Program Analysis (70020)
 Correctness of an Analysis
 Herbert Wiklicky
 Department of Computing Imperial College London
 herbert@doc.ic.ac.uk h.wiklicky@imperial.ac.uk

Autumn 2023

Correctness

Questions: Is a program analysis correct? Are the results reflecting what is really happening when the program is run?

In other words: What is the relation between the (concrete) semantics of a program, i.e. the transition relation \Rightarrow and/or its transitive closure \Rightarrow^{*}, and the (solutions to) the program analysis Analysis。 and Analysis.

For example: Is a variable $L V$ identifies as 'live' indeed useful, or more importantly, is a 'non-live' variable really 'dead', i.e. is it save to eliminate it (at least locally).

Syntax of While

The labelled syntax of the language WHILE is given by the following abstract syntax:

$$
\begin{array}{rll}
a & ::= & x|n| a_{1} \text { op } a_{a} a_{2} \\
b & ::= & \text { true } \mid \text { false } \mid \text { not } b \mid b_{1} \text { op } p_{b} b_{2} \mid a_{1} \text { op } a_{r} a_{2} \\
S: & ::= & {[x:=a]^{\ell}} \\
& \mid[\text { skip] }]^{\ell} \\
& \mid S_{1} ; S_{2} \\
& \mid \text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2} \\
& \mid \text { while }[b]^{\ell} \text { do } S
\end{array}
$$

Sketches of a Formal Semantics

Memory is modelled by an abstract state, i.e. functions of type

$$
\text { State }=\text { Var } \rightarrow \mathbf{Z}
$$

For boolean and arithmetic expressions we assume that we know what they "evaluate to" in a state $s \in$ State. Then the semantics for AExp is a total function

$$
\llbracket . \rrbracket_{\mathcal{A}} .: \mathbf{A E x p} \rightarrow \text { State } \rightarrow \mathbf{Z}
$$

and the semantics of boolean expressions is given by

$$
\llbracket . \rrbracket_{\mathcal{B}} .: \quad \mathbf{B E x p} \rightarrow \text { State } \rightarrow\{\mathbf{t t}, \mathbf{f f}\}
$$

Evaluating Expressions

Let us look at a program with two variables Var $=\{x, y\}$. Two possible states in this case could be for example:

$$
s_{0}=[x \mapsto 0, y \mapsto 1] \text { and } s_{1}=[x \mapsto 1, y \mapsto 1]
$$

We can evaluate an expression like $x+y \in \mathbf{A E x p}$:

$$
\begin{aligned}
& \llbracket x+y \rrbracket_{\mathcal{A}} s_{0}=0+1=1 \\
& \llbracket x+y \rrbracket_{\mathcal{A}} s_{1}=1+1=2
\end{aligned}
$$

or a Boolean expression like $x+y \leq 1 \in \mathbf{B E x p}$:

$$
\begin{aligned}
& \llbracket x+y \leq 1 \rrbracket_{\mathcal{B}} s_{0}=1 \leq 1=\mathbf{t t} \\
& \llbracket x+y \leq 1 \rrbracket_{\mathcal{B}} s_{1}=2 \leq 1=\mathbf{f f}
\end{aligned}
$$

Execution and Transitions

The configurations describe the current state of the execution.
$\langle S, s\rangle \ldots S$ is to be executed in state s, $s \quad \ldots$ a terminal state (i.e. $\langle., s\rangle$).

The transition relation \Rightarrow specify the (possible) computational steps during the execution starting from a certain configuration

$$
\langle S, s\rangle \Rightarrow\left\langle S^{\prime}, s^{\prime}\right\rangle
$$

and at the end of the computation

$$
\langle S, s\rangle \Rightarrow s^{\prime}
$$

Execution Rules (SOS) [Provided in Exam]

$$
\begin{array}{lll}
\text { (ass) } & \left\langle[\mathrm{x}:=\mathrm{a}]^{\ell}, s\right\rangle \Rightarrow s\left[x \mapsto \llbracket a \rrbracket_{\mathcal{A}} s\right] & \\
\text { (skip) } & \left\langle[\text { skip }]^{\ell}, s\right\rangle \Rightarrow s \\
& \\
\left(\mathrm{sq}^{1}\right) & \frac{\left\langle S_{1}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime}, s^{\prime}\right\rangle}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime} ; S_{2}, s^{\prime}\right\rangle} & \\
\left(\mathrm{sq}^{T}\right) & \frac{\left\langle S_{1}, s\right\rangle \Rightarrow s^{\prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{2}, s^{\prime}\right\rangle} & \\
\left(\text { if }^{T}\right) & \left\langle\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}, s\right\rangle & \text { if } \llbracket b \rrbracket_{\mathcal{B}} s=\mathbf{t t} \\
\left(\text { if }^{F}\right) & \left\langle\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}, s\right\rangle \Rightarrow\left\langle S_{2}, s\right\rangle & \text { if } \llbracket b \rrbracket_{\mathcal{B}} s=\mathbf{f f} \\
\left(\text { wh }^{T}\right) & \left\langle\text { while }[b]^{\ell} \text { do } S, s\right\rangle \Rightarrow\left\langle S ; \text { while }[b]^{\ell} \text { do } S, s\right\rangle & \text { if } \llbracket b \rrbracket_{\mathcal{B}} s=\mathbf{t t} \\
\left(\text { wh }^{F}\right) & \left\langle\text { while }[b]^{\ell} \text { do } S, s\right\rangle \Rightarrow s & \text { if } \llbracket b \rrbracket_{\mathcal{B}} s=\mathbf{f f}
\end{array}
$$

A SOS Example

Consider a (perhaps rather vacuous) program like:

$$
\begin{gathered}
S \equiv[z:=x+y]^{\ell} ; \text { while }[\text { true }]^{\ell^{\prime}} \text { do }[\text { skip }]^{\ell^{\prime \prime}} \\
s_{0}=[x \mapsto 0, y \mapsto 1, z \mapsto 0] \text { and } s_{1}=[x \mapsto 0, y \mapsto 1, z \mapsto 1]
\end{gathered}
$$

Then $\left\langle S, s_{0}\right\rangle$ executes as follows:

$$
\begin{aligned}
\left\langle S, s_{0}\right\rangle & \left.\Rightarrow\left\langle\text { while }[\text { true }]^{\ell^{\prime}} \text { do }[\text { skip }]\right]^{\ell^{\prime \prime}}, s_{1}\right\rangle \\
& \Rightarrow\left\langle[\text { skip }]^{\ell^{\prime \prime}} ; \text { while }\left[\text { true } e^{\ell^{\prime}} \text { do }[\text { skip }]^{\ell^{\prime \prime}}, s_{1}\right\rangle\right. \\
& \left.\Rightarrow\left\langle\text { while }[\text { truee }]^{\ell^{\prime}} \text { do }[\text { skip }]\right]^{\ell^{\prime \prime}}, s_{1}\right\rangle \\
& \Rightarrow\left\langle[\text { skip }]^{\ell^{\prime \prime}} ; \text { while }[\text { true }]^{\ell^{\prime}} \text { do }[\text { skip }]^{\ell^{\prime \prime}}, s_{1}\right\rangle \\
& \Rightarrow \ldots
\end{aligned}
$$

Lemma 1

(i) If $\langle S, s\rangle \Rightarrow s^{\prime}$ then
final $(S)=\{\operatorname{init}(S)\}$.
(ii) If $\langle S, s\rangle \Rightarrow\left\langle S^{\prime}, s^{\prime}\right\rangle$ then
final $(S) \supseteq$ final $\left(S^{\prime}\right)$.
(iii) If $\langle S, s\rangle \Rightarrow\left\langle S^{\prime}, s^{\prime}\right\rangle$ then
flow $(S) \supseteq$ flow $\left(S^{\prime}\right)$.
(iv) If $\langle S, s\rangle \Rightarrow\left\langle S^{\prime}, s^{\prime}\right\rangle$ then
blocks $(S) \supseteq \operatorname{blocks}\left(S^{\prime}\right)$.
(v) If $\langle S, s\rangle \Rightarrow\left\langle S^{\prime}, s^{\prime}\right\rangle$ then
S label consistent implies S^{\prime} label consistent.

Lemma 1 - Proof (i) [Not for Exam]

Proof.
The proof is by induction on the shape of the inference tree. Consider the only three non-vacuous cases:

$$
\begin{aligned}
& \text { (ass): }\left\langle\left[[\mathrm{x}:=a]^{\ell}, s\right\rangle \Rightarrow s[x \mapsto \llbracket a \rrbracket s]\right. \\
& \quad \text { final }\left([\mathrm{x}:=a]^{\ell}\right)=\{\ell\}=\left\{\text { init }\left([\mathrm{x}:=a]^{\ell}\right)\right\} . \\
& (\text { skip }):\left\langle[\text { skip }]^{\ell}, s\right\rangle \Rightarrow s \\
& \quad \text { final }\left([\text { skip }]^{\ell}\right)=\{\ell\}=\left\{\text { init }\left([\text { skip }]^{\ell}\right)\right\} . \\
& \left(\text { wh }^{F}\right):\left\langle\text { while }[b]^{\ell} \text { do } S, s\right\rangle \Rightarrow s \text { with } \llbracket b \rrbracket=\text { false } \\
& \\
& \left.\quad \text { final }\left(\text { while }[b]^{\ell} \text { do } S\right)=\{\ell\}=\left\{\text { init(while }[b]^{\ell} \text { do } S\right)\right\} .
\end{aligned}
$$

Lemma 1 - Proof (ii) [Not for Exam]

Proof (cont).

$$
\begin{aligned}
& \left(\text { seq }^{1}\right):\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime} ; S_{2}, s^{\prime}\right\rangle \text { because } \\
& \left\langle S_{1}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime}, s^{\prime}\right\rangle: \\
& \text { final }\left(S_{1} ; S_{2}\right)=\operatorname{final}\left(S_{2}\right)=\operatorname{final}\left(S_{1}^{\prime} ; S_{2}\right) . \\
& \left(\mathrm{seq}^{T}\right): \ldots \\
& \text { (if }{ }^{T} \text {): }\left\langle\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}, s\right\rangle \\
& \text { with } \llbracket b \rrbracket=\text { true: } \\
& \text { final }\left(\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right)= \\
& \text { final }\left(S_{1}\right) \cup \text { final }\left(S_{2}\right) \supseteq \text { final }\left(S_{1}\right) \text {. } \\
& \text { (if }{ }^{F} \text {): ... } \\
& \left(w^{T}\right): \ldots
\end{aligned}
$$

The Live Variable Analysis is given as the solution to the following system of equations:

$$
\begin{gathered}
\mathrm{LV}_{\text {exit }}(\ell)=\left\{\begin{array}{l}
\emptyset, \text { if } \ell \in \text { final }\left(S_{\star}\right) \\
\bigcup\left\{\mathrm{LV}_{\text {entry }}\left(\ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in \operatorname{flow}^{R}\left(S_{\star}\right)\right\}, \text { otherwise }
\end{array}\right. \\
\mathrm{LV}_{\text {entry }}(\ell)=\begin{array}{l}
\left(\mathrm{LV}_{\text {exit }}(\ell) \backslash \text { kill }_{\mathrm{v}}([B]]^{\ell}\right) \cup \text { gen }_{\mathrm{LV}}\left([B]^{\ell}\right) \\
\quad \text { where }[B]^{\prime} \in \operatorname{blocks}\left(S_{\star}\right)
\end{array}
\end{gathered}
$$

Solutions via Iteration Operator

$$
\begin{aligned}
\mathrm{LV}_{\text {entry }}(1) & =\mathrm{F}_{1}^{\circ}\left(\mathrm{LV}_{\text {entry }}(1), \ldots, \mathrm{LV}_{\text {exit }}(n)\right) \\
\ldots & \ldots \\
\mathrm{LV}_{\text {entry }}(n) & =\mathrm{F}_{n}^{\circ}\left(\mathrm{LV}_{\text {entry }}(1), \ldots, \mathrm{LV}_{\text {exit }}(n)\right) \\
\mathrm{LV}_{\text {exit }}(1) & =\mathrm{F}_{1}^{\circ}\left(\mathrm{LV}_{\text {entry }}(1), \ldots, \mathrm{LV}_{\text {exit }}(n)\right) \\
\ldots & \cdots \cdots \\
\mathrm{LV}_{\text {exit }}(n) & =\mathbf{F}_{n}^{\circ}\left(\mathrm{LV}_{\text {entry }}(1), \ldots, \mathrm{LV}_{\text {exit }}(n)\right)
\end{aligned}
$$

becomes a function on the lattice $\mathcal{P}(\mathbf{V a r})^{2 n}$

$$
\begin{gathered}
\mathbf{F}: \mathcal{P}(\mathbf{V a r})^{2 n} \rightarrow \mathcal{P}(\mathbf{V a r})^{2 n} \\
\mathbf{F}_{i}^{\circ}\left(\mathrm{LV}_{\text {entry }}(1), \ldots, \mathrm{LV}_{\text {exit }}(n)\right)=\mathrm{LV}_{\text {entry }}(i) \\
\mathbf{F}_{i}^{\circ}\left(\mathrm{LV}_{\text {entry }}(1), \ldots, \mathrm{LV}_{\text {exit }}(n)\right)=\mathrm{LV}_{\text {exit }}(i)
\end{gathered}
$$

LV Constraints: $L V=$

The Live Variable Analysis is equivalently given as the solution to the following system of constraints:

$$
\begin{gathered}
\mathrm{LV}_{\text {exit }}(\ell) \supseteq\left\{\begin{array}{l}
\emptyset, \text { if } \ell \in \text { final }\left(S_{\star}\right) \\
\bigcup\left\{\mathrm{LV}_{\text {entry }}\left(\ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in \operatorname{flow}^{R}\left(S_{\star}\right)\right\}, \text { otherwise }
\end{array}\right. \\
\mathrm{LV}_{\text {entry }}(\ell) \supseteq \begin{array}{l}
\left(\mathrm{LV}_{\text {exit }}(\ell) \backslash \operatorname{kill}_{\mathrm{LV}}\left([B]^{\ell}\right) \cup \text { gen }_{\mathrm{LV}}\left([B]^{\ell}\right)\right. \\
\text { where }[B]^{\ell} \in{\operatorname{blocks}\left(S_{\star}\right)}
\end{array}
\end{gathered}
$$

$L V$ Solutions to $L V^{-}$and $L V=$

Consider collections live $=\left(\right.$ live $_{\text {entry }}$, live $\left._{\text {exit }}\right)$ of functions:

$$
\begin{aligned}
& \text { live }_{\text {entry }}: \mathbf{L a b}_{\star} \rightarrow \mathcal{P}\left(\mathbf{V a r}_{\star}\right) \\
& \text { live }_{\text {exit }}: \mathbf{L a b}_{\star} \rightarrow \mathcal{P}\left(\mathbf{V a r}_{\star}\right)
\end{aligned}
$$

If live solves $L V^{=}$for a statement S we write:

$$
\text { live } \models L V^{-}(S)
$$

If live solves $L V \subseteq$ for a statement S we write:

$$
\text { live } \models L V \subseteq(S)
$$

Theorem 1

Given a label consistent program S_{\star}.

If

- live $\models L V^{=}\left(S_{\star}\right)$
then
- live $\models L V^{\wedge}=\left(S_{\star}\right)$.

That is: The least solution of $L V^{=}\left(S_{\star}\right)$ coincides with the least solution to $L V \subseteq\left(S_{\star}\right)$.

Theorem 1 - Proof [Not for Exam]

Proof.
If live $\models L V=\left(S_{\star}\right)$ also live $\models L V \subseteq\left(S_{\star}\right)$ as " \supseteq " includes " $=$ ".
To show that $L V=\left(S_{\star}\right)$ and $L V=\left(S_{\star}\right)$ have the same least
solution consider the iteration operator $\mathbf{F}=\mathbf{F}_{L V}=\mathbf{F}_{L V}^{S}$

$$
\begin{array}{lll}
\text { live } \models L V=\left(S_{\star}\right) & \text { iff } & \text { live } \sqsupseteq \mathbf{F} \text { (live }) \\
\text { live } \models L V^{=}\left(S_{\star}\right) & \text { iff } & \text { live }=\mathbf{F} \text { (live })
\end{array}
$$

By Tarski's Fixed Point Theorem we have:

$$
\operatorname{lfp}(\mathbf{F})=\rceil\{\text { live } \mid \text { live } \sqsupseteq \mathbf{F}(\text { live })\}=\rceil\{\text { live } \mid \text { live }=\mathbf{F}(\text { live })\} .
$$

Since $l f p(\mathbf{F})=\mathbf{F}(l f p(\mathbf{F}))$ and $l f p(\mathbf{F}) \sqsupseteq \mathbf{F}(l f p(\mathbf{F}))$ we see that we get the same least solutions.

Preservation of Solution

During the (actual) execution of any program S_{\star} a solution to the Live Variable analysis $L V=\left(S_{\star}\right)$ remains a solution.

Lemma 2

Given a label consistent program S_{1}.
If

- live $\models L V=\left(S_{1}\right)$ and
- flow $\left(S_{1}\right) \supseteq$ flow $\left(S_{2}\right)$ and
- blocks $\left(S_{1}\right) \supseteq \operatorname{blocks}\left(S_{2}\right)$
then
- live $\models L V=\left(S_{2}\right)$
with S_{2} being label consistent.

Proof [Not for Exam].

If S_{1} is label consistent and blocks $\left(S_{1}\right) \supseteq$ blocks $\left(S_{2}\right)$ then S_{2} is also label consistent.

If live $\models L V=\left(S_{1}\right)$ then live also satisfy each constraint in $L V \leftrightarrows\left(S_{2}\right)$ and hence live $\models L V \leftrightarrows\left(S_{2}\right)$.

Lemma 3

Given a label consistent program S.
If

- live $\models L V=(S)$ and
- $\langle S, s\rangle \Rightarrow\left\langle S^{\prime}, s^{\prime}\right\rangle$
then
- live $\models L V=\left(S^{\prime}\right)$.

Proof [Not for Exam].

Follows directly from Lemma 1 and Lemma 2.

Lemma 4

Given a label consistent program S.
If

- live $\models L V=(S)$
then for all $\left(\ell, \ell^{\prime}\right) \in \operatorname{flow}(S)$ we have:
- live exit $(\ell) \supseteq$ live $_{\text {entry }}\left(\ell^{\prime}\right)$

Proof [Not for Exam].

Follows immediately from the construction of $L V=(S)$.

Correctness Relation

Assume that V is a set of live variables.

Define the correctness relation via

$$
s_{1} \sim V s_{2} \text { iff } \forall x \in V: s_{1}(x)=s_{2}(x) .
$$

In other word:
Two states are equivalent iff for all live variables - i.e. all "practical purposes" - the states s_{1} and s_{2} agree on the variables in V.

Example

Consider $[x:=y+z]^{\ell}$ and $V_{1}=\{y, z\}$ and $V_{2}=\{x\}$.

$$
\begin{gathered}
s_{1} \sim v_{1} s_{2} \text { means } s_{1}(y)=s_{2}(y) \wedge s_{1}(z)=s_{2}(z) \\
s_{1} \sim v_{2} s_{2} \text { means } s_{1}(x)=s_{2}(x)
\end{gathered}
$$

Assume $\left\langle[x:=y+z]^{\ell}, s_{1}\right\rangle \Rightarrow s_{1}^{\prime},\left\langle[x:=y+z]^{\ell}, s_{2}\right\rangle \Rightarrow s_{2}^{\prime}$ then

$$
s_{1} \sim v_{1} s_{2} \text { ensures } s_{1}^{\prime} \sim v_{2} s_{2}^{\prime} .
$$

If $V_{2}=L V_{\text {exit }}(\ell)$ thus is the set of live variables after $[x:=y+z]^{\ell}$ then $V_{1}=\operatorname{LV}$ entry (ℓ) is the set of live variables before $[x:=y+z]^{\ell}$.

Correctness of LV Analysis

Short-hand notation: $N(\ell)=\operatorname{live}_{\text {entry }}(\ell)$ and $X(\ell)=\operatorname{live}_{\text {exit }}(\ell)$.

Lemma 5

Given a label consistent program S.
If

- live $\models L V=(S)$
then
$-s_{1} \sim \sim_{\text {/ive }}^{\text {exi }(\ell)}$ s_{2} implies $s_{1} \sim \sim_{\text {live }}^{\text {entr }}$ ($\left(^{\prime}\right.$) s_{2} for all $\left(\ell, \ell^{\prime}\right) \in \operatorname{flow}(S)$.

Proof [Not for Exam].

Follows directly from Lemma 4 and the definition of $\sim v$.

Theorem 2

Given a label consistent program S.
If

- live $\models L V^{〔}(S)$
then
(i) If $\left\langle S, s_{1}\right\rangle \Rightarrow\left\langle S^{\prime}, s_{1}^{\prime}\right\rangle$ and $s_{1} \sim$ live $_{\text {entry }}\left(\right.$ init(s)) s_{2} then there exists s_{2}^{\prime} such that
$\left\langle S, s_{2}\right\rangle \Rightarrow\left\langle S^{\prime}, s_{2}^{\prime}\right\rangle$ and $s_{1}^{\prime} \sim$ live $_{\text {entry }}$ (init($\left.\left.S^{\prime}\right)\right)$ s s_{2}^{\prime}.
(ii) If $\left\langle S, s_{1}\right\rangle \Rightarrow s_{1}^{\prime}$ and $s_{1} \sim \sim_{\text {ive }}^{\text {entry }}$ (init(s)) s_{2} then there exists s_{2}^{\prime} such that

$$
\left\langle S, s_{2}\right\rangle \Rightarrow s_{2}^{\prime} \text { and } s_{1}^{\prime} \sim l_{\text {live }}^{\text {extit }} \text { (init(s)) } s_{2}^{\prime} .
$$

Theorem 2 - Proof [Not for Exam]

Proof.

The proof is by induction on the shape of the inference tree.

$$
\begin{aligned}
(\text { ass }): & \cdots \\
(\text { skip }) & \cdots \\
\left(\text { seq}^{1}\right) & \cdots \\
\left(\mathrm{seq}^{T}\right) & \cdots \\
\left(\mathrm{if}^{T}\right) & \cdots \\
\left(\mathrm{if}^{F}\right) & \cdots \\
\left(\mathrm{wh}^{T}\right) & \cdots \\
\left(\mathrm{wh}^{F}\right) & \cdots
\end{aligned}
$$

Theorem 2 - Proof (ass) [Not for Exam]

Proof (cont).
The proof is by induction on the shape of the inference tree.
(ass): We have $\left\langle[x:=a]^{\ell}, s_{1}\right\rangle \Rightarrow s_{1}\left[x \mapsto \llbracket a \rrbracket s_{1}\right]$ and from the specification of the constraints:

$$
\operatorname{live}_{\text {entry }}(\ell)=\left(\operatorname{live}_{\text {exit }}(\ell) \backslash\{x\}\right) \cup F V(a)
$$

and therefore

$$
s_{1} \sim \sim_{\text {live }}^{\text {entry }}(\ell) \text { } s_{2} \text { implies } \llbracket a \rrbracket\left(s_{1}\right)=\llbracket a \rrbracket\left(s_{2}\right)
$$

because the value of a depends only on variables in it.

Thus with $s_{2}^{\prime}=s_{2}\left[x \mapsto \llbracket a \rrbracket_{\mathcal{A}} s_{2}\right]$ we have $s_{1}^{\prime}(x)=s_{2}^{\prime}(x)$ and thus $s_{1}^{\prime} \sim \operatorname{live}_{\text {exit }}(\ell) s_{2}^{\prime}$.

Theorem 2 - Proof (skip) [Not for Exam]

Proof (cont).

(skip): We have $\left\langle\left[\right.\right.$ skip] $\left.{ }^{l}, s_{1}\right\rangle \Rightarrow s_{1}$ and from the specification of the constraints we get:

$$
\operatorname{live}_{\text {entry }}(\ell)=\left(\text { live }_{\text {exit }}(\ell) \backslash \emptyset\right) \cup \emptyset=\operatorname{live}_{\text {exit }}(\ell)
$$

Thus taking s_{2}^{\prime} to be s_{2} we get $s_{1}^{\prime} \sim / i v e_{\text {ext }(\ell)} s_{2}^{\prime}$ as required.

Theorem 2 - Proof (seq ${ }^{1}$) [Not for Exam]

Proof (cont).
(seq ${ }^{1}$): We have $\left\langle S_{1} ; S_{2}, s_{1}\right\rangle \Rightarrow\left\langle S_{1}^{\prime} ; S_{2}, s_{1}^{\prime}\right\rangle$ because of $\left\langle S_{1}, s_{1}\right\rangle \Rightarrow\left\langle S_{1}^{\prime}, s_{1}^{\prime}\right\rangle$.

By construction we have flow $\left(S_{1} ; S_{2}\right) \supseteq$ flow $\left(S_{1}\right)$ and also $\operatorname{blocks}\left(S_{1} ; S_{2}\right) \supseteq \operatorname{blocks}\left(S_{1}\right)$, thus by Lemma 2 live $\models L V=\left(S_{1}\right)$ and by the induction hypothesis there exists a s_{2}^{\prime} such that

$$
\left\langle S_{1}, s_{2}\right\rangle \Rightarrow\left\langle S_{1}^{\prime}, s_{2}^{\prime}\right\rangle \text { and } s_{1}^{\prime} \sim \text { live }_{\text {enty }}\left(\text { init }\left(S_{1}^{\prime}\right)\right) \text { s } s_{2}^{\prime}
$$

and the result follows.

Theorem 2 - Proof (seq ${ }^{T}$) [Not for Exam]

Proof (cont).

$$
\begin{aligned}
\left(\text { seq }^{T}\right): & \text { We have }\left\langle S_{1} ; S_{2}, s_{1}\right\rangle \Rightarrow\left\langle S_{2}, s_{1}^{\prime}\right\rangle \text { because of } \\
& \left\langle S_{1}, s_{1}\right\rangle \Rightarrow s_{1}^{\prime} \text {. Again by Lemma 2, live is a solution } \\
& \text { to } L V=\left(S_{1}\right) \text { and thus by induction hypothesis there } \\
& \text { exists a } s_{2}^{\prime} \text { such that }
\end{aligned}
$$

$$
\left.\left\langle s_{1}, s_{2}\right\rangle \Rightarrow s_{2}^{\prime} \text { and } s_{1}^{\prime} \sim \operatorname{live}_{\text {exit }} \operatorname{init}\left(s_{1}\right)\right) s_{2}^{\prime}
$$

Now we have:

$$
\left\{\left(\ell, \text { init }\left(S_{2}\right)\right) \mid \ell \in \operatorname{final}\left(S_{1}\right)\right\} \subseteq \operatorname{flow}\left(S_{1} ; S_{2}\right)
$$

and by Lemma 1, final $\left(S_{1}\right)=\left\{\operatorname{init}\left(S_{1}\right)\right\}$. Thus by Lemma 5

$$
s_{1}^{\prime} \sim \operatorname{live}_{\text {entry }}\left(\operatorname{init}_{\left.\left(s_{2}\right)\right)} s_{2}^{\prime}\right.
$$

and the result follows.

Theorem 2 - Proof $\left(\mathrm{if}^{T}\right)$ \& $\left(\mathrm{if}^{F}\right)$ [Not for Exam]

Proof (cont).
(if ${ }^{T}$): We have $\left\langle\right.$ if $[b]^{\ell}$ then S_{1} else $\left.S_{2}, s_{1}\right\rangle \Rightarrow\left\langle S_{1}, s_{1}\right\rangle$ with $\llbracket b \rrbracket\left(s_{1}\right)=$ true.
Since $s_{1} \sim$ live $_{\text {entry }}(\ell) s_{2}$ and live entry $(\ell) \supseteq F V(b)$ we also have $\llbracket b \rrbracket\left(s_{2}\right)=$ true (the value of b is only dependent on the variables occurring in it) and thus

$$
\left\langle\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}, s_{2}\right\rangle \Rightarrow\left\langle S_{1}, s_{2}\right\rangle
$$

From the constraints we get live entry $(\ell) \supseteq \operatorname{live}_{\text {exit }}(\ell)$ and hence $s_{1} \sim l_{i v e_{\text {exit }}(\ell)} s_{2}$.
Since $\left(\ell, \operatorname{init}\left(S_{1}\right)\right) \in$ flow (S) Lemma 5 gives
$s_{1} \sim \operatorname{live}_{\text {entry }}\left(\right.$ init $\left.\left(s_{1}\right)\right) s_{2}$ as required.
(if ${ }^{F}$): similar to case (if ${ }^{T}$).

Theorem 2 - Proof $\left(w^{T}\right)$ [Not for Exam]

Proof (cont).

$$
\begin{aligned}
\left(\text { wh }^{T}\right): & \left\langle\text { while }[b]^{\ell} \text { do } S, s_{1}\right\rangle \Rightarrow\left\langle S \text {; while }[b]^{\ell} \text { do } S, s_{1}\right\rangle \\
& \text { with } \llbracket b \rrbracket\left(s_{1}\right)=\text { true. } \\
& \text { Since } s_{1} \sim l i v e_{\text {entry }}(\ell) s_{2} \text { and live }{ }_{\text {entry }}(\ell) \supseteq F V(b) \text { we } \\
& \text { also have } \llbracket b \rrbracket\left(s_{2}\right)=\text { true and thus } \\
& \left\langle\text { while }[b]^{\ell} \text { do } S, s_{2}\right\rangle \Rightarrow\left\langle S ; \text { while }[b]^{\ell} \text { do } S, s_{2}\right\rangle
\end{aligned}
$$

Again since live entry $(\ell) \supseteq$ live $_{\text {exit }}(\ell)$ we have $s_{1} \sim$ live $_{\text {exit }}(\ell) s_{2}$ and then

$$
\left.s_{1} \sim l_{\text {live }}^{\text {entry }} \text { (init(}(S)\right)
$$

from Lemma 5 as
$(\ell, \operatorname{init}(S)) \in$ flow(while $[b]^{\ell}$ do $\left.S\right)$.

Theorem 2 - Proof $\left(w h^{F}\right)$ [Not for Exam]

Proof (cont).

$$
\begin{aligned}
& \left(\text { wh }^{F}\right): \text { We have }\left\langle\text { while }[b]^{\ell} \text { do } S, s_{1}\right\rangle \Rightarrow s_{1} \text { with } \\
& \llbracket b \rrbracket\left(s_{1}\right)=\text { false. }
\end{aligned}
$$

Since $s_{1} \sim \sim_{\text {live }}^{\text {entry }}(\ell) s_{2}$ and live $e_{\text {entry }}(\ell) \supseteq F V(b)$ and we also have $\llbracket b \rrbracket\left(s_{2}\right)=$ false and thus:

$$
\left\langle\text { while }[b]^{\ell} \text { do } S, s_{2}\right\rangle \Rightarrow s_{2}
$$

From the specification of $L V=$ we have live $_{\text {entry }}(\ell) \supseteq \operatorname{live}_{\text {exit }}(\ell)$ and thus $s_{1} \sim \mathcal{l i v e}_{\text {exit }}(\ell) s_{2}$.

Corollary 1

Given a label consistent program S.
If

$$
\text { - live } \models L V \subseteq(S)
$$

then
(i) If $\left\langle S, s_{1}\right\rangle \Rightarrow^{*}\left\langle S^{\prime}, s_{1}^{\prime}\right\rangle$ and $s_{1} \sim \operatorname{live}_{\text {entry }}(\operatorname{init}(S)) s_{2}$ then there exists s_{2}^{\prime} such that

$$
\left\langle S, s_{2}\right\rangle \Rightarrow^{*}\left\langle S^{\prime}, s_{2}^{\prime}\right\rangle \text { and } s_{1}^{\prime} \sim l i v e_{\text {entry }}\left(\text { init }\left(S^{\prime}\right)\right) s_{2}^{\prime}
$$

(ii) If $\left\langle S, s_{1}\right\rangle \Rightarrow^{*} s_{1}^{\prime}$ and $s_{1} \sim \operatorname{live}_{\text {entry }}(\operatorname{init}(S)) s_{2}$ then there exists s_{2}^{\prime} such that

$$
\left\langle S, s_{2}\right\rangle \Rightarrow^{*} s_{2}^{\prime} \text { and } s_{1}^{\prime} \sim / i v e_{\text {exit }}(\ell) s_{2}^{\prime} \text { for some }
$$

$$
\ell \in \operatorname{final}(S)
$$

Proof [Not for Exam].

The proof is by induction on the length of the derivation sequences and uses Theorem 2.

