Quantum Computation (CO484) Quantum States and Evolution

Herbert Wiklicky

herbert@doc.ic.ac.uk Autumn 2017

1/28

► The state of an (isolated) quantum system is represented by a (normalised) vector in a complex Hilbert space *H*.

- ► The state of an (isolated) quantum system is represented by a (normalised) vector in a complex Hilbert space *H*.
- ► An observable is represented by a self-adjoint matrix (operator) A acting on the Hilbert space H.

- ► The state of an (isolated) quantum system is represented by a (normalised) vector in a complex Hilbert space *H*.
- ► An observable is represented by a self-adjoint matrix (operator) A acting on the Hilbert space H.
- The expected result (average) when measuring observable
 A of a system in state |x⟩ ∈ H is given by:

$$\langle A \rangle_x = \langle x | \mathbf{A} | x \rangle = \langle x | | \mathbf{A} x \rangle$$

- ► The state of an (isolated) quantum system is represented by a (normalised) vector in a complex Hilbert space *H*.
- ► An observable is represented by a self-adjoint matrix (operator) A acting on the Hilbert space H.
- The expected result (average) when measuring observable
 A of a system in state |x⟩ ∈ H is given by:

$$\langle A \rangle_x = \langle x | \mathbf{A} | x \rangle = \langle x | | \mathbf{A} x \rangle$$

• The only possible results are eigen-values λ_i of **A**.

- ► The state of an (isolated) quantum system is represented by a (normalised) vector in a complex Hilbert space *H*.
- ► An observable is represented by a self-adjoint matrix (operator) A acting on the Hilbert space H.
- ► The expected result (average) when measuring observable **A** of a system in state $|x\rangle \in \mathcal{H}$ is given by:

$$\langle A \rangle_x = \langle x | \mathbf{A} | x \rangle = \langle x | | \mathbf{A} x \rangle$$

- The only possible results are eigen-values λ_i of **A**.
- The probability of measuring λ_n in state $|x\rangle$ is given by:

$$Pr(A = \lambda_n | x) = \langle x | \mathbf{P}_n | x \rangle = \langle x | | \mathbf{P}_n x \rangle$$

with $\mathbf{P}_n = |\lambda_n\rangle \langle \lambda_n|$ the orthogonal projection onto the space generated by eigen-vector $|\lambda_n\rangle = |n\rangle$ of **A**.

- ► The state of an (isolated) quantum system is represented by a (normalised) vector in a complex Hilbert space *H*.
- ► An observable is represented by a self-adjoint matrix (operator) A acting on the Hilbert space H.

Complex Numbers

Quantitative information, e.g. measurement results, is usually represented by real numbers \mathbb{R} . For quantum systems we need to consider also complex numbers \mathbb{C} .

Complex Numbers

Quantitative information, e.g. measurement results, is usually represented by real numbers \mathbb{R} . For quantum systems we need to consider also complex numbers \mathbb{C} .

A complex number $z \in \mathbb{C}$ is a (formal) combinations of two reals $x, y \in \mathbb{R}$:

$$z = x + iy$$

with $i^2 = -1$ or $i = \sqrt{-1}$.

Complex Numbers

Quantitative information, e.g. measurement results, is usually represented by real numbers \mathbb{R} . For quantum systems we need to consider also complex numbers \mathbb{C} .

A complex number $z \in \mathbb{C}$ is a (formal) combinations of two reals $x, y \in \mathbb{R}$:

$$z = x + iy$$

with $i^2 = -1$ or $i = \sqrt{-1}$. The complex conjugate of a complex number $z = x + iy \in \mathbb{C}$ is:

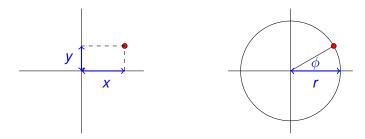
$$z^* = \overline{z} = \overline{x + iy} = x - iy = z^\dagger$$

Hauptsatz of Algebra

Complex numbers are algebraically closed: Every polynomial of order *n* over \mathbb{C} has exactly *n* roots.

Polar Coordinates

One can represent numbers $z \in \mathbb{C}$ using the complex plane.



Conversion:

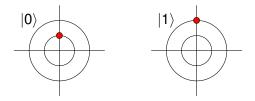
$$x = r \cdot \cos(\phi)$$
 $y = r \cdot \sin(\phi)$
 $r = \sqrt{x^2 + y^2}$ $\phi = \arctan(\frac{y}{x})$

Another representation:

$$(r,\phi) = r \cdot e^{i\phi}$$
 $e^{i\phi} = \cos(\phi) + i\sin(\phi),$

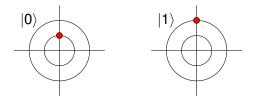
Computational Quantum States

Consider a simple systems with two degrees of freedom.



Computational Quantum States

Consider a simple systems with two degrees of freedom.



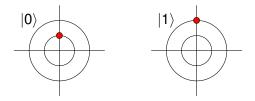
Definition A qubit (quantum bit) is a quantum state of the form

$$|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$$

where α and β are complex numbers with $|\alpha|^2 + |\beta|^2 = 1$.

Computational Quantum States

Consider a simple systems with two degrees of freedom.



Definition A qubit (quantum bit) is a quantum state of the form

$$\left|\psi\right\rangle = \alpha \left|\mathbf{0}\right\rangle + \beta \left|\mathbf{1}\right\rangle$$

where α and β are complex numbers with $|\alpha|^2 + |\beta|^2 = 1$. Qubits live in a two-dimensional complex vector, more precisely, Hilbert space \mathbb{C}^2 and are **normalised**, i.e. $|| |\psi\rangle || = \langle \psi | \psi \rangle = 1$.

Vector Spaces

A Vector Space (over a field \mathbb{K} , e.g. \mathbb{R} or \mathbb{C}) is a set \mathcal{V} together with two operations:

 $\begin{array}{l} \text{Scalar Product } \ldots \colon \mathbb{K} \times \mathcal{V} \mapsto \mathcal{V} \\ \text{Vector Addition } .+ \colon \mathcal{V} \times \mathcal{V} \mapsto \mathcal{V} \end{array}$

such that $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$ and $\alpha, \beta \in \mathbb{K}$:

1. x + (y + z) = (x + y) + z**2.** x + y = y + x**3.** $\exists o : x + o = x$ **4**. $\exists -x : x + (-x) = o$ 5. $\alpha(\mathbf{x} + \mathbf{v}) = \alpha \mathbf{x} + \alpha \mathbf{v}$ 6. $(\alpha + \beta)\mathbf{X} = \alpha \mathbf{X} + \beta \mathbf{X}$ 7. $(\alpha\beta)\mathbf{x} = \alpha(\beta\mathbf{x})$ 8. $1x = x \ (1 \in \mathbb{K})$ イロン 不得 とくほ とくほう 一日

6/28

Tuple Spaces

Theorem

All finite dimensional vector spaces are isomorphic to the (finite) Cartesian product of the underlying field \mathbb{K}^n (i.e. \mathbb{R}^n or \mathbb{C}^n).

$$\vec{x} = (x_1, x_2, x_3, \dots, x_n)$$
 represents $\mathbf{x} = \sum_{i=1}^n x_i \mathbf{b}_i$
 $\vec{y} = (y_1, y_2, y_3, \dots, y_n)$ represents $\mathbf{y} = \sum_{i=1}^n y_i \mathbf{b}_i$

Finite dimensional vectors can be represented as tuples via their coordinates with respect to a base $\{\mathbf{b}_i\}_{i=1}^n$.

$$\alpha \vec{x} = (\alpha x_1, \alpha x_2, \alpha x_3, \dots, \alpha x_n)$$

$$\vec{x} + \vec{y} = (x_1 + y_1, x_2 + y_2, x_3 + y_3, \dots, x_n + y_n)$$

Hilbert Spaces

A complex vector space \mathcal{H} is called an **Inner Product Space** or **(Pre-)Hilbert Space** if there is a complex valued function $\langle ., . \rangle$ on $\mathcal{H} \times \mathcal{H}$ that satisfies $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{H}$ and $\forall \alpha \in \mathbb{C}$:

1.
$$\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$$

2. $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \iff \mathbf{x} = \mathbf{o}$
3. $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$
4. $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$
5. $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$

The function $\langle .,. \rangle$ is called an inner product on \mathcal{H} .

 $\langle \boldsymbol{\alpha} \mathbf{x}, \mathbf{y} \rangle = \boldsymbol{\alpha} \langle \mathbf{x}, \mathbf{y} \rangle$

$$\left< oldsymbol{lpha} {f x}, {f y}
ight> = oldsymbol{lpha} \left< {f x}, {f y}
ight>$$

Physical Convention:

$$\langle \mathbf{x} \mid \boldsymbol{\alpha} \mathbf{y} \rangle = \boldsymbol{\alpha} \langle \mathbf{x} \mid \mathbf{y} \rangle$$

(

$$\left< oldsymbol{lpha} {f x}, {f y}
ight> = oldsymbol{lpha} \left< {f x}, {f y}
ight>$$

Physical Convention:

$$\left< {f x} \mid {f lpha} {f y}
ight> = {f lpha} \left< {f x} \mid {f y}
ight>$$

In mathematics we have:

$$\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \overline{\langle \alpha \mathbf{y}, \mathbf{x} \rangle} = \overline{\alpha} \overline{\langle \mathbf{y}, \mathbf{x} \rangle} = \overline{\alpha} \langle \mathbf{x}, \mathbf{y} \rangle$$

<ロ>
<日><日><日><日><日><日><日><日><日><日><日><日><日</p>
9/28

(

$$\left< oldsymbol{lpha} {f x}, {f y}
ight> = oldsymbol{lpha} \left< {f x}, {f y}
ight>$$

Physical Convention:

$$\left< {f x} \mid {f lpha} {f y}
ight> = {f lpha} \left< {f x} \mid {f y}
ight>$$

In mathematics we have:

$$\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \overline{\langle \alpha \mathbf{y}, \mathbf{x} \rangle} = \overline{\alpha} \overline{\langle \mathbf{y}, \mathbf{x} \rangle} = \overline{\alpha} \langle \mathbf{x}, \mathbf{y} \rangle$$

For physicists it is simply:

$$\langle \mathbf{x} \mid \alpha \mathbf{y} \rangle = \boldsymbol{\alpha} \langle \mathbf{x} \mid \mathbf{y} \rangle$$

A set of vectors \mathbf{x}_i is said to be linearly independent iff

$$\sum \lambda_i \mathbf{x}_i = \mathbf{o}$$
 implies that $\forall i : \lambda_i = \mathbf{0}$

A set of vectors \mathbf{x}_i is said to be linearly independent iff

$$\sum \lambda_i \mathbf{x}_i = \mathbf{o}$$
 implies that $\forall i : \lambda_i = \mathbf{0}$

Two vectors in a Hilbert space are orthogonal iff

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0$$

A set of vectors \mathbf{x}_i is said to be linearly independent iff

$$\sum \lambda_i \mathbf{x}_i = \mathbf{o}$$
 implies that $\forall i : \lambda_i = \mathbf{0}$

Two vectors in a Hilbert space are orthogonal iff

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0$$

An orthonormal system in a Hilbert space is a set of linearly independent set of vectors with:

$$\langle \mathbf{b}_i, \mathbf{b}_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{iff } i = j \\ 0 & \text{iff } i \neq j \end{cases}$$

A set of vectors \mathbf{x}_i is said to be linearly independent iff

$$\sum \lambda_i \mathbf{x}_i = \mathbf{o}$$
 implies that $\forall i : \lambda_i = \mathbf{0}$

Two vectors in a Hilbert space are orthogonal iff

$$\langle \mathbf{x}, \mathbf{y}
angle = 0$$

An orthonormal system in a Hilbert space is a set of linearly independent set of vectors with:

$$\langle \mathbf{b}_i, \mathbf{b}_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{iff } i = j \\ 0 & \text{iff } i \neq j \end{cases}$$

Theorem

For a Hilbert space there exists an orthonormal basis $\{b\}$. The representation of each vector is unique:

$$\mathbf{x} = \sum_{i} x_{i} \mathbf{b}_{i} = \sum_{i} \langle \mathbf{x}, \mathbf{b}_{i} \rangle \mathbf{b}_{i}$$

We represent vectors and their transpose using coordinates:

$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = |x\rangle, \quad \vec{y} = (y_1, \dots, y_n) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}^T = \langle y|$$

We represent vectors and their transpose using coordinates:

$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = |x\rangle, \quad \vec{y} = (y_1, \dots, y_n) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}^T = \langle y|$$

The adjoint of $\vec{x} = (x_1, \ldots, x_n)$ is given by

$$\vec{x}^{\dagger} = (\bar{x}_1, \ldots, \bar{x}_n)^T = (x_1^*, \ldots, x_n^*)^T$$

We represent vectors and their transpose using coordinates:

$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = |x\rangle, \quad \vec{y} = (y_1, \dots, y_n) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}^T = \langle y|$$

The adjoint of $\vec{x} = (x_1, \ldots, x_n)$ is given by

$$\vec{x}^{\dagger} = (\bar{x}_1, \ldots, \bar{x}_n)^T = (x_1^*, \ldots, x_n^*)^T$$

The inner product is then represented by:

$$\langle \vec{y}, \vec{x} \rangle = \sum_{i} \bar{y}_{i} x_{i} = \sum_{i} y_{i}^{*} x_{i}$$

We represent vectors and their transpose using coordinates:

$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = |x\rangle, \quad \vec{y} = (y_1, \dots, y_n) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}^T = \langle y|$$

The adjoint of $\vec{x} = (x_1, \ldots, x_n)$ is given by

$$\vec{x}^{\dagger} = (\bar{x}_1, \ldots, \bar{x}_n)^T = (x_1^*, \ldots, x_n^*)^T$$

The inner product is then represented by:

$$\langle \vec{y}, \vec{x} \rangle = \sum_{i} \bar{y}_{i} x_{i} = \sum_{i} y_{i}^{*} x_{i}$$

We can also define a norm (length) $\|\vec{x}\| = \sqrt{\langle \vec{x}, \vec{x} \rangle}$.

11/28

A linear functional on a vector space \mathcal{V} is a map $f : \mathcal{V} \to \mathbb{K}$ such that (i) $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ and (ii) $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{V}, \alpha \in \mathbb{K}$.

A linear functional on a vector space \mathcal{V} is a map $f : \mathcal{V} \to \mathbb{K}$ such that (i) $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ and (ii) $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{V}, \alpha \in \mathbb{K}$. The space of all linear functionals on \mathcal{V} form the dual space \mathcal{V}^* .

A linear functional on a vector space \mathcal{V} is a map $f : \mathcal{V} \to \mathbb{K}$ such that (i) $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ and (ii) $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{V}, \alpha \in \mathbb{K}$. The space of all linear functionals on \mathcal{V} form the dual space \mathcal{V}^* .

Theorem (Riesz Representation Theorem)

Every linear functional $f : \mathcal{H} \to \mathbb{C}$ on a Hilbert space \mathcal{H} can be represented by a vector \mathbf{y}_f in \mathcal{H} , such that

$$f(\mathbf{x}) = \langle \mathbf{y}_f, \mathbf{x} \rangle = f_y(\mathbf{x})$$

Dual Hilbert spaces \mathcal{H}^* are isomorphic to the original Hilbert space \mathcal{H}^* ; in particular we have: $(\mathbb{C}^n)^* = \mathbb{C}^n$.

A linear functional on a vector space \mathcal{V} is a map $f : \mathcal{V} \to \mathbb{K}$ such that (i) $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ and (ii) $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{V}, \alpha \in \mathbb{K}$. The space of all linear functionals on \mathcal{V} form the dual space \mathcal{V}^* .

Theorem (Riesz Representation Theorem)

Every linear functional $f : \mathcal{H} \to \mathbb{C}$ on a Hilbert space \mathcal{H} can be represented by a vector \mathbf{y}_f in \mathcal{H} , such that

$$f(\mathbf{x}) = \langle \mathbf{y}_f, \mathbf{x} \rangle = f_y(\mathbf{x})$$

Dual Hilbert spaces \mathcal{H}^* are isomorphic to the original Hilbert space \mathcal{H}^* ; in particular we have: $(\mathbb{C}^n)^* = \mathbb{C}^n$.

We represent vectors or ket-vectors as column vectors; and functionals, dual vector or bra-vectors as row vectors.

Dirac Notation and Einstein Convention

We will use throughout P.A.M. Dirac's bra-(c)-ket notation:

 $\langle \mathbf{x}_{i}, \mathbf{y}_{j} \rangle = \langle \vec{x}_{i}, \vec{y}_{j} \rangle$ denoted as $\langle x_{i} | | y_{j} \rangle = \langle i | | j \rangle$

Dirac Notation and Einstein Convention

We will use throughout P.A.M. Dirac's bra-(c)-ket notation:

$$\langle \mathbf{x}_i, \mathbf{y}_j \rangle = \langle \vec{x}_i, \vec{y}_j \rangle$$
 denoted as $\langle x_i | | y_j \rangle = \langle i | | j \rangle$

We will enumerate the (eigen-)base vectors (of an operator):

$$\vec{b}_i = \mathbf{b}_i$$
 or $\vec{e}_i = \mathbf{e}_i$ are denoted by $|i|$

Dirac Notation and Einstein Convention

We will use throughout P.A.M. Dirac's bra-(c)-ket notation:

$$\langle \mathbf{x}_i, \mathbf{y}_j \rangle = \langle \vec{x}_i, \vec{y}_j \rangle$$
 denoted as $\langle x_i | | y_j \rangle = \langle i | | j \rangle$

We will enumerate the (eigen-)base vectors (of an operator):

$$\vec{b}_i = \mathbf{b}_i$$
 or $\vec{e}_i = \mathbf{e}_i$ are denoted by $|i\rangle$

but we may need also to specify the coordinates of a vector:

- Ket-Vectors (column): $|x\rangle = (x_j)_{j=1}^n$ in \mathbb{C}^n .
- ► Bra-Vectors (row): $\langle \mathbf{x} | = (\mathbf{x}^j)_{j=1}^n$ in $(\mathbb{C}^n)^* = \mathbb{C}^n$.

Dirac Notation and Einstein Convention

We will use throughout P.A.M. Dirac's bra-(c)-ket notation:

$$\langle \mathbf{x}_i, \mathbf{y}_j \rangle = \langle \vec{x}_i, \vec{y}_j \rangle$$
 denoted as $\langle x_i | | y_j \rangle = \langle i | | j \rangle$

We will enumerate the (eigen-)base vectors (of an operator):

$$\vec{b}_i = \mathbf{b}_i$$
 or $\vec{e}_i = \mathbf{e}_i$ are denoted by $|i|$

but we may need also to specify the coordinates of a vector:

- Ket-Vectors (column): $|\mathbf{x}\rangle = (x_j)_{j=1}^n$ in \mathbb{C}^n .
- ► Bra-Vectors (row): $\langle \mathbf{x} | = (\mathbf{x}^j)_{j=1}^n$ in $(\mathbb{C}^n)^* = \mathbb{C}^n$.

A. Einstein: If in an expression there are matching sub- and super-scripts then this implicitely indicates a summation,

$$ar{x}_i y^i = \sum_i ar{x}_i y^i = \langle ec{x}, ec{y}
angle$$
 and $x_i y^{i*} = \sum_i x_i ec{y}^i = \langle ec{x} \mid ec{y}
angle$

13/28

イロン イロン イヨン イヨン 三日

Qubit

The postulates of **Quantum Mechanics** simply require that a computational quantum state is represented by a normalised vector in \mathbb{C}^n .

Qubit

The postulates of **Quantum Mechanics** simply require that a computational quantum state is represented by a normalised vector in \mathbb{C}^n . A qubit is a two-dimensional quantum state in \mathbb{C}^2

Qubit

The postulates of **Quantum Mechanics** simply require that a computational quantum state is represented by a normalised vector in \mathbb{C}^n . A qubit is a two-dimensional quantum state in \mathbb{C}^2

We represent the **coordinates** of a qubit (state) or ket-vector as a column vector:

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$$

with respect to the (orthonormal) **basis** $\{|0\rangle, |1\rangle\}$, i.e. the so-called standard base:

$$|0
angle = \left(egin{array}{c} 1 \\ 0 \end{array}
ight) \ \ \, ext{and} \ \ \, |1
angle = \left(egin{array}{c} 0 \\ 1 \end{array}
ight)$$

A qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ with $|\alpha|^2 + |\beta|^2 = 1$ can be represented:

$$\ket{\psi} = \cos(\theta/2) \ket{0} + e^{i\varphi} \sin(\theta/2) \ket{1},$$

where $\theta \in [0, \pi]$ and $\varphi \in [0, 2\pi]$.

A qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ with $|\alpha|^2 + |\beta|^2 = 1$ can be represented:

$$\ket{\psi} = \cos(\theta/2) \ket{0} + e^{i\varphi} \sin(\theta/2) \ket{1},$$

where $\theta \in [0, \pi]$ and $\varphi \in [0, 2\pi]$. Using polar coordinates we have:

$$\left|\psi\right\rangle = r_{0}e^{i\phi_{0}}\left|0\right\rangle + r_{1}e^{i\phi_{1}}\left|1\right\rangle,$$

with $r_0^2 + r_1^2 = 1$.

A qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ with $|\alpha|^2 + |\beta|^2 = 1$ can be represented:

$$\ket{\psi} = \cos(\theta/2) \ket{0} + e^{i\varphi} \sin(\theta/2) \ket{1},$$

where $\theta \in [0, \pi]$ and $\varphi \in [0, 2\pi]$. Using polar coordinates we have:

$$\left|\psi\right\rangle = r_{0}e^{i\phi_{0}}\left|0\right\rangle + r_{1}e^{i\phi_{1}}\left|1\right\rangle,$$

with $r_0^2 + r_1^2 = 1$. Take $r_0 = \cos(\rho)$ and $r_1 = \sin(\rho)$ for some ρ .

A qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ with $|\alpha|^2 + |\beta|^2 = 1$ can be represented:

$$\ket{\psi} = \cos(\theta/2) \ket{0} + e^{i\varphi} \sin(\theta/2) \ket{1},$$

where $\theta \in [0, \pi]$ and $\varphi \in [0, 2\pi]$. Using polar coordinates we have:

$$\left|\psi\right\rangle = r_{0}e^{i\phi_{0}}\left|0\right\rangle + r_{1}e^{i\phi_{1}}\left|1\right\rangle,$$

with $r_0^2 + r_1^2 = 1$. Take $r_0 = \cos(\rho)$ and $r_1 = \sin(\rho)$ for some ρ . Set $\theta/2 = \rho$, then $|\psi\rangle = \cos(\theta/2)e^{i\phi_0}|0\rangle + \sin(\theta/2)e^{i\phi_1}|1\rangle$, with $0 \le \theta \le \pi$,

A qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ with $|\alpha|^2 + |\beta|^2 = 1$ can be represented:

$$\ket{\psi} = \cos(\theta/2) \ket{0} + e^{i\varphi} \sin(\theta/2) \ket{1},$$

where $\theta \in [0, \pi]$ and $\varphi \in [0, 2\pi]$. Using polar coordinates we have:

$$\left|\psi\right\rangle = r_{0}e^{i\phi_{0}}\left|0\right\rangle + r_{1}e^{i\phi_{1}}\left|1\right\rangle,$$

with $r_0^2 + r_1^2 = 1$. Take $r_0 = \cos(\rho)$ and $r_1 = \sin(\rho)$ for some ρ . Set $\theta/2 = \rho$, then $|\psi\rangle = \cos(\theta/2)e^{i\phi_0}|0\rangle + \sin(\theta/2)e^{i\phi_1}|1\rangle$, with $0 \le \theta \le \pi$, or equivalently

$$\ket{\psi} = oldsymbol{e}^{i\gamma} (\cos(heta/2) \ket{0} + oldsymbol{e}^{iarphi} \sin(heta/2) \ket{1}),$$

with $\varphi = \phi_1 - \phi_0$ and $\gamma = \phi_0$, with $0 \le \varphi \le 2\pi$.

A qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ with $|\alpha|^2 + |\beta|^2 = 1$ can be represented:

$$\ket{\psi} = \cos(\theta/2) \ket{0} + e^{i\varphi} \sin(\theta/2) \ket{1},$$

where $\theta \in [0, \pi]$ and $\varphi \in [0, 2\pi]$. Using polar coordinates we have:

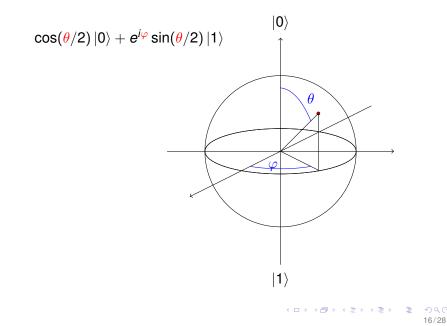
$$\left|\psi\right\rangle = r_{0}e^{i\phi_{0}}\left|0\right\rangle + r_{1}e^{i\phi_{1}}\left|1\right\rangle,$$

with $r_0^2 + r_1^2 = 1$. Take $r_0 = \cos(\rho)$ and $r_1 = \sin(\rho)$ for some ρ . Set $\theta/2 = \rho$, then $|\psi\rangle = \cos(\theta/2)e^{i\phi_0}|0\rangle + \sin(\theta/2)e^{i\phi_1}|1\rangle$, with $0 \le \theta \le \pi$, or equivalently

$$\ket{\psi} = oldsymbol{e}^{i arphi}(\cos(heta/2) \ket{0} + oldsymbol{e}^{i arphi} \sin(heta/2) \ket{1}),$$

with $\varphi = \phi_1 - \phi_0$ and $\gamma = \phi_0$, with $0 \le \varphi \le 2\pi$. The global **phase shift** $e^{i\gamma}$ is physically irrelevant (unobservable).

Bloch Sphere [*]



We can represent (the coordinates of) any vector in \mathbb{C}^n with respect to any basis we like.

We can represent (the coordinates of) any vector in \mathbb{C}^n with respect to any basis we like.

For example, we can consider for qubits in \mathbb{C}^2 the (alternative) orthonormal basis:

$$|+\rangle = rac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \quad |-\rangle = rac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

We can represent (the coordinates of) any vector in \mathbb{C}^n with respect to any basis we like.

For example, we can consider for qubits in \mathbb{C}^2 the (alternative) orthonormal basis:

$$|+\rangle = rac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \quad |-\rangle = rac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

and thus, vice versa:

$$|0
angle=rac{1}{\sqrt{2}}(|+
angle+|-
angle) \hspace{0.5cm} |1
angle=rac{1}{\sqrt{2}}(|+
angle-|-
angle)$$

We can represent (the coordinates of) any vector in \mathbb{C}^n with respect to any basis we like.

For example, we can consider for qubits in \mathbb{C}^2 the (alternative) orthonormal basis:

$$|+\rangle = rac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \quad |-\rangle = rac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

and thus, vice versa:

$$|0
angle=rac{1}{\sqrt{2}}(|+
angle+|-
angle) \hspace{0.5cm} |1
angle=rac{1}{\sqrt{2}}(|+
angle-|-
angle)$$

A qubit is therefore represented in the two bases as:

$$\begin{array}{ll} \alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle &=& \displaystyle \frac{\alpha}{\sqrt{2}} (\left| + \right\rangle + \left| - \right\rangle) \frac{\beta}{\sqrt{2}} (\left| + \right\rangle - \left| - \right\rangle) \\ &=& \displaystyle \frac{\alpha + \beta}{\sqrt{2}} \left| + \right\rangle + \displaystyle \frac{\alpha - \beta}{\sqrt{2}} \left| - \right\rangle \end{array}$$

(日) (四) (E) (E) (E)

Linear Operators

Arguably, the best understood and controlled type of functions or maps between two vector spaces \mathcal{V} and \mathcal{W} are those preseving their basic algebraic structure.

Linear Operators

Arguably, the best understood and controlled type of functions or maps between two vector spaces \mathcal{V} and \mathcal{W} are those preseving their basic algebraic structure.

Definition

A map $\textbf{T}:\mathcal{V}\to\mathcal{W}$ between two vector spaces \mathcal{V} and \mathcal{W} is called a linear map if

1.
$$\mathbf{T}(\mathbf{x} + \mathbf{y}) = \mathbf{T}(\mathbf{x}) + \mathbf{T}(\mathbf{y})$$
 and

2.
$$\mathbf{T}(\alpha \mathbf{x}) = \alpha \mathbf{T}(\mathbf{x})$$

for all $\mathbf{x}, \mathbf{y} \in \mathcal{V}$ and all $\alpha \in \mathbb{K}$ (e.g. $\mathbb{K} = \mathbb{C}$ or \mathbb{R}).

Linear Operators

Arguably, the best understood and controlled type of functions or maps between two vector spaces \mathcal{V} and \mathcal{W} are those preseving their basic algebraic structure.

Definition

A map $\textbf{T}:\mathcal{V}\to\mathcal{W}$ between two vector spaces \mathcal{V} and \mathcal{W} is called a linear map if

1.
$$\mathbf{T}(\mathbf{x} + \mathbf{y}) = \mathbf{T}(\mathbf{x}) + \mathbf{T}(\mathbf{y})$$
 and

2.
$$\mathbf{T}(\alpha \mathbf{x}) = \alpha \mathbf{T}(\mathbf{x})$$

for all $\mathbf{x}, \mathbf{y} \in \mathcal{V}$ and all $\alpha \in \mathbb{K}$ (e.g. $\mathbb{K} = \mathbb{C}$ or \mathbb{R}).

For $\mathcal{V} = \mathcal{W}$ we talk about a (linear) operator on \mathcal{V} .

Like vectors, we can represent a linear operator **T** via its "coordinates" as a **matrix**. Again these depend on the **particular basis** we use.

Like vectors, we can represent a linear operator **T** via its "coordinates" as a **matrix**. Again these depend on the **particular basis** we use.

Specifying the image of the base vectors determines – by **linearity** – the operator (or in general a linear map) uniquely.

Like vectors, we can represent a linear operator **T** via its "coordinates" as a **matrix**. Again these depend on the **particular basis** we use.

Specifying the image of the base vectors determines – by **linearity** – the operator (or in general a linear map) uniquely.

Suppose we know the images of the basis vectors $|0\rangle$ and $|1\rangle$

$$egin{array}{rl} {\sf T}(|0
angle) &= \ {\sf T}(|1
angle) &= \end{array}$$

Like vectors, we can represent a linear operator **T** via its "coordinates" as a **matrix**. Again these depend on the **particular basis** we use.

Specifying the image of the base vectors determines – by **linearity** – the operator (or in general a linear map) uniquely.

Suppose we know the images of the basis vectors $|0\rangle$ and $|1\rangle$

$$\begin{array}{ll} {\bf T}(|0\rangle) & = & T_{00} \, |0\rangle + T_{01} \, |1\rangle \\ {\bf T}(|1\rangle) & = & \end{array}$$

Like vectors, we can represent a linear operator **T** via its "coordinates" as a **matrix**. Again these depend on the **particular basis** we use.

Specifying the image of the base vectors determines – by **linearity** – the operator (or in general a linear map) uniquely.

Suppose we know the images of the basis vectors $|0\rangle$ and $|1\rangle$

$$\begin{array}{lll} {\bf T}(|0\rangle) & = & T_{00} \, |0\rangle + T_{01} \, |1\rangle \\ {\bf T}(|1\rangle) & = & T_{10} \, |0\rangle + T_{11} \, |1\rangle \end{array}$$

Like vectors, we can represent a linear operator **T** via its "coordinates" as a **matrix**. Again these depend on the **particular basis** we use.

Specifying the image of the base vectors determines – by **linearity** – the operator (or in general a linear map) uniquely.

Suppose we know the images of the basis vectors $|0\rangle$ and $|1\rangle$

$$\begin{array}{lll} {\bf T}(|0\rangle) & = & T_{00} \, |0\rangle + T_{01} \, |1\rangle \\ {\bf T}(|1\rangle) & = & T_{10} \, |0\rangle + T_{11} \, |1\rangle \end{array}$$

then this is enough to know the T_{ij} 's to know what **T** is doing to all vectors (as they are representable as linear combinations of the basis vectors).

Matrices

Using a "mathematical" indexing (starting from 1 rather ten 0), using the first index to indicate a **row** position and second for a **column** position, we can identify **T** with a matrix:

$$\mathbf{T} = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} = (T_{ij})_{i,j=1}^n = (T_{ij})$$

Matrices

Using a "mathematical" indexing (starting from 1 rather ten 0), using the first index to indicate a **row** position and second for a **column** position, we can identify **T** with a matrix:

$$\mathbf{T} = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} = (T_{ij})_{i,j=1}^n = (T_{ij})$$

The application of **T** to a general vector (qubit) then becomes a simple matrix (pre-)multiplication:

$$\mathbf{T}\left(\left(\begin{array}{c}\alpha\\\beta\end{array}\right)\right) = \left(\begin{array}{c}T_{11} & T_{12}\\T_{21} & T_{22}\end{array}\right)\left(\begin{array}{c}\alpha\\\beta\end{array}\right) = \left(\begin{array}{c}T_{11}\alpha + T_{12}\beta\\T_{21}\alpha + T_{22}\beta\end{array}\right)$$

Matrices

Using a "mathematical" indexing (starting from 1 rather ten 0), using the first index to indicate a **row** position and second for a **column** position, we can identify **T** with a matrix:

$$\mathbf{T} = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} = (T_{ij})_{i,j=1}^n = (T_{ij})$$

The application of **T** to a general vector (qubit) then becomes a simple matrix (pre-)multiplication:

$$\mathbf{T}\left(\left(\begin{array}{c}\alpha\\\beta\end{array}\right)\right) = \left(\begin{array}{c}T_{11} & T_{12}\\T_{21} & T_{22}\end{array}\right)\left(\begin{array}{c}\alpha\\\beta\end{array}\right) = \left(\begin{array}{c}T_{11}\alpha + T_{12}\beta\\T_{21}\alpha + T_{22}\beta\end{array}\right)$$

One can also express this, for $|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$ also as:

$$\mathbf{T}(|\psi\rangle) = \mathbf{T}(\alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle) = \alpha \mathbf{T}(|\mathbf{0}\rangle) + \beta \mathbf{T}(|\mathbf{1}\rangle) = \mathbf{T} |\psi\rangle$$

The application of a linear opertor \mathbf{T} (represented by a matrix) to a vector \mathbf{x} (represented via its coordinates) becomes:

$$\mathbf{T}(\mathbf{x}) = \mathbf{T}\mathbf{x} = (T_{ij})(x_i) = \sum_i T_{ij}x_i$$

The application of a linear opertor \mathbf{T} (represented by a matrix) to a vector \mathbf{x} (represented via its coordinates) becomes:

$$\mathbf{T}(\mathbf{x}) = \mathbf{T}\mathbf{x} = (T_{ij})(x_i) = \sum_i T_{ij}x_i$$

The standard convention is pre-multiplication so as the sequence is the same as with application.

The application of a linear opertor \mathbf{T} (represented by a matrix) to a vector \mathbf{x} (represented via its coordinates) becomes:

$$\mathbf{T}(\mathbf{x}) = \mathbf{T}\mathbf{x} = (T_{ij})(x_i) = \sum_i T_{ij}x_i$$

The standard convention is pre-multiplication so as the sequence is the same as with application.

The composition of linear opertators **T** and **S** becomes also a matrix/matrix pre-multiplications:

$$\mathbf{T} \circ \mathbf{S} = \mathbf{T}\mathbf{S} = (T_{ij})(S_{ki}) = \sum_i T_{ij}S_{ki}$$

・ロン ・回 と ・ ヨン ・ ヨン … ヨ

The application of a linear opertor \mathbf{T} (represented by a matrix) to a vector \mathbf{x} (represented via its coordinates) becomes:

$$\mathbf{T}(\mathbf{x}) = \mathbf{T}\mathbf{x} = (T_{ij})(x_i) = \sum_i T_{ij}x_i$$

The standard convention is pre-multiplication so as the sequence is the same as with application.

The composition of linear opertators **T** and **S** becomes also a matrix/matrix pre-multiplications:

$$\mathbf{T} \circ \mathbf{S} = \mathbf{T}\mathbf{S} = (T_{ij})(S_{ki}) = \sum_{i} T_{ij}S_{ki}$$

Some authors use the more "computational" pre-multiplication.

The application of a linear opertor \mathbf{T} (represented by a matrix) to a vector \mathbf{x} (represented via its coordinates) becomes:

$$\mathbf{T}(\mathbf{x}) = \mathbf{T}\mathbf{x} = (T_{ij})(x_i) = \sum_i T_{ij}x_i$$

The standard convention is pre-multiplication so as the sequence is the same as with application.

The composition of linear opertators **T** and **S** becomes also a matrix/matrix pre-multiplications:

$$\mathbf{T} \circ \mathbf{S} = \mathbf{T}\mathbf{S} = (T_{ij})(S_{ki}) = \sum_{i} T_{ij}S_{ki}$$

Some authors use the more "computational" pre-multiplication.

Finite-dimensional linear operators (matrices) form a vector space and with the multiplication a (linear) **algebra**. Adding the adjoint operation (see below) turns this into a **C*-algebra**.

We can define a linear map **B** which implements the base change $\{|0\rangle, |1\rangle\}$ and $\{|+\rangle, |-\rangle\}$:

$$\mathbf{B} = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

We can define a linear map **B** which implements the base change $\{|0\rangle, |1\rangle\}$ and $\{|+\rangle, |-\rangle\}$:

$$\mathbf{B} = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

Transforming the coordinates (x_i) with respect to $\{|0\rangle, |1\rangle\}$ into coordinates (y_i) using $\{|+\rangle, |-\rangle\}$ can be obtained by:

$$B(x_i)_i = (y_i)_i$$
 and $B^{-1}(y_i)_i = (x_i)_i$

We can define a linear map **B** which implements the base change $\{|0\rangle, |1\rangle\}$ and $\{|+\rangle, |-\rangle\}$:

$$\mathbf{B} = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

Transforming the coordinates (x_i) with respect to $\{|0\rangle, |1\rangle\}$ into coordinates (y_i) using $\{|+\rangle, |-\rangle\}$ can be obtained by:

$$B(x_i)_i = (y_i)_i$$
 and $B^{-1}(y_i)_i = (x_i)_i$

The matrix representation **T** of an operator using $\{|0\rangle, |1\rangle\}$ can be transformed into the representation **S** in $\{|+\rangle, |-\rangle\}$ via:

$$S = BTB^{-1}$$

We can define a linear map **B** which implements the base change $\{|0\rangle, |1\rangle\}$ and $\{|+\rangle, |-\rangle\}$:

$$\mathbf{B} = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

Transforming the coordinates (x_i) with respect to $\{|0\rangle, |1\rangle\}$ into coordinates (y_i) using $\{|+\rangle, |-\rangle\}$ can be obtained by:

$$B(x_i)_i = (y_i)_i$$
 and $B^{-1}(y_i)_i = (x_i)_i$

The matrix representation **T** of an operator using $\{|0\rangle, |1\rangle\}$ can be transformed into the representation **S** in $\{|+\rangle, |-\rangle\}$ via:

$$S = BTB^{-1}$$

Problem: It is not easy to compute inverse \mathbf{B}^{-1} , defined on implicitly by $\mathbf{B}\mathbf{B}^{-1} = \mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$ the identity (existence?!).

For a matrix $\mathbf{T} = (T_{ij})$ its transpose matrix \mathbf{T}^{T} is defined as

$$\mathbf{T}^T = (T_{ij}^T) = (T_{ji})$$

For a matrix $\mathbf{T} = (T_{ij})$ its transpose matrix \mathbf{T}^{T} is defined as

$$\mathbf{T}^T = (T_{ij}^T) = (T_{ji})$$

the conjugate matrix T* is defined by

$$\mathbf{T}^* = (T_{ij}^*) = (T_{ij})^* = \overline{(T_{ji})}$$

For a matrix $\mathbf{T} = (T_{ij})$ its transpose matrix \mathbf{T}^{T} is defined as

$$\mathbf{T}^T = (T_{ij}^T) = (T_{ji})$$

the conjugate matrix T* is defined by

$$\mathbf{T}^* = (T_{ij}^*) = (T_{ij})^* = \overline{(T_{ji})}$$

and the adjoint matrix \mathbf{T}^{\dagger} is given via

$$\mathbf{T}^{\dagger} = (\mathcal{T}_{ij}^{\dagger}) = (\mathcal{T}_{ji}^{*}) \quad \text{or} \ \mathbf{T}^{\dagger} = (\mathbf{T}^{*})^{\mathcal{T}} = (\mathbf{T}^{\mathcal{T}})^{*}$$

For a matrix $\mathbf{T} = (T_{ij})$ its transpose matrix \mathbf{T}^{T} is defined as

$$\mathbf{T}^T = (T_{ij}^T) = (T_{ji})$$

the conjugate matrix T* is defined by

$$\mathbf{T}^* = (T_{ij}^*) = (T_{ij})^* = \overline{(T_{ji})}$$

and the adjoint matrix \mathbf{T}^{\dagger} is given via

$$\mathbf{T}^{\dagger} = (\mathcal{T}^{\dagger}_{jj}) = (\mathcal{T}^{*}_{ji}) \quad \text{or} \ \mathbf{T}^{\dagger} = (\mathbf{T}^{*})^{\mathcal{T}} = (\mathbf{T}^{\mathcal{T}})^{*}$$

Note that $(\mathbf{TS})^{\mathsf{T}} = \mathbf{S}^{\mathsf{T}}\mathbf{T}^{\mathsf{T}}$ and thus $(\mathbf{TS})^{\dagger} = \mathbf{S}^{\dagger}\mathbf{T}^{\dagger}$.

For a matrix $\mathbf{T} = (T_{ij})$ its transpose matrix \mathbf{T}^{T} is defined as

$$\mathbf{T}^T = (T_{ij}^T) = (T_{ji})$$

the conjugate matrix T* is defined by

$$\mathbf{T}^* = (T_{ij}^*) = (T_{ij})^* = \overline{(T_{ji})}$$

and the adjoint matrix \mathbf{T}^{\dagger} is given via

$$\mathbf{T}^{\dagger} = (T_{ij}^{\dagger}) = (T_{ji}^{*})$$
 or $\mathbf{T}^{\dagger} = (\mathbf{T}^{*})^{T} = (\mathbf{T}^{T})^{*}$

Note that $(\mathbf{TS})^{T} = \mathbf{S}^{T}\mathbf{T}^{T}$ and thus $(\mathbf{TS})^{\dagger} = \mathbf{S}^{\dagger}\mathbf{T}^{\dagger}$.

In **mathematics** the adjoint operator is usually denoted by **T**^{*} (cf. conjugate in physics) and defined implicitly via:

$$\langle \mathsf{T}(\mathsf{x}),\mathsf{y}
angle = \langle \mathsf{x},\mathsf{T}^*(\mathsf{y})
angle \ \, \text{or} \ \, \langle \mathsf{T}^\dagger \mathsf{x} \mid \mathsf{y}
angle = \langle \mathsf{x} \mid \mathsf{Ty}
angle$$

Adjoint Vectors

Bra and ket vectors are also related using the adjoint:

$$|x\rangle^{\dagger} = \langle x|$$

or using their coordinates:

$$(x_i)^{\dagger} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}^{\dagger} = (\bar{x}_1 \cdots \bar{x}_n) = (\bar{x}^i)$$

Adjoint Vectors

Bra and ket vectors are also related using the adjoint:

$$|x\rangle^{\dagger} = \langle x|$$

or using their coordinates:

$$(x_i)^{\dagger} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}^{\dagger} = (\bar{x}_1 \quad \cdots \quad \bar{x}_n) = (\bar{x}^i)$$

The adjoint operator specifies the effect on dual vectors:

$$(\mathbf{T} \ket{x})^{\dagger} = \ket{x}^{\dagger} \mathbf{T}^{\dagger} = \langle x \mid \mathbf{T}^{\dagger}$$

A square matrix/operator U is called unitary if

```
\mathbf{U}^\dagger \mathbf{U} = \mathbf{I} = \mathbf{U} \mathbf{U}^\dagger
```

A square matrix/operator U is called unitary if

```
\mathbf{U}^\dagger \mathbf{U} = \mathbf{I} = \mathbf{U} \mathbf{U}^\dagger
```

That means **U**'s inverse is $\mathbf{U}^{\dagger} = \mathbf{U}^{-1}$. It also implies that **U** is invertible and the inverse is easy to compute.

A square matrix/operator U is called unitary if

```
\mathbf{U}^\dagger \mathbf{U} = \mathbf{I} = \mathbf{U} \mathbf{U}^\dagger
```

That means **U**'s inverse is $\mathbf{U}^{\dagger} = \mathbf{U}^{-1}$. It also implies that **U** is invertible and the inverse is easy to compute.

Quantum Mechanics requires that the dynamics or time evolution of a quantum state, e.g. qubit, is implemented via a unitary operator (as long as there is no measurement).

A square matrix/operator U is called unitary if

```
\mathbf{U}^\dagger \mathbf{U} = \mathbf{I} = \mathbf{U} \mathbf{U}^\dagger
```

That means **U**'s inverse is $\mathbf{U}^{\dagger} = \mathbf{U}^{-1}$. It also implies that **U** is invertible and the inverse is easy to compute.

Quantum Mechanics requires that the dynamics or time evolution of a quantum state, e.g. qubit, is implemented via a unitary operator (as long as there is no measurement).

The unitary evolution of an (isolated) quantum state/system is a mathematical consequence of being a solution of the Schrödinger equation for some Hamiltonian operator **H**.

Properties of Unitary Operators

Unitary operators generalise in some sense permutations (in fact every permutation of base vectors gives rise to a simple unitary map). They can also be seen as generalised rotations.

Properties of Unitary Operators

Unitary operators generalise in some sense permutations (in fact every permutation of base vectors gives rise to a simple unitary map). They can also be seen as generalised rotations.

Unitary operators also preserve the "geometry" of a Hilbert space, i.e. they preserve the inner prduct:

 $\langle x | \mathbf{U}^{\dagger}\mathbf{U} | y \rangle = \langle x | y \rangle.$

Properties of Unitary Operators

Unitary operators generalise in some sense permutations (in fact every permutation of base vectors gives rise to a simple unitary map). They can also be seen as generalised rotations.

Unitary operators also preserve the "geometry" of a Hilbert space, i.e. they preserve the inner prduct:

 $\langle x | \mathbf{U}^{\dagger}\mathbf{U} | y \rangle = \langle x | y \rangle.$

Any single qubit operation, i.e. unitary 2×2 matrix **U** can be expressed as via 4 (real) parameters:

$$\mathbf{U} = \begin{pmatrix} e^{i(\alpha-\beta/2-\delta/2)}\cos\gamma/2 & e^{i(\alpha+\beta/2-\delta/2)}\sin\gamma/2 \\ -e^{i(\alpha-\beta/2+\delta/2)}\sin\gamma/2 & e^{i(\alpha+\beta/2+\delta/2)}\cos\gamma/2 \end{pmatrix}$$

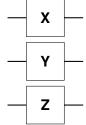
where α , β , δ and γ are real numbers.

Pauli X-Gate
$$\mathbf{X} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 \mathbf{X}

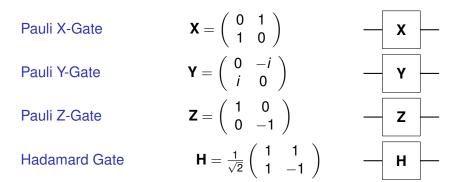
 $\mathbf{X} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\mathbf{Y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$

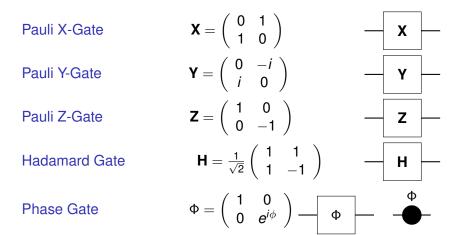
Pauli Y-Gate

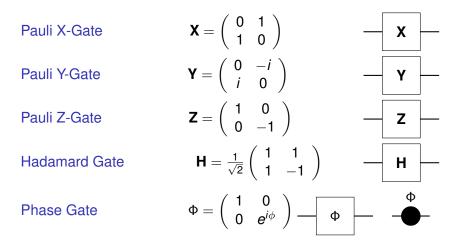
Pauli X-Gate



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <







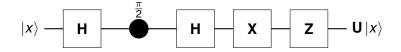
The Pauli-X gate is often referred to as NOT gate. Note that the notation for Hamiltonian and Hadamard gate are both **H**.

Graphical "Notation"

The product (combination) of unitary operators results in a unitary operator, i.e. with $\mathbf{U}_1, \ldots, \mathbf{U}_n$ unitary, the product $\mathbf{U} = \mathbf{U}_n \ldots \mathbf{U}_1$ is also unitary (Note: $(\mathbf{TS})^{\dagger} = \mathbf{S}^{\dagger} \mathbf{T}^{\dagger}$).

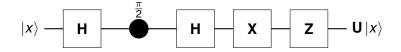
Graphical "Notation"

The product (combination) of unitary operators results in a unitary operator, i.e. with $\mathbf{U}_1, \ldots, \mathbf{U}_n$ unitary, the product $\mathbf{U} = \mathbf{U}_n \ldots \mathbf{U}_1$ is also unitary (Note: $(\mathbf{TS})^{\dagger} = \mathbf{S}^{\dagger} \mathbf{T}^{\dagger}$).



Graphical "Notation"

The product (combination) of unitary operators results in a unitary operator, i.e. with $\mathbf{U}_1, \ldots, \mathbf{U}_n$ unitary, the product $\mathbf{U} = \mathbf{U}_n \ldots \mathbf{U}_1$ is also unitary (Note: $(\mathbf{TS})^{\dagger} = \mathbf{S}^{\dagger} \mathbf{T}^{\dagger}$).



A simple example: $|y\rangle = HH |x\rangle$ or $(|x\rangle; H; H = |y\rangle)$:

$$|x\rangle$$
 — H — $|y\rangle$ \equiv $|x\rangle$ — I — $|y\rangle = |x\rangle$

because $\mathbf{H}^2 = \mathbf{I}$, i.e.

$$\frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$$