Quantum Computation (CO484)
 Quantum Gates and Circuits

Herbert Wiklicky

herbert@doc.ic.ac.uk
Autumn 2017

Classical Gates

At heart of classical (electronic) circuits we have to consider gates like for example:

Classical Gates

At heart of classical (electronic) circuits we have to consider gates like for example:

AND $\equiv \wedge$		
0	0	0
0	1	0
1	0	0
1	1	1

Classical Gates

At heart of classical (electronic) circuits we have to consider gates like for example:

AND $\equiv \wedge$		$\mathrm{XOR} \equiv \oplus$	
00	0	00	0
01	0	01	1
10	0	10	1
11	1	11	0

Classical Gates

At heart of classical (electronic) circuits we have to consider gates like for example:

AND $\equiv \wedge$		
0	0	0
0	1	0
1	0	0
1	1	1

$\mathrm{XOR} \equiv \oplus$		
0	0	0
0	1	1
1	0	1
1	1	0

NAND		
0	0	1
0	1	1
1	0	1
1	1	0

Classical Gates

At heart of classical (electronic) circuits we have to consider gates like for example:

AND $\equiv \wedge$		
0	0	0
0	1	0
1	0	0
1	1	1

$\mathrm{XOR} \equiv \oplus$		
0	0	0
0	1	1
1	0	1
1	1	0

NAND		
0	0	1
0	1	1
1	0	1
1	1	0

The idea is to define similar quantum gates, taking two (or n) qubits at input and producing some output. Contrary to classical gates we have to use unitary, i.e. reversible, gates in quantum circuits.

The Controlled-NOT or CNOT Gate

The quantum analog of a classical XOR-gate is the CNOT-gate.

The Controlled-NOT or CNOT Gate

The quantum analog of a classical XOR-gate is the CNOT-gate. The behaviour of the CNOT-gate (on two qubits, i.e. $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$), is for base vectors $|x\rangle,|y\rangle \in\{|0\rangle,|1\rangle\}$:

$$
|x, y\rangle \mapsto|x, y \oplus x\rangle \text { with } y \oplus x=(y+x) \bmod 2
$$

$$
\text { i.e. }|00\rangle \mapsto|00\rangle,|01\rangle \mapsto|01\rangle,|10\rangle \mapsto|11\rangle,|11\rangle \mapsto|10\rangle .
$$

The Controlled-NOT or CNOT Gate

The quantum analog of a classical XOR-gate is the CNOT-gate. The behaviour of the CNOT-gate (on two qubits, i.e. $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$), is for base vectors $|x\rangle,|y\rangle \in\{|0\rangle,|1\rangle\}$:

$$
|x, y\rangle \mapsto|x, y \oplus x\rangle \text { with } y \oplus x=(y+x) \bmod 2
$$

$$
\text { i.e. }|00\rangle \mapsto|00\rangle,|01\rangle \mapsto|01\rangle,|10\rangle \mapsto|11\rangle,|11\rangle \mapsto|10\rangle \text {. }
$$

We represent the CNOT-gate graphically and as a matrix (with respect to the standard basis $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\})$ as:

The Controlled-NOT or CNOT Gate

The quantum analog of a classical XOR-gate is the CNOT-gate. The behaviour of the CNOT-gate (on two qubits, i.e. $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$), is for base vectors $|x\rangle,|y\rangle \in\{|0\rangle,|1\rangle\}$:

$$
|x, y\rangle \mapsto|x, y \oplus x\rangle \text { with } y \oplus x=(y+x) \bmod 2
$$

i.e. $|00\rangle \mapsto|00\rangle,|01\rangle \mapsto|01\rangle,|10\rangle \mapsto|11\rangle,|11\rangle \mapsto|10\rangle$.

We represent the CNOT-gate graphically and as a matrix (with respect to the standard basis $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$) as:

CNOT $=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$

Swapping Gate

We can exploit the CNOT-Gate to SWAP two qubits:

is depicted by (shorthand):

Exercise: Check that this really maps $|x\rangle \otimes|y\rangle$ into $|y\rangle \otimes|x\rangle$ (for all $|x\rangle$ and $|y\rangle$ not just base vectors?).

Controlled Phase Gate

The controlled phase-gate is depicted as follows (for base vectors $|x\rangle,|y\rangle \in\{|0\rangle,|1\rangle\})$:

Controlled Phase Gate

The controlled phase-gate is depicted as follows (for base vectors $|x\rangle,|y\rangle \in\{|0\rangle,|1\rangle\})$:

Its matrix/operator representation is given by:

$$
\Phi=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{i \phi}
\end{array}\right)
$$

on any two qubits, i.e. vectors in $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$.

General Controlled Gate

In general, we can control any single qubit transformation $\mathbf{U}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ by another qubit, i.e. such that for all $|y\rangle \in \mathbb{C}^{2}$:

$$
\begin{aligned}
|0\rangle \otimes|y\rangle & \mapsto
\end{aligned}|0\rangle \otimes|y\rangle,
$$

General Controlled Gate

In general, we can control any single qubit transformation $\mathbf{U}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ by another qubit, i.e. such that for all $|y\rangle \in \mathbb{C}^{2}$:

$$
\begin{aligned}
|0\rangle \otimes|y\rangle & \mapsto|0\rangle \otimes|y\rangle \\
|1\rangle \otimes|y\rangle & \mapsto|1\rangle \otimes \mathbf{U}|y\rangle
\end{aligned}
$$

The diagrammatic representation is:

Toffoli Gate

The Toffoli-gate is a 3 -qubit quantum gate on $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}=$ $=\mathbb{C}^{8}$ with the following behaviour $\mathbf{T}:|x, y, z\rangle \mapsto\left|x^{\prime}, y^{\prime}, z^{\prime}\right\rangle$ and matrix representation (standard base enumeration):

input				output		
x	y	z	x^{\prime}	y^{\prime}	z^{\prime}	
0	0	0	0	0	0	
0	0	1	0	0	1	
0	1	0	0	1	0	
0	1	1	0	1	1	
1	0	0	1	0	0	
1	0	1	1	0	1	
1	1	0	1	1	1	
1	1	1	1	1	0	

$$
\mathbf{T}=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Toffoli Gate Usage

The Toffoli gate can be used can be used to implement a reversible version of NAND and a FANOUT gate.

Toffoli Gate Usage

The Toffoli gate can be used can be used to implement a reversible version of NAND and a FANOUT gate.

Toffoli

Toffoli Gate Usage

The Toffoli gate can be used can be used to implement a reversible version of NAND and a FANOUT gate.

Toffoli

NAND

Toffoli Gate Usage

The Toffoli gate can be used can be used to implement a reversible version of NAND and a FANOUT gate.

Toffoli

NAND

FANOUT

Toffoli Gate Usage

The Toffoli gate can be used can be used to implement a reversible version of NAND and a FANOUT gate.

Toffoli

NAND

FANOUT

This works only with $x, y \in\{0,1\}$.

Linear Maps from Functions

In general, we can take any (binary) function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}
$$

and define a corresponding linear map \mathbf{T}_{f}

$$
\mathbf{T}_{f}:(\mathcal{V}(\{0,1\}))^{\otimes n} \rightarrow(\mathcal{V}(\{0,1\}))^{\otimes m} \text { or } \mathbf{T}_{f}:\left(\mathbb{C}^{2}\right)^{\otimes n} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes m}
$$

Linear Maps from Functions

In general, we can take any (binary) function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}
$$

and define a corresponding linear map \mathbf{T}_{f}

$$
\mathbf{T}_{f}:(\mathcal{V}(\{0,1\}))^{\otimes n} \rightarrow(\mathcal{V}(\{0,1\}))^{\otimes m} \text { or } \mathbf{T}_{f}:\left(\mathbb{C}^{2}\right)^{\otimes n} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes m}
$$

We just have to read the map f as an instruction on how base vectors should be transformed under \mathbf{T}_{f} (into base vectors).

Linear Maps from Functions

In general, we can take any (binary) function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}
$$

and define a corresponding linear map \mathbf{T}_{f}

$$
\mathbf{T}_{f}:(\mathcal{V}(\{0,1\}))^{\otimes n} \rightarrow(\mathcal{V}(\{0,1\}))^{\otimes m} \text { or } \mathbf{T}_{f}:\left(\mathbb{C}^{2}\right)^{\otimes n} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes m}
$$

We just have to read the map f as an instruction on how base vectors should be transformed under \mathbf{T}_{f} (into base vectors).

Once we know or specify the image of all base vectors we know the (matrix representation) of \mathbf{T}_{f} via

$$
\mathbf{T}_{f}|x\rangle=|f(x)\rangle
$$

E.g. with $f(011)=10101$ we have $\mathbf{T}_{f}:|011\rangle \mapsto|10101\rangle$.

Linear Maps from Functions

In general, we can take any (binary) function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}
$$

and define a corresponding linear map \mathbf{T}_{f}

$$
\mathbf{T}_{f}:(\mathcal{V}(\{0,1\}))^{\otimes n} \rightarrow(\mathcal{V}(\{0,1\}))^{\otimes m} \text { or } \mathbf{T}_{f}:\left(\mathbb{C}^{2}\right)^{\otimes n} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes m}
$$

We just have to read the map f as an instruction on how base vectors should be transformed under \mathbf{T}_{f} (into base vectors).

Once we know or specify the image of all base vectors we know the (matrix representation) of \mathbf{T}_{f} via

$$
\mathbf{T}_{f}|x\rangle=|f(x)\rangle
$$

E.g. with $f(011)=10101$ we have $\mathbf{T}_{f}:|011\rangle \mapsto|10101\rangle$.

Problem: \mathbf{T}_{f} is, in general, not unitary, i.e. reversible.

Reversible Operators from General Functions

Reversibility makes it impossible to have a quantum device \mathbf{U}_{f} which just computes a general function f, i.e. $\mathbf{U}_{f}:|x\rangle \mapsto|f(x)\rangle$.

Reversible Operators from General Functions

Reversibility makes it impossible to have a quantum device \mathbf{U}_{f} which just computes a general function f, i.e. $\mathbf{U}_{f}:|x\rangle \mapsto|f(x)\rangle$.

However, we can always "pack" up a function f as a unitary operator \mathbf{U}_{f} using an ancilla qubit to remember the initial state, e.g. $|x\rangle \otimes|0\rangle \mapsto|x\rangle \otimes|f(x)\rangle$.

Reversible Operators from General Functions

Reversibility makes it impossible to have a quantum device \mathbf{U}_{f} which just computes a general function f, i.e. $\mathbf{U}_{f}:|x\rangle \mapsto|f(x)\rangle$.

However, we can always "pack" up a function f as a unitary operator \mathbf{U}_{f} using an ancilla qubit to remember the initial state, e.g. $|x\rangle \otimes|0\rangle \mapsto|x\rangle \otimes|f(x)\rangle$. The standard implementation of $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ as unitary operator \mathbf{U}_{f} on $\mathbb{C}^{2^{n}} \otimes \mathbb{C}^{2^{m}}$ is:

$$
\mathbf{U}_{f}:|x\rangle \otimes|y\rangle \mapsto|x\rangle \otimes|y \oplus f(x)\rangle
$$

Reversible Operators from General Functions

Reversibility makes it impossible to have a quantum device \mathbf{U}_{f} which just computes a general function f, i.e. $\mathbf{U}_{f}:|x\rangle \mapsto|f(x)\rangle$. However, we can always "pack" up a function f as a unitary operator \mathbf{U}_{f} using an ancilla qubit to remember the initial state, e.g. $|x\rangle \otimes|0\rangle \mapsto|x\rangle \otimes|f(x)\rangle$. The standard implementation of $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ as unitary operator \mathbf{U}_{f} on $\mathbb{C}^{2^{n}} \otimes \mathbb{C}^{2^{m}}$ is:

$$
\mathbf{U}_{f}:|x\rangle \otimes|y\rangle \mapsto|x\rangle \otimes|y \oplus f(x)\rangle
$$

Graphically represented by the diagram/quantum circuit:

Quantum Circuit Model

We can specify a quantum algorithm on qubit registers - i.e. a unitary operator $\mathbf{U}:\left(\mathbb{C}^{2}\right)^{\otimes n} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes n}$ - using a combination of (standardised) quantum gates - like Hadamard, Pauli, etc. and maybe "oracles" like \mathbf{U}_{f} as well as measurements.

Quantum Circuit Model

We can specify a quantum algorithm on qubit registers - i.e. a unitary operator $\mathbf{U}:\left(\mathbb{C}^{2}\right)^{\otimes n} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes n}$ - using a combination of (standardised) quantum gates - like Hadamard, Pauli, etc. and maybe "oracles" like \mathbf{U}_{f} as well as measurements.

For example, the quantum circuit for teleportation (without correction) as an operator on $\left(\mathbb{C}^{2}\right)^{\otimes 3}$ is given as follows:

Calculations for Small Quantum Circuits

Circuits with few qubits can "implemented", e.g. in oct ave, etc.

$$
\begin{aligned}
\mathrm{q} 0 & =[1,0]^{\prime} \\
\mathrm{q} 1 & =[0,1]^{\prime} \\
\mathrm{H}= & (1 / \operatorname{sqrt}(2)) \star[1,1 ; 1,-1] \\
\mathrm{CX}= & {[1,0,0,0 ; 0,1,0,0 ;} \\
& 0,0,0,1 ; 0,0,1,0] \\
\mathrm{S} 1= & \operatorname{kron}(\operatorname{eye}(2), \mathrm{H}, \text { eye (2)) } \\
\mathrm{S} 2= & \operatorname{kron}(\operatorname{eye}(2), \mathrm{CX}) \\
\mathrm{S} 3= & \operatorname{kron}(\mathrm{CX}, \operatorname{eye}(2)) \\
\mathrm{S} 4= & \operatorname{kron}(\mathrm{H}, \operatorname{eye}(2), \text { eye (2)) } \\
\mathrm{T}= & \mathrm{S} 1 \star \mathrm{~S} 2 \star \mathrm{~S} 3 * \mathrm{~S} 4
\end{aligned}
$$

Computational Expressivness

The question arises: What we can compute with a given set of basic quantum gates? What can we compute with a quantum circuit?

Computational Expressivness

The question arises: What we can compute with a given set of basic quantum gates? What can we compute with a quantum circuit?

For permutations it is well known that all permutations can be decomposed into elementary so-called transpositions which only exchange two elements.

Computational Expressivness

The question arises: What we can compute with a given set of basic quantum gates? What can we compute with a quantum circuit?

For permutations it is well known that all permutations can be decomposed into elementary so-called transpositions which only exchange two elements. Similar results also exist for rotations.

Computational Expressivness

The question arises: What we can compute with a given set of basic quantum gates? What can we compute with a quantum circuit?

For permutations it is well known that all permutations can be decomposed into elementary so-called transpositions which only exchange two elements. Similar results also exist for rotations.

For general unitary operators \mathbf{U} on \mathbb{C}^{n} - in particular on m qubits, i.e. $\mathbb{C}^{2^{m}}=\left(\mathbb{C}^{2}\right)^{\otimes m}$ - an analogue results gurantees that 2×2 unitary matrices make up all unitary operators.

See e.g.: A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi: Classical and Quantum Computation, AMS, 2002, p70.

Unitary Operators on \mathbb{C}^{n}

Theorem
An arbritary unitary operator \mathbf{U} on the space \mathbb{C}^{n} can be represented as a product of $\frac{n(n-1)}{2}$ matrices of the form:
$\left(\begin{array}{cccccccc}1 & \ldots & 0 & \ldots & \ldots & \ldots & \ldots & 0 \\ \vdots & \ddots & \vdots & & & & & \vdots \\ 0 & \ldots & 1 & & & & & \vdots \\ \vdots & & & a & b & & & \vdots \\ \vdots & & & c & d & & & \vdots \\ \vdots & & & & & 1 & \ldots & 0 \\ \vdots & & & & & \vdots & \ddots & \vdots \\ 0 & \ldots & \ldots & \ldots & \ldots & 0 & \ldots & 1\end{array}\right)$
with $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) a 2 \times 2$ unitary matrix (on \mathbb{C}^{2}).

Approximation of Unitary Operators

If we are only interested in "about the right result" we have:

Approximation of Unitary Operators

If we are only interested in "about the right result" we have:
Given two unitary transformations \mathbf{U} and \mathbf{V}. The error of approximation is defined by

$$
e(\mathbf{U}, \mathbf{V})=\sup _{|\phi\rangle} \|(\mathbf{U}-\mathbf{V})|\phi\rangle \|
$$

Approximation of Unitary Operators

If we are only interested in "about the right result" we have:
Given two unitary transformations \mathbf{U} and \mathbf{V}. The error of approximation is defined by

$$
e(\mathbf{U}, \mathbf{V})=\sup _{|\phi\rangle} \|(\mathbf{U}-\mathbf{V})|\phi\rangle \|
$$

Definition
A set of gates $\mathcal{G}=\left\{\mathbf{G}_{1}, \ldots\right\}$ is said to be approximatly universal if any n-qubit operator \mathbf{U} (with $n \geq 1$) can be approximated to arbitrary accuracy, i.e. for all $\varepsilon>0$ there exists a circuit \mathbf{V} which is constructed of gates in \mathcal{G} and their controlled versions such that we have $\boldsymbol{e}(\mathbf{U}, \mathbf{V})<\varepsilon$.

(Approximatly) Universal Gates

A possible set of approximatly universal gates (e.g. Kaye, Laflamme, Mosca: Introduction to Quantum Computing, p71):

$$
\begin{gathered}
\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \Phi\left(\frac{\pi}{4}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right) \\
\mathrm{CNOT}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

(Approximatly) Universal Gates

A possible set of approximatly universal gates (e.g. Kaye, Laflamme, Mosca: Introduction to Quantum Computing, p71):

$$
\begin{gathered}
\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \Phi\left(\frac{\pi}{4}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right) \\
\mathrm{CNOT}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

Theorem
The set $\mathcal{G}=\left\{\mathbf{H}, \Phi\left(\frac{\pi}{4}\right)\right\}$ is universal for 1-qubits.

(Approximatly) Universal Gates

A possible set of approximatly universal gates (e.g. Kaye, Laflamme, Mosca: Introduction to Quantum Computing, p71):

$$
\begin{gathered}
\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \Phi\left(\frac{\pi}{4}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right) \\
\mathrm{CNOT}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

Theorem
The set $\mathcal{G}=\left\{\mathbf{H}, \Phi\left(\frac{\pi}{4}\right)\right\}$ is universal for 1-qubits.

Theorem
The set $\mathcal{G}=\left\{\mathbf{C N O T}, \mathbf{H}, \Phi\left(\frac{\pi}{4}\right)\right\}$ is a universal set of gates.

