Quantum Computation (CO484)

Quantum States and Evolution

Herbert Wiklicky

herbert@doc.ic.ac.uk

Autumn 2017

Quantum Postulates

- The state of an (isolated) quantum system is represented by a (normalised) vector in a complex Hilbert space \mathcal{H}.
- An observable is represented by a self-adjoint matrix (operator) A acting on the Hilbert space \mathcal{H}.
- The expected result (average) when measuring observable A of a system in state $|x\rangle \in \mathcal{H}$ is given by:

$$
\langle\boldsymbol{A}\rangle_{x}=\langle x| \mathbf{A}|x\rangle=\langle x||\mathbf{A} x\rangle
$$

- The only possible results are eigen-values λ_{i} of \mathbf{A}.
- The probability of measuring λ_{n} in state $|x\rangle$ is given by:

$$
\operatorname{Pr}\left(A=\lambda_{n} \mid x\right)=\langle x| \mathbf{P}_{n}|x\rangle=\langle x|\left|\mathbf{P}_{n} x\right\rangle
$$

with $\mathbf{P}_{n}=\left|\lambda_{n}\right\rangle\left\langle\lambda_{n}\right|$ the orthogonal projection onto the space generated by eigen-vector $\left|\lambda_{n}\right\rangle=|n\rangle$ of \mathbf{A}.

Complex Numbers

Quantitative information, e.g. measurement results, is usually represented by real numbers \mathbb{R}. For quantum systems we need to consider also complex numbers \mathbb{C}.

A complex number $z \in \mathbb{C}$ is a (formal) combinations of two reals $x, y \in \mathbb{R}$:

$$
z=x+i y
$$

with $i^{2}=-1$ or $i=\sqrt{-1}$. The complex conjugate of a complex number $z=x+i y \in \mathbb{C}$ is:

$$
z^{*}=\bar{z}=\overline{x+i y}=x-i y=z^{\dagger}
$$

Hauptsatz of Algebra

Complex numbers are algebraically closed: Every polynomial of order n over \mathbb{C} has exactly n roots.

Polar Coordinates

One can represent numbers $z \in \mathbb{C}$ using the complex plane.

Conversion:

$$
\begin{array}{ll}
x=r \cdot \cos (\phi) & y=r \cdot \sin (\phi) \\
r=\sqrt{x^{2}+y^{2}} & \phi=\arctan \left(\frac{y}{x}\right)
\end{array}
$$

Another representation:

$$
(r, \phi)=r \cdot e^{i \phi} \quad e^{i \phi}=\cos (\phi)+i \sin (\phi)
$$

Computational Quantum States

Consider a simple systems with two degrees of freedom.

Definition
A qubit (quantum bit) is a quantum state of the form

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

where α and β are complex numbers with $|\alpha|^{2}+|\beta|^{2}=1$.
Qubits live in a two-dimensional complex vector, more precisely, Hilbert space \mathbb{C}^{2} and are normalised, i.e. $\||\psi\rangle \|=\langle\psi \mid \psi\rangle=1$.

Vector Spaces

A Vector Space (over a field \mathbb{K}, e.g. \mathbb{R} or \mathbb{C}) is a set \mathcal{V} together with two operations:

Scalar Product..$: \mathbb{K} \times \mathcal{V} \mapsto \mathcal{V}$
Vector Addition.+.: $\mathcal{V} \times \mathcal{V} \mapsto \mathcal{V}$
such that $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$ and $\alpha, \beta \in \mathbb{K}$:

1. $\mathbf{x}+(\mathbf{y}+\mathbf{z})=(\mathbf{x}+\mathbf{y})+\mathbf{z}$
2. $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$
3. $\exists \mathbf{0}: \mathbf{x}+\mathbf{o}=\mathbf{x}$
4. $\exists-\mathbf{x}: \mathbf{x}+(-\mathbf{x})=\mathbf{0}$
5. $\alpha(\mathbf{x}+\mathbf{y})=\alpha \mathbf{x}+\alpha \mathbf{y}$
6. $(\alpha+\beta) \mathbf{x}=\alpha \mathbf{x}+\beta \mathbf{x}$
7. $(\alpha \beta) \mathbf{x}=\alpha(\beta \mathbf{x})$
8. $\mathbf{1 x}=\mathbf{x}(1 \in \mathbb{K})$

Tuple Spaces

Theorem

All finite dimensional vector spaces are isomorphic to the (finite) Cartesian product of the underlying field \mathbb{K}^{n} (i.e. \mathbb{R}^{n} or \mathbb{C}^{n}).

$$
\begin{aligned}
& \vec{x}=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \text { represents } \mathbf{x}=\sum_{i=1}^{n} x_{i} \mathbf{b}_{i} \\
& \vec{y}=\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right) \text { represents } \mathbf{y}=\sum_{i=1}^{n} y_{i} \mathbf{b}_{i}
\end{aligned}
$$

Finite dimensional vectors can be represented as tuples via their coordinates with respect to a base $\left\{\mathbf{b}_{i}\right\}_{i=1}^{n}$.

$$
\begin{gathered}
\alpha \vec{x}=\left(\alpha x_{1}, \alpha x_{2}, \alpha x_{3}, \ldots, \alpha x_{n}\right) \\
\vec{x}+\vec{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}, \ldots, x_{n}+y_{n}\right)
\end{gathered}
$$

Hilbert Spaces

A complex vector space \mathcal{H} is called an Inner Product Space or (Pre-)Hilbert Space if there is a complex valued function $\langle.,$. on $\mathcal{H} \times \mathcal{H}$ that satisfies $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{H}$ and $\forall \alpha \in \mathbb{C}$:

1. $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$
2. $\langle\mathbf{x}, \mathbf{x}\rangle=0 \Longleftrightarrow \mathbf{x}=\mathbf{0}$
3. $\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$
4. $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$
5. $\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$

The function $\langle.,$.$\rangle is called an inner product on \mathcal{H}$.

Caveat: Linear in first or second argument? Mathematical Convention:

$$
\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle
$$

Physical Convention:

$$
\langle\mathbf{x} \mid \alpha \mathbf{y}\rangle=\alpha\langle\mathbf{x} \mid \mathbf{y}\rangle
$$

In mathematics we have:

$$
\langle\mathbf{x}, \alpha \mathbf{y}\rangle=\overline{\langle\alpha \mathbf{y}, \mathbf{x}\rangle}=\bar{\alpha} \overline{\langle\mathbf{y}, \mathbf{x}\rangle}=\bar{\alpha}\langle\mathbf{x}, \mathbf{y}\rangle
$$

For physicists it is simply:

$$
\langle\mathbf{x} \mid \alpha \mathbf{y}\rangle=\alpha\langle\mathbf{x} \mid \mathbf{y}\rangle
$$

Basis Vectors

A set of vectors \mathbf{x}_{i} is said to be linearly independent iff

$$
\sum \lambda_{i} \mathbf{x}_{i}=\mathbf{0} \text { implies that } \forall i: \lambda_{i}=0
$$

Two vectors in a Hilbert space are orthogonal iff

$$
\langle\mathbf{x}, \mathbf{y}\rangle=0
$$

An orthonormal system in a Hilbert space is a set of linearly independent set of vectors with:

$$
\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}\right\rangle=\delta_{i j}= \begin{cases}1 & \text { iff } i=j \\ 0 & \text { iff } i \neq j\end{cases}
$$

Theorem

For a Hilbert space there exists an orthonormal basis $\{\mathbf{b}\}$. The representation of each vector is unique:

$$
\mathbf{x}=\sum_{i} x_{i} \mathbf{b}_{i}=\sum_{i}\left\langle\mathbf{x}, \mathbf{b}_{i}\right\rangle \mathbf{b}_{i}
$$

The Finite-Dimensional Hilbert Spaces \mathbb{C}^{n}

We represent vectors and their transpose using coordinates:

$$
\vec{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=|x\rangle, \quad \vec{y}=\left(y_{1}, \ldots, y_{n}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)^{T}=\langle y|
$$

The adjoint of $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ is given by

$$
\vec{x}^{\dagger}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)^{T}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)^{T}
$$

The inner product is then represented by:

$$
\langle\vec{y}, \vec{x}\rangle=\sum_{i} \bar{y}_{i} x_{i}=\sum_{i} y_{i}^{*} x_{i}
$$

We can also define a norm (length) $\|\vec{x}\|=\sqrt{\langle\vec{x}, \vec{x}\rangle}$.

Dual and Adjoint States

A linear functional on a vector space \mathcal{V} is a map $f: \mathcal{V} \rightarrow \mathbb{K}$ such that (i) $f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})$ and (ii) $f(\alpha \mathbf{x})=\alpha f(\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{V}, \alpha \in \mathbb{K}$.
The space of all linear functionals on \mathcal{V} form the dual space \mathcal{V}^{*}.
Theorem (Riesz Representation Theorem)
Every linear functional $f: \mathcal{H} \rightarrow \mathbb{C}$ on a Hilbert space \mathcal{H} can be represented by a vector \mathbf{y}_{f} in \mathcal{H}, such that

$$
f(\mathbf{x})=\left\langle\mathbf{y}_{f}, \mathbf{x}\right\rangle=f_{y}(\mathbf{x})
$$

Dual Hilbert spaces \mathcal{H}^{*} are isomorphic to the original Hilbert space \mathcal{H}^{*}; in particular we have: $\left(\mathbb{C}^{n}\right)^{*}=\mathbb{C}^{n}$.

We represent vectors or ket-vectors as column vectors; and functionals, dual vector or bra-vectors as row vectors.

Dirac Notation and Einstein Convention

We will use throughout P.A.M. Dirac's bra-(c)-ket notation:

$$
\left\langle\mathbf{x}_{i}, \mathbf{y}_{j}\right\rangle=\left\langle\vec{x}_{i}, \vec{y}_{j}\right\rangle \text { denoted as }\left\langle x_{i}\right|\left|y_{j}\right\rangle=\langle i||j\rangle
$$

We will enumerate the (eigen-)base vectors (of an operator):

$$
\vec{b}_{i}=\mathbf{b}_{i} \text { or } \vec{e}_{i}=\mathbf{e}_{i} \text { are denoted by } \quad|i\rangle
$$

but we may need also to specify the coordinates of a vector:

- Ket-Vectors (column): $|x\rangle=\left(x_{j}\right)_{j=1}^{n}$ in \mathbb{C}^{n}.
- Bra-Vectors (row): $\langle x|=\left(x^{j}\right)_{j=1}^{n}$ in $\left(\mathbb{C}^{n}\right)^{*}=\mathbb{C}^{n}$.
A. Einstein: If in an expression there are matching sub- and super-scripts then this implicitely indicates a summation,

$$
\bar{x}_{i} y^{i}=\sum_{i} \bar{x}_{i} y^{i}=\langle\vec{x}, \vec{y}\rangle \text { and } x_{i} y^{i *}=\sum_{i} x_{i} \bar{y}^{i}=\langle\vec{x} \mid \vec{y}\rangle
$$

Qubit

The postulates of Quantum Mechanics simply require that a computational quantum state is represented by a normalised vector in \mathbb{C}^{n}. A qubit is a two-dimensional quantum state in \mathbb{C}^{2}

We represent the coordinates of a qubit (state) or ket-vector as a column vector:

$$
|\psi\rangle=\binom{\alpha}{\beta}=\alpha\binom{1}{0}+\beta\binom{0}{1}=\alpha|0\rangle+\beta|1\rangle
$$

with respect to the (orthonormal) basis $\{|0\rangle,|1\rangle\}$, i.e. the so-called standard base:

$$
|0\rangle=\binom{1}{0} \quad \text { and } \quad|1\rangle=\binom{0}{1}
$$

Representing a Qubit [*]

A qubit $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ with $|\alpha|^{2}+|\beta|^{2}=1$ can be represented:

$$
|\psi\rangle=\cos (\theta / 2)|0\rangle+e^{i \varphi} \sin (\theta / 2)|1\rangle,
$$

where $\theta \in[0, \pi]$ and $\varphi \in[0,2 \pi]$. Using polar coordinates we have:

$$
|\psi\rangle=r_{0} e^{i \phi_{0}}|0\rangle+r_{1} e^{i \phi_{1}}|1\rangle,
$$

with $r_{0}^{2}+r_{1}^{2}=1$. Take $r_{0}=\cos (\rho)$ and $r_{1}=\sin (\rho)$ for some ρ.
Set $\theta / 2=\rho$, then $|\psi\rangle=\cos (\theta / 2) e^{i \phi_{0}}|0\rangle+\sin (\theta / 2) e^{i \phi_{1}}|1\rangle$, with $0 \leq \theta \leq \pi$, or equivalently

$$
|\psi\rangle=e^{i \gamma}\left(\cos (\theta / 2)|0\rangle+e^{i \varphi} \sin (\theta / 2)|1\rangle\right),
$$

with $\varphi=\phi_{1}-\phi_{0}$ and $\gamma=\phi_{0}$, with $0 \leq \varphi \leq 2 \pi$. The global phase shift $e^{i \gamma}$ is physically irrelevant (unobservable).

Bloch Sphere [*]

Change of Basis

We can represent (the coordinates of) any vector in \mathbb{C}^{n} with respect to any basis we like.

For example, we can consider for qubits in \mathbb{C}^{2} the (alternative) orthonormal basis:
and thus, vice versa:

$$
|0\rangle=\frac{1}{\sqrt{2}}(|+\rangle+|-\rangle) \quad|1\rangle=\frac{1}{\sqrt{2}}(|+\rangle-|-\rangle)
$$

A qubit is therefore represented in the two bases as:

$$
\begin{aligned}
\alpha|0\rangle+\beta|1\rangle & =\frac{\alpha}{\sqrt{2}}(|+\rangle+|-\rangle) \frac{\beta}{\sqrt{2}}(|+\rangle-|-\rangle) \\
& =\frac{\alpha+\beta}{\sqrt{2}}|+\rangle+\frac{\alpha-\beta}{\sqrt{2}}|-\rangle
\end{aligned}
$$

Linear Operators

Arguably, the best understood and controlled type of functions or maps between two vector spaces \mathcal{V} and \mathcal{W} are those preseving their basic algebraic structure.

Definition

A map $\mathbf{T}: \mathcal{V} \rightarrow \mathcal{W}$ between two vector spaces \mathcal{V} and \mathcal{W} is called a linear map if

1. $\mathbf{T}(\mathbf{x}+\mathbf{y})=\mathbf{T}(\mathbf{x})+\mathbf{T}(\mathbf{y})$ and
2. $\mathbf{T}(\alpha \mathbf{x})=\alpha \mathbf{T}(\mathbf{x})$
for all $\mathbf{x}, \mathbf{y} \in \mathcal{V}$ and all $\alpha \in \mathbb{K}$ (e.g. $\mathbb{K}=\mathbb{C}$ or \mathbb{R}).

For $\mathcal{V}=\mathcal{W}$ we talk about a (linear) operator on \mathcal{V}.

Images of the Basis

Like vectors, we can represent a linear operator \mathbf{T} via its "coordinates" as a matrix. Again these depend on the particular basis we use.

Specifying the image of the base vectors determines - by linearity - the operator (or in general a linear map) uniquely.

Suppose we know the images of the basis vectors $|0\rangle$ and $|1\rangle$

$$
\begin{aligned}
& \mathbf{T}(|0\rangle)=T_{00}|0\rangle+T_{01}|1\rangle \\
& \mathbf{T}(|1\rangle)=T_{10}|0\rangle+T_{11}|1\rangle
\end{aligned}
$$

then this is enough to know the $T_{i j}$'s to know what \mathbf{T} is doing to all vectors (as they are representable as linear combinations of the basis vectors).

Matrices

Using a "mathematical" indexing (starting from 1 rather ten 0), using the first index to indicate a row position and second for a column position, we can identify \mathbf{T} with a matrix:

$$
\mathbf{T}=\left(\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right)=\left(T_{i j}\right)_{i, j=1}^{n}=\left(T_{i j}\right)
$$

The application of \mathbf{T} to a general vector (qubit) then becomes a simple matrix (pre-)multiplication:

$$
\mathbf{T}\left(\binom{\alpha}{\beta}\right)=\left(\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right)\binom{\alpha}{\beta}=\binom{T_{11} \alpha+T_{12} \beta}{T_{21} \alpha+T_{22} \beta}
$$

One can also express this, for $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ also as:

$$
\mathbf{T}(|\psi\rangle)=\mathbf{T}(\alpha|0\rangle+\beta|1\rangle)=\alpha \mathbf{T}(|0\rangle)+\beta \mathbf{T}(|1\rangle)=\mathbf{T}|\psi\rangle
$$

Matrix Multiplications

The application of a linear opertor \mathbf{T} (represented by a matrix) to a vector \mathbf{x} (represented via its coordinates) becomes:

$$
\mathbf{T}(\mathbf{x})=\mathbf{T} \mathbf{x}=\left(T_{i j}\right)\left(x_{i}\right)=\sum_{i} T_{i j} x_{i}
$$

The standard convention is pre-multiplication so as the sequence is the same as with application.

The composition of linear opertators \mathbf{T} and \mathbf{S} becomes also a matrix/matrix pre-multiplications:

$$
\mathbf{T} \circ \mathbf{S}=\mathbf{T S}=\left(T_{i j}\right)\left(S_{k i}\right)=\sum_{i} T_{i j} S_{k i}
$$

Some authors use the more "computational" pre-multiplication.
Finite-dimensional linear operators (matrices) form a vector space and with the multiplication a (linear) algebra. Adding the adjoint operation (see below) turns this into a C*-algebra.

Transformations

We can define a linear map \mathbf{B} which implements the base change $\{|0\rangle,|1\rangle\}$ and $\{|+\rangle,|-\rangle\}$:

$$
\mathbf{B}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Transforming the coordinates $\left(x_{i}\right)$ with respect to $\{|0\rangle,|1\rangle\}$ into coordinates $\left(y_{i}\right)$ using $\{|+\rangle,|-\rangle\}$ can be obtained by:

$$
\mathbf{B}\left(x_{i}\right)_{i}=\left(y_{i}\right)_{i} \text { and } \mathbf{B}^{-1}\left(y_{i}\right)_{i}=\left(x_{i}\right)_{i}
$$

The matrix representation \mathbf{T} of an operator using $\{|0\rangle,|1\rangle\}$ can be transformed into the representation \mathbf{S} in $\{|+\rangle,|-\rangle\}$ via:

$$
\mathbf{S}=\mathbf{B T B}^{-1}
$$

Problem: It is not easy to compute inverse \mathbf{B}^{-1}, defined on implicitly by $\mathbf{B B}^{-1}=\mathbf{B}^{-1} \mathbf{B}=\mathbf{I}$ the identity (existence?!).

Adjoint Operator

For a matrix $\mathbf{T}=\left(T_{i j}\right)$ its transpose matrix \mathbf{T}^{T} is defined as

$$
\mathbf{T}^{T}=\left(T_{i j}^{T}\right)=\left(T_{j i}\right)
$$

the conjugate matrix \mathbf{T}^{*} is defined by

$$
\mathbf{T}^{*}=\left(T_{i j}^{*}\right)=\left(T_{i j}\right)^{*}=\overline{\left(T_{j i}\right)}
$$

and the adjoint matrix \mathbf{T}^{\dagger} is given via

$$
\mathbf{T}^{\dagger}=\left(T_{i j}^{\dagger}\right)=\left(T_{j i}^{*}\right) \quad \text { or } \quad \mathbf{T}^{\dagger}=\left(\mathbf{T}^{*}\right)^{T}=\left(\mathbf{T}^{T}\right)^{*}
$$

Note that $(\mathbf{T S})^{T}=\mathbf{S}^{T} \mathbf{T}^{T}$ and thus $(\mathbf{T S})^{\dagger}=\mathbf{S}^{\dagger} \mathbf{T}^{\dagger}$.
In mathematics the adjoint operator is usually denoted by \mathbf{T}^{*} (cf. conjugate in physics) and defined implicitly via:

$$
\langle\mathbf{T}(\mathbf{x}), \mathbf{y}\rangle=\left\langle\mathbf{x}, \mathbf{T}^{*}(\mathbf{y})\right\rangle \text { or }\left\langle\mathbf{T}^{\dagger} \mathbf{x} \mid \mathbf{y}\right\rangle=\langle\mathbf{x} \mid \mathbf{T} \mathbf{y}\rangle
$$

Adjoint Vectors

Bra and ket vectors are also related using the adjoint:

$$
|x\rangle^{\dagger}=\langle x|
$$

or using their coordinates:

$$
\left(x_{i}\right)^{\dagger}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)^{\dagger}=\left(\begin{array}{lll}
\bar{x}_{1} & \cdots & \bar{x}_{n}
\end{array}\right)=\left(\bar{x}^{i}\right)
$$

The adjoint operator specifies the effect on dual vectors:

$$
(\mathbf{T}|x\rangle)^{\dagger}=|x\rangle^{\dagger} \mathbf{T}^{\dagger}=\langle x| \mathbf{T}^{\dagger}
$$

Unitary Operators

A square matrix/operator \mathbf{U} is called unitary if

$$
\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{I}=\mathbf{U} \mathbf{U}^{\dagger}
$$

That means \mathbf{U} 's inverse is $\mathbf{U}^{\dagger}=\mathbf{U}^{-1}$. It also implies that \mathbf{U} is invertible and the inverse is easy to compute.

Quantum Mechanics requires that the dynamics or time evolution of a quantum state, e.g. qubit, is implemented via a unitary operator (as long as there is no measurement).

The unitary evolution of an (isolated) quantum state/system is a mathematical consequence of being a solution of the Schrödinger equation for some Hamiltonian operator \mathbf{H}.

Properties of Unitary Operators

Unitary operators generalise in some sense permutations (in fact every permutation of base vectors gives rise to a simple unitary map). They can also be seen as generalised rotations.

Unitary operators also preserve the "geometry" of a Hilbert space, i.e. they preserve the inner prduct:

$$
\langle x| \mathbf{U}^{\dagger} \mathbf{U}|y\rangle=\langle x \mid y\rangle .
$$

Any single qubit operation, i.e. unitary 2×2 matrix \mathbf{U} can be expressed as via 4 (real) parameters:

$$
\mathbf{U}=\left(\begin{array}{rr}
e^{i(\alpha-\beta / 2-\delta / 2)} \cos \gamma / 2 & e^{i(\alpha+\beta / 2-\delta / 2)} \sin \gamma / 2 \\
-e^{i(\alpha-\beta / 2+\delta / 2)} \sin \gamma / 2 & e^{i(\alpha+\beta / 2+\delta / 2)} \cos \gamma / 2
\end{array}\right)
$$

where α, β, δ and γ are real numbers.

Basic 1-Qubit Operators

Pauli X-Gate

$$
\begin{aligned}
& \mathbf{X}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \mathbf{Y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \mathbf{Z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Pauli Y-Gate

Pauli Z-Gate

Hadamard Gate

$$
\mathbf{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Phase Gate $\Phi=\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \phi}\end{array}\right)-\Phi--^{\Phi}$

The Pauli-X gate is often referred to as NOT gate. Note that the notation for Hamiltonian and Hadamard gate are both \mathbf{H}.

Graphical "Notation"

The product (combination) of unitary operators results in a unitary operator, i.e. with $\mathbf{U}_{1}, \ldots, \mathbf{U}_{n}$ unitary, the product $\mathbf{U}=\mathbf{U}_{n} \ldots \mathbf{U}_{1}$ is also unitary (Note: $\left.(\mathbf{T S})^{\dagger}=\mathbf{S}^{\dagger} \mathbf{T}^{\dagger}\right)$.

A simple example: $|y\rangle=\mathbf{H H}|x\rangle$ or $(|x\rangle ; \mathbf{H} ; \mathbf{H}=|y\rangle)$:

because $\mathbf{H}^{2}=\mathbf{I}$, i.e.

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

