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Quantum Postulates

>

The state of an (isolated) quantum system is represented
by a (normalised) vector in a complex Hilbert space H.

An observable is represented by a self-adjoint matrix
(operator) A acting on the Hilbert space H.

The expected result (average) when measuring observable
A of a system in state |x) € H is given by:

(A)x = (X[ Alx) = (x| |Ax)

The only possible results are eigen-values \; of A.
The probability of measuring A, in state |x) is given by:

Pr(A=Anlx) = (x| Py |X) = (| |Pax)

with P, = |A\p) (An| the orthogonal projection onto the space
generated by eigen-vector |\,) = |n) of A.
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Basic Measurement Principle

The values « and g describing a qubit are often called
probability amplitudes. If we measure a qubit

9 =alo)+ 511 = ( §)

in the computational basis {|0), [1)} then we observe state
10) with probability |a|? and |1) with probability |3|2.

Furthermore, the state |¢) changes: it collapses into state |0)
with probability |«|? or |1) with probability |3|2, respectively.

3/22

Self Adjoint Operators
An operator A is called self-adjoint or hermitian iff
A=Al

The postulates of Quantum Mechanics require that a quantum
observable A is represented by a self-adjoint operator A.

Possible measurement results are eigenvalues \; of A (always
real for self-adjoint operators) defined as

Ali) = X\;|i) or Ag = )\a or Aa; = \a,
Probability to observe )\, in state |x) = >, «;]i) is
Pr(A= g, |x)) = |axl?
Physicist refer to ay as probability amplitude.
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Spectrum

The set of eigen-values {\1, Ao, ...} of an operator T is called
its spectrum o (T).

o(T) = {\ | Al = T is not invertible}

It is possible that for an eigen-value A, in the equation
Tli) = Xili)

we may have more than one eigen-vector |/) for an eigen-value
Aj, i.e. the dimension of the eigen-space d(i) > 1.
We will not consider these degenerate cases here.

Terminology: “eigen” means “self” or “own” in German (cf also
ltalian “auto-valore”), it characterises a matrix/operator.

5/22

Projections

Projections
An operator P on C" is called projection (or idempotent) iff

P2=PP=P

Orthogonal Projection
An operator P on C" is called (orthogonal) projection iff

P2=P=P!

We say that an (orthogonal) projection P projects onto its
image space P(C"), which is always a linear sub-spaces of C".

Birkhoff-von Neumann: Projections on Hilbert space form an
(ortho-)lattice which gives rise to non-classical “quantum logic”.
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Outer Product

The outer product |x)(y| for vectors |x) = (x,...,X,)" and
(y| = (y1,...,¥n) is an operator/matrix (actually: |x) @ (y|):

()Y = xiy;

e.g. \o><1\=(;)(0 1)=(8 (1))

It could be treated just as a formal combination, e.g. we can
express the identity as | = |0)(0| + |1)(1| because

(10)O + 1) (1D [y = (10)(0] + [1)(1[)(«[0) + 5[1))
= a[0){0[|0) + a|1)(1]]0) +
A10)(0[11) + A1) (11[1)
= «l0)+8|1)

S~ T S~
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Spectral Theorem

In the bra-ket notation we can represent a projection onto the
sub-space generated by |x) by the outer product Py = |x)(x|.

Theorem
A self-adjoint operator A (on a finite dimensional Hilbert space,
e.g. C") can be represented uniquely as a linear combination

A= Z)\,-P,-
i

with \; € R and P; the (orthogonal) projection onto the
eigen-space generated by the eigen-vector |i), i.e.

P = [/){i]
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Measurement Process

If we perform a measurement of the observable represented by:
A=) Nl
i

with eigen-values \; and eigen-vectors |i) in a state |x) we have
to decompose the state according to the observable, i.e.

X) = 3 Pilx) = 1) = D (i) = >l

/

With probability |«;|2 = | (i|x) |? two things happen
» The measurement instrument will the display \;.
» The state |x) collapses to |/).
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Do-lt-Yourself Observable
We can take any (orthonormal) basis {|i)}5 of C"' to act as

computational basis. We are free to choose (different)
measurement results \; to indicate different states in {|/)}.

[(n[x) 2 )

An

NZ\) .
{0x)] 0)

The “display” values \; are essential for physicists, in a
quantum computing context they are just side-effects.

[X) = 22 UPOLH) ——f A= 22Aili) (]
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Reversibility

Quantum Dynamics
For unitary transformations describing qubit dynamics:

ur=u-’
The quantum dynamics is invertible or reversible

Quantum Measurement
For projection operators in quantum measurement (typically):

PT £ P
l.e. the quantum measurement is not reversible. However
P2 =P
l.e. the quantum measurement is idempotent.
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Beyond Qubits — Quantum Registers

Operations on a single Qubit are nice and interesting but don’t
give us much computational power.

We need to consider “larger” computational states which
contain more information. There could be two options:

» Quantum Systems with a larger number of freedoms.
» Quantum Registers as a combination of several Qubits.

Though it might one day be physically more realistic/cheaper to
build quantum devices based on not just binary basic states,
even then it will be necessary to combine these larger “Qubits”.
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Free Vector Spaces

In the theory of formal languages we have the construction of
words out of some (finite) set of letters, i.e. alphabet ¥ or S.

For vector spaces there is similar construction: Take any (finite)
set of objects B and “declare” it a base. The free vector space
is the set of all linear combinations of elements in
B={by,bs,...}, i€

V(B) = {Z Abi| Aje Candb; € B}
i
or
V(B) = {Z Al | A€ Cand |i) € B}
i
with the obvious algebraic operations (incl. inner product).
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Multi Qubit State

We encountered already the state space of a single qubit with
B = {0,1} but also with B = {+, —}.

The state space of a two qubit system is given by
V({0,1} x {0,1}) or V({+, -} x {+,-})
l.e. the base vectors are (in the standard base):
B, ={(0,0),(1,0),(0,1),(1,1)}

or we use a “short-hand” notation B, = {00,01,10,11}

Issue: What about V(B x B x B)? What is its dimension, or
how many base vectores are there in B3?
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Tensor Product

Given a n x m matrix A and a kK x [ matrix B:

The tensor or Kronecker product A ® B is a nk x ml matrix:

311B a1mB
A®B = : L
an‘]B ant

Special cases are square matrices (n = mand k = /) and
vectors (rown=k =1,columnm=/=1).
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Tensor Product of Vectors

The tensor product of (ket) vectors fulfils a number of nice
algebraic properties, such as

1. The bilinearity property:

(aV+ a'V') @ (W + FW) =
— aB(VE W)+ af (VO W) + a8V @ W) + /B (V & W)

with o, o/, 8,3/ € C,and v, v/ € CK, w,w’ € C/.
2. Forv,v' € CKk and w,w’ € C/ we have:

(vaw, vV ow)=(v,v)(ww)

3. We denote by b{" € B, C C™ the i'th basis vector in C"™
then
k / Ki
bi' @by = b(j_1),
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Tensor Product of Matrices
For the tensor product of square matrices we also have:

1. The bilinearity property:

(aM + /M) (N + FN') =
— aB(M @ N) +af (Ma N') + o/ S(W @ N) + /5 (W @ N')

a,a, 5,8 € C, MM m x mmatrices N,N' n x n matrices.
2. We have, withve C" and w ¢ C":

(M@ N)(vew)=(Mv)® (Nw)
(Me N)(M @ N) = (MM) @ (NN')

3. If M and N are unitary (or invertible) so is M ® N, and:

(M@N)" =M @ N™ and (M® N)' =M™ @ N’
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The Two Qubit States

Given two Hilbert spaces H with basis B; and H» with basis
B> we can define the tensor product of spaces as

H ®H2:V({b/®bj | b; € Bhbje B.})

Using the notation |/) @ |j) = |i) |j) = |ij) the standard base of
the state space of a two qubit system C* = C? @ C? are:

1
0
0

Often one also represents them using a “decimal” notation, i.e.
|00) =|0), |01) =|1),|10) = |2), and |11) = |3).
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Entanglement

The important relation between V(B), e.g. V({0,1}), and
V(B"), e.g. V({0,1}") is given by V(B") = (V(B))®", i.e.:

V(IBxBx...xB)=V(B)®V(B)®...2V(B)

Every n qubit state in C2” can be represented as a linear
combination of the base vectors |0...00),(0...10),...,
|1...11) ordecimal |0),[1),]2),...,...,]2" —1).

A two-qubit quantum state |¢) € C?" is said to be separable iff
there exist two single-qubit states |¢1) and |+)») in C? such that

V) = Y1) ® |2)

If |4) is not separable then we say that |¢) is entangled.
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Entanglement and Classical Probabilities

In quantum physics the state is given by a vector in a complex
Hilbert space. Instead of probability amplitudes in C" let us
consider probability distributions in a real vector space, i.e. RY.

All the normalised (using the 1-norm, i.e. |[(p;)ill1 = >_; |pi])
elements p in RY represent probability distributions on a d
element probability space Qg = {w1,wa, ..., wg} i.e.

p = (pj) € D(Qq) With p; = P(w)) € [0, 1].

The normalised elements in R% © R% correspond to the joint
probability distributions on Qg x Qg,, with p; = P(w; A wj), i.e.

D(Qq, x Qq,) = D(2q,) ® D(Qq,)

20/22



Classical Correlations
If the events in Qg4 and Q, are independent (“‘uncorrelated”)
then their joint distribution is given as a product of distributions
on Qg and Qg , i.e. p = p1 ® p2 or P(w; A wj) = P(wj) - P(w).

If there is a “correlation” or “dependency” then it is impossible
to express a certain joint distribution as a simple (tensor
product) but only as a sum of (tensor) products.

Consider, for example, two coins which “miraculously” always
fall on the same side, i.e. a joint distribution:

p,-j|H T
:

H §?

rio 3

1 1
p:5(1,0)®(1,0)T+5(0,1)®(0,1)T#p1 ® p2
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Relational Program Analysis [*]

even if m=2k

1 = 1 . B
parity(m) = { odd otherwise.

n = n-(n—1)!

Consider random input n € {1, 2,3} to the factorial, i.e.
P(n=1)= P(n=2) = P(n=3) = }. Determine the
probability that n! is even or odd.

P(parity(n!) = even) = % and P(parity(n') = odd) = %

However — the probabilities are not independent — we have, e.g.

0= P(even(n!) A n=1) # P(even(n'))- P(n=1) = =

Entanglement represents correlation (non-independence):
P(parity(n!) | n) # P(parity(n!)) ® P(n).
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