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Algorithms, informally

People tried to find an algorithm to solve Hilbert’s
Entscheidungsproblem, without success.

A natural question was then to ask whether it was possible to prove
that such an algorithm did not exist. To ask this question properly, it

was necessary to provide a formal definition of algorithm.
Common features of the (historical) examples of algorithms:

e finite description of the procedure in terms of elementary
operations;
e deterministic, next step is uniquely determined if there is one;

e procedure may not terminate on some input data, but we can

recognise when it does terminate and what the result will be.
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Algorithms as Special Functions

Turing and Church’s equivalent definitions of algorithm capture the
notion of computable function: an algorithm expects some input,

does some calculation and, if it terminates, returns a unique result.

We first study register machines, which provide a simple definition of
algorithm. We describe the universal register machine and
introduce the halting problem, which is probably the most famous

example of a problem that is not computable.

We then move to Turing machines and Church’s A\-calculus.
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Register Machines, informally

Register machines operate on natural numbers N = {0,1,2, ...

stored in (idealized) registers using the following “elementary
operations”:
e add 1 to the contents of a register
e test whether the contents of a register is
e subtract 1 from the contents of a register if it is non-zero
e jumps (“goto”)

e conditionals (“if_then_else_”)
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Register Machines

Definition
A register machine (sometimes abbreviated to RM) is specified by:

e finitely many registers Ry, R1, ..., R,,, each capable of storing
a natural number;

e a program consisting of a finite list of instructions of the form
label : body where, fori = 0,1,2, ..., the (¢ + 1)*® instruction
has label L;. The instruction body takes the form:

/
R+ — L add 1 to contents of register IR and jump to instruction labelled L’

— / /! ) ) . .
R~—-L",L if contents of R is > 0, then subtract 1 and jumpto L', else jump to L’

HALT stop executing instructions
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Example

Registers Example Computation

Ro R1 Ro L; Ro Ri Ra

-
-
—
DO

Program

L() . Rl_ —>L1,L2

: Ry — Lo
5 — L3, Ly
— Lo
. HALT
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Register Machine Configuration

A register machine configuration has the form:
c=l,rg,...,7Tp)
where ¢ = current label and r; = current contents of ;.

Notation “R; = x [in configuration c]’ means ¢ = (¢, g, . . .
with r; = .

Initial configurations

Co — (O,TQ,...,Tn)

where r; = initial contents of register R;.




Models of Computation, 2023

Register Machine Computation

A computation of a RM is a (finite or infinite) sequence of

configurations
Cp,C1,C2, ...

where

e ¢ = (0,79,...,7,) is aninitial configuration;

e eachc = ({,rg,...,ry,) inthe sequence determines the next

configuration in the sequence (if any) by carrying out the program

instruction labelled L, with registers containing rg,. .., .
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Halting Computations

For a finite computation cg, c1, . .

.y Cm,, the last configuration

cm = (¢, 1, ...)is a halting configuration: that is, the instruction

labelled Ly is

either HALT (a‘ proper halt)

or R"—L,orR~—L,L'withR>0,orR- =L, LwithR=20
and there is no instruction labelled L in the program (an

‘erroneous halt’)

For example, the program

LO . Rf — L2
L1 : HALT

halts erroneously.
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Non-halting Computations

There are computations which never halt. For example, the program

LQIRT%LO

only has infinite computation sequences

Li: HALT

(0,7),(0,7+1),(0,r4+2),...
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Graphical representation

e One node in the graph for each instruction label : body, with the node
labelled by the register of the instruction body; notation | L] denotes the
register of the body of label L

e Arcs represent jumps between instructions

e Initial instruction START.

Instruction Representation
Rt - L RT — =[]

R™ - L,L

11
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Example

Registers Graphical Representation
Ro R1 Ro START
Program
Lo: R{ = L1, Lo
, Rar — Lo
: Ry — L3, Ly
: Ry — Lo
. HALT

Claim: starting from initial configuration (0, 0, x, 7/), this machine’s

computation halts with configuration (4, x + y, 0, 0).
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Partial functions

Register machine computation is deterministic: in any non-halting
configuration, the next configuration is uniquely determined by the

program.

So the relation between initial and final register contents defined by a

register machine program is a partial function. ..

Definition A partial function from a set X to a set Y is specified by
any subset f C X X Y satisfying

(z,y) € fand (x,y") € fimpliesy = 1/’
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Partial Functions

Notation

e “f(x) =y means (x,y) € f
e ‘f(x),"meansdy € Y (f(x) = y)
® (aj)T means ~dy € Y (f(x) — y)

e X Y =set of all partial functions from X to Y
X —Y =set of all (total) functions from X to Y

Definition. A partial function from a set X to a set Y is total if it satisfies

fla)

forallz € X.

14
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Computable functions

Definition. The partial function f € N" =N is (register machine)
computable if there is a register machine M with at least n + 1
registers Ry, Ry, ..., R,, (and maybe more) such that for all
(1,...,2,) € N*andally € N,

the computation of M starting with Rg = 0, 1 = x4, ...,
R,, = x,, and all other registers set to 0, halts with Ry = y

if and only if f(x1,...,2,) =Y.
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Example

Registers Graphical Representation
Ro R1 Ra START
Program
: Ry — L1, Lo
, Rar — Lo
: Ry — L3, Ly
: Ry — Lo
. HALT

If the machine starts with registers (Rg, R1, R2) = (0, x,y), then it
halts with registers (Rg, R1, R2) = (x +y,0,0).
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Multiplication f(z,v) = zy is computable

START

AN

1 Ry Ry

N

N —

If the machine starts with registers (R, R1, R2, R3) = (0, z,y,0),
then it halts with registers ( Ry, R1, R2, R3) = (zy,0,y,0).

17
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The Halting Problem

The Halting Problem is the decision problem with

e the set S of all pairs (A, D), where A is an algorithm and D is

some input datum on which the algorithm is designed to operate;

e the property A(D) | holds for (A, D) € S if algorithm A when

applied to D eventually produces a result: that is, eventually halts.

Turing and Church’s work shows that the Halting Problem is

unsolvable (undecidable): that is, there is no algorithm H such that,
forall (A, D) € S,
H(A,D) = 1 A(D)|

O otherwise
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Numerical Coding of Pairs

Definition

2% (2y + 1)
= 2272y +1)—1

For x,y € N, define

Example 27 = 0b11011 = (0, 13) = (2, 3)
Result

{—, —) gives a bijection between N x N and
Nt ={n e N |n #0}

(—, —) gives a bijection between N x N and N.

Recall the definition of bijection from discrete maths.

19
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Numerical Coding of Pairs

Definition
272y + 1)

For x,y € N, define
22y +1) —1

Sketch Proof of Result

It is enough to observe that

0b{x,y)| = [Oby|1|0---0| x numberof0s

Ob(x,y)| = |Oby|0|1---1| @ numberofls

where Obz = x in binary. = means ‘is defined to be’.

20
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Let List N be the set of all finite lists of natural numbers, defined by:

e empty list: []

Numerical Coding of Lists

e listcons: x:: ¢ € List Nifx € Nand ¥l € List N

Notation: [z1, x2, . ..

Tn] = w1 (o (o

)

21
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Numerical Coding of Lists

Let L1st N be the set of all finite lists of natural numbers.

For ¢ € List N, define" /' € N by induction on the length of the list
( I_H—I L 0

Sk 2 (x,70) =2%(2-T0 4+ 1)

:561, L2y .- 75671]—' — <<'CC17 <<x27 T <<33n7 O>> o >>>>
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Numerical Coding of Lists

Let L1st N be the set of all finite lists of natural numbers.

For ¢ € List N, define " ' € N by induction on the length of the list

I | A 0

Tl = (2, 0N =2%(2-T0 4+ 1)

\
Examples

"B]7="3:]7=(3,0) =2°(2-0+1) =8
L3 = (1,73 = (1,8) =34

112,1,3] 7= (2,7[1, 3] ") = (2,34) = 276

23
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Numerical Coding of Lists

Let List N be the set of all finite lists of natural numbers.
For ¢ € List N, define " ¢ ' € N by induction on the length of the list
( I_H—I L 0

Tl = (2, 0 =2%(2-T0 4+ 1)

/:

\

Result The function £ — " ¢ ! gives a bijection from List N to N.

24
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Numerical Coding of Lists

Let L1st N be the set of all finite lists of natural numbers.

For ¢ € List N, define" £ ' € N by induction on the length of the list
I—H—I L 0
Tl 2 (7)) =27(2- T+ 1)

/:

Result The function £ — " ¢ ! gives a bijection from List N to N.
Sketch Proof

The proof follows by observing that

Ob'_[ilfl,CEQ, P ,Cljn]_'

25
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Recall Register Machines

Definition
A register machine (sometimes abbreviated to RM) is specified by:

e finitely many registers Ry, R1, ..., R,,, each capable of storing
a natural number;

e a program consisting of a finite list of instructions of the form
label : body where, fori = 0,1,2, ..., the (¢ + 1)*® instruction
has label L;. The instruction body takes the form:

/
R+ — L add 1 to contents of register IR and jump to instruction labelled L’

— / /! ) ) . .
R~—-L",L if contents of R is > 0, then subtract 1 and jumpto L', else jump to L’

HALT stop executing instructions

26
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Numerical Coding of Programs

Lg : body,

Ll . bOdyl
If P is the RM program _ then its numerical code is

L, : body,,

P& T [Tbody, ", ..., body, "
where the numerical code " body ' of an instruction body is defined
"R - L7 = (2i,5)
by: ¢ "R = Ly, Ly = (2i+1,(j, k)
"HALTY £ 0
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Recall Addition f(z,y) = = + y is Computable

Registers Graphical Representation
Ro R1 Ra
Program
: R — L1, Lo
. R(}L — Lo
: Ry — L3, Ly
: Rg — Lo
. HALT

HALT
If the machine starts with registers (R, R1, R2) = (0, x,y), it halts

with registers (R, R1, R2) = (z + y,0,0).

28
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Coding of the RM for Addition

"PUATTB, ..., B, where

"Bo'="R; = L1, Ly = ((2 x1)+1,(1,2))
= (3,9) =8 x (18 +1) = 152
"B1'="R{ > Ly =(2x0,0) =1
"By =Ry Ly, L7 = (2% 2) + 1, (3,4))
— (5,8 x 9) — 1) = (5,71)

=2° X ((2x71) 4+ 1) = 32 x 143 = 4576
"Byl =R - L= (2x0,2) =5
"By '="HALT"'=0




Models of Computation, 2023

Decoding Numbers as Bodies and Programs

Any x € N decodes to a unique instruction body(x):

if = 0 then body(x)is HALT,

else (x > 0 and) let x = (y, 2) in

if y = 24 is even, then body(x) is R — L,,

else y = 2¢ + lisodd, let z = (j, k) in

body(x)is R, — Lj, Ly,

So any e € N decodes to a unique program prog(e), called the
register machine program with index e:

Lo : body(xo)

prog(e) 4 ; where e = " [xg, ..., T,

Ly, : body(xy)

30
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Example of prog(e)

o 786432 = 2" 4 2'® = 0b110...0 = [18,0]"
N——
18 770778

e 18 =0b10010 = (1,4) = (1,(0,2)) =" Ry — Lo, L2
e O="HALT"

LOZRO_ —>L0,L2

So prog(786432) =
L,: HALT




