Probabilistic Program Analysis

Probablistic Abstract Interpretation

Alessandra Di Pierro University of Verona, Italy alessandra.dipierro@univr.it

Herbert Wiklicky Imperial College London, UK herbert@doc.ic.uk

Approximation and Correctness

Data-flow analyses can be re-formulated in a different scenario where correctness is guaranteed by construction.

Classically, the theory of Abstract Interpretation allows us to

- construct simplified (computable) abstract semantics
- construct approximate solutions
- obtain the correctness of the approximate solution by construction.

The General Framework Application to DFA

Notions of Approximation

In order theoretic structures we are looking for Safe Approximations

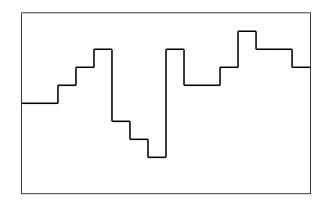
 $s^* \sqsubseteq s$ or $s \sqsubseteq s^*$

In quantitative, vector space structures we want Close Approximations

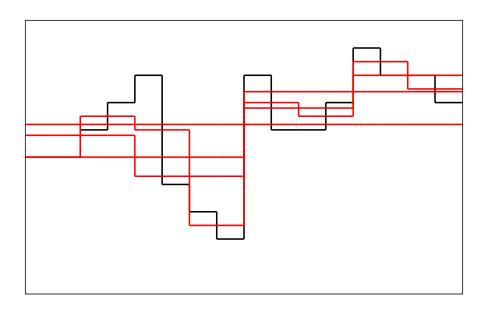
 $\|s-s^*\|=\min_x\|s-x\|$

Example: Function Approximation

Concrete and abstract domain are step-functions on [a, b]. The set of (real-valued) step-function \mathcal{T}_n is based on the sub-division of the interval into *n* sub-intervals.



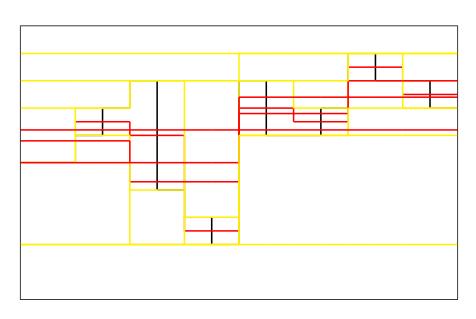
Close Approximations



Bolzano, 22-26 August 2016 ESSLLI'16 Probab	c Program Analysis Slide 5 of 43
---	----------------------------------

The General Framework Application to DFA

Close vs Correct Approximations



Abstract Interpretation

Some problems may be have too costly solutions or be uncomputable on a concrete space (complete lattice). Find abstract descriptions on which computations are easier; then relate the concrete and abstract solutions.

Let $C = (C, \leq)$ and $D = (D, \sqsubseteq)$ be two partially ordered set. If there are two functions $\alpha : C \to D$ and $\gamma : D \to C$ such that for all $c \in C$ and all $d \in D$:

$$\boldsymbol{c} \leq_{\mathcal{C}} \gamma(\boldsymbol{d}) \text{ iff } \alpha(\boldsymbol{c}) \sqsubseteq \boldsymbol{d},$$

then $(\mathcal{C}, \alpha, \gamma, \mathcal{D})$ form a Galois connection.

Bolzano, 22-26 August 2016	ESSLLI'16	Probabilistic Program Analysis	Slide 7 of 43
		Abstract Interpretation	
	The General Framework	The Moore-Penrose Pseudo-Inverse	
			te the se
	Application to DFA	From Classical to Probabilistic Abstract Interpre	tation
		Probabilistic vs Classical Approximation	

Galois Connections

Definition

Let $C = (C, \leq_C)$ and $D = (D, \leq_D)$ be two partially ordered sets with two order-preserving functions $\alpha : C \mapsto D$ and $\gamma : D \mapsto C$. Then (C, α, γ, D) form a Galois connection iff

- (i) $\alpha \circ \gamma$ is reductive i.e. $\forall d \in D, \alpha \circ \gamma(d) \leq_{\mathcal{D}} d$,
- (ii) $\gamma \circ \alpha$ is extensive i.e. $\forall c \in C, c \leq_{\mathcal{C}} \gamma \circ \alpha(c)$.

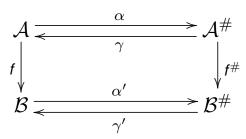
Proposition

Let (C, α, γ, D) be a Galois connection. Then α and γ are quasi-inverse, i.e.

(i)
$$\alpha \circ \gamma \circ \alpha = \alpha$$

(ii) $\gamma \circ \alpha \circ \gamma = \gamma$

General Construction



Correct approximation:

$$\alpha' \circ f \leq_{\#} f^{\#} \circ \alpha.$$

Induced seman	tics:		
	$f^{\#} = \alpha$	$\circ f \circ \gamma.$	
Bolzano, 22-26 August 2016	ESSLLI'16	Probabilistic Program Analysis	Slide 9 of 43
	The General Framework Application to DFA	Abstract Interpretation The Moore-Penrose Pseudo-Inverse From Classical to Probabilistic Abstract Probabilistic vs Classical Approximation	

Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which represents the distributions Dist(S) on the state space S of a probabilistic transition system, i.e. for finite state spaces

$$\mathcal{V}(\mathcal{S}) = \{ (\mathbf{v}_{\mathcal{S}})_{\mathcal{S}\in\mathcal{S}} \mid \mathbf{v}_{\mathcal{S}}\in\mathbb{R} \}.$$

In the finite setting we can identify $\mathcal{V}(S)$ with the Hilbert space $\ell^2(S)$.

The notion of *norm* is essential for our treatment; we will consider normed vector spaces.

Norm and Operator Norm

A norm on a vector space \mathcal{V} is a map $\|.\| : \mathcal{V} \mapsto \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\|v\| \ge 0$,
- $\|v\| = 0 \Leftrightarrow v = o$,
- $\|\mathbf{C}\mathbf{V}\| = |\mathbf{C}|\|\mathbf{V}\|,$
- $\|v + w\| \le \|v\| + \|w\|,$

with $o \in \mathcal{V}$ the zero vector.

We can always use a norm to define a metric topology on a vector space via the distance function d(v, w) = ||v - w||.

$$\|\mathbf{M}\| = \sup_{v \in \mathcal{V}} \frac{\|\mathbf{M}(v)\|}{\|v\|} = \sup_{\|v\|=1} \|\mathbf{M}(v)\|.$$

Bolzano, 22-26 August 2016	ESSLLI'16	Probabilistic Program Analysis	Slide 11 of 43
	The General Framework Application to DFA	Abstract Interpretation The Moore-Penrose Pseudo-Inverse From Classical to Probabilistic Abstract Interpre Probabilistic vs Classical Approximation	tation
• • • • •			

Generalised Inverse

Definition

Let \mathcal{C} and \mathcal{D} be two finite-dimensional vector spaces and $\mathbf{A}: \mathcal{C} \to \mathcal{D}$ a linear map. Then the linear map $\mathbf{A}^{\dagger} = \mathbf{G}: \mathcal{D} \to \mathcal{C}$ is the Moore-Penrose pseudo-inverse of \mathbf{A} iff

(i)
$$\mathbf{A} \circ \mathbf{G} = \mathbf{P}_A$$
,
(ii) $\mathbf{G} \circ \mathbf{A} = \mathbf{P}_G$,

where \mathbf{P}_A and \mathbf{P}_G denote orthogonal projections onto the ranges of **A** and **G**.

Least Squares Solutions

Definition

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. Then $\mathbf{u} \in \mathbb{R}^{n}$ is called a least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ if

 $\|\mathbf{A}\mathbf{u} - \mathbf{b}\| \le \|\mathbf{A}\mathbf{v} - \mathbf{b}\|, \text{ for all } \mathbf{v} \in \mathbb{R}^{n}.$

Theorem

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. Then $\mathbf{A}^{\dagger}\mathbf{b}$ is the minimal least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Corollary

Let **P** be a orthogonal projection on a finite dimensional vector space \mathcal{V} . Then for any $\mathbf{x} \in \mathcal{V}$, **Px** is the unique closest vector in \mathcal{V} to \mathbf{x} wrt the Euclidean norm.

Extraction Functions

An extraction function $\eta : C \mapsto D$ is a mapping from a set of values to their descriptions in *D*. It is easy to show that

Proposition

Given an extraction function $\eta : C \mapsto D$, the quadruple $(\mathcal{P}(C), \alpha_{\eta}, \gamma_{\eta}, \mathcal{P}(D))$ is a Galois connection with α_{η} and γ_{η} defined by:

$$lpha_\eta(\mathcal{C}') = \{\eta(\mathcal{c}) \mid \mathcal{c} \in \mathcal{C}'\} \text{ and } \gamma_\eta(\mathcal{D}') = \{\mathcal{v} \mid \eta(\mathcal{v}) \in \mathcal{D}'\}$$

Vector Space Lifting

Free vector space construction on a set *S*:

$$\mathcal{V}(\mathcal{S}) = \{\sum x_{\mathcal{S}} \mathcal{S} \mid x_{\mathcal{S}} \in \mathbb{R}, \mathcal{S} \in \mathcal{S}\}$$

An obvious way to lift an extraction function to a linear map between vector spaces is to construct the free vector spaces on C and D and define:

Vector Space lifting: $\vec{\alpha} : \mathcal{V}(\mathcal{C}) \to \mathcal{V}(\mathcal{D})$ $\vec{\alpha}(p_1 \cdot \vec{c}_1 + p_2 \cdot \vec{c}_2 + \ldots) = p_i \cdot \eta(c_1) + p_2 \cdot \eta(c_2) \ldots$

Support Set: supp : $\mathcal{V}(\mathcal{C}) \to \mathcal{P}(\mathcal{C})$ supp $(\vec{x}) = \{c_i \mid \langle c_i, p_i \rangle \in \vec{x} \text{ and } p_i \neq 0\}$

Relation with Classical Abstractions

Lemma

Let $\vec{\alpha}$ be a probabilistic abstraction function and let $\vec{\gamma}$ be its Moore-Penrose pseudo-inverse.

Then $\vec{\gamma} \circ \vec{\alpha}$ is extensive with respect to the inclusion on the support sets of vectors in $\mathcal{V}(\mathcal{C})$, i.e. $\forall \vec{x} \in \mathcal{V}(\mathcal{C})$,

 $\operatorname{supp}(\vec{x}) \subseteq \operatorname{supp}(\vec{\gamma} \circ \vec{\alpha}(\vec{x})).$

Analogously we can show that $\vec{\alpha} \circ \vec{\gamma}$ is reductive. Therefore,

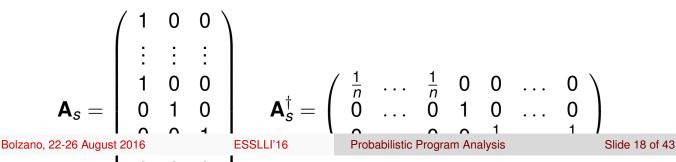
Proposition $(\vec{\alpha}, \vec{\gamma})$ form a Galois connection wrt the support sets of $\mathcal{V}(\mathcal{C})$ and $\mathcal{V}(\mathcal{D})$, ordered by inclusion.

Bolzano, 22-26 August 2016	ESSLLI'16	Probabilistic Program Analysis	Slide 17 of 43			
т	he General Framework Application to DFA	Abstract Interpretation The Moore-Penrose Pseudo-Inverse From Classical to Probabilistic Abstract Interpr Probabilistic vs Classical Approximation	etation			
Examples of Lifted Abstractions						

Parity Abstraction operator on $\mathcal{V}(\{1, \ldots, n\})$ (with *n* even):

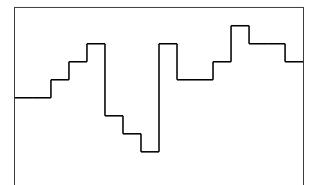
$$\mathbf{A}_{p} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{pmatrix} \qquad \mathbf{A}_{p}^{\dagger} = \begin{pmatrix} \frac{2}{n} & 0 & \frac{2}{n} & 0 & \dots & 0 \\ 0 & \frac{2}{n} & 0 & \frac{2}{n} & \dots & \frac{2}{n} \end{pmatrix}$$

Sign Abstraction operator on $\mathcal{V}(\{-n,\ldots,0,\ldots,n\})$:



Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on [a, b]. The set of (real-valued) step-function \mathcal{T}_n is based on the sub-division of the interval into *n* sub-intervals.



Each step function in \mathcal{T}_n corresponds to a vector in \mathbb{R}^n , e.g.

2 5 5 8 4 3 8 6 7) 6 7 6 7 9 8 8

ESSLLI'16

Probabilistic Program Analysis

Slide 19 of 43

Slide 20 of 43

The General Framework Application to DFA

Abstract Interpretation The Moore-Penrose Pseudo-Inverse From Classical to Probabilistic Abstract Interpretation Probabilistic vs Classical Approximation

Example: Abstraction Matrices

		1 C	0	0	0	0	0	0			
		1 C	0	0	0	0	0	0			
		D 1	0	0	0	0	0	0			
) 1	0	0	0	0	0	0			
) C) 1	0	0	0	0	0			
) C) 1	0	0	0	0	0			
) C	0	1	0	0	0	0			
۸) C	0	1	0	0	0	0			
A ₈ =	= () C	0	0	1	0	0	0			
) C	0	0	1	0	0	0			
) C	0	0	0	1	0	0			
) C	0	0	0	1	0	0			
) C	0	0	0	0	1	0			
) C	0	0	0	0	1	0			
) C	0	0	0	0	0	1			
		D C	0	0	0	0	0	1	Ϊ		
Bolzano, 22-26 August 2016	ESS	LLI'16		P	robab	oilistic	Progr	am Ar	alys	is	
		J U	U U			J	υ	U	Ú	U	U

Approximation Estimates

Compute the least square error as

 $\|f - f\mathbf{AG}\|.$

$\ f - f\mathbf{A}_8\mathbf{G}_8\ $	=	3.5355
$\ f - f\mathbf{A}_4\mathbf{G}_4\ $	=	5.3151
$\ f - f\mathbf{A}_2\mathbf{G}_2\ $	=	5.9896
$\ f - f\mathbf{A}_1\mathbf{G}_1\ $	=	7.6444

Concrete Semantics (LOS)

$$\mathbf{T}(P) = \sum_{\langle i, p_{ij}, j \rangle \in flow(P)} p_{ij} \cdot \mathbf{T}(\ell_i, \ell_j),$$

where

$$\mathsf{T}(\ell_i,\ell_j)=\mathsf{N}\otimes\mathsf{E}(\ell_i,\ell_j),$$

with **N** an operator representing a state update while the second factor realises the transfer of control from label ℓ_i to label ℓ_i .

Abstract Semantics

Moore-Penrose Pseudo-Inverse of a Tensor Product is:

$$(\mathbf{A}_1\otimes\mathbf{A}_2\otimes\ldots\otimes\mathbf{A}_n)^\dagger=\mathbf{A}_1^\dagger\otimes\mathbf{A}_2^\dagger\otimes\ldots\otimes\mathbf{A}_n^\dagger$$

Via linearity we can construct $\mathbf{T}^{\#}$ in the same way as \mathbf{T} , i.e

$$\mathsf{T}^{\#}(\mathsf{P}) = \sum_{\langle i, \mathsf{p}_{ij}, j
angle \in \mathcal{F}(\mathsf{P})} \mathsf{p}_{ij} \cdot \mathsf{T}^{\#}(\ell_i, \ell_j)$$

with local abstraction of individual variables:

$$\mathbf{T}^{\#}(\ell_{i},\ell_{j}) = (\mathbf{A}_{1}^{\dagger}\mathbf{N}_{i1}\mathbf{A}_{1}) \otimes (\mathbf{A}_{2}^{\dagger}\mathbf{N}_{i2}\mathbf{A}_{2}) \otimes \ldots \otimes (\mathbf{A}_{v}^{\dagger}\mathbf{N}_{iv}\mathbf{A}_{v}) \otimes \mathbf{M}_{ij}$$

Bolzano, 22-26 August 2016	ESSLLI'16	Probabilistic Program Analysis	Slide 23 of 43
	The General Framework Application to DFA	Forward Analysis Backward Analysis Probabilistic Pointer Analysis	
Argument			

$$\mathbf{T}^{\#} = \mathbf{A}^{\dagger} \mathbf{T} \mathbf{A} \\
= \mathbf{A}^{\dagger} \left(\sum_{i,j} \mathbf{T}(i,j) \right) \mathbf{A} \\
= \sum_{i,j} \mathbf{A}^{\dagger} \mathbf{T}(i,j) \mathbf{A} \\
= \sum_{i,j} \left(\bigotimes_{k} \mathbf{A}_{k} \right)^{\dagger} \mathbf{T}(i,j) \left(\bigotimes_{k} \mathbf{A}_{k} \right) \\
= \sum_{i,j} \left(\bigotimes_{k} \mathbf{A}_{k} \right)^{\dagger} \left(\bigotimes_{k} \mathbf{N}_{ik} \right) \left(\bigotimes_{k} \mathbf{A}_{k} \right) \\
= \sum_{i,j} \bigotimes_{k} \left(\mathbf{A}_{k}^{\dagger} \mathbf{N}_{ik} \mathbf{A}_{k} \right)$$

ESSLLI'16

Parity Analysis

Determine at each program point whether a variable is *even* or *odd*.

Parity Abstraction operator on $\mathcal{V}(\{0, ..., n\})$ (with *n* even):

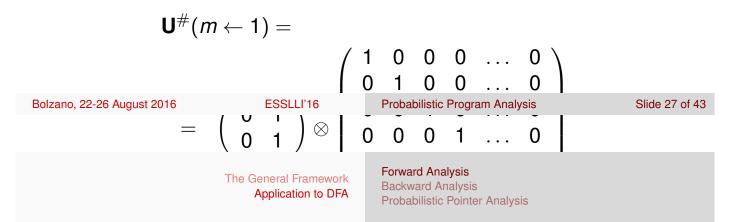
$$\mathbf{A}_{\rho} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{pmatrix} \qquad \mathbf{A}^{\dagger} = \begin{pmatrix} \frac{2}{n} & 0 & \frac{2}{n} & 0 & \dots & 0 \\ 0 & \frac{2}{n} & 0 & \frac{2}{n} & \dots & \frac{2}{n} \end{pmatrix}$$

1:
$$[m \leftarrow i]^1$$
; $\mathbf{T} = \mathbf{U}(m \leftarrow i) \otimes \mathbf{E}(1,2)$ $\mathbf{T}^{\#} = \mathbf{U}^{\#}(m)$ 2: while $[n > 1]^2$ do $+ \mathbf{P}(n > 1) \otimes \mathbf{E}(2,3)$ $+ \mathbf{P}^{\#}(n)$ 3: $[m \leftarrow m \times n]^3$; $+ \mathbf{P}(n \le 1) \otimes \mathbf{E}(2,5)$ $+ \mathbf{P}^{\#}(n)$ 4: $[n \leftarrow n-1]^4$ $+ \mathbf{U}(m \leftarrow m \times n) \otimes \mathbf{E}(3,4)$ $+ \mathbf{U}^{\#}(m)$ 5: od $+ \mathbf{U}(m \leftarrow n-1) \otimes \mathbf{E}(4,2)$ $+ \mathbf{U}^{\#}(m)$ 6: $[\text{stop}]^5$ $+ \mathbf{I} \otimes \mathbf{E}(5,5)$ $+ \mathbf{I}^{\#} \otimes \mathbf{E}(5,5)$

Abstract Semantics

Abstraction: $\mathbf{A} = \mathbf{A}_{p} \otimes \mathbf{I}$, i.e. *m* abstract (parity) but *n* concrete.

$$\mathbf{T}^{\#} = \mathbf{U}^{\#}(m \leftarrow 1) \otimes \mathbf{E}(1,2) \\
+ \mathbf{P}^{\#}(n > 1) \otimes \mathbf{E}(2,3) \\
+ \mathbf{P}^{\#}(n \le 1) \otimes \mathbf{E}(2,5) \\
+ \mathbf{U}^{\#}(m \leftarrow m \times n) \otimes \mathbf{E}(3,4) \\
+ \mathbf{U}^{\#}(n \leftarrow n-1) \otimes \mathbf{E}(4,2) \\
+ \mathbf{I}^{\#} \otimes \mathbf{E}(5,5)$$



Implementation

Implementation of concrete and abstract semantics of Factorial using octave. Ranges: $n \in \{1, ..., d\}$ and $m \in \{1, ..., d!\}$.

d	$\dim(\mathbf{T}(F))$	$\dim(\mathbf{T}^{\#}(F))$
2	45	30
3	140	40
4	625	50
5	3630	60
6	25235	70
7	201640	80
8	1814445	90
9	18144050	100

Using uniform initial distributions d_0 for *n* and *m*.

Scalablity

The abstract probabilities for *m* being **even** or **odd** when we execute the abstract program for various *d* values are:

d	even	odd
10	0.81818	0.18182
100	0.98019	0.019802
1000	0.99800	0.0019980
10000	0.99980	0.00019998

Live Variable Analysis

1: $[\mathbf{skip}]^{1}[y \leftarrow 2 \times x]^{1}$ 2: **if** $[odd(y)]^{2}$ **then** 3: $[x \leftarrow x + 1]^{3}$ 4: **else** 5: $[y \leftarrow y + 1]^{4}$ 6: **fi** 7: $[y \leftarrow y + 1]^{5}$

Classical Analysis: $LV_{entry}(2) = \{x, y\}$

Probabilistic Analysis: $LV_{entry}(2) = \{\langle x, \frac{1}{2} \rangle, \langle y, 1 \rangle\}$ $LV_{entry}(2) = LV_{entry}(2) = \{\langle y, 1 \rangle\}$

Program "Transformation"

1:
$$[y \leftarrow 2 \times x]^1$$
 1: $[y \leftarrow 2 \times x]^1$

 2: if $[odd(y)]^2$ then
 1: $[y \leftarrow 2 \times x]^1$

 3: $[x \leftarrow x + 1]^3$
 2: $[choose]^2$

 4: else
 3: $p_T : [x \leftarrow x + 1]^3$

 5: $[y \leftarrow y + 1]^4$
 4: or

 6: fi
 5: $p_\perp : [y \leftarrow y + 1]^4$

 6: fi
 6: $[y \leftarrow y + 1]^5$

Determine branching probabilities in a first-phase analysis and utilise this information to perform the actual analysis:

$$\mathbf{p}^{\top} = \mathbf{A}^{\dagger} \cdot \mathbf{P}(b = \text{true}) \cdot \mathbf{A} \text{ and } \mathbf{p}^{\perp} = \mathbf{A}^{\dagger} \cdot \mathbf{P}(b = \text{false}) \cdot \mathbf{A}$$

$$| [stop]^{\ell} | [p \leftarrow e]^{\ell} | S_1; S_2 | [choose]^{\ell} p_1 : S_1 \text{ or } p_2 : S_2 | if [b]^{\ell} then S_1 else S_2 | while [b]^{\ell} do S$$
$$= *^r x \text{ with } x \in Var \qquad e \qquad ::= a \mid b \mid l$$

$$a ::= n | p | a_1 \odot a_2 \qquad I ::= NIL | p | &p \\ b ::= true | false | p | \neg b | b_1 \times b_2 | a_1 \approx a_2$$

Example

```
\begin{array}{l} \text{if } [(z_0 \bmod 2 = 0)]^1 \text{ then} \\ [x \leftarrow \& z_1]^2; \ [y \leftarrow \& z_2]^3 \\ \text{else} \\ [x \leftarrow \& z_2]^4; \ [y \leftarrow \& z_1]^5 \\ \text{fi} \\ [\text{stop}]^6 \end{array}
```

```
[choose]^{1} \\ \frac{1}{2} : ([x \leftarrow \&z_{1}]^{2}; [y \leftarrow \&z_{2}]^{3}) \\ or \\ \frac{1}{2} : ([x \leftarrow \&z_{2}]^{4}; [y \leftarrow \&z_{1}]^{5}) \\ [stop]^{6} \end{cases}
```

ESSLLI'16	Probabilistic Program Analysis	Slide 33 of 43
The General Framework	Forward Analysis Backward Analysis	
Application to DFA	Probabilistic Pointer Analysis	
		The General Framework Application to DEA Forward Analysis Backward Analysis

Test Operators and Filters

Select a certain value $c \in$ Value:

 \mathbf{N}

 $\begin{pmatrix} 0 & 0 & 0 \\ 1 \end{pmatrix}$

Selection via Projections

Filtering out *relevant* configurations, i.e. only those which fulfill a certain condition. Use diagonal matrix **P**:

$$(\mathbf{P})_{ii} = \begin{cases} 1 & \text{if condition holds for } c_i \in \mathbf{Value} \\ 0 & \text{otherwise.} \end{cases}$$

 Bolzano, 22-26 August 2016
 ESSLLI'16
 Probabilistic Program Analysis
 Slide 35 of 43

 The General Framework
 Forward Analysis

The General Framework Application to DFA Forward Analysis Backward Analysis Probabilistic Pointer Analysis

Example

$$\begin{split} & \text{if } [(z_0 \text{ mod } 2 = 0)]^1 \text{ then} \\ & [x \leftarrow \& z_1]^2; \ [y \leftarrow \& z_2]^3 \\ & \text{else} \\ & [x \leftarrow \& z_2]^4; \ [y \leftarrow \& z_1]^5 \\ & \text{ Var} = \{x, y, z_0, z_1, z_2\} \\ & \text{fi} \\ [\text{stop}]^6 \\ \\ & \text{P}(z_0 \text{ mod } 2 = 0) = \textbf{I} \otimes \textbf{I} \otimes \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \otimes \textbf{I} \otimes \textbf{I} \\ \end{split}$$

Update Operators

For all initial values change to constant $c \in$ Value: $(\mathbf{U}(c))_{ij} = \begin{cases} 1 & \text{if } j = c \\ 0 & \text{otherwise.} \end{cases}$ $\mathbf{U}(3) = \left(\begin{array}{ccccccc} 0 & 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{array}\right)$ Set value of variable $x_k \in Var$ to constant $c \in Value$: $\mathbf{U}(\mathbf{x}_{k} \leftarrow \mathbf{C}) = \left(\bigotimes_{i=1}^{k-1} \mathbf{I}\right) \otimes \mathbf{U}(\mathbf{C}) \otimes \left(\bigotimes_{i=k+1}^{\mathbf{V}} \mathbf{I}\right)$ 16 ESSLLI'16 Probabilistic Program Analysis Bolzano, 22-26 August 2016 Slide 37 of 43 Set variable $x_k \in$ **Var** to value given by expression $e = a \mid b \mid I$:

> The General Framework Application to DFA

Forward Analysis **Backward Analysis Probabilistic Pointer Analysis**

Update for Pointers

For an assignment with a pointer on the l.h.s. we need to determine recursevly the actual variable p is pointing to:

$$\mathbf{U}(*^{r}\mathbf{x}_{k} \leftarrow \boldsymbol{e}) = \sum_{\mathbf{x}_{i}} \mathbf{P}(\mathbf{x}_{k} = \&\mathbf{x}_{i}) \mathbf{U}(*^{r-1}\mathbf{x}_{i} \leftarrow \boldsymbol{e})$$

Note that we always get eventually to the base case, i.e. where p refers to a concrete variable x_k and thus the update operator $\mathbf{U}(\mathbf{x}_k \leftarrow e)$ from before.

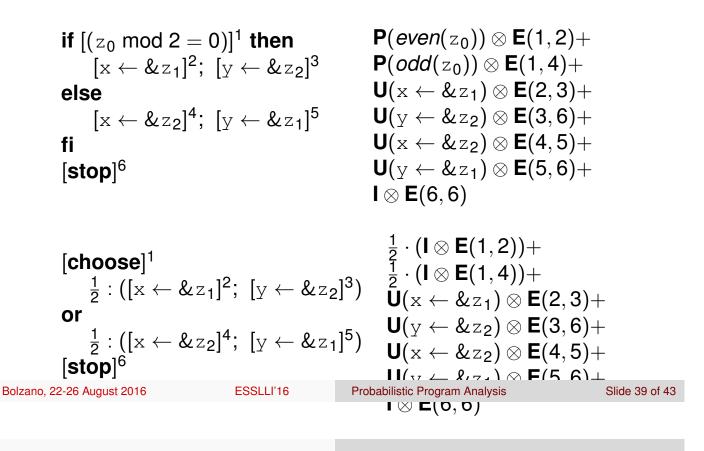
For a pointer of second order with $x_2 \rightarrow x_1 \rightarrow x_0$ we get:

$$\mathbf{U}(* * \mathbf{x}_{2} \leftarrow 4) = \sum_{\mathbf{x}_{i}} \mathbf{P}(\mathbf{x}_{2} = \& \mathbf{x}_{i}) \mathbf{U}(* \mathbf{x}_{i} \leftarrow 4)$$
$$\mathbf{U}(* \mathbf{x}_{1} \leftarrow 4) = \sum_{\mathbf{x}_{i}} \mathbf{P}(\mathbf{x}_{1} = \& \mathbf{x}_{i}) \mathbf{U}(\mathbf{x}_{i} \leftarrow 4)$$

Bolzano, 22-26 Augus

 $U(x_0 \leftarrow 4)$

Example



The General Framework Application to DFA Forward Analysis Backward Analysis Probabilistic Pointer Analysis

Abstract Branching Probabilities

The abstract tests $\mathbf{P}^{\#}$ describe the branching probabilities depending on abstract values.

For example, consider P(n) testing if a variable with values $1, \ldots, n$ is a prime number.

Transforming if into choose

Based on the abstract branching probabilities we can replace tests, e.g. in **if**'s, by probabilistic choices. In a a first phase, we need to determine the probabilities of abstract values.

If we have the probabilities of z_0 being even or odd we can compute the probabilities of the **then** and **else** branch using $P^{\#}$. For z_0 being even and odd with the same probability:

```
\begin{array}{l} \text{if } [(z_0 \mbox{ mod } 2=0)]^1 \mbox{ then } \\ [x \leftarrow \& z_1]^2; \ [y \leftarrow \& z_2]^3 \\ \text{else} \\ [x \leftarrow \& z_2]^4; \ [y \leftarrow \& z_1]^5 \\ \text{fi} \\ [\text{stop}]^6 \end{array}
```


Probabilistic Pointer Analysis

The typical result of a probabilistic pointer analysis is a so-called points-to matrix: records for every program point the probability that a pointer refers to particular (other) variable.

Consider again our standard example.

```
\begin{array}{l} \text{if } [(\texttt{z}_0 \bmod 2 = 0)]^1 \text{ then} \\ [\texttt{x} \leftarrow \&\texttt{z}_1]^2; \ [\texttt{y} \leftarrow \&\texttt{z}_2]^3 \\ \text{else} \\ [\texttt{x} \leftarrow \&\texttt{z}_2]^4; \ [\texttt{y} \leftarrow \&\texttt{z}_1]^5 \\ \text{fi} \\ [\text{stop}]^6 \end{array}
```

Where do x and y point to with what probabilities?

Points-To Matrix vs Points-To Tensor

$$\begin{split} & \text{if } [(z_0 \ \text{mod} \ 2 = 0)]^1 \ \text{then} \\ & [x \leftarrow \& z_1]^2; \ [y \leftarrow \& z_2]^3 \\ & \text{else} \\ & [x \leftarrow \& z_2]^4; \ [y \leftarrow \& z_1]^5 \\ & \text{fi} \\ & [\text{stop}]^6 \end{split}$$

Points-To Matrix

	&x	& y	&z0	&z1	&z2
X	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$
У	0	0	0	$\frac{1}{2}$	$\frac{\overline{1}}{2}$

Points-To Matrix

	$(0, 0, 0, \frac{1}{2}, \frac{1}{2})$ -	$-(0, 0, 0, \frac{1}{2}, \frac{1}{2})$						
Bolzano, 22-26 August 2016	ESSLLI'16	Probabilistic Program Analysis	Slide 43 of 43					
Points-To Tensor								
$\frac{1}{2} \cdot (0,0,0,1,0) \otimes (0,0,0,0,1) + \frac{1}{2} \cdot (0,0,0,0,1) \otimes (0,0,0,1,0)$								