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Quantum Postulates

I The state of an (isolated) quantum system is represented
by a (normalised) vector in a complex Hilbert space H.

I An observable is represented by a self-adjoint matrix
(operator) A acting on the Hilbert space H.

I The expected result (average) when measuring observable
A of a system in state |x〉 ∈ H is given by:

〈A〉x = 〈x |A |x〉 = 〈x | |Ax〉

I The only possible results are eigen-values λi of A.
I The probability of measuring λn in state |x〉 is given by:

Pr(A = λn|x) = 〈x |Pn |x〉 = 〈x | |Pnx〉

with Pn = |λn〉〈λn| the orthogonal projection onto the space
generated by eigen-vector |λn〉 = |n〉 of A.
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Basic Measurement Principle

The values α and β describing a qubit are often called
probability amplitudes. If we measure a qubit

|φ〉 = α |0〉+ β |1〉 =

(
α
β

)
in the computational basis {|0〉 , |1〉} then we observe state
|0〉 with probability |α|2 and |1〉 with probability |β|2.

Furthermore, the state |φ〉 changes: it collapses into state |0〉
with probability |α|2 or |1〉 with probability |β|2, respectively.
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Self Adjoint Operators

An operator A is called self-adjoint or hermitian iff

A = A†

The postulates of Quantum Mechanics require that a quantum
observable A is represented by a self-adjoint operator A.

Possible measurement results are eigenvalues λi of A (always
real for self-adjoint operators) defined as

A |i〉 = λi |i〉 or A~ai = λi~ai or Aai = λiai

Probability to observe λk in state |x〉 =
∑

i αi |i〉 is

Pr(A = λk , |x〉) = |αk |2

Physicist refer to αk as probability amplitude.
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Spectrum

The set of eigen-values {λ1, λ2, . . .} of an operator T is called
its spectrum σ(T).

σ(T) = {λ | λI− T is not invertible}

It is possible that for an eigen-value λi in the equation

T |i〉 = λi |i〉

we may have more than one eigen-vector |i〉 for an eigen-value
λi , i.e. the dimension of the eigen-space d(i) > 1.
We will not consider these degenerate cases here.

Terminology: “eigen” means “self” or “own” in German (cf also
Italian “auto-valore”), it characterises a matrix/operator.
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Projections
Projections
An operator P on Cn is called projection (or idempotent) iff

P2 = PP = P

Orthogonal Projection
An operator P on Cn is called (orthogonal) projection iff

P2 = P = P†

We say that an (orthogonal) projection P projects onto its
image space P(Cn), which is always a linear sub-spaces of Cn.

Birkhoff-von Neumann: Projections on Hilbert space form an
(ortho-)lattice which gives rise to non-classical “quantum logic”.
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Outer Product
The outer product |x〉〈y | for vectors |x〉 = (x1, . . . , xn)T and
〈y | = (y1, . . . , yn) is an operator/matrix (actually: |x〉 ⊗ 〈y |):

(|x〉〈y |)ij = xiyj

e.g. |0〉〈1| =

(
1
0

)(
0 1

)
=

(
0 1
0 0

)
It could be treated just as a formal combination, e.g. we can
express the identity as I = |0〉〈0|+ |1〉〈1| because

(|0〉〈0|+ |1〉〈1|) |ψ〉 = (|0〉〈0|+ |1〉〈1|)(α |0〉+ β |1〉)
= α |0〉〈0||0〉+ α |1〉〈1||0〉+

β |0〉〈0||1〉+ β |1〉〈1||1〉
= α |0〉+ β |1〉
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Spectral Theorem

In the bra-ket notation we can represent a projection onto the
sub-space generated by |x〉 by the outer product Px = |x〉〈x |.

Theorem
A self-adjoint operator A (on a finite dimensional Hilbert space,
e.g. Cn) can be represented uniquely as a linear combination

A =
∑

i

λiPi

with λi ∈ R and Pi the (orthogonal) projection onto the
eigen-space generated by the eigen-vector |i〉, i.e.

Pi = |i〉〈i |
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Measurement Process

If we perform a measurement of the observable represented by:

A =
∑

i

λi |i〉〈i |

with eigen-values λi and eigen-vectors |i〉 in a state |x〉 we have
to decompose the state according to the observable, i.e.

|x〉 =
∑

i

Pi |x〉 =
∑

i

|i〉〈i |x〉 =
∑

i

〈i |x〉 |i〉 =
∑

i

αi |i〉

With probability |αi |2 = | 〈i |x〉 |2 two things happen
I The measurement instrument will the display λi .
I The state |x〉 collapses to |i〉.
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Do-It-Yourself Observable

We can take any (orthonormal) basis {|i〉}n0 of Cn+1 to act as
computational basis. We are free to choose (different)
measurement results λi to indicate different states in {|i〉}.

|x〉 =
∑

i 〈i |x〉|i〉 A =
∑

i λi |i〉〈i |

|〈n|x〉|2

λn

|n〉

...

|〈0|x〉|2
λ0

|0〉

The “display” values λi are essential for physicists, in a
quantum computing context they are just side-effects.
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Reversibility

Quantum Dynamics
For unitary transformations describing qubit dynamics:

U† = U−1

The quantum dynamics is invertible or reversible

Quantum Measurement
For projection operators in quantum measurement (typically):

P† 6= P−1

i.e. the quantum measurement is not reversible. However

P2 = P

i.e. the quantum measurement is idempotent.
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Beyond Qubits – Quantum Registers

Operations on a single Qubit are nice and interesting but don’t
give us much computational power.

We need to consider “larger” computational states which
contain more information. There could be two options:

I Quantum Systems with a larger number of freedoms.
I Quantum Registers as a combination of several Qubits.

Though it might one day be physically more realistic/cheaper to
build quantum devices based on not just binary basic states,
even then it will be necessary to combine these larger “Qubits”.
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Free Vector Spaces

In the theory of formal languages we have the construction of
words out of some (finite) set of letters, i.e. alphabet Σ or S.

For vector spaces there is similar construction: Take any (finite)
set of objects B and “declare” it a base. The free vector space
is the set of all linear combinations of elements in
B = {b1,b2, . . .}, i.e.

V(B) =

{∑
i

λibi | λi ∈ C and bi ∈ B

}

or

V(B) =

{∑
i

λi |i〉 | λi ∈ C and |i〉 ∈ B

}
with the obvious algebraic operations (incl. inner product).
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Multi Qubit State

We encountered already the state space of a single qubit with
B = {0,1} but also with B = {+,−}.

The state space of a two qubit system is given by

V({0,1} × {0,1}) or V({+,−} × {+,−})

i.e. the base vectors are (in the standard base):

B2 = {(0,0), (1,0), (0,1), (1,1)}

or we use a “short-hand” notation B2 = {00,01,10,11}

Issue: What about V(B × B × B)? What is its dimension, or
how many base vectores are there in B3?
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Tensor Product

Given a n ×m matrix A and a k × l matrix B:

A =

 a11 . . . a1m
...

. . .
...

an1 . . . anm

 B =

 b11 . . . b1l
...

. . .
...

bk1 . . . bkl


The tensor or Kronecker product A⊗ B is a nk ×ml matrix:

A⊗ B =

 a11B . . . a1mB
...

. . .
...

an1B . . . anmB


Special cases are square matrices (n = m and k = l) and
vectors (row n = k = 1, column m = l = 1).
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Tensor Product of Vectors
The tensor product of (ket) vectors fulfils a number of nice
algebraic properties, such as

1. The bilinearity property:

(αv + α′v′)⊗ (βw + β′w′) =
= αβ(v⊗w) + αβ′(v⊗w′) + α′β(v′ ⊗w) + α′β′(v′ ⊗w′)

with α, α′, β, β′ ∈ C, and v,v′ ∈ Ck , w,w′ ∈ Cl .
2. For v,v′ ∈ Ck and w,w′ ∈ Cl we have:〈

v⊗w,v′ ⊗w′
〉

=
〈
v,v′

〉 〈
w,w′

〉
3. We denote by bm

i ∈ Bm ⊆ Cm the i ’th basis vector in Cm

then
bk

i ⊗ bl
j = bkl

(i−1)l+j
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Tensor Product of Matrices
For the tensor product of square matrices we also have:

1. The bilinearity property:

(αM + α′M′)⊗ (βN + β′N′) =
= αβ(M⊗ N) + αβ′(M⊗ N′) + α′β(M′ ⊗ N) + α′β′(M′ ⊗ N′)

α, α′, β, β′ ∈ C, M,M′ m ×m matrices N,N′ n × n matrices.
2. We have, with v ∈ Cm and w ∈ Cn:

(M⊗ N)(v⊗w) = (Mv)⊗ (Nw)
(M⊗ N)(M′ ⊗ N′) = (MM′)⊗ (NN′)

3. If M and N are unitary (or invertible) so is M⊗ N, and:

(M⊗ N)T = MT ⊗ NT and (M⊗ N)† = M† ⊗ N†
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The Two Qubit States

Given two Hilbert spaces H1 with basis B1 and H2 with basis
B2 we can define the tensor product of spaces as

H1 ⊗H2 = V({bi ⊗ bj | bi ∈ B1,bj ∈ B2})

Using the notation |i〉 ⊗ |j〉 = |i〉 |j〉 = |ij〉 the standard base of
the state space of a two qubit system C4 = C2 ⊗ C2 are:

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1


Often one also represents them using a “decimal” notation, i.e.
|00〉 ≡ |0〉, |01〉 ≡ |1〉, |10〉 ≡ |2〉, and |11〉 ≡ |3〉.
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Entanglement

The important relation between V(B), e.g. V({0,1}), and
V(Bn), e.g. V({0,1}n) is given by V(Bn) = (V(B))⊗n, i.e.:

V(B × B × . . .× B) = V(B)⊗ V(B)⊗ . . .⊗ V(B)

Every n qubit state in C2n
can be represented as a linear

combination of the base vectors |0 . . . 00〉 , |0 . . . 10〉 , . . . ,
|1 . . . 11〉 or decimal |0〉 , |1〉 , |2〉 , . . . , . . . , |2n − 1〉.

A two-qubit quantum state |ψ〉 ∈ C22
is said to be separable iff

there exist two single-qubit states |ψ1〉 and |ψ2〉 in C2 such that

|ψ〉 = |ψ1〉 ⊗ |ψ2〉

If |ψ〉 is not separable then we say that |ψ〉 is entangled.
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Entanglement and Classical Probabilities

In quantum physics the state is given by a vector in a complex
Hilbert space. Instead of probability amplitudes in Cn let us
consider probability distributions in a real vector space, i.e. Rd .

All the normalised (using the 1-norm, i.e. ‖(pi)i‖1 =
∑

i |pi |)
elements ρ in Rd represent probability distributions on a d
element probability space Ωd = {ω1, ω2, . . . , ωd} i.e.
ρ = (ρi) ∈ D(Ωd ) with ρi = P(ωi) ∈ [0,1].

The normalised elements in Rd1 ⊗ Rd2 correspond to the joint
probability distributions on Ωd1 × Ωd1 , with ρij = P(ωi ∧ ωj), i.e.

D(Ωd1 × Ωd1) = D(Ωd1)⊗D(Ωd1)
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Classical Correlations
If the events in Ωd1 and Ωd2 are independent (“uncorrelated”)
then their joint distribution is given as a product of distributions
on Ωd1 and Ωd1 , i.e. ρ = ρ1 ⊗ ρ2 or P(ωi ∧ ωj) = P(ωi) · P(ωj).

If there is a “correlation” or “dependency” then it is impossible
to express a certain joint distribution as a simple (tensor
product) but only as a sum of (tensor) products.

Consider, for example, two coins which “miraculously” always
fall on the same side, i.e. a joint distribution:

ρij H T
H 1

2 0
T 0 1

2

ρ =
1
2

(1,0)⊗ (1,0)T +
1
2

(0,1)⊗ (0,1)T 6= ρ1 ⊗ ρ2
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Relational Program Analysis [*]

1! = 1
n! = n · (n − 1)!

parity(m) =

{
even if m = 2k
odd otherwise.

Consider random input n ∈ {1,2,3} to the factorial, i.e.
P(n = 1) = P(n = 2) = P(n = 3) = 1

3 . Determine the
probability that n! is even or odd.

P(parity(n!) = even) =
2
3

and P(parity(n!) = odd) =
1
3
.

However – the probabilities are not independent – we have, e.g.

0 = P(even(n!) ∧ n = 1) 6= P(even(n!)) · P(n = 1) =
2
9

Entanglement represents correlation (non-independence):

P(parity(n!) | n) 6= P(parity(n!))⊗ P(n).
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