
Program Analysis (70020)
Control Flow Analysis

Herbert Wiklicky

Department of Computing
Imperial College London

herbert@doc.ic.ac.uk
h.wiklicky@imperial.ac.uk

Autumn 2023

1 / 41

Control Flow Analysis

▶ Flow information is essential for the specification of Data
Flow Analyses. In the case of the Monotone Framework,
flow information is represented by the flow function F.

▶ WHILE language: flow information can be extracted directly
from the program text. Procedure calls are performed by
explictly mentioning the name of a procedure.

▶ Not so trivial for more general languages e.g imperative
languages with procedures as parameters, functional
languages or object-oriented languages.

▶ A special analysis is required: Control Flow Analysis

2 / 41

The λ-Calculus

N ∈ Term λ-terms
x ∈ Var variables

N ::= x | (λx .N) | (N1N2)

Substitution: (λx .M)N −→β M[x/N]

(λx .x)z −→β z
(λx .x)(λy .y) −→β (λy .y)

3 / 41

Syntax of Fun

e ∈ Exp expressions (or labelled terms)
t ∈ Term terms (or unlabelled expressions)

e ::= tℓ

t ::= c | x | fn x => e0 | e1 e2

| if e0 then e1 else e2 | e1 op e2

| let x = e1 in e2

((fn x => x1)2 (fn y => y3)4)5

4 / 41

An Example

let f = fn x => x 1;
g = fn y => y + 2;
h = fn z => z + 3

in (f g) + (f h)

(f g) + (f h) −→ ((fn x => x 1) g) + ((fn x => x 1) h)
−→ (g 1) + (h 1)
−→ ((fn y => y + 2) 1) + (fn z => z + 3) 1)
−→ (1 + 2) + (1 + 3)
−→ 7

5 / 41

Evaluating Fun

ρ ∈ Env = Var 7→ Value Environments
v ∈ Value = Constant ∪ Closure Values
Closure ::= [(fn x => e0), ρ] Closures

eval(ρ,e) = v

iff “e evaluates to v in ρ”

▶ eval(ρ,e) = v can also be read as an specification for
building an interpreter for the Fun language.

▶ We will use this specification just as a aid to help us
understand the Control Flow Analysis.

6 / 41

Environment Rules I [Provided in Exam]

eval(ρ, cℓ) = c

eval(ρ, xℓ) = ρ(x)

eval(ρ, (tℓ1
1 op tℓ2

2)ℓ) = eval(ρ, tℓ1
1) op eval(ρ, tℓ2

2)

eval(ρ, (if tℓ0
0 then tℓ1

1 else tℓ2
2)ℓ) = v

where v =

{
eval(ρ, tℓ1

1) for eval(ρ, tℓ0
0) = true

eval(ρ, tℓ2
2) for eval(ρ, tℓ0

0) = false

7 / 41

Environment Rules II [Provided in Exam]

eval(ρ, (fn x => e0)
ℓ) = [(fn x => e0), ρ] closure creation

eval(ρ, (let x = tℓ1
1 in tℓ2

2)ℓ) = eval(ρ[x 7→ v1], t
ℓ2
2)

where v1 = eval(ρ, tℓ1
1)

eval(ρ, (tℓ1
1 tℓ2

2)ℓ) = eval(ρ0[x 7→ v2],e0) function application

where eval(ρ, tℓ1
1) = [(fn x => e0), ρ0] ∧

eval(ρ, tℓ2
2) = v2

8 / 41

Control Flow Analysis (CFA)

As we allow variables/names to be bound/associated to/with
values as well as functions (closures) any function application
only makes sense in an environment ρ or context:

. . . (f 3) . . . or better . . . (f ℓ1 3ℓ2)ℓ3 . . .

It might be that f 7→ 3ℓ′ (constant) or f 7→ (fn x => xℓ′)ℓ
′′

(identity) or f 7→ (fn x => (xℓ′ xℓ′′))ℓ
′′′

(doubling).

In our imperative setting WHILE we might also allow variables to
point to programs, e.g. . . . | [p := S]ℓ | p | . . . Then, e.g.

if b then [p := S1]
1 else [p := S2]

2; p

leads to the the question whether (1, init(S1)) and/or
(1, init(S2)) should be in the control flow.

9 / 41

CFA and Functional Programs

Consider the following Fun program:

let f = fn x => x 1;

g = fn y => y + 2;
h = fn z => z + 3

in (f g) + (f h)

The aim of Control Flow Analysis is:

For each function application, which functions may be applied

10 / 41

Overview

▶ Control Flow Analysis

▶ Abstract Domains and Specification

▶ Contraint Generation

▶ Constraint Solving Algorithm

▶ Control and Data Flow Analysis

▶ Context-Sensitive Analysis Concepts

11 / 41

0-CFA Analysis

We will define a 0-CFA Analysis; the presentation requires two
components:
▶ Abstract Domains
▶ Specification of the Analysis

The result of a 0-CFA analysis is a pair (Ĉ, ρ̂) where:
▶ Ĉ is the abstract cache associating abstract values with

each labelled program point.
▶ ρ̂ is the abstract environment associating abstract values

with each variable.

12 / 41

Abstract Domains

An abstract value v̂ is a set of terms of the form: fn x => e0

ρ̂ ∈ Ênv = Var → V̂al abstract environments

v̂ ∈ V̂al = P(Term) abstract values

Ĉ ∈ Ĉache = Lab → V̂al abstract caches

Compare this with the Concrete Domain (see before):

ρ ∈ Env = Var → Val environments

v ∈ Val = Z ∪ Closure values

Closure ::= [fn x => e0, ρ] closures

13 / 41

Acceptable CFA

For the formulation of the 0-CFA analysis we shall write

(Ĉ, ρ̂) |= e

for when (Ĉ, ρ̂) is an acceptable Control Flow Analysis of the
expression e. Thus the relation “|=” has functionality

|= : (Ĉache × Ênv × Exp) → {true,false}

Our Goal therefore is:

If a sub-expression tℓ evaluates to a function (closure),
then the function must be “predicted” by Ĉ(ℓ)

14 / 41

CFA: Example

((fn x => x1)2 (fn y => y3)4)5

(Ĉe, ρ̂e) (Ĉ′
e, ρ̂

′
e) (Ĉ′′

e , ρ̂
′′
e)

1
2
3
4
5

x
y

{fn y => y3}
{fn x => x1}

∅
{fn y => y3}
{fn y => y3}

{fn y => y3}
∅

{fn y => y3}
{fn x => x1}

∅
{fn y => y3}
{fn y => y3}

∅
∅

{fn x => x1,fn y => y3}
{fn x => x1,fn y => y3}
{fn x => x1,fn y => y3}
{fn x => x1,fn y => y3}
{fn x => x1,fn y => y3}

{fn x => x1,fn y => y3}
{fn x => x1,fn y => y3}√ √

15 / 41

Specification: Rules I

(Ĉ, ρ̂) |=s cℓ always

(Ĉ, ρ̂) |=s xℓ iff ρ̂(x) ⊆ Ĉ(ℓ)

(Ĉ, ρ̂) |=s (if tℓ0
0 then tℓ1

1 else tℓ2
2)ℓ

iff (Ĉ, ρ̂) |=s tℓ0
0 ∧

(Ĉ, ρ̂) |=s tℓ1
1 ∧ (Ĉ, ρ̂) |=s tℓ2

2 ∧
Ĉ(ℓ1) ⊆ Ĉ(ℓ) ∧ Ĉ(ℓ2) ⊆ Ĉ(ℓ)

(Ĉ, ρ̂) |=s (let x = tℓ1
1 in tℓ2

2)ℓ

iff (Ĉ, ρ̂) |=s tℓ1
1 ∧ (Ĉ, ρ̂) |=s tℓ2

2 ∧
Ĉ(ℓ1) ⊆ ρ̂(x) ∧ Ĉ(ℓ2) ⊆ Ĉ(ℓ)

16 / 41

Specification: Rules II

(Ĉ, ρ̂) |=s (tℓ1
1 op tℓ2

2)ℓ

iff (Ĉ, ρ̂) |=s tℓ1
1 ∧ (Ĉ, ρ̂) |=s tℓ2

2

(Ĉ, ρ̂) |=s (fn x => e0)
ℓ

iff {fn x => e0} ⊆ Ĉ(ℓ) ∧ (Ĉ, ρ̂) |=s e0

(Ĉ, ρ̂) |=s (tℓ1
1 tℓ2

2)ℓ

iff (Ĉ, ρ̂) |=s tℓ1
1 ∧ (Ĉ, ρ̂) |=s tℓ2

2 ∧
(∀(fn x => tℓ0

0) ∈ Ĉ(ℓ1) :

Ĉ(ℓ2) ⊆ ρ̂(x) ∧
Ĉ(ℓ0) ⊆ Ĉ(ℓ))

17 / 41

Constraint Generation

To implement the specification, we must generate a set of
constraints from a given program. C⋆[[e⋆]] is a set of constraints
and conditional constraints of the form

lhs ⊆ rhs

{t} ⊆ rhs′ ⇒ lhs ⊆ rhs

where rhs is of the form C(ℓ) or r(x), and lhs is of the form
C(ℓ), r(x), or {t}, and all occurrences of t are of the form
fn x => e0.

18 / 41

Constraint-Based CFA I

(Ĉ, ρ̂) |=s (fn x => e0)
ℓ

iff {fn x => e0} ⊆ Ĉ(ℓ) ∧ (Ĉ, ρ̂) |=s e0

C⋆[[(fn x => e0)
ℓ]] = {{fn x => e0} ⊆ C(ℓ)} ∪ C⋆[[e0]]

(Ĉ, ρ̂) |=s (tℓ1
1 tℓ2

2)ℓ iff (Ĉ, ρ̂) |=s tℓ1
1 ∧ (Ĉ, ρ̂) |=s tℓ2

2 ∧
(∀(fn x => tℓ0

0) ∈ Ĉ(ℓ1) : Ĉ(ℓ2) ⊆ ρ̂(x) ∧
Ĉ(ℓ0) ⊆ Ĉ(ℓ))

C⋆[[(tℓ1
1 tℓ2

2)ℓ]]

= C⋆[[tℓ1
1]] ∪ C⋆[[tℓ2

2]]

∪ {{t} ⊆ C(ℓ1) ⇒ C(ℓ2) ⊆ r(x) | t = (fn x => tℓ0
0) ∈ Term⋆}

∪ {{t} ⊆ C(ℓ1) ⇒ C(ℓ0) ⊆ C(ℓ) | t = (fn x => tℓ0
0) ∈ Term⋆}

19 / 41

Constraint-Based CFA II

C⋆[[cℓ]] = ∅

C⋆[[xℓ]] = {r(x) ⊆ C(ℓ)}

C⋆[[(if tℓ0
0 then tℓ1

1 else tℓ2
2)ℓ]] = C⋆[[tℓ0

0]] ∪ C⋆[[tℓ1
1]] ∪ C⋆[[tℓ2

2]]
∪ {C(ℓ1) ⊆ C(ℓ)}
∪{C(ℓ2) ⊆ C(ℓ)}

C⋆[[(let x = tℓ1
1 in tℓ2

2)ℓ]] = C⋆[[tℓ1
1]] ∪ C⋆[[tℓ2

2]]
∪ {C(ℓ1) ⊆ r(x)} ∪ {C(ℓ2) ⊆ C(ℓ)}

C⋆[[(tℓ1
1 op tℓ2

2)ℓ]] = C⋆[[tℓ1
1]] ∪ C⋆[[tℓ2

2]]

20 / 41

Contraint Generation: Example I

C⋆[[((fn x => x1)2 (fn y => y3)4)5]] =

C⋆[[(fn x => x1)2]] ∪ C⋆[[(fn y => y3)4]]

∪ {{t} ⊆ C(2) ⇒ C(4) ⊆ r(x) | t = (fn x => tℓ0
0) ∈ Term⋆}

∪ {{t} ⊆ C(2) ⇒ C(ℓ0) ⊆ C(5) | t = (fn x => tℓ0
0) ∈ Term⋆}

C⋆[[(fn x => x1)2]] =
{{fn x => x1} ⊆ C(2)} ∪ C⋆[[x1]] =
{{fn x => x1} ⊆ C(2)} ∪ {r(x) ⊆ C(1)} =
{{fn x => x1} ⊆ C(2), r(x) ⊆ C(1)}

C⋆[[(fn y => y3)4]] = {{fn y => y3} ⊆ C(4)} ∪ C⋆[[y3]] =
{{fn y => y3} ⊆ C(4), r(y) ⊆ C(3)}

21 / 41

Contraint Generation: Example II

{{t} ⊆ C(2) ⇒ C(4) ⊆ r(x) | t = (fn x => tℓ0
0) ∈ Term⋆}

= { fn x => x1 ⊆ C(2) ⇒ C(4) ⊆ r(x),
fn y => y3 ⊆ C(2) ⇒ C(4) ⊆ r(y) }

{{t} ⊆ C(2) ⇒ C(ℓ0) ⊆ C(5) | t = (fn x => tℓ0
0) ∈ Term⋆}

= { fn x => x1 ⊆ C(2) ⇒ C(1) ⊆ C(5),
fn y => y3 ⊆ C(2) ⇒ C(3) ⊆ C(5) }

22 / 41

Contraint Generation: Example III

C⋆[[((fn x => x1)2 (fn y => y3)4)5]] =

{{ fn x => x1} ⊆ C(2),
r(x) ⊆ C(1),
{fn y => y3} ⊆ C(4),
r(y) ⊆ C(3),
{fn x => x1} ⊆ C(2) ⇒ C(4) ⊆ r(x),
{fn x => x1} ⊆ C(2) ⇒ C(1) ⊆ C(5),
{fn y => y3} ⊆ C(2) ⇒ C(4) ⊆ r(y),
{fn y => y3} ⊆ C(2) ⇒ C(3) ⊆ C(5) }

23 / 41

Constraint Solving

To solve the constraints, we use a graph-based formulation.
The algorithm uses the following main data structures:
▶ a worklist W, i.e. a list of nodes whose outgoing edges

should be traversed;
▶ a data array D that for each node gives an element of V̂al⋆;

and
▶ an edge array E that for each node gives a list of

constraints from which a list of the successor nodes can be
computed.

24 / 41

Constraints Graph

The graph will have nodes C(ℓ) and r(x) for ℓ ∈ Lab⋆ and
x ∈ Var⋆. Associated with each node p we have a data field
D[p] that initially is given by:

D[p] = {t | ({t} ⊆ p) ∈ C⋆[[e⋆]]}

The graph will have edges for a subset of the constraints in
C⋆[[e⋆]]; each edge will be decorated with the constraint that
gives rise to it:
▶ a constraint p1 ⊆ p2 gives rise to an edge from p1 to p2,

and
▶ a constraint {t} ⊆ p ⇒ p1 ⊆ p2 gives rise to an edge from

p1 to p2 and an edge from p to p2.

25 / 41

Algorithm I

INPUT: C⋆[[e⋆]]

OUTPUT: (Ĉ, ρ̂)

METHOD: Step 1: Initialisation
W := nil;
for q in Nodes do D[q] := ∅;
for q in Nodes do E[q] := nil;

26 / 41

Algorithm II

Step 2: Building the graph
for cc in C⋆[[e⋆]] do

case cc of
{t} ⊆ p: add(p,{t});
p1 ⊆ p2: E[p1] := cons(cc,E[p1]);
{t} ⊆ p ⇒ p1 ⊆ p2:

E[p1] := cons(cc,E[p1]);
E[p] := cons(cc,E[p]);

27 / 41

Algorithm III

Step 3: Iteration
while W ̸= nil do

q := head(W); W := tail(W);
for cc in E[q] do

case cc of
p1 ⊆ p2: add(p2, D[p1]);
{t} ⊆ p ⇒ p1 ⊆ p2:

if t ∈ D[p] then add(p2, D[p1]);

28 / 41

Algorithm IV

Step 4: Recording the solution
for ℓ in Lab⋆ do Ĉ(ℓ) := D[C(ℓ)];
for x in Var⋆ do ρ̂(x) := D[r(x)];

USING: procedure add(q,d) is
if ¬ (d ⊆ D[q])
then D[q] := D[q] ∪ d ;

W := cons(q,W);

29 / 41

Example I

p D[p] E[p]

C(1) ∅ [idx⊆C(2) ⇒ C(1)⊆C(5)]
C(2) idx [idy⊆C(2) ⇒ C(3)⊆C(5), idy⊆C(2) ⇒ C(4)⊆r(y),

idx⊆C(2) ⇒ C(1)⊆C(5), idx⊆C(2) ⇒ C(4)⊆r(x)]
C(3) ∅ [idy⊆C(2) ⇒ C(3)⊆C(5)]
C(4) idy [idy⊆C(2) ⇒ C(4)⊆r(y), idx⊆C(2) ⇒ C(4)⊆r(x)]
C(5) ∅ []
r(x) ∅ [r(x)⊆C(1)]
r(y) ∅ [r(y)⊆C(3)]

30 / 41

Example II

W [C(4),C(2)] [r(x),C(2)] [C(1),C(2)] [C(5),C(2)] [C(2)] []

C(1) ∅ ∅ idy idy idy idy
C(2) idx idx idx idx idx idx
C(3) ∅ ∅ ∅ ∅ ∅ ∅
C(4) idy idy idy idy idy idy
C(5) ∅ ∅ ∅ idy idy idy

r(x) ∅ idy idy idy idy idy
r(y) ∅ ∅ ∅ ∅ ∅ ∅

31 / 41

Control Flow + Data Flow

Let Data be a set of abstract data values (i.e. abstract
properties of booleans and arithmetic constants)

v̂ ∈ V̂ald = P(Term ∪ Data) abstract values

For each constant c ∈ Const we need an element dc ∈ Data
Similarly, for each operator op ∈ Op we need a total function

ôp : V̂ald × V̂ald → V̂ald

Typically, ôp will have a definition of the form:

v̂1 ôp v̂2 =
⋃

{dop(d1,d2) | d1 ∈ v̂1 ∩ Data,d2 ∈ v̂2 ∩ Data}

for some function dop : Data × Data → P(Data)

32 / 41

Detection of Sign

Datasign = {tt, ff,-,0,+}

dtrue = tt d7 = +

+̂ is defined from:

d+ tt ff - 0 +
tt ∅ ∅ ∅ ∅ ∅
ff ∅ ∅ ∅ ∅ ∅
- ∅ ∅ {-} {-} {-, 0, +}
0 ∅ ∅ {-} {0} {+}
+ ∅ ∅ {-, 0, +} {+} {+}

33 / 41

Abstract Values I

(Ĉ, ρ̂) |=d (fn x => e0)
ℓ iff {fn x => e0} ⊆ Ĉ(ℓ) ∧ (Ĉ, ρ̂) |=d e0

(Ĉ, ρ̂) |=d (tℓ1
1 tℓ2

2)ℓ

iff (Ĉ, ρ̂) |=d tℓ1
1 ∧ (Ĉ, ρ̂) |=d tℓ2

2 ∧
(∀(fn x => tℓ0

0) ∈ Ĉ(ℓ1) :

Ĉ(ℓ2) ⊆ ρ̂(x) ∧ Ĉ(ℓ0) ⊆ Ĉ(ℓ))

(Ĉ, ρ̂) |=d (if tℓ0
0 then tℓ1

1 else tℓ2
2)ℓ

iff (Ĉ, ρ̂) |=d tℓ0
0 ∧

(dtrue ∈ Ĉ(ℓ0) ⇒ ((Ĉ, ρ̂) |=d tℓ1
1 ∧ Ĉ(ℓ1) ⊆ Ĉ(ℓ))) ∧

(dfalse ∈ Ĉ(ℓ0) ⇒ ((Ĉ, ρ̂) |=d tℓ2
2 ∧ Ĉ(ℓ2) ⊆ Ĉ(ℓ)))

34 / 41

Abstract Values II

(Ĉ, ρ̂) |=d cℓ iff {dc} ⊆ Ĉ(ℓ)

(Ĉ, ρ̂) |=d xℓ iff ρ̂(x) ⊆ Ĉ(ℓ)

(Ĉ, ρ̂) |=d (let x = tℓ1
1 in tℓ2

2)ℓ

iff (Ĉ, ρ̂) |=d tℓ1
1 ∧ (Ĉ, ρ̂) |=d tℓ2

2 ∧
Ĉ(ℓ1) ⊆ ρ̂(x) ∧ Ĉ(ℓ2) ⊆ Ĉ(ℓ)

(Ĉ, ρ̂) |=d (tℓ1
1 op tℓ2

2)ℓ

iff (Ĉ, ρ̂) |=d tℓ1
1 ∧ (Ĉ, ρ̂) |=d tℓ2

2 ∧
Ĉ(ℓ1) ôp Ĉ(ℓ2) ⊆ Ĉ(ℓ)

35 / 41

Example: Sign Detection
let f = (fn x => (if (x1 > 02)3 then (fn y => y4)5

else (fn z => 256)7)8)9

in ((f 10311)12013)14)15

C(1) ∅
C(2) ∅
C(3) ∅
C(4) ∅
C(5) idy
C(6) ∅
C(7) c25

C(8) {idy , c25}
C(9) {fn x ...)8}
C(10) {fn x ...)8}
C(11) ∅
C(12) {idy , c25}
C(13) ∅

C(14) ∅
C(15) ∅
r(f) {fn x ...)8}
r(x) ∅
r(y) ∅
r(z) ∅

C(1) {+}
C(2) {0}
C(3) {tt}
C(4) {0}
C(5) idy
C(6) ∅
C(7) c25

C(8) {idy}
C(9) {fn x ...)8}

C(10) {fn x ...)8}
C(11) {+}
C(12) {idy}
C(13) {0}

C(14) {0}
C(15) {0}
r(f) {fn x ...)8}
r(x) {+}
r(y) {0}
r(z) ∅

A pure 0-CFA analysis will not be able to discover that the
else-branch of the conditional will never be executed.

When we combine the analysis with a Detection of Signs
Analysis then the analysis can determine that only fn y => y4

is a possible abstraction at label 12.

36 / 41

Context-Sensitive CFA

The Control Flow Analyses presented so far are imprecise in
that they cannot distinguish the various instances of function
calls from one another. In the terminology of Data Flow
Analysis the 0-CFA analysis is context-insensitive and in the
terminology of Control Flow Analysis it is monovariant.

To get a more precise analysis it is useful to introduce a
mechanism that distinguishes different dynamic instances of
variables and labels from one another. This results in a
context-sensitive analysis and in the terminology of Control
Flow Analysis the term polyvariant is used.

37 / 41

Example: Context

Consider the expression:

(let f = (fn x=> x1)2

in ((f 3 f 4)5 (fn y => y6)7)8)9

The least 0-CFA analysis is given by (Ĉid, ρ̂id):

38 / 41

0-CFA Solutions

Ĉid(1) = {fn x=> x1,fn y => y6} Ĉid(2) = {fn x=> x1}
Ĉid(3) = {fn x=> x1} Ĉid(4) = {fn x=> x1}
Ĉid(5) = {fn x=> x1,fn y => y6} Ĉid(6) = {fn y => y6}
Ĉid(7) = {fn y => y6}
Ĉid(8) = {fn x=> x1,fn y => y6}
Ĉid(9) = {fn x=> x1,fn y => y6}

ρ̂id(f) = {fn x=> x1}
ρ̂id(x) = {fn x=> x1,fn y => y6}
ρ̂id(y) = {fn y => y6}

39 / 41

Expansion

Expand the program into

let f1 = (fn x1 => x1)
in let f2 = (fn x2 => x2)

in (f1 f2) (fn y => y)

and then analyse the expanded expression: the 0-CFA analysis
is now able to deduce that x1 can only be bound to fn x2 => x2
and that x2 can only be bound to fn y => y so the overall
expression will evaluate to fn y => y only.

40 / 41

Further CFA Analyses

A more satisfactory solution to the problem is to extend the
analysis with context information allowing it to distinguish
between the various instances of variables and program points
and still analyse the original expression.

Examples of such analyses include k -CFA analyses, uniform
k -CFA analyses, polynomial k -CFA analyses (mainly of interest
for k > 0) and the Cartesian Product Algorithm.

41 / 41

	Control Flow Analysis
	Functional Programming
	Control Flow Analysis

