Non-Existence of Entities (Sci.American 1980s)

There are objects/entities which one can describe but which can't exist (maybe because their description is "faulty"), one example:

Describe really large numbers, using n symbols, e.g. n = 3. Maybe this could be 999, better 9^{9^9} , or (hexadecimal) F^{FF} , ...

LARGEST $n \in \mathbb{N}$ DESCRIBED BY AT MOST 43 SYMBOLS

7+3+9+2+2+4+2+7=36 + 7 spaces \Rightarrow 43 symbols

Thus, we can't have the largest number described with 45 symbols:

LARGEST $n \in \mathbb{N}$ DESCRIBED BY AT MOST 45 SYMBOL S+1

Halting Problem for Register Machines

Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

 $R_0 = 0 \qquad R_1 = e \qquad R_2 = \lceil [a_1, \dots, a_n] \rceil$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0, R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.

Halting Problem for Register Machines

Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

 $R_0 = 0 \qquad R_1 = e \qquad R_2 = \lceil [a_1, \dots, a_n] \rceil$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0, R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.

Theorem No such register machine H can exist.

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

• Let H' be obtained from H by replacing $START \rightarrow$ by

$$START \rightarrow \boxed{Z ::= R_1} \rightarrow \begin{vmatrix} push & Z \\ to & R_2 \end{vmatrix} \rightarrow \downarrow to R_2$$

(where Z is a register not mentioned in H's program).

- Let *C* be obtained from *H'* by replacing each *HALT* (& each erroneous halt) by $\longrightarrow R_0^- \longrightarrow R_0^+$.
- Let $c \in \mathbb{N}$ be the index of C's program.

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows: (assuming $R_0 = 0$ and $R_2 = 0$)

C started with $R_1 = c$ eventually halts

if and only if

H' started with $R_1 = c$ halts with $R_0 = 0$

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts

if and only if

H' started with $R_1 = c$ halts with $R_0 = 0$

if and only if

H started with $R_1 = c, R_2 = \lceil c \rceil$ halts with $R_0 = 0$

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts

if and only if

H' started with $R_1 = c$ halts with $R_0 = 0$

if and only if

H started with $R_1=c, R_2= \lceil c \rceil$ halts with $R_0=0$

if and only if

prog(c) started with $R_1 = c$ does not halt

prog(c) means the program given by the number c.

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts if and only if H' started with $R_1 = c$ halts with $R_0 = 0$ if and only if H started with $R_1 = c, R_2 = \lceil c \rceil$ halts with $R_0 = 0$ if and only if prog(c) started with $R_1 = c$ does not halt if and only if C started with $R_1 = c$ does not halt

Contradiction!

Enumerating computable functions

For each $e \in \mathbb{N}$, let $\varphi_e \in \mathbb{N} \to \mathbb{N}$ be the unary partial function computed by the RM with program prog(e). So for all $x, y \in \mathbb{N}$: $\varphi_e(x) = y$ holds iff the computation of prog(e) started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with $R_0 = y$.

Thus

$e\mapsto \varphi_e$

defines an **onto** function from \mathbb{N} to the collection of all computable partial functions from \mathbb{N} to \mathbb{N} .

An uncomputable function

Let $f \in \mathbb{N} \to \mathbb{N}$ be the partial function $\{(x, 0) \mid \varphi_x(x)\uparrow\}$. Thus $f(x) = \begin{cases} 0 & \text{if } \varphi_x(x)\uparrow\\ undefined & \text{if } \varphi_x(x)\downarrow \end{cases}$

An uncomputable function

Let $f \in \mathbb{N} \to \mathbb{N}$ be the partial function $\{(x, 0) \mid \varphi_x(x)\uparrow\}$. Thus $f(x) = \begin{cases} 0 & \text{if } \varphi_x(x)\uparrow\\ undefined & \text{if } \varphi_x(x)\downarrow \end{cases}$

f is not computable, because if it were, then $f=\varphi_e$ for some $e\in\mathbb{N}$ and hence

- if $\varphi_e(e)\uparrow$, then f(e)=0 (by def. of f); so $\varphi_e(e)=0$ (by def. of e), i.e. $\varphi_e(e)\downarrow$
- if $\varphi_e(e) \downarrow$, then $f(e) \uparrow$ (by def. of e); so $\varphi_e(e) \uparrow$ (by def. of f)

Contradiction! So f cannot be computable.

(Un)decidable sets of numbers

Given a subset $S \subseteq \mathbb{N}$, its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is given by: $\chi_S(x) \triangleq \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S. \end{cases}$

(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) **decidable** if its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is a register machine computable function. Otherwise it is called **undecidable**.

So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.

(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) **decidable** if its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is a register machine computable function. Otherwise it is called **undecidable**.

So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.

Basic strategy: to prove $S \subseteq \mathbb{N}$ undecidable, try to show that decidability of S would imply decidability of the Halting Problem.

For example...

Claim: $S_0 \triangleq \{e \mid \varphi_e(0)\downarrow\}$ is undecidable.

Claim: $S_0 \triangleq \{e \mid \varphi_e(0)\downarrow\}$ is undecidable.

Proof (sketch): Suppose M_0 is a RM computing χ_{S_0} . From M_0 's program (using the same techniques as for constructing a universal RM) we can construct a RM H to carry out:

let
$$e = R_1 \text{ and } \lceil [a_1, ..., a_n] \rceil = R_2 \text{ in}$$

 $R_1 ::= \lceil (R_1 ::= a_1) ; \cdots ; (R_n ::= a_n) ; prog(e) \rceil;$
 $R_2 ::= 0 ;$
run M_0

Then by assumption on M_0 , H decides the Halting Problem. Contradiction. So no such M_0 exists, i.e. χ_{S_0} is uncomputable, i.e. S_0 is undecidable.

Claim: $S_1 \triangleq \{e \mid \varphi_e \text{ total function}\}$ is undecidable.

Claim: $S_1 \triangleq \{e \mid \varphi_e \text{ total function}\}$ is undecidable.

Proof (sketch): Suppose M_1 is a RM computing χ_{S_1} . From M_1 's program we can construct a RM M_0 to carry out:

let
$$e = R_1$$
 in $R_1 ::= \ulcorner R_1 ::= 0$; $prog(e) \urcorner$;
run M_1

Then by assumption on M_1 , M_0 decides membership of S_0 from previous example (i.e. computes χ_{S_0}). Contradiction. So no such M_1 exists, i.e. χ_{S_1} is uncomputable, i.e. S_1 is undecidable.