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Moore-Penrose Pseudo-Inverse

Definition
Let C and D be two Hilbert spaces and A : C → D a bounded
linear map. A bounded linear map A† = G : D → C is the
Moore-Penrose pseudo-inverse of A iff

(i) A ◦G = PA,
(ii) G ◦ A = PG,

where PA and PG denote orthogonal projections onto the
ranges of A and G.
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(Orthogonal) Projections – Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner
product 〈., .〉. This allows us to define an adjoint via:

〈A(x), y〉 = 〈x ,A∗(y)〉

An operator A is self-adjoint if A = A∗.
An operator A is positive, i.e. A w 0, if there exists an
operator B such that A = B∗B.
An (orthogonal) projection is a self-adjoint E with EE = E.

Projections identify (closed) sub-spaces YE = {Ex | x ∈ V}.
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Example: Sign Domain

• Z
ww ''

≤ 0 •
''

• ≥ 0

ww
• 0
��
• ∅

Enumeration: Sign = {∅,0,≥ 0,≤ 0,Z}

Free Vector Space: V(Sign) = {
∑

s∈Sign

xs · s | xi ∈ R}

Francesca Scozzari: Domain theory in abstract interpretation: equations,
completeness and logic. PhD Thesis, Siena 1999.
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Example: Classical Abstractions (Domains via uco)

Consider the upward closed sub-domains of {∅,0,≥ 0,≤ 0,Z}:

ρ1 = {Z}
ρ2 = {Z,≥ 0}
ρ3 = {Z,0}
ρ4 = {Z, ∅}
ρ5 = {Z,≤ 0}
ρ6 = {Z,≥ 0, ∅}
ρ7 = {Z,≥ 0,0}

ρ8 = {Z,0, ∅}
ρ9 = {Z,≤ 0,0}
ρ10 = {Z,≤ 0, ∅}
ρ11 = {Z,≥ 0,0, ∅}
ρ12 = {Z,≤ 0,≥ 0,0, ∅}
ρ13 = {Z,≤ 0,0, ∅}
ρ14 = {Z,≤ 0,≥ 0,0, ∅}

Identify abstract domains via upward closed operators (ucu)
ρ = α ◦ γ (vs downward closed operators (dco) γ ◦ α).
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Example: Probabilistic Abstractions Rn

R1 =


0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

 , R2 =


0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1



R3 =


0 1 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

 , R4 =


1 0 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1



R5 =


0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1

 , R6 =


1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1
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Example: Probabilistic Abstractions Rn

R7 =


0 1 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1

 , R8 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1



R9 =


0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

 , R10 =


1 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1
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Example: Probabilistic Abstractions Rn

R11 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1

 , R12 =


0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



R13 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1

 , R14 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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Computing Intersections/Unions

Associate to every PAI (A,G) a projection (similar to uco):

E = AG = AA†.

A general way to construct Eu F and (by exploiting de Morgan’s
law) also E t F = (E⊥ u F⊥)⊥ is via an infinite approximation
sequence and has been suggested by Halmos:

E u F = lim
n→∞

(EFE)n.
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Commutative Case

The concrete construction of E t F and E u F is in general not
trivial. Only for commuting projections we have:

E t F = E + F− EF and E u F = EF.

Example
Consider a finite set Ω with a probability structure. For any
(measurable) subset A of Ω define the characteristic function
χA with χA(x) = 1 if x ∈ A and 0 otherwise. The characteristic
functions are (commutative) projections on random variables
using pointwise multiplication, i.e. XχAχA = XχA. We have
χA∩B = χAχB and χA∪B = χA + χB − χAχB.
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Non-Commutative Case

The Moore-Penrose pseudo-inverse is also useful for
computing the E u F and E t F of general, non-commuting
projections via the parallel sum

A : B = A(A + B)†B

The intersection of projections is given by:

E u F = 2(E : F) = E(E + F)†F + F(E + F)†E

Israel, Greville: Gereralized Inverses, Theory and Applications, Springer 03
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Projection Operators

Define a partial order on self-adjoint operators and projections
as follows: H v K iff K− H is positive, i.e. there exists a B such
that K− H = B∗B.

Alternatively, order projections by inclusion of their image
spaces, i.e. E v F iff YE ⊆ YF.

The orthogonal projections form a complete lattice.

The range of the intersection E u F is to the closure of the
intersection of the image spaces of E and F.

The union E t F corresponds to the union of the images.
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Ortholattices I

Non-distributive analogs of Boolean algebras.

Definition (Ortholattice I)

An ortholattice (L,v, .⊥,0,1) is a lattice (L,v) with universal
bounds 0 and 1, i.e.

1 (L,v) is a partial order (i.e. v is reflexive, antisymmetric,
and transitive),

2 all pairs of elements a,b ∈ L have a least upper bound
(sup) denoted by a t b, and a greatest lower bound (inf)
denoted by a u b,

3 0 v a and a v 1 for all a ∈ L.
. . .
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Ortholattices II

Definition (Ortholattice II)

. . . and a unary complementation operation a 7→ a⊥ satisfying:
1 a u a⊥ = 0 and a t a⊥ = 1 for all a ∈ L,
2 (a u b)⊥ = a⊥ t b⊥ and (a t b)⊥ = a⊥ u b⊥ for all a,b ∈ L,
3 (a⊥)⊥ = a for all a ∈ L.

The set P(H) of closed-range projections on a Hilbert space H
is a non-distributive ortholattice〈

P(H),v,t,u, .⊥, I,0
〉
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Commutativity and Distributivity

In general, u and t in an ortholattice are not distributive, ie.

(a u b) t (a u c) v a u (b t c)

a t (b u c) v (a t b) u (a t c)

Two elements a and b in an ortholattice commute, denoted by
[a,b] = 0, iff

a = (a u b) t (a u b⊥)

An ortholattice is called an orthomodular lattice if [a,b] = 0
implies [b,a] = 0.
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Example: Projections Pn = RnR†n

P1 =


1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

 , P2 =


1
3

1
3 0 1

3 0
1
3

1
3 0 1

3 0
0 0 1

2 0 1
2

1
3

1
3 0 1

3 0
0 0 1

2 0 1
2



P3 =


1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

 , P4 =


1 0 0 0 0
0 1

4
1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4



P5 =


1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

 , P6 =


1 0 0 0 0
0 1

2 0 1
2 0

0 0 1
2 0 1

2
0 1

2 0 1
2 0

0 0 1
2 0 1

2
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Example: Projections Pn = RnR†n

P7 =


1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2 0 1

2
0 0 0 1 0
0 0 1

2 0 1
2

 , P8 =


1 0 0 0 0
0 1 0 0 0
0 0 1

3
1
3

1
3

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3



P9 =


1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1 0 0
0 0 0 1

2
1
2

0 0 0 1
2

1
2

 , P10 =


1 0 0 0 0
0 1

2
1
2 0 0

0 1
2

1
2 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2
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Example: Projections Pn = RnR†n

P11 =


1 0 0 0 0
0 1 0 0 0
0 0 1

2 0 1
2

0 0 0 1 0
0 0 1

2 0 1
2

 , P12 =


1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



P13 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

2
1
2

0 0 0 1
2

1
2

 , P14 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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Example: The Lattice uco(Sign)

ρ1

{{ss ++##
ρ2

|| ##

ρ3

{{ ## ++

ρ4

{{qq ++

ρ5

{{ ##
ρ6

))

ρ7

�� ))

ρ8

))uu

ρ9

uu ��

ρ10

uu
ρ11

))

ρ12

��

ρ13

uu
ρ14
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Example: The Lattice P(V(Sign))

P1

||ss ++""
P2

|| ""

P3

|| "" ++

P4

||
rr ++

P5

|| ""
P6

))

P7

�� ))

P8

))uu

P9

uu ��

P10

uu
P11

))

P12

��

P13

uu
P14
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Example: Combining Projections

P7 u P8 =


1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2 0 1

2
0 0 0 1 0
0 0 1

2 0 1
2

 u


1 0 0 0 0
0 1 0 0 0
0 0 1

3
1
3

1
3

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

 =

=


1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

 = P3

In particular, we have P7 u P8 = P7P8 as P7 and P8 commute,
i.e. [P7,P8] = P7P8 − P8P7 = O.
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Example: Combining Projections

P4 u P7 =
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0 1

4
1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

 u


1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2 0 1

2
0 0 0 1 0
0 0 1

2 0 1
2

 =

=


1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

 = P1

Using the expression P4 u P7 = 2P4(P4 + P7)†P7 as P4 and P7
do not commute.
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Example: Combining Projections

Note that the simple multiplication P4P7 is different from
P4 u P7:

P4P7 =


1 0 0 0 0
0 1

4
1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4

0 1
4

1
4

1
4

1
4




1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2 0 1

2
0 0 0 1 0
0 0 1

2 0 1
2

 =

=


1
5

1
5 0 0 0

1
8

1
8

1
4

1
4

1
4

1
8

1
8

1
4

1
4

1
4

1
8

1
8

1
4

1
4

1
4

1
8

1
8

1
4

1
4

1
4

 6= P4 u P7
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Precision Measures

Definition
Given two vector (Hilbert) spaces C and D and a bounded
linear map F : C → D, then we say that a pair of projections
P : C → C and R : D → D is complete for F iff

FP = RFP.

Given a pair of projections (P,R) for a function F, we estimate
the precision of the abstraction via the “difference” between FP
and its optimal version RFP.

PrecF(P,R) = ‖FP− RFP‖.
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Order and Precision

Proposition
Let F : H1 7→ H2 be a bounded linear operator between two
Hilbert spaces H1 and H2, and let P1,P2 ∈ P(H2) and
R ∈ P(H1).
Then we have: if P1 v P2 then PrecF(P1,R) ≤ PrecF(P2,R).
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Example: (Relative) Precisions

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

P1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P3 1 .75 0 .79 .75 .65 0 0 0 .65 0 0 0 0
P4 1 .91 .79 0 .91 0 .79 0 .79 0 0 .79 0 0
P5 1 .75 0 .79 .75 .65 0 0 0 .65 0 0 0 0
P6 1.10 1 .87 0 1 0 .87 0 .87 0 0 .87 0 0
P7 1.34 1 0 1.06 1 .87 0 0 0 .87 0 0 0 0
P8 1 1 1 1 1 .82 1 0 1 .82 0 1 0 0
P9 1.10 .82 0 .87 .82 .71 0 0 0 .71 0 0 0 0
P10 1.07 .91 .87 .87 .91 .71 .87 0 .87 .71 0 .87 0 0
P11 1.34 1 1 1.22 1 1 1 0 1 1 0 1 0 0
P12 1.34 1 0 1.06 1 .87 0 0 0 .87 0 0 0 0
P13 1.10 1 1 1.06 1 .87 1 0 1 .87 0 1 0 0
P14 1.34 1 1 1.22 1 1 1 0 1 1 0 1 0 0
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Linear Operator Semantics (LOS)

The collecting semantics of a program P is given by:

T(P) =
∑

pij · T(`i , `j)

Local effects T(`i , `j): Data Update + Control Step

T(`i , `j) = (Ni1 ⊗ Ni2 ⊗ . . .⊗ Niv )⊗Mij
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Kronecker Products

Given a n ×m matrix A and a k × l matrix B:

A =

 a11 . . . a1n
...

. . .
...

a1m . . . anm

 B =

 b11 . . . b1k
...

. . .
...

b1l . . . bkl


The tensor product A⊗ B is then a nk ×ml matrix:

A⊗ B =

 a11B . . . a1nB
...

. . .
...

a1mB . . . anmB
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Abstract Tensor Product

The (algebraic) tensor product of vector spaces V1, V2, . . . , Vn
is given by a vector space

⊗n
i=1 Vi and a map

p = ⊗n
i=1 ∈ L(V1,V2, . . . ,Vn;

⊗n
i=1 Vi) such that ifW is any

vector space and f ∈ L(V1,V2, . . . ,Vn;W) then there exists a
unique map h :

⊗n
i=1 Vi →W satisfying f = h ◦ p.

V1 × V2 × . . .× Vn
f //

p

��

W

V1 ⊗ V2 ⊗ . . .⊗ Vn

h

99

V(X × Y ) = V(X )⊗ V(Y )
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Tensor Product Properties

The tensor product of n linear operators A1, A2, . . . , An is
associative (but in general not commutative) and has e.g. the
following properties:

1 (A1 ⊗ . . .⊗ An) · (B1 ⊗ . . .⊗ Bn) =
= A1 · B1 ⊗ . . .⊗ An · Bn

2 A1 ⊗ . . .⊗ (αAi)⊗ . . .⊗ An =
= α(A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)

3 A1 ⊗ . . .⊗ (Ai + Bi)⊗ . . .⊗ An =
= (A1 ⊗ . . .⊗Ai ⊗ . . .⊗An) + (A1 ⊗ . . .⊗Bi ⊗ . . .⊗An)

4 (A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)† =

= A†1 ⊗ . . .⊗ A†i ⊗ . . .⊗ A†n
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Relational Dependency

1: [m← 1]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: end while
6: [stop]5

Input/output behaviour: Parity of m for different values of n.

Probability that m = even/odd and n = 1,2,3.
Probability that m is even/odd, and
Probability that n is 1,2,3.

Probability that m is even/odd for n = 1,2,3.
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Dependency and Correlations

Some joint probability distributions can be expressed as tensor
product of two (independent) probability distributions e and f:( 2

9
2
9

2
9

1
9

1
9

1
9

)
= (

1
3
,
1
3
,
1
3

)⊗ (
2
3
,
1
3

)t

However, in general we can express any joint probability
distribution as a linear combination of distributions.(

0 1
3

1
3

1
3 0 0

)
=

1
3

(e1 ⊗ f2) +
1
3

(e2 ⊗ f1) +
1
3

(e3 ⊗ f1)

with ei ∈ R3 and fj ∈ R2 (row and column) basis vectors
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1
3
,
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,
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)t

But there are no two vectors e and f such that for example(
0 1

3
1
3

1
3 0 0

)
= e⊗ f
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Fully, Weakly and Non-Relational Analysis

Consider compositional (probabilistic) abstractions of the form:

S =
v⊕

i=1

S(xi) with S(xi) = (
i−1⊗
k=1

S¬i)⊗ Si ⊗ (
v⊗

k=i+1

S¬i)

Fully Relational: Sr is S with Si = Ai and S¬i = A¬i

Weakly Relational: Sw is S with Si = Ai and S¬i = A¬i or Af

Non-Relational: Sn is S with Si = A and S¬i = Af

With Af forgetful and Ai and A¬i nontrivial abstractions.
For Sr all factors in

⊕
are the same; we can take Sr = S(x1).
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Examples

var x:[0..10]; begin x:=k; stop (k = 1,4)

P\R ∅ Sn Sw Sr id
∅ 0 0 0 0 0

Sn 1.58 0 0 0 0
Sw 1.58 0 0 0 0
Sr 1.58 0 0 0 0
id 2.55 1 1 1 0

Using cast d abstraction : Ad lifted α(x) = x mod d

Sn is S with Si = S4,S¬i = A1

Sw is S with Si = S4,S¬i = A2

Sr is S with Si = S¬i = A4
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Examples

var x:[0..10]; y:[0..10]; begin x:=y; stop

P\R ∅ Sn Sw Sr id
∅ 0 0 0 0 0

Sn 1.73 0 0 0 0
Sw 2.24 1 0 0 0
Sr 2.24 1 1 0 0
id 3.61 3.61 3.61 3.61 0

Using cast d abstraction : Ad lifted α(x) = x mod d

Sn is S with Si = S4,S¬i = A1

Sw is S with Si = S4,S¬i = A2

Sr is S with Si = S¬i = A4
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Examples

var x:[0..10]; y:[0..3]; begin x:=2*y; stop

P\R ∅ Sn Sw Sr id
∅ 0 0 0 0 0

Sn 1.88 0.89 0.89 0.89 0
Sw 2.14 1.52 1.29 1.29 0
Sr 2.24 1.64 1.50 1.41 0
id 3.61 3.60 3.59 3.58 0

Using cast d abstraction : Ad lifted α(x) = x mod d

Sn is S with Si = S4,S¬i = A1

Sw is S with Si = S4,S¬i = A2

Sr is S with Si = S¬i = A4
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Examples

var x:[0..10]; y:[0..3]; begin x:=3*y; stop

P\R ∅ Sn Sw Sr id
∅ 0 0 0 0 0

Sn 1.77 0.89 0.89 0.89 0
Sw 2.24 1.52 1.29 1.29 0
Sr 2.24 1.64 1.50 1.41 0
id 3.61 3.60 3.59 3.58 0

Using cast d abstraction : Ad lifted α(x) = x mod d

Sn is S with Si = S4,S¬i = A1

Sw is S with Si = S4,S¬i = A2

Sr is S with Si = S¬i = A4
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Further Work
Conclusions
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Conclusions

Some applications of PAI:

Approximate Process Equivalences: The semantics of
concurrent processes can be defined via approximate
equivalences (e.g. ε-bisimulation).
Approximate Confinement: Static analysis of security
properties can be sometimes more effective if the security
is guaranteed only up to some acceptable percentage
treshold.
Probabilistic Program Transformation: Transforming out
timing leaks... probabilistically.
...
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LOS for Variable Probabilities

In every choice construct one must make a choice and the
probabilities of all choices must sum up to one (certainty).
One can’t assume (that the programmer used) normalised
probabilities.

We therefore need to normalise probabilities with respect to a
context of "competing" probabilities:

p̃ = p[p1...pn] =
p

p1 + . . .+ pn
.

This can be done at compile-time if all probabilities are
constants, but also at runtime in the operational semantics.

Typically one would assume pi ∈ R or pi ∈ Q. However, we can
also use discrete probabilities, i.e. pi ∈ Z.
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Duel at High Noon

Consider a "duel" between two cowboys:
Cowboy A – hitting probability a
Cowboy B – hitting probability b

1 Choose (non-deterministically) whether A or B starts.
2 Repeat until winner is known:

If it is A’s turn he will hit/shoot B with probability a;
If B is shot then A is the winner, otherwise it’s B’s turn.
If it is B’s turn he will hit/shoot A with probability b;
If A is shot then B is the winner, otherwise it’s A’s turn.

Question: What is the life expectancy of A or B?
Question: What happens if A is learning to shoot better during
the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012)
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Example: Duelling Cowboys

begin
# who’s first turn
choose 1:{t:=0} or 1:{t:=1} ro;
# continue until ...
c := 1;
while c == 1 do
if (t==0) then
choose ak:{c:=0} or am:{t:=1} ro

else
choose bk:{c:=0} or bm:{t:=0} ro

fi;
od;
stop; # terminal loop
end

Bolzano, 22-26 August 2016 ESSLLI’16 Probabilistic Program Analysis Slide 39 of 54



Example: Duelling Cowboys

The survival chances, i.e. winning probability, for A.
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Contexts: Advance Normalisation

For all possible values of the variable probabilities pi compute
their normalisation, compute the possible contexts.

C[p1, . . . ,pn] =


∅ if n = 0
{[p1]} if n = 1 and pi const
{[c] | c ∈ Value(p1)} if n = 1 and pi var⋃

[i]∈C[p1]
{[i] · C[p2, . . . ,pn]} otherwise, i.e. n > 1.

Example

Variable x with Value(x) = {0,1} and a parameter p = 0 or
p = 1 then contexts are given by:

C[x ,1,p] = {[0,1,0], [1,1,0]} and C[x ,1,p] = {[0,1,1], [1,1,1]}
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Dynamic Probabilities

For all possible values of the variable probabilities test if the
current state. With cj ∈ Value(pj) and di ∈ Value(pi) use:

Ppi [p1...pn]
cj [d1...dn]

= P(pi = cj) ·

 ∏
k=1,...,n

P(pk = dk )


This gives the LOS Semantics for variable probabilities:

{{[choose]p1:S1 . . .or pn : Sn or `}}LOS = {{Si}}LOS ∪
n⋃

i=1

 ∑
cj∈Value(pi )

∑
[d1...dn]∈C[p1...pn]

cj [d1...dn]
· Ppi [p1...pn]

cj [d1...dn]
⊗ E(`, init(Si))
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Learning how to shoot straight
begin
# initialise skills of A
akl := ak; aml := am;
# who’s first
choose 1:{t:=0} or 1:{t:=1} ro;
# continue until ...
c := 1;
while c == 1 do
if (t==0) then
choose akl:{c:=0} or aml:{t:=1} ro

else
choose bk:{c:=0} or bm:{t:=0} ro

fi;
akl := @inc(akl); aml := @dec(aml);

od;
stop; # terminal loop
end
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Back to the two Cowboys
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LOS for Program Synthesis

Finding the minimum length path vs minimum value of functions

x

y

As usual (for now): Take the best non-linear optimisation tool
money can’t buy (leave it to "them" to make it work).
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A General Approach

Consider parameterised program P(p1,p2, . . . ,pn) with

. . . [choose]` p1 : S1 or . . . or pn : Sn ro; . . .

Construct the parametric LOS semantics/operator, i.e.

[[P(λ1, λ2, . . . , λn)]] = T(λ1, λ2, . . . , λn)

Establish constraints on functional behaviour, e.g.

‖A†T(λ1, λ2, . . . , λn)A− [[S]]‖ = 0

Additional non-functional (performance) objectives

min
λ1,λ2,...,λn

Φ(T(λ1, λ2, . . . , λn))
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Swapping: The XOR Trick

Consider the (probabilistic) sketch for swapping x and y :

[choose]1 λ1,1 : S1 or . . . or λ1,n : Sn ro;
[choose]2 λ2,1 : S1 or . . . or λ2,n : Sn ro;
[choose]3 λ3,1 : S1 or . . . or λ3,n : Sn ro;

with Si one of i = 1, . . . ,13 different elementary blocks:

[skip]1

[x := y ]2 [x := z]3

[y := x ]4 [y := z]5

[z := x ]6 [z := y ]7

[x := (x + y) mod 2]8 [x := (x + z) mod 2]9

[y := (y + x) mod 2]10 [y := (y + z) mod 2]11

[z := (z + x) mod 2]12 [z := (z + y) mod 2]13
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Swapping: Parameterised LOS and Objective

Using 13 transfer functions F1 . . .F13 to define

T(λij) =
3∏

i=1

Ti(λij) with Ti(λij) =
13∑

j=1

λijFj

For one-bit variables x , y the intended behaviour (on R2 ⊗ R2):

S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


x 7→ 0 y 7→ 0
x 7→ 0 y 7→ 1
x 7→ 1 y 7→ 0
x 7→ 1 y 7→ 1

Objective: min Φ00(λij) = ‖A†T(λij)A− S‖2 or min Φρω(λij)
which also penalises for reading or writing to z; using the
abstraction A = I(4) ⊗ Af (2) = diag(1,1,1,1)⊗ (1,1)t .
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Swapping: Test Runs

Using octave: if we start with a swap which uses z, like

[z := x ]6; [x := y ]2; [y := z]5

represented by λij given as: 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0


For min Φ00 we get no change; but with min Φ11 (after 12
iterations) we get with octave the optimal λij ’s: 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0


This corresponds to the program:

[y := (y+x) mod 2]10; [x := (x+y) mod 2]8; [y := (y+x) mod 2]10
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Swapping: Test Runs

For randomly chosen initial values for λij : .70 .30 .72 .84 .51 .70 .76 .47 .63 .63 .93 .55 .68
.74 .22 .37 .70 .67 .13 .93 .69 .30 .88 .03 .52 .80
.59 .49 .01 .69 .22 .23 .10 .01 .10 .22 .03 .55 .11


For min Φ11 (after 9 iterations) we get the optimal λij ’s: 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0


This corresponds to the program:

[y := (y+x) mod 2]10; [x := (x+y) mod 2]8; [y := (y+x) mod 2]10

For Φ00 we may also get: [z := x ]6; [x := y ]2; [y := z]5.
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