
Models of Computation, 2023 1

Models of Computation II

Herbert Wiklicky

herbert@doc.ic.ac.uk or herbert@imperial.ac.uk

Lectures on Tuesdays (311) and Fridays (308)

Tutorials on Fridays (typically first hour)

Notes, Videos, etc. on Scientia, Panopto, etc. and

https://www.doc.ic.ac.uk/∼herbert/teaching.html

Thanks to Philippa Gardner and many others.

Models of Computation, 2023 2

Algorithms, informally

People tried to find an algorithm to solve Hilbert’s

Entscheidungsproblem, without success.

A natural question was then to ask whether it was possible to prove

that such an algorithm did not exist. To ask this question properly, it

was necessary to provide a formal definition of algorithm.

Common features of the (historical) examples of algorithms:

• finite description of the procedure in terms of elementary

operations;

• deterministic, next step is uniquely determined if there is one;

• procedure may not terminate on some input data, but we can

recognise when it does terminate and what the result will be.

Models of Computation, 2023 3

Algorithms as Special Functions

Turing and Church’s equivalent definitions of algorithm capture the

notion of computable function: an algorithm expects some input,

does some calculation and, if it terminates, returns a unique result.

We first study register machines, which provide a simple definition of

algorithm. We describe the universal register machine and

introduce the halting problem, which is probably the most famous

example of a problem that is not computable.

We then move to Turing machines and Church’s λ-calculus.

Models of Computation, 2023 4

Register Machines, informally

Register machines operate on natural numbers N = {0, 1, 2, . . .}

stored in (idealized) registers using the following “elementary

operations”:

• add 1 to the contents of a register

• test whether the contents of a register is 0

• subtract 1 from the contents of a register if it is non-zero

• jumps (“goto”)

• conditionals (“if then else ”)

Models of Computation, 2023 5

Register Machines

Definition

A register machine (sometimes abbreviated to RM) is specified by:

• finitely many registers R0, R1, . . . , Rn, each capable of storing

a natural number;

• a program consisting of a finite list of instructions of the form

label : body where, for i = 0, 1, 2, . . ., the (i+ 1)th instruction

has label Li. The instruction body takes the form:

R+
� L′

add 1 to contents of register R and jump to instruction labelled L′

R−

� L′, L′′
if contents of R is > 0, then subtract 1 and jump to L′

, else jump to L′′

HALT stop executing instructions

Models of Computation, 2023 6

Example

Registers

R0 R1 R2

Program

L0 : R−

1 � L1,L2

L1 : R+

0 � L0

L2 : R−

2 � L3,L4

L3 : R+

0 � L2

L4 : HALT

Example Computation

Li R0 R1 R2

0 0 1 2

1 0 0 2

0 1 0 2

2 1 0 2

3 1 0 1

2 2 0 1

3 2 0 0

2 3 0 0

4 3 0 0

Models of Computation, 2023 7

Register Machine Configuration

A register machine configuration has the form:

c = (ℓ, r0, . . . , rn)

where ℓ = current label and ri = current contents of Ri.

Notation “Ri = x [in configuration c]” means c = (ℓ, r0, . . . , rn)

with ri = x.

Initial configurations

c0 = (0, r0, . . . , rn)

where ri = initial contents of register Ri.

Models of Computation, 2023 8

Register Machine Computation

A computation of a RM is a (finite or infinite) sequence of

configurations

c0, c1, c2, . . .

where

• c0 = (0, r0, . . . , rn) is an initial configuration;

• each c = (ℓ, r0, . . . , rn) in the sequence determines the next

configuration in the sequence (if any) by carrying out the program

instruction labelled Lℓ with registers containing r0,. . . ,rn.

Models of Computation, 2023 9

Halting Computations

For a finite computation c0, c1, . . . , cm, the last configuration

cm = (ℓ, r, . . .) is a halting configuration: that is, the instruction

labelled Lℓ is

either HALT (a ‘ proper halt’)

or R+
�L, or R−

�L,L′ with R > 0, or R−

�L′, L with R = 0

and there is no instruction labelled L in the program (an

‘erroneous halt’)

For example, the program
L0 : R+

1 � L2

L1 : HALT
halts erroneously.

Models of Computation, 2023 10

Non-halting Computations

There are computations which never halt. For example, the program

L0 : R+

1 � L0

L1 : HALT
only has infinite computation sequences

(0, r), (0, r + 1), (0, r + 2), . . .

Models of Computation, 2023 11

Graphical representation

• One node in the graph for each instruction label : body , with the node

labelled by the register of the instruction body; notation [L] denotes the

register of the body of label L

• Arcs represent jumps between instructions

• Initial instruction START .

Instruction Representation

R+
� L R+ // [L]

R−
� L,L′ [L]

R−

44✐✐✐✐✐✐
** **❯❯❯

❯❯❯

[L′]

HALT HALT

L0 START // [L0]

Models of Computation, 2023 12

Example

Registers

R0 R1 R2

Program

L0 : R−

1
� L1,L2

L1 : R+

0
� L0

L2 : R−

2
� L3,L4

L3 : R+

0
� L2

L4 : HALT

Graphical Representation

START

��
R−

1

**

����

R+

0jj

R−

2

**

����

R+

0jj

HALT

Claim: starting from initial configuration (0, 0, x, y), this machine’s

computation halts with configuration (4, x+ y, 0, 0).

Models of Computation, 2023 13

Partial functions

Register machine computation is deterministic: in any non-halting

configuration, the next configuration is uniquely determined by the

program.

So the relation between initial and final register contents defined by a

register machine program is a partial function. . .

Definition A partial function from a set X to a set Y is specified by

any subset f ⊆ X × Y satisfying

(x, y) ∈ f and (x, y′) ∈ f implies y = y′.

Models of Computation, 2023 14

Partial Functions

Notation

• “f(x) = y” means (x, y) ∈ f

• “f(x)↓” means ∃y ∈ Y (f(x) = y)

• “f(x)↑” means ¬∃y ∈ Y (f(x) = y)

• X⇀Y = set of all partial functions from X to Y

X�Y = set of all (total) functions from X to Y

Definition. A partial function from a set X to a set Y is total if it satisfies

f(x) ↓

for all x ∈ X .

Models of Computation, 2023 15

Computable functions

Definition. The partial function f ∈ N
n
⇀N is (register machine)

computable if there is a register machine M with at least n+ 1

registers R0, R1, . . . , Rn (and maybe more) such that for all

(x1, . . . , xn) ∈ N
n and all y ∈ N,

the computation of M starting with R0 = 0, R1 = x1, . . . ,

Rn = xn and all other registers set to 0, halts with R0 = y

if and only if f(x1, . . . , xn) = y.

Models of Computation, 2023 16

Example

Registers

R0 R1 R2

Program

L0 : R−

1
� L1,L2

L1 : R+

0
� L0

L2 : R−

2
� L3,L4

L3 : R+

0
� L2

L4 : HALT

Graphical Representation

START

��
R−

1

**

����

R+

0jj

R−

2

**

����

R+

0jj

HALT

If the machine starts with registers (R0,R1,R2) = (0, x, y), then it

halts with registers (R0,R1,R2) = (x+ y, 0, 0).

Models of Computation, 2023 17

Multiplication f(x, y) , xy is computable

START

��

R+

3

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

R−

1
//

����

R−

2
//

����

R+

0

``❆❆❆❆❆❆❆❆

HALT R−

3

cccc●●●●●●●●●
,,
R+

2ll

If the machine starts with registers (R0,R1,R2,R3) = (0, x, y, 0),

then it halts with registers (R0,R1,R2,R3) = (xy, 0, y, 0).

Models of Computation, 2023 18

The Halting Problem

The Halting Problem is the decision problem with

• the set S of all pairs (A,D), where A is an algorithm and D is

some input datum on which the algorithm is designed to operate;

• the property A(D) ↓ holds for (A,D) ∈ S if algorithm A when

applied to D eventually produces a result: that is, eventually halts.

Turing and Church’s work shows that the Halting Problem is

unsolvable (undecidable): that is, there is no algorithm H such that,

for all (A,D) ∈ S,

H(A,D) = 1 A(D) ↓

= 0 otherwise

Models of Computation, 2023 19

Numerical Coding of Pairs

Definition

For x, y ∈ N, define







〈〈x, y〉〉 , 2x(2y + 1)

〈x, y〉 , 2x(2y + 1)− 1

Example 27 = 0b11011 = 〈〈0, 13〉〉 = 〈2, 3〉

Result

〈〈−,−〉〉 gives a bijection between N× N and

N
+ = {n ∈ N | n 6= 0}.

〈−,−〉 gives a bijection between N× N and N.

Recall the definition of bijection from discrete maths.

Models of Computation, 2023 20

Numerical Coding of Pairs

Definition

For x, y ∈ N, define







〈〈x, y〉〉 , 2x(2y + 1)

〈x, y〉 , 2x(2y + 1)− 1

Sketch Proof of Result

It is enough to observe that

0b〈〈x, y〉〉 = 0by 1 0 · · · 0 x number of 0s

0b〈x, y〉 = 0by 0 1 · · · 1 x number of 1s

where 0bx , x in binary. , means ‘is defined to be’.

Models of Computation, 2023 21

Numerical Coding of Lists

Let List N be the set of all finite lists of natural numbers, defined by:

• empty list: []

• list cons: x :: ℓ ∈ List N if x ∈ N and ℓ ∈ List N

Notation: [x1, x2, . . . , xn] , x1 :: (x2 :: (· · ·xn :: [] · · ·))

Models of Computation, 2023 22

Numerical Coding of Lists

Let List N be the set of all finite lists of natural numbers.

For ℓ ∈ List N, define pℓq ∈ N by induction on the length of the list

ℓ:







p[]q , 0

px :: ℓq , 〈〈x, pℓq〉〉 = 2x(2 · pℓq+ 1)

Thus, p[x1, x2, . . . , xn]q = 〈〈x1, 〈〈x2, · · · 〈〈xn, 0〉〉 · · ·〉〉〉〉

Models of Computation, 2023 23

Numerical Coding of Lists

Let List N be the set of all finite lists of natural numbers.

For ℓ ∈ List N, define pℓq ∈ N by induction on the length of the list

ℓ:







p[]q , 0

px :: ℓq , 〈〈x, pℓq〉〉 = 2x(2 · pℓq+ 1)

Examples

p[3]q = p3 :: []q = 〈〈3, 0〉〉 = 23(2 · 0 + 1) = 8

p[1, 3]q = 〈〈1, p[3]q〉〉 = 〈〈1, 8〉〉 = 34

p[2, 1, 3]q = 〈〈2, p[1, 3]q〉〉 = 〈〈2, 34〉〉 = 276

Models of Computation, 2023 24

Numerical Coding of Lists

Let List N be the set of all finite lists of natural numbers.

For ℓ ∈ List N, define pℓq ∈ N by induction on the length of the list

ℓ:







p[]q , 0

px :: ℓq , 〈〈x, pℓq〉〉 = 2x(2 · pℓq+ 1)

Result The function ℓ 7→ pℓq gives a bijection from List N to N.

Models of Computation, 2023 25

Numerical Coding of Lists

Let List N be the set of all finite lists of natural numbers.

For ℓ ∈ List N, define pℓq ∈ N by induction on the length of the list

ℓ:







p[]q , 0

px :: ℓq , 〈〈x, pℓq〉〉 = 2x(2 · pℓq+ 1)

Result The function ℓ 7→ pℓq gives a bijection from List N to N.

Sketch Proof

The proof follows by observing that

0bp[x1, x2, . . . , xn]q = 1 0· · ·0
︸ ︷︷ ︸

xn0s

1 0· · ·0
︸ ︷︷ ︸

x
n−10s

···

1 0· · ·0
︸ ︷︷ ︸

x10s

Models of Computation, 2023 26

Recall Register Machines

Definition

A register machine (sometimes abbreviated to RM) is specified by:

• finitely many registers R0, R1, . . . , Rn, each capable of storing

a natural number;

• a program consisting of a finite list of instructions of the form

label : body where, for i = 0, 1, 2, . . ., the (i+ 1)th instruction

has label Li. The instruction body takes the form:

R+
� L′

add 1 to contents of register R and jump to instruction labelled L′

R−

� L′, L′′
if contents of R is > 0, then subtract 1 and jump to L′

, else jump to L′′

HALT stop executing instructions

Models of Computation, 2023 27

Numerical Coding of Programs

If P is the RM program

L0 : body0

L1 : body1

.

.

.

Ln : bodyn

then its numerical code is

pPq , p[pbody0q, . . . , pbodynq]q

where the numerical code pbodyq of an instruction body is defined

by:















pR+

i � Ljq , 〈〈2i, j〉〉

pR−

i � Lj ,Lkq , 〈〈2i+ 1, 〈j, k〉〉〉

pHALTq , 0

Models of Computation, 2023 28

Recall Addition f(x, y) , x+ y is Computable

Registers

R0 R1 R2

Program

L0 : R−

1
� L1,L2

L1 : R+

0
� L0

L2 : R−

2
� L3,L4

L3 : R+

0
� L2

L4 : HALT

Graphical Representation

START

��
R−

1

**

����

R+

0jj

R−

2

**

����

R+

0jj

HALT
If the machine starts with registers (R0,R1,R2) = (0, x, y), it halts

with registers (R0,R1,R2) = (x+ y, 0, 0).

Models of Computation, 2023 29

Coding of the RM for Addition

pPq , p[pB0q, . . . , pB4q]q where

pB0q = pR−

1 � L1,L2q = 〈〈(2× 1) + 1, 〈1, 2〉〉〉

= 〈〈3, 9〉〉 = 8× (18 + 1) = 152

pB1q = pR+

0 � L0q = 〈〈2× 0, 0〉〉 = 1

pB2q = pR−

2 � L3,L4q = 〈〈(2× 2) + 1, 〈3, 4〉〉〉

= 〈〈5, (8× 9)− 1〉〉 = 〈〈5, 71〉〉

= 25 × ((2× 71) + 1) = 32× 143 = 4576

pB3q = pR+

0 � L2q = 〈〈2× 0, 2〉〉 = 5

pB4q = pHALTq = 0

Models of Computation, 2023 30

Decoding Numbers as Bodies and Programs

Any x ∈ N decodes to a unique instruction body(x):

if x = 0 then body(x) is HALT ,

else (x > 0 and) let x = 〈〈y, z〉〉 in

if y = 2i is even, then body(x) is R+

i � Lz ,

else y = 2i+ 1 is odd, let z = 〈j, k〉 in

body(x) is R−

i � Lj ,Lk

So any e ∈ N decodes to a unique program prog(e), called the

register machine program with index e:

prog(e) ,

L0 : body(x0)

.

.

.

Ln : body(xn)

where e = p[x0, . . . , xn]q

Models of Computation, 2023 31

Example of prog(e)

• 786432 = 219 + 218 = 0b110 . . . 0
︸ ︷︷ ︸

18 ”0”s

= p[18, 0]q

• 18 = 0b10010 = 〈〈1, 4〉〉 = 〈〈1, 〈0, 2〉〉〉 = pR−

0
� L0,L2q

• 0 = pHALTq

So prog(786432) =
L0 :R

−

0 � L0,L2

L1 :HALT

