Exercises

Program Analysis (CO70020)

Sheet 2

Exercise 1 Consider the following while program:

$$
\begin{aligned}
& {[\mathrm{x}:=1]^{1} ;} \\
& \text { while }[\mathrm{y}>0]^{2} \text { do }[\mathrm{x}:=\mathrm{x}-1]^{3} \text {; } \\
& {[\mathrm{x}:=2]^{4} \text {; }}
\end{aligned}
$$

Perform a Live Variables Analysis for this program (state equations and construct solutions).

Exercise 2 Construct/specify all elements of $\mathcal{P}(\{x, y, z\})$, i.e. the power set of $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$. Describe the sub-set relation on $\mathcal{P}(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\})$, i.e. which sub-set is a sub-set of another sub-set. What is the maximum number of sub-sets a sub-set of $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ can be included in and/or the hight of $\mathcal{P}(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\})$?
Exercise 3 Construct/specify all elements of $\mathcal{P}(\{\mathrm{x}, \mathrm{y}\} \times\{1,2,3\})$, i.e. the power set of the cartesian product $\{\mathrm{x}, \mathrm{y}\} \times\{1,2,3\}$. Describe the sub-set relation on $\mathcal{P}(\{\mathrm{x}, \mathrm{y}\} \times\{1,2,3\})$. What is the maximum number of sub-sets any sub-set of $\mathcal{P}(\{\mathrm{x}, \mathrm{y}\} \times\{1,2,3\})$ can be included in?

Exercise 4 Consider the following While program
while $(x>0)$ do $y:=y-1$
Describe the possible RD solutions at every program point. What is the size of this "property space" and how many possible solution are there for the RD analysis?
Exercise 5 Consider the set of all sets of the form:

$$
\{*\},\{*,\{*\}\}, \ldots,\{*,\{*,\{*, \ldots\}\}\}, \ldots
$$

i.e. $S_{1}=\{*\}$ and $S_{n}=\{*\} \cup\left\{S_{n-1}\right\}$ where $*$ is some element/object. Describe the element relation on this set of sets. What is the maximum number of sets any set of can be included in (be element of)?

Exercise 6 Consider the power set $\mathcal{P}(X)$ of $X=\{a, b, c, d\}$.

1. Draw the Hasse diagram.
2. Give a monotone map from $(\mathcal{P}(X), \subseteq)$ into (\mathbb{Z}, \leq).
3. Give a monotone map from (\mathbb{Z}, \leq) into $(\mathcal{P}(X), \subseteq)$.
