## Quantum Computation (CO484) Quantum Gates and Circuits

Herbert Wiklicky

herbert@doc.ic.ac.uk Autumn 2017

1/16

| $AND\equiv\wedge$ |   |   |  |   | $XOR\equiv\oplus$ |   |  |  |  |  |
|-------------------|---|---|--|---|-------------------|---|--|--|--|--|
| 0                 | 0 | 0 |  | 0 | 0                 | 0 |  |  |  |  |
| 0                 | 1 | 0 |  | 0 | 1                 | 1 |  |  |  |  |
| 1                 | 0 | 0 |  | 1 | 0                 | 1 |  |  |  |  |
| 1                 | 1 | 1 |  | 1 | 1                 | 0 |  |  |  |  |

| $AND\equiv\wedge$ |   |   | X | DR | $\equiv \oplus$ | NAND |   |   |  |  |
|-------------------|---|---|---|----|-----------------|------|---|---|--|--|
| 0                 | 0 | 0 | 0 | 0  | 0               | 0    | 0 | 1 |  |  |
| 0                 | 1 | 0 | 0 | 1  | 1               | 0    | 1 | 1 |  |  |
| 1                 | 0 | 0 | 1 | 0  | 1               | 1    | 0 | 1 |  |  |
| 1                 | 1 | 1 | 1 | 1  | 0               | 1    | 1 | 0 |  |  |

At heart of classical (electronic) circuits we have to consider gates like for example:

| $AND\equiv\wedge$ |   |   | X | DR | $\equiv \oplus$ | NAND |   |   |   |
|-------------------|---|---|---|----|-----------------|------|---|---|---|
| 0                 | 0 | 0 |   | 0  | 0               | 0    | 0 | 0 | 1 |
| 0                 | 1 | 0 |   | 0  | 1               | 1    | 0 | 1 | 1 |
| 1                 | 0 | 0 |   | 1  | 0               | 1    | 1 | 0 | 1 |
| 1                 | 1 | 1 |   | 1  | 1               | 0    | 1 | 1 | 0 |

The idea is to define similar quantum gates, taking two (or *n*) qubits at input and producing some output. Contrary to classical gates we have to use **unitary**, i.e. reversible, gates in quantum circuits.

The quantum analog of a classical XOR-gate is the CNOT-gate.

The quantum analog of a classical XOR-gate is the CNOT-gate. The behaviour of the CNOT-gate (on two qubits, i.e.  $\mathbb{C}^2 \otimes \mathbb{C}^2$ ), is for base vectors  $|x\rangle$ ,  $|y\rangle \in \{|0\rangle$ ,  $|1\rangle\}$ :

 $|x,y
angle\mapsto |x,y\oplus x
angle$  with  $y\oplus x=(y+x)$  mod 2

 $\text{i.e. } \left| 00 \right\rangle \mapsto \left| 00 \right\rangle, \left| 01 \right\rangle \mapsto \left| 01 \right\rangle, \left| 10 \right\rangle \mapsto \left| 11 \right\rangle, \left| 11 \right\rangle \mapsto \left| 10 \right\rangle.$ 

The quantum analog of a classical XOR-gate is the CNOT-gate. The behaviour of the CNOT-gate (on two qubits, i.e.  $\mathbb{C}^2 \otimes \mathbb{C}^2$ ), is for base vectors  $|x\rangle$ ,  $|y\rangle \in \{|0\rangle$ ,  $|1\rangle\}$ :

$$|x,y\rangle\mapsto |x,y\oplus x\rangle$$
 with  $y\oplus x=(y+x)$  mod 2

 $\text{i.e. } \left| 00 \right\rangle \mapsto \left| 00 \right\rangle, \left| 01 \right\rangle \mapsto \left| 01 \right\rangle, \left| 10 \right\rangle \mapsto \left| 11 \right\rangle, \left| 11 \right\rangle \mapsto \left| 10 \right\rangle.$ 

We represent the CNOT-gate graphically and as a matrix (with respect to the standard basis  $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ ) as:

The quantum analog of a classical XOR-gate is the CNOT-gate. The behaviour of the CNOT-gate (on two qubits, i.e.  $\mathbb{C}^2 \otimes \mathbb{C}^2$ ), is for base vectors  $|x\rangle$ ,  $|y\rangle \in \{|0\rangle$ ,  $|1\rangle\}$ :

$$|x,y
angle\mapsto|x,y\oplus x
angle$$
 with  $y\oplus x=(y+x)$  mod 2

 $\text{i.e. } \left| 00 \right\rangle \mapsto \left| 00 \right\rangle, \left| 01 \right\rangle \mapsto \left| 01 \right\rangle, \left| 10 \right\rangle \mapsto \left| 11 \right\rangle, \left| 11 \right\rangle \mapsto \left| 10 \right\rangle.$ 

We represent the CNOT-gate graphically and as a matrix (with respect to the standard basis  $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ ) as:



# Swapping Gate

We can exploit the CNOT-Gate to SWAP two qubits:



is depicted by (shorthand):



**Exercise:** Check that this really maps  $|x\rangle \otimes |y\rangle$  into  $|y\rangle \otimes |x\rangle$  (for all  $|x\rangle$  and  $|y\rangle$  not just base vectors?).

#### **Controlled Phase Gate**

The controlled phase-gate is depicted as follows (for base vectors  $|x\rangle$ ,  $|y\rangle \in \{|0\rangle$ ,  $|1\rangle\}$ ):



#### **Controlled Phase Gate**

The controlled phase-gate is depicted as follows (for base vectors  $|x\rangle$ ,  $|y\rangle \in \{|0\rangle$ ,  $|1\rangle\}$ ):



Its matrix/operator representation is given by:

$$\Phi = \left(egin{array}{ccccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & e^{i\phi} \end{array}
ight)$$

on any two qubits, i.e. vectors in  $\mathbb{C}^2 \otimes \mathbb{C}^2$ .

#### **General Controlled Gate**

In general, we can control any single qubit transformation  $\mathbf{U}: \mathbb{C}^2 \to \mathbb{C}^2$  by another qubit, i.e. such that for all  $|y\rangle \in \mathbb{C}^2$ :

$$\begin{array}{rrr} |0\rangle \otimes |y\rangle & \mapsto & |0\rangle \otimes |y\rangle \\ |1\rangle \otimes |y\rangle & \mapsto & |1\rangle \otimes \mathbf{U} \, |y\rangle \end{array}$$

#### **General Controlled Gate**

In general, we can control any single qubit transformation  $\mathbf{U}: \mathbb{C}^2 \to \mathbb{C}^2$  by another qubit, i.e. such that for all  $|y\rangle \in \mathbb{C}^2$ :

$$\begin{array}{rccc} |0\rangle \otimes |y\rangle & \mapsto & |0\rangle \otimes |y\rangle \\ |1\rangle \otimes |y\rangle & \mapsto & |1\rangle \otimes \mathbf{U} \, |y\rangle \end{array}$$

The diagrammatic representation is:



#### Toffoli Gate

The Toffoli-gate is a 3-qubit quantum gate on  $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 = \mathbb{C}^8$  with the following behaviour  $\mathbf{T} : |x, y, z\rangle \mapsto |x', y', z'\rangle$  and matrix representation (standard base enumeration):

| i | input output |   | ıt         |    |    |     |     |   |   |   |   |   |   |     |
|---|--------------|---|------------|----|----|-----|-----|---|---|---|---|---|---|-----|
| X | у            | Ζ | <i>x</i> ′ | У′ | Ζ' |     | / 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 \ |
| 0 | 0            | 0 | 0          | 0  | 0  |     | 0   | 1 | 0 | 0 | 0 | 0 | 0 | 0   |
| 0 | 0            | 1 | 0          | 0  | 1  |     | 0   | 0 | 1 | 0 | 0 | 0 | 0 | 0   |
| 0 | 1            | 0 | 0          | 1  | 0  | т_  | 0   | 0 | 0 | 1 | 0 | 0 | 0 | 0   |
| 0 | 1            | 1 | 0          | 1  | 1  | 1 – | 0   | 0 | 0 | 0 | 1 | 0 | 0 | 0   |
| 1 | 0            | 0 | 1          | 0  | 0  |     | 0   | 0 | 0 | 0 | 0 | 1 | 0 | 0   |
| 1 | 0            | 1 | 1          | 0  | 1  |     | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1   |
| 1 | 1            | 0 | 1          | 1  | 1  |     | 0 / | 0 | 0 | 0 | 0 | 0 | 1 | 0/  |
| 1 | 1            | 1 | 1          | 1  | 0  |     |     |   |   |   |   |   |   |     |

The Toffoli gate can be used can be used to implement a reversible version of NAND and a FANOUT gate.

The Toffoli gate can be used can be used to implement a reversible version of NAND and a FANOUT gate.



Toffoli

The Toffoli gate can be used can be used to implement a reversible version of NAND and a FANOUT gate.



The Toffoli gate can be used can be used to implement a reversible version of NAND and a FANOUT gate.



The Toffoli gate can be used can be used to implement a reversible version of NAND and a FANOUT gate.



This works only with  $x, y \in \{0, 1\}$ .

In general, we can take any (binary) function

 $f: \{0,1\}^n \to \{0,1\}^m$ 

and define a corresponding linear map  $T_f$ 

 $\mathbf{T}_f: (\mathcal{V}(\{0,1\}))^{\otimes n} \to (\mathcal{V}(\{0,1\}))^{\otimes m} \text{ or } \mathbf{T}_f: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes m}$ 

In general, we can take any (binary) function

 $f: \{0,1\}^n \to \{0,1\}^m$ 

and define a corresponding linear map  $T_f$ 

 $\mathbf{T}_f : (\mathcal{V}(\{0,1\}))^{\otimes n} \to (\mathcal{V}(\{0,1\}))^{\otimes m} \text{ or } \mathbf{T}_f : (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes m}$ 

We just have to read the map f as an instruction on how **base** vectors should be transformed under **T**<sub>*f*</sub> (into base vectors).

In general, we can take any (binary) function

 $f: \{0,1\}^n \to \{0,1\}^m$ 

and define a corresponding linear map  $T_f$ 

 $\mathbf{T}_f: (\mathcal{V}(\{0,1\}))^{\otimes n} \to (\mathcal{V}(\{0,1\}))^{\otimes m} \text{ or } \mathbf{T}_f: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes m}$ 

We just have to read the map f as an instruction on how **base** vectors should be transformed under **T**<sub>*f*</sub> (into base vectors).

Once we know or specify the image of all base vectors we know the (matrix representation) of  $\mathbf{T}_f$  via

$$\mathbf{T}_f \ket{x} = \ket{f(x)}$$

E.g. with f(011) = 10101 we have  $\mathbf{T}_f : |011\rangle \mapsto |10101\rangle$ .

In general, we can take any (binary) function

 $f: \{0,1\}^n \to \{0,1\}^m$ 

and define a corresponding linear map  $T_f$ 

 $\mathbf{T}_f: (\mathcal{V}(\{0,1\}))^{\otimes n} \to (\mathcal{V}(\{0,1\}))^{\otimes m} \text{ or } \mathbf{T}_f: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes m}$ 

We just have to read the map f as an instruction on how **base** vectors should be transformed under **T**<sub>*f*</sub> (into base vectors).

Once we know or specify the image of all base vectors we know the (matrix representation) of  $\mathbf{T}_f$  via

 $\mathbf{T}_f \ket{x} = \ket{f(x)}$ 

E.g. with f(011) = 10101 we have  $\mathbf{T}_f : |011\rangle \mapsto |10101\rangle$ .

**Problem:**  $T_f$  is, in general, not unitary, i.e. reversible.

Reversibility makes it impossible to have a quantum device  $U_f$  which **just** computes a general function *f*, i.e.  $U_f : |x\rangle \mapsto |f(x)\rangle$ .

Reversibility makes it impossible to have a quantum device  $U_f$  which **just** computes a general function *f*, i.e.  $U_f : |x\rangle \mapsto |f(x)\rangle$ .

However, we can always "pack" up a function *f* as a unitary operator  $\mathbf{U}_f$  using an ancilla qubit to remember the initial state, e.g.  $|x\rangle \otimes |0\rangle \mapsto |x\rangle \otimes |f(x)\rangle$ .

Reversibility makes it impossible to have a quantum device  $U_f$  which **just** computes a general function *f*, i.e.  $U_f : |x\rangle \mapsto |f(x)\rangle$ .

However, we can always "pack" up a function *f* as a unitary operator  $\mathbf{U}_f$  using an ancilla qubit to remember the initial state, e.g.  $|x\rangle \otimes |0\rangle \mapsto |x\rangle \otimes |f(x)\rangle$ . The **standard** implementation of  $f: \{0,1\}^n \to \{0,1\}^m$  as unitary operator  $\mathbf{U}_f$  on  $\mathbb{C}^{2^m} \otimes \mathbb{C}^{2^m}$  is:

 $\mathbf{U}_f: |\mathbf{x}
angle \otimes |\mathbf{y}
angle \mapsto |\mathbf{x}
angle \otimes |\mathbf{y} \oplus f(\mathbf{x})
angle$ 

Reversibility makes it impossible to have a quantum device  $U_f$  which **just** computes a general function *f*, i.e.  $U_f : |x\rangle \mapsto |f(x)\rangle$ .

However, we can always "pack" up a function *f* as a unitary operator  $\mathbf{U}_f$  using an ancilla qubit to remember the initial state, e.g.  $|x\rangle \otimes |0\rangle \mapsto |x\rangle \otimes |f(x)\rangle$ . The **standard** implementation of  $f: \{0,1\}^n \to \{0,1\}^m$  as unitary operator  $\mathbf{U}_f$  on  $\mathbb{C}^{2^m} \otimes \mathbb{C}^{2^m}$  is:

$$\mathsf{U}_f: |x
angle \otimes |y
angle \mapsto |x
angle \otimes |y \oplus f(x)
angle$$

Graphically represented by the diagram/quantum circuit:



### **Quantum Circuit Model**

We can specify a quantum algorithm on qubit registers – i.e. a unitary operator  $\mathbf{U} : (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes n}$  – using a combination of (standardised) quantum gates – like Hadamard, Pauli, etc. – and maybe "oracles" like  $\mathbf{U}_f$  as well as measurements.

### Quantum Circuit Model

We can specify a quantum algorithm on qubit registers – i.e. a unitary operator  $\mathbf{U} : (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes n}$  – using a combination of (standardised) quantum gates – like Hadamard, Pauli, etc. – and maybe "oracles" like  $\mathbf{U}_f$  as well as measurements.

For example, the quantum circuit for **teleportation** (without correction) as an operator on  $(\mathbb{C}^2)^{\otimes 3}$  is given as follows:



#### Calculations for Small Quantum Circuits

Circuits with few qubits can "implemented", e.g. in octave, etc.

T = S1 \* S2 \* S3 \* S4

The question arises: What we can compute with a given set of basic quantum gates? What can we compute with a quantum circuit?

The question arises: What we can compute with a given set of basic quantum gates? What can we compute with a quantum circuit?

For **permutations** it is well known that all permutations can be decomposed into elementary so-called **transpositions** which only exchange two elements.

The question arises: What we can compute with a given set of basic quantum gates? What can we compute with a quantum circuit?

For **permutations** it is well known that all permutations can be decomposed into elementary so-called **transpositions** which only exchange two elements. Similar results also exist for **rotations**.

The question arises: What we can compute with a given set of basic quantum gates? What can we compute with a quantum circuit?

For **permutations** it is well known that all permutations can be decomposed into elementary so-called **transpositions** which only exchange two elements. Similar results also exist for **rotations**.

For general unitary operators **U** on  $\mathbb{C}^n$  – in particular on *m* qubits, i.e.  $\mathbb{C}^{2^m} = (\mathbb{C}^2)^{\otimes m}$  – an analogue results gurantees that  $2 \times 2$  unitary matrices make up all unitary operators.

See e.g.: A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi: Classical and Quantum Computation, AMS, 2002, p70.

## Unitary Operators on $\mathbb{C}^n$

Theorem

An arbritary unitary operator **U** on the space  $\mathbb{C}^n$  can be represented as a product of  $\frac{n(n-1)}{2}$  matrices of the form:



14/16

## Approximation of Unitary Operators

If we are only interested in "about the right result" we have:

## Approximation of Unitary Operators

If we are only interested in "about the right result" we have:

Given two unitary transformations **U** and **V**. The error of approximation is defined by

$$e(\mathbf{U},\mathbf{V}) = \sup_{\ket{\phi}} \| (\mathbf{U}-\mathbf{V}) \ket{\phi} \|$$

# Approximation of Unitary Operators

If we are only interested in "about the right result" we have:

Given two unitary transformations **U** and **V**. The error of approximation is defined by

$$e(\mathbf{U},\mathbf{V}) = \sup_{\ket{\phi}} \|(\mathbf{U}-\mathbf{V})\ket{\phi}\|$$

#### Definition

A set of gates  $\mathcal{G} = \{\mathbf{G}_1, \ldots\}$  is said to be approximatly universal if any n-qubit operator **U** (with  $n \ge 1$ ) can be approximated to arbitrary accuracy, i.e. for all  $\varepsilon > 0$  there exists a circuit **V** which is constructed of gates in  $\mathcal{G}$  and their controlled versions such that we have  $e(\mathbf{U}, \mathbf{V}) < \varepsilon$ .

## (Approximatly) Universal Gates

A possible set of approximatly universal gates (e.g. Kaye, Laflamme, Mosca: Introduction to Quantum Computing, p71):

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \quad \Phi \begin{pmatrix} \frac{\pi}{4} \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}$$
$$\mathbf{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\\ 0 & 0 & 1 & 0 \end{pmatrix}$$

## (Approximatly) Universal Gates

A possible set of approximatly universal gates (e.g. Kaye, Laflamme, Mosca: Introduction to Quantum Computing, p71):

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \Phi \begin{pmatrix} \frac{\pi}{4} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}$$
$$\mathbf{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

#### Theorem

The set  $\mathcal{G} = \{\mathbf{H}, \Phi(\frac{\pi}{4})\}$  is universal for 1-qubits.

## (Approximatly) Universal Gates

A possible set of approximatly universal gates (e.g. Kaye, Laflamme, Mosca: Introduction to Quantum Computing, p71):

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \quad \Phi \begin{pmatrix} \frac{\pi}{4} \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}$$
$$\mathbf{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{pmatrix}$$

#### Theorem

The set  $\mathcal{G} = \{\mathbf{H}, \Phi(\frac{\pi}{4})\}$  is universal for 1-qubits.

#### Theorem

The set  $\mathcal{G} = \{ \text{CNOT}, \text{H}, \Phi(\frac{\pi}{4}) \}$  is a universal set of gates.