Program Analysis (70020) While Language

Herbert Wiklicky

Department of Computing

Imperial College London

herbert@doc.ic.ac.uk
h.wiklicky@imperial.ac.uk

Autumn 2023

Syntactic Constructs

We use the following syntactic categories:

$$
\begin{array}{lll}
a \in \text { AExp } & \text { arithmetic expressions } \\
b \in \text { BExp } & \text { boolean expressions } \\
S \in \text { Stmt } & \text { statements }
\end{array}
$$

Abstract Syntax of While

The syntax of the language While is given by the following abstract syntax:
a
b
S

Abstract Syntax of While

The syntax of the language While is given by the following abstract syntax:

$$
a::=x
$$

b
S

Abstract Syntax of While

The syntax of the language While is given by the following abstract syntax:

$$
a \quad::=x \mid n
$$

b
S

Abstract Syntax of While

The syntax of the language WHILE is given by the following abstract syntax:

$$
a \quad:=x|n| a_{1} o p_{a} a_{2}
$$

b
S

Abstract Syntax of While

The syntax of the language While is given by the following abstract syntax:

$$
\begin{aligned}
& a \quad:=x|n| a_{1} o p_{a} a_{2} \\
& b::=\text { true }
\end{aligned}
$$

S

Abstract Syntax of While

The syntax of the language While is given by the following abstract syntax:

$$
\begin{aligned}
& a \quad:=x|n| a_{1} o p_{a} a_{2} \\
& b \quad::=\text { true | false }
\end{aligned}
$$

S

Abstract Syntax of While

The syntax of the language While is given by the following abstract syntax:

$$
\begin{array}{rll}
a & ::= & x|n| a_{1} o p_{a} a_{2} \\
b & ::= & \text { true } \mid \text { false } \mid \text { not } b
\end{array}
$$

S

Abstract Syntax of While

The syntax of the language WHILE is given by the following abstract syntax:

$$
\begin{array}{ll}
a & ::=x|n| a_{1} o p_{a} a_{2} \\
b & ::= \\
\text { true } \mid \text { false } \mid \text { not } b \mid b_{1} o p_{b} b_{2}
\end{array}
$$

S

Abstract Syntax of While

The syntax of the language WHILE is given by the following abstract syntax:

$$
\begin{aligned}
& a::=x|n| a_{1} o p_{a} a_{2} \\
& b::=\text { true } \mid \text { false } \mid \text { not } b\left|b_{1} o p_{b} b_{2}\right| a_{1} o p_{r} a_{2}
\end{aligned}
$$

S

Abstract Syntax of While

The syntax of the language WHILE is given by the following abstract syntax:

$$
\begin{aligned}
& a::=x|n| a_{1} o p_{a} a_{2} \\
& b::=\text { true } \mid \text { false } \mid \text { not } b\left|b_{1} o p_{b} b_{2}\right| a_{1} o p_{r} a_{2} \\
& S \\
& S:=x:=a
\end{aligned}
$$

Abstract Syntax of While

The syntax of the language WHILE is given by the following abstract syntax:

$$
\begin{aligned}
& a::= \\
& b|n| a_{1} o p_{a} a_{2} \\
& b::= \\
& S: \text { true } \mid \text { false } \mid \text { not } b\left|b_{1} o p_{b} b_{2}\right| a_{1} o p_{r} a_{2} \\
& \quad x:=a \\
& \mid \text { skip }
\end{aligned}
$$

Abstract Syntax of While

The syntax of the language WHILE is given by the following abstract syntax:

$$
\begin{aligned}
& a::= \\
& b|n| a_{1} o p_{a} a_{2} \\
& b::= \\
& S: \text { true } \mid \text { false } \mid \text { not } b \mid b_{1} \text { op } b_{b} b_{2} \mid a_{1} o p_{r} a_{2} \\
& x:=a \\
& \mid \text { skip } \\
& \mid S_{1} ; S_{2}
\end{aligned}
$$

Abstract Syntax of While

The syntax of the language WHILE is given by the following abstract syntax:

$$
\begin{array}{rll}
a & ::= & x|n| a_{1} o p_{a} a_{2} \\
b & ::= & \text { true } \mid \text { false } \mid \text { not } b \mid b_{1} \text { op } b_{b} b_{2} \mid a_{1} \text { op } a_{r} a_{2} \\
S: & x:=a \\
& & \mid \text { skip } \\
& & \mid S_{1} ; S_{2} \\
& \mid \text { if } b \text { then } S_{1} \text { else } S_{2}
\end{array}
$$

Abstract Syntax of While

The syntax of the language WHILE is given by the following abstract syntax:

$$
\begin{array}{rll}
a & ::= & x|n| a_{1} o p_{a} a_{2} \\
b & ::= & \text { true } \mid \text { false } \mid \text { not } b\left|b_{1} o p_{b} b_{2}\right| a_{1} o p_{r} a_{2} \\
S: & := & x:=a \\
& & \mid \text { skip } \\
& & S_{1} ; S_{2} \\
& & \mid \text { if } b \text { then } S_{1} \text { else } S_{2} \\
& & \text { while } b \text { do } S
\end{array}
$$

Syntactical Categories

We assume some countable/finite set of variables is given;

$$
\begin{array}{rlll}
x, y, z, \ldots & \in \text { Var } & \text { variables } \\
n, m, \ldots & \in \text { Num } & \text { numerals }
\end{array}
$$

Syntactical Categories

We assume some countable/finite set of variables is given;

$$
\begin{array}{rlll}
x, y, z, \ldots & \in \text { Var } & \text { variables } \\
n, m, \ldots & \in \text { Num numerals } \\
\ell, \ldots & \in \text { Lab labels }
\end{array}
$$

Numerals (integer constants) will not be further defined and neither will the operators:
$o p_{a} \in \mathbf{O} \mathbf{p}_{a}$ arithmetic operators, e.g.,,$+- \times, \ldots$
$o p_{b} \in \mathbf{O} \mathbf{p}_{b}$ boolean operators, e.g. \wedge, \vee, \ldots
$o p_{r} \in \mathbf{O p}_{r} \quad$ relational operators, e.g. $=,<, \leq, \ldots$

Labelled Syntax of While

The labelled syntax of the language WHiLE is given by the following abstract syntax:
a
b
S

Labelled Syntax of While

The labelled syntax of the language WHiLE is given by the following abstract syntax:

$$
a \quad::=x
$$

b
S

Labelled Syntax of While

The labelled syntax of the language WHiLE is given by the following abstract syntax:

$$
\begin{aligned}
& a \quad::=x \mid n \\
& b
\end{aligned}
$$

S

Labelled Syntax of While

The labelled syntax of the language WHiLE is given by the following abstract syntax:

$$
\begin{aligned}
& a \\
& b
\end{aligned}:=x|n| a_{1} o p_{a} a_{2}
$$

S

Labelled Syntax of While

The labelled syntax of the language WHiLE is given by the following abstract syntax:

$$
\begin{aligned}
& a::= \\
& b|n| a_{1} o p_{a} a_{2} \\
& b::= \\
& \text { true }
\end{aligned}
$$

S

Labelled Syntax of While

The labelled syntax of the language WHiLE is given by the following abstract syntax:

$$
\begin{aligned}
& a \quad:=x|n| a_{1} o p_{a} a_{2} \\
& b \quad::=\text { true } \mid \text { false }
\end{aligned}
$$

S

Labelled Syntax of While

The labelled syntax of the language WHiLE is given by the following abstract syntax:

$$
\begin{array}{lll}
a & ::= & x|n| a_{1} o p_{a} a_{2} \\
b & ::= & \text { true } \mid \text { false } \mid \text { not } b
\end{array}
$$

S

Labelled Syntax of While

The labelled syntax of the language WHiLE is given by the following abstract syntax:

$$
\begin{array}{ll}
a & ::= \\
b|n| a_{1} o p_{a} a_{2} \\
b & ::= \\
\text { true } \mid \text { false } \mid \text { not } b \mid b_{1} o p_{b} b_{2}
\end{array}
$$

S

Labelled Syntax of While

The labelled syntax of the language WHiLE is given by the following abstract syntax:

$$
\begin{aligned}
& a \quad::=x|n| a_{1} o p_{a} a_{2} \\
& b \quad::=\text { true } \mid \text { false } \mid \text { not } b \mid b_{1} \text { op } b b_{2} \mid a_{1} \text { op } a_{2} a_{2}
\end{aligned}
$$

S

Labelled Syntax of While

The labelled syntax of the language WHiLE is given by the following abstract syntax:

$$
\begin{aligned}
& a \quad::=x|n| a_{1} o p_{a} a_{2} \\
& b \quad::=\text { true } \mid \text { false } \mid \text { not } b\left|b_{1} o p_{b} b_{2}\right| a_{1} o p_{r} a_{2} \\
& S \quad::=\quad[x:=a]^{\ell}
\end{aligned}
$$

Labelled Syntax of While

The labelled syntax of the language WHiLE is given by the following abstract syntax:

$$
\begin{aligned}
& a::= \\
& b|n| a_{1} o p_{a} a_{2} \\
& b::= \\
& S \text { true } \mid \text { false } \mid \text { not } b\left|b_{1} o p_{b} b_{2}\right| a_{1} o p_{r} a_{2} \\
& \quad[x:=a]^{\ell} \\
& \mid[\mathbf{s k i p}]^{\ell}
\end{aligned}
$$

Labelled Syntax of While

The labelled syntax of the language WHiLE is given by the following abstract syntax:

$$
\begin{aligned}
& a::= \\
& b|n| a_{1} o p_{a} a_{2} \\
& b::= \\
& S: \text { true } \mid \text { false } \mid \text { not } b \mid b_{1} \text { op } b_{b} b_{2} \mid a_{1} o p_{r} a_{2} \\
& \\
& {[x:=a]^{\ell} } \\
& \mid[\mathbf{s k i p}]^{\ell} \\
& \mid S_{1} ; S_{2}
\end{aligned}
$$

Labelled Syntax of While

The labelled syntax of the language WHiLE is given by the following abstract syntax:

$$
\begin{array}{rll}
a & ::= & x|n| a_{1} o p_{a} a_{2} \\
b & ::= & \text { true } \mid \text { false } \mid \text { not } b\left|b_{1} o p_{b} b_{2}\right| a_{1} o p_{r} a_{2} \\
S: & := & {[x:=a]^{\ell}} \\
& & \mid[\text { skip }]^{\ell} \\
& & \mid S_{1} ; S_{2} \\
& \mid \text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}
\end{array}
$$

Labelled Syntax of While

The labelled syntax of the language While is given by the following abstract syntax:

$$
\begin{array}{rll}
a & ::= & x|n| a_{1} o p_{a} a_{2} \\
b & ::= & \text { true } \mid \text { false } \mid \text { not } b \mid b_{1} \text { op } p_{b} b_{2} \mid a_{1} \text { op } p_{r} a_{2} \\
S: & ::= & {[x:=a]^{\ell}} \\
& & \mid[\text { skip }]^{\ell} \\
& & \mid S_{1} ; S_{2} \\
& & \text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2} \\
& \mid \text { while }[b]^{\ell} \text { do } S
\end{array}
$$

An Example in While

An example of a program written in this While language is the following one which computes the factorial of the number stored in x and leaves the result in z :

An Example in While

An example of a program written in this While language is the following one which computes the factorial of the number stored in x and leaves the result in z :

$$
\begin{aligned}
& {[y:=x]^{1} ;} \\
& {[z:=1]^{2} ;} \\
& \text { while }[y>1]^{3} \text { do }(\\
& \quad[z:=z * y]^{4} ; \\
& \left.\quad[y:=y-1]^{5}\right) ; \\
& {[y:=0]^{6}}
\end{aligned}
$$

An Example in While

An example of a program written in this WHILE language is the following one which computes the factorial of the number stored in x and leaves the result in z :

$$
\begin{aligned}
& {[y:=x]^{1} ;} \\
& {[z:=1]^{2} ;} \\
& \text { while }[y>1]^{3} \text { do }(\\
& \quad[z:=z * y]^{4} ; \\
& \left.\quad[y:=y-1]^{5}\right) ; \\
& {[y:=0]^{6}}
\end{aligned}
$$

Note the use of meta-symbols, brackets, to group statements.

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:
a
b
S

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

$$
a::=x
$$

b
S

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

$$
\begin{aligned}
& a \quad::=x \mid n \\
& b
\end{aligned}
$$

S

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

$$
a \quad:=x|n| a_{1} o p_{a} a_{2}
$$

b
S

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

$$
\begin{aligned}
& a::=x|n| a_{1} o p_{a} a_{2} \\
& b::= \\
& \text { true }
\end{aligned}
$$

S

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

$$
\begin{aligned}
& a \quad:=x|n| a_{1} o p_{a} a_{2} \\
& b \quad::=\text { true | false }
\end{aligned}
$$

S

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

$$
\begin{array}{rll}
a & ::= & x|n| a_{1} o p_{a} a_{2} \\
b & ::= & \text { true } \mid \text { false } \mid \text { not } b
\end{array}
$$

S

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

$$
\begin{array}{ll}
a & ::=x|n| a_{1} o p_{a} a_{2} \\
b & ::= \\
\text { true } \mid \text { false } \mid \text { not } b \mid b_{1} o p_{b} b_{2}
\end{array}
$$

S

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

$$
\begin{aligned}
& a::=x|n| a_{1} o p_{a} a_{2} \\
& b::=\text { true } \mid \text { false } \mid \text { not } b\left|b_{1} o p_{b} b_{2}\right| a_{1} o p_{r} a_{2}
\end{aligned}
$$

S

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

$$
\begin{aligned}
& a \quad::=x|n| a_{1} o p_{a} a_{2} \\
& b::=\text { true } \mid \text { false } \mid \text { not } b\left|b_{1} o p_{b} b_{2}\right| a_{1} o p_{r} a_{2} \\
& S::=x:=a
\end{aligned}
$$

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

$$
\begin{aligned}
& a::= \\
& b|n| a_{1} o p_{a} a_{2} \\
& b::= \\
& \text { true } \mid \text { false } \mid \text { not } b\left|b_{1} o p_{b} b_{2}\right| a_{1} o p_{r} a_{2} \\
& S: x:=a \\
& \mid \text { skip }
\end{aligned}
$$

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

$$
\begin{aligned}
& a::= \\
& b|n| a_{1} \text { op } a_{a} \\
& b::= \\
& S::= \text { true } \mid \text { false } \mid \text { not } b \mid b_{1} \text { op } p_{b} b_{2} \mid a_{1} \text { op } p_{r} a_{2} \\
& \mid \text { skip } \\
& \mid S_{1} ; S_{2}
\end{aligned}
$$

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

$$
\begin{array}{rll}
a & ::= & x|n| a_{1} o p_{a} a_{2} \\
b & ::= & \text { true } \mid \text { false } \mid \text { not } b \mid b_{1} \text { op } b b_{2} \mid a_{1} o p_{r} a_{2} \\
S: & x:=a \\
& \mid \text { skip } \\
& \mid S_{1} ; S_{2} \\
& \mid \text { if } b \text { then } S_{1} \text { else } S_{2} \text { fi }
\end{array}
$$

Concrete Syntax of While

To avoid using brackets (as meta-symbols) we could also use the concrete syntax of the language WHILE as follows:

$$
\begin{array}{rll}
a & ::= & x|n| a_{1} o p_{a} a_{2} \\
b & ::= & \text { true } \mid \text { false } \mid \text { not } b\left|b_{1} o p_{b} b_{2}\right| a_{1} o p_{r} a_{2} \\
S: & := & x:=a \\
& & \mid \text { skip } \\
& & S_{1} ; S_{2} \\
& & \mid \text { if } b \text { then } S_{1} \text { else } S_{2} \text { fi } \\
& \mid \text { while } b \text { do } S \text { od }
\end{array}
$$

Initial Label

When presenting examples of Data Flow Analyses we will use a number of operations on programs and labels. The first of these is

$$
\text { init : Stmt } \rightarrow \text { Lab }
$$

which returns the initial label of a statement:

$$
\begin{aligned}
\operatorname{init}\left([x:=a]^{\ell}\right) & =\ell \\
\operatorname{init}\left([\text { skip }]^{\ell}\right) & =\ell \\
\operatorname{init}\left(S_{1} ; S_{2}\right) & =\operatorname{init}\left(S_{1}\right) \\
\operatorname{init}\left(\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right) & =\ell \\
\operatorname{init}\left(\text { while }[b]^{\ell} \text { do } S\right) & =\ell
\end{aligned}
$$

Final Labels

We will also need a function which returns the set of final labels in a statement; whereas a sequence of statements has a single entry, it may have multiple exits (e.g. in the conditional):

$$
\text { final : Stmt } \rightarrow \mathcal{P}(\text { Lab })
$$

$$
\begin{aligned}
\text { final }\left([x:=a]^{\ell}\right) & =\{\ell\} \\
\text { final }\left([\text { skip }]^{\ell}\right) & =\{\ell\} \\
\text { final }\left(S_{1} ; S_{2}\right) & =\text { final }\left(S_{2}\right) \\
\text { final }\left(\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right) & =\text { final }\left(S_{1}\right) \cup \text { final }\left(S_{2}\right) \\
\text { final }\left(\text { while }[b]^{\ell} \text { do } S\right) & =\{\ell\}
\end{aligned}
$$

The while-loop terminates immediately after the test fails.

Elementary Blocks

The building blocks of our analysis is given by Block is the set of statements, or elementary blocks, of the form:

Elementary Blocks

The building blocks of our analysis is given by Block is the set of statements, or elementary blocks, of the form:

- $[x:=a]^{\ell}$, or

Elementary Blocks

The building blocks of our analysis is given by Block is the set of statements, or elementary blocks, of the form:

- $[x:=a]^{\ell}$, or
- [skip $]^{\ell}$, as well as

Elementary Blocks

The building blocks of our analysis is given by Block is the set of statements, or elementary blocks, of the form:

- $[x:=a]^{\ell}$, or
- [skip] $]^{\ell}$, as well as
- tests of the form $[b]^{\ell}$.

Blocks

To access the statements or test associated with a label in a program we use the function

$$
\text { blocks : Stmt } \rightarrow \mathcal{P}(\text { Block })
$$

$$
\begin{aligned}
\text { blocks }\left([x:=a]^{\ell}\right) & =\left\{[x:=a]^{\ell}\right\} \\
\text { blocks }\left([\text { skip }]^{\ell}\right) & =\left\{[\text { skip }]^{\ell}\right\} \\
\text { blocks }\left(S_{1} ; S_{2}\right) & =\operatorname{blocks}\left(S_{1}\right) \cup \operatorname{blocks}\left(S_{2}\right)
\end{aligned}
$$

blocks(if $[b]^{\ell}$ then S_{1} else $\left.S_{2}\right)=\left\{[b]^{\ell}\right\} \cup$ blocks $\left(S_{1}\right) \cup$ blocks $\left(S_{2}\right)$
blocks $\left(\right.$ while $[b]^{\ell}$ do $\left.S\right)=\left\{[b]^{\ell}\right\} \cup$ blocks (S)

Labels

Then the set of labels occurring in a program is given by

$$
\text { labels : Stmt } \rightarrow \mathcal{P}(\text { Lab })
$$

where

$$
\operatorname{labels}(S)=\left\{\ell \mid[B]^{\ell} \in \operatorname{blocks}(S)\right\}
$$

Clearly init $(S) \in \operatorname{labels}(S)$ and final $(S) \subseteq \operatorname{labels}(S)$.

Flow

$$
\text { flow }: \mathbf{S t m t} \rightarrow \mathcal{P}(\mathbf{L a b} \times \mathbf{L a b})
$$

which maps statements to sets of flows:

$$
\begin{aligned}
\operatorname{flow}\left([x:=a]^{\ell}\right)= & \emptyset \\
\operatorname{flow}\left([\text { skip }]^{\ell}\right)= & \emptyset \\
\operatorname{flow}\left(S_{1} ; S_{2}\right)= & \operatorname{flow}\left(S_{1}\right) \cup \operatorname{flow}\left(S_{2}\right) \cup \\
& \left\{\left(\ell, \operatorname{init}\left(S_{2}\right)\right) \mid \ell \in \operatorname{final}\left(S_{1}\right)\right\} \\
\text { flow }\left(\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right)= & \operatorname{flow}\left(S_{1}\right) \cup \operatorname{flow}\left(S_{2}\right) \cup \\
& \left\{\left(\ell, \operatorname{init}\left(S_{1}\right)\right),\left(\ell, \text { init }\left(S_{2}\right)\right)\right\} \\
\text { flow }\left(\text { while }[b]^{\ell} \text { do } S\right)= & \operatorname{flow}(S) \cup\{(\ell, \operatorname{init}(S))\} \cup \\
& \left\{\left(\ell^{\prime}, \ell\right) \mid \ell^{\prime} \in \operatorname{final}(S)\right\}
\end{aligned}
$$

An Example Flow

Consider the following program, power, computing the x -th power of the number stored in y :

$$
\begin{aligned}
& {[z:=1]^{1} ;} \\
& \text { while }[x>1]^{2} \text { do }(\\
& \qquad[z:=z * y]^{3} ; \\
& \left.\qquad[x:=x-1]^{4}\right)
\end{aligned}
$$

An Example Flow

Consider the following program, power, computing the x -th power of the number stored in y :

$$
\begin{aligned}
& {[z:=1]^{1} ;} \\
& \text { while }[x>1]^{2} \text { do }(\\
& \qquad \quad[z:=z * y]^{3} ; \\
& \left.\quad[x:=x-1]^{4}\right)
\end{aligned}
$$

We have labels(power) $=\{1,2,3,4\}$, init(power) $=1$, and final(power) $=\{2\}$. The function flow produces the set:

$$
\text { flow(power) }=\{(1,2),(2,3),(3,4),(4,2)\}
$$

Flow Graph

Forward Analysis

The function flow is used in the formulation of forward analyses. Clearly $\operatorname{init}(S)$ is the (unique) entry node for the flow graph with nodes labels(S) and edges flow(S). Also

$$
\begin{aligned}
\operatorname{labels}(S)= & \{\operatorname{init}(S)\} \cup \\
& \left\{\ell \mid\left(\ell, \ell^{\prime}\right) \in \operatorname{flow}(S)\right\} \cup \\
& \left\{\ell^{\prime} \mid\left(\ell, \ell^{\prime}\right) \in \operatorname{flow}(S)\right\}
\end{aligned}
$$

and for composite statements (meaning those not simply of the form $[B]^{\ell}$) the equation remains true when removing the $\{\operatorname{init}(S)\}$ component.

Reverse Flow

In order to formulate backward analyses we require a function that computes reverse flows:

$$
\begin{array}{r}
\text { flow }^{R}: \mathbf{S t m t} \rightarrow \mathcal{P}(\mathbf{L a b} \times \mathbf{L a b}) \\
\text { flow }^{R}(S)=\left\{\left(\ell, \ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in \operatorname{flow}(S)\right\}
\end{array}
$$

For the power program, flow ${ }^{R}$ produces

$$
\{(2,1),(2,4),(3,2),(4,3)\}
$$

Backward Analysis

In case final(S) contains just one element that will be the unique entry node for the flow graph with nodes labels (S) and edges flow ${ }^{R}(S)$. Also

$$
\begin{aligned}
\operatorname{labels}(S)= & \text { final }(S) \cup \\
& \left\{\ell \mid\left(\ell, \ell^{\prime}\right) \in \operatorname{flow}^{R}(S)\right\} \cup \\
& \left\{\ell^{\prime} \mid\left(\ell, \ell^{\prime}\right) \in \operatorname{flow}^{R}(S)\right\}
\end{aligned}
$$

Notation

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement)

Notation

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement) and furthermore:

- Lab ${ }_{\star}$ to represent the labels (labels $\left(S_{\star}\right)$) appearing in S_{\star},

Notation

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement) and furthermore:

- Lab ${ }_{\star}$ to represent the labels (labels $\left(S_{\star}\right)$) appearing in S_{\star},
- Var ${ }_{\star}$ to represent the variables $\left(F V\left(S_{\star}\right)\right)$ appearing in S_{\star},

Notation

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement) and furthermore:

- Lab ${ }_{*}$ to represent the labels (labels $\left(S_{\star}\right)$) appearing in S_{\star},
- Var $_{\star}$ to represent the variables $\left(F V\left(S_{\star}\right)\right)$ appearing in S_{\star},
- Block ${ }_{\star}$ to represent the elementary blocks (blocks $\left(S_{\star}\right)$) occurring in S_{\star}, and

Notation

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement) and furthermore:

- Lab ${ }_{*}$ to represent the labels (labels $\left(S_{\star}\right)$) appearing in S_{\star},
- Var ${ }_{\star}$ to represent the variables $\left(F V\left(S_{\star}\right)\right)$ appearing in S_{\star},
- Block ${ }_{\star}$ to represent the elementary blocks (blocks $\left(S_{\star}\right)$) occurring in S_{\star}, and
- $\mathbf{A E x p}_{\star}$ to represent the set of non-trivial arithmetic subexpressions in S_{\star}

Notation

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement) and furthermore:

- Lab ${ }_{*}$ to represent the labels (labels $\left(S_{\star}\right)$) appearing in S_{\star},
- Var ${ }_{\star}$ to represent the variables $\left(F V\left(S_{\star}\right)\right)$ appearing in S_{\star},
- Block ${ }_{\star}$ to represent the elementary blocks (blocks $\left(S_{\star}\right)$) occurring in S_{*}, and
- $\mathbf{A E x p}_{\star}$ to represent the set of non-trivial arithmetic subexpressions in S_{\star}

An expression is trivial if it is a single variable or constant.

Notation

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement) and furthermore:

- Lab ${ }_{\star}$ to represent the labels (labels $\left(S_{\star}\right)$) appearing in S_{\star},
- Var ${ }_{\star}$ to represent the variables $\left(F V\left(S_{\star}\right)\right)$ appearing in S_{\star},
- Block ${ }_{\star}$ to represent the elementary blocks (blocks $\left(S_{\star}\right)$) occurring in S_{\star}, and
- AExp ${ }_{\star}$ to represent the set of non-trivial arithmetic subexpressions in S_{\star} as well as
- $\mathbf{A E x p}(a)$ and $\mathbf{A E x p}(b)$ to refer to the set of non-trivial arithmetic subexpressions of a given arithmetic, respectively boolean, expression.

An expression is trivial if it is a single variable or constant.

Isolated Entries \& Exits

Program S_{\star} has isolated entries if:

$$
\forall \ell \in \mathbf{L a b}:\left(\ell, \operatorname{init}\left(S_{\star}\right)\right) \notin \operatorname{flow}\left(S_{\star}\right)
$$

This is the case whenever S_{\star} does not start with a while-loop.

Isolated Entries \& Exits

Program S_{\star} has isolated entries if:

$$
\forall \ell \in \mathbf{L a b}:\left(\ell, \operatorname{init}\left(S_{\star}\right)\right) \notin \operatorname{flow}\left(S_{\star}\right)
$$

This is the case whenever S_{\star} does not start with a while-loop.
Similarly, we shall frequently assume that the program S_{\star} has isolated exits; this means that:

$$
\forall \ell_{1} \in \operatorname{final}\left(S_{\star}\right) \forall \ell_{2} \in \mathbf{L a b}:\left(\ell_{1}, \ell_{2}\right) \notin \operatorname{flow}\left(S_{\star}\right)
$$

Label Consistency

A statement, S, is label consistent if and only if:

$$
\left[B_{1}\right]^{\ell},\left[B_{2}\right]^{\ell} \in \operatorname{blocks}(S) \text { implies } B_{1}=B_{2}
$$

Label Consistency

A statement, S, is label consistent if and only if:

$$
\left[B_{1}\right]^{\ell},\left[B_{2}\right]^{\ell} \in \operatorname{blocks}(S) \text { implies } B_{1}=B_{2}
$$

Clearly, if all blocks in S are uniquely labelled (meaning that each label occurs only once), then S is label consistent.

When S is label consistent the statement or clause "where $[B]^{l} \in$ blocks $(S)^{\prime \prime}$ is unambiguous in defining a partial function from labels to elementary blocks; we shall then say that ℓ labels the block B.

