Program Analysis (70020) While Language

Herbert Wiklicky

Department of Computing Imperial College London

herbert@doc.ic.ac.uk
h.wiklicky@imperial.ac.uk

Autumn 2023

Syntactic Constructs

We use the following syntactic categories:

- $a \in AExp$ arithmetic expressions
- $b \in \mathbf{BExp}$ boolean expressions
- $\mathcal{S} \in \mathbf{Stmt}$ statements

The syntax of the language WHILE is given by the following **abstract syntax**:

a b S

$$a ::= x | n | a_1 op_a a_2$$

b
S

$$a ::= x | n | a_1 op_a a_2$$

b ::= true
S

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x | n | a_1 op_a a_2$$

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$

$$a ::= x | n | a_1 op_a a_2$$

$$b ::= true | false | not b | b_1 op_b b_2$$

$$S$$

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 op_a a_2$$

b ::= true | false | not $b | b_1 op_b b_2 | a_1 op_r a_2$

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x | n | a_1 op_a a_2$$

b ::= true | false | not $b | b_1 op_b b_2 | a_1 op_r a_2$

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x | n | a_1 op_a a_2$$

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 op_a a_2$$

The syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x | n | a_1 op_a a_2$$

b ::= true | false | not $b | b_1 op_b b_2 | a_1 op_r a_2$

The syntax of the language WHILE is given by the following **abstract syntax**:

 $a ::= x \mid n \mid a_1 o p_a a_2$

b ::= true | false | not $b | b_1 op_b b_2 | a_1 op_r a_2$

$$S ::= x := a$$

| skip
| $S_1; S_2$
| if b then S_1 else S_2
| while b do S

Syntactical Categories

We assume some countable/finite set of variables is given;

<i>x</i> , <i>y</i> , <i>z</i> ,	\in	Var	variables
<i>n</i> , <i>m</i> ,	\in	Num	numerals

Syntactical Categories

We assume some countable/finite set of variables is given;

<i>x</i> , <i>y</i> , <i>z</i> ,	\in	Var	variables
<i>n</i> , <i>m</i> ,	\in	Num	numerals
ℓ,\ldots	\in	Lab	labels

Numerals (integer constants) will not be further defined and neither will the operators:

 $op_a \in \mathbf{Op}_a$ arithmetic operators, e.g. $+, -, \times, \dots$ $op_b \in \mathbf{Op}_b$ boolean operators, e.g. \wedge, \vee, \dots $op_r \in \mathbf{Op}_r$ relational operators, e.g. $=, <, \leq, \dots$

The labelled syntax of the language WHILE is given by the following **abstract syntax**:

a b

$$a ::= x | n | a_1 op_a a_2$$

b ::= true
S

The labelled syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 o p_a a_2$$

The labelled syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$

The labelled syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 op_a a_2$$

$$b$$
 ::= true | false | not $b | b_1 op_b b_2$

The labelled syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 op_a a_2$$

b ::= true | false | not $b | b_1 op_b b_2 | a_1 op_r a_2$

The labelled syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x | n | a_1 op_a a_2$$

$$S ::= [x := a]^{\ell}$$

The labelled syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 op_a a_2$$

b ::= true | false | not $b | b_1 op_b b_2 | a_1 op_r a_2$

$$S ::= [x := a]^{\ell} | [skip]^{\ell}$$

The labelled syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x | n | a_1 op_a a_2$$

$$S ::= [x := a]^{\ell}$$
$$| [skip]^{\ell}$$
$$| S_1; S_2$$

The labelled syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x \mid n \mid a_1 op_a a_2$$

$$S ::= [x := a]^{\ell}$$

| [skip] ^{ℓ}
| S₁; S₂
| if [b] ^{ℓ} then S₁ else S₂

The labelled syntax of the language WHILE is given by the following **abstract syntax**:

$$a ::= x | n | a_1 op_a a_2$$

$$S ::= [x := a]^{\ell}$$

$$| [skip]^{\ell}$$

$$| S_1; S_2$$

$$| if [b]^{\ell} then S_1 else S_2$$

$$| while [b]^{\ell} do S$$

An Example in WHILE

An example of a program written in this WHILE language is the following one which computes the factorial of the number stored in x and leaves the result in z:

An Example in WHILE

An example of a program written in this WHILE language is the following one which computes the factorial of the number stored in x and leaves the result in z:

$$[y := x]^{1}; [z := 1]^{2}; while [y > 1]^{3} do ([z := z * y]^{4}; [y := y - 1]^{5}); [y := 0]^{6}$$

An Example in WHILE

An example of a program written in this WHILE language is the following one which computes the factorial of the number stored in x and leaves the result in z:

$$[y := x]^{1};$$

$$[z := 1]^{2};$$
while $[y > 1]^{3}$ do (
$$[z := z * y]^{4};$$

$$[y := y - 1]^{5};$$

$$[y := 0]^{6}$$

Note the use of meta-symbols, brackets, to group statements.

Concrete Syntax of WHILE

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

> a b

$$a ::= x | n | a_1 op_a a_2$$

b
S

$$a ::= x \mid n \mid a_1 op_a a_2$$

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$$a ::= x \mid n \mid a_1 \ op_a \ a_2$$

S

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$$a ::= x \mid n \mid a_1 op_a a_2$$

S

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$$a ::= x \mid n \mid a_1 op_a a_2$$

$$b$$
 ::= true | false | not $b | b_1 op_b b_2$

 S

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$$a ::= x \mid n \mid a_1 op_a a_2$$

b ::= true | false | not $b | b_1 op_b b_2 | a_1 op_r a_2$

S

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$$a ::= x | n | a_1 op_a a_2$$

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$$a ::= x | n | a_1 op_a a_2$$

b ::= true | false | not b | b_1 op_b b_2 | a_1 op_r a_2

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$$a ::= x \mid n \mid a_1 op_a a_2$$

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$$a ::= x \mid n \mid a_1 op_a a_2$$

To avoid using brackets (as meta-symbols) we could also use the **concrete syntax** of the language WHILE as follows:

$$a ::= x \mid n \mid a_1 op_a a_2$$

$$S ::= x := a$$

| skip
| $S_1; S_2$
| if b then S_1 else S_2 fi
| while b do S od

Initial Label

When presenting examples of Data Flow Analyses we will use a number of operations on programs and labels. The first of these is

$\textit{init}: \textbf{Stmt} \rightarrow \textbf{Lab}$

which returns the initial label of a statement:

$$init([\mathbf{x} := \mathbf{a}]^{\ell}) = \ell$$

$$init([\mathbf{skip}]^{\ell}) = \ell$$

$$init(S_1;S_2) = init(S_1)$$

$$init(\mathbf{if} [b]^{\ell} \mathbf{then} S_1 \mathbf{else} S_2) = \ell$$

$$init(\mathbf{while} [b]^{\ell} \mathbf{do} S) = \ell$$

Final Labels

We will also need a function which returns the set of final labels in a statement; whereas a sequence of statements has a single entry, it may have multiple exits (e.g. in the conditional):

final : Stmt $\rightarrow \mathcal{P}(Lab)$

$$\begin{aligned} & \text{final}([\mathbf{x} := \mathbf{a}]^{\ell}) = \{\ell\} \\ & \text{final}([\mathsf{skip}]^{\ell}) = \{\ell\} \\ & \text{final}(S_1; S_2) = \text{final}(S_2) \\ & \text{final}(\mathsf{if} [b]^{\ell} \mathsf{then} S_1 \mathsf{else} S_2) = \text{final}(S_1) \cup \text{final}(S_2) \\ & \text{final}(\mathsf{while} [b]^{\ell} \mathsf{do} S) = \{\ell\} \end{aligned}$$

The while-loop terminates immediately after the test fails.

- ▶ [**x** := a]^ℓ, or
- ▶ [skip]^ℓ, as well as
- ► tests of the form [b]^ℓ.

Blocks

To access the statements or test associated with a label in a program we use the function

 $\begin{aligned} blocks: \mathbf{Stmt} \to \mathcal{P}(\mathbf{Block}) \\ blocks([\ \textbf{x} := a \]^{\ell}) &= \{[\ \textbf{x} := a \]^{\ell}\} \\ blocks([\ \mathbf{skip} \]^{\ell}) &= \{[\ \mathbf{skip} \]^{\ell}\} \\ blocks(S_1;S_2) &= blocks(S_1) \cup blocks(S_2) \\ blocks(\mathbf{if} \ [b]^{\ell} \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2) &= \{[b]^{\ell}\} \cup \\ blocks(S_1) \cup blocks(S_2) \\ blocks(\mathbf{skip} \ [b]^{\ell} \ \mathbf{do} \ S) &= \{[b]^{\ell}\} \cup blocks(S) \end{aligned}$

Then the set of labels occurring in a program is given by

labels : Stmt $\rightarrow \mathcal{P}(Lab)$

where

$$labels(S) = \{\ell \mid [B]^{\ell} \in blocks(S)\}$$

Clearly $init(S) \in labels(S)$ and $final(S) \subseteq labels(S)$.

Flow

flow : Stmt $\rightarrow \mathcal{P}(\text{Lab} \times \text{Lab})$

which maps statements to sets of flows:

$$flow([x := a]^{\ell}) = \emptyset$$

flow([skip]^{\ell}) = \emptyset

$$\mathit{flow}(S_1;S_2) = \mathit{flow}(S_1) \cup \mathit{flow}(S_2) \cup$$

$$\{(\ell, \textit{init}(S_2)) \mid \ell \in \textit{final}(S_1)\}$$

$$\begin{array}{l} \textit{flow}(S_1) \cup \textit{flow}(S_2) \ \cup \\ \{(\ell,\textit{init}(S_1)), (\ell,\textit{init}(S_2))\} \end{array}$$

$$egin{aligned} \textit{flow}(m{S}) \cup \{(\ell, \textit{init}(m{S}))\} \ \cup \ \{(\ell', \ell) \mid \ell' \in \textit{final}(m{S})\} \end{aligned}$$

- $\mathit{flow}(if [b]^\ell then S_1 else S_2) =$
 - flow(while $[b]^{\ell}$ do S) =

An Example Flow

Consider the following program, power, computing the x-th power of the number stored in y:

$$[z := 1]^{1};$$

while $[x > 1]^{2}$ do (
 $[z := z * y]^{3};$
 $[x := x - 1]^{4})$

An Example Flow

Consider the following program, power, computing the x-th power of the number stored in y:

$$[z := 1]^{1};$$

while $[x > 1]^{2}$ do (
 $[z := z * y]^{3};$
 $[x := x - 1]^{4})$

We have *labels*(power) = $\{1, 2, 3, 4\}$, *init*(power) = 1, and *final*(power) = $\{2\}$. The function *flow* produces the set:

$$\textit{flow}(power) = \{(1,2), (2,3), (3,4), (4,2)\}$$

Flow Graph

Forward Analysis

The function *flow* is used in the formulation of *forward analyses*. Clearly *init*(S) is the (unique) entry node for the flow graph with nodes *labels*(S) and edges *flow*(S). Also

and for composite statements (meaning those not simply of the form $[B]^{\ell}$) the equation remains true when removing the $\{init(S)\}$ component.

Reverse Flow

In order to formulate *backward analyses* we require a function that computes reverse flows:

 $\mathit{flow}^{R}: \mathsf{Stmt} \to \mathcal{P}(\mathsf{Lab} \times \mathsf{Lab})$

$$\mathit{flow}^{R}(\mathcal{S}) = \{(\ell,\ell') \mid (\ell',\ell) \in \mathit{flow}(\mathcal{S})\}$$

For the power program, *flow*^R produces

 $\{(2,1),(2,4),(3,2),(4,3)\}$

In case *final*(*S*) contains just one element that will be the unique entry node for the flow graph with nodes labels(S) and edges $flow^{R}(S)$. Also

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement)

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement) and furthermore:

Lab_{\star} to represent the labels (*labels*(S_{\star})) appearing in S_{\star} ,

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement) and furthermore:

- **Lab**_{*} to represent the labels (*labels*(S_*)) appearing in S_* ,
- ▶ **Var**_{*} to represent the variables $(FV(S_*))$ appearing in S_* ,

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement) and furthermore:

- **Lab**_{*} to represent the labels (*labels*(S_*)) appearing in S_* ,
- ▶ **Var**_{*} to represent the variables ($FV(S_*)$) appearing in S_* ,
- ► Block_{*} to represent the elementary blocks (*blocks*(S_{*})) occurring in S_{*}, and

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement) and furthermore:

- **Lab**_{*} to represent the labels (*labels*(S_*)) appearing in S_* ,
- ▶ **Var**_{*} to represent the variables ($FV(S_*)$) appearing in S_* ,
- ► Block_{*} to represent the elementary blocks (*blocks*(S_{*})) occurring in S_{*}, and
- ► AExp_{*} to represent the set of *non-trivial* arithmetic subexpressions in S_{*}

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement) and furthermore:

- **Lab**_{*} to represent the labels (*labels*(S_*)) appearing in S_* ,
- ▶ **Var**_{*} to represent the variables ($FV(S_*)$) appearing in S_* ,
- ► Block_{*} to represent the elementary blocks (*blocks*(S_{*})) occurring in S_{*}, and
- ► AExp_{*} to represent the set of *non-trivial* arithmetic subexpressions in S_{*}

An expression is trivial if it is a single variable or constant.

We will use the notation S_{\star} to represent the program we are analysing (the "top-level" statement) and furthermore:

- **Lab**_{*} to represent the labels (*labels*(S_*)) appearing in S_* ,
- ▶ **Var**_{*} to represent the variables ($FV(S_*)$) appearing in S_* ,
- ► Block_{*} to represent the elementary blocks (*blocks*(S_{*})) occurring in S_{*}, and
- ► AExp_{*} to represent the set of *non-trivial* arithmetic subexpressions in S_{*} as well as
- AExp(a) and AExp(b) to refer to the set of non-trivial arithmetic subexpressions of a given arithmetic, respectively boolean, expression.

An expression is trivial if it is a single variable or constant.

Isolated Entries & Exits

Program S_{\star} has isolated entries if:

 $\forall \ell \in \mathsf{Lab} : (\ell, \mathit{init}(S_{\star})) \notin \mathit{flow}(S_{\star})$

This is the case whenever S_{\star} does not start with a **while**-loop.

Isolated Entries & Exits

Program S_{\star} has isolated entries if:

 $\forall \ell \in \mathsf{Lab} : (\ell, \mathit{init}(S_{\star})) \notin \mathit{flow}(S_{\star})$

This is the case whenever S_{\star} does not start with a **while**-loop.

Similarly, we shall frequently assume that the program S_{\star} has *isolated exits*; this means that:

 $\forall \ell_1 \in \mathit{final}(S_\star) \ \forall \ell_2 \in \mathsf{Lab} : (\ell_1, \ell_2) \notin \mathit{flow}(S_\star)$

Label Consistency

A statement, S, is label consistent if and only if:

$$[B_1]^\ell, [B_2]^\ell \in \textit{blocks}(S) \text{ implies } B_1 = B_2$$

Label Consistency

A statement, S, is label consistent if and only if:

$$[B_1]^\ell, [B_2]^\ell \in \mathit{blocks}(S) ext{ implies } B_1 = B_2$$

Clearly, if all blocks in S are uniquely labelled (meaning that each label occurs only once), then S is label consistent.

When *S* is label consistent the statement or clause "where $[B]^{\ell} \in blocks(S)$ " is unambiguous in defining a partial function from labels to elementary blocks; we shall then say that ℓ labels the block *B*.