
Program Analysis (70020)
Probabilistic Programs

Herbert Wiklicky

Department of Computing
Imperial College London

herbert@doc.ic.ac.uk
h.wiklicky@imperial.ac.uk

Autumn 2023

1 / 97

Probabilistic Problem I: Guards and Conditionals

1: [m := 1]1; ▷ (p1,p2,p3, . . .) — (1
2 ,

1
2 , . . .)

2: while [n > 1]2 do ▷ (1,0,0, . . .) — (1
2 ,

1
2 , . . .)

3: [m := m × n]3; ▷ (1,0,0, . . .) — (0, 1
2 , . . .)

4: [n := n − 1]4 ▷ (0,1,0, . . .) — (0, 1
2 , . . .)

5: end while ▷ (0,1,0, . . .) — (1
2 ,0, . . .)

6: [stop]5 ▷ (1,1,0, . . .) — (1,0, . . .)

Concrete Probabilities
Perhaps better this way? Correct? How to justify this?

2 / 97

Probabilistic Problem II: Abstract Evaluation

1: [m := 1]1; ▷ (pe,po) — (1
3 ,

1
3 ,

1
3 , . . .)

2: while [n > 1]2 do ▷ (0,1) — (1
3 ,

1
3 ,

1
3 , . . .)

3: [m := m × n]3; ▷ (0,1) — (0, 1
3 ,

1
3 , . . .)

4: [n := n − 1]4 ▷ (1,0) — (0, 1
3 ,

1
3 , . . .)

5: end while ▷ (1,0) — (1
3 ,

1
3 ,0, . . .)

6: [stop]5 ▷ (0,1) — (1
3 ,0,0, . . .)

(1,0) — (1
3 ,0,0, . . .)

(1,0) — (1
3 ,0,0, . . .)

Abstract Probabilities
Correct? How to justify this?

3 / 97

Probabilistic Problem III: Relational Dependency

Given an (input) distribution (1
3 ,

1
3 ,

1
3 , . . .) for n one would expect

an (output) distribution (2
3 ,

1
3) for even(m) and odd(m).

For every pair (m,n) we can write the probabilities to observe it
as P(m = i ∧ n = j) = P(m = i)P(n = j) – assume perhaps that
n does not change.

The available data thus suggest this probability distribution:

n = 1 n = 2 n = 3
even(m) 1

3 ·
2
3

1
3 ·

2
3

1
3 ·

2
3

odd(m) 1
3 ·

1
3

1
3 ·

1
3

1
3 ·

1
3

4 / 97

Problems in Probabilistic Program Analysis

1: [m := 1]1; ▷ (pe,po) — (1
3 ,

1
3 ,

1
3 , . . .)

2: while [n > 1]2 do ▷ (0,1) — (1
3 ,

1
3 ,

1
3 , . . .)

3: [m := m × n]3; ▷ (0,1) — (0, 1
3 ,

1
3 , . . .)

4: [n := n − 1]4 ▷ (1,0) — (0, 1
3 ,

1
3 , . . .)

5: end while
6: [stop]5 ▷ (0,1) — (1

3 ,0,0, . . .)

Splitting: How to distribute information along branches?
Transforming: How computing changes the information?

Joining: How to combine information along branches?

5 / 97

Probability and Computation

Commonly, computations are understood to follow a well
defined (deterministic) set of rules as to obtain a certain result.

There are randomised algorithms which involve an element of
chance or randomness.

Las Vegas Algorithms are randomised algorithms that always
give correct results (with non-deterministic running
time), e.g. QuickSort (with random pivoting).

Monte Carlo Algorithms produce (with deterministic running
time) an output which may be incorrect with a
certain probability, e.g. Buffon’s Needle.

6 / 97

(Georges-Louis Leclerc, Comte de) Buffon’s Needle

Pr(cross) =
2
π

or π =
2

Pr(cross)

7 / 97

The Monty Hall Problem

▶ The game show proceeds as follows: First the contestant
is invited to pick one of three doors (behind one is the
prize) but the door is not yet opened.

▶ Instead, the host – legendary Monty Hall – opens one of
the other doors which is empty.

▶ After that the contestant is given a last chance to stick with
his/her door or to switch to the other closed one.

▶ Note that the host (knowing where the prize is) has always
at least one door he can open.

8 / 97

Optimal Strategy: To Switch or not to Switch

•

w0

p0

o2

1
2

o1

1
2

1
3

p1

o2

1

1
3

p2

o1

1

1
3

1
3

w1

p0

o2

1

1
3

p1

o0

1
2

o2

1
2

1
3

p2

o0

1

1
3

1
3

w2

p0

o1

1

1
3

p1

o0

1

1
3

p2

o1

1
2

o0

1
2

1
3

1
3

wi = win behind i pi = pick door i oi = Monty opens door i

9 / 97

Certainty, Possibility, Probability

Certainty — Determinism
Model: Definite Value
e.g. 2 ∈ N

Possibility — Non-Determinism
Model: Set of Values
e.g. {2,4,6,8,10} ∈ P(N)

Probability — Probabilistic Non-Determinism
Model: Distribution (Measure)
e.g. (0,0, 1

5 ,0,
1
5 ,0, . . .) ∈ V(N)

10 / 97

Structures: Power Sets

Given a finite set (universe) Ω (of states) we can construct the
power set P(Ω) of Ω easily as:

P(Ω) = {X | X ⊆ Ω}

Ordered by inclusion “⊆” this is the example of a lattice/order.

It can also be seen as the set of functions from S into a two
element set, thus P(Ω) = 2Ω:

P(Ω) = {χ : Ω→ {0,1}}

A priori, no major problems when Ω is (un)countable infinite.

11 / 97

Structures: Vector Spaces

Vector Spaces = Abelian Additive Group + Quantities

Given a finite set Ω we can construct the (free) vector space
V(Ω) of Ω as a tuple space (with K a field like R or C):

V(Ω) = {⟨ω, xω⟩ | ω ∈ Ω, xω ∈ K} = {(xω)ω∈Ω | xω ∈ K}

As function spaces V(Ω) and P(Ω) are not so different:

V(Ω) = {v : Ω→ K}

However, there are major topological problems when Ω is
(un)countable infinite.

12 / 97

Tuple Spaces

Theorem
All finite dimensional vector spaces are isomorphic to the (finite)
Cartesian product of the underlying field Kn (e.g. Rn or Cm).

Finite dimensional vectors can always be represented via their
coordinates with respect to a given base, e.g.

x = (x1, x2, x3, . . . , xn)

y = (y1, y2, y3, . . . , yn)

Algebraic Structure

αx = (αx1, αx2, αx3, . . . , αxn)

x + y = (x1 + y1, x2 + y2, x3 + y3, . . . , xn + yn)

13 / 97

Introducing Probability in Programs

Various ways for introducing probabilities into programs:
Random Assignment The value a variable is assigned to is

chosen randomly (according to some, e.g.
uniform, probability distribution) from a set:

x ?= {1,2,3,4}

Probabilistic Choice There is a probabilistic choice between
different instructions:

choose 0.5 : (x := 0) or 0.5 : (x := 1) ro

14 / 97

Syntactic Sugar
One can show that a single “coin flipping” is enough.

Random choices and assignments can be interchanged:

x ?= {0,1}

is equivalent to (assuming a uniform distribution):

choose 0.5 : (x := 0) or 0.5 : (x := 1) ro

Alternatively we also have

choose 0.5 : S1 or 0.5 : S2 ro

is equivalent to (also with other probability distributions):

x ?= {0,1}; if (x > 0) then S1 else S2 fi

15 / 97

Probabilities as Ratios
Consider integer “weights” to express relative probabilities, e.g.

choose
1
3
: S1 or

2
3
: S2 ro

is expressed equivalently as:

choose 1 : (x := 0) or 2 : (x := 1) ro

In general, for constant "weights" p and q (int), we translate

choose p : S1 or q : S2 ro

(by exploiting an implicit normalisation) into

choose
p

p + q
: S1 or

q
p + q

: S2 ro

16 / 97

PWHILE – Concrete Syntax

The syntax of statements S is as follows:

S ::= stop
| skip
| x := e
| x ?= r
| S1; S2
| choose p1 : S1 or p2 : S2 ro
| if b then S1 else S2 fi
| while b do S od

We also allow for boolean expressions, i.e. e is an arithmetic
expression a or a boolean expression b. The choose
statement can be generalised to more than two alternatives.

17 / 97

PWHILE – Labelled Syntax

S ::= [stop]ℓ

| [skip]ℓ

| [x := e]ℓ

| [x ?= r]ℓ

| S1; S2
| chooseℓ p1 : S1 or p2 : S2 ro
| if [b]ℓ then S1 else S2 fi
| while [b]ℓ do S od

Where the pi are constants, representing choice probabilities.
By r we denote a range/set, e.g. {−1,0,1}, from which the
value of x is chosen (based on a uniform distribution).

18 / 97

Evaluation of Expressions [Not for Exam]

σ ∋ State = (Var→ Z ⊎ B)

Evaluation E of expressions e in state σ:

E(n)σ = n
E(x)σ = σ(x)

E(a1 ⊙ a2)σ = E(a1)σ ⊙ E(a2)σ

E(true)σ = tt
E(false)σ = ff
E(not b)σ = ¬E(b)σ

. . . = . . .

19 / 97

pWhile – SOS Semantics I [Provided in Exam]

R0 ⟨skip, σ⟩⇒1⟨stop, σ⟩

R1 ⟨stop, σ⟩⇒1⟨stop, σ⟩

R2 ⟨x:=e, σ⟩⇒1⟨stop, σ[x 7→ E(e)σ]⟩

R3’ ⟨x?=r , σ⟩⇒ 1
|r|
⟨stop, σ[x 7→ ri ∈ r]⟩

R31
⟨S1, σ⟩⇒p⟨S′

1, σ
′⟩

⟨S1;S2, σ⟩⇒p⟨S′
1;S2, σ

′⟩

R32
⟨S1, σ⟩⇒p⟨stop, σ′⟩
⟨S1;S2, σ⟩⇒p⟨S2, σ

′⟩

20 / 97

pWhile – SOS Semantics II [Provided in Exam]

R41 ⟨choose p1 : S1 or p2 : S2, σ⟩⇒p1⟨S1, σ⟩

R42 ⟨choose p1 : S1 or p2 : S2, σ⟩⇒p2⟨S2, σ⟩

R51 ⟨if b then S1 else S2, σ⟩⇒1⟨S1, σ⟩ if E(b)σ = tt

R52 ⟨if b then S1 else S2, σ⟩⇒1⟨S2, σ⟩ if E(b)σ = ff

R61 ⟨while b do S, σ⟩⇒1⟨S; while b do S, σ⟩ if E(b)σ = tt

R62 ⟨while b do S, σ⟩⇒1⟨stop, σ⟩ if E(b)σ = ff

21 / 97

DTMC Semantics

Given a PWHILE program, consider any enumeration of all its
configurations (= pairs of statements and state)
C1,C2,C3, . . . ∈ Conf. Then

(T)ij =

{
p if Ci = ⟨S, σ⟩ ⇒p Cj = ⟨S′, σ′⟩
0 otherwise

is the generator of a Discrete Time Markov Chain.

Transitions are implemented as

dn · T =
∑

i

(dn)i · Tij = dn+1

where di is the probability distribution over Conf at the i th step.

22 / 97

Example Program

Let us investigate the possible transitions of the following
labelled program (with x ∈ {0,1}):

if [x == 0]1 then
[x := 0]2;

else
[x := 1]3;

end if;
[stop]4

Record transitions using labelling to simplify notation, i.e.

⟨S, σ⟩ ⇒p ⟨S′, σ′⟩ becomes ⟨σ, init(S)⟩ ⇒p ⟨σ′, init(S′)⟩

Stating also the initial statement together with ℓ = init(s).

23 / 97

Example DTMC

⟨x 7→ 0, [x == 0]1⟩ . . .

⟨x 7→ 0, [x:=0]2⟩ . . .

⟨x 7→ 0, [x:=1]3⟩ . . .

⟨x 7→ 0, [stop]4⟩ . . .

⟨x 7→ 1, [x == 0]1⟩ . . .

⟨x 7→ 1, [x:=0]2⟩ . . .

⟨x 7→ 1, [x:=1]3⟩ . . .

⟨x 7→ 1, [stop]4⟩ . . .

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

24 / 97

Example Transition

(
0 0 1 0 0 0 0 0

)

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

We get:

(
0 0 0 0 0 0 0 1

)
.

This represents the (deterministic) transition step:

⟨x 7→ 0, [x:=1]3⟩ ⇒1 ⟨x 7→ 1, [stop]4⟩

25 / 97

Linear Operator Semantics (LOS)

The matrix representation of the SOS semantics of a PWHILE

program is not ‘compositional’.

In order to be able to analyse programs by analysing its parts, a
more useful semantics is one resulting from the composition of
different linear operators each expressing a particular operation
contributing to the overall behaviour of the program.

26 / 97

The Space of Configurations
For a PWHILE program S we can identify configurations with
elements in

Dist(State× Lab) ⊆ V(State× Lab).

Assuming v = |Var| finite,

State = (Z + B)v = Value1 × Value2 . . .× Valuev

with Valuei = Z(= Z) or Valuei .

Thus, we can represent the space of configurations as

Dist(Value1 × . . .× Valuev × Lab) ⊆
⊆ V(Value1 × . . .× Valuev × Lab)
= V(Value1)⊗ . . .⊗ V(Valuev)⊗ V(Lab).

27 / 97

Tensor Product or Kronecker Product

Given a n ×m matrix A and a k × l matrix B:

A =

 a11 . . . a1m
...

. . .
...

an1 . . . anm

 B =

 b11 . . . b1l
...

. . .
...

bk1 . . . bkl

The tensor product A⊗ B is a nk ×ml matrix:

A⊗ B =

 a11B . . . a1mB
...

. . .
...

an1B . . . anmB

Special cases are square matrices (n = m and k = l) and
vectors (row n = k = 1, column m = l = 1).

28 / 97

Tensor Product Spaces
The tensor product V ⊗W of two vector spaces is generated by
all linear combinations of the form v ⊗w with v ∈ V and w ∈ W.

V ⊗W =

∑
ij

λij(vi ⊗ wj) | vi ∈ V,wj ∈ W

It is possible to construct a base of V ⊗W using just base
vectors of V andW and dim(V ⊗W) = dim(V) dim(W).

Represent joint distributions on X × Y in V(x)⊗ V(Y); e.g.(
0 1

3
1
3

1
3 0 0

)
=

(
0
1
3

)
⊗ (1 0 0) +

(2
3
0

)
⊗ (0

1
2

1
2
)

but no two (marginal) distribution exist such that a single tensor
product gives this (joint) distribution (non-independence).

29 / 97

Transitions and Generator of DTMC (1) - Deterministic

1

2

3

4

0 1 1 0
0 0 0 1
0 0 1 1
0 0 0 1

 = T

30 / 97

Transitions and Generator of DTMC (2) - Probabilistic

1

2

3

4
1
3

2
3

1

1
2

1

1
2

0 1

3
2
3 0

0 0 0 1
0 0 1

2
1
2

0 0 0 1

 = T

31 / 97

Transitions and Generator of DTMC (3)

1

2

3

4
1
3

2
3

1

1
2

1

1
2

1
0
0
0

t

0 1
3

2
3 0

0 0 0 1
0 0 1

2
1
2

0 0 0 1

32 / 97

Transitions and Generator of DTMC (4)

1

2

3

4
1
3

2
3

1

1
2

1

1
2

1
0
0
0

t

0 1
3

2
3 0

0 0 0 1
0 0 1

2
1
2

0 0 0 1

 =

0
1
3
2
3
0

t

33 / 97

Transitions and Generator of DTMC (5)

1

2

3

4
1
3

2
3

1

1
2

1

1
2

1
0
0
0

t

0 1
3

2
3 0

0 0 0 1
0 0 1

2
1
2

0 0 0 1

∞

=

0
0
0
1

t

34 / 97

Combination of Steps

We can combine single steps to construct a transition graph.

1

2

3

4

0 1 1 0
0 0 0 1
0 0 1 1
0 0 0 1

 = T =

E(1,2)
+ E(1,3)
+ E(2,4)
+ E(3,4)
+ E(3,3)
+ E(4,4)

(E(m,n))ij =

{
1 if m = i ∧ n = j
0 otherwise.

35 / 97

Probabilistic Transitions

Constructing the matrix for probabilistic transitions:

1

2

3

4
1
3

2
3

1

1
2

1

1
2

0 1

3
2
3 0

0 0 0 1
0 0 1

2
1
2

0 0 0 1

 = T

T =
1
3

E(1,2)+
2
3

E(1,3)+E(2,4)+
1
2

E(3,4)+
1
2

E(3,3)+E(4,4)

36 / 97

"Turtle" Graphics
Consider a "(probabilistic) turtle graphics" with up/down and
left/right moves done simultaneously and probabilistically.

1,1

1,2

1,3

1,4

2,1

2,2

2,3

2,4

3,1

3,2

3,3

3,4

4,1

4,2

4,3

4,4

5,1

5,2

5,3

5,4

6,1

6,2

6,3

6,4

7,1

7,2

7,3

7,4

8,1

8,2

8,3

8,4

The (classical) configuration space is {1, . . . ,8} × {1, . . . ,4}.
To describe any probabilistic situation, i.e. joint distribution, we
need 8× 4 = 32 probabilities, not just 8 + 4 = 12.
We consider R8 ⊗R4 = R32 as probabilistic configuration space
rather than R8 ⊕ R4 = R12, i.e. just the marginal distributions.

37 / 97

Moves in "Turtle" Graphics

Consider only horizontal moves over eight possible positions.

1 2 3 4 5 6 7 8

Move from 1 to 2: E(1,2)
Move from 3 to 7: E(3,7)
Move from 2 to 7 or 8: E(2,7) + E(2,8) or 1

2E(2,7) + 1
2E(2,8)

Similar representation also for vertical moves.

38 / 97

"Parallel" Execution: x ∈ {1, . . . ,8} and y ∈ {1, . . . ,4}

1,1

1,2

1,3

1,4

2,1

2,2

2,3

2,4

3,1

3,2

3,3

3,4

4,1

4,2

4,3

4,4

5,1

5,2

5,3

5,4

6,1

6,2

6,3

6,4

7,1

7,2

7,3

7,4

8,1

8,2

8,3

8,4

Describe the effect M on x and the change of y described by N,
then the combined effect on ⟨x , y⟩ is given by M⊗ N.

From (1,1) move 1 left and 3 up: E(1,2)⊗ E(1,4)
From (7,3) move (4,2): E(7,4)⊗ E(3,2)
From (7,3) to (4,2)/(7,2): E(7,4)⊗ E(3,2) + E(7,7)⊗ E(3,1)
From (5,2) move to all one right: E(5,6)⊗ (

∑4
i=1 E(2, i))

39 / 97

Transfer Functions (Edge Effects): Assignment

Assume x ∈ 1, ..,8; How do statements change its value?

1 2 3 4 5 6 7 8

x := 4 gives U(x ← 4) =

0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0

Thus, the LOS of the statement is [[x := 4]] = U(x ← 4).

40 / 97

Transfer Functions (Edge Effects): Shift

Assume x ∈ 1, ..,8; How do statements change its value?

1 2 3 4 5 6 7 8

x := x + 1 gives

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

The LOS of the statement is [[x := x + 1]] = U(x ← x + 1).
To avoid “overflow”: actually [[x := ((x − 1) + 1 mod 8) + 1]].

41 / 97

Transfer Functions (Edge Effects): Random Assign

Assume x ∈ 1, ..,8; How do statements change its value?

1 2 3 4 5 6 7 8

x ? = {4,5} gives

0 0 0 1
2

1
2 0 0 0

0 0 0 1
2

1
2 0 0 0

0 0 0 1
2

1
2 0 0 0

0 0 0 1
2

1
2 0 0 0

0 0 0 1
2

1
2 0 0 0

0 0 0 1
2

1
2 0 0 0

0 0 0 1
2

1
2 0 0 0

0 0 0 1
2

1
2 0 0 0

So the LOS is [[x ? = {4,5}]] = 1

2U(x ← 4) + 1
2U(x ← 5).

42 / 97

Using the Linear Operators
We have now as states probability distributions over possible
values σ ∈ D(Value) rather than classical states s ∈ Value

We can compute what happens to classical states, e.g.

(0,1,0,0,0,0,0,0) · [[x := 4]] = (0,0,0,1,0,0,0,0)

(0,1,0,0,0,0,0,0) · [[x? = {4,5}]] = (0,0,0,
1
2
,
1
2
,0,0,0)

but also what happens with distributions, e.g.

(0,
2
3
,0,0,

1
3
,0,0,0) · [[x := x + 1]] = (0,0,

2
3
,0,0,

1
3
,0,0)

and we can combine effects (to the same variable), e.g.

[[x? = {4,5}]] = 1
2
[[x := 4]] +

1
2
[[x := 5]]

43 / 97

Putting Things Together

We can use the tensor product construction to combine the
effects on different variables. For x ∈ {1..8} and y ∈ {1, ..4}

[[x? = {2,4,6,8}]] =
1
4

4∑
k=1

U(x ← 2k)⊗ I

[[y := 3]] = I⊗ U(y ← 3)

The execution of “x? = {2,4,6,8}; y := 3” is implemented by

[[x? = {2,4,6,8}; y := 3]] = (
1
4

4∑
k=1

U(x ← 2k)⊗ I)(I⊗ U(y ← 3))

=
1
4

4∑
k=1

U(x ← 2k)⊗ U(y ← 3)

44 / 97

"Turtle" Execution

[[x? = {2,4,6,8}; y := 3]] =

=
1
4

4∑
k=1

U(x ← 2k)⊗ U(y ← 3)

=
1
4

0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1

⊗

0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

45 / 97

Conditionals
Consider conditional jumps or statements, e.g.

if even(x) then x := x/2 else y := y + 1 fi

The branches have the following LOS:

[[x := x/2]] =

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0

⊗ I

[[y := y + 1]] = I⊗

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

Note: To avoid errors a/b = ⌈a/b⌉ and a + b = a + b mod n.

46 / 97

Tests and Distribution Splitting

We represent the filter for testing if x is even by a projection:

P(even(x)) =

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

⊗ I

Its negation is represented by:

P(¬even(x)) = P(even(x))⊥ = I− P(even(x)).

47 / 97

Using Tests
The semantics of a conditional is given by applying the
semantics of the branches to the filtered (probabilistic) states
and to combine the results. In our example:

[[if even(x) then x := x/2 else y + 1 fi]] =
= P(even(x)) · [[x := x/2]] + P(even(x))⊥ · [[y := y + 1]]

Given state where x has with probability 1
2 values 3 and 6, and

y value 2, i.e. σ0 = (0,0, 1
2 ,0,0,

1
2 ,0,0)⊗ (0,1,0,0) then

σ0 · P(even(x)) = (0,0,0,0,0,
1
2
,0,0)⊗ (0,1,0,0)

=
1
2
· (0,0,0,0,0,1,0,0)⊗ (0,1,0,0)

σ0 · P(even(x))⊥ = (0,0,
1
2
,0,0,0,0,0)⊗ (0,1,0,0)

=
1
2
· (0,0,1,0,0,0,0,0)⊗ (0,1,0,0)

48 / 97

Semantics of Conditionals

Applying the semantics of both branches gives us:

σ0 · P(even(x)) · [[x := x/2]] =

= (0,0,
1
2
,0,0,0,0)⊗ (0,1,0,0)

σ0 · P(even(x))⊥ · [[y := y + 1]] =

= (0,0,
1
2
,0,0,0,0,0)⊗ (0,0,1,0)

The sum of both branches is now, maybe somewhat surprising:

σ = (0,0,1,0,0,0,0,0)⊗ (0,
1
2
,
1
2
,0)

Though we have started with a definitive value for y and a
distribution for x , the opposite is now the case.

49 / 97

Probabilistic Control Flow

Consider the following labelled program:

1: while [z < 100]1 do
2: choose2 1

3 : [x:=3]3 or 2
3 : [x:=1]4 ro

3: end while
4: [stop]5

Its probabilistic control flow is given by:

flow(P) = {⟨1,1,2⟩, ⟨1,1,5⟩, ⟨2, 1
3
,3⟩, ⟨2, 2

3
,4⟩, ⟨3,1,1⟩, ⟨4,1,1⟩}.

50 / 97

Init Label

init([skip]ℓ) = ℓ

init([stop]ℓ) = ℓ

init([x:=e]ℓ) = ℓ

init([x?=e]ℓ) = ℓ

init(S1;S2) = init(S1)

init(chooseℓ p1 : S1 or p2 : S2) = ℓ

init(if [b]ℓ then S1 else S2) = ℓ

init(while [b]ℓ do S) = ℓ

51 / 97

Final Labels

final([skip]ℓ) = {ℓ}
final([stop]ℓ) = {ℓ}
final([x:=e]ℓ) = {ℓ}

final([x?=e]ℓ) = {ℓ}
final(S1;S2) = final(S2)

final(chooseℓ p1 : S1 or p2 : S2) = final(S1) ∪ final(S2)

final(if [b]ℓ then S1 else S2) = final(S1) ∪ final(S2)

final(while [b]ℓ do S) = {ℓ}

52 / 97

Flow I — Control Transfer

The probabilistic control flow is defined by the function:

flow : Stmt→ P(Lab× [0,1]× Lab)

flow([skip]ℓ) = ∅
flow([stop]ℓ) = {⟨ℓ,1, ℓ⟩}
flow([x:=e]ℓ) = ∅

flow([x?=e]ℓ) = ∅
flow(S1;S2) = flow(S1) ∪ flow(S2) ∪

∪ {(ℓ,1, init(S2)) | ℓ ∈ final(S1)}

53 / 97

Flow II — Control Transfer

flow(chooseℓ p1 : S1 or p2 : S2) = flow(S1) ∪ flow(S2) ∪
∪ {(ℓ,p1, init(S1)), (ℓ,p2, init(S2))}

flow(if [b]ℓ then S1 else S2) = flow(S1) ∪ flow(S2) ∪
∪ {(ℓ,1, init(S1)), (ℓ,1, init(S2))}

flow(while [b]ℓ do S) = flow(S) ∪
∪ {(ℓ,1, init(S))}
∪ {(ℓ′,1, ℓ) | ℓ′ ∈ final(S)}

54 / 97

A Linear Operator Semantics (LOS) based on flow

Using the flow(S) we construct a linear operator/matrix/DTMC
generator in a compositional way, essentially as:

T(S) =
∑

⟨i,pij ,j⟩∈flow(S)

pij · T(⟨ℓi ,pij , ℓj⟩),

where

T(⟨ℓi ,pij , ℓj⟩) = Nℓi ⊗ E(ℓi , ℓj),

With Nℓ1 the operator representing a state update (change of
variable values) at the block with label ℓi and the second factor
implementing the transfer of control from label ℓi to label ℓj .

55 / 97

Transfer Operators [Provided in Exam]
For all the blocks in S we have transfer operators which change
the state and (then/simultanously) perform a control transfer to
another bloc/ or program points:

T(⟨ℓ1,p, ℓ2⟩) = I⊗ E(ℓ1, ℓ2) for [skip]ℓ1

T(⟨ℓ1,p, ℓ2⟩) = U(x← a)⊗ E(ℓ1, ℓ2) for [x← a]ℓ1

T(⟨ℓ1,p, ℓ2⟩) =
∑

i∈r
1
|r |U(x← i)⊗ E(ℓ1, ℓ2) for [x ?= r]ℓ1

T(⟨ℓ,p, ℓt⟩) = P(b = true)⊗ E(ℓ, ℓt) for [b]ℓ

T(⟨ℓ,p, ℓf ⟩) = P(b = false)⊗ E(ℓ, ℓf) for [b]ℓ

T(⟨ℓ,pk , ℓk ⟩) = I⊗ E(ℓ, ℓk) for [choose]ℓ

T(⟨ℓ,p, ℓ⟩ = I⊗ E(ℓ, ℓ) for [stop]ℓ

For [b]ℓ the label ℓt denotes the label to the ‘true’ situation (e.g.
then branch) and ℓf the situation where b is ‘false’.

In the case of a choose statement the different alternatives are
labeled with (initial) label ℓk .

56 / 97

Tests and Filters

Select a value c ∈ Valuek for variable xk (with k = 1, . . . , v):

(P(c))ij =

{
1 if i = c = j
0 otherwise.

Select a certain classical state σ ∈ State = Valuev :

P(σ) =
v⊗

i=1

P(σ(xi))

Select states where expression e = a | b evaluates to c:

P(e = c) =
∑

E(e)σ=c

P(σ)

57 / 97

Updates

Modify the value of variable xk to a constant c ∈ Valuek :

(U(c))ij =

{
1 if j = c
0 otherwise.

Set value of variable xk ∈ Var to constant c ∈ Value:

U(xk ← c) =

(
k−1⊗
i=1

I

)
⊗ U(c)⊗

(
v⊗

i=k+1

I

)

Set value of variable xk ∈ Var to value given by e = a | b:

U(xk ← e) =
∑

c

P(e = c)U(xk ← c)

58 / 97

An Example

if [x == 0]1 then
[x ← 0]2;

else
[x ← 1]3;

end if;
[stop]4

T(S) = P(x = 0)⊗ E(1,2) +
+ P(x ̸= 0)⊗ E(1,3) +
+ U(x ← 0)⊗ E(2,4) +
+ U(x ← 1)⊗ E(3,4) +
+ I⊗ E(4,4)

T(S) =

(
1 0
0 0

)
⊗ E(1,2) +

(
0 0
0 1

)
⊗ E(1,3) +

+

((
1 0
1 0

)
⊗ E(2,3)

)
+

((
0 1
0 1

)
⊗ E(3,4)

)
+

+ (I⊗ E(4,4))

59 / 97

An Example

T(S) =

((
1 0
0 0

)
⊗
(0 1 0 0

0 0 0 0
0 0 0 0
0 0 0 0

))
+

((
0 0
0 1

)
⊗
(0 0 1 0

0 0 0 0
0 0 0 0
0 0 0 0

))
+

((
1 0
1 0

)
⊗
(0 0 0 0

0 0 0 1
0 0 0 0
0 0 0 0

))
+

((
0 1
0 1

)
⊗
(0 0 0 0

0 0 0 0
0 0 0 1
0 0 0 0

))
+

((
1 0
0 1

)
⊗
(0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 1

))

60 / 97

LOS and DTMC

We can compare this T(S) with the directly extracted operator,
and indeed the two coincide.

⟨x 7→ 0, [x == 0]1⟩ . . .

⟨x 7→ 0, [x:=0]2⟩ . . .

⟨x 7→ 0, [x:=1]3⟩ . . .

⟨x 7→ 0, [stop]4⟩ . . .

⟨x 7→ 1, [x == 0]1⟩ . . .

⟨x 7→ 1, [x:=0]2⟩ . . .

⟨x 7→ 1, [x:=1]3⟩ . . .

⟨x 7→ 1, [stop]4⟩ . . .

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

61 / 97

Factorial

Consider the program F for calculating the factorial of n:

var
m : {0..2};
n : {0..2};

begin
m := 1;
while (n>1) do

m := m*n;
n := n-1;

od;
stop; # looping
end

62 / 97

Control Flow and LOS for F

flow(F) = {(1,1,2), (2,1,3), (3,1,4), (4,1,2), (2,1,5), (5,1,5)}

T(F) = U(m← 1)⊗ E(1,2) +
P((n > 1))⊗ E(2,3) +
U(m← (m ∗ n))⊗ E(3,4) +
U(n← (n − 1))⊗ E(4,2) +
P((n <= 1))⊗ E(2,5) +
I⊗ E(5,5)

63 / 97

Introducing PAI

The matrix T(F) is very big already for small n.

n dim(T(F))

2 45× 45
3 140× 140
4 625× 625
5 3630× 3630
6 25235× 25235
7 201640× 201640
8 1814445× 1814445
9 18144050× 18144050

We will show how we can drastically reduce the dimension of
the LOS by using Probabilistic Abstract Interpretation.

64 / 97

Galois Connections

Definition
Let C = (C,≤C) and D = (D,≤D) be two partially ordered sets
with two order-preserving functions α : C 7→ D and γ : D 7→ C.
Then (C, α, γ,D) form a Galois connection iff

(i) α ◦ γ is reductive i.e. ∀d ∈ D, α ◦ γ(d) ≤D d ,
(ii) γ ◦ α is extensive i.e. ∀c ∈ C, c ≤C γ ◦ α(c).

Proposition
Let (C, α, γ,D) be a Galois connection. Then α and γ are
quasi-inverse, i.e.

(i) α ◦ γ ◦ α = α and (ii) γ ◦ α ◦ γ = γ

65 / 97

General Construction
The general construction of correct (and optimal) abstractions
f# of concrete function f is as follows:

A
α //

f
��

A#

γ
oo

f#
��

B
α′

// B#
γ′

oo

Correct approximation:

α′ ◦ f ≤# f# ◦ α.

Induced semantics:

f# = α′ ◦ f ◦ γ.

66 / 97

Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which
represents the distributions Dist(State) ⊆ V(State) on the
state space State of a probabilistic transition system, i.e. for
finite state spaces

V(State) = { (vs)s∈State | vs ∈ R}.

In the infinite setting we can identify V(State) with the Hilbert
space ℓ2(State).

The notion of norm (distance) is essential for our treatment;
we will consider normed vector spaces.

67 / 97

Moore-Penrose Generalised Inverse

Definition
Let C and D be two (finite-dimensional) vector (Hilbert) spaces
and A : C → D a linear map. Then the linear map
A† = G : D → C is the Moore-Penrose pseudo-inverse of A iff

(i) A ◦G = PA,
(ii) G ◦ A = PG,

where PA and PG denote orthogonal projections onto the
ranges of A and G.

68 / 97

(Orthogonal) Projections – Idempotents [Not for Exam]

On finite dimensional vector (Hilbert) spaces we have an inner
product ⟨., .⟩, standard

⟨x , y⟩ = ⟨(xi)i , (yi)i⟩ =
∑

i

xiyi

This measures some kind of similarity of vectors but also allows
to define a norm:

∥x∥2 =
√
⟨x , x⟩

It also allows us to define an adjoint via:

⟨A(x), y⟩ = ⟨x ,A∗(y)⟩

▶ An operator A is self-adjoint if A = A∗.
▶ An (orthogonal) projection is a self-adjoint E with EE = E.

69 / 97

Norm and Distance [Not for Exam]

A norm on a vector space V is a map ∥.∥ : V 7→ R such that for
all v ,w ∈ V and c ∈ C:
▶ ∥v∥ ≥ 0 ,
▶ ∥v∥ = 0⇔ v = o,
▶ ∥cv∥ = |c|∥v∥,
▶ ∥v + w∥ ≤ ∥v∥+ ∥w∥,

with o ∈ V the zero vector.

We can always use a norm to define a metric topology on a
vector space via the distance function d(v ,w) = ∥v − w∥.

Note: The structural similarities between distances and partial
orders can be made precise (cf. Category Theory).

70 / 97

Least Squares Solutions

Corollary
Let P be a orthogonal projection on a finite dimensional vector
space V. Then for any x ∈ V, P(x) = xP is the unique closest
vector in V to x wrt to the Euclidean norm ∥.∥2.

Definition
Let A ∈ Rm×n and b ∈ Rm. Then u ∈ Rn is called a least
squares solution to Ax = b if

∥Au− b∥ ≤ ∥Av− b∥, for all v ∈ Rn.

Theorem
Let A ∈ Rm×n and b ∈ Rm. Then A†b is the minimal least
squares solution to Ax = b.

71 / 97

Vector Space Lifting
Free vector space construction on a set S:

V(S) = {
∑

xss | xs ∈ R, s ∈ S}

An obvious way to lift an extraction function to a linear map
between vector spaces is to construct the free vector spaces on
C and D and define:

Vector Space lifting: α⃗ : V(C)→ V(D)

α⃗(p1 · c⃗1 + p2 · c⃗2 + . . .) = pi · α(c1) + p2 · α(c2) . . .

Support Set: supp : V(C)→ P(C)

supp(x⃗) =
{

ci | ⟨ci ,pi⟩ ∈ x⃗ and pi ̸= 0
}

72 / 97

Relation with Classical Abstractions

Lemma
Let α⃗ be a probabilistic abstraction function and let γ⃗ be its
Moore-Penrose pseudo-inverse.

Then γ⃗ ◦ α⃗ is extensive with respect to the inclusion on the
support sets of vectors in V(C), i.e. ∀x⃗ ∈ V(C),

supp(x⃗) ⊆ supp(γ⃗ ◦ α⃗(x⃗)).

Analogously we can show that α⃗ ◦ γ⃗ is reductive. Therefore,

Proposition
(α⃗, γ⃗) form a Galois connection wrt the support sets of V(C)
and V(D), ordered by inclusion.

73 / 97

Examples of Lifted Abstractions
Parity Abstraction operator on V({1, . . . ,n}) (with n even):

Ap =

1 0
0 1
1 0
0 1
...

...
0 1

A†

p =

(2
n 0 2

n 0 . . . 0
0 2

n 0 2
n . . . 2

n

)

Sign Abstraction operator on V({−n, . . . ,0, . . . ,n}):

As =

1 0 0
...

...
...

1 0 0
0 1 0
0 0 1
...

...
...

0 0 1

A†

s =

 1
n . . . 1

n 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1

n . . . 1
n

74 / 97

Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on [a,b].
The set of (real-valued) step-function Tn is based on the
sub-division of the interval into n sub-intervals.

Each step function in Tn corresponds to a vector in Rn, e.g.(
5 5 6 7 8 4 3 2 8 6 6 7 9 8 8 7

)

75 / 97

Example: Abstraction Matrices

A8 =

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

G8 =

1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2

76 / 97

Approximation Estimates

Compute the least square error as

∥f − fAG∥.

∥f − fA8G8∥ = 3.5355
∥f − fA4G4∥ = 5.3151
∥f − fA2G2∥ = 5.9896
∥f − fA1G1∥ = 7.6444

77 / 97

Tensor Product Properties

The tensor product of n linear operators A1, A2, . . . , An is
associative (but in general not commutative) and has e.g. the
following properties:

1. (A1 ⊗ . . .⊗ An) · (B1 ⊗ . . .⊗ Bn) =
= A1 · B1 ⊗ . . .⊗ An · Bn

2. A1 ⊗ . . .⊗ (αAi)⊗ . . .⊗ An =
= α(A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)

3. A1 ⊗ . . .⊗ (Ai + Bi)⊗ . . .⊗ An =
= (A1 ⊗ . . .⊗Ai ⊗ . . .⊗An) + (A1 ⊗ . . .⊗Bi ⊗ . . .⊗An)

4. (A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)
† =

= A†
1 ⊗ . . .⊗ A†

i ⊗ . . .⊗ A†
n

78 / 97

Abstract Semantics

Moore-Penrose Pseudo-Inverse of a Tensor Product is:

(A1 ⊗ A2 ⊗ . . .⊗ An)
† = A†

1 ⊗ A†
2 ⊗ . . .⊗ A†

n

Via linearity we can construct T# in the same way as T, i.e

T#(P) =
∑

⟨i,pij ,j⟩∈F(P)

pij · T#(ℓi , ℓj)

with local abstraction of individual variables:

T#(ℓi , ℓj) = (A†
1Ni1A1)⊗ (A†

2Ni2A2)⊗ . . .⊗ (A†
v Niv Av)⊗Mij

79 / 97

Argument [Not for Exam]

T# = A†TA
= A†(

∑
i,j

T(i , j))A

=
∑
i,j

A†T(i , j)A

=
∑
i,j

(
⊗

k

Ak)
†T(i , j)(

⊗
k

Ak)

=
∑
i,j

(
⊗

k

Ak)
†(
⊗

k

Nik)(
⊗

k

Ak)

=
∑
i,j

⊗
k

(A†
kNikAk)

80 / 97

Parity Analysis

Determine at each program point whether a variable is even or
odd.
Parity Abstraction operator on V({0, . . . ,n}) (with n even):

Ap =

1 0
0 1
1 0
0 1
...

...
0 1

A† =

(2
n 0 2

n 0 . . . 0
0 2

n 0 2
n . . . 2

n

)

81 / 97

Example

1: [m← i]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: end while
6: [stop]5

T# = U#(m← i)⊗ E(1,2)
+ P#(n > 1)⊗ E(2,3)
+ P#(n ≤ 1)⊗ E(2,5)
+ U#(m← m × n)⊗ E(3,4)
+ U#(n← n − 1)⊗ E(4,2)
+ I# ⊗ E(5,5)

82 / 97

Abstract Semantics

U#(m← 1) =

=

(
0 1
0 1

)
⊗

1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 . . . 1

83 / 97

Abstract Semantics

U#(n← n − 1) =

=

(
1 0
0 1

)
⊗

0 0 0 0 . . . 0
1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0

84 / 97

Abstract Semantics

P#(n > 1) =

=

(
1 0
0 1

)
⊗

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1

85 / 97

Abstract Semantics

P#(n ≤ 1) =

=

(
1 0
0 1

)
⊗

1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0

86 / 97

Abstract Semantics

U#(m← m × n) =
(

1 0
0 0

)
⊗

1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1

+

+

(
0 0
1 0

)
⊗

1 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . .
. . .

+

(
0 0
0 1

)
⊗

0 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . .
. . .

87 / 97

Implementation

Implementation of concrete and abstract semantics of Factorial
using octave. Ranges: n ∈ {1, . . . ,d} and m ∈ {1, . . . ,d !}.

d dim(T(F)) dim(T#(F))

2 45 30
3 140 40
4 625 50
5 3630 60
6 25235 70
7 201640 80
8 1814445 90
9 18144050 100

Using uniform initial distributions d0 for n and m.

88 / 97

Scalablity

The abstract probabilities for m being even or odd when we
execute the abstract program for various d values are:

d even odd
10 0.81818 0.18182

100 0.98019 0.019802
1000 0.99800 0.0019980

10000 0.99980 0.00019998

89 / 97

Ortholattice of Projection Operators [Not for Exam]

Define a partial order on self-adjoint operators and projections
as follows: H ⊑ K iff K− H is positive, i.e. there exists a B such
that K− H = B∗B.

Alternatively, order projections by inclusion of their image
spaces, i.e. E ⊑ F iff YE ⊆ YF.

The orthogonal projections form a complete (ortho)lattice.

The range of the intersection E ⊓ F is to the closure of the
intersection of the image spaces of E and F.

The union E ⊔ F corresponds to the union of the images.

90 / 97

Computing Intersections/Unions [Not for Exam]

Associate to every Probabilistic Abstract Interpretation (A,G) a
projection, similar to so-called “upper closure operators” (uco):

E = AG = AA†.

A general way to construct E⊓ F and (by exploiting de Morgan’s
law) also E ⊔ F = (E⊥ ⊓ F⊥)⊥ is via an infinite approximation
sequence and has been suggested by Halmos:

E ⊓ F = lim
n→∞

(EFE)n.

91 / 97

Commutative Case [Not for Exam]

The concrete construction of E ⊔ F and E ⊓ F is in general not
trivial. Only for commuting projections we have:

E ⊔ F = E + F− EF and E ⊓ F = EF.

Example
Consider a finite set Ω with a probability structure. For any
(measurable) subset A of Ω define the characteristic function
χA with χA(x) = 1 if x ∈ A and 0 otherwise. The characteristic
functions are (commutative) projections on random variables
using pointwise multiplication, i.e. XχAχA = XχA. We have
χA∩B = χAχB and χA∪B = χA + χB − χAχB.

92 / 97

Non-Commutative Case [Not for Exam]

The Moore-Penrose pseudo-inverse is also useful for
computing the E ⊓ F and E ⊔ F of general, non-commuting
projections via the parallel sum

A : B = A(A + B)†B

The intersection of projections is given by:

E ⊓ F = 2(E : F) = E(E + F)†F + F(E + F)†E

Israel, Greville: Gereralized Inverses, Theory and Applications, Springer
2003

93 / 97

Variable Probabilities: Duel at High Noon

Consider a "duel" between two cowboys:
▶ Cowboy A – hitting probability a
▶ Cowboy B – hitting probability b

1. Choose (non-deterministically) whether A or B starts.
2. Repeat until winner is known:

▶ If it is A’s turn he will hit/shoot B with probability a;
If B is shot then A is the winner, otherwise it’s B’s turn.

▶ If it is B’s turn he will hit/shoot A with probability b;
If A is shot then B is the winner, otherwise it’s A’s turn.

Question: What is the life expectancy of A or B?
Question: What happens if A is learning to shoot better during
the duel? How can we model dynamic probabilities?

Introduced by McIver and Morgan (2005).
Discussed in detail by Gretz, Katoen, McIver (2012/14)

94 / 97

Example: Duelling Cowboys

begin
who’s first turn
choose 1:{t:=0} or 1:{t:=1} ro;
continue until ...
c := 1;
while c == 1 do
if (t==0) then

choose ak:{c:=0} or am:{t:=1} ro
else

choose bk:{c:=0} or bm:{t:=0} ro
fi;
od;
stop; # terminal loop
end

95 / 97

Example: Duelling Cowboys [Not for Exam]
The survival chances, i.e. winning probability, for A.

0
0.2

0.4
0.6

0.8
1

a

0 0.2 0.4 0.6 0.8 1
b

0

0.2

0.4

0.6

0.8

1

96 / 97

References

Alessandra Di Pierro, Chris Hankin, Herbert Wiklicky:
Probabilistic semantics and analysis. LNCS 6154, Springer
2010.

Alessandra Di Pierro, Herbert Wiklicky: Concurrent Constraint
Programming: Towards Probabilistic Abstract Interpretation.
PPDP, ACM SIGPLAN 2000.

Adi Ben-Israel, Thomas N.E. Greville: Generalized Inverses:
Theory and Applications. Springer 2003.

Friedrich Gretz, Joost-PieterKatoen, Annabelle McIver:
Operational versus weakest pre-expectation semantics for the
probabilistic guarded command language. Performance
Evaluation, Vol. 73, 2014.

Herbert Wiklicky: On Dynamical Probabilities, or: How to learn
to shoot straight. Coordinations, LNCS 9686, 2016.

97 / 97

	The pWhile Language
	Linear Operator Semantics (LOS)
	Probabilistic Abstract Interpretation

