Program Analysis (70020)

Probabilistic Programs

Herbert Wiklicky

Department of Computing

Imperial College London

herbert@doc.ic.ac.uk
h.wiklicky@imperial.ac.uk

Autumn 2023

Probabilistic Problem I: Guards and Conditionals

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

Concrete Probabilities

Probabilistic Problem I: Guards and Conditionals

$$
\text { 1: }[m:=1]^{1} ; \quad \triangleright P(m=1), P(m=2), \ldots-P(n=1), \ldots
$$

2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: sstop] 5

Concrete Probabilities

Probabilistic Problem I: Guards and Conditionals

1: $[m:=1]^{1}$;

$$
\triangleright\left(p_{1}, p_{2}, p_{3}, \ldots\right)-\left(q_{1}, q_{2}, \ldots\right)
$$

2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

Concrete Probabilities

Probabilistic Problem I: Guards and Conditionals

$$
\begin{aligned}
& \text { 1: }[m:=1]^{1} ; \\
& \text { 2: while }[n>1]^{2} \text { do } \\
& \text { 3: } \quad[m:=m \times n]^{3} ; \\
& \text { 4: } \quad[n:=n-1]^{4} \\
& \text { 5: end while } \\
& \text { 6: }\left[\text { stop] }{ }^{5}\right.
\end{aligned}
$$

Concrete Probabilities

Probabilistic Problem I: Guards and Conditionals

$$
\begin{aligned}
& \text { 1: }[m:=1]^{1} ; \\
& \text { 2: while }[n>1]^{2} \text { do } \\
& \text { 3: } \quad[m:=m \times n]^{3} ; \\
& \text { 4: } \quad[n:=n-1]^{4} \\
& \text { 5: end while } \\
& \text { 6: }\left[\text { stop] }{ }^{5}\right.
\end{aligned}
$$

Concrete Probabilities

Probabilistic Problem I: Guards and Conditionals

$$
\begin{aligned}
& \text { 1: }[m:=1]^{1} ; \\
& \text { 2: while }[n>1]^{2} \text { do } \\
& \text { 3: } \quad[m:=m \times n]^{3} ; \\
& \text { 4: } \quad[n:=n-1]^{4} \\
& \text { 5: end while } \\
& \text { 6: }[\text { stop }]^{5}
\end{aligned}
$$

Concrete Probabilities

Probabilistic Problem I: Guards and Conditionals

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$
$\triangleright\left(p_{1}, p_{2}, p_{3}, \ldots\right)-\left(\frac{1}{2}, \frac{1}{2}, \ldots\right)$
$\triangleright(1,0,0, \ldots)-\left(\frac{1}{2}, \frac{1}{2}, \ldots\right)$
$\triangleright(1,0,0, \ldots)-\left(0, \frac{1}{2}, \ldots\right)$
$\triangleright(1,0,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right)$

Concrete Probabilities

Probabilistic Problem I: Guards and Conditionals

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{array}{r}
\triangleright\left(p_{1}, p_{2}, p_{3}, \ldots\right)-\left(\frac{1}{2}, \frac{1}{2}, \ldots\right) \\
\triangleright(1,0,0, \ldots)-\left(\frac{1}{2}, \frac{1}{2}, \ldots\right) \\
\triangleright(1,0,0, \ldots)-\left(0, \frac{1}{2}, \ldots\right) \\
\quad \triangleright(0,1,0, \ldots)-\left(0, \frac{1}{2}, \ldots\right) \\
\triangleright \quad(1,0,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right)
\end{array}
$$

Concrete Probabilities

Probabilistic Problem I: Guards and Conditionals

$$
\begin{aligned}
& \text { 1: }[m:=1]^{1} ; \\
& \text { 2: while }[n>1]^{2} \text { do } \\
& \text { 3: } \quad[m:=m \times n]^{3} \text {; } \\
& \text { 4: } \quad[n:=n-1]^{4} \\
& \text { 5: end while } \\
& \text { 6: }[\text { stop] }]^{5}
\end{aligned}
$$

$$
\begin{array}{r}
\triangleright\left(p_{1}, p_{2}, p_{3}, \ldots\right)-\left(\frac{1}{2}, \frac{1}{2}, \ldots\right) \\
\quad \triangleright(1,0,0, \ldots)-\left(\frac{1}{2}, \frac{1}{2}, \ldots\right) \\
\quad \triangleright(1,0,0, \ldots)-\left(0, \frac{1}{2}, \ldots\right) \\
\quad \triangleright(0,1,0, \ldots)-\left(0, \frac{1}{2}, \ldots\right) \\
\quad \triangleright(0,1,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right) \\
\triangleright \quad(1,0,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right)
\end{array}
$$

Concrete Probabilities

Probabilistic Problem I: Guards and Conditionals

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

Concrete Probabilities

Probabilistic Problem I: Guards and Conditionals

$$
\begin{aligned}
& \text { 1: }[m:=1]^{1} ; \\
& \text { 2: while }[n>1]^{2} \text { do } \\
& \text { 3: } \quad[m:=m \times n]^{3} \text {; } \\
& \text { 4: } \quad[n:=n-1]^{4} \\
& \text { 5: end while } \\
& \text { 6: }[\text { stop] }]^{5}
\end{aligned}
$$

$$
\begin{array}{r}
\triangleright\left(p_{1}, p_{2}, p_{3}, \ldots\right)-\left(\frac{1}{2}, \frac{1}{2}, \ldots\right) \\
\quad \triangleright(1,0,0, \ldots)-\left(\frac{1}{2}, \frac{1}{2}, \ldots\right) \\
\quad \triangleright(1,0,0, \ldots)-\left(0, \frac{1}{2}, \ldots\right) \\
\quad \triangleright(0,1,0, \ldots)-\left(0, \frac{1}{2}, \ldots\right) \\
\quad \triangleright(0,1,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right) \\
\triangleright \quad(1,0,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right)
\end{array}
$$

Concrete Probabilities

Probabilistic Problem I: Guards and Conditionals

$$
\begin{aligned}
& \text { 1: }[m:=1]^{1} ; \\
& \text { 2: while }[n>1]^{2} \text { do } \\
& \text { 3: } \quad[m:=m \times n]^{3} ; \\
& \text { 4: } \quad[n:=n-1]^{4} \\
& \text { 5: end while } \\
& \text { 6: }[\text { stop }]^{5}
\end{aligned}
$$

$\triangleright\left(p_{1}, p_{2}, p_{3}, \ldots\right)$ - $\left(\frac{1}{2}, \frac{1}{2}, \ldots\right)$
$\triangleright(0,1,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right)$
$\triangleright(1,0,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right)$

Concrete Probabilities

Probabilistic Problem I: Guards and Conditionals

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$
$\triangleright\left(p_{1}, p_{2}, p_{3}, \ldots\right)-\left(\frac{1}{2}, \frac{1}{2}, \ldots\right)$
$\triangleright(0,1,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right)$
$\triangleright \quad(1,0,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right)$

$(0,1,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right)$

Concrete Probabilities

Probabilistic Problem I: Guards and Conditionals

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

Concrete Probabilities
Correct? How to justify this?

Probabilistic Problem I: Guards and Conditionals

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$
$\triangleright\left(p_{1}, p_{2}, p_{3}, \ldots\right)-\left(\frac{1}{2}, \frac{1}{2}, \ldots\right)$
$\triangleright(0,1,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right)$
$\triangleright \quad(1,0,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right)$

$(0,1,0, \ldots)-\left(\frac{1}{2}, 0, \ldots\right)$

Concrete Probabilities

Probabilistic Problem II: Abstract Evaluation

$$
\text { 1: }[m:=1]^{1} ;
$$

2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

$$
\text { 1: }[m:=1]^{1} ; \quad \triangleright P(m=2 k), P(m \neq 2 k)-P(n=1), \ldots
$$

2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: stop] 5

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;

$$
\triangleright\left(p_{e}, p_{o}\right)-\left(q_{1}, q_{2}, \ldots\right)
$$

2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;

$$
\triangleright\left(p_{e}, p_{o}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right)
$$

2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: stop 5

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: stop] 5

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: sstop] 5

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{array}{r}
\triangleright\left(p_{e}, p_{o}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(0,1)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\quad \triangleright(0,1)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right)
\end{array}
$$

$$
\triangleright(0,1)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{array}{r}
\triangleright\left(p_{e}, p_{o}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(0,1)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(0,1)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\quad \triangleright(1,0)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right)
\end{array}
$$

$$
\triangleright(0,1)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{array}{r}
\triangleright\left(p_{e}, p_{o}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(0,1)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(0,1)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(1,0)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(1,0)-\left(\left(\frac{1}{3}, \frac{1}{3}, 0, \ldots\right)\right. \\
\triangleright(0,1)-\left(\frac{1}{3}, 0,0, \ldots\right)
\end{array}
$$

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{array}{r}
\triangleright\left(p_{e}, p_{o}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\quad \triangleright(1,0)-\left(\frac{1}{3}, \frac{1}{3}, 0, \ldots\right)
\end{array}
$$

$$
\triangleright(0,1)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{array}{r}
\triangleright\left(p_{e}, p_{o}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\quad \triangleright(1,0)-\left(\frac{1}{3}, \frac{1}{3}, 0, \ldots\right) \\
\quad \triangleright(1,0)-\left(0, \frac{1}{3}, 0, \ldots\right)
\end{array}
$$

$$
\triangleright(0,1)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

$$
(1,0)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{array}{r}
\triangleright\left(p_{e}, p_{o}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(1,0)-\left(\frac{1}{3}, \frac{1}{3}, 0, \ldots\right) \\
\quad \triangleright(1,0)-\left(0, \frac{1}{3}, 0, \ldots\right) \\
\quad \triangleright(1,0)-\left(0, \frac{1}{3}, 0, \ldots\right)
\end{array}
$$

$$
\triangleright(0,1)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

$$
(1,0)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{array}{r}
\triangleright\left(p_{e}, p_{o}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(1,0)-\left(\frac{1}{3}, \frac{1}{3}, 0, \ldots\right) \\
\triangleright(1,0)-\left(0, \frac{1}{3}, 0, \ldots\right) \\
\triangleright(1,0)-\left(0, \frac{1}{3}, 0, \ldots\right) \\
\triangleright(1,0)-\left(\frac{1}{3}, 0,0, \ldots\right) \\
\triangleright(0,1)-\left(\frac{1}{3}, 0,0, \ldots\right) \\
\quad(1,0)-\left(\frac{1}{3}, 0,0, \ldots\right)
\end{array}
$$

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{array}{r}
\triangleright\left(p_{e}, p_{o}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\quad \triangleright(1,0)-\left(\frac{1}{3}, 0,0, \ldots\right)
\end{array}
$$

$$
\triangleright(0,1)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

$$
(1,0)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{array}{r}
\triangleright\left(p_{e}, p_{o}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\quad \triangleright(1,0)-\left(\frac{1}{3}, 0,0, \ldots\right)
\end{array}
$$

$$
\triangleright(0,1)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

$$
(1,0)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

$$
(1,0)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

Abstract Probabilities

Probabilistic Problem II: Abstract Evaluation

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{array}{r}
\triangleright\left(p_{e}, p_{o}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(1,0)-\left(\frac{1}{3}, \frac{1}{3}, 0, \ldots\right) \\
\quad \triangleright(0,1)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\quad \triangleright(1,0)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right)
\end{array}
$$

$$
D
$$

Abstract Probabilities
Correct?

Probabilistic Problem II: Abstract Evaluation

$$
\begin{aligned}
& \text { 1: }[m:=1]^{1} ; \\
& \text { 2: while }[n>1]^{2} \text { do } \\
& \text { 3: } \quad[m:=m \times n]^{3} \text {; } \\
& \text { 4: } \quad[n:=n-1]^{4}
\end{aligned}
$$

5: end while

6: sstop] 5

$$
\begin{array}{r}
\triangleright\left(p_{e}, p_{0}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\quad \triangleright(1,0)-\left(\frac{1}{3}, \frac{1}{3}, 0, \ldots\right) \\
\quad \triangleright(0,1)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\quad \triangleright(1,0)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right)
\end{array}
$$

$$
\triangleright
$$

Abstract Probabilities
How to justify this?

Probabilistic Problem III: Relational Dependency

Given an (input) distribution $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right)$ for n one would expect an (output) distribution $\left(\frac{2}{3}, \frac{1}{3}\right)$ for even (m) and odd (m).

Probabilistic Problem III: Relational Dependency

Given an (input) distribution $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right)$ for n one would expect an (output) distribution $\left(\frac{2}{3}, \frac{1}{3}\right)$ for even (m) and odd (m).

For every pair (m, n) we can write the probabilities to observe it as $P(m=i \wedge n=j)=P(m=i) P(n=j)$ - assume perhaps that n does not change.

Probabilistic Problem III: Relational Dependency

Given an (input) distribution ($\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots$) for n one would expect an (output) distribution ($\frac{2}{3}, \frac{1}{3}$) for even (m) and odd (m).
For every pair (m, n) we can write the probabilities to observe it as $P(m=i \wedge n=j)=P(m=i) P(n=j)$ - assume perhaps that n does not change.
The available data thus suggest this probability distribution:

	$n=1$	$n=2$	$n=3$
even (m)	$\frac{1}{3} \cdot \frac{2}{3}$	$\frac{1}{3} \cdot \frac{2}{3}$	$\frac{1}{3} \cdot \frac{2}{3}$
odd (m)	$\frac{1}{3} \cdot \frac{1}{3}$	$\frac{1}{3} \cdot \frac{1}{3}$	$\frac{1}{3} \cdot \frac{1}{3}$

Probabilistic Problem III: Relational Dependency

Given an (input) distribution ($\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots$) for n one would expect an (output) distribution ($\frac{2}{3}, \frac{1}{3}$) for even (m) and odd (m).
For every pair (m, n) we can write the probabilities to observe it as $P(m=i \wedge n=j)=P(m=i) P(n=j)$ - assume perhaps that n does not change.
The available data thus suggest this probability distribution:

	$n=1$	$n=2$	$n=3$
even (m)	$\frac{2}{9}$	$\frac{2}{9}$	$\frac{2}{9}$
odd (m)	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

Probabilistic Problem III: Relational Dependency

Given an (input) distribution ($\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots$) for n one would expect an (output) distribution ($\frac{2}{3}, \frac{1}{3}$) for even (m) and odd (m).
For every pair (m, n) we can write the probabilities to observe it as $P(m=i \wedge n=j)=P(m=i) P(n=j)$ - assume perhaps that n does not change.

In fact, we have the following joint probability distribution:

	$n=1$	$n=2$	$n=3$
even (m)	0	$\frac{1}{3}$	$\frac{1}{3}$
odd (m)	$\frac{1}{3}$	0	0

Problems in Probabilistic Program Analysis

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{array}{r}
\triangleright\left(p_{e}, p_{o}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(0,1)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(0,1)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\quad \triangleright(1,0)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right)
\end{array}
$$

$$
\triangleright(0,1)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

Problems in Probabilistic Program Analysis

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{array}{r}
\triangleright\left(p_{e}, p_{o}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(0,1)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\triangleright(0,1)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
\quad \triangleright(1,0)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right)
\end{array}
$$

$$
\triangleright(0,1)-\left(\frac{1}{3}, 0,0, \ldots\right)
$$

Problems in Probabilistic Program Analysis

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: sstop] 5

$$
\begin{aligned}
& \triangleright\left(p_{e}, p_{0}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
& \quad \triangleright(0,1)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
& \quad \triangleright(0,1)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
& \quad \triangleright(1,0)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
& \quad \triangleright(0,1)-\left(\frac{1}{3}, 0,0, \ldots\right)
\end{aligned}
$$

Splitting: How to distribute information along branches?

Problems in Probabilistic Program Analysis

1: $[m:=1]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m:=m \times n]^{3}$;
4: $\quad[n:=n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

$$
\begin{aligned}
& \triangleright\left(p_{e}, p_{0}\right)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
& \quad \triangleright(0,1)-\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
& \quad \triangleright(0,1)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
& \quad \triangleright(1,0)-\left(0, \frac{1}{3}, \frac{1}{3}, \ldots\right) \\
& \quad \triangleright(0,1)-\left(\frac{1}{3}, 0,0, \ldots\right)
\end{aligned}
$$

Splitting: How to distribute information along branches?
Transforming: How computing changes the information?

Problems in Probabilistic Program Analysis

$$
\begin{aligned}
& \text { 1: }[m:=1]^{1} ; \\
& \text { 2: while }[n>1]^{2} \text { do } \\
& \text { 3: } \quad[m:=m \times n]^{3} ; \\
& \text { 4: } \quad[n:=n-1]^{4} \\
& \text { 5: end while } \\
& \text { 6: }[\text { stop }]^{5}
\end{aligned}
$$

Splitting: How to distribute information along branches?
Transforming: How computing changes the information?
Joining: How to combine information along branches?

Probability and Computation

Commonly, computations are understood to follow a well defined (deterministic) set of rules as to obtain a certain result.

Probability and Computation

Commonly, computations are understood to follow a well defined (deterministic) set of rules as to obtain a certain result.

There are randomised algorithms which involve an element of chance or randomness.

Probability and Computation

Commonly, computations are understood to follow a well defined (deterministic) set of rules as to obtain a certain result.

There are randomised algorithms which involve an element of chance or randomness.

Las Vegas Algorithms are randomised algorithms that always give correct results (with non-deterministic running time), e.g. QuickSort (with random pivoting).

Probability and Computation

Commonly, computations are understood to follow a well defined (deterministic) set of rules as to obtain a certain result.

There are randomised algorithms which involve an element of chance or randomness.

Las Vegas Algorithms are randomised algorithms that always give correct results (with non-deterministic running time), e.g. QuickSort (with random pivoting).
Monte Carlo Algorithms produce (with deterministic running time) an output which may be incorrect with a certain probability, e.g. Buffon's Needle.

(Georges-Louis Leclerc, Comte de) Buffon's Needle

$$
\operatorname{Pr}(\text { cross })=\frac{2}{\pi} \text { or } \pi=\frac{2}{\operatorname{Pr}(\text { cross })}
$$

The Monty Hall Problem

- The game show proceeds as follows: First the contestant is invited to pick one of three doors (behind one is the prize) but the door is not yet opened.

The Monty Hall Problem

- The game show proceeds as follows: First the contestant is invited to pick one of three doors (behind one is the prize) but the door is not yet opened.
- Instead, the host - legendary Monty Hall - opens one of the other doors which is empty.

The Monty Hall Problem

- The game show proceeds as follows: First the contestant is invited to pick one of three doors (behind one is the prize) but the door is not yet opened.
- Instead, the host - legendary Monty Hall - opens one of the other doors which is empty.
- After that the contestant is given a last chance to stick with his/her door or to switch to the other closed one.

The Monty Hall Problem

- The game show proceeds as follows: First the contestant is invited to pick one of three doors (behind one is the prize) but the door is not yet opened.
- Instead, the host - legendary Monty Hall - opens one of the other doors which is empty.
- After that the contestant is given a last chance to stick with his/her door or to switch to the other closed one.
- Note that the host (knowing where the prize is) has always at least one door he can open.

Optimal Strategy: To Switch or not to Switch

$w_{i}=$ win behind $i \quad p_{i}=$ pick door $i \quad o_{i}=$ Monty opens door i

Certainty, Possibility, Probability

Certainty — Determinism
Model: Definite Value
e.g. $2 \in \mathbb{N}$

Certainty, Possibility, Probability

Certainty — Determinism
Model: Definite Value
e.g. $2 \in \mathbb{N}$

Possibility — Non-Determinism
Model: Set of Values
e.g. $\{2,4,6,8,10\} \in \mathcal{P}(\mathbb{N})$

Certainty, Possibility, Probability

Certainty — Determinism
Model: Definite Value
e.g. $2 \in \mathbb{N}$

Possibility — Non-Determinism
Model: Set of Values
e.g. $\{2,4,6,8,10\} \in \mathcal{P}(\mathbb{N})$

Probability — Probabilistic Non-Determinism
Model: Distribution (Measure)
e.g. $\left(0,0, \frac{1}{5}, 0, \frac{1}{5}, 0, \ldots\right) \in \mathcal{V}(\mathbb{N})$

Structures: Power Sets

Given a finite set (universe) Ω (of states) we can construct the power set $\mathcal{P}(\Omega)$ of Ω easily as:

$$
\mathcal{P}(\Omega)=\{X \mid X \subseteq \Omega\}
$$

Ordered by inclusion " \subseteq " this is the example of a lattice/order.

Structures: Power Sets

Given a finite set (universe) Ω (of states) we can construct the power set $\mathcal{P}(\Omega)$ of Ω easily as:

$$
\mathcal{P}(\Omega)=\{X \mid X \subseteq \Omega\}
$$

Ordered by inclusion " \subseteq " this is the example of a lattice/order.
It can also be seen as the set of functions from S into a two element set, thus $\mathcal{P}(\Omega)=2^{\Omega}$:

$$
\mathcal{P}(\Omega)=\{\chi: \Omega \rightarrow\{0,1\}\}
$$

Structures: Power Sets

Given a finite set (universe) Ω (of states) we can construct the power set $\mathcal{P}(\Omega)$ of Ω easily as:

$$
\mathcal{P}(\Omega)=\{X \mid X \subseteq \Omega\}
$$

Ordered by inclusion " \subseteq " this is the example of a lattice/order.
It can also be seen as the set of functions from S into a two element set, thus $\mathcal{P}(\Omega)=2^{\Omega}$:

$$
\mathcal{P}(\Omega)=\{\chi: \Omega \rightarrow\{0,1\}\}
$$

A priori, no major problems when Ω is (un)countable infinite.

Structures: Vector Spaces

Vector Spaces

Structures: Vector Spaces

Vector Spaces $=$ Abelian Additive Group + Quantities

Structures: Vector Spaces

Vector Spaces $=$ Abelian Additive Group + Quantities
Given a finite set Ω we can construct the (free) vector space $\mathcal{V}(\Omega)$ of Ω as a tuple space (with \mathbb{K} a field like \mathbb{R} or \mathbb{C}):

$$
\mathcal{V}(\Omega)=\left\{\left\langle\omega, x_{\omega}\right\rangle \mid \omega \in \Omega, x_{\omega} \in \mathbb{K}\right\}=\left\{\left(x_{\omega}\right)_{\omega \in \Omega} \mid x_{\omega} \in \mathbb{K}\right\}
$$

Structures: Vector Spaces

Vector Spaces $=$ Abelian Additive Group + Quantities
Given a finite set Ω we can construct the (free) vector space $\mathcal{V}(\Omega)$ of Ω as a tuple space (with \mathbb{K} a field like \mathbb{R} or \mathbb{C}):

$$
\mathcal{V}(\Omega)=\left\{\left\langle\omega, x_{\omega}\right\rangle \mid \omega \in \Omega, x_{\omega} \in \mathbb{K}\right\}=\left\{\left(x_{\omega}\right)_{\omega \in \Omega} \mid x_{\omega} \in \mathbb{K}\right\}
$$

As function spaces $\mathcal{V}(\Omega)$ and $\mathcal{P}(\Omega)$ are not so different:

$$
\mathcal{V}(\Omega)=\{v: \Omega \rightarrow \mathbb{K}\}
$$

Structures: Vector Spaces

Vector Spaces $=$ Abelian Additive Group + Quantities
Given a finite set Ω we can construct the (free) vector space $\mathcal{V}(\Omega)$ of Ω as a tuple space (with \mathbb{K} a field like \mathbb{R} or \mathbb{C}):

$$
\mathcal{V}(\Omega)=\left\{\left\langle\omega, x_{\omega}\right\rangle \mid \omega \in \Omega, x_{\omega} \in \mathbb{K}\right\}=\left\{\left(x_{\omega}\right)_{\omega \in \Omega} \mid x_{\omega} \in \mathbb{K}\right\}
$$

As function spaces $\mathcal{V}(\Omega)$ and $\mathcal{P}(\Omega)$ are not so different:

$$
\mathcal{V}(\Omega)=\{v: \Omega \rightarrow \mathbb{K}\}
$$

However, there are major topological problems when Ω is (un)countable infinite.

Tuple Spaces

Theorem

All finite dimensional vector spaces are isomorphic to the (finite) Cartesian product of the underlying field \mathbb{K}^{n} (e.g. \mathbb{R}^{n} or $\left.\mathbb{C}^{m}\right)$.

Finite dimensional vectors can always be represented via their coordinates with respect to a given base, e.g.

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \\
& y=\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right)
\end{aligned}
$$

Algebraic Structure

$$
\begin{aligned}
\alpha x & =\left(\alpha x_{1}, \alpha x_{2}, \alpha x_{3}, \ldots, \alpha x_{n}\right) \\
x+y & =\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}, \ldots, x_{n}+y_{n}\right)
\end{aligned}
$$

Introducing Probability in Programs

Various ways for introducing probabilities into programs:

Introducing Probability in Programs

Various ways for introducing probabilities into programs:
Random Assignment The value a variable is assigned to is chosen randomly (according to some, e.g. uniform, probability distribution) from a set:

$$
x ?=\{1,2,3,4\}
$$

Introducing Probability in Programs

Various ways for introducing probabilities into programs:
Random Assignment The value a variable is assigned to is chosen randomly (according to some, e.g. uniform, probability distribution) from a set:

$$
x ?=\{1,2,3,4\}
$$

Probabilistic Choice There is a probabilistic choice between different instructions:

$$
\text { choose } 0.5:(x:=0) \text { or } 0.5:(x:=1) \text { ro }
$$

Syntactic Sugar

One can show that a single "coin flipping" is enough.

Syntactic Sugar

One can show that a single "coin flipping" is enough.
Random choices and assignments can be interchanged:

$$
x ?=\{0,1\}
$$

is equivalent to (assuming a uniform distribution):
choose $0.5:(x:=0)$ or $0.5:(x:=1)$ ro

Syntactic Sugar

One can show that a single "coin flipping" is enough.
Random choices and assignments can be interchanged:

$$
x ?=\{0,1\}
$$

is equivalent to (assuming a uniform distribution):

$$
\text { choose } 0.5:(x:=0) \text { or } 0.5:(x:=1) \text { ro }
$$

Alternatively we also have

$$
\text { choose } 0.5: S_{1} \text { or } 0.5: S_{2} \text { ro }
$$

is equivalent to (also with other probability distributions):

$$
x ?=\{0,1\} ; \text { if }(x>0) \text { then } S_{1} \text { else } S_{2} \mathbf{f i}
$$

Probabilities as Ratios

Consider integer "weights" to express relative probabilities, e.g.

$$
\text { choose } \frac{1}{3}: S_{1} \text { or } \frac{2}{3}: S_{2} \text { ro }
$$

Probabilities as Ratios

Consider integer "weights" to express relative probabilities, e.g.

$$
\text { choose } \frac{1}{3}: S_{1} \text { or } \frac{2}{3}: S_{2} \text { ro }
$$

is expressed equivalently as:
choose $1:(x:=0)$ or $2:(x:=1)$ ro

Probabilities as Ratios

Consider integer "weights" to express relative probabilities, e.g.

$$
\text { choose } \frac{1}{3}: S_{1} \text { or } \frac{2}{3}: S_{2} \text { ro }
$$

is expressed equivalently as:

$$
\text { choose } 1:(x:=0) \text { or } 2:(x:=1) \text { ro }
$$

In general, for constant "weights" p and q (int), we translate

$$
\text { choose } p: S_{1} \text { or } q: S_{2} \text { ro }
$$

(by exploiting an implicit normalisation) into

$$
\text { choose } \frac{p}{p+q}: S_{1} \text { or } \frac{q}{p+q}: S_{2} \text { ro }
$$

PWHILE - Concrete Syntax

The syntax of statements S is as follows:

$$
\begin{aligned}
& S::=\begin{array}{l}
\text { stop } \\
\\
\text { skip } \\
x:=e \\
x ?=r \\
S_{1} ; S_{2} \\
\text { choose } p_{1}: S_{1} \text { or } p_{2}: S_{2} \text { ro } \\
\text { if } b \text { then } S_{1} \text { else } S_{2} \mathbf{f i} \\
\text { while } b \text { do } S \text { od }
\end{array}
\end{aligned}
$$

We also allow for boolean expressions, i.e. e is an arithmetic expression a or a boolean expression b. The choose statement can be generalised to more than two alternatives.

PWHILE - Labelled Syntax

$$
\begin{aligned}
& S \text { ::= [stop] }{ }^{\ell} \\
& \text { [skip] }{ }^{l} \\
& {[x:=e]^{\ell}} \\
& {[x ?=r]^{e}} \\
& S_{1} ; S_{2} \\
& \text { choose }{ }^{\ell} p_{1}: S_{1} \text { or } p_{2}: S_{2} \text { ro } \\
& \text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2} \mathbf{f i} \\
& \text { while }[b]^{\ell} \text { do } S \text { od }
\end{aligned}
$$

Where the p_{i} are constants, representing choice probabilities.
By r we denote a range/set, e.g. $\{-1,0,1\}$, from which the value of x is chosen (based on a uniform distribution).

Evaluation of Expressions [Not for Exam]

$$
\sigma \ni \text { State }=(\text { Var } \rightarrow \mathbf{Z} \uplus \mathbf{B})
$$

Evaluation of Expressions [Not for Exam]

$$
\sigma \ni \text { State }=(\text { Var } \rightarrow \mathbf{Z} \uplus \mathbf{B})
$$

Evaluation \mathcal{E} of expressions e in state σ :

$$
\begin{aligned}
\mathcal{E}(n) \sigma & =n \\
\mathcal{E}(x) \sigma & =\sigma(x) \\
\mathcal{E}\left(a_{1} \odot a_{2}\right) \sigma & =\mathcal{E}\left(a_{1}\right) \sigma \odot \mathcal{E}\left(a_{2}\right) \sigma
\end{aligned}
$$

Evaluation of Expressions [Not for Exam]

$$
\sigma \ni \text { State }=(\text { Var } \rightarrow \mathbf{Z} \uplus \mathbf{B})
$$

Evaluation \mathcal{E} of expressions e in state σ :

$$
\begin{aligned}
\mathcal{E}(n) \sigma & =n \\
\mathcal{E}(x) \sigma & =\sigma(x) \\
\mathcal{E}\left(a_{1} \odot a_{2}\right) \sigma & =\mathcal{E}\left(a_{1}\right) \sigma \odot \mathcal{E}\left(a_{2}\right) \sigma \\
\mathcal{E}(\text { true }) \sigma & =\mathbf{t t} \\
\mathcal{E}(\text { false }) \sigma & =\mathbf{f f} \\
\mathcal{E}(\text { not } b) \sigma & =\neg \mathcal{E}(b) \sigma \\
\ldots & =\ldots
\end{aligned}
$$

pWhile - SOS Semantics I [Provided in Exam]

R0 $\langle\mathbf{s k i p}, \sigma\rangle \Rightarrow_{1}\langle\mathbf{s t o p}, \sigma\rangle$
R1 \langle stop, $\sigma\rangle \Rightarrow_{1}\langle$ stop,$\sigma\rangle$
R2 $\langle\mathrm{x}:=\boldsymbol{e}, \sigma\rangle \Rightarrow_{1}\langle\mathbf{s t o p}, \sigma[x \mapsto \mathcal{E}(e) \sigma]\rangle$
R3' $\langle\mathrm{x}$? $=r, \sigma\rangle \Rightarrow{ }_{\frac{1}{|r|}}\left\langle\right.$ stop, $\left.\sigma\left[x \mapsto r_{i} \in r\right]\right\rangle$
R3 $_{1} \frac{\left\langle S_{1}, \sigma\right\rangle \Rightarrow_{p}\left\langle S_{1}^{\prime}, \sigma^{\prime}\right\rangle}{\left\langle S_{1} ; S_{2}, \sigma\right\rangle \Rightarrow_{p}\left\langle S_{1}^{\prime} ; S_{2}, \sigma^{\prime}\right\rangle}$
$\mathbf{R 3}_{2} \frac{\left\langle S_{1}, \sigma\right\rangle \Rightarrow_{p}\left\langle\text { stop }, \sigma^{\prime}\right\rangle}{\left\langle S_{1} ; S_{2}, \sigma\right\rangle \Rightarrow_{p}\left\langle S_{2}, \sigma^{\prime}\right\rangle}$
pWhile - SOS Semantics II [Provided in Exam]

R4 $_{1}\left\langle\right.$ choose $p_{1}: S_{1}$ or $\left.p_{2}: S_{2}, \sigma\right\rangle \Rightarrow{ }_{p_{1}}\left\langle S_{1}, \sigma\right\rangle$
R4 $_{2}\left\langle\right.$ choose $p_{1}: S_{1}$ or $\left.p_{2}: S_{2}, \sigma\right\rangle \Rightarrow{ }_{p_{2}}\left\langle S_{2}, \sigma\right\rangle$
R5 ${ }_{1} \quad\left\langle\right.$ if b then S_{1} else $\left.S_{2}, \sigma\right\rangle \Rightarrow{ }_{1}\left\langle S_{1}, \sigma\right\rangle \quad$ if $\mathcal{E}(b) \sigma=\mathbf{t t}$
$\mathbf{R 5}_{2} \quad\left\langle\right.$ if b then S_{1} else $\left.S_{2}, \sigma\right\rangle \Rightarrow{ }_{1}\left\langle S_{2}, \sigma\right\rangle \quad$ if $\mathcal{E}(b) \sigma=\mathbf{f f}$
$\mathbf{R 6}_{1} \quad\langle$ while b do $S, \sigma\rangle \Rightarrow_{1}\langle S$; while b do $S, \sigma\rangle \quad$ if $\mathcal{E}(b) \sigma=\mathbf{t t}$
$\mathbf{R 6}_{2} \quad\langle$ while b do $S, \sigma\rangle \Rightarrow_{1}\langle$ stop,$\sigma\rangle \quad$ if $\mathcal{E}(b) \sigma=\mathbf{f f}$

DTMC Semantics

Given a PWHILE program, consider any enumeration of all its configurations (= pairs of statements and state)
$C_{1}, C_{2}, C_{3}, \ldots \in \mathbf{C o n f}$. Then

$$
(\mathbf{T})_{i j}= \begin{cases}p & \text { if } C_{i} \Rightarrow_{p} C_{j} \\ 0 & \text { otherwise }\end{cases}
$$

DTMC Semantics

Given a PWHILE program, consider any enumeration of all its configurations (= pairs of statements and state)
$C_{1}, C_{2}, C_{3}, \ldots \in$ Conf. Then
$(\mathbf{T})_{i j}= \begin{cases}p & \text { if } C_{i}=\langle S, \sigma\rangle \Rightarrow_{p} C_{j}=\left\langle S^{\prime}, \sigma^{\prime}\right\rangle \\ 0 & \text { otherwise }\end{cases}$

DTMC Semantics

Given a PWHILE program, consider any enumeration of all its configurations (= pairs of statements and state)
$C_{1}, C_{2}, C_{3}, \ldots \in \mathbf{C o n f}$. Then

$$
(\mathbf{T})_{i j}= \begin{cases}p & \text { if } C_{i} \Rightarrow_{p} C_{j} \\ 0 & \text { otherwise }\end{cases}
$$

is the generator of a Discrete Time Markov Chain.

DTMC Semantics

Given a PWHILE program, consider any enumeration of all its configurations (= pairs of statements and state) $C_{1}, C_{2}, C_{3}, \ldots \in \mathbf{C o n f}$. Then

$$
(\mathbf{T})_{i j}= \begin{cases}p & \text { if } C_{i} \Rightarrow_{p} C_{j} \\ 0 & \text { otherwise }\end{cases}
$$

is the generator of a Discrete Time Markov Chain.
Transitions are implemented as

$$
\mathbf{d}_{n} \cdot \mathbf{T}
$$

where \mathbf{d}_{i} is the probability distribution over Conf at the ith step.

DTMC Semantics

Given a PWHILE program, consider any enumeration of all its configurations (= pairs of statements and state) $C_{1}, C_{2}, C_{3}, \ldots \in$ Conf. Then

$$
(\mathbf{T})_{i j}= \begin{cases}p & \text { if } C_{i} \Rightarrow_{p} C_{j} \\ 0 & \text { otherwise }\end{cases}
$$

is the generator of a Discrete Time Markov Chain.
Transitions are implemented as

$$
\mathbf{d}_{n} \cdot \mathbf{T}=\sum_{i}\left(\mathbf{d}_{n}\right)_{i} \cdot \mathbf{T}_{i j}
$$

where \mathbf{d}_{i} is the probability distribution over Conf at the ith step.

DTMC Semantics

Given a PWHILE program, consider any enumeration of all its configurations (= pairs of statements and state) $C_{1}, C_{2}, C_{3}, \ldots \in$ Conf. Then

$$
(\mathbf{T})_{i j}= \begin{cases}p & \text { if } C_{i} \Rightarrow_{p} C_{j} \\ 0 & \text { otherwise }\end{cases}
$$

is the generator of a Discrete Time Markov Chain.
Transitions are implemented as

$$
\mathbf{d}_{n} \cdot \mathbf{T}=\sum_{i}\left(\mathbf{d}_{n}\right)_{i} \cdot \mathbf{T}_{i j}=\mathbf{d}_{n+1}
$$

where \mathbf{d}_{i} is the probability distribution over Conf at the ith step.

Example Program

Let us investigate the possible transitions of the following labelled program (with $\mathbf{x} \in\{0,1\}$):

$$
\begin{aligned}
& \text { if }[\mathbf{x}==0]^{1} \text { then } \\
& \quad[\mathbf{x}:=0]^{2} ; \\
& \text { else } \\
& \quad[\mathbf{x}:=1]^{3} ; \\
& \text { end if; } \\
& {[\text { stop }]^{4}}
\end{aligned}
$$

Example Program

Let us investigate the possible transitions of the following labelled program (with $\mathbf{x} \in\{0,1\}$):

$$
\begin{aligned}
& \text { if }[\mathbf{x}==0]^{1} \text { then } \\
& \quad[\mathbf{x}:=0]^{2} ;
\end{aligned}
$$

else

$$
[\mathbf{x}:=1]^{3}
$$

end if; [stop] 4

Record transitions using labelling to simplify notation, i.e.

$$
\langle S, \sigma\rangle \Rightarrow_{p}\left\langle S^{\prime}, \sigma^{\prime}\right\rangle \text { becomes }\langle\sigma, \operatorname{init}(S)\rangle \Rightarrow_{p}\left\langle\sigma^{\prime}, \operatorname{init}\left(S^{\prime}\right)\right\rangle
$$

Stating also the initial statement together with $\ell=\operatorname{init}(s)$.

Example DTMC

$$
\left.\begin{array}{cc|cccccccc}
\left\langle x \mapsto 0,[\mathbf{x}==0]^{1}\right\rangle & \ldots \\
\left\langle x \mapsto 0,[\mathbf{x}==0]^{2}\right\rangle & \ldots \\
\left\langle x \mapsto 0,[\mathbf{x}==1]^{3}\right\rangle & \ldots \\
\left\langle x \mapsto 0,[\mathbf{s t o p}]^{4}\right\rangle & \ldots \\
\left\langle x \mapsto 1,[\mathbf{x}==0]^{1}\right\rangle & \ldots \\
\left\langle x \mapsto 1,[\mathbf{x}==0]^{2}\right\rangle & \ldots \\
\langle x & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Example Transition

$$
\left(\begin{array}{llllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Example Transition

$$
\left(\begin{array}{llllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

We get: ($\left.\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$.
This represents the (deterministic) transition step:

$$
\left\langle x \mapsto 0,[\mathbf{x}:=1]^{3}\right\rangle \Rightarrow_{1}\left\langle x \mapsto 1,[\text { stop }]^{4}\right\rangle
$$

Linear Operator Semantics (LOS)

The matrix representation of the SOS semantics of a PWHILE program is not 'compositional'.

Linear Operator Semantics (LOS)

The matrix representation of the SOS semantics of a PWHILE program is not 'compositional'.

In order to be able to analyse programs by analysing its parts, a more useful semantics is one resulting from the composition of different linear operators each expressing a particular operation contributing to the overall behaviour of the program.

The Space of Configurations

For a PWHILE program S we can identify configurations with elements in

The Space of Configurations

For a PWH Hile program S we can identify configurations with elements in

$$
\operatorname{Dist}(\text { State } \times \text { Lab }) \subseteq \mathcal{V}(\text { State } \times \text { Lab })
$$

The Space of Configurations

For a PWHILE program S we can identify configurations with elements in

$$
\operatorname{Dist}(\text { State } \times \text { Lab }) \subseteq \mathcal{V}(\text { State } \times \text { Lab })
$$

Assuming $v=\mid$ Var \mid finite,

$$
\text { State }=(\mathbf{Z}+\mathbf{B})^{v}=\text { Value }_{1} \times \text { Value }_{2} \ldots \times \text { Value }_{v}
$$

with Value $_{i}=\mathbf{Z}(=\mathbf{Z})$ or Value $_{i}$.

The Space of Configurations

For a PWHILE program S we can identify configurations with elements in

$$
\operatorname{Dist}(\text { State } \times \text { Lab }) \subseteq \mathcal{V}(\text { State } \times \text { Lab })
$$

Assuming $v=\mid$ Var \mid finite,

$$
\text { State }=(\mathbf{Z}+\mathbf{B})^{v}=\text { Value }_{1} \times \text { Value }_{2} \ldots \times \text { Value }_{v}
$$

with Value $_{i}=\mathbf{Z}(=\mathbf{Z})$ or Value $_{i}$.
Thus, we can represent the space of configurations as

$$
\begin{aligned}
& \text { Dist }\left(\text { Value }_{1} \times \ldots \times \text { Value }_{v} \times \text { Lab }\right) \subseteq \\
& \quad \subseteq \mathcal{V}\left(\text { Value }_{1} \times \ldots \times \text { Value }_{v} \times \text { Lab }\right) \\
& \quad=\mathcal{V}\left(\text { Value }_{1}\right) \otimes \ldots \otimes \mathcal{V}\left(\text { Value }_{v}\right) \otimes \mathcal{V}(\text { Lab }) .
\end{aligned}
$$

Tensor Product or Kronecker Product

Given a $n \times m$ matrix \mathbf{A} and a $k \times /$ matrix \mathbf{B} :

$$
\mathbf{A}=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n m}
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 /} \\
\vdots & \ddots & \vdots \\
b_{k 1} & \ldots & b_{k l}
\end{array}\right)
$$

Tensor Product or Kronecker Product

Given a $n \times m$ matrix \mathbf{A} and a $k \times /$ matrix \mathbf{B} :

$$
\mathbf{A}=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n m}
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 /} \\
\vdots & \ddots & \vdots \\
b_{k 1} & \ldots & b_{k l}
\end{array}\right)
$$

The tensor product $\mathbf{A} \otimes \mathbf{B}$ is a $n k \times m l$ matrix:

$$
\mathbf{A} \otimes \mathbf{B}=\left(\begin{array}{ccc}
a_{11} \mathbf{B} & \ldots & a_{1 m} \mathbf{B} \\
\vdots & \ddots & \vdots \\
a_{n 1} \mathbf{B} & \ldots & a_{n m} \mathbf{B}
\end{array}\right)
$$

Tensor Product or Kronecker Product

Given a $n \times m$ matrix \mathbf{A} and a $k \times /$ matrix \mathbf{B} :

$$
\mathbf{A}=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n m}
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 /} \\
\vdots & \ddots & \vdots \\
b_{k 1} & \ldots & b_{k l}
\end{array}\right)
$$

The tensor product $\mathbf{A} \otimes \mathbf{B}$ is a $n k \times m l$ matrix:

$$
\mathbf{A} \otimes \mathbf{B}=\left(\begin{array}{ccc}
a_{11} \mathbf{B} & \ldots & a_{1 m} \mathbf{B} \\
\vdots & \ddots & \vdots \\
a_{n 1} \mathbf{B} & \ldots & a_{n m} \mathbf{B}
\end{array}\right)
$$

Special cases are square matrices ($n=m$ and $k=l$) and vectors (row $n=k=1$, column $m=l=1$).

Tensor Product Spaces

The tensor product $\mathcal{V} \otimes \mathcal{W}$ of two vector spaces is generated by all linear combinations of the form $v \otimes w$ with $v \in \mathcal{V}$ and $w \in \mathcal{W}$.

Tensor Product Spaces

The tensor product $\mathcal{V} \otimes \mathcal{W}$ of two vector spaces is generated by all linear combinations of the form $v \otimes w$ with $v \in \mathcal{V}$ and $w \in \mathcal{W}$.

$$
\mathcal{V} \otimes \mathcal{W}=\left\{\sum_{i j} \lambda_{i j}\left(v_{i} \otimes w_{j}\right) \mid v_{i} \in \mathcal{V}, w_{j} \in \mathcal{W}\right\}
$$

Tensor Product Spaces

The tensor product $\mathcal{V} \otimes \mathcal{W}$ of two vector spaces is generated by all linear combinations of the form $v \otimes w$ with $v \in \mathcal{V}$ and $w \in \mathcal{W}$.

$$
\mathcal{V} \otimes \mathcal{W}=\left\{\sum_{i j} \lambda_{i j}\left(v_{i} \otimes w_{j}\right) \mid v_{i} \in \mathcal{V}, w_{j} \in \mathcal{W}\right\}
$$

It is possible to construct a base of $\mathcal{V} \otimes \mathcal{W}$ using just base vectors of \mathcal{V} and \mathcal{W} and $\operatorname{dim}(\mathcal{V} \otimes \mathcal{W})=\operatorname{dim}(\mathcal{V}) \operatorname{dim}(\mathcal{W})$.

Represent joint distributions on $X \times Y$ in $\mathcal{V}(x) \otimes \mathcal{V}(Y)$; e.g.

$$
\left(\begin{array}{ccc}
0 & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & 0
\end{array}\right)=\binom{0}{\frac{1}{3}} \otimes\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)+\binom{\frac{2}{3}}{0} \otimes\left(\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

but no two (marginal) distribution exist such that a single tensor product gives this (joint) distribution (non-independence).

Transitions and Generator of DTMC (1) - Deterministic

Transitions and Generator of DTMC (1) - Deterministic

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)=\mathbf{T}
$$

Transitions and Generator of DTMC (2) - Probabilistic

$$
\left(\begin{array}{cccc}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right)=\mathbf{T}
$$

Transitions and Generator of DTMC (3)

Transitions and Generator of DTMC (4)

Transitions and Generator of DTMC (5)

Combination of Steps

We can combine single steps to construct a transition graph.

Combination of Steps

We can combine single steps to construct a transition graph.

$$
(\mathbf{E}(m, n))_{i j}= \begin{cases}1 & \text { if } m=i \wedge n=j \\ 0 & \text { otherwise }\end{cases}
$$

Combination of Steps

We can combine single steps to construct a transition graph.

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)=\mathbf{T}
$$

$(\mathbf{E}(m, n))_{i j}= \begin{cases}1 & \text { if } m=i \wedge n=j \\ 0 & \text { otherwise } .\end{cases}$

Combination of Steps

We can combine single steps to construct a transition graph.

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left\{\begin{array}{l}
\mathbf{E}(1,2)
\end{array}\right.
$$

$$
(\mathbf{E}(m, n))_{i j}= \begin{cases}1 & \text { if } m=i \wedge n=j \\ 0 & \text { otherwise }\end{cases}
$$

Combination of Steps

We can combine single steps to construct a transition graph.

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left\{\begin{array}{r}
\mathbf{E}(1,2) \\
\mathbf{E}(1,3)
\end{array}\right.
$$

$$
(\mathbf{E}(m, n))_{i j}= \begin{cases}1 & \text { if } m=i \wedge n=j \\ 0 & \text { otherwise }\end{cases}
$$

Combination of Steps

We can combine single steps to construct a transition graph.

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left\{\begin{array}{l}
\mathbf{E}(1,2) \\
+\mathbf{E}(1,3) \\
+ \\
\mathbf{E}(2,4)
\end{array}\right.
$$

$$
(\mathbf{E}(m, n))_{i j}= \begin{cases}1 & \text { if } m=i \wedge n=j \\ 0 & \text { otherwise }\end{cases}
$$

Combination of Steps

We can combine single steps to construct a transition graph.

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)=\left\{\begin{array}{l}
\mathbf{E}(1,2) \\
+\mathbf{E}(1,3) \\
+\mathbf{E}(2,4) \\
+\mathbf{E}(3,4)
\end{array}\right.
$$

$(\mathbf{E}(m, n))_{i j}= \begin{cases}1 & \text { if } m=i \wedge n=j \\ 0 & \text { otherwise } .\end{cases}$

Combination of Steps

We can combine single steps to construct a transition graph.

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)=\left\{\begin{array}{l}
\mathbf{E}(1,2) \\
+\mathbf{E}(1,3) \\
+\mathbf{E}(2,4) \\
+\mathbf{E}(3,4) \\
+\mathbf{E}(3,3)
\end{array}\right.
$$

$(\mathbf{E}(m, n))_{i j}= \begin{cases}1 & \text { if } m=i \wedge n=j \\ 0 & \text { otherwise } .\end{cases}$

Combination of Steps

We can combine single steps to construct a transition graph.

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)=\left\{\begin{array}{l}
\\
\mathbf{E}(1,2) \\
+ \\
+\mathbf{E}(1,3) \\
+ \\
\mathbf{E}(3,4) \\
+ \\
+ \\
+ \\
\mathbf{E}(3,3) \\
(4,4)
\end{array}\right.
$$

$(\mathbf{E}(m, n))_{i j}= \begin{cases}1 & \text { if } m=i \wedge n=j \\ 0 & \text { otherwise } .\end{cases}$

Probabilistic Transitions

Constructing the matrix for probabilistic transitions:

$$
\left(\begin{array}{cccc}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right)=\mathbf{T}
$$

Probabilistic Transitions

Constructing the matrix for probabilistic transitions:

$$
\left(\begin{array}{cccc}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right)=\mathbf{T}
$$

T

Probabilistic Transitions

Constructing the matrix for probabilistic transitions:

Probabilistic Transitions

Constructing the matrix for probabilistic transitions:

Probabilistic Transitions

Constructing the matrix for probabilistic transitions:

$$
\left(\begin{array}{cccc}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right)=\mathbf{T}
$$

$$
\mathbf{T}=\frac{1}{3} \mathbf{E}(1,2)+\frac{2}{3} \mathbf{E}(1,3)+\mathbf{E}(2,4)
$$

Probabilistic Transitions

Constructing the matrix for probabilistic transitions:

$$
\left(\begin{array}{cccc}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right)=\mathbf{T}
$$

$$
\mathbf{T}=\frac{1}{3} \mathbf{E}(1,2)+\frac{2}{3} \mathbf{E}(1,3)+\mathbf{E}(2,4)+\frac{1}{2} \mathbf{E}(3,4)
$$

Probabilistic Transitions

Constructing the matrix for probabilistic transitions:

$$
\left(\begin{array}{cccc}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right)=\mathbf{T}
$$

$$
\mathbf{T}=\frac{1}{3} \mathbf{E}(1,2)+\frac{2}{3} \mathbf{E}(1,3)+\mathbf{E}(2,4)+\frac{1}{2} \mathbf{E}(3,4)+\frac{1}{2} \mathbf{E}(3,3)
$$

Probabilistic Transitions

Constructing the matrix for probabilistic transitions:

$$
\left(\begin{array}{cccc}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right)=\mathbf{T}
$$

$$
\mathbf{T}=\frac{1}{3} \mathbf{E}(1,2)+\frac{2}{3} \mathbf{E}(1,3)+\mathbf{E}(2,4)+\frac{1}{2} \mathbf{E}(3,4)+\frac{1}{2} \mathbf{E}(3,3)+\mathbf{E}(4,4)
$$

Probabilistic Transitions

Constructing the matrix for probabilistic transitions:

$$
\left(\begin{array}{cccc}
0 & \frac{1}{3} & \frac{2}{3} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right)=\mathbf{T}
$$

$$
\mathbf{T}=\frac{1}{3} \mathbf{E}(1,2)+\frac{2}{3} \mathbf{E}(1,3)+\mathbf{E}(2,4)+\frac{1}{2} \mathbf{E}(3,4)+\frac{1}{2} \mathbf{E}(3,3)+\mathbf{E}(4,4)
$$

"Turtle" Graphics

Consider a "(probabilistic) turtle graphics" with up/down and left/right moves done simultaneously and probabilistically.

"Turtle" Graphics

Consider a "(probabilistic) turtle graphics" with up/down and left/right moves done simultaneously and probabilistically.

The (classical) configuration space is $\{1, \ldots, 8\} \times\{1, \ldots, 4\}$. To describe any probabilistic situation, i.e. joint distribution, we need $8 \times 4=32$ probabilities, not just $8+4=12$.

"Turtle" Graphics

Consider a "(probabilistic) turtle graphics" with up/down and left/right moves done simultaneously and probabilistically.

The (classical) configuration space is $\{1, \ldots, 8\} \times\{1, \ldots, 4\}$. To describe any probabilistic situation, i.e. joint distribution, we need $8 \times 4=32$ probabilities, not just $8+4=12$. We consider $\mathbb{R}^{8} \otimes \mathbb{R}^{4}=\mathbb{R}^{32}$ as probabilistic configuration space rather than $\mathbb{R}^{8} \oplus \mathbb{R}^{4}=\mathbb{R}^{12}$, i.e. just the marginal distributions.

Moves in "Turtle" Graphics

Consider only horizontal moves over eight possible positions.
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Moves in "Turtle" Graphics

Consider only horizontal moves over eight possible positions.
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Moves in "Turtle" Graphics

Consider only horizontal moves over eight possible positions.
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Moves in "Turtle" Graphics

Consider only horizontal moves over eight possible positions.

Move from 1 to $2: \mathbf{E}(1,2)$

Moves in "Turtle" Graphics

Consider only horizontal moves over eight possible positions.

Move from 3 to 7: $\mathbf{E}(3,7)$

Moves in "Turtle" Graphics

Consider only horizontal moves over eight possible positions.

Move from 2 to 7 or $8: \mathbf{E}(2,7)+\mathbf{E}(2,8)$

Moves in "Turtle" Graphics

Consider only horizontal moves over eight possible positions.

Move from 2 to 7 or 8 : $\mathbf{E}(2,7)+\mathbf{E}(2,8)$ or $\frac{1}{2} \mathbf{E}(2,7)+\frac{1}{2} \mathbf{E}(2,8)$

Moves in "Turtle" Graphics

Consider only horizontal moves over eight possible positions.

Move from 2 to 7 or 8 : $\mathbf{E}(2,7)+\mathbf{E}(2,8)$ or $\frac{1}{2} \mathbf{E}(2,7)+\frac{1}{2} \mathbf{E}(2,8)$
Similar representation also for vertical moves.
"Parallel" Execution: $x \in\{1, \ldots, 8\}$ and $y \in\{1, \ldots, 4\}$

Describe the effect \mathbf{M} on x and the change of y described by \mathbf{N}, then the combined effect on $\langle x, y\rangle$ is given by $\mathbf{M} \otimes \mathbf{N}$.
"Parallel" Execution: $x \in\{1, \ldots, 8\}$ and $y \in\{1, \ldots, 4\}$

Describe the effect \mathbf{M} on x and the change of y described by \mathbf{N}, then the combined effect on $\langle x, y\rangle$ is given by $\mathbf{M} \otimes \mathbf{N}$.

From $(1,1)$ move 1 left and 3 up: $\mathbf{E}(1,2) \otimes \mathbf{E}(1,4)$
"Parallel" Execution: $x \in\{1, \ldots, 8\}$ and $y \in\{1, \ldots, 4\}$

Describe the effect \mathbf{M} on x and the change of y described by \mathbf{N}, then the combined effect on $\langle x, y\rangle$ is given by $\mathbf{M} \otimes \mathbf{N}$.

From $(7,3)$ move $(4,2): \mathbf{E}(7,4) \otimes \mathbf{E}(3,2)$
"Parallel" Execution: $x \in\{1, \ldots, 8\}$ and $y \in\{1, \ldots, 4\}$

Describe the effect \mathbf{M} on x and the change of y described by \mathbf{N}, then the combined effect on $\langle x, y\rangle$ is given by $\mathbf{M} \otimes \mathbf{N}$.

From $(7,3)$ to $(4,2) /(7,2): \mathbf{E}(7,4) \otimes \mathbf{E}(3,2)+\mathbf{E}(7,7) \otimes \mathbf{E}(3,1)$
"Parallel" Execution: $x \in\{1, \ldots, 8\}$ and $y \in\{1, \ldots, 4\}$

Describe the effect \mathbf{M} on x and the change of y described by \mathbf{N}, then the combined effect on $\langle x, y\rangle$ is given by $\mathbf{M} \otimes \mathbf{N}$.

From $(5,2)$ move to all one right: $\mathbf{E}(5,6) \otimes\left(\sum_{i=1}^{4} \mathbf{E}(2, i)\right)$

Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, . ., 8$; How do statements change its value?
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, . ., 8$; How do statements change its value?

Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, . ., 8$; How do statements change its value?

$x:=4$

Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, . ., 8$; How do statements change its value?

Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, . ., 8$; How do statements change its value?

Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

$$
x:=4
$$

Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, . ., 8$; How do statements change its value?

Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, . ., 8$; How do statements change its value?

Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, . ., 8$; How do statements change its value?

Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, . ., 8$; How do statements change its value?

Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
x:=4 \text { gives } \mathbf{U}(x \leftarrow 4)=\left(\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Transfer Functions (Edge Effects): Assignment

Assume $x \in 1, . ., 8$; How do statements change its value?

Thus, the LOS of the statement is $\llbracket x:=4 \rrbracket=\mathbf{U}(x \leftarrow 4)$.

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, . ., 8$; How do statements change its value?
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, . ., 8$; How do statements change its value?
12
$x:=x+1$
$x:=x+1$

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, . ., 8$; How do statements change its value?
$x:=x+1$

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, . ., 8$; How do statements change its value?
$x:=x+1$

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, . ., 8$; How do statements change its value?
$x:=x+1$

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, . ., 8$; How do statements change its value?

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
\begin{aligned}
& \text { (1) } 2 \text { (} 3 \text { (} 4 \text { 2 } 8 \\
& x:=x+1
\end{aligned}
$$

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, . ., 8$; How do statements change its value?

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, . ., 8$; How do statements change its value?

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
x:=x+1
$$

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, . ., 8$; How do statements change its value?

Transfer Functions (Edge Effects): Shift

Assume $x \in 1, . ., 8$; How do statements change its value?

The LOS of the statement is $\llbracket x:=x+1 \rrbracket=\mathbf{U}(x \leftarrow x+1)$.
To avoid "overflow": actually $\llbracket x:=((x-1)+1 \bmod 8)+1 \rrbracket$.

Transfer Functions (Edge Effects): Random Assign

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Transfer Functions (Edge Effects): Random Assign

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

$$
x ?=\{4,5\}
$$

Transfer Functions (Edge Effects): Random Assign

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
x ?=\{4,5\}
$$

Transfer Functions (Edge Effects): Random Assign

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
x ?=\{4,5\}
$$

Transfer Functions (Edge Effects): Random Assign

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
\text { (1) } 2 \text { 3 } 3,5 \text { } 5
$$

$$
x ?=\{4,5\}
$$

Transfer Functions (Edge Effects): Random Assign

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
x ?=\{4,5\}
$$

Transfer Functions (Edge Effects): Random Assign

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
x ?=\{4,5\}
$$

Transfer Functions (Edge Effects): Random Assign

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
x ?=\{4,5\}
$$

Transfer Functions (Edge Effects): Random Assign

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
x ?=\{4,5\}
$$

Transfer Functions (Edge Effects): Random Assign

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
x ?=\{4,5\}
$$

Transfer Functions (Edge Effects): Random Assign

Assume $x \in 1, . ., 8$; How do statements change its value?

$$
x ?=\{4,5\} \text { gives }\left(\begin{array}{lllllllll}
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0
\end{array}\right)
$$

Transfer Functions (Edge Effects): Random Assign

Assume $x \in 1, . ., 8$; How do statements change its value?

So the LOS is $\llbracket x ?=\{4,5\} \rrbracket=\frac{1}{2} \mathbf{U}(x \leftarrow 4)+\frac{1}{2} \mathbf{U}(x \leftarrow 5)$.

Using the Linear Operators

We have now as states probability distributions over possible values $\sigma \in \mathcal{D}$ (Value) rather than classical states $s \in$ Value

Using the Linear Operators

We have now as states probability distributions over possible values $\sigma \in \mathcal{D}$ (Value) rather than classical states $s \in$ Value

We can compute what happens to classical states, e.g.

$$
\begin{aligned}
(0,1,0,0,0,0,0,0) \cdot \llbracket x:=4 \rrbracket & =(0,0,0,1,0,0,0,0) \\
(0,1,0,0,0,0,0,0) \cdot \llbracket x ?=\{4,5\} \rrbracket & =\left(0,0,0, \frac{1}{2}, \frac{1}{2}, 0,0,0\right)
\end{aligned}
$$

Using the Linear Operators

We have now as states probability distributions over possible values $\sigma \in \mathcal{D}$ (Value) rather than classical states $s \in$ Value

We can compute what happens to classical states, e.g.

$$
\begin{aligned}
(0,1,0,0,0,0,0,0) \cdot \llbracket x:=4 \rrbracket & =(0,0,0,1,0,0,0,0) \\
(0,1,0,0,0,0,0,0) \cdot \llbracket x ?=\{4,5\} \rrbracket & =\left(0,0,0, \frac{1}{2}, \frac{1}{2}, 0,0,0\right)
\end{aligned}
$$

but also what happens with distributions, e.g.

$$
\left(0, \frac{2}{3}, 0,0, \frac{1}{3}, 0,0,0\right) \cdot \llbracket x:=x+1 \rrbracket=\left(0,0, \frac{2}{3}, 0,0, \frac{1}{3}, 0,0\right)
$$

Using the Linear Operators

We have now as states probability distributions over possible values $\sigma \in \mathcal{D}$ (Value) rather than classical states $s \in$ Value

We can compute what happens to classical states, e.g.

$$
\begin{aligned}
(0,1,0,0,0,0,0,0) \cdot \llbracket x:=4 \rrbracket & =(0,0,0,1,0,0,0,0) \\
(0,1,0,0,0,0,0,0) \cdot \llbracket x ?=\{4,5\} \rrbracket & =\left(0,0,0, \frac{1}{2}, \frac{1}{2}, 0,0,0\right)
\end{aligned}
$$

but also what happens with distributions, e.g.

$$
\left(0, \frac{2}{3}, 0,0, \frac{1}{3}, 0,0,0\right) \cdot \llbracket x:=x+1 \rrbracket=\left(0,0, \frac{2}{3}, 0,0, \frac{1}{3}, 0,0\right)
$$

and we can combine effects (to the same variable), e.g.

$$
\llbracket x ?=\{4,5\} \rrbracket=\frac{1}{2} \llbracket x:=4 \rrbracket+\frac{1}{2} \llbracket x:=5 \rrbracket
$$

Putting Things Together

We can use the tensor product construction to combine the effects on different variables. For $x \in\{1 . .8\}$ and $y \in\{1, . .4\}$

$$
\begin{aligned}
\llbracket x ?=\{2,4,6,8\} \rrbracket & =\frac{1}{4} \sum_{k=1}^{4} \mathbf{U}(x \leftarrow 2 k) \otimes \mathbf{I} \\
\llbracket y:=3 \rrbracket & =\mathbf{I} \otimes \mathbf{U}(y \leftarrow 3)
\end{aligned}
$$

The execution of " x ? = $=\{2,4,6,8\} ; y:=3$ " is implemented by

$$
\begin{aligned}
\llbracket x ?=\{2,4,6,8\} ; y:=3 \rrbracket & =\left(\frac{1}{4} \sum_{k=1}^{4} \mathbf{U}(x \leftarrow 2 k) \otimes \mathbf{I}\right)(\mathbf{I} \otimes \mathbf{U}(y \leftarrow 3)) \\
& =\frac{1}{4} \sum_{k=1}^{4} \mathbf{U}(x \leftarrow 2 k) \otimes \mathbf{U}(y \leftarrow 3)
\end{aligned}
$$

"Turtle" Execution

$$
\begin{array}{rl}
\llbracket x & ?=\{2,4,6,8\} ; y:=3 \rrbracket= \\
& =\frac{1}{4} \sum_{k=1}^{4} \mathbf{U}(x \leftarrow 2 k) \otimes \mathbf{U}(y \leftarrow 3) \\
= & \frac{1}{4}\left(\begin{array}{llllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right) \otimes\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{array}
$$

Conditionals

Consider conditional jumps or statements, e.g.
if $\operatorname{even}(x)$ then $x:=x / 2$ else $y:=y+1 \mathbf{f i}$

Conditionals

Consider conditional jumps or statements, e.g.
if even (x) then $x:=x / 2$ else $y:=y+1 \mathbf{f i}$
The branches have the following LOS:

$$
\llbracket x:=x / 2 \rrbracket=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \otimes \mathbf{I}
$$

Conditionals

Consider conditional jumps or statements, e.g.
if even (x) then $x:=x / 2$ else $y:=y+1 \mathbf{f i}$

$$
\llbracket y:=y+1 \rrbracket=\mathbf{I} \otimes\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Conditionals

Consider conditional jumps or statements, e.g.
if even (x) then $x:=x / 2$ else $y:=y+1 \mathbf{f i}$
Note: To avoid errors $a / b=\lceil a / b\rceil$ and $a+b=a+b \bmod n$.

Tests and Distribution Splitting

We represent the filter for testing if x is even by a projection:

$$
\mathbf{P}(\operatorname{even}(x))=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \otimes \mathbf{I}
$$

Its negation is represented by:

$$
\mathbf{P}(\neg \operatorname{even}(x))=\mathbf{P}(\operatorname{even}(x))^{\perp}=\mathbf{I}-\mathbf{P}(\operatorname{even}(x)) .
$$

Using Tests

The semantics of a conditional is given by applying the semantics of the branches to the filtered (probabilistic) states and to combine the results. In our example:

$$
\begin{aligned}
& \llbracket i f \operatorname{even}(x) \text { then } x:=x / 2 \text { else } y+1 \text { fi } \rrbracket= \\
& =\mathbf{P}(\operatorname{even}(x)) \cdot \llbracket x:=x / 2 \rrbracket+\mathbf{P}(\operatorname{even}(x))^{\perp} \cdot \llbracket y:=y+1 \rrbracket
\end{aligned}
$$

Given state where x has with probability $\frac{1}{2}$ values 3 and 6 , and y value 2, i.e. $\sigma_{0}=\left(0,0, \frac{1}{2}, 0,0, \frac{1}{2}, 0,0\right) \otimes(0,1,0,0)$ then

$$
\begin{aligned}
\sigma_{0} \cdot \mathbf{P}(\text { even }(x)) & =\left(0,0,0,0,0, \frac{1}{2}, 0,0\right) \otimes(0,1,0,0) \\
& =\frac{1}{2} \cdot(0,0,0,0,0,1,0,0) \otimes(0,1,0,0) \\
\sigma_{0} \cdot \mathbf{P}(\operatorname{even}(x))^{\perp} & =\left(0,0, \frac{1}{2}, 0,0,0,0,0\right) \otimes(0,1,0,0) \\
& =\frac{1}{2} \cdot(0,0,1,0,0,0,0,0) \otimes(0,1,0,0)
\end{aligned}
$$

Semantics of Conditionals

Applying the semantics of both branches gives us:

$$
\begin{aligned}
& \sigma_{0} \cdot \mathbf{P}(\operatorname{even}(x)) \cdot \llbracket x:=x / 2 \rrbracket= \\
& \quad=\left(0,0, \frac{1}{2}, 0,0,0,0\right) \otimes(0,1,0,0) \\
& \sigma_{0} \cdot \mathbf{P}(\operatorname{even}(x))^{\perp} \cdot \llbracket y:=y+1 \rrbracket= \\
& \quad=\left(0,0, \frac{1}{2}, 0,0,0,0,0\right) \otimes(0,0,1,0)
\end{aligned}
$$

The sum of both branches is now, maybe somewhat surprising:

$$
\sigma=(0,0,1,0,0,0,0,0) \otimes\left(0, \frac{1}{2}, \frac{1}{2}, 0\right)
$$

Though we have started with a definitive value for y and a distribution for x, the opposite is now the case.

Probabilistic Control Flow

Consider the following labelled program:
1: while $[\mathbf{z}<100]^{1}$ do
2: \quad choose $^{2} \frac{1}{3}:[x:=3]^{3}$ or $\frac{2}{3}:[x:=1]^{4}$ ro
3: end while
4: sstop] 5

Probabilistic Control Flow

Consider the following labelled program:
1: while $[\mathbf{z}<100]^{1}$ do
2: \quad choose $^{2} \frac{1}{3}:[x:=3]^{3}$ or $\frac{2}{3}:[x:=1]^{4}$ ro
3: end while
4: $[\text { stop }]^{5}$

Its probabilistic control flow is given by:
$\operatorname{flow}(P)=\left\{\langle 1,1,2\rangle,\langle 1,1,5\rangle,\left\langle 2, \frac{1}{3}, 3\right\rangle,\left\langle 2, \frac{2}{3}, 4\right\rangle,\langle 3,1,1\rangle,\langle 4,1,1\rangle\right\}$.

Init Label

$$
\begin{aligned}
\operatorname{init}\left([\text { skip }]^{\ell}\right) & =\ell \\
\operatorname{init}\left([\text { stop }]^{\ell}\right) & =\ell \\
\operatorname{init}\left([\mathrm{x}:=e]^{\ell}\right) & =\ell \\
\operatorname{init}\left([\mathrm{x} ?=e]^{\ell}\right) & =\ell \\
\operatorname{init}\left(S_{1} ; S_{2}\right) & =\operatorname{init}\left(S_{1}\right) \\
\operatorname{init}\left(\text { choose }^{\ell} p_{1}: S_{1} \text { or } p_{2}: S_{2}\right) & =\ell \\
\left.\operatorname{init}^{(i f}[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right) & =\ell \\
\operatorname{init}\left(\text { while }[b]^{\ell} \text { do } S\right) & =\ell
\end{aligned}
$$

Final Labels

$$
\begin{aligned}
\text { final }\left([\text { skip }]^{\ell}\right) & =\{\ell\} \\
\text { final }\left([\text { stop }]^{\ell}\right) & =\{\ell\} \\
\text { final }\left([\mathrm{x}:=e]^{\ell}\right) & =\{\ell\} \\
\text { final }\left([\mathrm{x} ?=e]^{\ell}\right) & =\{\ell\} \\
\text { final }\left(S_{1} ; S_{2}\right) & =\text { final }\left(S_{2}\right) \\
\text { final }\left(\text { choose }{ }^{\ell} p_{1}: S_{1} \text { or } p_{2}: S_{2}\right) & =\text { final }\left(S_{1}\right) \cup \text { final }\left(S_{2}\right) \\
\text { final }\left(\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right) & =\text { final }\left(S_{1}\right) \cup \text { final }\left(S_{2}\right) \\
\text { final }\left(\text { while }[b]^{\ell} \text { do } S\right) & =\{\ell\}
\end{aligned}
$$

Flow I - Control Transfer

The probabilistic control flow is defined by the function:

$$
\text { flow }: \mathbf{S t m t} \rightarrow \mathcal{P}(\mathbf{L a b} \times[0,1] \times \mathbf{L a b})
$$

Flow I - Control Transfer

The probabilistic control flow is defined by the function:

$$
\text { flow : Stmt } \rightarrow \mathcal{P}(\mathbf{L a b} \times[0,1] \times \mathbf{L a b})
$$

$$
\begin{aligned}
\operatorname{flow}\left([\text { skip }]^{\ell}\right) & =\emptyset \\
\operatorname{flow}\left([\text { stop }]^{\ell}\right) & =\{\langle\ell, 1, \ell\rangle\} \\
\operatorname{llow}\left([\mathrm{x}:=e]^{\ell}\right) & =\emptyset \\
\operatorname{flow}\left(\left[\mathrm{x} ?=e e^{\ell}\right)\right. & =\emptyset \\
\operatorname{flow}\left(S_{1} ; S_{2}\right) & =\text { flow }\left(S_{1}\right) \cup \text { flow }\left(S_{2}\right) \cup \\
& \cup\left\{\left(\ell, 1, \text { init }\left(S_{2}\right)\right) \mid \ell \in \operatorname{final}\left(S_{1}\right)\right\}
\end{aligned}
$$

Flow II — Control Transfer

flow $\left(\right.$ choose $^{\ell} p_{1}: S_{1}$ or $\left.p_{2}: S_{2}\right)=$ flow $\left(S_{1}\right) \cup$ flow $\left(S_{2}\right) \cup$
$\cup \quad\left\{\left(\ell, p_{1}, \operatorname{init}\left(S_{1}\right)\right),\left(\ell, p_{2}, \operatorname{init}\left(S_{2}\right)\right)\right\}$
flow $\left(\right.$ if $[b]^{\ell}$ then S_{1} else $\left.S_{2}\right)=\operatorname{flow}\left(S_{1}\right) \cup \operatorname{flow}\left(S_{2}\right) \cup$
$\cup\left\{\left(\ell, 1, \operatorname{init}\left(S_{1}\right)\right),\left(\ell, 1, \operatorname{init}\left(S_{2}\right)\right)\right\}$
flow $\left(\right.$ while $[b]^{\ell}$ do $\left.S\right)=f l o w(S) \cup$
$\cup\{(\ell, 1, \operatorname{init}(S))\}$
$\cup \quad\left\{\left(\ell^{\prime}, 1, \ell\right) \mid \ell^{\prime} \in \operatorname{final}(S)\right\}$

A Linear Operator Semantics (LOS) based on flow

Using the flow(S) we construct a linear operator/matrix/DTMC generator in a compositional way, essentially as:

$$
\mathbf{T}(S)=\sum_{\left\langle i, p_{i j}, j\right\rangle \in \operatorname{flow}(S)} p_{i j} \cdot \mathbf{T}\left(\left\langle\ell_{i}, p_{i j}, \ell_{j}\right\rangle\right),
$$

where

A Linear Operator Semantics (LOS) based on flow

Using the flow(S) we construct a linear operator/matrix/DTMC generator in a compositional way, essentially as:

$$
\mathbf{T}(S)=\sum_{\left\langle i, p_{i j}, j\right\rangle \in \operatorname{flow}(S)} p_{i j} \cdot \mathbf{T}\left(\left\langle\ell_{i}, p_{i j}, \ell_{j}\right\rangle\right),
$$

where

$$
\mathbf{T}\left(\left\langle\ell_{i}, p_{i j}, \ell_{j}\right\rangle\right)=\mathbf{N}_{\ell_{i}} \otimes \mathbf{E}\left(\ell_{i}, \ell_{j}\right)
$$

A Linear Operator Semantics (LOS) based on flow

Using the flow (S) we construct a linear operator/matrix/DTMC generator in a compositional way, essentially as:

$$
\mathbf{T}(S)=\sum_{\left.\left\langle i, p_{i j},\right\rangle\right\rangle \in f l o w(S)} p_{i j} \cdot \mathbf{T}\left(\left\langle\ell_{i}, p_{i j}, \ell_{j}\right\rangle\right),
$$

where

$$
\mathbf{T}\left(\left\langle\ell_{i}, p_{i j}, \ell_{j}\right\rangle\right)=\mathbf{N}_{\ell_{i}} \otimes \mathbf{E}\left(\ell_{i}, \ell_{j}\right),
$$

With $\mathbf{N}_{\ell_{1}}$ the operator representing a state update (change of variable values) at the block with label ℓ_{i} and the second factor implementing the transfer of control from label ℓ_{i} to label ℓ_{j}.

Transfer Operators [Provided in Exam]

For all the blocks in S we have transfer operators which change the state and (then/simultanously) perform a control transfer to another bloc/ or program points:

$$
\begin{aligned}
\mathbf{T}\left(\left\langle\ell_{1}, p, \ell_{2}\right\rangle\right) & =\mathbf{I} \otimes \mathbf{E}\left(\ell_{1}, \ell_{2}\right) \\
\mathbf{T}\left(\left\langle\ell_{1}, p, \ell_{2}\right\rangle\right) & =\mathbf{U}(\mathrm{x} \leftarrow a) \otimes \mathbf{E}\left(\ell_{1}, \ell_{2}\right) \\
\mathbf{T}\left(\left\langle\ell_{1}, p, \ell_{2}\right\rangle\right) & =\sum_{i \in r} \frac{1}{\mid r} \mathbf{U}(\mathrm{x} \leftarrow i) \otimes \mathbf{E}\left(\ell_{1}, \ell_{2}\right) \\
\mathbf{T}\left(\left\langle\ell, p, \ell_{t}\right\rangle\right) & =\mathbf{P}(b=\operatorname{true}) \otimes \mathbf{E}\left(\ell, \ell_{t}\right) \\
\mathbf{T}\left(\left\langle\ell, p, \ell_{f}\right\rangle\right) & =\mathbf{P}(b=\text { false }) \otimes \mathbf{E}\left(\ell, \ell_{f}\right) \\
\mathbf{T}\left(\left\langle\ell, p_{k}, \ell_{k}\right\rangle\right) & =\mathbf{I} \otimes \mathbf{E}\left(\ell, \ell_{k}\right) \\
\mathbf{T}(\langle\ell, p, \ell\rangle & =\mathbf{I} \otimes \mathbf{E}(\ell, \ell)
\end{aligned}
$$

For $[b]^{\ell}$ the label ℓ_{t} denotes the label to the 'true' situation (e.g. then branch) and ℓ_{f} the situation where b is 'false'.

In the case of a choose statement the different alternatives are labeled with (initial) label ℓ_{k}.

Tests and Filters

Select a value $c \in$ Value $_{k}$ for variable x_{k} (with $k=1, \ldots, v$):

$$
(\mathbf{P}(c))_{i j}= \begin{cases}1 & \text { if } i=c=j \\ 0 & \text { otherwise }\end{cases}
$$

Tests and Filters

Select a value $c \in$ Value $_{k}$ for variable x_{k} (with $k=1, \ldots, v$):

$$
(\mathbf{P}(c))_{i j}= \begin{cases}1 & \text { if } i=c=j \\ 0 & \text { otherwise }\end{cases}
$$

Select a certain classical state $\sigma \in$ State $=$ Value v :

$$
\mathbf{P}(\sigma)=\bigotimes_{i=1}^{v} \mathbf{P}\left(\sigma\left(x_{i}\right)\right)
$$

Tests and Filters

Select a value $c \in$ Value $_{k}$ for variable x_{k} (with $k=1, \ldots, v$):

$$
(\mathbf{P}(c))_{i j}= \begin{cases}1 & \text { if } i=c=j \\ 0 & \text { otherwise }\end{cases}
$$

Select a certain classical state $\sigma \in$ State $=$ Value v :

$$
\mathbf{P}(\sigma)=\bigotimes_{i=1}^{v} \mathbf{P}\left(\sigma\left(x_{i}\right)\right)
$$

Select states where expression $e=a \mid b$ evaluates to c :

$$
\mathbf{P}(e=c)=\sum_{\mathcal{E}(e) \sigma=c} \mathbf{P}(\sigma)
$$

Updates

Modify the value of variable x_{k} to a constant $c \in$ Value $_{k}$:

$$
(\mathbf{U}(c))_{i j}= \begin{cases}1 & \text { if } j=c \\ 0 & \text { otherwise. }\end{cases}
$$

Updates

Modify the value of variable x_{k} to a constant $c \in$ Value $_{k}$:

$$
(\mathbf{U}(c))_{i j}= \begin{cases}1 & \text { if } j=c \\ 0 & \text { otherwise }\end{cases}
$$

Set value of variable $x_{k} \in$ Var to constant $c \in$ Value:

$$
\mathbf{U}\left(\mathrm{x}_{k} \leftarrow c\right)=\left(\bigotimes_{i=1}^{k-1} \mathbf{I}\right) \otimes \mathbf{U}(c) \otimes\left(\bigotimes_{i=k+1}^{v} \mathbf{I}\right)
$$

Updates

Modify the value of variable x_{k} to a constant $c \in$ Value $_{k}$:

$$
(\mathbf{U}(c))_{i j}= \begin{cases}1 & \text { if } j=c \\ 0 & \text { otherwise. }\end{cases}
$$

Set value of variable $x_{k} \in$ Var to constant $c \in$ Value:

$$
\mathbf{U}\left(\mathrm{x}_{k} \leftarrow c\right)=\left(\bigotimes_{i=1}^{k-1} \mathbf{I}\right) \otimes \mathbf{U}(c) \otimes\left(\bigotimes_{i=k+1}^{v} \mathbf{I}\right)
$$

Set value of variable $\mathrm{x}_{k} \in$ Var to value given by $e=a \mid b$:

$$
\mathbf{U}\left(\mathrm{x}_{k} \leftarrow e\right)=\sum_{c} \mathbf{P}(e=c) \mathbf{U}\left(\mathrm{x}_{k} \leftarrow c\right)
$$

An Example

$$
\begin{aligned}
& \text { if }[\mathrm{x}==0]^{1} \text { then } \\
& {[x \leftarrow 0]^{2} ;}
\end{aligned}
$$

else

$$
[x \leftarrow 1]^{3} ;
$$

end if; [stop] ${ }^{4}$

An Example

if $[\mathrm{x}==0]^{1}$ then $[x \leftarrow 0]^{2} ;$
else

$$
[x \leftarrow 1]^{3} ;
$$

end if; [stop] ${ }^{4}$
$\mathbf{T}(S)=\mathbf{P}(\mathrm{x}=0) \otimes \mathbf{E}(1,2)+$ $+\mathbf{P}(x \neq 0) \otimes \mathbf{E}(1,3)+$ $+\mathbf{U}(x \leftarrow 0) \otimes \mathbf{E}(2,4)+$ $+\mathbf{U}(x \leftarrow 1) \otimes \mathbf{E}(3,4)+$
$+\mathbf{I} \otimes \mathbf{E}(4,4)$

An Example

$$
\begin{aligned}
\mathbf{T}(S) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes \mathbf{E}(1,2)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \otimes \mathbf{E}(1,3)+ \\
& +\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) \otimes \mathbf{E}(2,3)\right)+\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right) \otimes \mathbf{E}(3,4)\right)+ \\
& +(\mathbf{I} \otimes \mathbf{E}(4,4))
\end{aligned}
$$

An Example

$$
\begin{aligned}
& \mathbf{T}(S)=\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right) \\
& +\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right) \\
& +\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) \otimes\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right) \\
& +\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\right) \\
& +\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right)
\end{aligned}
$$

LOS and DTMC

We can compare this $\mathbf{T}(S)$ with the directly extracted operator, and indeed the two coincide.

$$
\left.\begin{array}{cc|cccccccc}
\left\langle x \mapsto 0,[\mathbf{x}==0]^{1}\right\rangle & \ldots \\
\left\langle x \mapsto 0,[\mathbf{x}:=0]^{2}\right\rangle & \cdots \\
\left\langle x \mapsto 0,[\mathbf{x}:=1]^{3}\right\rangle & \cdots \\
\left\langle x \mapsto 0,[\text { stop }]^{4}\right\rangle & \cdots \\
\langle x & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\left\langle x \mapsto 1,[\mathbf{x}==0]^{1}\right\rangle & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\langle x & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\left\langle x \mapsto 1,[\mathbf{x}:=0]^{2}\right\rangle & \cdots \\
\left\langle x \mapsto 1,[\mathbf{x}=1]^{3}\right\rangle & \ldots \\
\langle x & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Factorial

Consider the program F for calculating the factorial of n :

```
var
    m : {0..2};
        n : {0..2};
begin
m := 1;
while (n>1) do
        m := m*n;
        n := n-1;
od;
stop; # looping
end
```


Control Flow and LOS for F

flow $(F)=\{(1,1,2),(2,1,3),(3,1,4),(4,1,2),(2,1,5),(5,1,5)\}$

Control Flow and LOS for F

$\operatorname{flow}(F)=\{(1,1,2),(2,1,3),(3,1,4),(4,1,2),(2,1,5),(5,1,5)\}$

$$
\begin{aligned}
\mathbf{T}(F)= & \mathbf{U}(m \leftarrow 1) \otimes \mathbf{E}(1,2)+ \\
& \mathbf{P}((n>1)) \otimes \mathbf{E}(2,3)+ \\
& \mathbf{U}(m \leftarrow(m * n)) \otimes \mathbf{E}(3,4)+ \\
& \mathbf{U}(n \leftarrow(n-1)) \otimes \mathbf{E}(4,2)+ \\
& \mathbf{P}((n<=1)) \otimes \mathbf{E}(2,5)+ \\
& \mathbf{I} \otimes \mathbf{E}(5,5)
\end{aligned}
$$

Introducing PAI

The matrix $\mathbf{T}(F)$ is very big already for small n.

n	$\operatorname{dim}(\mathbf{T}(F))$
2	45×45
3	140×140
4	625×625
5	3630×3630
6	25235×25235
7	201640×201640
8	1814445×1814445
9	18144050×18144050

We will show how we can drastically reduce the dimension of the LOS by using Probabilistic Abstract Interpretation.

Galois Connections

Definition

Let $\mathcal{C}=\left(\mathcal{C}, \leq_{\mathcal{C}}\right)$ and $\mathcal{D}=\left(\mathcal{D}, \leq_{\mathcal{D}}\right)$ be two partially ordered sets with two order-preserving functions $\alpha: \mathcal{C} \mapsto \mathcal{D}$ and $\gamma: \mathcal{D} \mapsto \mathcal{C}$. Then $(\mathcal{C}, \alpha, \gamma, \mathcal{D})$ form a Galois connection iff
(i) $\alpha \circ \gamma$ is reductive i.e. $\forall d \in \mathcal{D}, \alpha \circ \gamma(d) \leq_{\mathcal{D}} d$,
(ii) $\gamma \circ \alpha$ is extensive i.e. $\forall \boldsymbol{c} \in \mathcal{C}, \boldsymbol{c} \leq_{\mathcal{C}} \gamma \circ \alpha(c)$.

Galois Connections

Definition

Let $\mathcal{C}=\left(\mathcal{C}, \leq_{\mathcal{C}}\right)$ and $\mathcal{D}=\left(\mathcal{D}, \leq_{\mathcal{D}}\right)$ be two partially ordered sets with two order-preserving functions $\alpha: \mathcal{C} \mapsto \mathcal{D}$ and $\gamma: \mathcal{D} \mapsto \mathcal{C}$. Then $(\mathcal{C}, \alpha, \gamma, \mathcal{D})$ form a Galois connection iff
(i) $\alpha \circ \gamma$ is reductive i.e. $\forall d \in \mathcal{D}, \alpha \circ \gamma(d) \leq_{\mathcal{D}} d$,
(ii) $\gamma \circ \alpha$ is extensive i.e. $\forall \boldsymbol{c} \in \mathcal{C}, \boldsymbol{c} \leq_{\mathcal{C}} \gamma \circ \alpha(\boldsymbol{c})$.

Proposition

Let $(\mathcal{C}, \alpha, \gamma, \mathcal{D})$ be a Galois connection. Then α and γ are quasi-inverse, i.e.

$$
\text { (i) } \alpha \circ \gamma \circ \alpha=\alpha \quad \text { and } \quad \text { (ii) } \gamma \circ \alpha \circ \gamma=\gamma
$$

General Construction

The general construction of correct (and optimal) abstractions $f \#$ of concrete function f is as follows:

General Construction

The general construction of correct (and optimal) abstractions $f \#$ of concrete function f is as follows:

General Construction

The general construction of correct (and optimal) abstractions $f \#$ of concrete function f is as follows:

Correct approximation:

$$
\alpha^{\prime} \circ f \leq_{\#} f^{\#} \circ \alpha
$$

General Construction

The general construction of correct (and optimal) abstractions $f \#$ of concrete function f is as follows:

Correct approximation:

$$
\alpha^{\prime} \circ f \leq_{\#} f^{\#} \circ \alpha
$$

Induced semantics:

$$
f^{\#}=\alpha^{\prime} \circ f \circ \gamma
$$

Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which represents the distributions $\operatorname{Dist}($ State $) \subseteq \mathcal{V}$ (State) on the state space State of a probabilistic transition system, i.e. for finite state spaces

Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which represents the distributions $\operatorname{Dist}($ State $) \subseteq \mathcal{V}$ (State) on the state space State of a probabilistic transition system, i.e. for finite state spaces

$$
\mathcal{V}(\text { State })=\left\{\left(v_{s}\right)_{s \in \text { State }} \mid v_{s} \in \mathbb{R}\right\} .
$$

Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which represents the distributions $\operatorname{Dist}($ State $) \subseteq \mathcal{V}$ (State) on the state space State of a probabilistic transition system, i.e. for finite state spaces

$$
\mathcal{V}(\text { State })=\left\{\left(v_{s}\right)_{s \in \text { State }} \mid v_{s} \in \mathbb{R}\right\} .
$$

In the infinite setting we can identify \mathcal{V} (State) with the Hilbert space ℓ^{2} (State).

Probabilistic Abstraction Domains

A probabilistic domain is essentially a vector space which represents the distributions $\operatorname{Dist}($ State $) \subseteq \mathcal{V}$ (State) on the state space State of a probabilistic transition system, i.e. for finite state spaces

$$
\mathcal{V}(\text { State })=\left\{\left(v_{s}\right)_{s \in \text { State }} \mid v_{s} \in \mathbb{R}\right\}
$$

In the infinite setting we can identify \mathcal{V} (State) with the Hilbert space ℓ^{2} (State).

The notion of norm (distance) is essential for our treatment; we will consider normed vector spaces.

Moore-Penrose Generalised Inverse

Definition
Let \mathcal{C} and \mathcal{D} be two (finite-dimensional) vector (Hilbert) spaces and $\mathbf{A}: \mathcal{C} \rightarrow \mathcal{D}$ a linear map. Then the linear map
$\mathbf{A}^{\dagger}=\mathbf{G}: \mathcal{D} \rightarrow \mathcal{C}$ is the Moore-Penrose pseudo-inverse of \mathbf{A} iff
(i) $\mathbf{A} \circ \mathbf{G}=\mathbf{P}_{A}$,
(ii) $\mathbf{G} \circ \mathbf{A}=\mathbf{P}_{G}$,
where \mathbf{P}_{A} and \mathbf{P}_{G} denote orthogonal projections onto the ranges of \mathbf{A} and \mathbf{G}.

(Orthogonal) Projections - Idempotents [Not for Exam]

On finite dimensional vector (Hilbert) spaces we have an inner product $\langle.,$.$\rangle , standard$

$$
\langle x, y\rangle=\left\langle\left(x_{i}\right)_{i},\left(y_{i}\right)_{i}\right\rangle=\sum_{i} x_{i} y_{i}
$$

This measures some kind of similarity of vectors but also allows to define a norm:

$$
\|x\|_{2}=\sqrt{\langle x, x\rangle}
$$

It also allows us to define an adjoint via:

$$
\langle\mathbf{A}(x), y\rangle=\left\langle x, \mathbf{A}^{*}(y)\right\rangle
$$

(Orthogonal) Projections - Idempotents [Not for Exam]

On finite dimensional vector (Hilbert) spaces we have an inner product $\langle.,$.$\rangle , standard$

$$
\langle x, y\rangle=\left\langle\left(x_{i}\right)_{i},\left(y_{i}\right)_{i}\right\rangle=\sum_{i} x_{i} y_{i}
$$

This measures some kind of similarity of vectors but also allows to define a norm:

$$
\|x\|_{2}=\sqrt{\langle x, x\rangle}
$$

It also allows us to define an adjoint via:

$$
\langle\mathbf{A}(x), y\rangle=\left\langle x, \mathbf{A}^{*}(y)\right\rangle
$$

(Orthogonal) Projections - Idempotents [Not for Exam]

On finite dimensional vector (Hilbert) spaces we have an inner product $\langle.,$.$\rangle , standard$

$$
\langle x, y\rangle=\left\langle\left(x_{i}\right)_{i},\left(y_{i}\right)_{i}\right\rangle=\sum_{i} x_{i} y_{i}
$$

This measures some kind of similarity of vectors but also allows to define a norm:

$$
\|x\|_{2}=\sqrt{\langle x, x\rangle}
$$

It also allows us to define an adjoint via:

$$
\langle\mathbf{A}(x), y\rangle=\left\langle x, \mathbf{A}^{*}(y)\right\rangle
$$

- An operator \mathbf{A} is self-adjoint if $\mathbf{A}=\mathbf{A}^{*}$.

(Orthogonal) Projections - Idempotents [Not for Exam]

On finite dimensional vector (Hilbert) spaces we have an inner product $\langle.,$.$\rangle , standard$

$$
\langle x, y\rangle=\left\langle\left(x_{i}\right)_{i},\left(y_{i}\right)_{i}\right\rangle=\sum_{i} x_{i} y_{i}
$$

This measures some kind of similarity of vectors but also allows to define a norm:

$$
\|x\|_{2}=\sqrt{\langle x, x\rangle}
$$

It also allows us to define an adjoint via:

$$
\langle\mathbf{A}(x), y\rangle=\left\langle x, \mathbf{A}^{*}(y)\right\rangle
$$

- An operator \mathbf{A} is self-adjoint if $\mathbf{A}=\mathbf{A}^{*}$.
- An (orthogonal) projection is a self-adjoint \mathbf{E} with $\mathbf{E E}=\mathbf{E}$.

Norm and Distance [Not for Exam]

A norm on a vector space \mathcal{V} is a map $\|\cdot\|: \mathcal{V} \mapsto \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

Norm and Distance [Not for Exam]

A norm on a vector space \mathcal{V} is a map $\|\cdot\|: \mathcal{V} \mapsto \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\|v\| \geq 0$,

Norm and Distance [Not for Exam]

A norm on a vector space \mathcal{V} is a map $\|\cdot\|: \mathcal{V} \mapsto \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\|v\| \geq 0$,
- $\|v\|=0 \Leftrightarrow v=0$,

Norm and Distance [Not for Exam]

A norm on a vector space \mathcal{V} is a map $\|\cdot\|: \mathcal{V} \mapsto \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\|v\| \geq 0$,
- $\|v\|=0 \Leftrightarrow v=o$,
- $\|c v\|=|c|\|v\|$,

Norm and Distance [Not for Exam]

A norm on a vector space \mathcal{V} is a map $\|\cdot\|: \mathcal{V} \mapsto \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\|v\| \geq 0$,
- $\|v\|=0 \Leftrightarrow v=0$,
- $\|c v\|=|c|\|v\|$,
- $\|v+w\| \leq\|v\|+\|w\|$,

Norm and Distance [Not for Exam]

A norm on a vector space \mathcal{V} is a map $\|\cdot\|: \mathcal{V} \mapsto \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\|v\| \geq 0$,
- $\|v\|=0 \Leftrightarrow v=o$,
- $\|c v\|=|c|\|v\|$,
- $\|v+w\| \leq\|v\|+\|w\|$,
with $o \in \mathcal{V}$ the zero vector.

Norm and Distance [Not for Exam]

A norm on a vector space \mathcal{V} is a map $\|\cdot\|: \mathcal{V} \mapsto \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\|v\| \geq 0$,
- $\|v\|=0 \Leftrightarrow v=0$,
- $\|c v\|=|c|\|v\|$,
- $\|v+w\| \leq\|v\|+\|w\|$,
with $o \in \mathcal{V}$ the zero vector.
We can always use a norm to define a metric topology on a vector space via the distance function $d(v, w)=\|v-w\|$.

Norm and Distance [Not for Exam]

A norm on a vector space \mathcal{V} is a map $\|\|:. \mathcal{V} \mapsto \mathbb{R}$ such that for all $v, w \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\|v\| \geq 0$,
- $\|v\|=0 \Leftrightarrow v=0$,
- $\|c v\|=|c|\|v\|$,
- $\|v+w\| \leq\|v\|+\|w\|$,
with $o \in \mathcal{V}$ the zero vector.
We can always use a norm to define a metric topology on a vector space via the distance function $d(v, w)=\|v-w\|$.

Note: The structural similarities between distances and partial orders can be made precise (cf. Category Theory).

Least Squares Solutions

Corollary

Let \mathbf{P} be a orthogonal projection on a finite dimensional vector space \mathcal{V}. Then for any $\mathbf{x} \in \mathcal{V}, \mathbf{P}(\mathbf{x})=\mathbf{x P}$ is the unique closest vector in \mathcal{V} to \mathbf{x} wrt to the Euclidean norm $\|.\|_{2}$.

Least Squares Solutions

Corollary

Let \mathbf{P} be a orthogonal projection on a finite dimensional vector space \mathcal{V}. Then for any $\mathbf{x} \in \mathcal{V}, \mathbf{P}(\mathbf{x})=\mathbf{x P}$ is the unique closest vector in \mathcal{V} to \mathbf{x} wrt to the Euclidean norm $\|.\|_{2}$.

Definition
Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. Then $\mathbf{u} \in \mathbb{R}^{n}$ is called a least squares solution to $\mathbf{A x}=\mathbf{b}$ if

$$
\|\mathbf{A} \mathbf{u}-\mathbf{b}\| \leq\|\mathbf{A} \mathbf{v}-\mathbf{b}\|, \text { for all } \mathbf{v} \in \mathbb{R}^{n} .
$$

Least Squares Solutions

Corollary

Let \mathbf{P} be a orthogonal projection on a finite dimensional vector space \mathcal{V}. Then for any $\mathbf{x} \in \mathcal{V}, \mathbf{P}(\mathbf{x})=\mathbf{x P}$ is the unique closest vector in \mathcal{V} to \mathbf{x} wrt to the Euclidean norm $\|.\|_{2}$.

Definition
Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. Then $\mathbf{u} \in \mathbb{R}^{n}$ is called a least squares solution to $\mathbf{A x}=\mathbf{b}$ if

$$
\|\mathbf{A u}-\mathbf{b}\| \leq\|\mathbf{A} \mathbf{v}-\mathbf{b}\|, \text { for all } \mathbf{v} \in \mathbb{R}^{n} .
$$

Theorem
Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. Then $\mathbf{A}^{\dagger} \mathbf{b}$ is the minimal least squares solution to $\mathbf{A x}=\mathbf{b}$.

Vector Space Lifting

Free vector space construction on a set S :

$$
\mathcal{V}(S)=\left\{\sum x_{s} s \mid x_{s} \in \mathbb{R}, s \in S\right\}
$$

Vector Space Lifting

Free vector space construction on a set S :

$$
\mathcal{V}(S)=\left\{\sum x_{s} s \mid x_{s} \in \mathbb{R}, s \in S\right\}
$$

An obvious way to lift an extraction function to a linear map between vector spaces is to construct the free vector spaces on \mathcal{C} and \mathcal{D} and define:

Vector Space Lifting

Free vector space construction on a set S :

$$
\mathcal{V}(S)=\left\{\sum x_{s} s \mid x_{s} \in \mathbb{R}, s \in S\right\}
$$

An obvious way to lift an extraction function to a linear map between vector spaces is to construct the free vector spaces on \mathcal{C} and \mathcal{D} and define:

Vector Space lifting: $\vec{\alpha}: \mathcal{V}(\mathcal{C}) \rightarrow \mathcal{V}(\mathcal{D})$

$$
\vec{\alpha}\left(p_{1} \cdot \vec{c}_{1}+p_{2} \cdot \vec{c}_{2}+\ldots\right)=p_{i} \cdot \alpha\left(c_{1}\right)+p_{2} \cdot \alpha\left(c_{2}\right) \ldots
$$

Vector Space Lifting

Free vector space construction on a set S :

$$
\mathcal{V}(S)=\left\{\sum x_{s} s \mid x_{s} \in \mathbb{R}, s \in S\right\}
$$

An obvious way to lift an extraction function to a linear map between vector spaces is to construct the free vector spaces on \mathcal{C} and \mathcal{D} and define:

Vector Space lifting: $\vec{\alpha}: \mathcal{V}(\mathcal{C}) \rightarrow \mathcal{V}(\mathcal{D})$

$$
\vec{\alpha}\left(p_{1} \cdot \vec{c}_{1}+p_{2} \cdot \vec{c}_{2}+\ldots\right)=p_{i} \cdot \alpha\left(c_{1}\right)+p_{2} \cdot \alpha\left(c_{2}\right) \ldots
$$

Support Set: supp : $\mathcal{V}(\mathcal{C}) \rightarrow \mathcal{P}(\mathcal{C})$

$$
\operatorname{supp}(\vec{x})=\left\{c_{i} \mid\left\langle c_{i}, p_{i}\right\rangle \in \vec{x} \text { and } p_{i} \neq 0\right\}
$$

Relation with Classical Abstractions

Lemma
Let $\vec{\alpha}$ be a probabilistic abstraction function and let $\vec{\gamma}$ be its Moore-Penrose pseudo-inverse.

Then $\vec{\gamma} \circ \vec{\alpha}$ is extensive with respect to the inclusion on the support sets of vectors in $\mathcal{V}(\mathcal{C})$, i.e. $\forall \vec{x} \in \mathcal{V}(\mathcal{C})$,

$$
\operatorname{supp}(\vec{x}) \subseteq \operatorname{supp}(\vec{\gamma} \circ \vec{\alpha}(\vec{x}))
$$

Relation with Classical Abstractions

Lemma
Let $\vec{\alpha}$ be a probabilistic abstraction function and let $\vec{\gamma}$ be its Moore-Penrose pseudo-inverse.

Then $\vec{\gamma} \circ \vec{\alpha}$ is extensive with respect to the inclusion on the support sets of vectors in $\mathcal{V}(\mathcal{C})$, i.e. $\forall \vec{x} \in \mathcal{V}(\mathcal{C})$,

$$
\boldsymbol{\operatorname { s u p p }}(\vec{x}) \subseteq \boldsymbol{\operatorname { s u p p }}(\vec{\gamma} \circ \vec{\alpha}(\vec{x})) .
$$

Analogously we can show that $\vec{\alpha} \circ \vec{\gamma}$ is reductive. Therefore,

Relation with Classical Abstractions

Lemma

Let $\vec{\alpha}$ be a probabilistic abstraction function and let $\vec{\gamma}$ be its Moore-Penrose pseudo-inverse.

Then $\vec{\gamma} \circ \vec{\alpha}$ is extensive with respect to the inclusion on the support sets of vectors in $\mathcal{V}(\mathcal{C})$, i.e. $\forall \vec{x} \in \mathcal{V}(\mathcal{C})$,

$$
\operatorname{supp}(\vec{x}) \subseteq \operatorname{supp}(\vec{\gamma} \circ \vec{\alpha}(\vec{x}))
$$

Analogously we can show that $\vec{\alpha} \circ \vec{\gamma}$ is reductive. Therefore, Proposition
$(\vec{\alpha}, \vec{\gamma})$ form a Galois connection wrt the support sets of $\mathcal{V}(\mathcal{C})$ and $\mathcal{V}(\mathcal{D})$, ordered by inclusion.

Examples of Lifted Abstractions

Parity Abstraction operator on $\mathcal{V}(\{1, \ldots, n\})$ (with n even):

$$
\mathbf{A}_{p}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{array}\right)
$$

Examples of Lifted Abstractions

Parity Abstraction operator on $\mathcal{V}(\{1, \ldots, n\})$ (with n even):

$$
\mathbf{A}_{p}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{array}\right) \quad \mathbf{A}_{p}^{\dagger}=\left(\begin{array}{cccccc}
\frac{2}{n} & 0 & \frac{2}{n} & 0 & \ldots & 0 \\
0 & \frac{2}{n} & 0 & \frac{2}{n} & \ldots & \frac{2}{n}
\end{array}\right)
$$

Examples of Lifted Abstractions

Sign Abstraction operator on $\mathcal{V}(\{-n, \ldots, 0, \ldots, n\})$:

$$
\mathbf{A}_{s}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\vdots & \vdots & \vdots \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\vdots & \vdots & \vdots \\
0 & 0 & 1
\end{array}\right)
$$

Examples of Lifted Abstractions

Sign Abstraction operator on $\mathcal{V}(\{-n, \ldots, 0, \ldots, n\})$:

$$
\mathbf{A}_{s}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\vdots & \vdots & \vdots \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \mathbf{A}_{s}^{\dagger}=\left(\begin{array}{ccccccc}
\frac{1}{n} & \ldots & \frac{1}{n} & 0 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & \frac{1}{n} & \ldots & \frac{1}{n}
\end{array}\right)
$$

Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on $[a, b]$.

Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on $[a, b]$. The set of (real-valued) step-function \mathcal{T}_{n} is based on the sub-division of the interval into n sub-intervals.

Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on $[a, b]$. The set of (real-valued) step-function \mathcal{T}_{n} is based on the sub-division of the interval into n sub-intervals.

Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on $[a, b]$. The set of (real-valued) step-function \mathcal{T}_{n} is based on the sub-division of the interval into n sub-intervals.

Each step function in \mathcal{T}_{n} corresponds to a vector in \mathbb{R}^{n}, e.g.

Example: Function Approximation (ctd.)

Concrete and abstract domain are step-functions on $[a, b]$. The set of (real-valued) step-function \mathcal{T}_{n} is based on the sub-division of the interval into n sub-intervals.

Each step function in \mathcal{T}_{n} corresponds to a vector in \mathbb{R}^{n}, e.g.

$$
\left(\begin{array}{llllllllllllllll}
5 & 5 & 6 & 7 & 8 & 4 & 3 & 2 & 8 & 6 & 6 & 7 & 9 & 8 & 8 & 7
\end{array}\right)
$$

Example: Abstraction Matrices

$$
\mathbf{A}_{8}=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Example: Abstraction Matrices

$$
\mathbf{G}_{8}=\left(\begin{array}{cccccccccccccccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

Approximation Estimates

Compute the least square error as

$$
\|f-f \mathbf{A} \mathbf{G}\| .
$$

Approximation Estimates

Compute the least square error as

$$
\|f-f \mathbf{A} \mathbf{G}\|
$$

$$
\begin{aligned}
\left\|f-f \mathbf{A}_{8} \mathbf{G}_{8}\right\| & =3.5355 \\
\left\|f-f \mathbf{A}_{4} \mathbf{G}_{4}\right\| & =5.3151 \\
\left\|f-f \mathbf{A}_{2} \mathbf{G}_{2}\right\| & =5.9896 \\
\left\|f-f \mathbf{A}_{1} \mathbf{G}_{1}\right\| & =7.6444
\end{aligned}
$$

Tensor Product Properties

The tensor product of n linear operators $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$ is associative (but in general not commutative) and has e.g. the following properties:

Tensor Product Properties

The tensor product of n linear operators $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$ is associative (but in general not commutative) and has e.g. the following properties:

$$
\text { 1. } \begin{gathered}
\left(\mathbf{A}_{1} \otimes \ldots \otimes \mathbf{A}_{n}\right) \cdot\left(\mathbf{B}_{1} \otimes \ldots \otimes \mathbf{B}_{n}\right)= \\
=\mathbf{A}_{1} \cdot \mathbf{B}_{1} \otimes \ldots \otimes \mathbf{A}_{n} \cdot \mathbf{B}_{n}
\end{gathered}
$$

Tensor Product Properties

The tensor product of n linear operators $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$ is associative (but in general not commutative) and has e.g. the following properties:

$$
\begin{aligned}
& \text { 1. }\left(\mathbf{A}_{1} \otimes \ldots \otimes \mathbf{A}_{n}\right) \cdot\left(\mathbf{B}_{1} \otimes \ldots \otimes \mathbf{B}_{n}\right)= \\
& =\mathbf{A}_{1} \cdot \mathbf{B}_{1} \otimes \ldots \otimes \mathbf{A}_{n} \cdot \mathbf{B}_{n} \\
& \text { 2. } \mathbf{A}_{1} \otimes \ldots \otimes\left(\alpha \mathbf{A}_{i}\right) \otimes \ldots \otimes \mathbf{A}_{n}= \\
& =\alpha\left(\mathbf{A}_{1} \otimes \ldots \otimes \mathbf{A}_{i} \otimes \ldots \otimes \mathbf{A}_{n}\right)
\end{aligned}
$$

Tensor Product Properties

The tensor product of n linear operators $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$ is associative (but in general not commutative) and has e.g. the following properties:

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
&\left(\mathbf{A}_{1}\right.\left.\otimes \ldots \otimes \mathbf{A}_{n}\right) \cdot\left(\mathbf{B}_{1} \otimes \ldots \otimes \mathbf{B}_{n}\right)= \\
& \quad=\mathbf{A}_{1} \cdot \mathbf{B}_{1} \otimes \ldots \otimes \mathbf{A}_{n} \cdot \mathbf{B}_{n} \\
& \text { 2. } \mathbf{A}_{1} \otimes \ldots \otimes\left(\alpha \mathbf{A}_{i}\right) \otimes \ldots \otimes \mathbf{A}_{n}= \\
&=\alpha\left(\mathbf{A}_{1} \otimes \ldots \otimes \mathbf{A}_{i} \otimes \ldots \otimes \mathbf{A}_{n}\right) \\
& \text { 3. } \mathbf{A}_{1} \otimes \ldots \otimes\left(\mathbf{A}_{i}+\mathbf{B}_{i}\right) \otimes \ldots \otimes \mathbf{A}_{n}= \\
& \quad=\left(\mathbf{A}_{1} \otimes \ldots \otimes \mathbf{A}_{i} \otimes \ldots \otimes \mathbf{A}_{n}\right)+\left(\mathbf{A}_{1} \otimes \ldots \otimes \mathbf{B}_{i} \otimes \ldots \otimes \mathbf{A}_{n}\right)
\end{aligned}
\end{aligned}
$$

Tensor Product Properties

The tensor product of n linear operators $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$ is associative (but in general not commutative) and has e.g. the following properties:

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
&\left(\mathbf{A}_{1}\right.\left.\otimes \ldots \otimes \mathbf{A}_{n}\right) \cdot\left(\mathbf{B}_{1} \otimes \ldots \otimes \mathbf{B}_{n}\right)= \\
& \quad=\mathbf{A}_{1} \cdot \mathbf{B}_{1} \otimes \ldots \otimes \mathbf{A}_{n} \cdot \mathbf{B}_{n} \\
& \text { 2. } \mathbf{A}_{1} \otimes \ldots \otimes\left(\alpha \mathbf{A}_{i}\right) \otimes \ldots \otimes \mathbf{A}_{n}= \\
&=\alpha\left(\mathbf{A}_{1} \otimes \ldots \otimes \mathbf{A}_{i} \otimes \ldots \otimes \mathbf{A}_{n}\right) \\
& \text { 3. } \mathbf{A}_{1} \otimes \ldots \otimes\left(\mathbf{A}_{i}+\mathbf{B}_{i}\right) \otimes \ldots \otimes \mathbf{A}_{n}= \\
& \quad=\left(\mathbf{A}_{1} \otimes \ldots \otimes \mathbf{A}_{i} \otimes \ldots \otimes \mathbf{A}_{n}\right)+\left(\mathbf{A}_{1} \otimes \ldots \otimes \mathbf{B}_{i} \otimes \ldots \otimes \mathbf{A}_{n}\right) \\
& \text { 4. }\left(\mathbf{A}_{1}\right.\left.\otimes \ldots \otimes \mathbf{A}_{i} \otimes \ldots \otimes \mathbf{A}_{n}\right)^{\dagger}= \\
& \quad=\mathbf{A}_{1}^{\dagger} \otimes \ldots \otimes \mathbf{A}_{i}^{\dagger} \otimes \ldots \otimes \mathbf{A}_{n}^{\dagger}
\end{aligned}
\end{aligned}
$$

Abstract Semantics

Moore-Penrose Pseudo-Inverse of a Tensor Product is:

$$
\left(\mathbf{A}_{1} \otimes \mathbf{A}_{2} \otimes \ldots \otimes \mathbf{A}_{n}\right)^{\dagger}=\mathbf{A}_{1}^{\dagger} \otimes \mathbf{A}_{2}^{\dagger} \otimes \ldots \otimes \mathbf{A}_{n}^{\dagger}
$$

Abstract Semantics

Moore-Penrose Pseudo-Inverse of a Tensor Product is:

$$
\left(\mathbf{A}_{1} \otimes \mathbf{A}_{2} \otimes \ldots \otimes \mathbf{A}_{n}\right)^{\dagger}=\mathbf{A}_{1}^{\dagger} \otimes \mathbf{A}_{2}^{\dagger} \otimes \ldots \otimes \mathbf{A}_{n}^{\dagger}
$$

Via linearity we can construct $\mathbf{T}^{\#}$ in the same way as \mathbf{T}, i.e

$$
\mathbf{T}^{\#}(P)=\sum_{\left\langle i, p_{i j}, j\right\rangle \in \mathcal{F}(P)} p_{i j} \cdot \mathbf{T}^{\#}\left(\ell_{i}, \ell_{j}\right)
$$

with local abstraction of individual variables:

$$
\mathbf{T}^{\#}\left(\ell_{i}, \ell_{j}\right)=\left(\mathbf{A}_{1}^{\dagger} \mathbf{N}_{i 1} \mathbf{A}_{1}\right) \otimes\left(\mathbf{A}_{2}^{\dagger} \mathbf{N}_{i 2} \mathbf{A}_{2}\right) \otimes \ldots \otimes\left(\mathbf{A}_{v}^{\dagger} \mathbf{N}_{i v} \mathbf{A}_{v}\right) \otimes \mathbf{M}_{i j}
$$

Argument [Not for Exam]

$$
\mathbf{T}^{\#}=\mathbf{A}^{\dagger} \mathbf{T} \mathbf{A}
$$

Argument [Not for Exam]

$$
\begin{aligned}
\mathbf{T}^{\#} & =\mathbf{A}^{\mathbf{A} \mathbf{T} \mathbf{A}} \\
& =\mathbf{A}^{\dagger}\left(\sum_{i, j} \mathbf{T}(i, j)\right) \mathbf{A}
\end{aligned}
$$

Argument [Not for Exam]

$$
\begin{aligned}
\mathbf{T}^{\#} & =\mathbf{A}^{\mathbf{A} \mathbf{T} \mathbf{A}} \\
& =\mathbf{A}^{\dagger}\left(\sum_{i, j} \mathbf{T}(i, j)\right) \mathbf{A} \\
& =\sum_{i, j} \mathbf{A}^{\dagger} \mathbf{T}(i, j) \mathbf{A}
\end{aligned}
$$

Argument [Not for Exam]

$$
\begin{aligned}
\mathbf{T}^{\#} & =\mathbf{A}^{\dagger} \mathbf{T} \mathbf{A} \\
& =\mathbf{A}^{\top}\left(\sum_{i, j} \mathbf{T}(i, j)\right) \mathbf{A} \\
& =\sum_{i, j} \mathbf{A}^{\dagger} \mathbf{T}(i, j) \mathbf{A} \\
& =\sum_{i, j}\left(\bigotimes_{k} \mathbf{A}_{k}\right)^{\dagger} \mathbf{T}(i, j)\left(\bigotimes_{k} \mathbf{A}_{k}\right)
\end{aligned}
$$

Argument [Not for Exam]

$$
\begin{aligned}
\mathbf{T}^{\#} & =\mathbf{A}^{\dagger} \mathbf{T} \mathbf{A} \\
& =\mathbf{A}^{\dagger}\left(\sum_{i, j} \mathbf{T}(i, j)\right) \mathbf{A} \\
& =\sum_{i, j} \mathbf{A}^{\dagger} \mathbf{T}(i, j) \mathbf{A} \\
& =\sum_{i, j}\left(\bigotimes_{k} \mathbf{A}_{k}\right)^{\dagger} \mathbf{T}(i, j)\left(\bigotimes_{k} \mathbf{A}_{k}\right) \\
& =\sum_{i, j}\left(\bigotimes_{k} \mathbf{A}_{k}\right)^{\dagger}\left(\bigotimes_{k} \mathbf{N}_{k j}\right)\left(\bigotimes_{k} \mathbf{A}_{k}\right)
\end{aligned}
$$

Argument [Not for Exam]

$$
\begin{aligned}
& \mathbf{T}^{\#}=\mathbf{A}^{\dagger} \mathbf{T} \mathbf{A} \\
& =\mathbf{A}^{\dagger}\left(\sum_{i, j} \mathbf{T}(i, j)\right) \mathbf{A} \\
& =\sum_{i, j} \mathbf{A}^{\dagger} \mathbf{T}(i, j) \mathbf{A} \\
& =\sum_{i, j}\left(\bigotimes_{k} \mathbf{A}_{k}{ }^{i} \mathbf{T}(i, j)\left(\bigotimes_{k} \mathbf{A}_{k}\right)\right. \\
& =\sum_{i, j}\left(\bigotimes_{k} \mathbf{A}_{k}\right)^{\dagger}\left(\bigotimes_{k} \mathbf{N}_{i k}\right)\left(\bigotimes_{k} \mathbf{A}_{k}\right) \\
& =\sum_{i, j} \bigotimes_{k}\left(\mathbf{A}_{k}^{\dagger} \mathbf{N}_{i k} \mathbf{A}_{k}\right)
\end{aligned}
$$

Parity Analysis

Determine at each program point whether a variable is even or odd.

Parity Analysis

Determine at each program point whether a variable is even or odd.
Parity Abstraction operator on $\mathcal{V}(\{0, \ldots, n\})$ (with n even):

$$
\mathbf{A}_{p}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{array}\right) \quad \mathbf{A}^{\dagger}=\left(\begin{array}{cccccc}
\frac{2}{n} & 0 & \frac{2}{n} & 0 & \ldots & 0 \\
0 & \frac{2}{n} & 0 & \frac{2}{n} & \ldots & \frac{2}{n}
\end{array}\right)
$$

Example

1: $[m \leftarrow i]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m \leftarrow m \times n]^{3}$;
4: $\quad[n \leftarrow n-1]^{4}$
5: end while
6: $[\text { stop }]^{5}$

Example

1: $[m \leftarrow i]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m \leftarrow m \times n]^{3}$;
4: $\quad[n \leftarrow n-1]^{4}$

5: end while

6: $[\text { stop }]^{5}$

$$
\mathbf{T}=\mathbf{U}(\mathrm{m} \leftarrow i) \otimes \mathbf{E}(1,2)
$$

$$
+\mathbf{P}(n>1) \otimes \mathbf{E}(2,3)
$$

$$
+\mathbf{P}(n \leq 1) \otimes \mathbf{E}(2,5)
$$

$$
+\mathbf{U}(m \leftarrow m \times n) \otimes \mathbf{E}(3,4)
$$

$$
+\mathbf{U}(\mathrm{n} \leftarrow n-1) \otimes \mathbf{E}(4,2)
$$

$+\mathbf{I} \otimes \mathbf{E}(5,5)$

Example

1: $[m \leftarrow i]^{1}$;
2: while $[n>1]^{2}$ do
3: $\quad[m \leftarrow m \times n]^{3}$;
4: $\quad[n \leftarrow n-1]^{4}$
5: end whi
6: $[\text { stop }]^{5}$

$$
\begin{aligned}
\mathbf{T}^{\#} & =\mathbf{U}^{\#}(\mathrm{~m} \leftarrow i) \otimes \mathbf{E}(1,2) \\
& +\mathbf{P}^{\#}(n>1) \otimes \mathbf{E}(2,3) \\
& +\mathbf{P}^{\#}(n \leq 1) \otimes \mathbf{E}(2,5) \\
& +\mathbf{U}^{\#}(\mathrm{~m} \leftarrow m \times n) \otimes \mathbf{E}(3,4) \\
& +\mathbf{U}^{\#}(\mathrm{n} \leftarrow n-1) \otimes \mathbf{E}(4,2) \\
& +\mathbf{I}^{\#} \otimes \mathbf{E}(5,5)
\end{aligned}
$$

Abstract Semantics

Abstraction: $\mathbf{A}=\mathbf{A}_{p} \otimes \mathbf{I}$, i.e. m abstract (parity) but n concrete.

$$
\begin{aligned}
\mathbf{T}^{\#} & =\mathbf{U}^{\#}(m \leftarrow 1) \otimes \mathbf{E}(1,2) \\
& +\mathbf{P}^{\#}(n>1) \otimes \mathbf{E}(2,3) \\
& +\mathbf{P}^{\#}(n \leq 1) \otimes \mathbf{E}(2,5) \\
& +\mathbf{U}^{\#}(m \leftarrow m \times n) \otimes \mathbf{E}(3,4) \\
& +\mathbf{U}^{\#}(n \leftarrow n-1) \otimes \mathbf{E}(4,2) \\
& +\mathbf{I}^{\#} \otimes \mathbf{E}(5,5)
\end{aligned}
$$

Abstract Semantics

$$
\begin{aligned}
& \mathbf{U}^{\#}(m \leftarrow 1)= \\
& \quad=\left(\begin{array}{cccccc}
0 & 1 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & & \ldots & 1
\end{array}\right)
\end{aligned}
$$

Abstract Semantics

$$
\begin{aligned}
& \mathbf{U}^{\#}(n \leftarrow n-1)= \\
& \quad=\left(\begin{array}{cccccc}
1 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \ldots \\
0 & 0 \\
0 & 1 & 0 & 0 & \ldots
\end{array}\right) \\
& 0
\end{aligned} 0
$$

Abstract Semantics

$$
\begin{aligned}
& \mathbf{P}^{\#}(n>1)= \\
& \quad=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
0 \\
0 & 0 & 0 & 1 & \ldots
\end{array}\right) \\
& \vdots
\end{aligned} \vdots
$$

Abstract Semantics

$$
\begin{aligned}
& \mathbf{P}^{\#}(n \leq 1)= \\
& \quad=\left(\begin{array}{cccccc}
1 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right)
\end{aligned}
$$

Abstract Semantics

$$
\begin{aligned}
& \mathbf{U}^{\#}(m \leftarrow m \times n)=\left(\begin{array}{lll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & \vdots
\end{array}\right)+ \\
& +\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & \ddots
\end{array}\right)+\left(\begin{array}{llllll}
0 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & \ddots
\end{array}\right)
\end{aligned}
$$

Implementation

Implementation of concrete and abstract semantics of Factorial using octave. Ranges: $n \in\{1, \ldots, d\}$ and $m \in\{1, \ldots, d!\}$.

Implementation

Implementation of concrete and abstract semantics of Factorial using octave. Ranges: $n \in\{1, \ldots, d\}$ and $m \in\{1, \ldots, d!\}$.

d	$\operatorname{dim}(\mathbf{T}(F))$	$\operatorname{dim}\left(\mathbf{T}^{\#}(F)\right)$
2	45	30
3	140	40
4	625	50
5	3630	60
6	25235	70
7	201640	80
8	1814445	90
9	18144050	100

Using uniform initial distributions \mathbf{d}_{0} for n and m.

Scalablity

The abstract probabilities for m being even or odd when we execute the abstract program for various d values are:

d	even	odd
10	0.81818	0.18182
100	0.98019	0.019802
1000	0.99800	0.0019980
10000	0.99980	0.00019998

Ortholattice of Projection Operators [Not for Exam]

Define a partial order on self-adjoint operators and projections as follows: $\mathbf{H} \sqsubseteq \mathbf{K}$ iff $\mathbf{K}-\mathbf{H}$ is positive, i.e. there exists a \mathbf{B} such that $\mathbf{K}-\mathbf{H}=\mathbf{B}^{*} \mathbf{B}$.

Ortholattice of Projection Operators [Not for Exam]

Define a partial order on self-adjoint operators and projections as follows: $\mathbf{H} \sqsubseteq \mathbf{K}$ iff $\mathbf{K}-\mathbf{H}$ is positive, i.e. there exists a \mathbf{B} such that $\mathbf{K}-\mathbf{H}=\mathbf{B}^{*} \mathbf{B}$.

Alternatively, order projections by inclusion of their image spaces, i.e. $\mathbf{E} \sqsubseteq \mathbf{F}$ iff $Y_{\mathbf{E}} \subseteq Y_{\mathbf{F}}$.

Ortholattice of Projection Operators [Not for Exam]

Define a partial order on self-adjoint operators and projections as follows: $\mathbf{H} \sqsubseteq \mathbf{K}$ iff $\mathbf{K}-\mathbf{H}$ is positive, i.e. there exists a \mathbf{B} such that $\mathbf{K}-\mathbf{H}=\mathbf{B}^{*} \mathbf{B}$.

Alternatively, order projections by inclusion of their image spaces, i.e. $\mathbf{E} \sqsubseteq \mathbf{F}$ iff $Y_{\mathbf{E}} \subseteq Y_{\mathbf{F}}$.

The orthogonal projections form a complete (ortho)lattice.
The range of the intersection $\mathbf{E} \sqcap \mathbf{F}$ is to the closure of the intersection of the image spaces of \mathbf{E} and \mathbf{F}.

The union $\mathbf{E} \sqcup \mathbf{F}$ corresponds to the union of the images.

Computing Intersections/Unions [Not for Exam]

Associate to every Probabilistic Abstract Interpretation (A, G) a projection, similar to so-called "upper closure operators" (uco):

$$
\mathbf{E}=\mathbf{A} \mathbf{G}=\mathbf{A A}^{\dagger}
$$

Computing Intersections/Unions [Not for Exam]

Associate to every Probabilistic Abstract Interpretation (A, G) a projection, similar to so-called "upper closure operators" (uco):

$$
\mathbf{E}=\mathbf{A G}=\mathbf{A A}^{\dagger}
$$

A general way to construct $\mathbf{E} \sqcap \mathbf{F}$ and (by exploiting de Morgan's law) also $\mathbf{E} \sqcup \mathbf{F}=\left(\mathbf{E}^{\perp} \sqcap \mathbf{F}^{\perp}\right)^{\perp}$ is via an infinite approximation sequence and has been suggested by Halmos:

$$
\mathbf{E} \sqcap \mathbf{F}=\lim _{n \rightarrow \infty}(\mathbf{E F E})^{n}
$$

Commutative Case [Not for Exam]

The concrete construction of $\mathbf{E} \sqcup \mathbf{F}$ and $\mathbf{E} \sqcap \mathbf{F}$ is in general not trivial. Only for commuting projections we have:

$$
\mathbf{E} \sqcup \mathbf{F}=\mathbf{E}+\mathbf{F}-\mathbf{E F} \text { and } \mathbf{E} \sqcap \mathbf{F}=\mathbf{E F} .
$$

Commutative Case [Not for Exam]

The concrete construction of $\mathbf{E} \sqcup \mathbf{F}$ and $\mathbf{E} \sqcap \mathbf{F}$ is in general not trivial. Only for commuting projections we have:

$$
\mathbf{E} \sqcup \mathbf{F}=\mathbf{E}+\mathbf{F}-\mathbf{E F} \text { and } \mathbf{E} \sqcap \mathbf{F}=\mathbf{E F} .
$$

Example

Consider a finite set Ω with a probability structure. For any (measurable) subset A of Ω define the characteristic function χ_{A} with $\chi_{A}(x)=1$ if $x \in A$ and 0 otherwise.

Commutative Case [Not for Exam]

The concrete construction of $\mathbf{E} \sqcup \mathbf{F}$ and $\mathbf{E} \sqcap \mathbf{F}$ is in general not trivial. Only for commuting projections we have:

$$
\mathbf{E} \sqcup \mathbf{F}=\mathbf{E}+\mathbf{F}-\mathbf{E F} \text { and } \mathbf{E} \sqcap \mathbf{F}=\mathbf{E F} .
$$

Example

Consider a finite set Ω with a probability structure. For any (measurable) subset A of Ω define the characteristic function χ_{A} with $\chi_{A}(x)=1$ if $x \in A$ and 0 otherwise. The characteristic functions are (commutative) projections on random variables using pointwise multiplication, i.e. $X_{\chi_{A} \chi_{A}}=X_{\chi_{A}}$. We have $\chi_{A \cap B}=\chi_{A} \chi_{B}$ and $\chi_{A \cup B}=\chi_{A}+\chi_{B}-\chi_{A} \chi_{B}$.

Non-Commutative Case [Not for Exam]

The Moore-Penrose pseudo-inverse is also useful for computing the $\mathbf{E} \sqcap \mathbf{F}$ and $\mathbf{E} \sqcup \mathbf{F}$ of general, non-commuting projections via the parallel sum

$$
\mathbf{A}: \mathbf{B}=\mathbf{A}(\mathbf{A}+\mathbf{B})^{\dagger} \mathbf{B}
$$

The intersection of projections is given by:

$$
\mathbf{E} \sqcap \mathbf{F}=2(\mathbf{E}: \mathbf{F})=\mathbf{E}(\mathbf{E}+\mathbf{F})^{\dagger} \mathbf{F}+\mathbf{F}(\mathbf{E}+\mathbf{F})^{\dagger} \mathbf{E}
$$

Israel, Greville: Gereralized Inverses, Theory and Applications, Springer 2003

Variable Probabilities: Duel at High Noon

Consider a "duel" between two cowboys:

- Cowboy A - hitting probability a
- Cowboy B - hitting probability b

Variable Probabilities: Duel at High Noon

Consider a "duel" between two cowboys:

- Cowboy A - hitting probability a
- Cowboy B - hitting probability b

1. Choose (non-deterministically) whether A or B starts.

Variable Probabilities: Duel at High Noon

Consider a "duel" between two cowboys:

- Cowboy A - hitting probability a
- Cowboy B - hitting probability b

1. Choose (non-deterministically) whether A or B starts.
2. Repeat until winner is known:

Variable Probabilities: Duel at High Noon

Consider a "duel" between two cowboys:

- Cowboy A - hitting probability a
- Cowboy B - hitting probability b

1. Choose (non-deterministically) whether A or B starts.
2. Repeat until winner is known:

- If it is A 's turn he will hit/shoot B with probability a; If B is shot then A is the winner, otherwise it's B 's turn.

Variable Probabilities: Duel at High Noon

Consider a "duel" between two cowboys:

- Cowboy A - hitting probability a
- Cowboy B - hitting probability b

1. Choose (non-deterministically) whether A or B starts.
2. Repeat until winner is known:

- If it is A 's turn he will hit/shoot B with probability a; If B is shot then A is the winner, otherwise it's B 's turn.
- If it is B 's turn he will hit/shoot A with probability b; If A is shot then B is the winner, otherwise it's A 's turn.

Variable Probabilities: Duel at High Noon

Consider a "duel" between two cowboys:

- Cowboy A - hitting probability a
- Cowboy B - hitting probability b

1. Choose (non-deterministically) whether A or B starts.
2. Repeat until winner is known:

- If it is A 's turn he will hit/shoot B with probability a; If B is shot then A is the winner, otherwise it's B 's turn.
- If it is B 's turn he will hit/shoot A with probability b; If A is shot then B is the winner, otherwise it's A 's turn.
Question: What is the life expectancy of A or B ?

Introduced by Mclver and Morgan (2005).
Discussed in detail by Gretz, Katoen, Mclver (2012/14)

Variable Probabilities: Duel at High Noon

Consider a "duel" between two cowboys:

- Cowboy A - hitting probability a
- Cowboy B - hitting probability b

1. Choose (non-deterministically) whether A or B starts.
2. Repeat until winner is known:

- If it is A 's turn he will hit/shoot B with probability a; If B is shot then A is the winner, otherwise it's B 's turn.
- If it is B 's turn he will hit/shoot A with probability b; If A is shot then B is the winner, otherwise it's A 's turn.

Question: What is the life expectancy of A or B ?
Question: What happens if A is learning to shoot better during the duel? How can we model dynamic probabilities?

Introduced by Mclver and Morgan (2005).
Discussed in detail by Gretz, Katoen, Mclver (2012/14)

Example: Duelling Cowboys

```
begin
# who's first turn
choose 1:{t:=0} or 1:{t:=1} ro;
# continue until ...
c := 1;
while c == 1 do
if (t==0) then
    choose ak:{c:=0} or am:{t:=1} ro
else
    choose bk:{c:=0} or bm:{t:=0} ro
fi;
od;
stop; # terminal loop
end
```


Example: Duelling Cowboys [Not for Exam]

The survival chances, i.e. winning probability, for A.

References

Alessandra Di Pierro, Chris Hankin, Herbert Wiklicky: Probabilistic semantics and analysis. LNCS 6154, Springer 2010.

References

Alessandra Di Pierro, Chris Hankin, Herbert Wiklicky: Probabilistic semantics and analysis. LNCS 6154, Springer 2010.

Alessandra Di Pierro, Herbert Wiklicky: Concurrent Constraint Programming: Towards Probabilistic Abstract Interpretation. PPDP, ACM SIGPLAN 2000.

References

Alessandra Di Pierro, Chris Hankin, Herbert Wiklicky: Probabilistic semantics and analysis. LNCS 6154, Springer 2010.

Alessandra Di Pierro, Herbert Wiklicky: Concurrent Constraint Programming: Towards Probabilistic Abstract Interpretation. PPDP, ACM SIGPLAN 2000.

Adi Ben-Israel, Thomas N.E. Greville: Generalized Inverses:
Theory and Applications. Springer 2003.

References

Alessandra Di Pierro, Chris Hankin, Herbert Wiklicky:
Probabilistic semantics and analysis. LNCS 6154, Springer 2010.

Alessandra Di Pierro, Herbert Wiklicky: Concurrent Constraint Programming: Towards Probabilistic Abstract Interpretation. PPDP, ACM SIGPLAN 2000.

Adi Ben-Israel, Thomas N.E. Greville: Generalized Inverses:
Theory and Applications. Springer 2003.
Friedrich Gretz, Joost-PieterKatoen, Annabelle Mclver:
Operational versus weakest pre-expectation semantics for the probabilistic guarded command language. Performance Evaluation, Vol. 73, 2014.

References

Alessandra Di Pierro, Chris Hankin, Herbert Wiklicky:
Probabilistic semantics and analysis. LNCS 6154, Springer 2010.

Alessandra Di Pierro, Herbert Wiklicky: Concurrent Constraint Programming: Towards Probabilistic Abstract Interpretation. PPDP, ACM SIGPLAN 2000.

Adi Ben-Israel, Thomas N.E. Greville: Generalized Inverses: Theory and Applications. Springer 2003.

Friedrich Gretz, Joost-PieterKatoen, Annabelle Mclver:
Operational versus weakest pre-expectation semantics for the probabilistic guarded command language. Performance Evaluation, Vol. 73, 2014.

Herbert Wiklicky: On Dynamical Probabilities, or: How to learn to shoot straight. Coordinations, LNCS 9686, 2016.

