Exercises

Program Analysis (CO70020)

Sheet 1

Exercise 1 Give a labelling of the following program and the (intuitive) flow 'flow' and the reverse flow 'flow^R'.

What "simplifications" could you think of with regard to the guard y > 0? What happens if you generalise your approach to any guard/test predicate p(y)(and not p(y), respectively)?

Exercise 2 Consider the following While program:

```
x:=1;
if (x>0)
then x:=x-1
else y:=y-1
```

Construct the flow formally.

Exercise 3 Guess the RD solutions for the following three While programs:

x := 4;	x := 4;	x := 4;
z := 2;	z := 2;	y := 2;
if $y > x$ then	if $y > x$ then	if y > x then
x := 3;	x := 3;	x := 3;
else	else	else
x := 4;	x := 3;	x := 5;
z := x;	z := x;	z := x;

What kind of optimisation could you suggest.

Exercise 4 Construct the RD equations for the following program:

x := 4; z := 2; if y > x then x := 3; else x := 4; z := x;

Exercise 5 Is there a program such that:

- 1. $\{(\mathbf{x}, 1), (\mathbf{x}, 4), (\mathbf{x}, 8)\} \subseteq \mathsf{RD}_{entry}(9)$, or a program such that:
- $\textit{2. } \{(\mathtt{x},1),(\mathtt{x},4),(\mathtt{y},4)\} \subseteq \mathsf{RD}_{entry}(9)$

Give example(s) or argument(s).