
Quantum Computation (CO484)
Quantum Gates and Circuits

Herbert Wiklicky

herbert@doc.ic.ac.uk
Autumn 2017

1 / 16

Classical Gates

At heart of classical (electronic) circuits we have to consider
gates like for example:

AND ≡ ∧
0 0 0
0 1 0
1 0 0
1 1 1

XOR ≡ ⊕
0 0 0
0 1 1
1 0 1
1 1 0

NAND
0 0 1
0 1 1
1 0 1
1 1 0

The idea is to define similar quantum gates, taking two (or n)
qubits at input and producing some output. Contrary to
classical gates we have to use unitary, i.e. reversible, gates in
quantum circuits.

2 / 16

Classical Gates

At heart of classical (electronic) circuits we have to consider
gates like for example:

AND ≡ ∧
0 0 0
0 1 0
1 0 0
1 1 1

XOR ≡ ⊕
0 0 0
0 1 1
1 0 1
1 1 0

NAND
0 0 1
0 1 1
1 0 1
1 1 0

The idea is to define similar quantum gates, taking two (or n)
qubits at input and producing some output. Contrary to
classical gates we have to use unitary, i.e. reversible, gates in
quantum circuits.

2 / 16

Classical Gates

At heart of classical (electronic) circuits we have to consider
gates like for example:

AND ≡ ∧
0 0 0
0 1 0
1 0 0
1 1 1

XOR ≡ ⊕
0 0 0
0 1 1
1 0 1
1 1 0

NAND
0 0 1
0 1 1
1 0 1
1 1 0

The idea is to define similar quantum gates, taking two (or n)
qubits at input and producing some output. Contrary to
classical gates we have to use unitary, i.e. reversible, gates in
quantum circuits.

2 / 16

Classical Gates

At heart of classical (electronic) circuits we have to consider
gates like for example:

AND ≡ ∧
0 0 0
0 1 0
1 0 0
1 1 1

XOR ≡ ⊕
0 0 0
0 1 1
1 0 1
1 1 0

NAND
0 0 1
0 1 1
1 0 1
1 1 0

The idea is to define similar quantum gates, taking two (or n)
qubits at input and producing some output. Contrary to
classical gates we have to use unitary, i.e. reversible, gates in
quantum circuits.

2 / 16

Classical Gates

At heart of classical (electronic) circuits we have to consider
gates like for example:

AND ≡ ∧
0 0 0
0 1 0
1 0 0
1 1 1

XOR ≡ ⊕
0 0 0
0 1 1
1 0 1
1 1 0

NAND
0 0 1
0 1 1
1 0 1
1 1 0

The idea is to define similar quantum gates, taking two (or n)
qubits at input and producing some output. Contrary to
classical gates we have to use unitary, i.e. reversible, gates in
quantum circuits.

2 / 16

The Controlled-NOT or CNOT Gate
The quantum analog of a classical XOR-gate is the CNOT-gate.

The behaviour of the CNOT-gate (on two qubits, i.e. C2 ⊗ C2),
is for base vectors |x〉 , |y〉 ∈ {|0〉 , |1〉}:

|x , y〉 7→ |x , y ⊕ x〉 with y ⊕ x = (y + x) mod 2

i.e. |00〉 7→ |00〉 , |01〉 7→ |01〉 , |10〉 7→ |11〉 , |11〉 7→ |10〉.

We represent the CNOT-gate graphically and as a matrix (with
respect to the standard basis {|00〉 , |01〉 , |10〉 , |11〉}) as:

|x〉 |x〉

|y〉 |x ⊕ y〉

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3 / 16

The Controlled-NOT or CNOT Gate
The quantum analog of a classical XOR-gate is the CNOT-gate.
The behaviour of the CNOT-gate (on two qubits, i.e. C2 ⊗ C2),
is for base vectors |x〉 , |y〉 ∈ {|0〉 , |1〉}:

|x , y〉 7→ |x , y ⊕ x〉 with y ⊕ x = (y + x) mod 2

i.e. |00〉 7→ |00〉 , |01〉 7→ |01〉 , |10〉 7→ |11〉 , |11〉 7→ |10〉.

We represent the CNOT-gate graphically and as a matrix (with
respect to the standard basis {|00〉 , |01〉 , |10〉 , |11〉}) as:

|x〉 |x〉

|y〉 |x ⊕ y〉

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3 / 16

The Controlled-NOT or CNOT Gate
The quantum analog of a classical XOR-gate is the CNOT-gate.
The behaviour of the CNOT-gate (on two qubits, i.e. C2 ⊗ C2),
is for base vectors |x〉 , |y〉 ∈ {|0〉 , |1〉}:

|x , y〉 7→ |x , y ⊕ x〉 with y ⊕ x = (y + x) mod 2

i.e. |00〉 7→ |00〉 , |01〉 7→ |01〉 , |10〉 7→ |11〉 , |11〉 7→ |10〉.

We represent the CNOT-gate graphically and as a matrix (with
respect to the standard basis {|00〉 , |01〉 , |10〉 , |11〉}) as:

|x〉 |x〉

|y〉 |x ⊕ y〉

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3 / 16

The Controlled-NOT or CNOT Gate
The quantum analog of a classical XOR-gate is the CNOT-gate.
The behaviour of the CNOT-gate (on two qubits, i.e. C2 ⊗ C2),
is for base vectors |x〉 , |y〉 ∈ {|0〉 , |1〉}:

|x , y〉 7→ |x , y ⊕ x〉 with y ⊕ x = (y + x) mod 2

i.e. |00〉 7→ |00〉 , |01〉 7→ |01〉 , |10〉 7→ |11〉 , |11〉 7→ |10〉.

We represent the CNOT-gate graphically and as a matrix (with
respect to the standard basis {|00〉 , |01〉 , |10〉 , |11〉}) as:

|x〉 |x〉

|y〉 |x ⊕ y〉

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3 / 16

Swapping Gate
We can exploit the CNOT-Gate to SWAP two qubits:

|x〉 |y〉

|y〉 |x〉

is depicted by (shorthand):

|x〉 |y〉

|y〉 |x〉

Exercise: Check that this really maps |x〉 ⊗ |y〉 into |y〉 ⊗ |x〉
(for all |x〉 and |y〉 not just base vectors?).

4 / 16

Controlled Phase Gate
The controlled phase-gate is depicted as follows (for base
vectors |x〉 , |y〉 ∈ {|0〉 , |1〉}):

|x〉 |x〉

|y〉 eixyφ |y〉Φ

Its matrix/operator representation is given by:

Φ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

on any two qubits, i.e. vectors in C2 ⊗ C2.

5 / 16

Controlled Phase Gate
The controlled phase-gate is depicted as follows (for base
vectors |x〉 , |y〉 ∈ {|0〉 , |1〉}):

|x〉 |x〉

|y〉 eixyφ |y〉Φ

Its matrix/operator representation is given by:

Φ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

on any two qubits, i.e. vectors in C2 ⊗ C2.

5 / 16

General Controlled Gate

In general, we can control any single qubit transformation
U : C2 → C2 by another qubit, i.e. such that for all |y〉 ∈ C2:

|0〉 ⊗ |y〉 7→ |0〉 ⊗ |y〉
|1〉 ⊗ |y〉 7→ |1〉 ⊗ U |y〉

The diagrammatic representation is:

|x〉 |x〉

|y〉 U |y〉U

6 / 16

General Controlled Gate

In general, we can control any single qubit transformation
U : C2 → C2 by another qubit, i.e. such that for all |y〉 ∈ C2:

|0〉 ⊗ |y〉 7→ |0〉 ⊗ |y〉
|1〉 ⊗ |y〉 7→ |1〉 ⊗ U |y〉

The diagrammatic representation is:

|x〉 |x〉

|y〉 U |y〉U

6 / 16

Toffoli Gate

The Toffoli-gate is a 3-qubit quantum gate on C2 ⊗ C2 ⊗ C2 =
= C8 with the following behaviour T : |x , y , z〉 7→ |x ′, y ′, z ′〉 and
matrix representation (standard base enumeration):

input output
x y z x ′ y ′ z ′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

T =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

7 / 16

Toffoli Gate Usage
The Toffoli gate can be used can be used to implement a
reversible version of NAND and a FANOUT gate.

|x〉 |x〉

|y〉 |y〉

|z〉 |z ⊕ xy〉

Toffoli

|x〉 |x〉

|y〉 |y〉

|1〉 |¬xy〉

NAND

|1〉 |1〉

|y〉 |y〉

|0〉 |y〉

FANOUT

This works only with x , y ∈ {0,1}.

8 / 16

Toffoli Gate Usage
The Toffoli gate can be used can be used to implement a
reversible version of NAND and a FANOUT gate.

|x〉 |x〉

|y〉 |y〉

|z〉 |z ⊕ xy〉

Toffoli

|x〉 |x〉

|y〉 |y〉

|1〉 |¬xy〉

NAND

|1〉 |1〉

|y〉 |y〉

|0〉 |y〉

FANOUT

This works only with x , y ∈ {0,1}.

8 / 16

Toffoli Gate Usage
The Toffoli gate can be used can be used to implement a
reversible version of NAND and a FANOUT gate.

|x〉 |x〉

|y〉 |y〉

|z〉 |z ⊕ xy〉

Toffoli

|x〉 |x〉

|y〉 |y〉

|1〉 |¬xy〉

NAND

|1〉 |1〉

|y〉 |y〉

|0〉 |y〉

FANOUT

This works only with x , y ∈ {0,1}.

8 / 16

Toffoli Gate Usage
The Toffoli gate can be used can be used to implement a
reversible version of NAND and a FANOUT gate.

|x〉 |x〉

|y〉 |y〉

|z〉 |z ⊕ xy〉

Toffoli

|x〉 |x〉

|y〉 |y〉

|1〉 |¬xy〉

NAND

|1〉 |1〉

|y〉 |y〉

|0〉 |y〉

FANOUT

This works only with x , y ∈ {0,1}.

8 / 16

Toffoli Gate Usage
The Toffoli gate can be used can be used to implement a
reversible version of NAND and a FANOUT gate.

|x〉 |x〉

|y〉 |y〉

|z〉 |z ⊕ xy〉

Toffoli

|x〉 |x〉

|y〉 |y〉

|1〉 |¬xy〉

NAND

|1〉 |1〉

|y〉 |y〉

|0〉 |y〉

FANOUT

This works only with x , y ∈ {0,1}.
8 / 16

Linear Maps from Functions
In general, we can take any (binary) function

f : {0,1}n → {0,1}m

and define a corresponding linear map Tf

Tf : (V({0,1}))⊗n → (V({0,1}))⊗m or Tf : (C2)⊗n → (C2)⊗m

We just have to read the map f as an instruction on how base
vectors should be transformed under Tf (into base vectors).

Once we know or specify the image of all base vectors we
know the (matrix representation) of Tf via

Tf |x〉 = |f (x)〉

E.g. with f (011) = 10101 we have Tf : |011〉 7→ |10101〉.

Problem: Tf is, in general, not unitary, i.e. reversible.

9 / 16

Linear Maps from Functions
In general, we can take any (binary) function

f : {0,1}n → {0,1}m

and define a corresponding linear map Tf

Tf : (V({0,1}))⊗n → (V({0,1}))⊗m or Tf : (C2)⊗n → (C2)⊗m

We just have to read the map f as an instruction on how base
vectors should be transformed under Tf (into base vectors).

Once we know or specify the image of all base vectors we
know the (matrix representation) of Tf via

Tf |x〉 = |f (x)〉

E.g. with f (011) = 10101 we have Tf : |011〉 7→ |10101〉.

Problem: Tf is, in general, not unitary, i.e. reversible.

9 / 16

Linear Maps from Functions
In general, we can take any (binary) function

f : {0,1}n → {0,1}m

and define a corresponding linear map Tf

Tf : (V({0,1}))⊗n → (V({0,1}))⊗m or Tf : (C2)⊗n → (C2)⊗m

We just have to read the map f as an instruction on how base
vectors should be transformed under Tf (into base vectors).

Once we know or specify the image of all base vectors we
know the (matrix representation) of Tf via

Tf |x〉 = |f (x)〉

E.g. with f (011) = 10101 we have Tf : |011〉 7→ |10101〉.

Problem: Tf is, in general, not unitary, i.e. reversible.

9 / 16

Linear Maps from Functions
In general, we can take any (binary) function

f : {0,1}n → {0,1}m

and define a corresponding linear map Tf

Tf : (V({0,1}))⊗n → (V({0,1}))⊗m or Tf : (C2)⊗n → (C2)⊗m

We just have to read the map f as an instruction on how base
vectors should be transformed under Tf (into base vectors).

Once we know or specify the image of all base vectors we
know the (matrix representation) of Tf via

Tf |x〉 = |f (x)〉

E.g. with f (011) = 10101 we have Tf : |011〉 7→ |10101〉.

Problem: Tf is, in general, not unitary, i.e. reversible.
9 / 16

Reversible Operators from General Functions
Reversibility makes it impossible to have a quantum device Uf
which just computes a general function f , i.e. Uf : |x〉 7→ |f (x)〉.

However, we can always “pack” up a function f as a unitary
operator Uf using an ancilla qubit to remember the initial state,
e.g. |x〉 ⊗ |0〉 7→ |x〉 ⊗ |f (x)〉 . The standard implementation of
f : {0,1}n → {0,1}m as unitary operator Uf on C2n ⊗ C2m

is:

Uf : |x〉 ⊗ |y〉 7→ |x〉 ⊗ |y ⊕ f (x)〉

Graphically represented by the diagram/quantum circuit:

|x〉 |x〉

|y〉 |y ⊕ f (x)〉

Uf

10 / 16

Reversible Operators from General Functions
Reversibility makes it impossible to have a quantum device Uf
which just computes a general function f , i.e. Uf : |x〉 7→ |f (x)〉.

However, we can always “pack” up a function f as a unitary
operator Uf using an ancilla qubit to remember the initial state,
e.g. |x〉 ⊗ |0〉 7→ |x〉 ⊗ |f (x)〉 .

The standard implementation of
f : {0,1}n → {0,1}m as unitary operator Uf on C2n ⊗ C2m

is:

Uf : |x〉 ⊗ |y〉 7→ |x〉 ⊗ |y ⊕ f (x)〉

Graphically represented by the diagram/quantum circuit:

|x〉 |x〉

|y〉 |y ⊕ f (x)〉

Uf

10 / 16

Reversible Operators from General Functions
Reversibility makes it impossible to have a quantum device Uf
which just computes a general function f , i.e. Uf : |x〉 7→ |f (x)〉.

However, we can always “pack” up a function f as a unitary
operator Uf using an ancilla qubit to remember the initial state,
e.g. |x〉 ⊗ |0〉 7→ |x〉 ⊗ |f (x)〉 . The standard implementation of
f : {0,1}n → {0,1}m as unitary operator Uf on C2n ⊗ C2m

is:

Uf : |x〉 ⊗ |y〉 7→ |x〉 ⊗ |y ⊕ f (x)〉

Graphically represented by the diagram/quantum circuit:

|x〉 |x〉

|y〉 |y ⊕ f (x)〉

Uf

10 / 16

Reversible Operators from General Functions
Reversibility makes it impossible to have a quantum device Uf
which just computes a general function f , i.e. Uf : |x〉 7→ |f (x)〉.

However, we can always “pack” up a function f as a unitary
operator Uf using an ancilla qubit to remember the initial state,
e.g. |x〉 ⊗ |0〉 7→ |x〉 ⊗ |f (x)〉 . The standard implementation of
f : {0,1}n → {0,1}m as unitary operator Uf on C2n ⊗ C2m

is:

Uf : |x〉 ⊗ |y〉 7→ |x〉 ⊗ |y ⊕ f (x)〉

Graphically represented by the diagram/quantum circuit:

|x〉 |x〉

|y〉 |y ⊕ f (x)〉

Uf

10 / 16

Quantum Circuit Model
We can specify a quantum algorithm on qubit registers – i.e. a
unitary operator U : (C2)⊗n → (C2)⊗n – using a combination of
(standardised) quantum gates – like Hadamard, Pauli, etc. –
and maybe “oracles” like Uf as well as measurements.

For example, the quantum circuit for teleportation (without
correction) as an operator on (C2)⊗3 is given as follows:

|ψ1〉 |φ1〉

|ψ2〉 |φ2〉

|ψ3〉 |φ3〉

H

H

11 / 16

Quantum Circuit Model
We can specify a quantum algorithm on qubit registers – i.e. a
unitary operator U : (C2)⊗n → (C2)⊗n – using a combination of
(standardised) quantum gates – like Hadamard, Pauli, etc. –
and maybe “oracles” like Uf as well as measurements.

For example, the quantum circuit for teleportation (without
correction) as an operator on (C2)⊗3 is given as follows:

|ψ1〉 |φ1〉

|ψ2〉 |φ2〉

|ψ3〉 |φ3〉

H

H

11 / 16

Calculations for Small Quantum Circuits

Circuits with few qubits can “implemented”, e.g. in octave, etc.

q0 = [1,0]’
q1 = [0,1]’

H = (1/sqrt(2))*[1, 1;1,-1]
CX = [1, 0, 0, 0; 0, 1, 0, 0;

0, 0, 0, 1; 0, 0, 1, 0]

S1 = kron(eye(2),H,eye(2))
S2 = kron(eye(2),CX)
S3 = kron(CX,eye(2))
S4 = kron(H,eye(2),eye(2))

T = S1*S2*S3*S4

12 / 16

Computational Expressivness

The question arises: What we can compute with a given set of
basic quantum gates? What can we compute with a quantum
circuit?

For permutations it is well known that all permutations can be
decomposed into elementary so-called transpositions which
only exchange two elements. Similar results also exist for
rotations.

For general unitary operators U on Cn – in particular on m
qubits, i.e. C2m

= (C2)⊗m – an analogue results gurantees that
2× 2 unitary matrices make up all unitary operators.

See e.g.: A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi: Classical and
Quantum Computation, AMS, 2002, p70.

13 / 16

Computational Expressivness

The question arises: What we can compute with a given set of
basic quantum gates? What can we compute with a quantum
circuit?

For permutations it is well known that all permutations can be
decomposed into elementary so-called transpositions which
only exchange two elements.

Similar results also exist for
rotations.

For general unitary operators U on Cn – in particular on m
qubits, i.e. C2m

= (C2)⊗m – an analogue results gurantees that
2× 2 unitary matrices make up all unitary operators.

See e.g.: A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi: Classical and
Quantum Computation, AMS, 2002, p70.

13 / 16

Computational Expressivness

The question arises: What we can compute with a given set of
basic quantum gates? What can we compute with a quantum
circuit?

For permutations it is well known that all permutations can be
decomposed into elementary so-called transpositions which
only exchange two elements. Similar results also exist for
rotations.

For general unitary operators U on Cn – in particular on m
qubits, i.e. C2m

= (C2)⊗m – an analogue results gurantees that
2× 2 unitary matrices make up all unitary operators.

See e.g.: A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi: Classical and
Quantum Computation, AMS, 2002, p70.

13 / 16

Computational Expressivness

The question arises: What we can compute with a given set of
basic quantum gates? What can we compute with a quantum
circuit?

For permutations it is well known that all permutations can be
decomposed into elementary so-called transpositions which
only exchange two elements. Similar results also exist for
rotations.

For general unitary operators U on Cn – in particular on m
qubits, i.e. C2m

= (C2)⊗m – an analogue results gurantees that
2× 2 unitary matrices make up all unitary operators.

See e.g.: A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi: Classical and
Quantum Computation, AMS, 2002, p70.

13 / 16

Unitary Operators on Cn

Theorem
An arbritary unitary operator U on the space Cn can be
represented as a product of n(n−1)

2 matrices of the form:

1 . . . 0 0
...

. . .
...

...

0 . . . 1
...

... a b
...

... c d
...

... 1 . . . 0

...
...

. . .
...

0 0 . . . 1

with

(
a b
c d

)
a 2× 2 unitary matrix (on C2).

14 / 16

Approximation of Unitary Operators

If we are only interested in “about the right result” we have:

Given two unitary transformations U and V. The error of
approximation is defined by

e(U,V) = sup
|φ〉
‖(U− V) |φ〉 ‖

Definition
A set of gates G = {G1, . . .} is said to be approximatly universal
if any n-qubit operator U (with n ≥ 1) can be approximated to
arbitrary accuracy, i.e. for all ε > 0 there exists a circuit V which
is constructed of gates in G and their controlled versions such
that we have e(U,V) < ε.

15 / 16

Approximation of Unitary Operators

If we are only interested in “about the right result” we have:

Given two unitary transformations U and V. The error of
approximation is defined by

e(U,V) = sup
|φ〉
‖(U− V) |φ〉 ‖

Definition
A set of gates G = {G1, . . .} is said to be approximatly universal
if any n-qubit operator U (with n ≥ 1) can be approximated to
arbitrary accuracy, i.e. for all ε > 0 there exists a circuit V which
is constructed of gates in G and their controlled versions such
that we have e(U,V) < ε.

15 / 16

Approximation of Unitary Operators

If we are only interested in “about the right result” we have:

Given two unitary transformations U and V. The error of
approximation is defined by

e(U,V) = sup
|φ〉
‖(U− V) |φ〉 ‖

Definition
A set of gates G = {G1, . . .} is said to be approximatly universal
if any n-qubit operator U (with n ≥ 1) can be approximated to
arbitrary accuracy, i.e. for all ε > 0 there exists a circuit V which
is constructed of gates in G and their controlled versions such
that we have e(U,V) < ε.

15 / 16

(Approximatly) Universal Gates
A possible set of approximatly universal gates (e.g. Kaye,
Laflamme, Mosca: Introduction to Quantum Computing, p71):

H =
1√
2

(
1 1
1 −1

)
Φ
(π

4

)
=

(
1 0
0 ei π4

)

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Theorem
The set G = {H,Φ(π4)} is universal for 1-qubits.

Theorem
The set G = {CNOT,H,Φ(π4)} is a universal set of gates.

16 / 16

(Approximatly) Universal Gates
A possible set of approximatly universal gates (e.g. Kaye,
Laflamme, Mosca: Introduction to Quantum Computing, p71):

H =
1√
2

(
1 1
1 −1

)
Φ
(π

4

)
=

(
1 0
0 ei π4

)

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Theorem
The set G = {H,Φ(π4)} is universal for 1-qubits.

Theorem
The set G = {CNOT,H,Φ(π4)} is a universal set of gates.

16 / 16

(Approximatly) Universal Gates
A possible set of approximatly universal gates (e.g. Kaye,
Laflamme, Mosca: Introduction to Quantum Computing, p71):

H =
1√
2

(
1 1
1 −1

)
Φ
(π

4

)
=

(
1 0
0 ei π4

)

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Theorem
The set G = {H,Φ(π4)} is universal for 1-qubits.

Theorem
The set G = {CNOT,H,Φ(π4)} is a universal set of gates.

16 / 16

	Quantum Gates
	Universal Gates

