
Models of Computation, 2023 1

Gadgets

A gadget is a partial register-machine graph.

It has one entry wire, and one or more exit wires.

The gadget operates on input and output registers specified in the

gadget’s name.

The gadget may use other registers, called scratch registers, for

temporary storage.

The gadget assumes the scratch registers are initially set to 0, and

must ensure that they are set back to 0 when the gadget exits.



Models of Computation, 2023 2

Gadget: “zero R0”

The gadget “zero R0” sets register R0 to be zero, whatever its initial

value:

entry

R−

0

exit



Models of Computation, 2023 3

Gadget: “add R1 to R2”

The gadget “add R1 to R2” adds the initial value of R1 to register

R2, storing the result in R2 but restoring R1 to its initial value.
entry

R−

1

S+

R+

2

S− R+

1

exit



Models of Computation, 2023 4

Gadget: “copy R1 to R2”

The gadget “copy R1 to R2” copies the value of register R1 into

register R2, leaving R1 with its initial value:

entry

zero R2

add R1 to R2

exit



Models of Computation, 2023 5

Gadget : “copy R1 to R2 and R3”

entry

copy R1 to R2

copy R1 to R3

exit



Models of Computation, 2023 6

Gadget: “copy R1 to R2 and R3”

entry

zero R2

add R1 to R2

zero R3

add R1 to R3

exit



Models of Computation, 2023 7

Gadget: “copy R1 to R2 and R3”

entry

R−

2

R−

1S+

1

R+

2

S−

1 R+

1

R−

3

R−

1S+

2

R+

3

S−

2 R+

1

exit



Models of Computation, 2023 8

Gadgets: “multiply R1 by R2 to R0”

We can implement “multiply R1 by R2 to R0” by repeated addition:

entry

zero R0

R−

1
add R2 to R0

exit



Models of Computation, 2023 9

Gadget: “push X to L”

The gadget “push X to L”:

entry Z+ L−

Z+

Z−

L+

X− exit

Given input values X = x, L = ℓ and Z = 0, it returns the output

values X = 0,L = 〈〈x, ℓ〉〉 = 2x(2ℓ+ 1) and Z = 0:



Models of Computation, 2023 10

entry Z+ L−

Z+

Z−

L+

X− exit

P Q

I1

I2

I3



Models of Computation, 2023 11

entry Z+ L−

Z+

Z−

L+

X− exit

X = x,

L = ℓ,

Z = 0

X = 0,

L = 2x(2ℓ+ 1),

Z = 0

Z + 2L = 2x−X(2ℓ+ 1)

Z + L = 2x−X(2ℓ+ 1)

L = 2x−X(2ℓ+ 1),

Z = 0



Models of Computation, 2023 12

Gadget: “pop L to X”

The gadget “pop L to X”:

entry X− L−

L+

empty

L−

Z+

Z− Z−

L+

X+

done

If L = 0 then return X = 0 and go to “empty”. If L = 〈〈x, ℓ〉〉 = n

then return X = x and L = ℓ, and go to “done”.



Models of Computation, 2023 13

entry X− L−

L+

empty

L−

Z+

Z− Z−

L+

X+

done

L = n,

X = y,

Z = 0

n = 0 = L = X = Z
n = 2X(2L+ 1), Z = 0

n = 2X(L+ Z) n = 2X(2L+ Z)

n
=

2
X
(2
L
+

Z
+

1
)

n = 2X+1L, Z = 0



Models of Computation, 2023 14

Gadgets

R1 = x
copy R1

to R2

R1 = R2 = x

X = x, L = ℓ
push X

to L
X = 0, L = 〈〈x, ℓ〉〉

L = ℓ
pop L

to X

X = x′, L = ℓ′

where ℓ = 〈〈x′, ℓ′〉〉

X = L = ℓ = 0

done

empty



Models of Computation, 2023 15

The Universal Register Machine

The universal register machine carries out the following computation,

starting with R0 = 0, R1 = e (code of a program), R2 = a (code of

a list of arguments) and all other registers zeroed:

• decode e as a RM program P

• decode a as a list of register values a1, . . . , an

• carry out the computation of the RM program P starting with

R0 = 0,R1 = a1, . . . ,Rn = an (and any other registers

occurring in P set to 0).



Models of Computation, 2023 16

Mnemonics for the registers of U and the role they play in its program:

R0 result of the simulated RM computation (if any).

R1 ≡ P Program code of the RM to be simulated

R2 ≡ A list of RM Arguments (or register contents) of the simulated machine

R3 ≡ PC Program Counter—label number of the current instruction

R4 ≡ N label number(s) of the Next instruction(s)—also used to hold code

of current instruction

R5 ≡ C code of the Current instruction body

R6 ≡ R value of the Register to be used by current instruction

R7 ≡ S and R8 ≡ T are auxiliary registers.

R9... other scratch registers.



Models of Computation, 2023 17

Overall structure of the URM

1 copy PC th item of list in P to N (halting if PC > length of list);

goto 2

2 if N = 0 then halt, else decode N as 〈〈y, z〉〉; C ::= y; N ::= z;

goto 3

{at this point either C = 2i is even and current instruction is R
+

i � Lz ,

or C = 2i+ 1 is odd and current instruction is R
−

i � Lj ,Lk where z = 〈j, k〉}

3 copy ith item of list in A to R; goto 4

4 execute current instruction on R; update PC to next label; restore

register values to A; goto 1



Models of Computation, 2023 18

The Universal Register Machine

push R0

to A
START

copy P

to T

pop T

to N

pop A

to R0

HALT

PC
−

pop N

to C

pop A

to R
C

−

C
−

push R

to S

R
+

N
+

pop N

to PC
R

−

copy N

to PC

push R

to A

pop S

to R

empty

done

empty

doneempty

done

empty

done

empty

done

done

empty



Models of Computation, 2023 19

Universal Register Machines

Ivan Korec: Small Universal Register Machines. Theoretical

Computer Science, Volume 168 (1996), pp267–301.
O

rte
liu

s
:

T
y
p

v
s

O
rb

is
T
e

rra
rv

m
1

5
7

0
.

W
ik

im
e

d
ia

C
o

m
m

o
n

s


