
Exercises

Program Analysis (CO70020)

Sheet 1

Exercise 1 Give a labelling of the following program and the (intuitive) flow
‘flow’ and the reverse flow ‘flowR’.

x := 1;
while y>0 do (

if y<=0
then x := x+3

else skip
x := x-1;
z := z+x;
)

x := 2;

What “simplifications” could you think of with regard to the guard y > 0?
What happens if you generalise your approach to any guard/test predicate p(y)
(and not p(y), respectively)?

Solution Obviously the if is redundant. Nothing is executed in the if state-
ment as long as the while -loop is executed (only skip).

But if p(y) is undecided then the program may not terminate (because the
evaluation of p(y) may not terminate). In this case all judgments about the
following statements are vacuous. This is especially relevant in a concurrent
context.

Exercise 2 Consider the following While program:

x:=1;
if (x>0)
then x:=x-1

else y:=y-1

Construct the flow formally.

Solution

1. Label program

[x:=1]1; if ([x>0]2) then [x:=x-1]3 else [y:=y-1]4

1



2. Construct flow

flow([x:=1]1; if ([x>0]2) then [x:=x-1]3 else [y:=y-1]4) =

= flow([x:=1]1) ∪ flow(if ([x>0]2) then [x:=x-1]3 else [y:=y-1]4)

∪{(`, init(if ([x>0]2) then [x:=x-1]3 else [y:=y-1]4)) | ` ∈ final([x:=1]1} =

= ∅ ∪ flow(if ([x>0]2) then [x:=x-1]3 else [y:=y-1]4) ∪ {(`, 2) | ` ∈ {1}} =

= flow(if ([x>0]2 then [x:=x-1]3 else [y:=y-1]4) ∪ {(1, 2)} =

= flow([x:=x-1]3) ∪ flow([y:=y-1]4) ∪ {(2, init([x:=x-1]3)), (2, init([y:=y-1]4))} ∪ {(1, 2)} =

= ∅ ∪ ∅ ∪ {(2, 3), (2, 4)} ∪ {(1, 2)} =

= {(1, 2), (2, 3), (2, 4)}

Exercise 3 Guess the RD solutions for the following three While programs:

x := 4;

z := 2;

if y > x then

x := 3;

else

x := 4;

z := x;

x := 4;

z := 2;

if y > x then

x := 3;

else

x := 3;

z := x;

x := 4;

y := 2;

if y > x then

x := 3;

else

x := 5;

z := x;

What kind of optimisation could you suggest.

Solution

First program: The program points could be labelled as follows (similar for
the other two):

[x := 4;]1

[z := 2;]2

if [y > x]3 then

[x := 3;]4

else

[x := 4;]5

[z := x;]6

then one could expect perhaps the following RD solutions:

RDentry(1) = {(x, ?), (y, ?), (z, ?)}
RDexit(1) = {(x, 1), (y, ?), (z, ?)}

RDentry(2) = {(x, 1), (y, ?), (z, ?)}
RDexit(2) = {(x, 1), (y, ?), (z, 2)}

RDentry(3) = {(x, 1), (y, ?), (z, 2)}

2



RDexit(3) = {(x, 1), (y, ?), (z, 2)}
RDentry(4) = {(x, 1), (y, ?), (z, 2)}
RDexit(4) =, {(x, 4), (y, ?), (z, 2)}

RDentry(5) = {(x, 1), (y, ?), (z, 2)}
RDexit(5) = {(x, 5), (y, ?), (z, 2)}

RDentry(6) = {(x, 4), (x, 5), (y, ?), (z, 2)}
RDexit(6) = {(x, 4), (x, 5), (y, ?), (z, 6)}

The RD analysis suggest that it could be possible (using e.g. the Con-
stant Folding rewrite/program transformation from the introduction) to
simplify the test at label 3:

[x := 4;]1

[z := 2;]2

if [y > 4]3 then

[x := 3;]4

else

[x := 4;]5

[z := x;]6

as only (x, 1) reaches label 3 (see RDentry(3)).

In itself the program transformation from the introduction would not allow
however to eliminate statement 1 in order to get:

[z := 2;]2

if [y > 4]3 then

[x := 3;]4

else

[x := 4;]5

[z := x;]6

as this might lead to a non-initialised variable x. Nevertheless, one could
argue that this non-initialisation issue is not relevant as any continuation
of this program fragment would be provided with an initialised variable x

(as RDexit(6) does not contain (x, ?)).

Another simplification – for which however the information the RD anal-
ysis provides is not sufficent (an additional analysis would be needed) –
could produce even:

if [y > 4]3 then

[z := 3;]4

else

[z := 4;]5

3



However, this eliminates x completely, which is only justified if this vari-
able is not needed at any later stage.

Note: Except for the first kind of optimisation we could not simplify the
program any furher in a concurrent context, i.e. if this fragment specifies
a ‘thread’ which is executed in parallel with some others (using shared
variables).

Second program: The solutions for RD should be the same as in the previous
example (as both programs have the same control flow structure).

The constant folding transformations presented in the lecture allow for a
replacement of the last statement by [z := 3;]6.

However, one might also argue that the whole if-statement could be re-
placed by [x := 3;]3 or perhaps even eliminated completely (if x is not
“used later”). But these optimisations are not supported formally.

Third program: Again, the solutions for RD should be essentially the same
as in the previous examples (as all programs have the same control flow
structure, but slightly different local transfer functions).

No optimisation using constant folding is justified as in the first example.
However, we know that the test in the if-statement will always fail (as
2 > 4 is false) thus x will always be 5 when we reach the last statement.
Thus the program could be replaced perhaps by y:=2; x:=5; z:=5;.

However, this kind of optimisation is not what we aim for in static pro-
gram analysis as it requires a general way to decide when tests (in if-
statements) succeed or fail, but this is in general undecidable and would
lead to eventually non-terminating ‘optimisation’ strategies.

Exercise 4 Construct the RD equations for the following program:

x := 4;

z := 2;

if y > x then

x := 3;

else

x := 4;

z := x;

Solution

1. The program points c(s)ould be labelled as follows:

[x := 4;]1

[z := 2;]2

if [y > x]3 then

[x := 3;]4

4



else

[x := 4;]5

[z := x;]6

2. Construct the flow

flow(. . .) = {(1, 2), (2, 3), (3, 4), (3, 5), (4, 6), (5, 6)}

3. Construct local killRD and genRD

genRD([. . .]1) = {(x, 1)}
genRD([. . .]2) = {(z, 2)}
genRD([. . .]3) = ∅
genRD([. . .]4) = {(x, 4)}
genRD([. . .]5) = {(x, 5)}
genRD([. . .]6) = {(z, 6)}

killRD([. . .]1) = {(x, ?), (x, 4), (x, 5), (x, 1)}
killRD([. . .]2) = {(z, ?), (z, 2), (z, 6)}
killRD([. . .]3) = ∅
killRD([. . .]4) = {(x, ?), (x, 4), (x, 5), (x, 1)}
killRD([. . .]5) = {(x, ?), (x, 4), (x, 5), (x, 1)}
killRD([. . .]6) = {(z, ?), (z, 2), (z, 6)}

4. State RD equations:

RDentry(1) = {(x, ?), (y, ?), (z, ?)}
RDentry(2) = RDexit(1)

RDentry(3) = RDexit(2)

RDentry(4) = RDexit(3)

RDentry(5) = RDexit(3)

RDentry(6) = RDexit(4) ∪ RDexit(5)

RDexit(1) = RDentry(1) \ killRD([. . .]1) ∪ genRD([. . .]1)

RDexit(2) = RDentry(2) \ killRD([. . .]2) ∪ genRD([. . .]2)

RDexit(3) = RDentry(3) \ killRD([. . .]3) ∪ genRD([. . .]3)

RDexit(4) = RDentry(4) \ killRD([. . .]4) ∪ genRD([. . .]4)

RDexit(5) = RDentry(5) \ killRD([. . .]5) ∪ genRD([. . .]5)

RDexit(6) = RDentry(6) \ killRD([. . .]6) ∪ genRD([. . .]6)

5



Fill in values for killRD and genRD from above.

Exercise 5 Is there a program such that:

1. {(x, 1), (x, 4), (x, 8)} ⊆ RDentry(9), or a program such that:

2. {(x, 1), (x, 4), (y, 4)} ⊆ RDentry(9)

Give example(s) or argument(s).

Solution For example of a program with {(x, 1), (x, 4), (x, 8)} ⊆ RDentry(9):

[x := ...;]1

[y := ...;]2

if [y > 2]3 then

[x := ...;]4

else

[y := ...;]5

if [z <> 2]6 then

[y := ...;]7

else

[x := ...;]8

[z := ...;]9

Arguably, there is no (while !) program of the second kind as at each
location or program point only one variable can be defined (assigned to).

6


