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Abstract

Within the context of a quantitative generalisation of the well established framework of Abstract Interpre-
tation – i.e. Probabilistic Abstract Interpretation – we investigate a quantitative notion of precision which
allows us to compare analyses on the basis of their expected exactness for a given program. We illustrate
this approach by considering various types of numerical abstractions of the values of variables for indepen-
dent analysis as well as weakly and fully relational analysis. We utilise for this a linear operator semantics
of a simple imperative programming language. In this setting, fully relational dependencies are realised via
the tensor product. Independent analyses and weakly relational analyses are realised as abstractions of the
fully relational analysis.

Keywords: Probabilistic Semantics, Linear Operators, Probabilistic Abstract Interpretation, Relational
Analysis

1 Introduction

Static program analysis aims in providing safe approximations of various program
properties. In Abstract Interpretation these properties form a lattice of domains
that model possible (abstract) values. An analysis based on a certain abstract do-
main can be rather imprecise. One of the reasons for this imprecision is the possible
obfuscation of the relationship between variables. Additionally, the representation
of a set of (concrete) values by (abstract) elements makes it impossible to discover,
for example, “forbidden sections” within an interval. In this paper we investigate
a framework for measuring the imprecision of a domain (or analysis) and we con-
centrate in particular on the issue of how to analyse relational dependency in this
quantitative setting. We illustrate our approach by considering (weakly) relational
analyses which preserve partially the relation between variables.

Probabilistic Abstract Interpretation (PAI) [9] – a quantitative generalisation of
classical Abstract Interpretation [5] – provides the context in which we can introduce
a quantitative notion of precision and use it to compare any two analyses. We utilise
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a Linear Operator Semantics (LOS) of a simple imperative programming language
where relational dependencies are realised via tensor products.

In order to compare the results of various analyses we introduce a new mea-
sure for the precision of a given analysis. This is based on a quantitative version
of the well-known lattice theoretic comparison of Abstract Interpretations cf [18].
The identification of each probabilistic abstraction with a corresponding orthogonal
projection operator allows us to exploit the Birkhoff-von Neumann lattice structure
on these operators [2] and its ordering to compare PAI’s. The fact that PAI’s are
represented by linear operators also allows us to compare the difference between
any two of them in metric terms, even when their classical counterparts are not
comparable (i.e. one is not a refinement of the other).

2 Language and Semantics

We consider the probabilistic language pWhile presented in [7]. The usual deter-
ministic While language is a proper sub-language of pWhile without the prob-
abilistic choice statement. Even when the intention is to analyse only deter-
ministic, i.e. While, programs, it is necessary to consider probabilities for the
“abstracted” versions of such programs. One can easily see intuitively that a
statement like: if even(x) then S1 else S2 fi corresponds to an abstract version
where S1 and S2 are executed with a half probability each, i.e. to the statement
choose 0.5 : S1 or 0.5 : S2 (provided we assume that the value of x is uniformly
distributed). The situation in classical analysis is similar: deterministic programs
are there usually “abstracted” to non-deterministic ones (operating with sets of
possible results).

2.1 Syntax.

A program P in pWhile is made up from a possibly empty list of variable declara-
tions D followed by a statement S. Formally, P ::=D; S | S with D ::= d; D | d.
A declaration d fixes the types of the program’s variables, e.g. int or bool. The
syntax of statements S is as follows:

S ::= skip | stop | x← e | S1; S2 | choose p1 : S1 or p2 : S2

| if b then S1 else S2 fi | while b do S od

In the choose statement we allow only for constant probabilities pi and assume
w.l.o.g. that they are normalised, i.e. add up to 1. Arithmetic expressions are of
the usual form

a ::= n | x | a1 � a2

with n ∈ Z, x a program variable and ‘�’ representing one of the usual arithmetic
operations ‘+’, ‘−’, or ‘×’. Boolean expressions are also defined as one would expect
by

b ::= true | false | x | ¬b | b1 ∨ b2 | b1 ∧ b2 | a1 <> a2,

where x is a Boolean variable and ‘<>’ denotes one of the standard comparison
operators for arithmetic expressions, i.e. <,≤,=, 6=,≥, >.
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2.2 Linear Operator Semantics.

The Structural Operational Semantics (SOS) of pWhile can, as usual, be given
via a transition relation, in this case a probabilistic one where each transition has
a probability associated with it. The configurations are – as in the deterministic
case – pairs 〈S, σ〉 with S a statement and σ a state, i.e. a map which associates
to each variable x a (unique) value in the corresponding sets Z and B of integers
and Booleans. We denote by Var the set of all variables, by State = Var→ Z∪B
the set of states, and by Conf the set of all configurations. The transition relation,
−→p⊆ Conf× [0, 1]×Conf, for pWhile is defined in [8].

While the operational semantics of programs is usually defined in terms of transi-
tion relations many other areas specify the “dynamics” of a system in terms of other
mathematical objects. In the theory of stochastic processes one usually considers
matrices, or linear operators, to present a particular system. For Discrete Time
Markov Chains (DTMC), cf. e.g. [11], it is, for example, sufficient to specify the
transition probabilities between two distinct “states” s1 and s2 (these correspond
in our case to configurations and not to states in our sense). All these probabilities
pij from si to sj can be written down as the (generator) matrix P = (pij)ij of the
DTMC we want to describe. This matrix P is always a stochastic matrix, i.e. where
all row entries sum up to one.

The SOS transition relation for pWhile – as well as its restriction to the reach-
able configurations of a given program P (in which case we obtain a representation
of the SOS semantics of a particular program) – can be encoded too as a matrix
or linear operator (cf. [6]), i.e. the matrix T (or T(P )) indexed by configurations
ci = 〈Si, σi〉, cj = 〈Sj , σj〉 ∈ Conf – assuming some enumeration of all (reachable)
configurations – by (T)ci,cj = p if 〈Si, σi〉 −→p 〈Sj , σj〉 and 0 otherwise.

For programs which visit only finitely many configurations, e.g. programs which
utilise only a finite subset Z of Z, this will result in a finite-dimensional matrix. In
general, for infinite configuration sets, we obtain this way linear operators on the
Banach space `1(Conf). We refer to the matrix representation of the semantics of
a program as the program Linear Operator Semantics (LOS). It contains exactly
the same information as the SOS semantics.

Note that for the rules for pWhile in [8] the operator T obtained this way
will always be row-normalised, i.e. stochastic, as the transition probabilities for
all configurations add up to one: For the deterministic rules there is simply only
one possible transition with probability 1 and for the choose statement we have
assumed that p1 and p2 are normalised, i.e. add up to one (if this is not the case,
we could normalise them before execution as long as they are constants).

If we start in a configuration c = 〈S, σ〉 we can represent this initial situation by
a (row) vector ~c = (0, . . . , 0, 1, 0 . . .) with only one non-zero entry for the coordinate
corresponding to c. If we compute the product ~cT we get a vector where each non-
zero entry (~cT)i corresponds to a configuration ci reachable from c; in fact, (~cT)i
specify the probabilities pi of making a transition c −→pi ci. One can iterate this
and obtain the probabilities of reaching cj in n steps from c as (~cTn)j .

The current computational state ~σ, i.e. the possible values of all variables, to-
gether with the remaining program S after n steps is given by one of several possible
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configurations; each of them is reached with a certain probability (depending on the
initial configuration c and the semantics of the program P we consider). We can
represent this knowledge simply by the vector ~cTn(P ). Each of these vectors has
entries which sum up to one (as T(P ) is stochastic). In other words we obtain after
a number of iterations a distribution on Conf = Stmt×State (where Stmt is the
set of all statements in pWhile).

It is well known from the theory of probability, e.g. [11], that distributions
(and measures) on X × Y are represented by elements in the tensor product of
distributions over X and over Y . As distributions (or measures) on X are sub-
sets of the vector space V(X) = {〈xs, s〉s∈X | xs ∈ R} = {(xs)s∈X}, we have:
Dist(Conf) ⊆ V(Conf) = V(Stmt × State) = V(Stmt) ⊗ V(State).We also ob-
serve that a function, i.e. a state σ in Var→ Value, can be seen as an element in
Value|Var| = Value × . . . ×Value (for every variable we just specify its value in
Value = Z∪B). Thus, distributions over State can be represented too by a tensor
product. Thus T is a (stochastic) linear operator on

V(Conf) = V(Stmt)⊗ V(Value|Var|) = V(Stmt)⊗ V(Value)⊗|Var|.

It is therefore always possible to decompose T into a linear combination of
factors T =

∑
k Tk where each factor Tk is a tensor product expressing the transfer

of control between two statements and of the operations on single variables, i.e.

Tk = S⊗T1 ⊗ . . .⊗Tn,

where S expresses the control flow between statements and T1, . . . define the update
of variables x1, . . ..

In [8] we presented a syntax-directed construction of the LOS semantics of
pWhile which avoids translating (infinite) SOS transition relations into matrices
but instead constructs directly a tensor product representation of T(S). For this we
need to consider a labelled version of the pWhile syntax: S ::= [skip]` | [stop]`

| [p← e]` | S1; S2 | [choose]` p1 : S1 or p2 : S2 | if [b]` then S1 else S2 fi |
while [b]` do S od, with labels ` ∈ Lab(S).

For a given program S we then determine (statically) its probabilistic control
flow, i.e. a set of triples 〈`i, pij , `j〉 which describe a possible transfer of control
from label `i to label `j with probability pij (where pij = 1 for all deterministic
statements, i.e. except for a choose statement). For tests [b]` (in if and while
constructs) we distinguish between the control transfer in case the test succeeds or
fails by underlining the target label for success.

The Linear Operator Semantics of a pWhile program S is then defined as the
operator T = T(S) on V(Lab(S) × State). It is given by a linear combination of
local updates T(`i, `j):

T(S) =
∑

〈i,pij ,j〉∈F(S)

pijT(`i, `j).

The aim of T(S) is to collect for every triple in the probabilistic flow F(S) of S its
effects, weighted according the probability associated to this triple. The operators
T(`i, `j) which implement the local state updates and control transfers from `i to
`j are presented in Table 1.

Each local operator T(`i, `j) is of the form E(`i, `j) ⊗N where the first factor
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T(`1, `2) = E(`1, `2)⊗ I for [skip]`1

T(`1, `2) = E(`1, `2)⊗U(x← e) for [x← e]`1

T(`, `t) = E(`, `t)⊗P(b = true) for [b]`

T(`, `f ) = E(`, `f )⊗P(b = false) for [b]`

T(`, `k) = E(`, `k)⊗ I for [choose]`

T(`, `) = E(`, `)⊗ I for [stop]`

Table 1
Linear Operator Semantics for pWhile

(P(c))ij =

 1 if i = c = j

0 otherwise.
(U(c))ij =

 1 if j = c

0 otherwise.

P(σ) =
v⊗
i=1

P(σ(xi)) U(xk ← c) =
k−1⊗
i=1

I⊗U(c)⊗
v⊗

i=k+1

I

P(e = c) =
∑
E(e)σ=c

P(σ) U(xk ← e) =
∑
c

P(e = c)U(xk ← c)

Table 2
Test and Update Operators for pWhile

E(`i, `j) realises the transfer of control from label `i to label `j while the second
factor N represents a state update or – in the case of tests – a filter operator.

The matrix units E(m,n) contains only one non-zero entry (E(m,n))mn = 1,
and I is the identity operator. Using these basic building blocks we can define
a number of “filters” P as depicted in Table 2. The operator P(c) has only one
non-zero entry: the diagonal element Pcc = 1, i.e. P(c) = E(c, c). This operator
extracts the probability corresponding to the c-th coordinate of a vector, i.e. for
~x = (xi)i the multiplication with P(c) results in a vector ~x′ = ~xP(c) with only one
non-zero coordinate, namely x′c = xc.

The operator P(σ) performs a similar test for a vector representing the proba-
bilistic state of the computation. It filters the probability that the computation is
in a classical state σ. This is achieved by checking whether each variable xi has the
value specified by σ namely σ(xi). Finally, the operator P(e = c) filters those states
where the values of the variables xi are such that the evaluation of the expression
e results in c. The number of (diagonal) non-zero entries of this operator is exactly
the number of states σ for which E(e)σ = c.

The update operators U implement the actual state changes. From an initial
probabilistic state ~σ – i.e. a distribution over classical states – we get a new prob-
abilistic state ~σ′ via ~σU. The simple operator U(c) implements the deterministic
update of a variable xi to the constant c: Whatever the value(s) of xi are, after
applying U(c) to the state vector describing xi, we get a point distribution express-
ing the fact that the value of xi is now certainly c. The operator U(xk ← c) puts
U(c) into the context of other variables: Most factors in the tensor product are
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identities, i.e. most variables keep their previous values, only xk is deterministically
updated to its new constant value c using the previously defined U(c) operator.
The operator U(xk ← e) updates a variable not to a constant but to the value of
an expression e. This update is realised using the filter operator P(e = c): For all
possible values c of e we select those states where e evaluates to c and then update
xk to this c.

For the skip and stop no changes to the state happen, we only transfer control
(deterministically) to the next statement or loop on the current (terminal) statement
using matrix units E. Also in the case of a choose there is no change to the state but
only a transfer of control, however the probabilities pij will in general be different
from 1, unlike skip. With assignments we have both a state update, implemented
using U(p ← e) as well as a control flow step. For tests b we use a filter operator
P(b = true) to select those states which pass the test or P(b = false) fail it to
determine to which label control will pass.

Note that P(b = true) + P(b = false) = I, i.e. at any test b every state
will cause exactly one (unambiguous) control transfer. We allow in pWhile only
for constant probabilities pi in the choose construct, which sum up to 1 and as
with classical While we have no “blocked” configurations (even the terminal stop
statements ‘loop’).

2.3 Some Notations.

In order to simplify the presentation, we will assume in this paper that each variable
can only take values in a finite set. Thus the LOS of the programs we consider –
even if they are non-terminating – is presented by finite dimensional matrices. It is
possible to generalise our setting to infinite dimensional vector spaces, in particular
if we base the LOS on a Hilbert space structure 4 (for details see standard references
like [4,13] etc.). Finite dimensional real vector spaces are always also Hilbert spaces.

Linear operators, i.e. linear maps on a vector space, can be represented as matri-
ces. This provides a useful notation for expressing and combining linear operators.
We use row vectors, so F(x) = ~xF and F ◦G = GF, ~x being a row vector, F and
G being both linear operators and their associated matrices. We usually simplify
the notation of vectors by ~x = x. We denote the identity matrix by I and, if neces-
sary, we indicate its dimension by a sub-script index, i.e. In is the n × n diagonal
matrix In = diag(1, 1, . . . , 1). Any Hilbert space comes with a norm defined by
the inner product: ‖x‖2 = 〈x, x〉. This norm is extended to the linear operators:
‖F‖ = supx ‖xF‖. This induced norm is said sub-multiplicative because by defi-
nition, we have ‖xF‖ ≤ ‖x‖ · ‖F‖ and ‖GF‖ ≤ ‖G‖ · ‖F‖. We denote by .t the
transposition of matrices and vectors, i.e. ((at)ij) = (aji). We will sometimes use
the transposed form of matrices and vectors just in order to save space.

4 A linear space is a Hilbert space if it has a scalar (or inner) product 〈., .〉 and it is topologically complete
wrt the norm generated by the scalar product.
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3 Relational Static Analysis

Muchnick and Jones describe in [12] as an independent attribute method a flow
analysis where a state at each control point is the conjunction of possible attributes
for each variable, and as relational method a flow analysis where a state at a control
point is the possible conjunction of attributes for each variable.

As an example, consider the following small program
var x:[1,2] begin x:=y; stop. We could obtain here two analyses: (i)
x ∈ {1, 2} and y ∈ {1, 2} and (ii) x = y, which describe the state at the end of the
program. We refer to analysis (i) as non-relational, because it forgets the relation
x = y, so it allows unreachable states like x = 1, y = 2. Analysis (ii) is relational,
because it can remember information linking variables together. For this program,
the equality relation is recorded, but as values have been forgotten, the result also
contains unreachable states like x = 3, y = 3.

One can also think of weakly relational analyses where some information about
the relationship between variables is preserved. Well known examples of such weakly
relational analyses are zone and octagon abstraction [14].

Note that there is no direct way to compare the analyses (i) and (ii) above in the
classical framework. To overcome this we will present a framework which allows us
to measure the precision of abstractions quantitatively. As in the classical case (cf
e.g. [16, 4.4.2]), we will see that relationality and tensor product (on which already
our LOS semantics is based) are closely related – in our setting we can even express
the “strength” of dependencies, i.e. the correlation between (abstract) properties.
For our (quantitative) analysis we will use the PAI framework which we will recall
briefly in the next section.

3.1 Probabilistic Abstract Interpretation

We abstract the Linear Operator Semantics in the framework of Probabilistic Ab-
stract Interpretation [10,9]. The basic idea behind Abstract Interpretation is to
analyse a program by looking at a simplified or abstract semantics which only reg-
isters aspects of the program that are relevant to the specific analysis. Typically,
these aspects are encoded in the definition of an abstract domain which is usually
structured, like the concrete domain, as a complete partial order. In the standard
Abstract Interpretation theory by Cousot and Cousot the translation between the
concrete and the abstract semantics is achieved via Galois connections (i.e. pairs of
adjoint maps) which guarantee the correctness of the abstraction [5]. In our setting
where we deal with linear operators defined on vector spaces, the relation between
the concrete and the abstract semantics is formalised via the notion of a linear gen-
eralised inverse which can be seen as a linear analogon of a Galois connection [10].
This is the Moore-Penrose pseudo-inverse which is defined below. We refer in the
following definitions to the general notion of Hilbert spaces as our (concrete and
abstract) probabilistic domains, although as mentioned in Section 2, in this paper
we restrict ourself to the consideration of finite-dimensional vector spaces.

Definition 3.1 Let H1 and H2 be two Hilbert spaces and let A : H1 7→ H2 be a
bounded linear map between them. A bounded linear map A† = G : H2 7→ H1 is
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the Moore-Penrose pseudo-inverse of A iff

A ◦G = PA and G ◦A = PG,

where PA and PG denote orthogonal projections onto the ranges of A and G.

If C an D are two Hilbert spaces, and A : C → D and G : D → C are bounded
linear operators between (the concrete domain) C and (the abstract domain) D, such
that G is the Moore-Penrose pseudo-inverse of A, then we say that (C,A,D,G)
forms a probabilistic abstract interpretation.

The Moore-Penrose pseudo-inverse, if it exists, is always unique. A necessary
and sufficient condition for the existence of the Moore-Penrose pseudo-inverse for a
bounded linear operator A on a Hilbert space H is that A is normally solvable, i.e.
its range {Ax | x ∈ H} is closed [3, Thm 4.24]. All operators on a finite dimensional
Hilbert space are Moore-Penrose invertible. The properties of the Moore-Penrose
pseudo-inverse (cf. e.g. [1]) guarantee a form of optimality of the abstractions
constructed via PAI; in fact, they are the closest to the concrete semantics one
can construct, where closeness is defined via the distance induced by the norm on
the Hilbert space. As this is a numerical quantity, we can get an estimate of the
information lost in the abstraction [10].

3.2 Relational Abstraction: Tensor Product

In the following, we consider programs with l labels, v variables, and n possible
values for each variable. This means that the first factor in each Tk is a l× l matrix
(specifying the control steps within the program) and that each Tk is a tensor
product of v+ 1 factors (the control flow part and one factor for each variable), and
finally, each of the factors corresponding to the variables is an n × n matrix. The
three abstraction operators we define below are all of the form A(S) = Il⊗S, where
the control flow part of the LOS it left unchanged (the first factor is the identity)
and S is a matrix describing the individual abstraction we have in mind.

Given a concrete semantics T and an abstraction operator A, we can construct
the abstracted version in PAI as T# = A†TA. As our LOS is constructed using
tensor products it is important that the Moore-Penrose pseudo-inverse of a tensor
product can easily be computed as follows [1, 2.1,Ex 3]:

(A1 ⊗A2 ⊗ . . .⊗An)† = A†1 ⊗A†2 ⊗ . . .⊗A†n.

The abstraction of a semantics of the form T =
∑

k Tk is simply

T# = A†TA =
∑
k

A†TkA =
∑
k

T#
k .

The tensor product factor in each Tk = T1k ⊗ . . .⊗Tnk can be treated separately
if the abstraction is of the above form: T#

k = A†TkA = (A1 ⊗ . . . ⊗An)†(T1k ⊗
. . .⊗Tnk)(A1 ⊗ . . .⊗An) = (A†1T1kA1)⊗ . . .⊗ (A†nTnkAn).

An abstraction of the form S =
⊗v

i=1 Ai (with non-trivial Ai) which abstracts
the concrete state as a tensor product results in a relational analysis. The struc-
ture of the LOS semantics guarantees that dependencies and correlations between
variables are preserved in the abstract semantics T#.
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PPPPPx
y

1 2 x

1 0.7 0 0.7

2 0 0.3 0.3

y 0.7 0.3

(a)

PPPPPx
y

1 2 x

1 0.5 0.2 0.7

2 0.2 0.1 0.3

y 0.7 0.3

(b)

Fig. 1. Probability Distributions

3.3 Non-Relational or Independent Abstraction

Let us first describe intuitively a probabilistic abstraction which forgets relations
between variables. In the analysis (i) of the program x ∈ {1, 2}; y:=x; given at
the beginning of Section 3.1, we can interpret the two variables x and y as random
variables. Then the original state represents the joint probability distribution for
both variables, i.e. a tensor product. The non-relational abstraction consists in
retaining only their marginal probability distribution, see e.g. [11, Chapter IX].

For example, if x ∈ {1, 2} takes value 1 with probability 0.7, and otherwise we
have x = 2, then the final state of the program is depicted in Figure 1(a). The
centre of the array represents the concrete state, e.g. P (x = 1 ∧ y = 2) = 0. The
last row and column represents the abstract state. If we consider only the abstract
state, unreachable states like x = 1, y = 2 are no longer forbidden, because this
state also abstracts the situation in Figure 1(b).

This kind of abstractions corresponds to a combination of abstractions for each
variable which ignore the values of the other variables. This can be easily achieved by
utilising the forgetful PAI which is represented by the abstraction Af = (1, . . . , 1)t.
If it is applied to any distribution it results in the single scalar 1 (i.e. d ·Af = (1)).
Thus, if we abstract the values of a single variable we need an abstraction of the
form

A(xk) = (
k−1⊗
i=1

Af )⊗Ak ⊗ (
v⊗

i=k+1

Af )

with Ak the intended abstraction of (x)k. We can combine these abstractions simply
using the direct sum, i.e. S =

⊕v
k=1 A(xk).

3.4 Weakly Relational Abstraction

In static analysis, forgetting all relationship between variables is a strong abstrac-
tion which destroys important information. Attempts to overcome this and to retain
some relational information lead to simple and rather efficient algorithms. In his
thesis [14], Antoine Miné introduces weakly relational domains, which rely on lim-
ited linear constraints. The zone abstract domain handles invariants of the form
X − Y ≤ c and ±X ≤ c. The octagon abstract domain is an extension of the latter
and handles invariants of the form ±X ± Y ≤ c.

In the PAI framework we can define weakly relational abstraction by either
allowing weaker abstractions Ã for some of the variables or abstracting additional
information via abstractions B. More concretely, we can consider abstractions of
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the form

A(xk) = (
k−1⊗
i=1

Ãi)⊗Ak ⊗ (
v⊗

i=k+1

Ãi)

and S =
⊕v

k=1 A(xk), or alternatively, we could add additional terms in the def-
inition of the non-relational abstraction above, i.e. S = (

⊕v
k=1 A(xk)) ⊕

⊕
l Bl

with

A(xk) = (
k−1⊗
i=1

Af )⊗Ak ⊗ (
v⊗

i=k+1

Af )

and Bl some abstractions, e.g. of the difference between any pair of variables as in
Miné’s zone and octagon analysis.

4 PAI and Precision

We can restrict ourselves w.l.o.g. to abstraction operators which are surjective, i.e.
A(C) = D. In fact, given a PAI (C,A,D,G), we can always partition the abstract
domain D by identifying those elements with the same concrete meaning. In this
way we can ensure that any abstract object in D is the image of a concrete object
in C, i.e. we reduce the abstract domain to one which does not contain redundant
objects, or equivalently, we turn the abstraction operator A into a surjective one.
In this case the closed subspace of C corresponding to the projection G ◦A = PG

is isomorphic to A(C); thus we can restrict ourselves to consider only probabilistic
abstract interpretations of the form (C,PG,PG(C), I). This will allow us to identify
orthogonal projections on a Hilbert space H (or equivalently its closed subspaces)
with all probabilistic abstract interpretations for the given concrete domain H.

Proposition 4.1 Let H be a Hilbert space and let P ⊆ H be a closed subspace of
H. Then (H,A† ◦A, P, I) is a PAI iff A† ◦A(H) = P .

Based on this identification, we can define the lattice of probabilistic abstract
interpretations on a given Hilbert space H by means of the lattice of orthogonal
projections.

4.1 The Ortholattice of Projections

As it is well-known in Quantum Mechanics, projection operators on a Hilbert space
form a non-Boolean – in particular, non-distributive – lattice. This result dates back
to the 1936 article by Birkhoff and von Neumann [2] where the authors’ claimed
objective was to “find a calculus of propositions which is formally indistinguishable
from the calculus of linear subspaces of a Hilbert space with respect to set prod-
ucts, linear sums and orthogonal complements, and resembles the usual calculus of
propositions with respect to and, or and not”.

If Y is a closed subspace of a Hilbert space H, each vector in H can be expressed
uniquely in the form y + z with y ∈ Y and z ∈ Y ⊥, where Y ⊥ is a complementary
subspace to Y (i.e. Y +Y ⊥ = H and Y ∩Y ⊥ = {~0}). The linear operator P : H → Y

defined by P(y + z) = y is called the (orthogonal) projection from H onto Y . It is
easy to show that projection operators P are bounded (their norm is always less

10
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than or equal to 1) idempotent (P2 = P) and Hermitian. An operator A is said to
be self-adjoint or Hermitian if it coincides with its adjoint A∗, that is the unique
operator such that the condition 〈A∗x, y〉 = 〈x,Ay〉 holds for all x, y ∈ H (cf.
e.g. [13, Thm 2.4.2]). In particular, projections are a special kind of self-adjoint
operators, that is positive operators. An operator A is called positive, denoted by
A w 0, if there exists an operator B such that A = B∗B.

Projections can be identified with the closed subspaces of H. As the range
YE = {xE | x ∈ H} of an orthogonal projection is a closed subspace, (cf. [4, Propo-
sition II.3.2.b]), this correspondence is defined by associating to each projection on
H its range YE. We define the ortho-complement E⊥ of E as the projection with
range (YE)⊥. We note that

E⊥ = I−E.

The closed subspaces of H form a complete lattice under the operations of intersec-
tion and closed linear span. The one-to-one correspondence between this set and
the collection P (H) of all orthogonal projections on H allows us to transfer the
lattice structure of the set of all closed subspaces of H to P (H).

A partial order on projections (and in general on self-adjoint operators) can be
defined directly by: E v F iff F−E is positive (e.g. [13, p105]). This is equivalent
to the partial order defined via set inclusion on closed subspaces. More precisely,
if E and F are projections from a Hilbert space H onto closed subspaces Y and Z

respectively, then E v F iff Y ⊆ Z (cf. [13, Proposition 2.5.2]).
The projections P(H) form a complete lattice with respect to this order, i.e. the

least upper bound (lub) E t F and the greatest lower bound (glb) E u F always
exist for any pair E and F and we have (EtF)⊥ = E⊥ uF⊥. The bottom element
is given by the projection onto the null space, i.e. the operator mapping all vectors
x ∈ H to the null vector, and the top element is the identity operator I.

The problem of concretely constructing the lub E t F and glb E u F of two
orthogonal projections E and F on H is in general considered as being not trivial.
However, for commutative projections this can be constructed as EuF = EF = FE
and in the general case, using the Moore-Penrose pseudo-inverse, according to [1]:

E u F = 2E : F = 2E(E + F)†F.

In Example 4.2 we will illustrate the use of this lattice structure on projections
for comparing and constructing PAI’s.

Example 4.2 We consider a small example presented in [18], where the concrete
domain is the lattice Sign depicted in Figure 2.

Suppose that the concrete function to be analysed is sq : Sign → Sign defined
as in Fig. 2. By fixing an enumeration of the elements in Sign we can lift the
domain to a probabilistic domain. We consider the enumeration: 1. ∅, 2. 0, 3. ≤ 0,
4. ≥ 0, and 5. Z, and define the vector space

V(Sign) =

{∑
i

aii | i ∈ Sign, ai ∈ R

}
which is isomorphic to the 5-dimensional real vector space R5. We can then define
the matrix S as in Fig. 2 representing the linear operator on V(Sign) corresponding
to the function sq.
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Fig. 2. The lattice Sign, the concrete function sq and its matrix S
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Fig. 3. The Lattice P(V(Sign))

The ortholattice P (V(Sign)) (or equivalently the ortholattice of all closed sub-
space of V(Sign)) gives all possible PAI’s on the given concrete domain as depicted
in Figure 3. The matrix representation of these projections is as follows:
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4.2 Precision of PAI’s

Based on the Birkhoff-von Neumann order we can compare probabilistic abstract
interpretations by identifying them with the corresponding closed subspaces or or-
thogonal projection operators. This allows us to say in some cases that one abstrac-
tion is “better” or “more precise” than another, that is to specify a notion of relative
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precision. We base our approach on the idea originally introduced in [10] that mea-
suring the precision of an abstraction is actually measuring the completeness with
respect to the concrete problem.

Completeness is not an essential requirement of an analysis, but rather an ideal
situation which does not occur very often in practice. Intuitively, it expresses the
property of an abstraction which “makes no mistakes”. In a typical analysis frame-
work, a function f : A 7→ B is given whose properties have to be analysed, and two
different abstractions are specified on the input and the output domains respec-
tively. In this case, a classical abstract interpretation is given by two abstraction
functions, α and α′, mapping the input domain A and the output domain B into
an abstract input domain A# and an abstract output domain B# respectively, and
by an abstract semantical functions f# : A# 7→ B#. Then the abstract function
f# : A# 7→ B# is said to be a complete approximation of a concrete function
f : A 7→ B if α′ ◦ f = f# ◦ α.

This notion of completeness applies essentially unchanged in the PAI setting by
simply replacing classical domains and functions with probabilistic domains and lin-
ear functions. As shown e.g. in [5,18], the notion of completeness can be formulated
in terms of closure operators by the equation

η ◦ f = η ◦ f ◦ ρ,

where ρ is a closure operator on A expressing the input property, and η is a closure
operator on B expressing the output property. This translates in the PAI setting to
the following definition of completeness.

Definition 4.3 Given two Hilbert spaces C and D and a bounded linear map F
between them, i.e. F : C → D, then we say that a pair of projections P : C → C
and R : D → D is complete for F if and only if

FP = RFP.

Obviously, this also includes the special case of a bounded linear operator F :
C 7→ C, where domain and codomain coincide (like e.g. for F being the fixpoint
operator defining the semantics of a given program). In this case we have that
a projection P on C is complete for F iff the pair (P,P) is complete for F, i.e.
FP = PFP. It is obvious that for any F there always exist at least two complete
abstractions: For the trivial projections – i.e. identity P = I and zero projection
P = O – the equation FP = PFP is obviously fulfilled.

By using the equation defining the completeness of an abstraction (P,R) for a
function F we can get an estimate of its precision by measuring the “difference”
between FP and its optimal version RFP. Intuitively, this difference represents
the information missing in the given abstraction to get completeness or, in other
words, the quantity of “false positives” in the associated analysis. To this purpose
we use the Hilbert space norm and define the function PrecF : P (H)2 → R for a
given semantical function F by

PrecF(P,R) = ‖FP−RFP‖ = ‖(I−R)FP‖ = ‖R⊥FP‖.

The function PrecF introduces a total ordering on all the approximations for F.
This ordering is compatible with the Birkhoff-von Neumann ordering as shown by
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the following proposition.

Proposition 4.4 Let F : H1 7→ H2 be a bounded linear operator between two Hilbert
spaces H1 and H2, and let P1,P2 ∈ P (H2) and R1,R2 ∈ P (H1). Then we have
that if P1 v P2 and R2 v R1 then

PrecF(P1,R1) ≤ PrecF(P2,R2).

Note that, since PrecF(P,R) is a number expressing the loss in terms of com-
pleteness of the given abstraction, the smaller it is the more precise is the resulting
analysis. We will prove Proposition 4.4 based on the following three lemmas (see
also [13, Prop.2.5.2]):

Lemma 4.5 (Order and ortho-complement) Let P and R be two orthogonal
projectors on a Hilbert space H, then

P v R ⇒ R⊥ v P⊥

Proof. Lemma 4.5 is due to the following property of the ortho-complement sub-
spaces of Hilbert spaces (e.g. [15]):

A ⊆ B ⇒ B⊥ ⊆ A⊥.
The lemma trivially derives from the definition of the ortho-complement of a pro-
jector by exchanging the role of kernel and image. 2

Lemma 4.6 (Order and norm) Let P and R be two orthogonal projectors on a
Hilbert space H, then

P v R ⇒ ∀x ∈ H, ‖xP‖ ≤ ‖xR‖

Proof. We decompose x in xIR + xKR
with xIR ∈ Im(R) and xKR

∈ Ker(R). By
inclusions of kernels due to the order we have xKR

∈ Ker(P). ‖xP‖ = ‖xIRP +
xKR

P‖ = ‖xIRP‖ ≤ ‖xIR‖ · ‖P‖ ≤ ‖xIR‖ = ‖xR‖. The inequality hold for all
x because the induced norm is sub-multiplicative and the norm of an orthogonal
projection is less than 1. 2

Lemma 4.7 (Order and composition) Let P and R be two orthogonal projec-
tors on a Hilbert space H, then

P v R ⇒ P = PR

Proof. For any x in the Hilbert space, we can decompose x in xIP + xKP
with

xIP ∈ Im(P) and xKP
∈ Ker(P). By definition of the order, we have xIP ∈ Im(R).

We get therefore xPR = xIPR = xIP = xP. 2

We now can prove Proposition 4.4 itself.

Proof. For the proof of 4.4 we need to establish two implications: (i) P1 v
P2 ⇒ PrecF(P1,R) ≤ PrecF(P2,R), and (ii) R2 v R1 ⇒ PrecF(P,R1) ≤
PrecF(P,R2).

The first part is trivially derived from Lemma 4.6 and the definition of the norm
for an operator: P1 v P2 ⇒ ‖P1(xR⊥F)‖ ≤ ‖P2(xR⊥F)‖ for all x ∈ H, thus
‖R⊥FP1‖ ≤ ‖R⊥FP2‖.

The second part utilises the same properties as in Lemma 4.6.

‖R⊥1 FP‖ = ‖R⊥1 R⊥2 FP‖ ≤ ‖R⊥1 ‖.‖R⊥2 FP‖ ≤ ‖R⊥2 FP‖
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The first equality relies on a rewriting of R⊥1 justified by Lemma 4.7, the ordering
between R2 and R1, and Lemma 4.5. The first inequality is simply due to the
sub-multiplicativity of the norm and the last inequality is based on the fact that
the norm of an orthogonal projector is always less or equal to 1. 2

It is easy to see that the following specialisations of Proposition 4.4 hold for any
semantical function F.

Corollary 4.8 For R = R1 = R2 the precision is monotone with respect to the
Birkhoff-von Neumann order, i.e. P1 v P2 ⇒ PrecF(P1,R) ≤ PrecF(P2,R).

For P = P1 = P2 the precision is anti-monotone with respect to the Birkhoff-
von Neumann order, i.e. R1 w R2 ⇒ PrecF(P,R1) ≤ PrecF(P,R2).

Example 4.9 Consider again Example 4.2. The following table presents the pre-
cisions PrecS(Pi,Pj) of the abstractions for the square function S defined by each
pair of projections (Pi,Pj), i, j = 1, 2, . . . , 14 in the lattice of PAI’s on V(Sign).

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

P1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P3 1 0.75 0 0.79 0.75 0.65 0 0 0 0.65 0 0 0 0

P4 1 0.91 0.79 0 0.91 0 0.79 0 0.79 0 0 0.79 0 0

P5 1 0.75 0 0.79 0.75 0.65 0 0 0 0.65 0 0 0 0

P6 1.10 1 0.87 0 1 0 0.87 0 0.87 0 0 0.87 0 0

P7 1.34 1 0 1.06 1 0.87 0 0 0 0.87 0 0 0 0

P8 1 1 1 1 1 0.82 1 0 1 0.82 0 1 0 0

P9 1.10 0.82 0 0.87 0.82 0.71 0 0 0 0.71 0 0 0 0

P10 1.07 0.91 0.87 0.87 0.91 0.71 0.87 0 0.87 0.71 0 0.87 0 0

P11 1.34 1 1 1.22 1 1 1 0 1 1 0 1 0 0

P12 1.34 1 0 1.06 1 0.87 0 0 0 0.87 0 0 0 0

P13 1.10 1 1 1.06 1 0.87 1 0 1 0.87 0 1 0 0

P14 1.34 1 1 1.22 1 1 1 0 1 1 0 1 0 0

We see from this table that with respect to the input property P3, the abstrac-
tions P1,P2,P3,P5,P7,P9 and P12 are complete probabilistic abstract interpre-
tations for the square function as the corresponding entries in the table are zero.
This reflects the classical situation in the original example of [18]. Moreover, in our
setting the non-zero entries indicate the degree by which a PAI fails to be complete
with respect to the square function.

5 Examples

The aim of the following examples is to illustrate in very simple cases how the
relationality improves the precision of abstractions and how to measure the quality
of abstractions. The abstractions Ak we consider here are variations of k-cast, i.e.
arithmetics modulo k, in our case k = 2 (simple parity analysis) and k = 4. Besides
this we also need to consider the forgetful abstraction A1 = Af which “ignores” the
value of a given variable. For a single variable the three abstractions are represented
by matrices with entries: (Ak)ij = 1 if i mod k = j − 1, and zero otherwise.

We then construct the abstractions of v variables x1, x2, . . . , xv as a linear map
from the v-fold tensor product into some abstract domain. This domain is typically
a direct sum of “small” vector spaces which record the value of the xi’s modulo 2
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or 4. These abstractions are all of the form

S =
v⊕
i=1

S(xi) with S(xi) = (
i−1⊗
k=1

S¬i)⊗ Si ⊗ (
v⊗

k=i+1

S¬i)

where Si is the abstraction applied to the variable xi while S¬i represent the ab-
stractions of the other variables. We compare three variations of S:

Sr is S with Si = S¬i = A4

Sw is S with Si = S4,S¬i = A2

Sn is S with Si = S4,S¬i = A1

The abstraction Sr is fully relational; in fact it is just v copies of the same fully
relational abstraction

⊗v
k=1 A4. We thus can restrict ourselves to just one of the

components in the direct sum. We have Sr : V(n)⊗v → V(4)⊗v, i.e. the abstract
domain is also a tensor product, but a reduced one; for three variables the abstract
domain has 43 = 64 dimensions. This abstraction preserves the dependency between
the “4ness” of all variables. For example, we record not only (the probability) that
xi is a multiple of 4 (i.e. xi mod 4 = 0) but also (the probability) that xi and xj
are multiples of 4 at the same time.

The abstraction Sn is non-relational or independent. In this abstraction we
abstract only (the probabilities) that xi has a certain remainder when divided by
4, but the relationship between the “4ness” of variables is lost. We extract, for
example, no information whether xi is multiple of 4 whenever xj is. This is achieved
by abstracting in each term in the direct sum

⊕v
i=1 S(xi) only the “4ness” of one

variable, namely xi, while ignoring the value of all the others. The abstraction is of
the type Sn : V(n)⊗v → V(4)⊕v = V(4)v; for three variables the abstract domain is
a 3 ∗ 4 = 12 dimensional abstract domain.

The abstraction Sw is weakly relational. We get in this case some infor-
mation about the correlation between the values of two variables, but not, like
with Sr modulo 4 but only about the parity (xi mod 2). The dimensionality
of this abstraction thus is a compromise between Sr and Sn , i.e. we have
Sw : V(n)⊗v → (V(4) ⊗

⊗v−1
i=1 V(2))⊕v. In the case of three variables this means

that the abstract domain has 3× 8 = 24 dimensions.
Regarding the precision of these three abstractions when used to analyse var-

ious extremely short programs our experiments resulted in the following. For a
program like var x:[0..10]; begin x:=k; stop (with k = 1 or k = 4) and
var x:[0..10]; y:[0..10]; begin x:=y; stop we obtain the following relative
precisions PrecT(P,R).

PPPPPP
R ∅ Sn Sw Sr id

∅ 0 0 0 0 0

Sn 1.58 0 0 0 0

Sw 1.58 0 0 0 0

Sr 1.58 0 0 0 0

id 2.55 1 1 1 0

PPPPPP
R ∅ Sn Sw Sr id

∅ 0 0 0 0 0

Sn 1.73 0 0 0 0

Sw 2.24 1 0 0 0

Sr 2.24 1 1 0 0

id 3.61 3.61 3.61 3.61 0

For another set of programs var x:[0..10]; y:[0..3]; begin x:=k*y; stop

16



Di Pierro, Sotin and Wiklicky

we get for k = 2 and k = 3:
PPPPPP

R ∅ Sn Sw Sr id

∅ 0 0 0 0 0

Sn 1.88 0.89 0.89 0.89 0

Sw 2.14 1.52 1.29 1.29 0

Sr 2.24 1.64 1.50 1.41 0

id 3.61 3.60 3.59 3.58 0

PPPPPP
R ∅ Sn Sw Sr id

∅ 0 0 0 0 0

Sn 1.77 0.89 0.89 0.89 0

Sw 2.24 1.52 1.29 1.29 0

Sr 2.24 1.64 1.50 1.41 0

id 3.61 3.60 3.59 3.58 0

All these examples, despite their trivial nature, exhibit quite clearly how rela-
tionality can improve the precision of an analysis. When we go from left to right,
i.e. from the trivial abstraction to Sn, to Sw, to Sr, and finally to the concrete
semantics PrecT(P,R) decreases. In particular the last row (comparison with the
concrete semantics) describes a kind of absolute precision measure. Similarily, the
first row describes the defect of the trivial abstraction with respect to what an other
abstraction – increasing until we compare it with the concrete semantics. We also
see that the precision measure gives different results for different types of programs.
Sometimes the weakly relational analysis improves the analysis, sometimes it does
not – in some cases the improvement could be considered to be relevant in other
it is only marginal. In principle one could use this information to decide whether
it is worth to apply Sn, Sw, or Sr by trading precision against the (sometimes
substantial) additional overhead, i.e. dimensionality, of an analysis.

6 Conclusion

In this paper we have presented a framework for the relational analysis of a simple
imperative language which is based on a linear operator semantics and probabilistic
abstract interpretation. The main advantages of this are: (i) the exploitation of
the tensor product operation for obtaining fully relational analyses: as both the
concrete and the abstract semantics can be factorised, different properties can be
analysed simultaneously; (ii) the use of probabilistic domains (in the form of finite
dimensional inner product linear spaces) and the Moore-Penrose pseudo-inverse
for a more speculative interpretation of the analysis results and in particular for
obtaining a quantitative estimate of their precision.

The latter point could be achieved via the identification of each abstraction A
with its associated orthogonal projection AA† and the use of the Birkhoff - von
Neumann lattice of projections. Based on the lattice of PAI’s we have introduced
a notion of relative precision expressing the degree of ‘incompleteness’ of a given
abstraction via a number calculated as the norm of an appropriate linear opera-
tor. We have applied this to a small example comparing the precision of various
numerical analyses.

Other works have faced the problem of quantifying the precision of a static
analysis. In [17], Rountev, Kagan and Gibas present an approach to evaluating the
imprecision of a static analysis via the lower and upper bound of the set of false
positive. This is a quite standard method in classical static analysis, but the authors
suggest that for each fact a human experimenter should find a proof that a given
result is not a false positive. This approach leads to know the exact percentage of
false positive for one program and analysis. However, as it must be done by hand,
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there is a serious limitation to the size of the set to be tested and it could not be used
inside a tool, for example to select the best analysis for a given program. To this aim
our approach seems to be more promising: Given that we have a structured lattice
of abstract interpretations, and a way to measure precision, we can think of a more
systematic approach in the selection of the abstract domain. In particular, this can
be achieved practically via a statistical interpretation of the number expressing the
relative precision.

An important point in further investigations is that the representation of the
semantics of a program via a tensor product establishes a connection between the
notion of relational dependencies in program analysis and that of correlation and
independence in statistics [11].

References

[1] A. Ben-Israel and T.N.E. Greville. Generalised Inverses. Springer Verlag, 2nd edition, 2003.

[2] G. Birkhoff and J. von Neumann. The logic of quantum mechanics. Annals of Mathematics, 37:823–843,
1936.
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