Quantum Computation (CO484) Quantum Gates and Circuits

Herbert Wiklicky

herbert@doc.ic.ac.uk Autumn 2017

Classical Gates

At heart of classical (electronic) circuits we have to consider gates like for example:

AND	$\equiv \land$	XC	DR	$\equiv \oplus$	NAND				
0 0	-	0	0	0	-	0			
0 1	0	0	1	1	-	1			
1 0	0	1	0	1	1	0	1		
1 1	1	1	1	0	1	1	0		

The idea is to define similar quantum gates, taking two (or *n*) qubits at input and producing some output. Contrary to classical gates we have to use **unitary**, i.e. reversible, gates in quantum circuits.

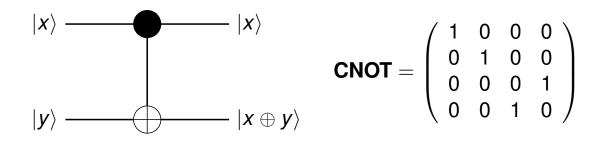
The Controlled-NOT or CNOT Gate

The quantum analog of a classical XOR-gate is the CNOT-gate. The behaviour of the CNOT-gate (on two qubits, i.e. $\mathbb{C}^2 \otimes \mathbb{C}^2$), is for base vectors $|x\rangle$, $|y\rangle \in \{|0\rangle, |1\rangle\}$:

$$|x,y
angle\mapsto |x,y\oplus x
angle$$
 with $y\oplus x=(y+x)$ mod 2

i.e. $|00\rangle \mapsto |00\rangle$, $|01\rangle \mapsto |01\rangle$, $|10\rangle \mapsto |11\rangle$, $|11\rangle \mapsto |10\rangle$.

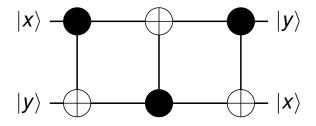
We represent the CNOT-gate graphically and as a matrix (with respect to the standard basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$) as:



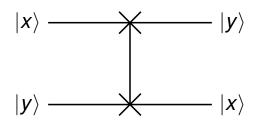
3/16

Swapping Gate

We can exploit the CNOT-Gate to SWAP two qubits:



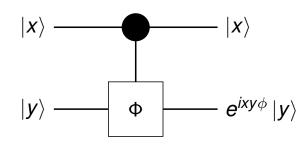
is depicted by (shorthand):



Exercise: Check that this really maps $|x\rangle \otimes |y\rangle$ into $|y\rangle \otimes |x\rangle$ (for all $|x\rangle$ and $|y\rangle$ not just base vectors?).

Controlled Phase Gate

The controlled phase-gate is depicted as follows (for base vectors $|x\rangle$, $|y\rangle \in \{|0\rangle$, $|1\rangle\}$):



Its matrix/operator representation is given by:

$$\Phi = \left(egin{array}{ccccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & e^{i\phi} \end{array}
ight)$$

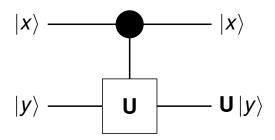
on any two qubits, i.e. vectors in $\mathbb{C}^2\otimes\mathbb{C}^2.$

General Controlled Gate

In general, we can control any single qubit transformation $\mathbf{U}: \mathbb{C}^2 \to \mathbb{C}^2$ by another qubit, i.e. such that for all $|y\rangle \in \mathbb{C}^2$:

 $\begin{array}{lcl} |0\rangle \otimes |y\rangle & \mapsto & |0\rangle \otimes |y\rangle \\ |1\rangle \otimes |y\rangle & \mapsto & |1\rangle \otimes {\bf U} \,|y\rangle \end{array}$

The diagrammatic representation is:



5/16

Toffoli Gate

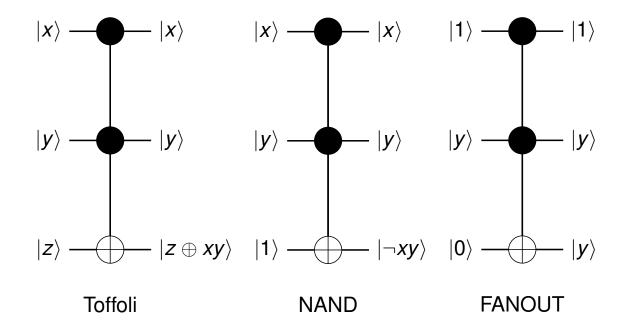
The Toffoli-gate is a 3-qubit quantum gate on $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 = \mathbb{C}^8$ with the following behaviour $\mathbf{T} : |x, y, z\rangle \mapsto |x', y', z'\rangle$ and matrix representation (standard base enumeration):

input		output												
X	У	Ζ	<i>X</i> ′	<i>y</i> ′	Ζ'		/ 1	0	0	0	0	0	0	
0	0	0	0	0	0		0	1	0	0	0	0	0	
0	0	1	0	0	1		0	0	1	0	0	0	0	
0	1	0	0	1	0	т	0	0	0	1	0	0	0	
0	1	1	0	1	1		0	0	0	0	1	0	0	
1	0	0	1	0	0		0	0	0	0	0	1	0	
1	0	1	1	0	1		0	0	0	0	0	0	0	
1	1	0	1	1	1		0 /	0	0	0	0	0	1	
1	1	1	1	1	0									

7/16

Toffoli Gate Usage

The Toffoli gate can be used can be used to implement a reversible version of NAND and a FANOUT gate.



This works only with $x, y \in \{0, 1\}$.

Linear Maps from Functions

In general, we can take any (binary) function

$$f: \{0,1\}^n \to \{0,1\}^m$$

and define a corresponding linear map T_f

$$\mathbf{T}_f: (\mathcal{V}(\{0,1\}))^{\otimes n} \to (\mathcal{V}(\{0,1\}))^{\otimes m} \text{ or } \mathbf{T}_f: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes m}$$

We just have to read the map f as an instruction on how **base** vectors should be transformed under **T**_{*f*} (into base vectors).

Once we know or specify the image of all base vectors we know the (matrix representation) of \mathbf{T}_f via

$$\mathbf{T}_f \ket{x} = \ket{f(x)}$$

E.g. with f(011) = 10101 we have $\mathbf{T}_f : |011\rangle \mapsto |10101\rangle$.

Problem: T_{*f*} is, in general, **not unitary**, i.e. reversible.

9/16

Reversible Operators from General Functions

Reversibility makes it impossible to have a quantum device U_f which **just** computes a general function f, i.e. $U_f : |x\rangle \mapsto |f(x)\rangle$.

However, we can always "pack" up a function *f* as a unitary operator \mathbf{U}_f using an ancilla qubit to remember the initial state, e.g. $|x\rangle \otimes |0\rangle \mapsto |x\rangle \otimes |f(x)\rangle$. The **standard** implementation of $f : \{0, 1\}^n \to \{0, 1\}^m$ as unitary operator \mathbf{U}_f on $\mathbb{C}^{2^n} \otimes \mathbb{C}^{2^m}$ is:

$$\mathsf{U}_f: \ket{x} \otimes \ket{y} \mapsto \ket{x} \otimes \ket{y \oplus f(x)}$$

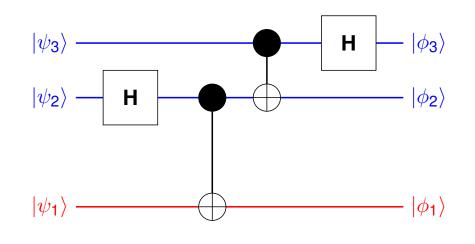
Graphically represented by the diagram/quantum circuit:

$$|x\rangle$$
 _____ $|x\rangle$ _____ $|y\rangle$ _____ $|y \oplus f(x)\rangle$

Quantum Circuit Model

We can specify a quantum algorithm on qubit registers – i.e. a unitary operator $\mathbf{U} : (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes n}$ – using a combination of (standardised) quantum gates – like Hadamard, Pauli, etc. – and maybe "oracles" like \mathbf{U}_f as well as measurements.

For example, the quantum circuit for **teleportation** (without correction) as an operator on $(\mathbb{C}^2)^{\otimes 3}$ is given as follows:



11/16

Calculations for Small Quantum Circuits

Circuits with few qubits can "implemented", e.g. in octave, etc.

```
q0 = [1,0]'
q1 = [0,1]'
H = (1/sqrt(2)) * [1, 1;1,-1]
CX = [1, 0, 0, 0; 0, 1, 0, 0;
        0, 0, 1; 0, 0, 1, 0]
S1 = kron(eye(2), H, eye(2))
S2 = kron(eye(2), CX)
S3 = kron(CX, eye(2))
S4 = kron(H, eye(2), eye(2))
T = S1*S2*S3*S4
```

Computational Expressivness

The question arises: What we can compute with a given set of basic quantum gates? What can we compute with a quantum circuit?

For **permutations** it is well known that all permutations can be decomposed into elementary so-called **transpositions** which only exchange two elements. Similar results also exist for **rotations**.

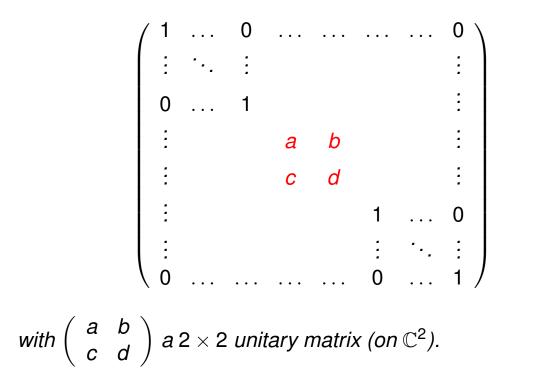
For general unitary operators **U** on \mathbb{C}^n – in particular on *m* qubits, i.e. $\mathbb{C}^{2^m} = (\mathbb{C}^2)^{\otimes m}$ – an analogue results gurantees that 2×2 unitary matrices make up all unitary operators.

See e.g.: A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi: Classical and Quantum Computation, AMS, 2002, p70.

Unitary Operators on \mathbb{C}^n

Theorem

An arbritary unitary operator **U** on the space \mathbb{C}^n can be represented as a product of $\frac{n(n-1)}{2}$ matrices of the form:



Approximation of Unitary Operators

If we are only interested in "about the right result" we have:

Given two unitary transformations **U** and **V**. The error of approximation is defined by

$$e(\mathbf{U},\mathbf{V}) = \sup_{\ket{\phi}} \| (\mathbf{U}-\mathbf{V}) \ket{\phi} \|$$

Definition

A set of gates $\mathcal{G} = {\mathbf{G}_1, \ldots}$ is said to be approximatly universal if any n-qubit operator \mathbf{U} (with $n \ge 1$) can be approximated to arbitrary accuracy, i.e. for all $\varepsilon > 0$ there exists a circuit \mathbf{V} which is constructed of gates in \mathcal{G} and their controlled versions such that we have $e(\mathbf{U}, \mathbf{V}) < \varepsilon$.

(Approximatly) Universal Gates

A possible set of approximatly universal gates (e.g. Kaye, Laflamme, Mosca: Introduction to Quantum Computing, p71):

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \Phi \begin{pmatrix} \frac{\pi}{4} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}$$
$$\mathbf{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Theorem The set $\mathcal{G} = \{\mathbf{H}, \Phi(\frac{\pi}{4})\}$ is universal for 1-qubits.

Theorem

The set $\mathcal{G} = \{ \mathsf{CNOT}, \mathsf{H}, \Phi(\frac{\pi}{4}) \}$ is a universal set of gates.