Probabilistic Program Analysis

Data Flow Analysis and Regression

Alessandra Di Pierro University of Verona, Italy alessandra.dipierro@univr.it

Herbert Wiklicky Imperial College London, UK herbert@doc.ic.ac.uk

The problem could be to identify at any program point the variables which are live, i.e. which may later be used in an assignment or test.

- formulation of data-flow equations as set equations (or more generally over a property lattice L).
- (ii) finding or constructing solutions to these equations, for example, via a fixed-point construction.

The problem could be to identify at any program point the variables which are live, i.e. which may later be used in an assignment or test.

- (i) formulation of data-flow equations as set equations (or more generally over a property lattice L),
- (ii) finding or constructing solutions to these equations, for example, via a fixed-point construction.

The problem could be to identify at any program point the variables which are live, i.e. which may later be used in an assignment or test.

- formulation of data-flow equations as set equations (or more generally over a property lattice L),
- (ii) finding or constructing solutions to these equations, for example, via a fixed-point construction.

The problem could be to identify at any program point the variables which are live, i.e. which may later be used in an assignment or test.

- formulation of data-flow equations as set equations (or more generally over a property lattice L),
- (ii) finding or constructing solutions to these equations, for example, via a fixed-point construction.

Consider a program like:

```
[x := 1]^1;

[y := 2]^2;

[x := x + y \mod 4]^3;

if [x > 2]^4 then [z := x]^5 else [z := y]^6 fi
```

Extract statically the control flow relation – i.e. is it possible to go from lable ℓ to label ℓ' ?

$$flow = \{(1,2), (2,3), (3,4), (4,\underline{5}), (4,6)\}$$

Consider a program like:

```
[x := 1]^1;

[y := z]^2;

[x := x + y \mod 4]^3;

if [x > 2]^4 then [z := x]^5 else [z := y]^6 fi
```

Extract statically the control flow relation – i.e. is it possible to go from lable ℓ to label ℓ' ?

$$flow = \{(1,2), (2,3), (3,4), (4,\underline{5}), (4,6)\}$$

Consider a program like:

```
[x := 1]^1;

[y := z]^2;

[x := x + y \mod 4]^3;

if [x > 2]^4 then [z := x]^5 else [z := y]^6 fi
```

Extract statically the control flow relation – i.e. is it possible to go from lable ℓ to label ℓ' ?

$$flow = \{(1,2), (2,3), (3,4), (4,\underline{5}), (4,6)\}$$

Consider a program like:

```
[x := 1]^1;

[y := z]^2;

[x := x + y \mod 4]^3;

if [x > 2]^4 then [z := x]^5 else [z := y]^6 fi
```

Extract statically the control flow relation – i.e. is it possible to go from lable ℓ to label ℓ' ?

flow =
$$\{(1,2), (2,3), (3,4), (4,\underline{5}), (4,6)\}$$

Consider a program like:

```
[x := 1]^1;

[y := z]^2;

[x := x + y \mod 4]^3;

if [x > 2]^4 then [z := x]^5 else [z := y]^6 fi
```

Extract statically the control flow relation – i.e. is it possible to go from lable ℓ to label ℓ' ?

flow =
$$\{(1,2), (2,3), (3,4), (4,\underline{5}), (4,6)\}$$

(Local) Transfer Functions

$$\begin{array}{lll} \operatorname{gen}_{\operatorname{LV}}([x:=a]^\ell) &=& \operatorname{\mathit{FV}}(a) \\ \operatorname{\mathit{gen}}_{\operatorname{LV}}([\operatorname{skip}]^\ell) &=& \emptyset \\ \operatorname{\mathit{gen}}_{\operatorname{LV}}([b]^\ell) &=& \operatorname{\mathit{FV}}(b) \\ \\ \operatorname{\mathit{kill}}_{\operatorname{LV}}([x:=a]^\ell) &=& \{x\} \\ \operatorname{\mathit{kill}}_{\operatorname{LV}}([\operatorname{skip}]^\ell) &=& \emptyset \\ \operatorname{\mathit{kill}}_{\operatorname{LV}}([b]^\ell) &=& \emptyset \end{array}$$

$$\begin{split} f_\ell^{LV}: \mathcal{P}(\mathbf{Var}_\star) &\to \mathcal{P}(\mathbf{Var}_\star) \\ f_\ell^{LV}(X) &= X \setminus \mathit{kill}_{LV}([B]^\ell) \cup \mathit{gen}_{LV}([B]^\ell) \end{split}$$

(Local) Transfer Functions

$$gen_{LV}([x := a]^{\ell}) = FV(a)$$

 $gen_{LV}([skip]^{\ell}) = \emptyset$
 $gen_{LV}([b]^{\ell}) = FV(b)$
 $kill_{LV}([x := a]^{\ell}) = \{x\}$
 $kill_{LV}([skip]^{\ell}) = \emptyset$
 $kill_{LV}([b]^{\ell}) = \emptyset$

$$\begin{split} f_\ell^{LV}: \mathcal{P}(\mathbf{Var}_\star) &\to \mathcal{P}(\mathbf{Var}_\star) \\ f_\ell^{LV}(X) &= X \setminus \mathit{kill}_{LV}([B]^\ell) \cup \mathit{gen}_{LV}([B]^\ell) \end{split}$$

(Local) Transfer Functions

$$gen_{LV}([x := a]^{\ell}) = FV(a)$$

 $gen_{LV}([skip]^{\ell}) = \emptyset$
 $gen_{LV}([b]^{\ell}) = FV(b)$
 $kill_{LV}([x := a]^{\ell}) = \{x\}$
 $kill_{LV}([skip]^{\ell}) = \emptyset$
 $kill_{LV}([b]^{\ell}) = \emptyset$

$$\begin{split} f_\ell^{\mathsf{LV}} : \mathcal{P}(\mathbf{Var}_\star) &\to \mathcal{P}(\mathbf{Var}_\star) \\ f_\ell^{\mathsf{LV}}(X) &= X \setminus \mathit{kill}_{\mathsf{LV}}([B]^\ell) \cup \mathit{gen}_{\mathsf{LV}}([B]^\ell) \end{split}$$

(Global) Control Flow

Formulate equations based on the control flow (relations):

$$\begin{array}{lcl} \mathsf{LV}_{\textit{entry}}(\ell) & = & \mathit{f}_{\ell}^{\mathit{LV}}(\mathsf{LV}_{\textit{exit}}(\ell)) \\ \mathsf{LV}_{\textit{exit}}(\ell) & = & \bigcup_{(\ell,\ell') \in \textit{flow}} \mathsf{LV}_{\textit{entry}}(\ell') \end{array}$$

Monotone Framework: Generalise this setting to lattice equations by using a general property lattice L instead of $\mathcal{P}(X)$.

This also gives ways to effectively construct solutions via various lattice theoretic concepts (fixed points, worklist, etc.)

(Global) Control Flow

Formulate equations based on the control flow (relations):

$$\begin{array}{lcl} \mathsf{LV}_{\textit{entry}}(\ell) & = & \mathit{f}_{\ell}^{\mathit{LV}}(\mathsf{LV}_{\textit{exit}}(\ell)) \\ \mathsf{LV}_{\textit{exit}}(\ell) & = & \bigcup_{(\ell,\ell') \in \textit{flow}} \mathsf{LV}_{\textit{entry}}(\ell') \end{array}$$

Monotone Framework: Generalise this setting to lattice equations by using a general property lattice L instead of $\mathcal{P}(X)$.

This also gives ways to effectively construct solutions via various lattice theoretic concepts (fixed points, worklist, etc.)

(Global) Control Flow

Formulate equations based on the control flow (relations):

$$\begin{array}{lcl} \mathsf{LV}_{\textit{entry}}(\ell) & = & \mathit{f}_{\ell}^{\mathit{LV}}(\mathsf{LV}_{\textit{exit}}(\ell)) \\ \mathsf{LV}_{\textit{exit}}(\ell) & = & \bigcup_{(\ell,\ell') \in \textit{flow}} \mathsf{LV}_{\textit{entry}}(\ell') \end{array}$$

Monotone Framework: Generalise this setting to lattice equations by using a general property lattice L instead of $\mathcal{P}(X)$.

This also gives ways to effectively construct solutions via various lattice theoretic concepts (fixed points, worklist, etc.)

$$[x := 1]^1$$
; $[y := 2]^2$; $[x := x + y \mod 4]^3$;
if $[x > 2]^4$ then $[z := x]^5$ else $[z := y]^6$ fi

$$[x := 1]^1$$
; $[y := 2]^2$; $[x := x + y \mod 4]^3$;
if $[x > 2]^4$ then $[z := x]^5$ else $[z := y]^6$ fi

Control Flow:

$$\textit{flow} = \{(1,2), (2,3), (3,4), (4,\underline{5}), (4,6)\}$$

$$[x := 1]^1$$
; $[y := 2]^2$; $[x := x + y \mod 4]^3$;
if $[x > 2]^4$ then $[z := x]^5$ else $[z := y]^6$ fi

Auxiliary Functions:

	$gen_{LV}(\ell)$	$\textit{kill}_{LV}(\ell)$
1	Ø	{ <i>X</i> }
2	Ø	{ <i>y</i> }
3	{ <i>x</i> , <i>y</i> }	{ x }
4	{ x }	Ø
5	{ x }	{ <i>z</i> }
6	{ y }	{ <i>z</i> }

$$[x := 1]^1$$
; $[y := 2]^2$; $[x := x + y \mod 4]^3$; if $[x > 2]^4$ then $[z := x]^5$ else $[z := y]^6$ fi

Equations (over $L = \mathcal{P}(\mathbf{Var})$)

$$\begin{array}{lcl} \mathsf{LV}_{entry}(1) & = & \mathsf{LV}_{exit}(1) \setminus \{x\} \\ \mathsf{LV}_{entry}(2) & = & \mathsf{LV}_{exit}(2) \setminus \{y\} \\ \mathsf{LV}_{entry}(3) & = & \mathsf{LV}_{exit}(3) \setminus \{x\} \cup \{x,y\} \\ \mathsf{LV}_{entry}(4) & = & \mathsf{LV}_{exit}(4) \cup \{x\} \\ \mathsf{LV}_{entry}(5) & = & \mathsf{LV}_{exit}(5) \setminus \{z\} \cup \{x\} \\ \mathsf{LV}_{entry}(6) & = & \mathsf{LV}_{exit}(6) \setminus \{z\} \cup \{y\} \end{array}$$

$$[x := 1]^1$$
; $[y := 2]^2$; $[x := x + y \mod 4]^3$;
if $[x > 2]^4$ then $[z := x]^5$ else $[z := y]^6$ fi

Equations (over $L = \mathcal{P}(\mathbf{Var})$)

$$\begin{array}{lcl} \mathsf{LV}_{\textit{exit}}(1) & = & \mathsf{LV}_{\textit{entry}}(2) \\ \mathsf{LV}_{\textit{exit}}(2) & = & \mathsf{LV}_{\textit{entry}}(3) \\ \mathsf{LV}_{\textit{exit}}(3) & = & \mathsf{LV}_{\textit{entry}}(4) \\ \mathsf{LV}_{\textit{exit}}(4) & = & \mathsf{LV}_{\textit{entry}}(5) \cup \mathsf{LV}_{\textit{entry}}(6) \\ \mathsf{LV}_{\textit{exit}}(5) & = & \emptyset \\ \mathsf{LV}_{\textit{exit}}(6) & = & \emptyset \end{array}$$

$$[x := 1]^1$$
; $[y := 2]^2$; $[x := x + y \mod 4]^3$; if $[x > 2]^4$ then $[z := x]^5$ else $[z := y]^6$ fi

Solutions (e.g. by fixed point iteration)

A Probabilistic Language (Variation)

We consider a simple language with a random assignment $\rho = \{\langle r_1, p_1 \rangle, \dots \langle r_n, p_n \rangle\}$ (rather than a probabilistic choice).

```
S ::= skip

x := e(x_1, ..., x_n)

x ?= \rho

S_1; S_2

f b \text{ then } S_1 \text{ else } S_2 \text{ fi}

while b \text{ do } S \text{ od}
```

A Probabilistic Language (Variation)

We consider a simple language with a random assignment $\rho = \{\langle r_1, p_1 \rangle, \dots \langle r_n, p_n \rangle\}$ (rather than a probabilistic choice).

$$S$$
 ::= $[\text{skip}]^{\ell}$
 $[x := e(x_1, ..., x_n)]^{\ell}$
 $[x ?= \rho]^{\ell}$
 $S_1 ; S_2$
 $\text{if } [b]^{\ell} \text{ then } S_1 \text{ else } S_2 \text{ fi}$
 $\text{while } [b]^{\ell} \text{ do } S \text{ od}$

Probabilistic Semantics

SOS:

R0
$$\langle \text{stop}, s \rangle \Rightarrow_1 \langle \text{stop}, s \rangle$$

R1
$$\langle \text{skip}, s \rangle \Rightarrow_1 \langle \text{stop}, s \rangle$$

R2
$$\langle v := e, s \rangle \Rightarrow_1 \langle \text{stop}, s[v \mapsto \mathcal{E}(e)s] \rangle$$

R3
$$\langle v := \rho, s \rangle \Rightarrow_{\rho(r)} \langle \text{stop}, s[v \mapsto r] \rangle$$

. .

LOS

$$\mathbf{T}(\langle \ell_1, \rho, \ell_2 \rangle) = \mathbf{U}(\mathbf{x} \leftarrow a) \otimes \mathbf{E}(\ell_1, \ell_2) \qquad \text{for } [x := a]^{\ell_1}$$

$$\mathbf{T}(\langle \ell_1, \rho, \ell_2 \rangle) = (\sum_i \rho(r_i) \cdot \mathbf{U}(\mathbf{x} \leftarrow r_i)) \otimes \mathbf{E}(\ell_1, \ell_2) \qquad \text{for } [x := \rho]^{\ell_1}$$

Probabilistic Semantics

SOS:

R0
$$\langle \text{stop}, s \rangle \Rightarrow_1 \langle \text{stop}, s \rangle$$

R1
$$\langle \text{skip}, s \rangle \Rightarrow_1 \langle \text{stop}, s \rangle$$

R2
$$\langle v := e, s \rangle \Rightarrow_1 \langle \text{stop}, s[v \mapsto \mathcal{E}(e)s] \rangle$$

R3
$$\langle v ?= \rho, s \rangle \Rightarrow_{\rho(r)} \langle \text{stop}, s[v \mapsto r] \rangle$$

. .

LOS:

. .

. . .

(Local) Transfer Functions (extended)

$$\begin{aligned} gen_{\mathsf{LV}}([x:=a]^\ell) &= FV(a) \\ gen_{\mathsf{LV}}([x:=\rho]^\ell) &= \emptyset \\ gen_{\mathsf{LV}}([\mathsf{skip}]^\ell) &= \emptyset \\ gen_{\mathsf{LV}}([b]^\ell) &= FV(b) \end{aligned}$$

$$kill_{\mathsf{LV}}([x:=a]^\ell) &= \{x\}$$

$$kill_{\mathsf{LV}}([x:=\rho]^\ell) &= \{x\}$$

$$kill_{\mathsf{LV}}([\mathsf{skip}]^\ell) &= \emptyset$$

$$kill_{\mathsf{LV}}([\mathsf{skip}]^\ell) &= \emptyset$$

$$f_\ell^{\mathsf{LV}}: \mathcal{P}(\mathsf{Var}_\star) \to \mathcal{P}(\mathsf{Var}_\star)$$

$$f_\ell^{\mathsf{LV}}(X) &= X \setminus kill_{\mathsf{LV}}([B]^\ell) \cup gen_{\mathsf{LV}}([B]^\ell)$$

(Local) Transfer Functions (extended)

$$\begin{array}{lll} \operatorname{gen}_{\operatorname{LV}}([x:=a]^\ell) &=& \operatorname{\mathit{FV}}(a) \\ \operatorname{\mathit{gen}}_{\operatorname{LV}}([x\:?=\rho]^\ell) &=& \emptyset \\ \operatorname{\mathit{gen}}_{\operatorname{LV}}([\operatorname{skip}]^\ell) &=& \emptyset \\ \operatorname{\mathit{gen}}_{\operatorname{LV}}([b]^\ell) &=& \operatorname{\mathit{FV}}(b) \\ \\ \operatorname{\mathit{kill}}_{\operatorname{LV}}([x:=a]^\ell) &=& \{x\} \\ \operatorname{\mathit{kill}}_{\operatorname{LV}}([x\:?=\rho]^\ell) &=& \{x\} \\ \operatorname{\mathit{kill}}_{\operatorname{LV}}([\operatorname{skip}]^\ell) &=& \emptyset \\ \operatorname{\mathit{kill}}_{\operatorname{LV}}([b]^\ell) &=& \emptyset \end{array}$$

$$\begin{split} f_\ell^{LV}: \mathcal{P}(\mathbf{Var}_\star) &\to \mathcal{P}(\mathbf{Var}_\star) \\ f_\ell^{LV}(X) &= X \setminus \mathit{kill}_{\mathsf{LV}}([B]^\ell) \cup \mathit{gen}_{\mathsf{LV}}([B]^\ell) \end{split}$$

(Local) Transfer Functions (extended)

$$\begin{split} gen_{\text{LV}}([x:=a]^\ell) &= FV(a) \\ gen_{\text{LV}}([x?=\rho]^\ell) &= \emptyset \\ gen_{\text{LV}}([\texttt{skip}]^\ell) &= \emptyset \\ gen_{\text{LV}}([\texttt{bl}^\ell]) &= FV(b) \\ \\ kill_{\text{LV}}([x:=a]^\ell) &= \{x\} \\ kill_{\text{LV}}([x?=\rho]^\ell) &= \{x\} \\ kill_{\text{LV}}([\texttt{skip}]^\ell) &= \emptyset \\ kill_{\text{LV}}([\texttt{skip}]^\ell) &= \emptyset \\ f_\ell^{LV}: \mathcal{P}(\textbf{Var}_\star) &\to \mathcal{P}(\textbf{Var}_\star) \\ f_\ell^{LV}(X) &= X \setminus kill_{\text{LV}}([B]^\ell) \cup gen_{\text{LV}}([B]^\ell) \end{split}$$

Probabilistic Analysis

In the classical analysis the undecidability of predicates in tests leads us to consider a conservative approach: Everything is possible, i.e. tests are treated as non-deterministic choices in the control flow.

In a probabilistic analysis we aim instead in providing good (optimal) estimates for branch(ing) probabilities when we construct the probabilistic control flow.

Probabilistic Analysis

In the classical analysis the undecidability of predicates in tests leads us to consider a conservative approach: Everything is possible, i.e. tests are treated as non-deterministic choices in the control flow.

In a probabilistic analysis we aim instead in providing good (optimal) estimates for branch(ing) probabilities when we construct the probabilistic control flow.

Consider, for example, instead of

```
[x := 1]^1;

[y := 2]^2;

[x := x + y \mod 4]^3;

if [x > 2]^4 then [z := x]^5 else [z := y]^6 fi
```

a probabilistic program like:

```
[x ?= \{0,1\}]^1;

[y ?= \{0,1,2,3\}]^2;

[x := x + y \mod 4]^3;

if [x > 2]^4 then [z := x]^5 else [z := y]^6 fi
```

Consider, for example, instead of

```
[x := 1]^1;

[y := 2]^2;

[x := x + y \mod 4]^3;

if [x > 2]^4 then [z := x]^5 else [z := y]^6 fi
```

a probabilistic program like:

```
[x ?= \{0,1\}]^1;

[y ?= \{0,1,2,3\}]^2;

[x := x + y \mod 4]^3;

if [x > 2]^4 then [z := x]^5 else [z := y]^6 fi
```

Probabilistic Control Flow and Equations

We can also use the classical control flow relation (as long as we do not consider a randomised choose statement).

However, we can't use the same equations, because:

- (i) We want to express probabilities of properties not just (safe approximations) of properties.
- (ii) We also need to consider relational aspects, i.e. correlations e.g. between the sign of variables.
- (iii) We would like/need to estimate the branching probabilities when tests are evaluated.
- (iv) We often also need probabilistic versions of the transfer functions.

Probabilistic Control Flow and Equations

We can also use the classical control flow relation (as long as we do not consider a randomised choose statement).

However, we can't use the same equations, because:

- (i) We want to express probabilities of properties not just (safe approximations) of properties.
- (ii) We also need to consider relational aspects, i.e. correlations e.g. between the sign of variables.
- (iii) We would like/need to estimate the branching probabilities when tests are evaluated.
- (iv) We often also need probabilistic versions of the transfer functions.

Probabilistic Control Flow and Equations

We can also use the classical control flow relation (as long as we do not consider a randomised choose statement).

However, we can't use the same equations, because:

- (i) We want to express probabilities of properties not just (safe approximations) of properties.
- (ii) We also need to consider relational aspects, i.e. correlations e.g. between the sign of variables.
- (iii) We would like/need to estimate the branching probabilities when tests are evaluated.
- (iv) We often also need probabilistic versions of the transfer functions.

Probabilistic Control Flow and Equations

We can also use the classical control flow relation (as long as we do not consider a randomised choose statement).

However, we can't use the same equations, because:

- (i) We want to express probabilities of properties not just (safe approximations) of properties.
- (ii) We also need to consider relational aspects, i.e. correlations e.g. between the sign of variables.
- (iii) We would like/need to estimate the branching probabilities when tests are evaluated.
- (iv) We often also need probabilistic versions of the transfer functions.

Probabilistic Control Flow and Equations

We can also use the classical control flow relation (as long as we do not consider a randomised choose statement).

However, we can't use the same equations, because:

- (i) We want to express probabilities of properties not just (safe approximations) of properties.
- (ii) We also need to consider relational aspects, i.e. correlations e.g. between the sign of variables.
- (iii) We would like/need to estimate the branching probabilities when tests are evaluated.
- (iv) We often also need probabilistic versions of the transfer functions.

Probabilistic Control Flow and Equations

We can also use the classical control flow relation (as long as we do not consider a randomised choose statement).

However, we can't use the same equations, because:

- (i) We want to express probabilities of properties not just (safe approximations) of properties.
- (ii) We also need to consider relational aspects, i.e. correlations e.g. between the sign of variables.
- (iii) We would like/need to estimate the branching probabilities when tests are evaluated.
- (iv) We often also need probabilistic versions of the transfer functions.

When we look at the local transfer functions f_ℓ then we now need some probabilistic version of these. For example: given probability distributions describing the values of x and y, what is the probability distribution describing possible values of $x + y \mod 4$.

- Construction of a corresponding operator.
- Abstraction of the concrete semantics.
- Testing and Profiling also give us estimates.

When we look at the local transfer functions f_ℓ then we now need some probabilistic version of these. For example: given probability distributions describing the values of x and y, what is the probability distribution describing possible values of $x+y \mod 4$.

- Construction of a corresponding operator.
- Abstraction of the concrete semantics.
- Testing and Profiling also give us estimates.

When we look at the local transfer functions f_ℓ then we now need some probabilistic version of these. For example: given probability distributions describing the values of x and y, what is the probability distribution describing possible values of $x + y \mod 4$.

- Construction of a corresponding operator.
- Abstraction of the concrete semantics.
- Testing and Profiling also give us estimates.

When we look at the local transfer functions f_ℓ then we now need some probabilistic version of these. For example: given probability distributions describing the values of x and y, what is the probability distribution describing possible values of $x + y \mod 4$.

- Construction of a corresponding operator.
- Abstraction of the concrete semantics.
- Testing and Profiling also give us estimates.

When we look at the local transfer functions f_ℓ then we now need some probabilistic version of these. For example: given probability distributions describing the values of x and y, what is the probability distribution describing possible values of $x + y \mod 4$.

- Construction of a corresponding operator.
- Abstraction of the concrete semantics.
- Testing and Profiling also give us estimates.

Probabilistic Abstract Interpretation

For an abstraction $\mathbf{A}: \mathcal{V}(\mathbf{State}) \to \mathcal{V}(L)$ we get for a concrete transfer operator \mathbf{F} an abstract, (least-square) optimal estimate via $\mathbf{F}^{\#} = \mathbf{A}^{\dagger}\mathbf{F}\mathbf{A}$ in analogy to Abstract Interpretation.

Definition

Let $\mathcal C$ and $\mathcal D$ be two Hilbert spaces and $\mathbf A:\mathcal C\to\mathcal D$ a bounded linear map. A bounded linear map $\mathbf A^\dagger=\mathbf G:\mathcal D\to\mathcal C$ is the Moore-Penrose pseudo-inverse of $\mathbf A$ iff

- (i) $\mathbf{A} \circ \mathbf{G} = \mathbf{P}_A$,
- (ii) $\mathbf{G} \circ \mathbf{A} = \mathbf{P}_G$,

where P_A and P_G denote orthogonal projections onto the ranges of **A** and **G**.

Probabilistic Abstract Interpretation

For an abstraction $\mathbf{A}: \mathcal{V}(\mathbf{State}) \to \mathcal{V}(L)$ we get for a concrete transfer operator \mathbf{F} an abstract, (least-square) optimal estimate via $\mathbf{F}^{\#} = \mathbf{A}^{\dagger}\mathbf{F}\mathbf{A}$ in analogy to Abstract Interpretation.

Definition

Let $\mathcal C$ and $\mathcal D$ be two Hilbert spaces and $\mathbf A:\mathcal C\to\mathcal D$ a bounded linear map. A bounded linear map $\mathbf A^\dagger=\mathbf G:\mathcal D\to\mathcal C$ is the Moore-Penrose pseudo-inverse of $\mathbf A$ iff

- (i) $\mathbf{A} \circ \mathbf{G} = \mathbf{P}_{A}$,
- (ii) $\mathbf{G} \circ \mathbf{A} = \mathbf{P}_{G}$,

where P_A and P_G denote orthogonal projections onto the ranges of **A** and **G**.

Branch Probabilities

Definition

Given a program S_{ℓ} with $init(S_{\ell}) = \ell$ and a probability distribution ρ on **State**, the probability $p_{\ell,\ell'}(\rho)$ that the control is flowing from ℓ to ℓ' is defined as:

$$p_{\ell,\ell'}(\rho) = \sum_{s} \left\{ p \cdot \rho(s) \mid \exists s' \text{ s.t. } \langle S_{\ell}, s \rangle \Rightarrow_{p} \left\langle S_{\ell'}, s' \right\rangle \right\}.$$

The branch probabilities thus also depend on an initial distribution, even for deterministic programs.

One can implement the test b as projections P(b) which filter out states which do not pass the test.

Branch Probabilities

Definition

Given a program S_{ℓ} with $init(S_{\ell}) = \ell$ and a probability distribution ρ on **State**, the probability $p_{\ell,\ell'}(\rho)$ that the control is flowing from ℓ to ℓ' is defined as:

$$p_{\ell,\ell'}(\rho) = \sum_{s} \left\{ p \cdot \rho(s) \mid \exists s' \text{ s.t. } \langle S_{\ell}, s \rangle \Rightarrow_{p} \left\langle S_{\ell'}, s' \right\rangle \right\}.$$

The branch probabilities thus also depend on an initial distribution, even for deterministic programs.

One can implement the test b as projections P(b) which filter out states which do not pass the test.

Branch Probabilities

Definition

Given a program S_{ℓ} with $init(S_{\ell}) = \ell$ and a probability distribution ρ on **State**, the probability $p_{\ell,\ell'}(\rho)$ that the control is flowing from ℓ to ℓ' is defined as:

$$p_{\ell,\ell'}(\rho) = \sum_{s} \left\{ p \cdot \rho(s) \mid \exists s' \text{ s.t. } \langle S_{\ell}, s \rangle \Rightarrow_{p} \left\langle S_{\ell'}, s' \right\rangle \right\}.$$

The branch probabilities thus also depend on an initial distribution, even for deterministic programs.

One can implement the test b as projections P(b) which filter out states which do not pass the test.

Consider the simple program with $x \in \{0, 1, 2\}$

if
$$[x >= 1]^1$$
 then $[x := x - 1]^2$ else $[\text{skip}]^3$ fi

Then the test b = (x >= 1) is represented by the projection

$$\mathbf{P}(x>=1) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \mathbf{P}(x>=1)^{\perp} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

For $\rho = \{\langle 0, p_0 \rangle, \langle 1, p_1 \rangle, \langle 2, p_2 \rangle\} = (p_0, p_1, p_2)$ we can compute the branch(ing) probabilities as $\rho \mathbf{P}(x >= 1) = (0, p_1, p_2)$ and

$$p_{1,2}(\rho) = \|\rho \cdot \mathbf{P}(x >= 1)\|_1 = p_1 + p_2,$$

$$p_{1,3}(\rho) = \|\rho \cdot \mathbf{P}^{\perp}(x >= 1)\|_1 = p_0.$$

Consider the simple program with $x \in \{0, 1, 2\}$

if
$$[x >= 1]^1$$
 then $[x := x - 1]^2$ else $[\text{skip}]^3$ fi

Then the test b = (x >= 1) is represented by the projection:

$$\mathbf{P}(x>=1) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \mathbf{P}(x>=1)^{\perp} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

For $\rho = \{\langle 0, p_0 \rangle, \langle 1, p_1 \rangle, \langle 2, p_2 \rangle\} = (p_0, p_1, p_2)$ we can compute the branch(ing) probabilities as $\rho \mathbf{P}(x >= 1) = (0, p_1, p_2)$ and

$$p_{1,2}(\rho) = \|\rho \cdot \mathbf{P}(x >= 1)\|_1 = p_1 + p_2,$$

$$p_{1,3}(\rho) = \|\rho \cdot \mathbf{P}^{\perp}(x >= 1)\|_1 = p_0.$$

Consider the simple program with $x \in \{0, 1, 2\}$

if
$$[x >= 1]^1$$
 then $[x := x - 1]^2$ else $[\text{skip}]^3$ fi

Then the test b = (x >= 1) is represented by the projection:

$$\mathbf{P}(x>=1) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \mathbf{P}(x>=1)^{\perp} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

For $\rho = \{\langle 0, p_0 \rangle, \langle 1, p_1 \rangle, \langle 2, p_2 \rangle\} = (p_0, p_1, p_2)$ we can compute the branch(ing) probabilities as $\rho \mathbf{P}(x >= 1) = (0, p_1, p_2)$ and

$$p_{1,2}(\rho) = \|\rho \cdot \mathbf{P}(x >= 1)\|_1 = p_1 + p_2,$$

$$p_{1,3}(\rho) = \|\rho \cdot \mathbf{P}^{\perp}(x >= 1)\|_1 = p_0.$$

Consider the simple program with $x \in \{0, 1, 2\}$

if
$$[x >= 1]^1$$
 then $[x := x - 1]^2$ else $[\text{skip}]^3$ fi

Then the test b = (x >= 1) is represented by the projection:

$$\mathbf{P}(x>=1) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \mathbf{P}(x>=1)^{\perp} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

For $\rho = \{\langle 0, p_0 \rangle, \langle 1, p_1 \rangle, \langle 2, p_2 \rangle\} = (p_0, p_1, p_2)$ we can compute the branch(ing) probabilities as $\rho \mathbf{P}(x >= 1) = (0, p_1, p_2)$ and

$$p_{1,2}(\rho) = \|\rho \cdot \mathbf{P}(x >= 1)\|_1 = p_1 + p_2,$$

$$p_{1,3}(\rho) = \|\rho \cdot \mathbf{P}^{\perp}(x>=1)\|_1 = p_0.$$

If we consider abstract states $\rho^{\#} \in \mathcal{V}(L)$ we need abstract versions $\mathbf{P}(b)^{\#}$ of $\mathbf{P}(b)$ to compute the branch probabilities.

In doing so we must guarantee that for $\rho^{\#} = \rho \mathbf{A}$:

$$\rho \mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \rho^{\#}\mathbf{P}^{\#}(b)$$
 $\rho \mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \rho \mathbf{A}\mathbf{P}^{\#}(b)$
 $\mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \mathbf{A}\mathbf{P}^{\#}(b)$

Ideally, to get $\mathbf{P}^{\#}$ if we multiply the last equation from the left with \mathbf{A}^{-1} . However, \mathbf{A} is in general not not invertible. The optimal (least-square) estimate can be obtained via

$$\mathbf{A}^{\dagger}\mathbf{P}(b)\mathbf{A} = \mathbf{A}^{\dagger}\mathbf{A}\mathbf{P}^{\#}(b)$$

 $\mathbf{A}^{\dagger}\mathbf{P}(b)\mathbf{A} = \mathbf{P}^{\#}(b)$

If we consider abstract states $\rho^\# \in \mathcal{V}(L)$ we need abstract versions $\mathbf{P}(b)^\#$ of $\mathbf{P}(b)$ to compute the branch probabilities. In doing so we must guarantee that for $\rho^\# = \rho \mathbf{A}$:

$$\rho \mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \rho^{\#}\mathbf{P}^{\#}(b)$$
 $\rho \mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \rho \mathbf{A}\mathbf{P}^{\#}(b)$
 $\mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \mathbf{A}\mathbf{P}^{\#}(b)$

Ideally, to get $\mathbf{P}^{\#}$ if we multiply the last equation from the left with \mathbf{A}^{-1} . However, \mathbf{A} is in general not not invertible. The optimal (least-square) estimate can be obtained via

$$A^{\dagger}P(b)A = A^{\dagger}AP^{\#}(b)$$

 $A^{\dagger}P(b)A = P^{\#}(b)$

If we consider abstract states $\rho^\# \in \mathcal{V}(L)$ we need abstract versions $\mathbf{P}(b)^\#$ of $\mathbf{P}(b)$ to compute the branch probabilities. In doing so we must guarantee that for $\rho^\# = \rho \mathbf{A}$:

$$\rho \mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \rho^{\#}\mathbf{P}^{\#}(b)$$
 $\rho \mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \rho \mathbf{A}\mathbf{P}^{\#}(b)$
 $\mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \mathbf{A}\mathbf{P}^{\#}(b)$

Ideally, to get $\mathbf{P}^{\#}$ if we multiply the last equation from the left with \mathbf{A}^{-1} . However, \mathbf{A} is in general not not invertible.

The optimal (least-square) estimate can be obtained via

$$\mathbf{A}^{\dagger}\mathbf{P}(b)\mathbf{A} = \mathbf{A}^{\dagger}\mathbf{A}\mathbf{P}^{\#}(b)$$

 $\mathbf{A}^{\dagger}\mathbf{P}(b)\mathbf{A} = \mathbf{P}^{\#}(b)$

If we consider abstract states $\rho^\# \in \mathcal{V}(L)$ we need abstract versions $\mathbf{P}(b)^\#$ of $\mathbf{P}(b)$ to compute the branch probabilities. In doing so we must guarantee that for $\rho^\# = \rho \mathbf{A}$:

$$\rho \mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \rho^{\#}\mathbf{P}^{\#}(b)$$
 $\rho \mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \rho \mathbf{A}\mathbf{P}^{\#}(b)$
 $\mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \mathbf{A}\mathbf{P}^{\#}(b)$

Ideally, to get $\mathbf{P}^{\#}$ if we multiply the last equation from the left with \mathbf{A}^{-1} . However, \mathbf{A} is in general not not invertible. The optimal (least-square) estimate can be obtained via

$$\mathbf{A}^{\dagger}\mathbf{P}(b)\mathbf{A} = \mathbf{A}^{\dagger}\mathbf{A}\mathbf{P}^{\#}(b)$$

 $\mathbf{A}^{\dagger}\mathbf{P}(b)\mathbf{A} = \mathbf{P}^{\#}(b)$

If we consider abstract states $\rho^\# \in \mathcal{V}(L)$ we need abstract versions $\mathbf{P}(b)^\#$ of $\mathbf{P}(b)$ to compute the branch probabilities. In doing so we must guarantee that for $\rho^\# = \rho \mathbf{A}$:

$$\rho \mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \rho^{\#}\mathbf{P}^{\#}(b)$$
 $\rho \mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \rho \mathbf{A}\mathbf{P}^{\#}(b)$
 $\mathbf{P}(b)\mathbf{A} \stackrel{!}{=} \mathbf{A}\mathbf{P}^{\#}(b)$

Ideally, to get $\mathbf{P}^{\#}$ if we multiply the last equation from the left with \mathbf{A}^{-1} . However, \mathbf{A} is in general not not invertible. The optimal (least-square) estimate can be obtained via

$$A^{\dagger}P(b)A = A^{\dagger}AP^{\#}(b)$$

 $A^{\dagger}P(b)A = P^{\#}(b)$

An Example: Prime Numbers are Odd

Consider the following program that counts the prime numbers.

$$\begin{split} &[i:=2]^1;\\ &\text{while }[i<100]^2\text{ do}\\ &\text{if }[\textit{prime}(i)]^3\text{ then }[p:=p+1]^4\\ &\text{else }[\text{skip}]^5\text{ fi};\\ &[i:=i+1]^6\\ &\text{od} \end{split}$$

Essential is the abstract branch probability for $[.]^3$:

$$P(prime(i))^{\#} = A_e^{\dagger} P(prime(i)) A_e,$$

An Example: Prime Numbers are Odd

Consider the following program that counts the prime numbers.

$$\begin{split} &[i:=2]^1;\\ &\text{while } [i<100]^2 \text{ do}\\ &\text{if } [prime(i)]^3 \text{ then } [p:=p+1]^4\\ &\text{else } [\text{skip}]^5 \text{ fi};\\ &[i:=i+1]^6\\ &\text{od} \end{split}$$

Essential is the abstract branch probability for [.]3:

$$\mathbf{P}(prime(i))^{\#} = \mathbf{A}_{e}^{\dagger}\mathbf{P}(prime(i))\mathbf{A}_{e},$$

An Example: Abstraction

Test operators:

$$\mathbf{P}_e = (\mathbf{P}(\text{even}(n)))_{ii} = \begin{cases} 1 & \text{if } i = 2k \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{P}_p = (\mathbf{P}(\mathsf{prime}(n)))_{ii} = \left\{ egin{array}{ll} 1 & \textit{if } \mathsf{prime}(i) \\ 0 & \textit{otherwise} \end{array} \right.$$

Abstraction Operators:

$$(\mathbf{A}_e)_{ij} = \begin{cases} 1 & \text{if } i = 2k+1 \ \land \ j = 2 \\ 1 & \text{if } i = 2k \ \land \ j = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$(\mathbf{A}_{\rho})_{ij} = \left\{ egin{array}{ll} 1 & ext{if } \mathsf{prime}(i) \ \land \ j = 2 \\ 1 & ext{if } \neg \mathsf{prime}(i) \ \land \ j = 1 \\ 0 & otherwise \end{array} \right.$$

An Example: Abstraction

Test operators:

$$\mathbf{P}_e = (\mathbf{P}(\text{even}(n)))_{ii} = \begin{cases} 1 & \text{if } i = 2k \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{P}_p = (\mathbf{P}(\text{prime}(n)))_{ii} = \begin{cases} 1 & \text{if prime}(i) \\ 0 & \text{otherwise} \end{cases}$$

Abstraction Operators:

$$(\mathbf{A}_e)_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } i = 2k+1 \ \land \ j = 2 \\ 1 & \text{if } i = 2k \ \land \ j = 1 \\ 0 & \textit{otherwise} \end{array} \right.$$

$$(\mathbf{A}_{p})_{ij} = \left\{ egin{array}{ll} 1 & ext{if } \mathsf{prime}(i) \ \land \ j = 2 \ 1 & ext{if } \neg \mathsf{prime}(i) \ \land \ j = 1 \ 0 & otherwise \end{array}
ight.$$

An Example: Abstract Branch Probability

For ranges [0, ..., n] we get:

The entries in the upper left corner of $\mathbf{A}_e^{\dagger}\mathbf{P}_p\mathbf{A}_e$ give us the chances that an even number is also a prime number, etc.

Note that the positive and negative matrices always add up to I.

Probabilistic Dataflow Equations

Similar to classical DFA we formulate linear equations:

$$\begin{array}{lcl} \textit{Analysis}_{\bullet}(\ell) & = & \textit{Analysis}_{\circ}(\ell) \cdot \textbf{F}_{\ell}^{\#} \\ \textit{Analysis}_{\circ}(\ell) & = & \left\{ \begin{array}{ll} \iota, \text{if } \ell \in E \\ \sum \{\textit{Analysis}_{\bullet}(\ell') \cdot \textbf{P}(\ell', \ell)^{\#} \mid (\ell', \ell) \in F\}, \text{else} \end{array} \right. \end{array}$$

A simpler version can be obtained by static branch prediction:

$$\textit{Analysis}_{\circ}(\ell) = \sum \{\textit{p}_{\ell',\ell} \cdot \textit{Analysis}_{\bullet}(\ell') \mid (\ell',\ell) \in \textit{F}\}$$

Abstract branch probabilities, i.e. estimates for the test operators $\mathbf{P}(\ell',\ell)^{\#}$, can be estimated also via a different analysis Prob, in a first phase before the actual Analysis.

Probabilistic Dataflow Equations

Similar to classical DFA we formulate linear equations:

$$\begin{array}{lcl} \textit{Analysis}_{\bullet}(\ell) & = & \textit{Analysis}_{\circ}(\ell) \cdot \textbf{F}_{\ell}^{\#} \\ \\ \textit{Analysis}_{\circ}(\ell) & = & \begin{cases} \ \iota, \text{if } \ell \in E \\ \ \sum \{\textit{Analysis}_{\bullet}(\ell') \cdot \textbf{P}(\ell', \ell)^{\#} \mid (\ell', \ell) \in F\}, \text{else} \end{cases} \end{array}$$

A simpler version can be obtained by static branch prediction:

$$\textit{Analysis}_{\circ}(\ell) = \sum \{\textit{p}_{\ell',\ell} \cdot \textit{Analysis}_{\bullet}(\ell') \mid (\ell',\ell) \in \textit{F}\}$$

Abstract branch probabilities, i.e. estimates for the test operators $\mathbf{P}(\ell',\ell)^{\#}$, can be estimated also via a different analysis Prob, in a first phase before the actual Analysis.

Probabilistic Dataflow Equations

Similar to classical DFA we formulate linear equations:

$$\begin{array}{lcl} \textit{Analysis}_{\bullet}(\ell) & = & \textit{Analysis}_{\circ}(\ell) \cdot \textbf{F}_{\ell}^{\#} \\ \\ \textit{Analysis}_{\circ}(\ell) & = & \begin{cases} \ \iota, \text{if} \ \ell \in E \\ \ \sum \{\textit{Analysis}_{\bullet}(\ell') \cdot \textbf{P}(\ell',\ell)^{\#} \mid (\ell',\ell) \in F\}, \text{else} \end{cases} \end{array}$$

A simpler version can be obtained by static branch prediction:

$$\textit{Analysis}_{\circ}(\ell) = \sum \{\textit{p}_{\ell',\ell} \cdot \textit{Analysis}_{\bullet}(\ell') \mid (\ell',\ell) \in \textit{F}\}$$

Abstract branch probabilities, i.e. estimates for the test operators $\mathbf{P}(\ell',\ell)^{\#}$, can be estimated also via a different analysis Prob, in a first phase before the actual Analysis.

Coming back to our previous example and its LV analysis:

$$[x ?= \{0,1\}]^1$$
; $[y ?= \{0,1,2,3\}]^2$; $[x := x + y \mod 4]^3$; if $[x > 2]^4$ then $[z := x]^5$ else $[z := y]^6$ fi

Consider two properties d for 'dead', and l for 'live' and the space $\mathcal{V}(\{0,1\}) = \mathcal{V}(\{d,l\}) = \mathbb{R}^2$ as the property space.

$$\mathbf{L} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\mathbf{K} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$.

$$\mathbf{F}_{\ell} = \mathbf{F}_{\ell}^{LV} : \mathcal{V}(\{0,1\})^{\otimes |\mathbf{Var}|} \to \mathcal{V}(\{0,1\})^{\otimes |\mathbf{Var}|}$$

Coming back to our previous example and its LV analysis:

$$[x ?= \{0,1\}]^1$$
; $[y ?= \{0,1,2,3\}]^2$; $[x := x + y \mod 4]^3$; if $[x > 2]^4$ then $[z := x]^5$ else $[z := y]^6$ fi

Consider two properties d for 'dead', and l for 'live' and the space $\mathcal{V}(\{0,1\}) = \mathcal{V}(\{d,l\}) = \mathbb{R}^2$ as the property space.

$$\mathbf{L} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\mathbf{K} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$.

$$\mathbf{F}_{\ell} = \mathbf{F}_{\ell}^{LV} : \mathcal{V}(\{0,1\})^{\otimes |\textbf{Var}|} \rightarrow \mathcal{V}(\{0,1\})^{\otimes |\textbf{Var}|}$$

Coming back to our previous example and its LV analysis:

$$[x ?= \{0,1\}]^1$$
; $[y ?= \{0,1,2,3\}]^2$; $[x := x + y \mod 4]^3$; if $[x > 2]^4$ then $[z := x]^5$ else $[z := y]^6$ fi

Consider two properties d for 'dead', and l for 'live' and the space $\mathcal{V}(\{0,1\}) = \mathcal{V}(\{d,l\}) = \mathbb{R}^2$ as the property space.

$$\mathbf{L} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\mathbf{K} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$.

$$\mathbf{F}_{\ell} = \mathbf{F}_{\ell}^{LV} : \mathcal{V}(\{0,1\})^{\otimes |\textbf{Var}|} \rightarrow \mathcal{V}(\{0,1\})^{\otimes |\textbf{Var}|}$$

Coming back to our previous example and its *LV* analysis:

$$[x ?= \{0,1\}]^1$$
; $[y ?= \{0,1,2,3\}]^2$; $[x := x + y \mod 4]^3$; if $[x > 2]^4$ then $[z := x]^5$ else $[z := y]^6$ fi

Consider two properties d for 'dead', and l for 'live' and the space $\mathcal{V}(\{0,1\}) = \mathcal{V}(\{d,l\}) = \mathbb{R}^2$ as the property space.

$$\mathbf{L} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\mathbf{K} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$.

$$\mathbf{F}_{\ell} = \mathbf{F}_{\ell}^{LV} : \mathcal{V}(\{0,1\})^{\otimes |\mathbf{Var}|} \rightarrow \mathcal{V}(\{0,1\})^{\otimes |\mathbf{Var}|}$$

Transfer Functions for Live Variables

For $[x := a]^{\ell}$ (with I the identity matrix)

$$\mathbf{F}_{\ell} = \bigotimes_{\mathbf{X}_i \in \mathbf{Var}} \mathbf{X}_i \text{ with } \mathbf{X}_i = \left\{ \begin{array}{l} \mathbf{L} & \text{if } x_i \in FV(a) \\ \mathbf{K} & \text{if } x_i = x \ \land \ x_i \not\in FV(a) \\ \mathbf{I} & \text{otherwise.} \end{array} \right.$$

and for tests $[b]^\ell$

$$\mathbf{F}_{\ell} = \bigotimes_{\mathbf{X}_i \in \mathbf{Var}} \mathbf{X}_i \text{ with } \mathbf{X}_i = \left\{ \begin{array}{l} \mathbf{L} & \text{if } x_i \in FV(b) \\ \mathbf{I} & \text{otherwise.} \end{array} \right.$$

For $[\text{skip}]^{\ell}$ and $[x ?= \rho]^{\ell}$ have $\mathbf{F}_{\ell} = \bigotimes_{\mathbf{x} \in \mathbf{Var}} \mathbf{I}$.

Transfer Functions for Live Variables

For $[x := a]^{\ell}$ (with I the identity matrix)

$$\mathbf{F}_{\ell} = \bigotimes_{\mathbf{X}_i \in \mathbf{Var}} \mathbf{X}_i \text{ with } \mathbf{X}_i = \left\{ \begin{array}{l} \mathbf{L} & \text{if } x_i \in FV(a) \\ \mathbf{K} & \text{if } x_i = x \ \land \ x_i \not\in FV(a) \\ \mathbf{I} & \text{otherwise.} \end{array} \right.$$

and for tests $[b]^{\ell}$

$$\mathbf{F}_{\ell} = \bigotimes_{x_i \in \mathbf{Var}} \mathbf{X}_i \text{ with } \mathbf{X}_i = \left\{ egin{array}{ll} \mathbf{L} & \text{if } x_i \in FV(b) \\ \mathbf{I} & \text{otherwise.} \end{array} \right.$$

For $[\text{skip}]^{\ell}$ and $[x ?= \rho]^{\ell}$ have $\mathbf{F}_{\ell} = \bigotimes_{\mathbf{x} \in \mathbf{Var}} \mathbf{I}$.

Transfer Functions for Live Variables

For $[x := a]^{\ell}$ (with I the identity matrix)

$$\mathbf{F}_{\ell} = \bigotimes_{\mathbf{X}_i \in \mathbf{Var}} \mathbf{X}_i \text{ with } \mathbf{X}_i = \left\{ \begin{array}{l} \mathbf{L} & \text{if } x_i \in FV(a) \\ \mathbf{K} & \text{if } x_i = x \ \land \ x_i \not\in FV(a) \\ \mathbf{I} & \text{otherwise.} \end{array} \right.$$

and for tests $[b]^{\ell}$

$$\mathbf{F}_{\ell} = \bigotimes_{\mathbf{x}_i \in \mathbf{Var}} \mathbf{X}_i \text{ with } \mathbf{X}_i = \left\{ \begin{array}{ll} \mathbf{L} & \text{if } x_i \in FV(b) \\ \mathbf{I} & \text{otherwise.} \end{array} \right.$$

For $[\text{skip}]^{\ell}$ and $[x ?= \rho]^{\ell}$ have $\mathbf{F}_{\ell} = \bigotimes_{\mathbf{x} \in \mathbf{Var}} \mathbf{I}$.

Preprocessing

We present a LV analysis based essentially on concrete branch probabilities. That means that in the first phase of the analysis we will not abstract the values of x and y, we just ignore z all together.

If the concrete state of each variable is a value in $\{0,1,2,3\}$, then the probabilistic state is in $\mathcal{V}(\{0,1,2,3\})^{\otimes 3}=\mathbb{R}^{4^3}=\mathbb{R}^{64}$.

The abstraction we use when we compute the concrete branch probabilities is $\mathbf{A} = \mathbf{I} \otimes \mathbf{I} \otimes \mathbf{A}_f$, with $\mathbf{A}_f = (1,1,1,1)^t$ the forgetful abstraction, i.e. z is ignored. This allows us to reduce the dimensions of the probabilistic state space from 64 to just 16. Note that also $\mathbf{F}_5^\# = \mathbf{F}_6^\# = \mathbf{I}$.

Preprocessing

We present a LV analysis based essentially on concrete branch probabilities. That means that in the first phase of the analysis we will not abstract the values of x and y, we just ignore z all together.

If the concrete state of each variable is a value in $\{0,1,2,3\}$, then the probabilistic state is in $\mathcal{V}(\{0,1,2,3\})^{\otimes 3}=\mathbb{R}^{4^3}=\mathbb{R}^{64}$.

The abstraction we use when we compute the concrete branch probabilities is $\mathbf{A} = \mathbf{I} \otimes \mathbf{I} \otimes \mathbf{A}_f$, with $\mathbf{A}_f = (1,1,1,1)^t$ the forgetful abstraction, i.e. z is ignored. This allows us to reduce the dimensions of the probabilistic state space from 64 to just 16. Note that also $\mathbf{F}_5^\# = \mathbf{F}_6^\# = \mathbf{I}$.

Preprocessing

We present a LV analysis based essentially on concrete branch probabilities. That means that in the first phase of the analysis we will not abstract the values of x and y, we just ignore z all together.

If the concrete state of each variable is a value in $\{0,1,2,3\}$, then the probabilistic state is in $\mathcal{V}(\{0,1,2,3\})^{\otimes 3}=\mathbb{R}^{4^3}=\mathbb{R}^{64}$.

The abstraction we use when we compute the concrete branch probabilities is $\mathbf{A} = \mathbf{I} \otimes \mathbf{I} \otimes \mathbf{A}_f$, with $\mathbf{A}_f = (1,1,1,1)^t$ the forgetful abstraction, i.e. z is ignored. This allows us to reduce the dimensions of the probabilistic state space from 64 to just 16. Note that also $\mathbf{F}_5^\# = \mathbf{F}_6^\# = \mathbf{I}$.

The pre-processing probability analysis via equations:

```
\begin{array}{lll} \operatorname{Prob}_{entry}(1) & = & \rho \\ \operatorname{Prob}_{entry}(2) & = & \operatorname{Prob}_{exit}(1) \\ \operatorname{Prob}_{entry}(3) & = & \operatorname{Prob}_{exit}(2) \\ \operatorname{Prob}_{entry}(4) & = & \operatorname{Prob}_{exit}(3) \\ \operatorname{Prob}_{entry}(5) & = & \operatorname{Prob}_{exit}(4) \cdot \mathbf{P}_4^{\#} \\ \operatorname{Prob}_{entry}(6) & = & \operatorname{Prob}_{exit}(4) \cdot (\mathbf{I} - \mathbf{P}_4^{\#}) \end{array}
```

The pre-processing probability analysis via equations:

```
\begin{array}{lll} \operatorname{Prob}_{exit}(1) & = & \operatorname{Prob}_{entry}(1) \cdot \mathbf{F}_{1}^{\#} \\ \operatorname{Prob}_{exit}(2) & = & \operatorname{Prob}_{entry}(1) \cdot \mathbf{F}_{2}^{\#} \\ \operatorname{Prob}_{exit}(3) & = & \operatorname{Prob}_{entry}(1) \cdot \mathbf{F}_{3}^{\#} \\ \operatorname{Prob}_{exit}(4) & = & \operatorname{Prob}_{entry}(4) \\ \operatorname{Prob}_{exit}(5) & = & \operatorname{Prob}_{entry}(5) \\ \operatorname{Prob}_{exit}(6) & = & \operatorname{Prob}_{entry}(6) \end{array}
```

The pre-processing probability analysis via equations:

$$\begin{array}{lll} \operatorname{Prob}_{exit}(1) &=& \operatorname{Prob}_{entry}(1) \cdot \mathbf{F}_{1}^{\#} \\ \operatorname{Prob}_{exit}(2) &=& \operatorname{Prob}_{entry}(1) \cdot \mathbf{F}_{2}^{\#} \\ \operatorname{Prob}_{exit}(3) &=& \operatorname{Prob}_{entry}(1) \cdot \mathbf{F}_{3}^{\#} \\ \operatorname{Prob}_{exit}(4) &=& \operatorname{Prob}_{entry}(4) \\ \operatorname{Prob}_{exit}(5) &=& \operatorname{Prob}_{entry}(5) \\ \operatorname{Prob}_{exit}(6) &=& \operatorname{Prob}_{entry}(6) \\ \end{array}$$

$$\operatorname{Prob}_{entry}(5) &=& \rho \cdot \mathbf{F}_{1}^{\#} \cdot \mathbf{F}_{2}^{\#} \cdot \mathbf{F}_{3}^{\#} \cdot \mathbf{P}_{4}^{\#} \end{array}$$

 $\mathsf{Prob}_{entry}(6) = \rho \cdot \mathsf{F}_{1}^{\#} \cdot \mathsf{F}_{2}^{\#} \cdot \mathsf{F}_{2}^{\#} \cdot \mathsf{P}_{4}^{\#}$

reduce to:

The pre-processing probability analysis via equations:

$$\begin{array}{lll} \operatorname{Prob}_{exit}(1) & = & \operatorname{Prob}_{entry}(1) \cdot \mathbf{F}_{1}^{\#} \\ \operatorname{Prob}_{exit}(2) & = & \operatorname{Prob}_{entry}(1) \cdot \mathbf{F}_{2}^{\#} \\ \operatorname{Prob}_{exit}(3) & = & \operatorname{Prob}_{entry}(1) \cdot \mathbf{F}_{3}^{\#} \\ \operatorname{Prob}_{exit}(4) & = & \operatorname{Prob}_{entry}(4) \\ \operatorname{Prob}_{exit}(5) & = & \operatorname{Prob}_{entry}(5) \\ \operatorname{Prob}_{exit}(6) & = & \operatorname{Prob}_{entry}(6) \end{array}$$

reduce to:

$$\begin{array}{lll} \mathsf{Prob}_{\textit{entry}}(5) & = & \rho \cdot \mathbf{F}_{1}^{\#} \cdot \mathbf{F}_{2}^{\#} \cdot \mathbf{F}_{3}^{\#} \cdot \mathbf{P}_{4}^{\#} \\ \mathsf{Prob}_{\textit{entry}}(6) & = & \rho \cdot \mathbf{F}_{1}^{\#} \cdot \mathbf{F}_{2}^{\#} \cdot \mathbf{F}_{3}^{\#} \cdot \mathbf{P}_{4}^{\#} \end{array}$$

We thus have for any ρ that $p_{4,5}(\rho) = \|\text{Prob}_{entry}(5)\|_1 = \frac{1}{4}$ and $p_{4,6}(\rho) = \|\text{Prob}_{entry}(6)\|_1 = \frac{3}{4}$.

Data Flow Equations

With this information we can formulate the actual *LV* equations:

$$\begin{array}{lcl} \mathsf{LV}_{entry}(1) &=& \mathsf{LV}_{exit}(1) \cdot (\mathbf{K} \otimes \mathbf{I} \otimes \mathbf{I}) \\ \mathsf{LV}_{entry}(2) &=& \mathsf{LV}_{exit}(2) \cdot (\mathbf{I} \otimes \mathbf{K} \otimes \mathbf{I}) \\ \mathsf{LV}_{entry}(3) &=& \mathsf{LV}_{exit}(3) \cdot (\mathbf{L} \otimes \mathbf{L} \otimes \mathbf{I}) \\ \mathsf{LV}_{entry}(4) &=& \mathsf{LV}_{exit}(4) \cdot (\mathbf{L} \otimes \mathbf{I} \otimes \mathbf{I}) \\ \mathsf{LV}_{entry}(5) &=& \mathsf{LV}_{exit}(5) \cdot (\mathbf{L} \otimes \mathbf{I} \otimes \mathbf{K}) \\ \mathsf{LV}_{entry}(6) &=& \mathsf{LV}_{exit}(6) \cdot (\mathbf{I} \otimes \mathbf{L} \otimes \mathbf{K}) \end{array}$$

Data Flow Equations

With this information we can formulate the actual *LV* equations:

$$\begin{array}{lcl} \mathsf{LV}_{\textit{exit}}(1) & = & \mathsf{LV}_{\textit{entry}}(2) \\ \mathsf{LV}_{\textit{exit}}(2) & = & \mathsf{LV}_{\textit{entry}}(3) \\ \mathsf{LV}_{\textit{exit}}(3) & = & \mathsf{LV}_{\textit{entry}}(4) \\ \mathsf{LV}_{\textit{exit}}(4) & = & p_{4,5} \mathsf{LV}_{\textit{entry}}(5) + p_{4,6} \mathsf{LV}_{\textit{entry}}(6) \\ \mathsf{LV}_{\textit{exit}}(5) & = & (1,0) \otimes (1,0) \otimes (1,0) \\ \mathsf{LV}_{\textit{exit}}(6) & = & (1,0) \otimes (1,0) \otimes (1,0) \end{array}$$

Example: Solution

The solution to the *LV* equations is then given by:

$$\begin{array}{lll} \mathsf{LV}_{\textit{entry}}(1) & = & (1,0) \otimes (1,0) \otimes (1,0) \\ \mathsf{LV}_{\textit{entry}}(2) & = & (0,1) \otimes (1,0) \otimes (1,0) \\ \mathsf{LV}_{\textit{entry}}(3) & = & 0.25 \cdot (0,1) \otimes (0,1) \otimes (1,0) + \\ & + & 0.75 \cdot (0,1) \otimes (0,1) \otimes (1,0) \\ & = & (0,1) \otimes (0,1) \otimes (1,0) \\ \mathsf{LV}_{\textit{entry}}(4) & = & 0.25 \cdot (0,1) \otimes (1,0) \otimes (1,0) + \\ & + & 0.75 \cdot (0,1) \otimes (0,1) \otimes (1,0) \\ \mathsf{LV}_{\textit{entry}}(5) & = & (0,1) \otimes (1,0) \otimes (1,0) \\ \mathsf{LV}_{\textit{entry}}(6) & = & (1,0) \otimes (0,1) \otimes (1,0) \end{array}$$

Example: Solution

The solution to the *LV* equations is then given by:

$$\begin{array}{lll} \mathsf{LV}_{\textit{exit}}(1) & = & (0,1) \otimes (1,0) \otimes (1,0) \\ \mathsf{LV}_{\textit{exit}}(2) & = & (0,1) \otimes (0,1) \otimes (1,0) \\ \mathsf{LV}_{\textit{exit}}(3) & = & 0.25 \cdot (0,1) \otimes (1,0) \otimes (1,0) + \\ & + & 0.75 \cdot (0,1) \otimes (0,1) \otimes (1,0) \\ \mathsf{LV}_{\textit{exit}}(4) & = & 0.25 \cdot (0,1) \otimes (1,0) \otimes (1,0) + \\ & + & 0.75 \cdot (1,0) \otimes (0,1) \otimes (1,0) \\ \mathsf{LV}_{\textit{exit}}(5) & = & (1,0) \otimes (1,0) \otimes (1,0) \\ \mathsf{LV}_{\textit{exit}}(6) & = & (1,0) \otimes (1,0) \otimes (1,0) \end{array}$$

The Moore-Penrose Pseudo-Inverse

Definition

Let $\mathcal C$ and $\mathcal D$ be two finite-dimensional vector spaces and $\mathbf A:\mathcal C\to\mathcal D$ a linear map. Then the linear map $\mathbf A^\dagger=\mathbf G:\mathcal D\to\mathcal C$ is the Moore-Penrose pseudo-inverse of $\mathbf A$ iff $\mathbf A\circ\mathbf G=\mathbf P_A$ and $\mathbf G\circ\mathbf A=\mathbf P_G$, where $\mathbf P_A$ and $\mathbf P_G$ denote orthogonal projections onto the ranges of $\mathbf A$ and $\mathbf G$.

Definition

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then $\mathbf{u} \in \mathbb{R}^n$ is called a least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ if

$$\|\mathbf{A}\mathbf{u} - \mathbf{b}\| \le \|\mathbf{A}\mathbf{v} - \mathbf{b}\|, \text{ for all } \mathbf{v} \in \mathbb{R}^n.$$

Theorem

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then $\mathbf{A}^{\dagger}\mathbf{b}$ is the minimal least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

The Moore-Penrose Pseudo-Inverse

Definition

Let $\mathcal C$ and $\mathcal D$ be two finite-dimensional vector spaces and $\mathbf A:\mathcal C\to\mathcal D$ a linear map. Then the linear map $\mathbf A^\dagger=\mathbf G:\mathcal D\to\mathcal C$ is the Moore-Penrose pseudo-inverse of $\mathbf A$ iff $\mathbf A\circ\mathbf G=\mathbf P_A$ and $\mathbf G\circ\mathbf A=\mathbf P_G$, where $\mathbf P_A$ and $\mathbf P_G$ denote orthogonal projections onto the ranges of $\mathbf A$ and $\mathbf G$.

Definition

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then $\mathbf{u} \in \mathbb{R}^n$ is called a least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ if

$$\|\mathbf{A}\mathbf{u} - \mathbf{b}\| \le \|\mathbf{A}\mathbf{v} - \mathbf{b}\|, \text{ for all } \mathbf{v} \in \mathbb{R}^n.$$

Theorem

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then $\mathbf{A}^{\dagger}\mathbf{b}$ is the minimal least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

The Moore-Penrose Pseudo-Inverse

Definition

Let $\mathcal C$ and $\mathcal D$ be two finite-dimensional vector spaces and $\mathbf A:\mathcal C\to\mathcal D$ a linear map. Then the linear map $\mathbf A^\dagger=\mathbf G:\mathcal D\to\mathcal C$ is the Moore-Penrose pseudo-inverse of $\mathbf A$ iff $\mathbf A\circ\mathbf G=\mathbf P_A$ and $\mathbf G\circ\mathbf A=\mathbf P_G$, where $\mathbf P_A$ and $\mathbf P_G$ denote orthogonal projections onto the ranges of $\mathbf A$ and $\mathbf G$.

Definition

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then $\mathbf{u} \in \mathbb{R}^n$ is called a least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ if

$$\|\mathbf{A}\mathbf{u} - \mathbf{b}\| \le \|\mathbf{A}\mathbf{v} - \mathbf{b}\|, \text{ for all } \mathbf{v} \in \mathbb{R}^n.$$

Theorem

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then $\mathbf{A}^{\dagger}\mathbf{b}$ is the minimal least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Probabilistic Abstract Interpretation is based on:

- Concrete and abstract domains are linear spaces C, D...
- Concrete and abstract semantics are linear operators T...

The Moore-Penrose pseudo-inverse allows us to construct the closest (i.e. least square) approximation

$$\mathbf{T}^{\#}:\mathcal{D}\to\mathcal{D}$$
 of a concrete semantics $\mathbf{T}:\mathcal{C}\to\mathcal{C}$

which we define via the Moore-Penrose pseudo-inverse:

$$\mathsf{T}^\# = \mathsf{G} \cdot \mathsf{T} \cdot \mathsf{A} = \mathsf{A}^\dagger \cdot \mathsf{T} \cdot \mathsf{A} = \mathsf{A} \circ \mathsf{T} \circ \mathsf{G}$$

This gives a "smaller" DTMC via the abstracted generator $T^{\#}$.

Probabilistic Abstract Interpretation is based on:

- Concrete and abstract domains are linear spaces C, D...
- Concrete and abstract semantics are linear operators T...

The Moore-Penrose pseudo-inverse allows us to construct the closest (i.e. least square) approximation

$$\mathbf{T}^{\#}:\mathcal{D}\to\mathcal{D}$$
 of a concrete semantics $\mathbf{T}:\mathcal{C}\to\mathcal{C}$

which we define via the Moore-Penrose pseudo-inverse:

$$\mathsf{T}^\# = \mathsf{G} \cdot \mathsf{T} \cdot \mathsf{A} = \mathsf{A}^\dagger \cdot \mathsf{T} \cdot \mathsf{A} = \mathsf{A} \circ \mathsf{T} \circ \mathsf{G}$$

This gives a "smaller" DTMC via the abstracted generator $T^{\#}$.

Probabilistic Abstract Interpretation is based on:

- Concrete and abstract domains are linear spaces C, D...
- Concrete and abstract semantics are linear operators T...

The Moore-Penrose pseudo-inverse allows us to construct the closest (i.e. least square) approximation

$$\mathbf{T}^{\#}:\mathcal{D}\to\mathcal{D}$$
 of a concrete semantics $\mathbf{T}:\mathcal{C}\to\mathcal{C}$

which we define via the Moore-Penrose pseudo-inverse:

$$\mathsf{T}^{\#} = \mathsf{G} \cdot \mathsf{T} \cdot \mathsf{A} = \mathsf{A}^{\dagger} \cdot \mathsf{T} \cdot \mathsf{A} = \mathsf{A} \circ \mathsf{T} \circ \mathsf{G}.$$

This gives a "smaller" DTMC via the abstracted generator **T**#.

Probabilistic Abstract Interpretation is based on:

- Concrete and abstract domains are linear spaces C, D...
- Concrete and abstract semantics are linear operators T...

The Moore-Penrose pseudo-inverse allows us to construct the closest (i.e. least square) approximation

$$\mathbf{T}^{\#}:\mathcal{D}\to\mathcal{D}$$
 of a concrete semantics $\mathbf{T}:\mathcal{C}\to\mathcal{C}$

which we define via the Moore-Penrose pseudo-inverse:

$$T^{\#} = G \cdot T \cdot A = A^{\dagger} \cdot T \cdot A = A \circ T \circ G$$

This gives a "smaller" DTMC via the abstracted generator $T^{\#}$.

Probabilistic Abstract Interpretation is based on:

- Concrete and abstract domains are linear spaces C, D...
- Concrete and abstract semantics are linear operators T...

The Moore-Penrose pseudo-inverse allows us to construct the closest (i.e. least square) approximation

$$\mathbf{T}^{\#}:\mathcal{D}\to\mathcal{D}$$
 of a concrete semantics $\mathbf{T}:\mathcal{C}\to\mathcal{C}$

which we define via the Moore-Penrose pseudo-inverse:

$$T^{\#} = G \cdot T \cdot A = A^{\dagger} \cdot T \cdot A = A \circ T \circ G.$$

This gives a "smaller" DTMC via the abstracted generator $T^{\#}$.

Probabilistic Abstract Interpretation is based on:

- Concrete and abstract domains are linear spaces C, D...
- Concrete and abstract semantics are linear operators T...

The Moore-Penrose pseudo-inverse allows us to construct the closest (i.e. least square) approximation

$$\mathbf{T}^{\#}: \mathcal{D} \to \mathcal{D}$$
 of a concrete semantics $\mathbf{T}: \mathcal{C} \to \mathcal{C}$

which we define via the Moore-Penrose pseudo-inverse:

$$T^{\#} = G \cdot T \cdot A = A^{\dagger} \cdot T \cdot A = A \circ T \circ G.$$

This gives a "smaller" DTMC via the abstracted generator $\mathbf{T}^{\#}$.

Probabilistic Program Analysis

- Probabilities are given (as values or parameters):
- Calculate properties according to these input data using the program semantics,
- i.e. deduce probabilities of properties from semantics.

- Probabilities and initial states are not known:
- Estimate these parameters using observations of the program behaviour,
- i.e. infer execution probabilities by observing some sample runs.

Probabilistic Program Analysis

- Probabilities are given (as values or parameters):
- Calculate properties according to these input data using the program semantics,
- i.e. deduce probabilities of properties from semantics.

- Probabilities and initial states are not known:
- Estimate these parameters using observations of the program behaviour,
- i.e. infer execution probabilities by observing some sample runs.

Probabilistic Program Analysis

- Probabilities are given (as values or parameters):
- Calculate properties according to these input data using the program semantics,
- i.e. deduce probabilities of properties from semantics.

- Probabilities and initial states are not known:
- Estimate these parameters using observations of the program behaviour,
- i.e. infer execution probabilities by observing some sample runs.

Probabilistic Program Analysis

- Probabilities are given (as values or parameters):
- Calculate properties according to these input data using the program semantics,
- i.e. deduce probabilities of properties from semantics.

- Probabilities and initial states are not known:
- Estimate these parameters using observations of the program behaviour.
- i.e. infer execution probabilities by observing some sample runs.

Probabilistic Program Analysis

- Probabilities are given (as values or parameters):
- Calculate properties according to these input data using the program semantics,
- i.e. deduce probabilities of properties from semantics.

- Probabilities and initial states are not known:
- Estimate these parameters using observations of the program behaviour,
- i.e. infer execution probabilities by observing some sample runs.

Probabilistic Program Analysis

- Probabilities are given (as values or parameters):
- Calculate properties according to these input data using the program semantics,
- i.e. deduce probabilities of properties from semantics.

- Probabilities and initial states are not known:
- Estimate these parameters using observations of the program behaviour,
- i.e. infer execution probabilities by observing some sample runs.

Probabilistic Program Analysis

- Probabilities are given (as values or parameters):
- Calculate properties according to these input data using the program semantics,
- i.e. deduce probabilities of properties from semantics.

- Probabilities and initial states are not known:
- Estimate these parameters using observations of the program behaviour,
- i.e. infer execution probabilities by observing some sample runs.

Infer execution probabilities by observing some sample runs.

- Identify a random vector y with some measurement results
- Identify a model by a vector of parameters β
- Construct a matrix X mapping models to the runs
- Use X^{\dagger} and y to find a best estimator of the model.

Theorem (Gauss-Markov)

$$\hat{\beta} = y \mathbf{X}^{\dagger}.$$

Infer execution probabilities by observing some sample runs.

- Identify a random vector y with some measurement results
- Identify a model by a vector of parameters β
- Construct a matrix X mapping models to the runs
- Use X^{\dagger} and y to find a best estimator of the model.

Theorem (Gauss-Markov)

$$\hat{\beta} = y \mathbf{X}^{\dagger}.$$

Infer execution probabilities by observing some sample runs.

- Identify a random vector y with some measurement results
- Identify a model by a vector of parameters β
- Construct a matrix X mapping models to the runs
- Use X^{\dagger} and y to find a best estimator of the model.

Theorem (Gauss-Markov)

$$\hat{\beta} = y \mathbf{X}^{\dagger}.$$

Infer execution probabilities by observing some sample runs.

- Identify a random vector y with some measurement results
- Identify a model by a vector of parameters β
- Construct a matrix X mapping models to the runs
- Use X[†] and y to find a best estimator of the model.

Theorem (Gauss-Markov)

$$\hat{\beta} = y \mathbf{X}^{\dagger}.$$

Using Statistics

Infer execution probabilities by observing some sample runs.

- Identify a random vector y with some measurement results
- Identify a model by a vector of parameters β
- Construct a matrix X mapping models to the runs
- Use X^{\dagger} and y to find a best estimator of the model.

Theorem (Gauss-Markov)

Consider the linear model $y = \beta \mathbf{X} + \varepsilon$ with \mathbf{X} of full column rank and ε (fulfilling some conditions) Then the Best Linear Unbiased Estimator (BLUE) is given by

$$\hat{\beta} = y \mathbf{X}^{\dagger}.$$

Using Statistics

Infer execution probabilities by observing some sample runs.

- Identify a random vector y with some measurement results
- Identify a model by a vector of parameters β
- Construct a matrix X mapping models to the runs
- Use X^{\dagger} and y to find a best estimator of the model.

Theorem (Gauss-Markov)

Consider the linear model $y = \beta \mathbf{X} + \varepsilon$ with \mathbf{X} of full column rank and ε (fulfilling some conditions) Then the Best Linear Unbiased Estimator (BLUE) is given by

$$\hat{\beta} = y \mathbf{X}^{\dagger}.$$

Modular Exponentiation

```
s := 1;
i := 0;
while i <= w do
  if k[i]==1 then
     x := (s*x) \mod n;
  else
     r := s;
  fi;
  s := r * r;
  i := i+1;
od;
```

P.C. Kocher: Cryptanalysis of Diffie-Hellman, RSA, DSS, and other cryptosystems using timing attacks, CRYPTO '95.

Modular Exponentiation

```
s := 1;
i := 0;
while i<=w do
  if k[i]==1 then
     x := (s*x) \mod n;
  else
     r := s;
  fi;
  s := r * r;
  i := i+1;
od;
```

P.C. Kocher: *Cryptanalysis of Diffie-Hellman, RSA, DSS, and other cryptosystems using timing attacks,* CRYPTO '95.

Consider the following simple DTMC with parameters p and q in the real interval [0, 1]:

Consider the following simple DTMC with parameters p and q in the real interval [0, 1]:

$$\begin{array}{c|c}
 & 1-p \\
\hline
 & 0 & 1-p \\
\hline
 & 1-q & q
\end{array}$$

$$\mathbf{T}_{pq} = \begin{pmatrix} p & 1-p \\ 1-q & q \end{pmatrix}$$

Consider the following simple DTMC with parameters p and q in the real interval [0, 1]:

Consider the following simple DTMC with parameters p and q in the real interval [0, 1]:

$$\mathbf{T}_{0,1} = \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right)$$

$$\frac{1}{2}$$
 0 $\frac{1}{2}$ 1 1

$$\mathbf{T}_{\frac{1}{2},1} = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{array}\right)$$

$$\frac{1}{2}$$
 (0) $\frac{1}{2}$ (1) 1

$$\mathbf{T}_{0,1} = \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right)$$

$$\mathbf{T}_{\frac{1}{2},1} = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{array}\right)$$

$$\mathbf{T}_{0,1} = \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right)$$

$$\frac{1}{2}$$
 0 $\frac{1}{2}$ 1

$$\mathbf{T}_{\frac{1}{2},1} = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{array}\right)$$

$$\mathbf{T}_{0,\frac{1}{2}} = \left(\begin{array}{cc} 0 & 1\\ \frac{1}{2} & \frac{1}{2} \end{array}\right)$$

$$\mathbf{T}_{\frac{1}{2},\frac{1}{2}} = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right)$$

$$\boldsymbol{T}_{0,\frac{1}{2}} = \left(\begin{array}{cc} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{array}\right)$$

$$\mathbf{T}_{\frac{1}{2},\frac{1}{2}} = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right)$$

$$\frac{1}{2} \underbrace{\begin{array}{c} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{array}}$$

$$\boldsymbol{T}_{0,\frac{1}{2}} = \left(\begin{array}{cc} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{array}\right)$$

$$\mathbf{T}_{\frac{1}{2},\frac{1}{2}} = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right)$$

- Abstract domain: $\mathcal{D} = \mathcal{V}(\mathcal{M})$, with $\mathcal{M} = \{\langle s, p, q \rangle \mid s \in \{0, 1\}, p, q \in [0, 1]\}$
- Concrete domain: C = V(T) with $T = \{0, 1\}^{+\infty}$ (execution traces)
- Design matrix: $G: \mathcal{D} \to \mathcal{C}$ associates to each instance model the corresponding distribution on traces
- Compute the Moore-Penrose pseudo-inverse G[†] of G to calculate the best estimators of the parameters p and q.

- Abstract domain: $\mathcal{D} = \mathcal{V}(\mathcal{M})$, with $\mathcal{M} = \{ \langle s, p, q \rangle \mid s \in \{0, 1\}, p, q \in [0, 1] \}$
- Concrete domain: C = V(T) with $T = \{0, 1\}^{+\infty}$ (execution traces)
- Design matrix: G: D → C associates to each instance model the corresponding distribution on traces
- Compute the Moore-Penrose pseudo-inverse G[†] of G to calculate the best estimators of the parameters p and q.

- Abstract domain: $\mathcal{D} = \mathcal{V}(\mathcal{M})$, with $\mathcal{M} = \{ \langle s, p, q \rangle \mid s \in \{0, 1\}, p, q \in [0, 1] \}$
- Concrete domain: C = V(T) with $T = \{0, 1\}^{+\infty}$ (execution traces)
- Design matrix: G: D → C associates to each instance model the corresponding distribution on traces
- Compute the Moore-Penrose pseudo-inverse G[†] of G to calculate the best estimators of the parameters p and q.

- Abstract domain: $\mathcal{D} = \mathcal{V}(\mathcal{M})$, with $\mathcal{M} = \{ \langle s, p, q \rangle \mid s \in \{0, 1\}, p, q \in [0, 1] \}$
- Concrete domain: C = V(T) with $T = \{0, 1\}^{+\infty}$ (execution traces)
- Design matrix: $\mathbf{G}: \mathcal{D} \to \mathcal{C}$ associates to each instance model the corresponding distribution on traces
- Compute the Moore-Penrose pseudo-inverse G[†] of G to calculate the best estimators of the parameters p and q.

- Abstract domain: $\mathcal{D} = \mathcal{V}(\mathcal{M})$, with $\mathcal{M} = \{ \langle s, p, q \rangle \mid s \in \{0, 1\}, p, q \in [0, 1] \}$
- Concrete domain: C = V(T) with $T = \{0, 1\}^{+\infty}$ (execution traces)
- Design matrix: $\mathbf{G}: \mathcal{D} \to \mathcal{C}$ associates to each instance model the corresponding distribution on traces
- Compute the Moore-Penrose pseudo-inverse G[†] of G to calculate the best estimators of the parameters p and q.

In order to be able to compute an analysis of the system we considered $p, q \in \{0, \frac{1}{2}, 1\}$, i.e. 9 possible semantics, with possible initial states either 0 or 1.

$$\mathcal{D} = \mathcal{V}(\{0,1\}) \otimes \mathcal{V}(\{0,\frac{1}{2},1\}) \otimes \mathcal{V}(\{0,\frac{1}{2},1\}) = \mathbb{R}^2 \otimes \mathbb{R}^3 \otimes \mathbb{R}^3 = \mathbb{R}^{18}$$

Observe traces of a certain length, e.g. traces of length t = 3:

$$C_3 = V(\{0,1\}^3) = V(\{0,1\})^{\otimes 3} = (\mathbb{R}^2)^{\otimes 8} = \mathbb{R}^8$$

$$C_{10} = \mathcal{V}(\{0,1\}^{10}) = \mathcal{V}(\{0,1\})^{\otimes 10} = (\mathbb{R}^2)^{\otimes 10} = \mathbb{R}^{1024}$$

In order to be able to compute an analysis of the system we considered $p, q \in \{0, \frac{1}{2}, 1\}$, i.e. 9 possible semantics, with possible initial states either 0 or 1.

$$\textcolor{red}{\mathcal{D}} = \mathcal{V}(\{0,1\}) \otimes \mathcal{V}(\{0,\frac{1}{2},1\}) \otimes \mathcal{V}(\{0,\frac{1}{2},1\}) = \mathbb{R}^2 \otimes \mathbb{R}^3 \otimes \mathbb{R}^3 = \mathbb{R}^{18}$$

Observe traces of a certain length, e.g. traces of length t=3:

$$\mathcal{C}_3 = \mathcal{V}(\{0,1\}^3) = \mathcal{V}(\{0,1\})^{\otimes 3} = (\mathbb{R}^2)^{\otimes 8} = \mathbb{R}^8$$

$$C_{10} = \mathcal{V}(\{0,1\}^{10}) = \mathcal{V}(\{0,1\})^{\otimes 10} = (\mathbb{R}^2)^{\otimes 10} = \mathbb{R}^{1024}$$

In order to be able to compute an analysis of the system we considered $p,q\in\{0,\frac{1}{2},1\}$, i.e. 9 possible semantics, with possible initial states either 0 or 1.

$$\textcolor{red}{\mathcal{D}} = \mathcal{V}(\{0,1\}) \otimes \mathcal{V}(\{0,\frac{1}{2},1\}) \otimes \mathcal{V}(\{0,\frac{1}{2},1\}) = \mathbb{R}^2 \otimes \mathbb{R}^3 \otimes \mathbb{R}^3 = \mathbb{R}^{18}$$

Observe traces of a certain length, e.g. traces of length t = 3:

$$\mathcal{C}_3 = \mathcal{V}(\{0,1\}^3) = \mathcal{V}(\{0,1\})^{\otimes 3} = (\mathbb{R}^2)^{\otimes 8} = \mathbb{R}^8$$

$$C_{10} = \mathcal{V}(\{0,1\}^{10}) = \mathcal{V}(\{0,1\})^{\otimes 10} = (\mathbb{R}^2)^{\otimes 10} = \mathbb{R}^{1024}$$

In order to be able to compute an analysis of the system we considered $p,q\in\{0,\frac{1}{2},1\}$, i.e. 9 possible semantics, with possible initial states either 0 or 1.

$$\textcolor{red}{\mathcal{D}} = \mathcal{V}(\{0,1\}) \otimes \mathcal{V}(\{0,\frac{1}{2},1\}) \otimes \mathcal{V}(\{0,\frac{1}{2},1\}) = \mathbb{R}^2 \otimes \mathbb{R}^3 \otimes \mathbb{R}^3 = \mathbb{R}^{18}$$

Observe traces of a certain length, e.g. traces of length t = 3:

$${\color{red}\mathcal{C}_{3}} = \mathcal{V}(\{0,1\}^{3}) = \mathcal{V}(\{0,1\})^{\otimes 3} = (\mathbb{R}^{2})^{\otimes 8} = \mathbb{R}^{8}$$

$$C_{10} = \mathcal{V}(\{0,1\}^{10}) = \mathcal{V}(\{0,1\})^{\otimes 10} = (\mathbb{R}^2)^{\otimes 10} = \mathbb{R}^{1024}$$

In order to be able to compute an analysis of the system we considered $p,q\in\{0,\frac{1}{2},1\}$, i.e. 9 possible semantics, with possible initial states either 0 or 1.

$$\textcolor{red}{\mathcal{D}} = \mathcal{V}(\{0,1\}) \otimes \mathcal{V}(\{0,\frac{1}{2},1\}) \otimes \mathcal{V}(\{0,\frac{1}{2},1\}) = \mathbb{R}^2 \otimes \mathbb{R}^3 \otimes \mathbb{R}^3 = \mathbb{R}^{18}$$

Observe traces of a certain length, e.g. traces of length t = 3:

$$C_3 = V(\{0,1\}^3) = V(\{0,1\})^{\otimes 3} = (\mathbb{R}^2)^{\otimes 8} = \mathbb{R}^8$$

$$\mathcal{C}_{10} = \mathcal{V}(\{0,1\}^{10}) = \mathcal{V}(\{0,1\})^{\otimes 10} = (\mathbb{R}^2)^{\otimes 10} = \mathbb{R}^{1024}$$

Numerical Experiments: Parameter Space $\mathcal{D} = \mathbb{R}^9$

S	p	q		S	p	q
0			-	1	1 2	1 2
1	0	0		1 0	ī	<u>1</u>
0 1 0 1 0 1 0	0 0 1 2 1 2 1	0		1	1 1 1	9 121212 1 1 1
1	1/2	0			0	1
0	ī	0		0 1	0 1 2 1 2 1	1
1	1	0		0	1 2	1
0	0	1 2		0 1 0	1/2	1
1	0	1/2		0	1	1
0	0 0 1 2	0 0 0 0 0 1 2 1 2		1	1	1

Experiments: Trace Space $\mathcal{C}_3 = \mathbb{R}^8$ and $\mathcal{C}_{10} = \mathbb{R}^{1024}$

trace C_3												
0	0	0										
0	0	1										
0	1	0										
0	1	1										
1	0	0										
1	0	1										
1	1	0										
1	1	1										

0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	1				
0	0	0	0	0	0	0	0	1	0				
0	0	0	0	0	0	0	0	1	1				
0	0	0	0	0	0	0	1	0	0				
0	0	0	0	0	0	0	1	0	1				
0	0	0	0	0	0	0	1	1	0				
0	0	0	0	0	0	0	1	1	1				
0	0	0	0	0	0	1	0	0	0				
0	0	0	0	0	0	1	0	0	1				
0	0	0	0	0	0	1	0	1	0				
0	0	0	0	0	0	1	0	1	1				
:	1	i	i	1	1	1	i		:				

Experiments: Trace Space $\mathcal{C}_3 = \mathbb{R}^8$ and $\mathcal{C}_{10} = \mathbb{R}^{1024}$

trace C_3											
0	0	0									
0	0	1									
0	1	0									
0	1	1									
1	0	0									
1	0	1									
1	1	0									
1	1	1									

<i>trace</i> C_{10}												
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	1			
0	0	0	0	0	0	0	0	1	0			
0	0	0	0	0	0	0	0	1	1			
0	0	0	0	0	0	0	1	0	0			
0	0	0	0	0	0	0	1	0	1			
0	0	0	0	0	0	0	1	1	0			
0	0	0	0	0	0	0	1	1	1			
0	0	0	0	0	0	1	0	0	0			
0	0	0	0	0	0	1	0	0	1			
0	0	0	0	0	0	1	0	1	0			
0	0	0	0	0	0	1	0	1	1			
:	:	:	:	:	:	:	:	:	÷			

Experiments: Concretisation G₃

$\mathbf{G}_3 =$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 0 1 4 0 0 0 0 1 4 0 0 0 0 1 4 0 0 0		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
------------------	--	--	--	---------------------------------------	--	--	--	--	--	---	--	---	--	---	--	---	--

Experiments: Regression \mathbf{G}_{3}^{\dagger} (Abstraction)

Numerical Experiments for C_{10}

For the model p=0, $q=\frac{1}{2}$ we obtained (for different noise distortions ε) by observation of the possible traces in 10000 test runs their (experimental) probability distributions y, y' etc. in \mathbb{R}^{1024} (where y_i is the observed frequency of trace i) and from these estimate the (unknown) parameters via:

$$y^{\mathbf{G}_{10}^{\dagger}} = (0,0,0,0,0,0,0.50,0.49,0,0.01,0,0,0,0,0,0,0,0,0)$$

$$y^{\prime}\mathbf{G}_{10}^{\dagger} = (0,0,0,0,0,0.49,0.50,0.01,0,0,0,0,0,0,0,0,0)$$

$$y^{\prime\prime}\mathbf{G}_{10}^{\dagger} = (0,0,0,0,0,0.43,0.43,0.07,0.06,0,0,0,0,0,0,0,0)$$

$$y^{\prime\prime\prime}\mathbf{G}_{10}^{\dagger} = (0,0,0.01,0,0,0,0.33,0.35,0.16,0.16,0,0,0,0,0,0,0,0,0)$$

The distribution y denotes the undistorted case, y' the case with $\varepsilon = 0.01$, y'' the case $\varepsilon = 0.1$, and y''' the case $\varepsilon = 0.25$.

The initial state was always chosen with probability $\frac{1}{2}$ as the state 0 or the state 1.

Numerical Experiments for C_{10}

For the model p=0, $q=\frac{1}{2}$ we obtained (for different noise distortions ε) by observation of the possible traces in 10000 test runs their (experimental) probability distributions y, y' etc. in \mathbb{R}^{1024} (where y_i is the observed frequency of trace i) and from these estimate the (unknown) parameters via:

$$y^{\mathbf{G}_{10}^{\dagger}} = (0,0,0,0,0,0,0.50,0.49,0,0.01,0,0,0,0,0,0,0,0,0)$$

$$y^{\prime}\mathbf{G}_{10}^{\dagger} = (0,0,0,0,0,0.49,0.50,0.01,0,0,0,0,0,0,0,0,0)$$

$$y^{\prime\prime}\mathbf{G}_{10}^{\dagger} = (0,0,0,0,0,0.43,0.43,0.07,0.06,0,0,0,0,0,0,0,0)$$

$$y^{\prime\prime\prime}\mathbf{G}_{10}^{\dagger} = (0,0,0.01,0,0,0,0.33,0.35,0.16,0.16,0,0,0,0,0,0,0,0,0)$$

The distribution y denotes the undistorted case, y' the case with $\varepsilon = 0.01$, y'' the case $\varepsilon = 0.1$, and y''' the case $\varepsilon = 0.25$.

The initial state was always chosen with probability $\frac{1}{2}$ as the state 0 or the state 1.

Numerical Experiments for C_{10}

For the model p=0, $q=\frac{1}{2}$ we obtained (for different noise distortions ε) by observation of the possible traces in 10000 test runs their (experimental) probability distributions y, y' etc. in \mathbb{R}^{1024} (where y_i is the observed frequency of trace i) and from these estimate the (unknown) parameters via:

$$y^{\mathbf{G}_{10}^{\dagger}} = (0,0,0,0,0,0,0.50,0.49,0.001,0,0,0,0,0,0,0,0,0)$$

$$y^{\prime}\mathbf{G}_{10}^{\dagger} = (0,0,0,0,0,0.49,0.50,0.01,0,0,0,0,0,0,0,0,0)$$

$$y^{\prime\prime}\mathbf{G}_{10}^{\dagger} = (0,0,0,0,0,0.43,0.43,0.07,0.06,0,0,0,0,0,0,0,0)$$

$$y^{\prime\prime\prime}\mathbf{G}_{10}^{\dagger} = (0,0,0.01,0,0,0,0.33,0.35,0.16,0.16,0,0,0,0,0,0,0,0,0)$$

The distribution y denotes the undistorted case, y' the case with $\varepsilon = 0.01$, y'' the case $\varepsilon = 0.1$, and y''' the case $\varepsilon = 0.25$.

The initial state was always chosen with probability $\frac{1}{2}$ as the state 0 or the state 1.

- Di Pierro, Wiklicky: Probabilistic data flow analysis: A linear equational approach. Proceedings of GandALF'13, EPTCS, Volume 119, 2013.
- Di Pierro, Hankin, Wiklicky: Probabilistic semantics and analysis. in Formal Methods for Quantitative Aspects of Programming Languages, LNCS 6155, Springer, 2010.
- Di Pierro, Wiklicky: Probabilistic Abstract Interretation: From Trace Semantics to DTMC's via Linear Regression. LNCS 9560, Springer, 2016.
- Nielson, Nielson, Hankin: *Principles of Program Analysis*. Springer, 1999/2005.

- Di Pierro, Wiklicky: Probabilistic data flow analysis: A linear equational approach. Proceedings of GandALF'13, EPTCS, Volume 119, 2013.
- Di Pierro, Hankin, Wiklicky: Probabilistic semantics and analysis. in Formal Methods for Quantitative Aspects of Programming Languages, LNCS 6155, Springer, 2010.
- Di Pierro, Wiklicky: Probabilistic Abstract Interretation: From Trace Semantics to DTMC's via Linear Regression. LNCS 9560, Springer, 2016.
- Nielson, Nielson, Hankin: *Principles of Program Analysis*. Springer, 1999/2005.

- Di Pierro, Wiklicky: Probabilistic data flow analysis: A linear equational approach. Proceedings of GandALF'13, EPTCS, Volume 119, 2013.
- Di Pierro, Hankin, Wiklicky: Probabilistic semantics and analysis. in Formal Methods for Quantitative Aspects of Programming Languages, LNCS 6155, Springer, 2010.
- Di Pierro, Wiklicky: Probabilistic Abstract Interpretation: From Trace Semantics to DTMC's via Linear Regression. LNCS 9560, Springer, 2016.
- Nielson, Nielson, Hankin: Principles of Program Analysis.
 Springer, 1999/2005.

- Di Pierro, Wiklicky: Probabilistic data flow analysis: A linear equational approach. Proceedings of GandALF'13, EPTCS, Volume 119, 2013.
- Di Pierro, Hankin, Wiklicky: Probabilistic semantics and analysis. in Formal Methods for Quantitative Aspects of Programming Languages, LNCS 6155, Springer, 2010.
- Di Pierro, Wiklicky: Probabilistic Abstract Interpretation: From Trace Semantics to DTMC's via Linear Regression. LNCS 9560, Springer, 2016.
- Nielson, Nielson, Hankin: *Principles of Program Analysis*. Springer, 1999/2005.