkj

〉}
k

be all

the occurrences of configuration 〈Aj , cj〉 in Φ. We define the compactification of Φ as
K(Φ) = {〈〈Aj , cj〉 , Pj〉}j , where Pj =

∑
k p

k
j .

Definition 7 Let Φ = {〈〈Aj , cj〉 , pj〉}j be a front. We define the distribution on stores
associated to Φ as

α(Φ) = {〈cj , pj〉 | 〈〈Aj , cj〉 , pj〉 ∈ K(Φ) and Aj = stop}.

Proposition 2 Let A be a PCCP agent with collecting semantics

[[A, d]]coll = {Φi(A, d)}i

and let lA be the maximal length of a computational path for A in store d. Then

O(A, d) ⊆ α(K(ΦlA(A, d))).

Proof
Let 〈c, p〉 ∈ O(A, d). Then there exists π ∈ Comp(A, d) such that c = res([π]) and
p = prob([π]).

By Proposition 1 and the definition of lA, for all π′ ∈ [π], 〈〈stop, c〉 , pπ′〉 ∈ ΦlA ,
where pπ′ is the probability of c in path π′.

Thus, 〈〈stop, c〉 , p〉 ∈ K(ΦlA) and so 〈c, p〉 ∈ α(K(ΦlA(A, d))). 2
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5.2 Security Analysis
Given two agents A and B, scheduling probabilities p and q = 1− p and a spy S, our
aim is to calculate

ε =
∥∥∥O(p : A ‖ q : S)−O(p : B ‖ q : S)

∥∥∥ .
We will show how we can construct the observables O(p : A ‖ q : S) and O(p :

B ‖ q : S) from the collecting semantics of A and B respectively, and for spies S in
S1 and S2. This will yield the information needed to calculate ε.

For the simpler spies in S1, i.e. spies of the form:

S ≡ ask(c)→ 1 : tell(f),

we can actually ignore the intermediate states and concentrate only on the final one,
i.e. the observables. The reason is the monotonicity of PCCP: if the guard of S, i.e. c
is ever entailed by the store in an execution of A then it will be entailed until the final
store is reached. The spy S therefore will be scheduled either with probability q each
time after the step when c is first entailed, or eventually after A has reached the stop
configuration. The fresh constraint f will thus be added to the store depending only on
whether c is entailed by the final store or not.

Lemma 1 Let A be a PCCP agent and let S ∈ S1 be of the form

S ≡ ask(c)→ 1 : tell(f).

Suppose the observables ofA areO(A) = {〈di, pi〉}i. Then the observables of p : A ‖
q : S are given by:

O(p : A ‖ q : S) = {〈di, pi〉 | if di 6` c}
∪ {〈di t f, pi〉 | if di ` c} .

Proof
Given the collecting semantics of A, [[A]]coll = {Φj}j with:

Φj =
{〈〈

Aji , c
j
i

〉
, pji

〉}
i
,

we construct the collecting semantics of p : A ‖ q : S, as a sequence [[p : A ‖ q :
S]]coll = {Φj}j .

As long as no intermediate store cji entails c we have

Φj =
{〈〈

p : Aji ‖ q : S, cji

〉
, pji

〉}
.

Suppose now that there is a front Φk where c is entailed the first time for some cki ,
i.e.

Φk =
{
. . . ,

〈〈
Aki , c

k
i

〉
, pki
〉
, . . .

}
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with cki ` c for some i. Then the next front in the execution of p : A ‖ q : S is given
by:

Φk+1 = {. . . ,〈〈
p : Ak+1

i ‖ q : S, ck+1
i

〉
, pk+1
i · p

〉
,〈〈

p : Aki ‖ q : stop, cki t f
〉
, pki · q

〉
,

. . .}

as we have now the choice of scheduling again A (with probability p) or the spy S
(with probability q). The next front is then given by:

Φk+2 = {. . . ,〈〈
p : Ak+2

i ‖ q : S, ck+2
i

〉
, pk+2
i · p2

〉
,〈〈

p : Ak+1
i ‖ q : stop, ck+1

i t f
〉
, pk+1
i · pq

〉
,〈〈

p : Ak+1
i ‖ q : stop, ck+1

i t f
〉
, pk+1
i · q

〉
,

. . .}
= {. . . ,〈〈

p : Ak+2
i ‖ q : S, ck+2

i

〉
, pk+2
i · p2

〉
,〈〈

p : Ak+1
i ‖ q : stop, ck+1

i t f
〉
, pk+1
i · (q + pq)

〉
,

. . .}

The monotonicity of PCCP guarantees that once c is entailed it will continue to be so,
i.e. cki ` c implies cti ` c, for all t ≥ k.

In general we get in m steps after c was first entailed:

Φk+m = {. . . ,〈〈
p : Ak+mi ‖ q : S, ck+mi

〉
, pk+mi · pm

〉
,〈

p : Ak+m−1i ‖ q : stop, ck+m−1i t f
〉
pk+m−1i · q

m−1∑
l=0

pl,

. . .}

= {. . . ,〈〈
p : Ak+mi ‖ q : S, ck+mi

〉
, pk+mi · pm

〉
,〈〈

p : Ak+m−1i ‖ q : stop, ck+m−1i t f
〉〉
pk+m−1i · (1− pm)

. . .}

as for p = 1− q the following identity holds:

1− pm = q

m−1∑
l=0

pl. (1)
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2

Proposition 3 Let A be a PCCP agent, and let S ∈ S2 be a spy of the form

S ≡ ask(c1)→ q1 : tell(f1) ask(c2)→ q2 : tell(f2),

with q1 + q2 = 1. Suppose the observables of A are O(A) = {〈di, pi〉}i and there is
only one computational path πi ∈ Comp(A) leading to di for all i.

Then the observables of p : A ‖ q : S are given by:

O(p : A ‖ q : S) =

= {〈di, pi〉 | if di 6` c1 and di 6` c2}
∪ {〈di t f1, pi〉 | if di ` c1 and di 6` c2}
∪ {〈di t f2, pi〉 | if di 6` c1 and di ` c2}
∪

{〈
di t f1, r1i

〉
| if di ` c1 and di ` c2

}
∪

{〈
di t f2, r2i

〉
| if di ` c1 and di ` c2

}
,

where

r1i = pi · (((
ni−1∑
l=0

pmi+l)q + pmi+ni)q1 + (1− pmi))

r2i = pi · ((
ni−1∑
l=0

pmi+l)q + pmi+ni)q2,

with mi the number of steps in πi needed to go from the store where c1 is first entailed
to the store where also c2 is entailed, and ni the number of the remaining steps until
termination.

Proof
The first three terms of the expression are quite straight forward:

• If a constraint di in the final observables does neither entail c1 nor c2, then all
along the computational path leading to di this was the case, the execution there-
fore can never schedule the spy and neither f1 nor f2 are added to the store. The
final configuration in this case is thus 〈p : stop ‖ q : S, di〉 which we obtain with
exactly the same probability as for A.

• If only one of the two guards are ever entailed, then the agent S acts just like
a spy of class S1. Thus by Lemma 1 we get 〈p : stop ‖ stop, di t f1〉 and
〈p : stop ‖ stop, di t f2〉 as final configurations together with the inherited prob-
ability pj .

The general case in which both constraints c1 and c2 are entailed needs a more
careful analysis. Let us assume without loss of generality that c1 is told first, after k
steps and that it needs m ≥ 0 steps until also c2 is entailed by the store, and that finally
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it takes n further steps until p : A ‖ q : S terminates. Based on the collecting semantics
of A,

Φj =
{〈〈

Aji , c
j
i

〉
, pji

〉}
i
,

the collecting semantics of p : A ‖ q : S is then of the following form:

j < k: The fronts for A and p : A ‖ q : S are essentially identical:

Φj =
{〈〈

p : Aji ‖ q : S, cji

〉
, pji

〉}
i
.

j = k: The constraint c1 is first entailed, i.e. there exists an intermediate configuration〈
p : Aki ‖ q : S, cki

〉
with non-zero probability pki in Φk such that cki ` c1 (and

not yet cki ` c2):

Φk =
{
. . . ,

〈〈
p : Aki ‖ q : S, cki

〉
, pki
〉
, . . .

}
.

k < j < k +m: Then the front Φk+1 is given by:

Φk+1 = {. . . ,〈〈
p : Ak+1

i ‖ q : S, ck+1
i

〉
, pk+1
i · p

〉
,〈〈

p : Aki ‖ q : stop, cki t f1
〉
, pki · q

〉
,

. . .}.

Only f1 can be added to the store.

j = k +m: We get a similar iteration of Φj as in the case of S1 spies, up to the mo-
ment when also c2 gets entailed. In this case we have:

Φk+m = {. . . ,〈〈
p : Ak+mi ‖ q : S, ck+mi

〉
, pk+mi · pm

〉
,〈〈

p : Ak+m−1i ‖ q : stop, ck+m−1i t f1
〉〉
pk+m−1i · (1− pm),

. . .}.

j = k +m+ 1: We have three possible continuations for the first agent p : Ak+mi ‖
q : S: (1) we can ignore the spy and schedule Ak+mi , or we can schedule the
spy, in which case we have a choice between (2a) executing the first branch
tell(f1) or (2b) executing the second one, tell(f1), as both guards are entailed.
The probabilities that this is happening are p for the case (1), and qq1 and qq2 for
cases (2a) and (2b), respectively. The second agent p : Ak+m−1i ‖ q : stop has
to continue quasi-deterministically with Ak+m−1i .

Φk+m+1 = {. . . ,
〈
〈
p : Ak+m+1

i ‖ q : S, ck+m+1
i

〉
,

pk+m+1
i · pm+1〉,
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〈
〈
p : Ak+mi ‖ q : stop, ck+mi t f1

〉
,

pk+mi · pmqq1〉,
〈
〈
p : Ak+mi ‖ q : stop, ck+mi t f2

〉
,

pk+mi · pmqq2〉,
〈
〈
p : Ak+mi ‖ q : stop, ck+mi t f1

〉
,

pk+mi · (1− pm)〉,
. . .}

= {. . . ,
〈
〈
p : Ak+m+1

i ‖ q : S, ck+m+1
i

〉
,

pk+m+1
i · pm+1〉,

〈
〈
p : Ak+mi ‖ q : stop, ck+mi t f1

〉
,

pk+mi · (pmqq1 + (1− pm))〉,
〈
〈
p : Ak+mi ‖ q : stop, ck+mi t f2

〉
,

pk+mi · pmqq2〉,
. . .}.

j = k +m+ n: After further n steps the agent A terminates.

Φk+m+n =

= {. . . ,
〈
〈
p : stop ‖ q : S, ck+m+n

i

〉
,

pk+m+n
i · pm+n〉,

〈
〈
p : Ak+m+n−1

i ‖ q : stop, ck+m+n−1
i t f1

〉
,

pk+m+n−1
i · ((

n−1∑
l=0

pm+l)qq1 + (1− pm))〉,

〈
〈
p : Ak+m+n−1

i ‖ q : stop, ck+m+m−1
i t f2

〉
,

pk+m+n−1
i · (

n−1∑
l=0

pm+l)qq2〉,

. . .}.

j = k +m+ n+ 1: The perhaps still not scheduled spy S must now finally be exe-
cuted and we get finally:

Φk+m+n+1 =

= {. . . ,
〈
〈
p : stop ‖ q : stop, ck+m+n

i t f1
〉
,

pk+m+n
i · pm+nq1〉,
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〈
〈
p : stop ‖ q : stop, ck+m+n

i t f2
〉
,

pk+m+n
i · pm+nq2〉,

〈
〈
p : stop ‖ q : stop, ck+m+n

i t f1
〉
,

pk+m+n
i · ((

n−1∑
l=0

pm+l)qq1 + (1− pm))〉,

〈
〈
p : stop ‖ q : stop, ck+m+m

i t f2
〉
,

pk+m+n
i · (

n−1∑
l=0

pm+l)qq2〉,

. . .}
= {. . . ,
〈
〈
p : stop ‖ q : stop, ck+m+n

i t f1
〉
,

pk+m+n
i · (((

n−1∑
l=0

pm+l)q + pm+n)q1 + (1− pm))〉,

〈
〈
p : stop ‖ q : stop, ck+m+m

i t f2
〉
,

pk+m+n
i · ((

n−1∑
l=0

pm+l)q + pm+n)q2〉,

. . .}.

2

Corollary 1 With the hypothesis of Proposition 3 the following holds for all i:

pi = r1i + r2i .

Proof
The original probability of di in the observables for A is pk+m+n

i = pi. Moreover,
since q2 = 1− q1 and by Equation 1 we have that:

r1i + r2i = pi · [q1(q

n−1∑
l=0

pm+l + pm+n) +

+1− pm + q2(q

n−1∑
l=0

pm+l + pm+n)]

= pi[1− pm + q

n−1∑
l=0

pm+l + pm+n]

= pi[1− pm + pm − pm+n + pm+n]

= pi.

2
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For the general case, where there is more than one path leading to the same con-
straint di in the observables O(A) the probabilities r1i and r2i are given by

r1i =
∑
k

r1ik and r2i =
∑
k

r2ik

where the sum is over all computational paths πik ∈ Comp(A) leading to ci, and r1ik
and r2ik are the probabilities of ditf1 and ditf2 via path πik. Obviously pi = r1i +r2i
holds in the general case too.

5.3 Limit Analysis
Starting from the formulas

r1i = pi · (q1(q

ni−1∑
l=0

pmi+l + pmi+ni) + (1− pmi)),

and

r2i = pi · q2(q(

ni−1∑
l=0

pmi+l + pmi+ni)

consider the difference

|r1i − r2i | = pi · [q ·
ni∑
l=0

pmi+l · |q1 − q2|+ (1− pmi)].

This difference is maximal when |q1−q2| is maximal, namely when |q1−q2| tends
to 1. Therefore the “best” spy is obtained by letting q1 tend to 0 and q2 tend to 1, or
vice-versa.

In the case q1 goes to 0 and q2 approaches 1 we obtain the following limit formulas
for r1i and r2i :

r1i = pi · (1− pmi),

and

r2i = pi · (q ·
ni∑
l=0

pmi+l + pmi+ni).

By the equation ( 1) (since q = 1− p) we get for r2i the following formula:

r2i = pi · pmi .

For the case where q1 tends to 1 and q2 goes to 0 we get

r1i = 1 and r2i = 0.

As a result a spy S with a limit choice distribution effectively counts only the
number of stepsmi between c1 and c2 along each path πi. The ris are then independent
of the ni steps till the end of the computation.
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5.4 Properties of a Spy S

An agent S is a spy for two agents A and B if and only if the observables O(p : A ‖
q : S) are different from O(p : B ‖ q : S). The discussion in Section 5.2 provides us
with a useful criterion to decide whether an agent in S2 is a spy for A and B.

Proposition 4 Given an agent S ∈ S2 of the form

S ≡ ask(c1)→ q1 : tell(f1) ask(c2)→ q2 : tell(f2),

and two agents A and B with identical probabilistic input/output observablesO(A) =
O(B), then S is a spy for A and B if there exists a constraint cj such that

1. 〈cj , pj〉 ∈ O(A) = O(B),

2. cj ` c1 and cj ` c2,

3. r1j (A) 6= r1j (B).

Note that the last condition is equivalent to r2j (A) 6= r2j (B) as we always have
r1j (A) + r2j (A) = pj = r1j (B) + r2j (B). For the same reason we also have: |r1j (A)−
r1j (B)| = |r2j (A)− r2j (B)|.

The values of r1j and r2j depend on what scheduling between A or B and S we
have chosen, i.e. on the concrete values of p and q. But as we can see from the closed
expressions for r1j and r2j , if r1j (A) 6= r1j (B) for one scheduling then this is true also
for any other (non-trivial) scheduling. The following holds therefore:

Corollary 2 An agent S is a spy for A and B independently of the scheduling proba-
bilities, as long as 0 < p < 1.

5.5 Effectiveness of a Spy S

The number ε in Definition 5 measures how confined A and B are, or equivalently how
effective the class S of spies is. The effectiveness of a single spy S, i.e. its ability to
distinguish between the two agents A and B, is ε such that A and B are ε-confined
with respect to {S}. The analysis of A and B gives us a means to calculate how large
ε is.

Proposition 5 Let S be a spy in S2 of the form

S ≡ ask(c1)→ q1 : tell(f1) ask(c2)→ q2 : tell(f2),

and let A and B be two agents with identical probabilistic input/output observables
O(A) = O(B) = {〈cj , pj〉}j . The effectiveness of S is

ε = max
cj
{|r1j (A)− r1j (B)|} = max

cj
{|r2j (A)− r2j (B)|}.

Clearly, the effectiveness of a spy is a function of the scheduling distribution. In
other words, it is determined not only by the intrinsic power of the spy but also by the
internal design of the host system.
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Example 9 We compute the effectiveness of the spy C for the two agents A and B in
Example 4. To this purpose, we first compute rcctd and rdctd using Proposition 3. The
notation rcctd (rdctd) is the same as r1j (r2j ), where we use the constraint in place of its
index, the guard first entailed instead of 1, and the guard last entailed instead of 2.

A: For the agent A we have two computational paths from store true to c t d each
with probability pctd,i = 1

2 .

1. In the path true → c → c t d, c is told first, i.e. c1 = c, c2 = d. Since
m1 = 1 and n1 = 0, we get:

rcctd,1 =
1

2
((0 + p1+0)q1 + (1− p1))

=
1

2
(1− p+ pq1)

rdctd,1 =
1

2
(0 + p1+0)q2 =

1

2
pq2.

We know that for the spy C, q1 = 2
3 and q2 = 1

3 . Assuming the uniform
scheduling p = q = 1

2 we finally get:

rcctd,1 =
1

2
(1− 1

2
+

1

2

2

3
) =

5

12

and
rdctd,1 =

1

2

1

2

1

3
=

1

12
.

2. In path true → d → c t d, as d is told before c we have that c1 = d and
c2 = c. Since m1 = 1 and n1 = 0, we get:

rdctd,2 =
1

2
((0 + p1+0)q2 + (1− p1))

=
1

2
(1− p+ pq2)

rcctd,2 =
1

2
(0 + p1+0)q1 =

1

2
pq1,

and finally:

rdctd,2 =
1

2
(1− 1

2
+

1

2

1

3
) =

4

12

and
rcctd,2 =

1

2

1

2

2

3
=

2

12
.

Summing up over the two paths, we get the probabilities for ctdte and ctdtf :

rcctd =
5

12
+

2

12
=

7

12
and rdctd =

1

12
+

4

12
=

5

12
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B: Here we have only one path: true → c t d where c and d appear simultaneously
in the final store, i.e. m = n = 0 and pctd = 1. Therefore,

rcctd,1 = ((0 + p0+0)q1 + (1− p0))

= ((0 + 1)q1 + (1− 1)) = q1

rdctd,1 = (0 + p0+0)q2 = (0 + 1)q2 = q2

For q1 and q2 as the choice distribution in C and the uniform scheduling we
obtain the probabilities

rcctd =
2

3
and rdctd =

1

3
.

We can now compute the effectiveness ε of the spy C with respect to the scheduling
p = q = 1

2 , as:

ε = |rcctd(A)− rcctd(B)| = |rdctd(A)− rdctd(B)|

= | 8

12
− 7

12
| = | 4

12
− 5

12
| = 1

12
.

This also shows that A and B are 1
12 -confined with respect to S = {C} and p = 1

2 .

5.6 The Most Effective Spy
The limit analysis in Section 5.3 shows that the most effective spy for a fixed pair of
guards (c1, c2) is obtained by considering a choice distribution where q1 is very close to
0 and q2 is very close to 1 or vice versa. In other words the “best” spy is the one where
the probabilities are at the extreme opposite. Note that the number ε we calculate for
the best spy may vary depending on the scheduling probabilities. However, although
the actual measure of the effectiveness might be different, it will always be maximal
compared to the other spies in the same class.

Example 10 Using the limit analysis we now show that C is not the most effective
spy for the agents A and B in Example 4. Clearly, the most effective spy must have
the same guards c and d as C, since no other intermediate constraints exist for A
(and B). In order to determine the best spy, we therefore only need to fix q1 = 0
and q2 = 1. Assuming again the uniform scheduling p = q = 1

2 , we now calculate
the corresponding ε. To this purpose, we consider the expressions for r1i and r2i in
Section 5.3.

A: For agent A and its two computational paths we get

1. For the first path with c1 = c, c2 = d and m1 = 1 we get:

rcctd,1 =
1

2
(1− p) =

1

2
(1− 1

2
) =

1

4

rdctd,1 =
1

2
p =

1

4
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2. For the second path with c1 = d, c2 = c and m1 = 1 we get:

rdctd,2 =
1

2
1 =

1

2

rcctd,2 =
1

2
0 = 0.

Summing up we get the extreme probabilities for c t d t e and c t d t f :

rcctd =
1

4
+ 0 =

1

4
and rdctd =

1

4
+

1

2
=

3

4

B: We have only one path with c1 = c, c2 = d and m1 = 0. Thus:

rcctd,1 = 1(1− 1) = 0

rdctd,1 = 1 · 1 = 1

The difference |rcctd(A)− rcctd(B)| or equivalently |rdctd(A)− rdctd(B)| gives us the
largest ε for A and B and any spy in S2:

ε = |rcctd(A)− rcctd(B)|

= |1
4
− 0|

=
1

4
.

We can therefore conclude that A and B are 1
4 -confined with respect to all agents in

S2 (thus C was not the most effective spy).

6 Analysis: Abstract Semantics
The use of an exact (collecting) semantics makes the analysis presented in the previous
sections precise: no approximation is introduced in the calculation of ε.

We introduce here a semantics which is more abstract than the collecting semantics
but still allows for a useful though approximated analysis. We associate to each agent
a set of tuples. Each tuple 〈c, d, t, p〉 consists of two constraints c and d, a time stamp
t and a probability p. It represents a transition from a store c′ to store d, which takes
place at step t (at the earliest in a particular path) with probability p, provided that the
current store c′ entails c. The time stamp t is interpreted as a step counter and will be
used to extract information about the number m of the previous section.

The choice agent is modelled by the union of all tuples in the semantics of sub-
agents Ai where the first constraint entails the guard and the time is increased by 1.⊕

i

(pi, ci, [[Ai]]) =

=
⋃
i

{〈ci t c, ci t d, t+ 1, pi · p〉 | 〈c, d, t, p〉 ∈ [[Ai]]} .
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The parallel agent ‖ni=1 Ai is interpreted by the set of all possible interleavings of
the constituent agents. Given two sets of tuples X and Y , the operation � is defined as
follows:

X � Y =
⋃
τ∈min(X){{τ} ∪ P | P ∈ ((X\min(X)) ↑ τ)� Y ′τ}∪⋃
τ∈min(Y ){{τ} ∪ P | P ∈ X ′τ � ((Y \min(Y )) ↑ τ}

where
X ′〈 ,e, , 〉 = {〈c t e, d t e, t+ 1, p〉 | 〈c, d, t, p〉 ∈ X}
Y ′〈 ,e, , 〉 = {〈c t e, d t e, t+ 1, p〉 | 〈c, d, t, p〉 ∈ Y }
X ↑ 〈c, d, t, p〉 = {〈c′, d′, t′, p′〉 | 〈c′, d′, t′, p′〉 ∈ X ∧ d ` c′ ∧ t′ > t}

The min function returns a set of tuples that have the smallest time stamp (this might
not be a singleton because of the choice operator). The generalisation of � to more
than two agents is straightforward.

We use the operator ∇δ,n to approximate the semantics of a procedure call by
“unwinding” it until the probability of a further continuation gets smaller than δ or
until we reach a maximal recursion depth n. The unwinding is defined in Table 6: We
start by a trivial approximation ∇δ,n0 and continue by replacing the procedure call p in
the term A by the previous approximation — denoted by [[A]][p 7→ ∇δ,ni ([[A]])] — until
the difference between the current and previous approximation becomes small enough
(less or equal to δ) or we reach the maximal recursion depth n. In this case we take
an approximation ∇δ,n∞ in place of further unwindings. The difference between two
approximations is the difference of the two sets of tuples seen as vector distributions
{〈〈c, d, t〉 , p〉}. The final approximation of a procedure call is then given as:

∇δ,n([[A]]) = lim
i→∞

∇δ,ni ([[A]])

which is effectively always reached after a finite number of unwindings. This can
lead to a substantial over-approximation of t for recursive agents. The operator ∇δ,n
is the quantitative analogue of a widening operator in the standard approaches to ab-
stract interpretation [5]; whilst the standard definition of a widening involves over-
approximation (of an upper bound), in the quantitative setting we settle for “close-
ness”. We use C\∇δ,nn ([[A]]) to denote the set of constraint stores that do not appear in
∇δ,nn ([[A]]).

6.1 Abstract Security Analysis
Given the set of quadruples associated with an agent, we can extract the set of abstract
paths of execution starting from some given constraint store e:

Pathse([[A]]) = {q0 . . . qn|
∀1 ≤ i ≤ n.qi ∈ {〈c t e, d t e, t, p〉 | 〈c, d, t, p〉 ∈ [[A]]} ∧
q0 ≡ 〈e, e, 0, 1〉 ∧ dqi ` cqi+1

∧
(tqi+1

> tqi ∨ tqi+1
= tqi =∞) ∧

∀j ≤ i.qj 6=
〈
cqi+1

, dqi+1
, tqi+1

, pqi+1

〉
}
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where qi ≡ 〈cqi , dqi , tqi , pqi〉.
Since the analysis of choice does not normalise the associated probabilities, the

probabilities in Pathse([[A]]) may be smaller than in the concrete semantics.
Given a path σ ∈ Pathse([[A]]) with c first entailed in qσi and c′ first entailed in qσj ,

the difference tqσj − tqσi defines the (abstract) number of steps mσ between the store
entailing c and the store c′ in path σ, while pσ , which is the product of the probabilities,
is the abstract probability associated to σ. If either of the time stamps is∞, then the
difference between times (i.e. the abstract number of steps) is taken to be∞. For each
pair of constraints c1 and c2, the abstract analysis of agent A gives us the set:

AeA(c1, c2) =
⋃

σ∈Pathse([[A]])

{〈pσ,mσ〉} .

6.2 Correctness of the Analysis
In order to state the correctness of the analysis, we need to define concrete computa-
tion paths. We use the following definition (note that we are only considering finite
computations):

Pathse(A) = {〈〈A, e〉 , 1〉Q|
Q ∈

⋃
〈〈A′,e′〉,p〉∈G(〈〈A,e〉,1〉) p.Pathse′(A

′)∧
A 6≡ stop}
∪
{〈〈stop, e〉 , 1〉 | A ≡ stop}

By analogy with the previous section, for each pair of constraints c1 and c2, we
define:

AeA(c1, c2) =
⋃

π∈Pathse(A)

{〈pπ,mπ〉} .

Given these definitions we can state the correctness of the analysis.

Proposition 6

∀c1, c2, e.(∀ 〈p,m〉 ∈ AeA(c1, c2).

(∃ 〈p,m〉 ∈ AeA(c1, c2).p ≤ p ∧ m ≥ m))

Proof
Proof is by induction over the length of the longest paths in Pathse(A). We illustrate
just three cases:

A ≡ tell(c) : The only concrete path is

〈〈tell(c), e〉 , 1〉 〈〈stop, c t e〉 , 1〉

and there is a corresponding abstract path:

〈e, e, 0, 1〉 〈e, c t e, 1, 1〉

from which the result follows.
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A ≡ q1 : A1 ‖ q2 : A2 : First we note that

Pathse(A) = {〈〈A, e〉 , 1〉Q |
Q ∈ p1q̃1Pathse1(q1 : A′1 ‖ q2 : A2) ∪
p2q̃2Pathse2(q1 : A1 ‖ q2 : A′2)}

where
〈A1, e〉 →p1 〈A′1, e1〉 and 〈A2, e〉 →p2 〈A′2, e2〉

It follows that

AeA(c1, c2) =
p1q̃1Ae1A′1‖A2

(c1, c2) ∪ p2q̃2Ae2A1‖A′2
(c1, c2)

if e 6` c1
{〈p,m+ 1〉 | 〈p,m〉 ∈ p1q̃1Ae1A′1‖A2

(c1, c2) ∪ p2q̃2Ae2A1‖A′2
(c1, c2)}

otherwise

Now if e 6` c1 the result follows from the Induction Hypothesis (twice) and
the fact that the abstract semantics does not normalise the probabilities – unnor-
malised probabilities are always smaller than the normalised versions.

Now suppose that e ` c1. Note that

q1[[A1]]� q2[[A2]] =⋃
τ∈min([[A1]])

{{q1τ} ∪ P | P ∈ (([[A1]]\min([[A1]])) ↑ τ)� [[A2]]′τ}∪⋃
τ∈min([[A2]])

{{q2τ} ∪ P | P ∈ [[A1]]′τ � (([[A2]]\min([[A2]])) ↑ τ}

and thus

Pathse([[A]]) =

{〈e, e, 0, 1〉 〈e, e1, 1, p1q1〉P1 | P1 ∈ Pathse1([[q1 : A′1 ‖ q2 : A2]])′}∪
{〈e, e, 0, 1〉 〈e, e2, 1, p2q2〉P2 | P2 ∈ Pathse2([[q1 : A1 ‖ q2 : A′2]])′}

and the result follows.

A ≡ p(x) : This result follows from a similar analysis to the previous case. The widen-
ing operator,∇ introduces some additional subtlety. If both c1 and c2 are entailed
within the first n un-foldings of the recursion, the estimate of m will be finite
and an over-approximation of m (which follows from the Induction Hypothesis).
Otherwise, m will be ∞ and p will be zero. These values trivially satisfy the
proposition.

2

7 Conclusions and Related Work
We introduced a quantitative measure describing the vulnerability of a set of agents
against some kind of attacks aimed at revealing their identity. Based on this measure we
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then defined the notion of ε-confinement. This notion differs from strict confinement
— which aims in determining if agents are absolutely invulnerable — by allowing for
some exactly quantified weaknesses. The confinement measure can be interpreted in
statistical terms as the probability of guessing the right hypothesis about the identity
of the host agent after a given number of tests. For a smaller ε a larger number of
experiments must be performed to reach the same level of confidence.

In a second step we identified for each agent and an admissible spy two numbers,
m and n, which forecast the observables of the agent in the presence of the spy. The
collection of all m’s and n’s characterises an agent with respect to attacks by any
admissible spy. We showed that for the most effective attackers the collection of m’s
alone is sufficient to determine the corresponding observables. The information on
the m’s is therefore all we need to know of a set of agents in order to compute their
ε-confinement.

Finally, we observed that if we are able to determine some range for the m’s —
instead of their exact values — we can still compute the range of possible observables
and compare them to get a correct approximation of the ε. Following this argument we
formulated an abstract semantics which produces estimates — i.e. bounds — of the
m’s.

It is important to note that this abstract analysis only makes sense for the approx-
imate confinement notion. If we had to consider strict confinement — i.e. ε = 0 —
any non-exact estimation of the m’s would fail to give a meaningful result: only if we
know the m’s exactly can we tell if ε = 0 or ε 6= 0.

In our recent work we have extended the approach presented in this paper to gen-
eral probabilistic process algebras. In particular, we have concentrated on a simple
probabilistic process calculus, namely PCCS [19], based on Milner’s SCCS [25]. Like
PCCP, this calculus is based on a generative model [36]. Such a model, where nonde-
terminism is completely replaced by probabilistic choices, is the appropriate base for
investigating our notion of approximation which requires a purely statistical model.

The notion of ε-confinement we introduced requires that the behaviour of an agent
is described by some object — i.e. observables — and that we have a way to measure
the similarity of such objects. A similarity relation provides information about such a
quantity, whereas equivalence relations such as observational equivalence or bisimilar-
ity can only establish whether two objects can be identified or not. For example, in [22]
the security of cryptographic protocols is specified via an observational equivalence re-
lation which identifies protocols which differ asymptotically for a polynomial factor.
Such a quantity is nevertheless neither used to quantify the similarity of the protocols
nor to calculate a corresponding approximation level of the protocols security property.
Analogously, the bisimulation through probabilistic testing of Larsen and Skou [21] al-
lows to state the indistinguishability of two processes with respect to so-called testable
properties. These are properties that can be tested up to a given level δ of significance
which gives an upper bound of making the wrong decision. Again such a quantity is
not intended to provide a quantitative measure of the behavioural difference between
two processes.

The quantity measuring the similarity of two objects could be formalised mathe-
matically by a norm, a metric, or some other appropriate notion of distance, depending
on the domain of objects used to describe the behaviour of programs. In this paper we
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concentrated on the probabilistic input/output observables of PCCP programs which
can be described by probability distributions on the underlying space of constraints,
and we used a vector norm to measure their similarity. In [35] van Breugel and Wor-
rell consider instead derivation trees together with a pseudo-metric to achieve a similar
weakening of the concept of behavioural equivalence of concurrent processes. There
is also a considerable body of work that concerns quantification of process behaviour.
The most closely related is the work of Desharnais et al [18]. They study Labelled
Markov Processes (LMP) from a domain-theoretic point of view. They establish that
quantitative observations of a continuous-state LMP can be approximated by observa-
tions on finite-state Markov chains. They specify the approximation by two parameters:
n – the number of successive transitions possible from the start state – and ε – a ratio-
nal number that measures the accuracy with which the transition probabilities in the
approximation reflect the transition probabilities of the original process. This measure
is closely related to our ε but is used in a rather different way; there is no discussion
about applications to security in the cited paper. We should also mention the work of
Gavin Lowe [23] and Alessandro Aldini [1]. The former takes a rather different ap-
proach to quantifying information flow; Lowe gives a formal definition of the capacity
of covert channels by measuring the number of different High behaviours that can be
observed by a Low observer. The work is based on CSP and testing equivalence. Aldini
extends Focardi’s and Gorrieri’s seminal work on the classification of security proper-
ties [12] with probabilities. He proposes probabilistic versions of bisimulation-based
non-interference properties identified by Focardi and Gorrieri. The work does not in-
corporate any notion of approximation but this might be an interesting future develop-
ment. Finally we mention the work of Leo Marcus [24], which takes a model-theoretic
view of dependence and independence relations in computer security. This work is ex-
pressed in abstract terms for some given computational theory. Our approach is rather
more concrete, the static analysis takes particular note of the algorithmic structure of
the computation, and it remains a challenge for us to understand the precise relationship
with Marcus’ work.

The type of attacks we considered in this paper are internal attacks where the at-
tacker is in some sense part of the observed system: in particular it is scheduled like any
other agent. In another context one might be interested in external attacks, where the
attacker is only allowed to observe the system from the outside and is thus scheduled in
a different way, or one might impose other restrictions on the way a spy may observe
the agents in question. It is obvious that for different types of attacks we need different
types of quantitative information for our analysis. For external attacks, for example, a
useful information is the average store of an agent in some specified number of steps
(the observation time) [8].
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A ::= tell(c) adding a constraint
| n

i=1 ask(ci)→ pi : Ai probabilistic choice
| ‖ni=1 qi : Ai prioritised parallelism
| ∃xA hiding, local variables
| p(x) procedure call, recursion

Table 1: The Syntax of PCCP Agents

R1 〈tell(c), d〉 −→1 〈stop, c t d〉

R2
〈 n
i=1 ask(ci)→ pi : Ai, d

〉
−→p̃j 〈Aj , d〉 j ∈ [1, n] and d ` cj

R3
〈Aj , c〉 −→p

〈
A′j , c

′〉
〈‖ni=1 pi : Ai, c〉 −→p·p̃j

〈
‖nj 6=i=1 pi : Ai ‖ pj : A′j , c

′〉 j ∈ [1, n]

R4 〈A, d t ∃xc〉 −→p 〈A′, d′〉〈
∃dxA, c

〉
−→p

〈
∃d
′

x A
′, c t ∃xd′

〉
R5 〈p(y), c〉 −→1

〈
∆x
yA, c

〉
p(x) : −A ∈ P

Table 2: The Transition System for PCCP
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R0 {. . . , 〈〈stop, d〉 , p〉 , . . .} −→ {. . . , 〈〈stop, d〉 , p〉 , . . .}

R1 {. . . , 〈〈tell(c), d〉 , p〉 , . . .} −→ {. . . , 〈〈stop, c t d〉 , p〉 , . . .}

R2
{
. . . ,

〈〈 n
i=1 ask(ci)→ pi : Ai, d

〉
, q
〉
, . . .

}
−→

−→ {. . . , 〈〈Aj , d〉 , q · p̃j〉 , . . .}
for j ∈ [1, n] and d ` cj

R3 {. . . , 〈〈‖ni=1 pi : Ai, d〉 , q〉 , . . .} −→

−→
{
. . . ,

〈〈
‖ni 6=j pi : Ai ‖ pj : A′j , d

′
〉
, q · p̃j

〉
, . . .

}
for j ∈ [1, n] and 〈Aj , d〉 −→p

〈
A′j , d

′〉
R4 {. . . , 〈〈∃xA, d〉 , q〉 , . . .} −→ {. . . , 〈〈∃xA′, d t ∃xd′〉 , q · p〉 , . . .}

for 〈A,∃xd〉 −→p 〈A′, d′〉

R5 {. . . , 〈〈p(y), d〉 , q〉 , . . .} −→
{
. . . ,

〈〈
∆x
yA, d

〉
, q
〉
, . . .

}
for p(x) : −A ∈ P

Table 3: A Collecting Semantics for PCCP

[[A]]coll

Φ0 = {〈〈A, true〉 , 1〉}
Φ1 =

{〈〈
1
2 : stop ‖ 1

2 : tell(d), c
〉
, 12
〉 〈〈

1
2 : tell(d) ‖ 1

2 : stop, d
〉
, 12
〉}

Φ2 = {〈〈stop, c t d〉 , 1〉}

[[B]]coll

Φ0 = {〈〈B, true〉 , 1〉}
Φ1 = {〈〈stop, c t d〉 , 1〉}

Table 4: The Collecting Semantics for A and B
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[[tell(c)]] = {〈true, c, 1, 1〉}
[[
n
i=1 ask(ci)→ pi : Ai]] =

⊕
i(pi, ci, [[Ai]])

[[‖ni=i qi : Ai]] =
⊙

i qi[[Ai]]

[[∃xA]] = [[A]]

[[p(x)]] = ∇δ,n([[A]]) for p(x) : −A ∈ P

Table 5: The Analysis for PCCP Agents

∇δ,n0 ([[A]]) = {〈true, true, 1, 1〉}

∇δ,ni+1([[A]]) =



[[A]][p 7→ ∇δ,ni ([[A]])]

if ‖[[A]][p 7→ ∇δ,ni ([[A]])]−∇δ,ni ([[A]])‖ > δ and i ≤ n,
∇δ,ni ([[A]])

if ‖[[A]][p 7→ ∇δ,ni ([[A]])]−∇δ,ni ([[A]])‖ ≤ δ and i ≤ n,
∇δ,n∞ ([[A]]))

otherwise

∇δ,n∞ ([[A]]) = ∇δ,nn ([[A]]) ∪
⋃
c∈C\∇δ,nn ([[A]]){〈c, c,∞, 0〉}

Table 6: Unwinding a Procedure Call
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〈hOn, true〉

〈Rand, true〉

〈stop,on〉 〈stop,off〉
?

1
2

@
@
@@R

1
2

?

1
2

�
�
��	

1
2

〈hOff, true〉

〈Rand, true〉

〈stop,off〉 〈stop,on〉
?

1
2

@
@
@@R

1
2

?

1
2

�
�

��	

1
2

Figure 1: Transitions for hOn and hOff

〈
1
2 : tell(c) ‖ 1

2 : tell(d), true
〉

〈tell(d), c〉 〈tell(c), d〉

〈stop, c t d〉

�
�

��	

1
2

@
@
@@R

1
2

@
@
@@R

1

�
�
��	

1

〈tell(c t d), true〉

〈stop, c t d〉
?

1

Figure 2: Independent Executions of A and B
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〈
1
2 : A ‖ 1

2 : C, true
〉

〈
1
2 : tell(d) ‖ 1

2 : C, c
〉 〈

1
2 : tell(c) ‖ 1

2 : C, d
〉

〈tell(d), c t e〉 〈tell(c), d t f〉〈C, c t d〉

〈stop, c t d t e〉 〈stop, c t d t f〉
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Figure 3: Executions of A in Context C

〈
1
2 : B ‖ 1

2 : C, true
〉

〈C, c t d〉

〈stop, c t d t e〉 〈stop, c t d t f〉
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�

��	

2
3

@
@
@@R

1
3

Figure 4: Executions of B in Context C
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〈p : A ‖ q : D, true〉

〈p : tell(d) ‖ q : D, c〉 〈p : tell(c) ‖ q : D, d〉

〈tell(c), d t h〉〈D, c t d〉

〈stop, c t d t h〉
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1
2
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@
@@R
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��	

p @
@
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q

�
�
��	

1

@
@
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1

〈p : B ‖ q : D, true〉

〈D, c t d〉

〈stop, c t d t h〉

?

1

?

1

Figure 5: Executions in Context D when d entails g

〈p : A ‖ q : D, true〉

〈p : tell(d) ‖ q : D, c〉 〈p : tell(c) ‖ q : D, d〉

〈tell(c), d t h〉〈tell(d), c t h〉 〈D, c t d〉

〈stop, c t d t h〉
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〈p : B ‖ q : D, true〉

〈D, c t d〉

〈stop, c t d t h〉

?

1

?

1

Figure 6: Executions in Context D when both c and d entail g
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