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Quantum Postulates

I The state of an (isolated) quantum system is represented
by a (normalised) vector in a complex Hilbert space H.

I An observable is represented by a self-adjoint matrix
(operator) A acting on the Hilbert space H.

I The expected result (average) when measuring observable
A of a system in state |x〉 ∈ H is given by:

〈A〉x = 〈x |A |x〉 = 〈x | |Ax〉

I The only possible results are eigen-values λi of A.
I The probability of measuring λn in state |x〉 is given by:

Pr(A = λn|x) = 〈x |Pn |x〉 = 〈x | |Pnx〉

with Pn = |λn〉〈λn| the orthogonal projection onto the space
generated by eigen-vector |λn〉 = |n〉 of A.
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Complex Numbers
Quantitative information, e.g. measurement results, is usually
represented by real numbers R. For quantum systems we need
to consider also complex numbers C.

A complex number z ∈ C is a (formal) combinations of two
reals x , y ∈ R:

z = x + iy

with i2 = −1 or i =
√
−1. The complex conjugate of a complex

number z = x + iy ∈ C is:

z∗ = z = x + iy = x − iy = z†

Hauptsatz of Algebra
Complex numbers are algebraically closed: Every polynomial
of order n over C has exactly n roots.
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Polar Coordinates
One can represent numbers z ∈ C using the complex plane.

x

y φ

r

Conversion:

x = r · cos(φ) y = r · sin(φ)

r =
√

x2 + y2 φ = arctan(
y
x

)

Another representation:

(r , φ) = r · eiφ eiφ = cos(φ) + i sin(φ),
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Computational Quantum States
Consider a simple systems with two degrees of freedom.

|0〉 |1〉

Definition
A qubit (quantum bit) is a quantum state of the form

|ψ〉 = α |0〉+ β |1〉

where α and β are complex numbers with |α|2 + |β|2 = 1.
Qubits live in a two-dimensional complex vector, more
precisely, Hilbert space C2 and are normalised, i.e.
‖ |ψ〉 ‖ = 〈ψ | ψ〉 = 1.
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Vector Spaces
A Vector Space (over a field K, e.g. R or C) is a set V together
with two operations:

Scalar Product . ·. : K× V 7→ V
Vector Addition .+. : V × V 7→ V

such that ∀x,y, z ∈ V and α, β ∈ K:

1. x + (y + z) = (x + y) + z
2. x + y = y + x
3. ∃o : x + o = x
4. ∃−x : x + (−x) = o

5. α(x + y) = αx + αy
6. (α + β)x = αx + βx
7. (αβ)x = α(βx)

8. 1x = x (1 ∈ K)
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Tuple Spaces

Theorem
All finite dimensional vector spaces are isomorphic to the (finite)
Cartesian product of the underlying field Kn (i.e. Rn or Cn).

~x = (x1, x2, x3, . . . , xn) represents x =
n∑

i=1

xibi

~y = (y1, y2, y3, . . . , yn) represents y =
n∑

i=1

yibi

Finite dimensional vectors can be represented as tuples via
their coordinates with respect to a base {bi}ni=1.

α~x = (αx1, αx2, αx3, . . . , αxn)

~x + ~y = (x1 + y1, x2 + y2, x3 + y3, . . . , xn + yn)
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Hilbert Spaces

A complex vector space H is called an Inner Product Space or
(Pre-)Hilbert Space if there is a complex valued function 〈., .〉
on H×H that satisfies ∀x,y, z ∈ H and ∀α ∈ C:

1. 〈x,x〉 ≥ 0
2. 〈x,x〉 = 0 ⇐⇒ x = o
3. 〈αx,y〉 = α 〈x,y〉
4. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉
5. 〈x,y〉 = 〈y,x〉

The function 〈., .〉 is called an inner product on H.
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Caveat: Linear in first or second argument?
Mathematical Convention:

〈αx,y〉 = α 〈x,y〉

Physical Convention:

〈x | αy〉 = α 〈x | y〉

In mathematics we have:

〈x, αy〉 = 〈αy,x〉 = ᾱ〈y,x〉 = ᾱ 〈x,y〉

For physicists it is simply:

〈x | αy〉 = α 〈x | y〉
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Basis Vectors
A set of vectors xi is said to be linearly independent iff∑

λixi = o implies that ∀ i : λi = 0

Two vectors in a Hilbert space are orthogonal iff

〈x,y〉 = 0

An orthonormal system in a Hilbert space is a set of linearly
independent set of vectors with:〈

bi ,bj
〉

= δij =

{
1 iff i = j
0 iff i 6= j

Theorem
For a Hilbert space there exists an orthonormal basis {b}. The
representation of each vector is unique:

x =
∑

i

xibi =
∑

i

〈x,bi〉bi
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The Finite-Dimensional Hilbert Spaces Cn

We represent vectors and their transpose using coordinates:

~x =

 x1
...

xn

 = |x〉 , ~y = (y1, . . . , yn) =

 y1
...

yn


T

= 〈y |

The adjoint of ~x = (x1, . . . , xn) is given by

~x† = (x̄1, . . . , x̄n)T = (x∗1 , . . . , x
∗
n )T

The inner product is then represented by:〈
~y , ~x

〉
=
∑

i

ȳixi =
∑

i

y∗i xi

We can also define a norm (length) ‖~x‖ =
√〈

~x , ~x
〉
.
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Dual and Adjoint States

A linear functional on a vector space V is a map f : V → K such
that (i) f (x + y) = f (x) + f (y) and (ii) f (αx) = αf (x) for all
x,y ∈ V, α ∈ K.
The space of all linear functionals on V form the dual space V∗.

Theorem (Riesz Representation Theorem)
Every linear functional f : H → C on a Hilbert space H can be
represented by a vector yf in H, such that

f (x) = 〈yf ,x〉 = fy (x)

Dual Hilbert spaces H∗ are isomorphic to the original Hilbert
space H∗; in particular we have: (Cn)∗ = Cn.

We represent vectors or ket-vectors as column vectors; and
functionals, dual vector or bra-vectors as row vectors.

12 / 28



Dirac Notation and Einstein Convention
We will use throughout P.A.M. Dirac’s bra-(c)-ket notation:〈

xi ,yj
〉

=
〈
~xi , ~yj

〉
denoted as 〈xi |

∣∣yj
〉

= 〈i | |j〉

We will enumerate the (eigen-)base vectors (of an operator):

~bi = bi or ~ei = ei are denoted by |i〉

but we may need also to specify the coordinates of a vector:
I Ket-Vectors (column): |x〉 = (xj)

n
j=1 in Cn.

I Bra-Vectors (row): 〈x | = (x j)n
j=1 in (Cn)∗ = Cn.

A. Einstein: If in an expression there are matching sub- and
super-scripts then this implicitely indicates a summation,

x̄iy i =
∑

i

x̄iy i =
〈
~x , ~y

〉
and xiy i∗ =

∑
i

xi ȳ i =
〈
~x | ~y

〉
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Qubit

The postulates of Quantum Mechanics simply require that a
computational quantum state is represented by a normalised
vector in Cn. A qubit is a two-dimensional quantum state in C2

We represent the coordinates of a qubit (state) or ket-vector
as a column vector:

|ψ〉 =

(
α
β

)
= α

(
1
0

)
+ β

(
0
1

)
= α |0〉+ β |1〉

with respect to the (orthonormal) basis {|0〉 , |1〉}, i.e. the
so-called standard base:

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
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Representing a Qubit [∗]
A qubit |ψ〉 = α |0〉+ β |1〉 with |α|2 + |β|2 = 1 can be
represented:

|ψ〉 = cos(θ/2) |0〉+ eiϕ sin(θ/2) |1〉 ,

where θ ∈ [0, π] and ϕ ∈ [0,2π]. Using polar coordinates we
have:

|ψ〉 = r0eiφ0 |0〉+ r1eiφ1 |1〉 ,

with r2
0 + r2

1 = 1. Take r0 = cos(ρ) and r1 = sin(ρ) for some ρ.
Set θ/2 = ρ, then |ψ〉 = cos(θ/2)eiφ0 |0〉+ sin(θ/2)eiφ1 |1〉 , with
0 ≤ θ ≤ π, or equivalently

|ψ〉 = eiγ(cos(θ/2) |0〉+ eiϕ sin(θ/2) |1〉),

with ϕ = φ1 − φ0 and γ = φ0, with 0 ≤ ϕ ≤ 2π. The global
phase shift eiγ is physically irrelevant (unobservable).
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Bloch Sphere [∗]

|0〉

|1〉

cos(θ/2) |0〉+ eiϕ sin(θ/2) |1〉

θ

ϕ
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Change of Basis
We can represent (the coordinates of) any vector in Cn with
respect to any basis we like.

For example, we can consider for qubits in C2 the (alternative)
orthonormal basis:

|+〉 =
1√
2

(|0〉+ |1〉) |−〉 =
1√
2

(|0〉 − |1〉)

and thus, vice versa:

|0〉 =
1√
2

(|+〉+ |−〉) |1〉 =
1√
2

(|+〉 − |−〉)

A qubit is therefore represented in the two bases as:

α |0〉+ β |1〉 =
α√
2

(|+〉+ |−〉) β√
2

(|+〉 − |−〉)

=
α + β√

2
|+〉+

α− β√
2
|−〉
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Linear Operators

Arguably, the best understood and controlled type of functions
or maps between two vector spaces V andW are those
preseving their basic algebraic structure.

Definition
A map T : V → W between two vector spaces V andW is
called a linear map if

1. T(x + y) = T(x) + T(y) and
2. T(αx) = αT(x)

for all x,y ∈ V and all α ∈ K (e.g. K = C or R).

For V =W we talk about a (linear) operator on V.
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Images of the Basis

Like vectors, we can represent a linear operator T via its
“coordinates” as a matrix. Again these depend on the
particular basis we use.

Specifying the image of the base vectors determines – by
linearity – the operator (or in general a linear map) uniquely.

Suppose we know the images of the basis vectors |0〉 and |1〉

T(|0〉) = T00 |0〉+ T01 |1〉
T(|1〉) = T10 |0〉+ T11 |1〉

then this is enough to know the Tij ’s to know what T is doing to
all vectors (as they are representable as linear combinations of
the basis vectors).
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Matrices
Using a “mathematical” indexing (starting from 1 rather ten 0),
using the first index to indicate a row position and second for a
column position, we can identify T with a matrix:

T =

(
T11 T12
T21 T22

)
= (Tij)

n
i,j=1 = (Tij)

The application of T to a general vector (qubit) then becomes a
simple matrix (pre-)multiplication:

T
((

α
β

))
=

(
T11 T12
T21 T22

)(
α
β

)
=

(
T11α + T12β
T21α + T22β

)

One can also express this, for |ψ〉 = α |0〉+ β |1〉 also as:

T(|ψ〉) = T(α |0〉+ β |1〉) = αT(|0〉) + βT(|1〉) = T |ψ〉
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Matrix Multiplications
The application of a linear opertor T (represented by a matrix)
to a vector x (represented via its coordinates) becomes:

T(x) = Tx = (Tij)(xi) =
∑

i

Tijxi

The standard convention is pre-multiplication so as the
sequence is the same as with application.

The composition of linear opertators T and S becomes also a
matrix/matrix pre-multiplications:

T ◦ S = TS = (Tij)(Ski) =
∑

i

TijSki

Some authors use the more “computational” pre-multiplication.

Finite-dimensional linear operators (matrices) form a vector
space and with the multiplication a (linear) algebra. Adding the
adjoint operation (see below) turns this into a C∗-algebra.
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Transformations
We can define a linear map B which implements the base
change {|0〉 , |1〉} and {|+〉 , |−〉}:

B =
1√
2

(
1 1
1 −1

)
Transforming the coordinates (xi) with respect to {|0〉 , |1〉} into
coordinates (yi) using {|+〉 , |−〉} can be obtained by:

B(xi)i = (yi)i and B−1(yi)i = (xi)i

The matrix representation T of an operator using {|0〉 , |1〉} can
be transformed into the representation S in {|+〉 , |−〉} via:

S = BTB−1

Problem: It is not easy to compute inverse B−1, defined on
implicitly by BB−1 = B−1B = I the identity (existence?!).
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Adjoint Operator
For a matrix T = (Tij) its transpose matrix TT is defined as

TT = (T T
ij ) = (Tji)

the conjugate matrix T∗ is defined by

T∗ = (T ∗ij ) = (Tij)
∗ = (Tji)

and the adjoint matrix T† is given via

T† = (T †ij ) = (T ∗ji ) or T† = (T∗)T = (TT )∗

Note that (TS)T = ST TT and thus (TS)† = S†T†.

In mathematics the adjoint operator is usually denoted by T∗

(cf. conjugate in physics) and defined implicitly via:

〈T(x),y〉 = 〈x,T∗(y)〉 or 〈T†x | y〉 = 〈x | Ty〉
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Adjoint Vectors

Bra and ket vectors are also related using the adjoint:

|x〉† = 〈x |

or using their coordinates:

(xi)
† =

 x1
...

xn


†

=
(

x̄1 · · · x̄n
)

= (x̄ i)

The adjoint operator specifies the effect on dual vectors:

(T |x〉)† = |x〉† T† = 〈x |T†
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Unitary Operators

A square matrix/operator U is called unitary if

U†U = I = UU†

That means U’s inverse is U† = U−1. It also implies that U is
invertible and the inverse is easy to compute.

Quantum Mechanics requires that the dynamics or time
evolution of a quantum state, e.g. qubit, is implemented via a
unitary operator (as long as there is no measurement).

The unitary evolution of an (isolated) quantum state/system is a
mathematical consequence of being a solution of the
Schrödinger equation for some Hamiltonian operator H.
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Properties of Unitary Operators
Unitary operators generalise in some sense permutations (in
fact every permutation of base vectors gives rise to a simple
unitary map). They can also be seen as generalised rotations.

Unitary operators also preserve the “geometry” of a Hilbert
space, i.e. they preserve the inner prduct:

〈x |U†U |y〉 = 〈x | y〉 .

Any single qubit operation, i.e. unitary 2× 2 matrix U can be
expressed as via 4 (real) parameters:

U =

(
ei(α−β/2−δ/2) cos γ/2 ei(α+β/2−δ/2) sin γ/2
−ei(α−β/2+δ/2) sin γ/2 ei(α+β/2+δ/2) cos γ/2

)
where α, β, δ and γ are real numbers.
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Basic 1-Qubit Operators

Pauli X-Gate X =

(
0 1
1 0

)
X

Pauli Y-Gate Y =

(
0 −i
i 0

)
Y

Pauli Z-Gate Z =

(
1 0
0 −1

)
Z

Hadamard Gate H = 1√
2

(
1 1
1 −1

)
H

Phase Gate Φ =

(
1 0
0 eiφ

)
Φ

Φ

The Pauli-X gate is often referred to as NOT gate. Note that the
notation for Hamiltonian and Hadamard gate are both H.
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Graphical “Notation”
The product (combination) of unitary operators results in a
unitary operator, i.e. with U1, . . . ,Un unitary, the product
U = Un . . .U1 is also unitary (Note: (TS)† = S†T†).

|x〉 U |x〉H

π
2

H X Z

A simple example: |y〉 = HH |x〉 or (|x〉 ; H; H = |y〉):

|x〉 |y〉H H ≡ |x〉 |y〉 = |x〉I

because H2 = I, i.e.

1√
2

(
1 1
1 −1

)
1√
2

(
1 1
1 −1

)
=

(
1 0
0 1

)
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