
Probabilistic Program Analysis
Logic and Analysis

Alessandra Di Pierro
University of Verona, Italy

alessandra.dipierro@univr.it

Herbert Wiklicky
Imperial College London, UK

herbert@doc.ic.ac.uk

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 1 of 54

mailto:alessandra.dipierro@univr.it
mailto:herbert@doc.ic.ac.uk

Moore-Penrose Pseudo-Inverse

Definition
Let C and D be two Hilbert spaces and A : C → D a bounded
linear map. A bounded linear map A† = G : D → C is the
Moore-Penrose pseudo-inverse of A iff

(i) A ◦G = PA,
(ii) G ◦ A = PG,

where PA and PG denote orthogonal projections onto the
ranges of A and G.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 2 of 54

(Orthogonal) Projections – Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner
product 〈., .〉. This allows us to define an adjoint via:

〈A(x), y〉 = 〈x ,A∗(y)〉

An operator A is self-adjoint if A = A∗.
An operator A is positive, i.e. A w 0, if there exists an
operator B such that A = B∗B.
An (orthogonal) projection is a self-adjoint E with EE = E.

Projections identify (closed) sub-spaces YE = {Ex | x ∈ V}.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 3 of 54

(Orthogonal) Projections – Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner
product 〈., .〉. This allows us to define an adjoint via:

〈A(x), y〉 = 〈x ,A∗(y)〉

An operator A is self-adjoint if A = A∗.
An operator A is positive, i.e. A w 0, if there exists an
operator B such that A = B∗B.
An (orthogonal) projection is a self-adjoint E with EE = E.

Projections identify (closed) sub-spaces YE = {Ex | x ∈ V}.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 3 of 54

(Orthogonal) Projections – Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner
product 〈., .〉. This allows us to define an adjoint via:

〈A(x), y〉 = 〈x ,A∗(y)〉

An operator A is self-adjoint if A = A∗.
An operator A is positive, i.e. A w 0, if there exists an
operator B such that A = B∗B.
An (orthogonal) projection is a self-adjoint E with EE = E.

Projections identify (closed) sub-spaces YE = {Ex | x ∈ V}.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 3 of 54

(Orthogonal) Projections – Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner
product 〈., .〉. This allows us to define an adjoint via:

〈A(x), y〉 = 〈x ,A∗(y)〉

An operator A is self-adjoint if A = A∗.
An operator A is positive, i.e. A w 0, if there exists an
operator B such that A = B∗B.
An (orthogonal) projection is a self-adjoint E with EE = E.

Projections identify (closed) sub-spaces YE = {Ex | x ∈ V}.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 3 of 54

(Orthogonal) Projections – Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner
product 〈., .〉. This allows us to define an adjoint via:

〈A(x), y〉 = 〈x ,A∗(y)〉

An operator A is self-adjoint if A = A∗.
An operator A is positive, i.e. A w 0, if there exists an
operator B such that A = B∗B.
An (orthogonal) projection is a self-adjoint E with EE = E.

Projections identify (closed) sub-spaces YE = {Ex | x ∈ V}.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 3 of 54

Example: Sign Domain

• Z
ww ''

≤ 0 •
''

• ≥ 0

ww
• 0
��
• ∅

Enumeration: Sign = {∅,0,≥ 0,≤ 0,Z}

Free Vector Space: V(Sign) = {
∑

s∈Sign

xs · s | xi ∈ R}

Francesca Scozzari: Domain theory in abstract interpretation: equations,
completeness and logic. PhD Thesis, Siena 1999.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 4 of 54

Example: Sign Domain

• Z
ww ''

≤ 0 •
''

• ≥ 0

ww
• 0
��
• ∅

Enumeration: Sign = {∅,0,≥ 0,≤ 0,Z}

Free Vector Space: V(Sign) = {
∑

s∈Sign

xs · s | xi ∈ R}

Francesca Scozzari: Domain theory in abstract interpretation: equations,
completeness and logic. PhD Thesis, Siena 1999.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 4 of 54

Example: Sign Domain

• Z
ww ''

≤ 0 •
''

• ≥ 0

ww
• 0
��
• ∅

Enumeration: Sign = {∅,0,≥ 0,≤ 0,Z}

Free Vector Space: V(Sign) = {
∑

s∈Sign

xs · s | xi ∈ R}

Francesca Scozzari: Domain theory in abstract interpretation: equations,
completeness and logic. PhD Thesis, Siena 1999.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 4 of 54

Example: Sign Domain

• Z
ww ''

≤ 0 •
''

• ≥ 0

ww
• 0
��
• ∅

Enumeration: Sign = {∅,0,≥ 0,≤ 0,Z}

Free Vector Space: V(Sign) = {
∑

s∈Sign

xs · s | xi ∈ R}

Francesca Scozzari: Domain theory in abstract interpretation: equations,
completeness and logic. PhD Thesis, Siena 1999.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 4 of 54

Example: Classical Abstractions (Domains via uco)

Consider the upward closed sub-domains of {∅,0,≥ 0,≤ 0,Z}:

ρ1 = {Z}
ρ2 = {Z,≥ 0}
ρ3 = {Z,0}
ρ4 = {Z, ∅}
ρ5 = {Z,≤ 0}
ρ6 = {Z,≥ 0, ∅}
ρ7 = {Z,≥ 0,0}

ρ8 = {Z,0, ∅}
ρ9 = {Z,≤ 0,0}
ρ10 = {Z,≤ 0, ∅}
ρ11 = {Z,≥ 0,0, ∅}
ρ12 = {Z,≤ 0,≥ 0,0, ∅}
ρ13 = {Z,≤ 0,0, ∅}
ρ14 = {Z,≤ 0,≥ 0,0, ∅}

Identify abstract domains via upward closed operators (ucu)
ρ = α ◦ γ (vs downward closed operators (dco) γ ◦ α).

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 5 of 54

Example: Probabilistic Abstractions Rn

R1 =

0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

 , R2 =

0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1

R3 =

0 1 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

 , R4 =

1 0 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

R5 =

0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1

 , R6 =

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 6 of 54

Example: Probabilistic Abstractions Rn

R7 =

0 1 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1

 , R8 =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

R9 =

0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

 , R10 =

1 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 7 of 54

Example: Probabilistic Abstractions Rn

R11 =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1

 , R12 =

0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

R13 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1

 , R14 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 8 of 54

Computing Intersections/Unions

Associate to every PAI (A,G) a projection (similar to uco):

E = AG = AA†.

A general way to construct Eu F and (by exploiting de Morgan’s
law) also E t F = (E⊥ u F⊥)⊥ is via an infinite approximation
sequence and has been suggested by Halmos:

E u F = lim
n→∞

(EFE)n.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 9 of 54

Computing Intersections/Unions

Associate to every PAI (A,G) a projection (similar to uco):

E = AG = AA†.

A general way to construct Eu F and (by exploiting de Morgan’s
law) also E t F = (E⊥ u F⊥)⊥ is via an infinite approximation
sequence and has been suggested by Halmos:

E u F = lim
n→∞

(EFE)n.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 9 of 54

Commutative Case

The concrete construction of E t F and E u F is in general not
trivial. Only for commuting projections we have:

E t F = E + F− EF and E u F = EF.

Example
Consider a finite set Ω with a probability structure. For any
(measurable) subset A of Ω define the characteristic function
χA with χA(x) = 1 if x ∈ A and 0 otherwise. The characteristic
functions are (commutative) projections on random variables
using pointwise multiplication, i.e. XχAχA = XχA. We have
χA∩B = χAχB and χA∪B = χA + χB − χAχB.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 10 of 54

Commutative Case

The concrete construction of E t F and E u F is in general not
trivial. Only for commuting projections we have:

E t F = E + F− EF and E u F = EF.

Example
Consider a finite set Ω with a probability structure. For any
(measurable) subset A of Ω define the characteristic function
χA with χA(x) = 1 if x ∈ A and 0 otherwise. The characteristic
functions are (commutative) projections on random variables
using pointwise multiplication, i.e. XχAχA = XχA. We have
χA∩B = χAχB and χA∪B = χA + χB − χAχB.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 10 of 54

Commutative Case

The concrete construction of E t F and E u F is in general not
trivial. Only for commuting projections we have:

E t F = E + F− EF and E u F = EF.

Example
Consider a finite set Ω with a probability structure. For any
(measurable) subset A of Ω define the characteristic function
χA with χA(x) = 1 if x ∈ A and 0 otherwise. The characteristic
functions are (commutative) projections on random variables
using pointwise multiplication, i.e. XχAχA = XχA. We have
χA∩B = χAχB and χA∪B = χA + χB − χAχB.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 10 of 54

Non-Commutative Case

The Moore-Penrose pseudo-inverse is also useful for
computing the E u F and E t F of general, non-commuting
projections via the parallel sum

A : B = A(A + B)†B

The intersection of projections is given by:

E u F = 2(E : F) = E(E + F)†F + F(E + F)†E

Israel, Greville: Gereralized Inverses, Theory and Applications, Springer 03

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 11 of 54

Projection Operators

Define a partial order on self-adjoint operators and projections
as follows: H v K iff K− H is positive, i.e. there exists a B such
that K− H = B∗B.

Alternatively, order projections by inclusion of their image
spaces, i.e. E v F iff YE ⊆ YF.

The orthogonal projections form a complete lattice.

The range of the intersection E u F is to the closure of the
intersection of the image spaces of E and F.

The union E t F corresponds to the union of the images.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 12 of 54

Projection Operators

Define a partial order on self-adjoint operators and projections
as follows: H v K iff K− H is positive, i.e. there exists a B such
that K− H = B∗B.

Alternatively, order projections by inclusion of their image
spaces, i.e. E v F iff YE ⊆ YF.

The orthogonal projections form a complete lattice.

The range of the intersection E u F is to the closure of the
intersection of the image spaces of E and F.

The union E t F corresponds to the union of the images.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 12 of 54

Projection Operators

Define a partial order on self-adjoint operators and projections
as follows: H v K iff K− H is positive, i.e. there exists a B such
that K− H = B∗B.

Alternatively, order projections by inclusion of their image
spaces, i.e. E v F iff YE ⊆ YF.

The orthogonal projections form a complete lattice.

The range of the intersection E u F is to the closure of the
intersection of the image spaces of E and F.

The union E t F corresponds to the union of the images.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 12 of 54

Ortholattices I

Non-distributive analogs of Boolean algebras.

Definition (Ortholattice I)

An ortholattice (L,v, .⊥,0,1) is a lattice (L,v) with universal
bounds 0 and 1, i.e.

1 (L,v) is a partial order (i.e. v is reflexive, antisymmetric,
and transitive),

2 all pairs of elements a,b ∈ L have a least upper bound
(sup) denoted by a t b, and a greatest lower bound (inf)
denoted by a u b,

3 0 v a and a v 1 for all a ∈ L.
. . .

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 13 of 54

Ortholattices I

Non-distributive analogs of Boolean algebras.

Definition (Ortholattice I)

An ortholattice (L,v, .⊥,0,1) is a lattice (L,v) with universal
bounds 0 and 1, i.e.

1 (L,v) is a partial order (i.e. v is reflexive, antisymmetric,
and transitive),

2 all pairs of elements a,b ∈ L have a least upper bound
(sup) denoted by a t b, and a greatest lower bound (inf)
denoted by a u b,

3 0 v a and a v 1 for all a ∈ L.
. . .

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 13 of 54

Ortholattices I

Non-distributive analogs of Boolean algebras.

Definition (Ortholattice I)

An ortholattice (L,v, .⊥,0,1) is a lattice (L,v) with universal
bounds 0 and 1, i.e.

1 (L,v) is a partial order (i.e. v is reflexive, antisymmetric,
and transitive),

2 all pairs of elements a,b ∈ L have a least upper bound
(sup) denoted by a t b, and a greatest lower bound (inf)
denoted by a u b,

3 0 v a and a v 1 for all a ∈ L.
. . .

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 13 of 54

Ortholattices I

Non-distributive analogs of Boolean algebras.

Definition (Ortholattice I)

An ortholattice (L,v, .⊥,0,1) is a lattice (L,v) with universal
bounds 0 and 1, i.e.

1 (L,v) is a partial order (i.e. v is reflexive, antisymmetric,
and transitive),

2 all pairs of elements a,b ∈ L have a least upper bound
(sup) denoted by a t b, and a greatest lower bound (inf)
denoted by a u b,

3 0 v a and a v 1 for all a ∈ L.
. . .

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 13 of 54

Ortholattices II

Definition (Ortholattice II)

. . . and a unary complementation operation a 7→ a⊥ satisfying:
1 a u a⊥ = 0 and a t a⊥ = 1 for all a ∈ L,
2 (a u b)⊥ = a⊥ t b⊥ and (a t b)⊥ = a⊥ u b⊥ for all a,b ∈ L,
3 (a⊥)⊥ = a for all a ∈ L.

The set P(H) of closed-range projections on a Hilbert space H
is a non-distributive ortholattice〈

P(H),v,t,u, .⊥, I,0
〉

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 14 of 54

Ortholattices II

Definition (Ortholattice II)

. . . and a unary complementation operation a 7→ a⊥ satisfying:
1 a u a⊥ = 0 and a t a⊥ = 1 for all a ∈ L,
2 (a u b)⊥ = a⊥ t b⊥ and (a t b)⊥ = a⊥ u b⊥ for all a,b ∈ L,
3 (a⊥)⊥ = a for all a ∈ L.

The set P(H) of closed-range projections on a Hilbert space H
is a non-distributive ortholattice〈

P(H),v,t,u, .⊥, I,0
〉

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 14 of 54

Ortholattices II

Definition (Ortholattice II)

. . . and a unary complementation operation a 7→ a⊥ satisfying:
1 a u a⊥ = 0 and a t a⊥ = 1 for all a ∈ L,
2 (a u b)⊥ = a⊥ t b⊥ and (a t b)⊥ = a⊥ u b⊥ for all a,b ∈ L,
3 (a⊥)⊥ = a for all a ∈ L.

The set P(H) of closed-range projections on a Hilbert space H
is a non-distributive ortholattice〈

P(H),v,t,u, .⊥, I,0
〉

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 14 of 54

Ortholattices II

Definition (Ortholattice II)

. . . and a unary complementation operation a 7→ a⊥ satisfying:
1 a u a⊥ = 0 and a t a⊥ = 1 for all a ∈ L,
2 (a u b)⊥ = a⊥ t b⊥ and (a t b)⊥ = a⊥ u b⊥ for all a,b ∈ L,
3 (a⊥)⊥ = a for all a ∈ L.

The set P(H) of closed-range projections on a Hilbert space H
is a non-distributive ortholattice〈

P(H),v,t,u, .⊥, I,0
〉

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 14 of 54

Ortholattices II

Definition (Ortholattice II)

. . . and a unary complementation operation a 7→ a⊥ satisfying:
1 a u a⊥ = 0 and a t a⊥ = 1 for all a ∈ L,
2 (a u b)⊥ = a⊥ t b⊥ and (a t b)⊥ = a⊥ u b⊥ for all a,b ∈ L,
3 (a⊥)⊥ = a for all a ∈ L.

The set P(H) of closed-range projections on a Hilbert space H
is a non-distributive ortholattice〈

P(H),v,t,u, .⊥, I,0
〉

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 14 of 54

Commutativity and Distributivity

In general, u and t in an ortholattice are not distributive, ie.

(a u b) t (a u c) v a u (b t c)

a t (b u c) v (a t b) u (a t c)

Two elements a and b in an ortholattice commute, denoted by
[a,b] = 0, iff

a = (a u b) t (a u b⊥)

An ortholattice is called an orthomodular lattice if [a,b] = 0
implies [b,a] = 0.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 15 of 54

Commutativity and Distributivity

In general, u and t in an ortholattice are not distributive, ie.

(a u b) t (a u c) v a u (b t c)

a t (b u c) v (a t b) u (a t c)

Two elements a and b in an ortholattice commute, denoted by
[a,b] = 0, iff

a = (a u b) t (a u b⊥)

An ortholattice is called an orthomodular lattice if [a,b] = 0
implies [b,a] = 0.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 15 of 54

Commutativity and Distributivity

In general, u and t in an ortholattice are not distributive, ie.

(a u b) t (a u c) v a u (b t c)

a t (b u c) v (a t b) u (a t c)

Two elements a and b in an ortholattice commute, denoted by
[a,b] = 0, iff

a = (a u b) t (a u b⊥)

An ortholattice is called an orthomodular lattice if [a,b] = 0
implies [b,a] = 0.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 15 of 54

Example: Projections Pn = RnR†n

P1 =

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

 , P2 =

1
3

1
3 0 1

3 0
1
3

1
3 0 1

3 0
0 0 1

2 0 1
2

1
3

1
3 0 1

3 0
0 0 1

2 0 1
2

P3 =

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

 , P4 =

1 0 0 0 0
0 1

4
1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

P5 =

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

 , P6 =

1 0 0 0 0
0 1

2 0 1
2 0

0 0 1
2 0 1

2
0 1

2 0 1
2 0

0 0 1
2 0 1

2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 16 of 54

Example: Projections Pn = RnR†n

P7 =

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2 0 1

2
0 0 0 1 0
0 0 1

2 0 1
2

 , P8 =

1 0 0 0 0
0 1 0 0 0
0 0 1

3
1
3

1
3

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

P9 =

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1 0 0
0 0 0 1

2
1
2

0 0 0 1
2

1
2

 , P10 =

1 0 0 0 0
0 1

2
1
2 0 0

0 1
2

1
2 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 17 of 54

Example: Projections Pn = RnR†n

P11 =

1 0 0 0 0
0 1 0 0 0
0 0 1

2 0 1
2

0 0 0 1 0
0 0 1

2 0 1
2

 , P12 =

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

P13 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

2
1
2

0 0 0 1
2

1
2

 , P14 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 18 of 54

Example: The Lattice uco(Sign)

ρ1

{{ss ++##
ρ2

|| ##

ρ3

{{ ## ++

ρ4

{{qq ++

ρ5

{{ ##
ρ6

))

ρ7

��))

ρ8

))uu

ρ9

uu ��

ρ10

uu
ρ11

))

ρ12

��

ρ13

uu
ρ14

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 19 of 54

Example: The Lattice P(V(Sign))

P1

||ss ++""
P2

|| ""

P3

|| "" ++

P4

||
rr ++

P5

|| ""
P6

))

P7

��))

P8

))uu

P9

uu ��

P10

uu
P11

))

P12

��

P13

uu
P14

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 20 of 54

Example: Combining Projections

P7 u P8 =

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2 0 1

2
0 0 0 1 0
0 0 1

2 0 1
2

 u

1 0 0 0 0
0 1 0 0 0
0 0 1

3
1
3

1
3

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

 =

=

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

 = P3

In particular, we have P7 u P8 = P7P8 as P7 and P8 commute,
i.e. [P7,P8] = P7P8 − P8P7 = O.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 21 of 54

Example: Combining Projections

P4 u P7 =

1 0 0 0 0
0 1

4
1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

 u

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2 0 1

2
0 0 0 1 0
0 0 1

2 0 1
2

 =

=

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

 = P1

Using the expression P4 u P7 = 2P4(P4 + P7)†P7 as P4 and P7
do not commute.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 22 of 54

Example: Combining Projections

Note that the simple multiplication P4P7 is different from
P4 u P7:

P4P7 =

1 0 0 0 0
0 1

4
1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2 0 1

2
0 0 0 1 0
0 0 1

2 0 1
2

 =

=

1
5

1
5 0 0 0

1
8

1
8

1
4

1
4

1
4

1
8

1
8

1
4

1
4

1
4

1
8

1
8

1
4

1
4

1
4

1
8

1
8

1
4

1
4

1
4

 6= P4 u P7

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 23 of 54

Precision Measures

Definition
Given two vector (Hilbert) spaces C and D and a bounded
linear map F : C → D, then we say that a pair of projections
P : C → C and R : D → D is complete for F iff

FP = RFP.

Given a pair of projections (P,R) for a function F, we estimate
the precision of the abstraction via the “difference” between FP
and its optimal version RFP.

PrecF(P,R) = ‖FP− RFP‖.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 24 of 54

Precision Measures

Definition
Given two vector (Hilbert) spaces C and D and a bounded
linear map F : C → D, then we say that a pair of projections
P : C → C and R : D → D is complete for F iff

FP = RFP.

Given a pair of projections (P,R) for a function F, we estimate
the precision of the abstraction via the “difference” between FP
and its optimal version RFP.

PrecF(P,R) = ‖FP− RFP‖.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 24 of 54

Order and Precision

Proposition
Let F : H1 7→ H2 be a bounded linear operator between two
Hilbert spaces H1 and H2, and let P1,P2 ∈ P(H2) and
R ∈ P(H1).
Then we have: if P1 v P2 then PrecF(P1,R) ≤ PrecF(P2,R).

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 25 of 54

Example: (Relative) Precisions

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

P1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P3 1 .75 0 .79 .75 .65 0 0 0 .65 0 0 0 0
P4 1 .91 .79 0 .91 0 .79 0 .79 0 0 .79 0 0
P5 1 .75 0 .79 .75 .65 0 0 0 .65 0 0 0 0
P6 1.10 1 .87 0 1 0 .87 0 .87 0 0 .87 0 0
P7 1.34 1 0 1.06 1 .87 0 0 0 .87 0 0 0 0
P8 1 1 1 1 1 .82 1 0 1 .82 0 1 0 0
P9 1.10 .82 0 .87 .82 .71 0 0 0 .71 0 0 0 0
P10 1.07 .91 .87 .87 .91 .71 .87 0 .87 .71 0 .87 0 0
P11 1.34 1 1 1.22 1 1 1 0 1 1 0 1 0 0
P12 1.34 1 0 1.06 1 .87 0 0 0 .87 0 0 0 0
P13 1.10 1 1 1.06 1 .87 1 0 1 .87 0 1 0 0
P14 1.34 1 1 1.22 1 1 1 0 1 1 0 1 0 0

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 26 of 54

Linear Operator Semantics (LOS)

The collecting semantics of a program P is given by:

T(P) =
∑

pij · T(`i , `j)

Local effects T(`i , `j): Data Update + Control Step

T(`i , `j) = (Ni1 ⊗ Ni2 ⊗ . . .⊗ Niv)⊗Mij

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 27 of 54

Linear Operator Semantics (LOS)

The collecting semantics of a program P is given by:

T(P) =
∑

pij · T(`i , `j)

Local effects T(`i , `j): Data Update + Control Step

T(`i , `j) = (Ni1 ⊗ Ni2 ⊗ . . .⊗ Niv)⊗Mij

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 27 of 54

Kronecker Products

Given a n ×m matrix A and a k × l matrix B:

A =

 a11 . . . a1n
...

. . .
...

a1m . . . anm

 B =

 b11 . . . b1k
...

. . .
...

b1l . . . bkl

The tensor product A⊗ B is then a nk ×ml matrix:

A⊗ B =

 a11B . . . a1nB
...

. . .
...

a1mB . . . anmB

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 28 of 54

Kronecker Products

Given a n ×m matrix A and a k × l matrix B:

A =

 a11 . . . a1n
...

. . .
...

a1m . . . anm

 B =

 b11 . . . b1k
...

. . .
...

b1l . . . bkl

The tensor product A⊗ B is then a nk ×ml matrix:

A⊗ B =

 a11B . . . a1nB
...

. . .
...

a1mB . . . anmB

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 28 of 54

Abstract Tensor Product

The (algebraic) tensor product of vector spaces V1, V2, . . . , Vn
is given by a vector space

⊗n
i=1 Vi and a map

p = ⊗n
i=1 ∈ L(V1,V2, . . . ,Vn;

⊗n
i=1 Vi) such that ifW is any

vector space and f ∈ L(V1,V2, . . . ,Vn;W) then there exists a
unique map h :

⊗n
i=1 Vi →W satisfying f = h ◦ p.

V1 × V2 × . . .× Vn
f //

p

��

W

V1 ⊗ V2 ⊗ . . .⊗ Vn

h

99

V(X × Y) = V(X)⊗ V(Y)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 29 of 54

Abstract Tensor Product

The (algebraic) tensor product of vector spaces V1, V2, . . . , Vn
is given by a vector space

⊗n
i=1 Vi and a map

p = ⊗n
i=1 ∈ L(V1,V2, . . . ,Vn;

⊗n
i=1 Vi) such that ifW is any

vector space and f ∈ L(V1,V2, . . . ,Vn;W) then there exists a
unique map h :

⊗n
i=1 Vi →W satisfying f = h ◦ p.

V1 × V2 × . . .× Vn
f //

p

��

W

V1 ⊗ V2 ⊗ . . .⊗ Vn

h

99

V(X × Y) = V(X)⊗ V(Y)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 29 of 54

Tensor Product Properties

The tensor product of n linear operators A1, A2, . . . , An is
associative (but in general not commutative) and has e.g. the
following properties:

1 (A1 ⊗ . . .⊗ An) · (B1 ⊗ . . .⊗ Bn) =
= A1 · B1 ⊗ . . .⊗ An · Bn

2 A1 ⊗ . . .⊗ (αAi)⊗ . . .⊗ An =
= α(A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)

3 A1 ⊗ . . .⊗ (Ai + Bi)⊗ . . .⊗ An =
= (A1 ⊗ . . .⊗Ai ⊗ . . .⊗An) + (A1 ⊗ . . .⊗Bi ⊗ . . .⊗An)

4 (A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)† =

= A†1 ⊗ . . .⊗ A†i ⊗ . . .⊗ A†n

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 30 of 54

Tensor Product Properties

The tensor product of n linear operators A1, A2, . . . , An is
associative (but in general not commutative) and has e.g. the
following properties:

1 (A1 ⊗ . . .⊗ An) · (B1 ⊗ . . .⊗ Bn) =
= A1 · B1 ⊗ . . .⊗ An · Bn

2 A1 ⊗ . . .⊗ (αAi)⊗ . . .⊗ An =
= α(A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)

3 A1 ⊗ . . .⊗ (Ai + Bi)⊗ . . .⊗ An =
= (A1 ⊗ . . .⊗Ai ⊗ . . .⊗An) + (A1 ⊗ . . .⊗Bi ⊗ . . .⊗An)

4 (A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)† =

= A†1 ⊗ . . .⊗ A†i ⊗ . . .⊗ A†n

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 30 of 54

Tensor Product Properties

The tensor product of n linear operators A1, A2, . . . , An is
associative (but in general not commutative) and has e.g. the
following properties:

1 (A1 ⊗ . . .⊗ An) · (B1 ⊗ . . .⊗ Bn) =
= A1 · B1 ⊗ . . .⊗ An · Bn

2 A1 ⊗ . . .⊗ (αAi)⊗ . . .⊗ An =
= α(A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)

3 A1 ⊗ . . .⊗ (Ai + Bi)⊗ . . .⊗ An =
= (A1 ⊗ . . .⊗Ai ⊗ . . .⊗An) + (A1 ⊗ . . .⊗Bi ⊗ . . .⊗An)

4 (A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)† =

= A†1 ⊗ . . .⊗ A†i ⊗ . . .⊗ A†n

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 30 of 54

Tensor Product Properties

The tensor product of n linear operators A1, A2, . . . , An is
associative (but in general not commutative) and has e.g. the
following properties:

1 (A1 ⊗ . . .⊗ An) · (B1 ⊗ . . .⊗ Bn) =
= A1 · B1 ⊗ . . .⊗ An · Bn

2 A1 ⊗ . . .⊗ (αAi)⊗ . . .⊗ An =
= α(A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)

3 A1 ⊗ . . .⊗ (Ai + Bi)⊗ . . .⊗ An =
= (A1 ⊗ . . .⊗Ai ⊗ . . .⊗An) + (A1 ⊗ . . .⊗Bi ⊗ . . .⊗An)

4 (A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)† =

= A†1 ⊗ . . .⊗ A†i ⊗ . . .⊗ A†n

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 30 of 54

Tensor Product Properties

The tensor product of n linear operators A1, A2, . . . , An is
associative (but in general not commutative) and has e.g. the
following properties:

1 (A1 ⊗ . . .⊗ An) · (B1 ⊗ . . .⊗ Bn) =
= A1 · B1 ⊗ . . .⊗ An · Bn

2 A1 ⊗ . . .⊗ (αAi)⊗ . . .⊗ An =
= α(A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)

3 A1 ⊗ . . .⊗ (Ai + Bi)⊗ . . .⊗ An =
= (A1 ⊗ . . .⊗Ai ⊗ . . .⊗An) + (A1 ⊗ . . .⊗Bi ⊗ . . .⊗An)

4 (A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)† =

= A†1 ⊗ . . .⊗ A†i ⊗ . . .⊗ A†n

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 30 of 54

Relational Dependency

1: [m← 1]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: end while
6: [stop]5

Input/output behaviour: Parity of m for different values of n.

Probability that m = even/odd and n = 1,2,3.
Probability that m is even/odd, and
Probability that n is 1,2,3.

Probability that m is even/odd for n = 1,2,3.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 31 of 54

Relational Dependency

1: [m← 1]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: end while
6: [stop]5

Input/output behaviour: Parity of m for different values of n.

Probability that m = even/odd and n = 1,2,3.
Probability that m is even/odd, and
Probability that n is 1,2,3.

Probability that m is even/odd for n = 1,2,3.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 31 of 54

Relational Dependency

1: [m← 1]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: end while
6: [stop]5

Input/output behaviour: Parity of m for different values of n.

Probability that m = even/odd and n = 1,2,3.
Probability that m is even/odd, and
Probability that n is 1,2,3.

Probability that m is even/odd for n = 1,2,3.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 31 of 54

Relational Dependency

1: [m← 1]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: end while
6: [stop]5

Input/output behaviour: Parity of m for different values of n.

Probability that m = even/odd and n = 1,2,3.
Probability that m is even/odd, and
Probability that n is 1,2,3.

Probability that m is even/odd for n = 1,2,3.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 31 of 54

Dependency and Correlations

Some joint probability distributions can be expressed as tensor
product of two (independent) probability distributions e and f:(2

9
2
9

2
9

1
9

1
9

1
9

)
= (

1
3
,
1
3
,
1
3

)⊗ (
2
3
,
1
3

)t

However, in general we can express any joint probability
distribution as a linear combination of distributions.(

0 1
3

1
3

1
3 0 0

)
=

1
3

(e1 ⊗ f2) +
1
3

(e2 ⊗ f1) +
1
3

(e3 ⊗ f1)

with ei ∈ R3 and fj ∈ R2 (row and column) basis vectors

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 54

Dependency and Correlations

Some joint probability distributions can be expressed as tensor
product of two (independent) probability distributions e and f:(2

9
2
9

2
9

1
9

1
9

1
9

)
= (

1
3
,
1
3
,
1
3

)⊗ (
2
3
,
1
3

)t

However, in general we can express any joint probability
distribution as a linear combination of distributions.(

0 1
3

1
3

1
3 0 0

)
=

1
3

(e1 ⊗ f2) +
1
3

(e2 ⊗ f1) +
1
3

(e3 ⊗ f1)

with ei ∈ R3 and fj ∈ R2 (row and column) basis vectors

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 54

Dependency and Correlations

Some joint probability distributions can be expressed as tensor
product of two (independent) probability distributions e and f:(2

9
2
9

2
9

1
9

1
9

1
9

)
= (

1
3
,
1
3
,
1
3

)⊗ (
2
3
,
1
3

)t

But there are no two vectors e and f such that for example(
0 1

3
1
3

1
3 0 0

)
= e⊗ f

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 54

Dependency and Correlations

Some joint probability distributions can be expressed as tensor
product of two (independent) probability distributions e and f:(2

9
2
9

2
9

1
9

1
9

1
9

)
= (

1
3
,
1
3
,
1
3

)⊗ (
2
3
,
1
3

)t

However, in general we can express any joint probability
distribution as a linear combination of distributions.(

0 1
3

1
3

1
3 0 0

)
=

1
3

(e1 ⊗ f2) +
1
3

(e2 ⊗ f1) +
1
3

(e3 ⊗ f1)

with ei ∈ R3 and fj ∈ R2 (row and column) basis vectors

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 32 of 54

Fully, Weakly and Non-Relational Analysis

Consider compositional (probabilistic) abstractions of the form:

S =
v⊕

i=1

S(xi) with S(xi) = (
i−1⊗
k=1

S¬i)⊗ Si ⊗ (
v⊗

k=i+1

S¬i)

Fully Relational: Sr is S with Si = Ai and S¬i = A¬i

Weakly Relational: Sw is S with Si = Ai and S¬i = A¬i or Af

Non-Relational: Sn is S with Si = A and S¬i = Af

With Af forgetful and Ai and A¬i nontrivial abstractions.
For Sr all factors in

⊕
are the same; we can take Sr = S(x1).

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 33 of 54

Fully, Weakly and Non-Relational Analysis

Consider compositional (probabilistic) abstractions of the form:

S =
v⊕

i=1

S(xi) with S(xi) = (
i−1⊗
k=1

S¬i)⊗ Si ⊗ (
v⊗

k=i+1

S¬i)

Fully Relational: Sr is S with Si = Ai and S¬i = A¬i

Weakly Relational: Sw is S with Si = Ai and S¬i = A¬i or Af

Non-Relational: Sn is S with Si = A and S¬i = Af

With Af forgetful and Ai and A¬i nontrivial abstractions.
For Sr all factors in

⊕
are the same; we can take Sr = S(x1).

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 33 of 54

Fully, Weakly and Non-Relational Analysis

Consider compositional (probabilistic) abstractions of the form:

S =
v⊕

i=1

S(xi) with S(xi) = (
i−1⊗
k=1

S¬i)⊗ Si ⊗ (
v⊗

k=i+1

S¬i)

Fully Relational: Sr is S with Si = Ai and S¬i = A¬i

Weakly Relational: Sw is S with Si = Ai and S¬i = A¬i or Af

Non-Relational: Sn is S with Si = A and S¬i = Af

With Af forgetful and Ai and A¬i nontrivial abstractions.
For Sr all factors in

⊕
are the same; we can take Sr = S(x1).

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 33 of 54

Fully, Weakly and Non-Relational Analysis

Consider compositional (probabilistic) abstractions of the form:

S =
v⊕

i=1

S(xi) with S(xi) = (
i−1⊗
k=1

S¬i)⊗ Si ⊗ (
v⊗

k=i+1

S¬i)

Fully Relational: Sr is S with Si = Ai and S¬i = A¬i

Weakly Relational: Sw is S with Si = Ai and S¬i = A¬i or Af

Non-Relational: Sn is S with Si = A and S¬i = Af

With Af forgetful and Ai and A¬i nontrivial abstractions.
For Sr all factors in

⊕
are the same; we can take Sr = S(x1).

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 33 of 54

Examples

var x:[0..10]; begin x:=k; stop (k = 1,4)

P\R ∅ Sn Sw Sr id
∅ 0 0 0 0 0

Sn 1.58 0 0 0 0
Sw 1.58 0 0 0 0
Sr 1.58 0 0 0 0
id 2.55 1 1 1 0

Using cast d abstraction : Ad lifted α(x) = x mod d

Sn is S with Si = S4,S¬i = A1

Sw is S with Si = S4,S¬i = A2

Sr is S with Si = S¬i = A4

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 34 of 54

Examples

var x:[0..10]; y:[0..10]; begin x:=y; stop

P\R ∅ Sn Sw Sr id
∅ 0 0 0 0 0

Sn 1.73 0 0 0 0
Sw 2.24 1 0 0 0
Sr 2.24 1 1 0 0
id 3.61 3.61 3.61 3.61 0

Using cast d abstraction : Ad lifted α(x) = x mod d

Sn is S with Si = S4,S¬i = A1

Sw is S with Si = S4,S¬i = A2

Sr is S with Si = S¬i = A4

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 34 of 54

Examples

var x:[0..10]; y:[0..3]; begin x:=2*y; stop

P\R ∅ Sn Sw Sr id
∅ 0 0 0 0 0

Sn 1.88 0.89 0.89 0.89 0
Sw 2.14 1.52 1.29 1.29 0
Sr 2.24 1.64 1.50 1.41 0
id 3.61 3.60 3.59 3.58 0

Using cast d abstraction : Ad lifted α(x) = x mod d

Sn is S with Si = S4,S¬i = A1

Sw is S with Si = S4,S¬i = A2

Sr is S with Si = S¬i = A4

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 34 of 54

Examples

var x:[0..10]; y:[0..3]; begin x:=3*y; stop

P\R ∅ Sn Sw Sr id
∅ 0 0 0 0 0

Sn 1.77 0.89 0.89 0.89 0
Sw 2.24 1.52 1.29 1.29 0
Sr 2.24 1.64 1.50 1.41 0
id 3.61 3.60 3.59 3.58 0

Using cast d abstraction : Ad lifted α(x) = x mod d

Sn is S with Si = S4,S¬i = A1

Sw is S with Si = S4,S¬i = A2

Sr is S with Si = S¬i = A4

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 34 of 54

Further Work
Conclusions

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 35 of 54

Conclusions

Some applications of PAI:

Approximate Process Equivalences: The semantics of
concurrent processes can be defined via approximate
equivalences (e.g. ε-bisimulation).
Approximate Confinement: Static analysis of security
properties can be sometimes more effective if the security
is guaranteed only up to some acceptable percentage
treshold.
Probabilistic Program Transformation: Transforming out
timing leaks... probabilistically.
...

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 36 of 54

Conclusions

Some applications of PAI:

Approximate Process Equivalences: The semantics of
concurrent processes can be defined via approximate
equivalences (e.g. ε-bisimulation).
Approximate Confinement: Static analysis of security
properties can be sometimes more effective if the security
is guaranteed only up to some acceptable percentage
treshold.
Probabilistic Program Transformation: Transforming out
timing leaks... probabilistically.
...

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 36 of 54

Conclusions

Some applications of PAI:

Approximate Process Equivalences: The semantics of
concurrent processes can be defined via approximate
equivalences (e.g. ε-bisimulation).
Approximate Confinement: Static analysis of security
properties can be sometimes more effective if the security
is guaranteed only up to some acceptable percentage
treshold.
Probabilistic Program Transformation: Transforming out
timing leaks... probabilistically.
...

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 36 of 54

Conclusions

Some applications of PAI:

Approximate Process Equivalences: The semantics of
concurrent processes can be defined via approximate
equivalences (e.g. ε-bisimulation).
Approximate Confinement: Static analysis of security
properties can be sometimes more effective if the security
is guaranteed only up to some acceptable percentage
treshold.
Probabilistic Program Transformation: Transforming out
timing leaks... probabilistically.
...

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 36 of 54

Conclusions

Some applications of PAI:

Approximate Process Equivalences: The semantics of
concurrent processes can be defined via approximate
equivalences (e.g. ε-bisimulation).
Approximate Confinement: Static analysis of security
properties can be sometimes more effective if the security
is guaranteed only up to some acceptable percentage
treshold.
Probabilistic Program Transformation: Transforming out
timing leaks... probabilistically.
...

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 36 of 54

LOS for Variable Probabilities

In every choice construct one must make a choice and the
probabilities of all choices must sum up to one (certainty).
One can’t assume (that the programmer used) normalised
probabilities.

We therefore need to normalise probabilities with respect to a
context of "competing" probabilities:

p̃ = p[p1...pn] =
p

p1 + . . .+ pn
.

This can be done at compile-time if all probabilities are
constants, but also at runtime in the operational semantics.

Typically one would assume pi ∈ R or pi ∈ Q. However, we can
also use discrete probabilities, i.e. pi ∈ Z.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 37 of 54

LOS for Variable Probabilities

In every choice construct one must make a choice and the
probabilities of all choices must sum up to one (certainty).
One can’t assume (that the programmer used) normalised
probabilities.

We therefore need to normalise probabilities with respect to a
context of "competing" probabilities:

p̃ = p[p1...pn] =
p

p1 + . . .+ pn
.

This can be done at compile-time if all probabilities are
constants, but also at runtime in the operational semantics.

Typically one would assume pi ∈ R or pi ∈ Q. However, we can
also use discrete probabilities, i.e. pi ∈ Z.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 37 of 54

LOS for Variable Probabilities

In every choice construct one must make a choice and the
probabilities of all choices must sum up to one (certainty).
One can’t assume (that the programmer used) normalised
probabilities.

We therefore need to normalise probabilities with respect to a
context of "competing" probabilities:

p̃ = p[p1...pn] =
p

p1 + . . .+ pn
.

This can be done at compile-time if all probabilities are
constants, but also at runtime in the operational semantics.

Typically one would assume pi ∈ R or pi ∈ Q. However, we can
also use discrete probabilities, i.e. pi ∈ Z.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 37 of 54

LOS for Variable Probabilities

In every choice construct one must make a choice and the
probabilities of all choices must sum up to one (certainty).
One can’t assume (that the programmer used) normalised
probabilities.

We therefore need to normalise probabilities with respect to a
context of "competing" probabilities:

p̃ = p[p1...pn] =
p

p1 + . . .+ pn
.

This can be done at compile-time if all probabilities are
constants, but also at runtime in the operational semantics.

Typically one would assume pi ∈ R or pi ∈ Q. However, we can
also use discrete probabilities, i.e. pi ∈ Z.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 37 of 54

LOS for Variable Probabilities

In every choice construct one must make a choice and the
probabilities of all choices must sum up to one (certainty).
One can’t assume (that the programmer used) normalised
probabilities.

We therefore need to normalise probabilities with respect to a
context of "competing" probabilities:

p̃ = p[p1...pn] =
p

p1 + . . .+ pn
.

This can be done at compile-time if all probabilities are
constants, but also at runtime in the operational semantics.

Typically one would assume pi ∈ R or pi ∈ Q. However, we can
also use discrete probabilities, i.e. pi ∈ Z.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 37 of 54

Duel at High Noon

Consider a "duel" between two cowboys:
Cowboy A – hitting probability a
Cowboy B – hitting probability b

1 Choose (non-deterministically) whether A or B starts.
2 Repeat until winner is known:

If it is A’s turn he will hit/shoot B with probability a;
If B is shot then A is the winner, otherwise it’s B’s turn.
If it is B’s turn he will hit/shoot A with probability b;
If A is shot then B is the winner, otherwise it’s A’s turn.

Question: What is the life expectancy of A or B?
Question: What happens if A is learning to shoot better during
the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 38 of 54

Duel at High Noon

Consider a "duel" between two cowboys:
Cowboy A – hitting probability a
Cowboy B – hitting probability b

1 Choose (non-deterministically) whether A or B starts.
2 Repeat until winner is known:

If it is A’s turn he will hit/shoot B with probability a;
If B is shot then A is the winner, otherwise it’s B’s turn.
If it is B’s turn he will hit/shoot A with probability b;
If A is shot then B is the winner, otherwise it’s A’s turn.

Question: What is the life expectancy of A or B?
Question: What happens if A is learning to shoot better during
the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 38 of 54

Duel at High Noon

Consider a "duel" between two cowboys:
Cowboy A – hitting probability a
Cowboy B – hitting probability b

1 Choose (non-deterministically) whether A or B starts.
2 Repeat until winner is known:

If it is A’s turn he will hit/shoot B with probability a;
If B is shot then A is the winner, otherwise it’s B’s turn.
If it is B’s turn he will hit/shoot A with probability b;
If A is shot then B is the winner, otherwise it’s A’s turn.

Question: What is the life expectancy of A or B?
Question: What happens if A is learning to shoot better during
the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 38 of 54

Duel at High Noon

Consider a "duel" between two cowboys:
Cowboy A – hitting probability a
Cowboy B – hitting probability b

1 Choose (non-deterministically) whether A or B starts.
2 Repeat until winner is known:

If it is A’s turn he will hit/shoot B with probability a;
If B is shot then A is the winner, otherwise it’s B’s turn.
If it is B’s turn he will hit/shoot A with probability b;
If A is shot then B is the winner, otherwise it’s A’s turn.

Question: What is the life expectancy of A or B?
Question: What happens if A is learning to shoot better during
the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 38 of 54

Duel at High Noon

Consider a "duel" between two cowboys:
Cowboy A – hitting probability a
Cowboy B – hitting probability b

1 Choose (non-deterministically) whether A or B starts.
2 Repeat until winner is known:

If it is A’s turn he will hit/shoot B with probability a;
If B is shot then A is the winner, otherwise it’s B’s turn.
If it is B’s turn he will hit/shoot A with probability b;
If A is shot then B is the winner, otherwise it’s A’s turn.

Question: What is the life expectancy of A or B?
Question: What happens if A is learning to shoot better during
the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 38 of 54

Duel at High Noon

Consider a "duel" between two cowboys:
Cowboy A – hitting probability a
Cowboy B – hitting probability b

1 Choose (non-deterministically) whether A or B starts.
2 Repeat until winner is known:

If it is A’s turn he will hit/shoot B with probability a;
If B is shot then A is the winner, otherwise it’s B’s turn.
If it is B’s turn he will hit/shoot A with probability b;
If A is shot then B is the winner, otherwise it’s A’s turn.

Question: What is the life expectancy of A or B?
Question: What happens if A is learning to shoot better during
the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 38 of 54

Duel at High Noon

Consider a "duel" between two cowboys:
Cowboy A – hitting probability a
Cowboy B – hitting probability b

1 Choose (non-deterministically) whether A or B starts.
2 Repeat until winner is known:

If it is A’s turn he will hit/shoot B with probability a;
If B is shot then A is the winner, otherwise it’s B’s turn.
If it is B’s turn he will hit/shoot A with probability b;
If A is shot then B is the winner, otherwise it’s A’s turn.

Question: What is the life expectancy of A or B?
Question: What happens if A is learning to shoot better during
the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012)

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 38 of 54

Example: Duelling Cowboys

begin
who’s first turn
choose 1:{t:=0} or 1:{t:=1} ro;
continue until ...
c := 1;
while c == 1 do
if (t==0) then
choose ak:{c:=0} or am:{t:=1} ro

else
choose bk:{c:=0} or bm:{t:=0} ro

fi;
od;
stop; # terminal loop
end

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 39 of 54

Example: Duelling Cowboys

The survival chances, i.e. winning probability, for A.

0
0.2

0.4
0.6

0.8
1

a

0 0.2 0.4 0.6 0.8 1
b

0

0.2

0.4

0.6

0.8

1

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 40 of 54

Contexts: Advance Normalisation

For all possible values of the variable probabilities pi compute
their normalisation, compute the possible contexts.

C[p1, . . . ,pn] =

∅ if n = 0
{[p1]} if n = 1 and pi const
{[c] | c ∈ Value(p1)} if n = 1 and pi var⋃

[i]∈C[p1]
{[i] · C[p2, . . . ,pn]} otherwise, i.e. n > 1.

Example

Variable x with Value(x) = {0,1} and a parameter p = 0 or
p = 1 then contexts are given by:

C[x ,1,p] = {[0,1,0], [1,1,0]} and C[x ,1,p] = {[0,1,1], [1,1,1]}

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 41 of 54

Dynamic Probabilities

For all possible values of the variable probabilities test if the
current state. With cj ∈ Value(pj) and di ∈ Value(pi) use:

Ppi [p1...pn]
cj [d1...dn]

= P(pi = cj) ·

 ∏
k=1,...,n

P(pk = dk)

This gives the LOS Semantics for variable probabilities:

{{[choose]p1:S1 . . .or pn : Sn or `}}LOS = {{Si}}LOS ∪
n⋃

i=1

 ∑
cj∈Value(pi)

∑
[d1...dn]∈C[p1...pn]

cj [d1...dn]
· Ppi [p1...pn]

cj [d1...dn]
⊗ E(`, init(Si))

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 42 of 54

Dynamic Probabilities

For all possible values of the variable probabilities test if the
current state. With cj ∈ Value(pj) and di ∈ Value(pi) use:

Ppi [p1...pn]
cj [d1...dn]

= P(pi = cj) ·

 ∏
k=1,...,n

P(pk = dk)

This gives the LOS Semantics for variable probabilities:

{{[choose]p1:S1 . . .or pn : Sn or `}}LOS = {{Si}}LOS ∪
n⋃

i=1

 ∑
cj∈Value(pi)

∑
[d1...dn]∈C[p1...pn]

cj [d1...dn]
· Ppi [p1...pn]

cj [d1...dn]
⊗ E(`, init(Si))

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 42 of 54

Learning how to shoot straight
begin
initialise skills of A
akl := ak; aml := am;
who’s first
choose 1:{t:=0} or 1:{t:=1} ro;
continue until ...
c := 1;
while c == 1 do
if (t==0) then
choose akl:{c:=0} or aml:{t:=1} ro

else
choose bk:{c:=0} or bm:{t:=0} ro

fi;
akl := @inc(akl); aml := @dec(aml);

od;
stop; # terminal loop
end

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 43 of 54

Back to the two Cowboys

0
0.2

0.4
0.6

0.8
1

a

0 0.2 0.4 0.6 0.8 1
b

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Learning rate 0.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 44 of 54

Back to the two Cowboys

0
0.2

0.4
0.6

0.8
1

a

0 0.2 0.4 0.6 0.8 1
b

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Learning rate 1.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 45 of 54

Back to the two Cowboys

0
0.2

0.4
0.6

0.8
1

a

0 0.2 0.4 0.6 0.8 1
b

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Learning rate 2.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 46 of 54

Back to the two Cowboys

0
0.2

0.4
0.6

0.8
1

a

0 0.2 0.4 0.6 0.8 1
b

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Learning rate 4.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 47 of 54

LOS for Program Synthesis

Finding the minimum length path vs minimum value of functions

x

y

As usual (for now): Take the best non-linear optimisation tool
money can’t buy (leave it to "them" to make it work).

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 48 of 54

LOS for Program Synthesis

Finding the minimum length path vs minimum value of functions

x

y

As usual (for now): Take the best non-linear optimisation tool
money can’t buy (leave it to "them" to make it work).

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 48 of 54

LOS for Program Synthesis

Finding the minimum length path vs minimum value of functions

x

y

As usual (for now): Take the best non-linear optimisation tool
money can’t buy (leave it to "them" to make it work).

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 48 of 54

A General Approach

Consider parameterised program P(p1,p2, . . . ,pn) with

. . . [choose]` p1 : S1 or . . . or pn : Sn ro; . . .

Construct the parametric LOS semantics/operator, i.e.

[[P(λ1, λ2, . . . , λn)]] = T(λ1, λ2, . . . , λn)

Establish constraints on functional behaviour, e.g.

‖A†T(λ1, λ2, . . . , λn)A− [[S]]‖ = 0

Additional non-functional (performance) objectives

min
λ1,λ2,...,λn

Φ(T(λ1, λ2, . . . , λn))

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 49 of 54

A General Approach

Consider parameterised program P(λ1, λ2, . . . , λn) with

. . . [choose]` λ1 : S1 or . . . or λn : Sn ro; . . .

Construct the parametric LOS semantics/operator, i.e.

[[P(λ1, λ2, . . . , λn)]] = T(λ1, λ2, . . . , λn)

Establish constraints on functional behaviour, e.g.

‖A†T(λ1, λ2, . . . , λn)A− [[S]]‖ = 0

Additional non-functional (performance) objectives

min
λ1,λ2,...,λn

Φ(T(λ1, λ2, . . . , λn))

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 49 of 54

A General Approach

Consider parameterised program P(λ1, λ2, . . . , λn) with

. . . [opt]` S1 or . . . or Sn top; . . .

Construct the parametric LOS semantics/operator, i.e.

[[P(λ1, λ2, . . . , λn)]] = T(λ1, λ2, . . . , λn)

Establish constraints on functional behaviour, e.g.

‖A†T(λ1, λ2, . . . , λn)A− [[S]]‖ = 0

Additional non-functional (performance) objectives

min
λ1,λ2,...,λn

Φ(T(λ1, λ2, . . . , λn))

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 49 of 54

A General Approach

Consider parameterised program P(λ1, λ2, . . . , λn) with

. . . [choose]` λ1 : S1 or . . . or λn : Sn ro; . . .

Construct the parametric LOS semantics/operator, i.e.

[[P(λ1, λ2, . . . , λn)]] = T(λ1, λ2, . . . , λn)

Establish constraints on functional behaviour, e.g.

‖A†T(λ1, λ2, . . . , λn)A− [[S]]‖ = 0

Additional non-functional (performance) objectives

min
λ1,λ2,...,λn

Φ(T(λ1, λ2, . . . , λn))

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 49 of 54

A General Approach

Consider parameterised program P(λ1, λ2, . . . , λn) with

. . . [choose]` λ1 : S1 or . . . or λn : Sn ro; . . .

Construct the parametric LOS semantics/operator, i.e.

[[P(λ1, λ2, . . . , λn)]] = T(λ1, λ2, . . . , λn)

Establish constraints on functional behaviour, e.g.

‖A†T(λ1, λ2, . . . , λn)A− [[S]]‖ = 0

Additional non-functional (performance) objectives

min
λ1,λ2,...,λn

Φ(T(λ1, λ2, . . . , λn))

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 49 of 54

A General Approach

Consider parameterised program P(λ1, λ2, . . . , λn) with

. . . [choose]` λ1 : S1 or . . . or λn : Sn ro; . . .

Construct the parametric LOS semantics/operator, i.e.

[[P(λ1, λ2, . . . , λn)]] = T(λ1, λ2, . . . , λn)

Establish constraints on functional behaviour, e.g.

A†T(λ1, λ2, . . . , λn)A = [[S]]

Additional non-functional (performance) objectives

min
λ1,λ2,...,λn

Φ(T(λ1, λ2, . . . , λn))

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 49 of 54

A General Approach

Consider parameterised program P(λ1, λ2, . . . , λn) with

. . . [choose]` λ1 : S1 or . . . or λn : Sn ro; . . .

Construct the parametric LOS semantics/operator, i.e.

[[P(λ1, λ2, . . . , λn)]] = T(λ1, λ2, . . . , λn)

Establish constraints on functional behaviour, e.g.

‖A†T(λ1, λ2, . . . , λn)A− [[S]]‖ = 0

Additional non-functional (performance) objectives

min
λ1,λ2,...,λn

Φ(T(λ1, λ2, . . . , λn))

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 49 of 54

Swapping: The XOR Trick

Consider the (probabilistic) sketch for swapping x and y :

[choose]1 λ1,1 : S1 or . . . or λ1,n : Sn ro;
[choose]2 λ2,1 : S1 or . . . or λ2,n : Sn ro;
[choose]3 λ3,1 : S1 or . . . or λ3,n : Sn ro;

with Si one of i = 1, . . . ,13 different elementary blocks:

[skip]1

[x := y]2 [x := z]3

[y := x]4 [y := z]5

[z := x]6 [z := y]7

[x := (x + y) mod 2]8 [x := (x + z) mod 2]9

[y := (y + x) mod 2]10 [y := (y + z) mod 2]11

[z := (z + x) mod 2]12 [z := (z + y) mod 2]13

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 50 of 54

Swapping: The XOR Trick

Consider the (probabilistic) sketch for swapping x and y :

[choose]1 λ1,1 : S1 or . . . or λ1,n : Sn ro;
[choose]2 λ2,1 : S1 or . . . or λ2,n : Sn ro;
[choose]3 λ3,1 : S1 or . . . or λ3,n : Sn ro;

with Si one of i = 1, . . . ,13 different elementary blocks:

[skip]1

[x := y]2 [x := z]3

[y := x]4 [y := z]5

[z := x]6 [z := y]7

[x := (x + y) mod 2]8 [x := (x + z) mod 2]9

[y := (y + x) mod 2]10 [y := (y + z) mod 2]11

[z := (z + x) mod 2]12 [z := (z + y) mod 2]13

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 50 of 54

Swapping: Parameterised LOS and Objective

Using 13 transfer functions F1 . . .F13 to define

T(λij) =
3∏

i=1

Ti(λij) with Ti(λij) =
13∑

j=1

λijFj

For one-bit variables x , y the intended behaviour (on R2 ⊗ R2):

S =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

x 7→ 0 y 7→ 0
x 7→ 0 y 7→ 1
x 7→ 1 y 7→ 0
x 7→ 1 y 7→ 1

Objective: min Φ00(λij) = ‖A†T(λij)A− S‖2 or min Φρω(λij)
which also penalises for reading or writing to z; using the
abstraction A = I(4) ⊗ Af (2) = diag(1,1,1,1)⊗ (1,1)t .

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 51 of 54

Swapping: Parameterised LOS and Objective

Using 13 transfer functions F1 . . .F13 to define

T(λij) =
3∏

i=1

Ti(λij) with Ti(λij) =
13∑

j=1

λijFj

For one-bit variables x , y the intended behaviour (on R2 ⊗ R2):

S =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

x 7→ 0 y 7→ 0
x 7→ 0 y 7→ 1
x 7→ 1 y 7→ 0
x 7→ 1 y 7→ 1

Objective: min Φ00(λij) = ‖A†T(λij)A− S‖2 or min Φρω(λij)
which also penalises for reading or writing to z; using the
abstraction A = I(4) ⊗ Af (2) = diag(1,1,1,1)⊗ (1,1)t .

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 51 of 54

Swapping: Parameterised LOS and Objective

Using 13 transfer functions F1 . . .F13 to define

T(λij) =
3∏

i=1

Ti(λij) with Ti(λij) =
13∑

j=1

λijFj

For one-bit variables x , y the intended behaviour (on R2 ⊗ R2):

S =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

x 7→ 0 y 7→ 0
x 7→ 0 y 7→ 1
x 7→ 1 y 7→ 0
x 7→ 1 y 7→ 1

Objective: min Φ00(λij) = ‖A†T(λij)A− S‖2 or min Φρω(λij)
which also penalises for reading or writing to z; using the
abstraction A = I(4) ⊗ Af (2) = diag(1,1,1,1)⊗ (1,1)t .

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 51 of 54

Swapping: Test Runs

Using octave: if we start with a swap which uses z, like

[z := x]6; [x := y]2; [y := z]5

represented by λij given as: 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0

For min Φ00 we get no change; but with min Φ11 (after 12
iterations) we get with octave the optimal λij ’s: 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0

This corresponds to the program:

[y := (y+x) mod 2]10; [x := (x+y) mod 2]8; [y := (y+x) mod 2]10

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 52 of 54

Swapping: Test Runs

Using octave: if we start with a swap which uses z, like

[z := x]6; [x := y]2; [y := z]5

represented by λij given as: 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0

For min Φ00 we get no change; but with min Φ11 (after 12
iterations) we get with octave the optimal λij ’s: 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0

This corresponds to the program:

[y := (y+x) mod 2]10; [x := (x+y) mod 2]8; [y := (y+x) mod 2]10

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 52 of 54

Swapping: Test Runs

Using octave: if we start with a swap which uses z, like

[z := x]6; [x := y]2; [y := z]5

represented by λij given as: 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0

For min Φ00 we get no change; but with min Φ11 (after 12
iterations) we get with octave the optimal λij ’s: 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0

This corresponds to the program:

[y := (y+x) mod 2]10; [x := (x+y) mod 2]8; [y := (y+x) mod 2]10

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 52 of 54

Swapping: Test Runs

Using octave: if we start with a swap which uses z, like

[z := x]6; [x := y]2; [y := z]5

represented by λij given as: 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0

For min Φ00 we get no change; but with min Φ11 (after 12
iterations) we get with octave the optimal λij ’s: 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0

This corresponds to the program:

[y := (y+x) mod 2]10; [x := (x+y) mod 2]8; [y := (y+x) mod 2]10

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 52 of 54

Swapping: Test Runs

Using octave: if we start with a swap which uses z, like

[z := x]6; [x := y]2; [y := z]5

represented by λij given as: 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0

For min Φ00 we get no change; but with min Φ11 (after 12
iterations) we get with octave the optimal λij ’s: 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0

This corresponds to the program:

[y := (y+x) mod 2]10; [x := (x+y) mod 2]8; [y := (y+x) mod 2]10

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 52 of 54

Swapping: Test Runs

For randomly chosen initial values for λij : .70 .30 .72 .84 .51 .70 .76 .47 .63 .63 .93 .55 .68
.74 .22 .37 .70 .67 .13 .93 .69 .30 .88 .03 .52 .80
.59 .49 .01 .69 .22 .23 .10 .01 .10 .22 .03 .55 .11

For min Φ11 (after 9 iterations) we get the optimal λij ’s: 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0

This corresponds to the program:

[y := (y+x) mod 2]10; [x := (x+y) mod 2]8; [y := (y+x) mod 2]10

For Φ00 we may also get: [z := x]6; [x := y]2; [y := z]5.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 53 of 54

Swapping: Test Runs

For randomly chosen initial values for λij : .70 .30 .72 .84 .51 .70 .76 .47 .63 .63 .93 .55 .68
.74 .22 .37 .70 .67 .13 .93 .69 .30 .88 .03 .52 .80
.59 .49 .01 .69 .22 .23 .10 .01 .10 .22 .03 .55 .11

For min Φ11 (after 9 iterations) we get the optimal λij ’s: 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0

This corresponds to the program:

[y := (y+x) mod 2]10; [x := (x+y) mod 2]8; [y := (y+x) mod 2]10

For Φ00 we may also get: [z := x]6; [x := y]2; [y := z]5.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 53 of 54

Swapping: Test Runs

For randomly chosen initial values for λij : .70 .30 .72 .84 .51 .70 .76 .47 .63 .63 .93 .55 .68
.74 .22 .37 .70 .67 .13 .93 .69 .30 .88 .03 .52 .80
.59 .49 .01 .69 .22 .23 .10 .01 .10 .22 .03 .55 .11

For min Φ11 (after 9 iterations) we get the optimal λij ’s: 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0

This corresponds to the program:

[y := (y+x) mod 2]10; [x := (x+y) mod 2]8; [y := (y+x) mod 2]10

For Φ00 we may also get: [z := x]6; [x := y]2; [y := z]5.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 53 of 54

Swapping: Test Runs

For randomly chosen initial values for λij : .70 .30 .72 .84 .51 .70 .76 .47 .63 .63 .93 .55 .68
.74 .22 .37 .70 .67 .13 .93 .69 .30 .88 .03 .52 .80
.59 .49 .01 .69 .22 .23 .10 .01 .10 .22 .03 .55 .11

For min Φ11 (after 9 iterations) we get the optimal λij ’s: 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0

This corresponds to the program:

[y := (y+x) mod 2]10; [x := (x+y) mod 2]8; [y := (y+x) mod 2]10

For Φ00 we may also get: [z := x]6; [x := y]2; [y := z]5.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 53 of 54

Some References

Di Pierro, Wiklicky: A logico-algebraic approach to
probabilistic program analysis Pre-Proceedings of
LOPSTR’05.
Di Pierro, Sotin, Wiklicky: Relational analysis and precision
via probabilistic abstract interpretation. In QAPL’08 –
Workshop on Quantitative Aspects of Programming
Languages, ENTCS Elsevier, 2008.
Wiklicky: On Dynamical Probabilities, or: How to Learn to
Shoot Straight. in Proceedings of Coordination’16, LNCS
9686, Springer, 2016.
Israel and Greville: Gereralized Inverses – Theory and
Applications. CMS Books in Mathematics, Springer, 2003.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 54 of 54

Some References

Di Pierro, Wiklicky: A logico-algebraic approach to
probabilistic program analysis Pre-Proceedings of
LOPSTR’05.
Di Pierro, Sotin, Wiklicky: Relational analysis and precision
via probabilistic abstract interpretation. In QAPL’08 –
Workshop on Quantitative Aspects of Programming
Languages, ENTCS Elsevier, 2008.
Wiklicky: On Dynamical Probabilities, or: How to Learn to
Shoot Straight. in Proceedings of Coordination’16, LNCS
9686, Springer, 2016.
Israel and Greville: Gereralized Inverses – Theory and
Applications. CMS Books in Mathematics, Springer, 2003.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 54 of 54

Some References

Di Pierro, Wiklicky: A logico-algebraic approach to
probabilistic program analysis Pre-Proceedings of
LOPSTR’05.
Di Pierro, Sotin, Wiklicky: Relational analysis and precision
via probabilistic abstract interpretation. In QAPL’08 –
Workshop on Quantitative Aspects of Programming
Languages, ENTCS Elsevier, 2008.
Wiklicky: On Dynamical Probabilities, or: How to Learn to
Shoot Straight. in Proceedings of Coordination’16, LNCS
9686, Springer, 2016.
Israel and Greville: Gereralized Inverses – Theory and
Applications. CMS Books in Mathematics, Springer, 2003.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 54 of 54

Some References

Di Pierro, Wiklicky: A logico-algebraic approach to
probabilistic program analysis Pre-Proceedings of
LOPSTR’05.
Di Pierro, Sotin, Wiklicky: Relational analysis and precision
via probabilistic abstract interpretation. In QAPL’08 –
Workshop on Quantitative Aspects of Programming
Languages, ENTCS Elsevier, 2008.
Wiklicky: On Dynamical Probabilities, or: How to Learn to
Shoot Straight. in Proceedings of Coordination’16, LNCS
9686, Springer, 2016.
Israel and Greville: Gereralized Inverses – Theory and
Applications. CMS Books in Mathematics, Springer, 2003.

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 54 of 54

