
Exercises

Program Analysis (CO70020)

Sheet 3

Exercise 1 Consider the following while program:

[y := 2]1;
if [z > 1]2

then [x := 1]3

else [x := -1]4;
[y := x * x]5;

Perform a Constant Propagation Analysis CP for this program.

Solution We represent the state at a label as

σ̂ = [x 7→ σ(x), y 7→ σ(y), z 7→ σ(z)] =
x y z

σ(x) σ(y) σ(z)

The transfer functions are given as

fCP1

(
x y z

σ(x) σ(y) σ(z)

)
=

x y z

σ(x) 2 σ(z)

fCP2

(
x y z

σ(x) σ(y) σ(z)

)
=

x y z

σ(x) σ(y) σ(z)

fCP3

(
x y z

σ(x) σ(y) σ(z)

)
=

x y z

1 σ(y) σ(z)

fCP4

(
x y z

σ(x) σ(y) σ(z)

)
=

x y z

−1 σ(y) σ(z)

fCP5

(
x y z

σ(x) σ(y) σ(z)

)
=

x y z

σ(x) σ(x)∗̂σ(x) σ(z)

The analysis is then based on the following equations:

CPentry(1) = λx.>
CPentry(2) = CPexit(1)
CPentry(3) = CPexit(2)
CPentry(4) = CPexit(2)
CPentry(5) = CPexit(3) t CPexit(4)

1

and
CPexit(1) = fCP1 (CPentry(1))
CPexit(2) = fCP2 (CPentry(2))
CPexit(3) = fCP3 (CPentry(3))
CPexit(4) = fCP4 (CPentry(4))
CPexit(5) = fCP5 (CPentry(5))

The solutions are given by:

CPentry(1) =
x y z

> > >

CPentry(2) =
x y z

> 2 >

CPentry(3) =
x y z

> 2 >

CPentry(4) =
x y z

> 2 >

CPentry(5) =
x y z

> 2 >

and

CPexit(1) =
x y z

> 2 >

CPexit(2) =
x y z

> 2 >

CPexit(3) =
x y z

1 2 >

CPexit(4) =
x y z

−1 2 >

CPexit(5) =
x y z

> > >

Exercise 2 Consider the following simple imperative language with statements:

S ::= skip | x:=a | S1 ; S2 | if b then S1 else S2 | while b do S

Define an instance of the monotone framework (similar to the Constant
Propagation Analysis CP) which performs a usage analysis Use of expressions.

For each program point, the Use Analysis will determine the min-
imum and maximum number of program points the value of an
arithmetic expression will be used when leaving this program point
and before any variables in the expressions get redefined.

2

Assume that labelling, flow (flow) and reverse flow (flowR), as well as initial
and final labels are defined as usual. Let AExp? be the set of arithmetic sub-
expressions in a program S. The lattice of abstract states is given by:

Ŝtate = (AExp? → N∞ ×N∞)

with N∞ = {0, 1, 2, . . .} ∪∞. These record (at every label) the number of times
an expression might be used and the number of times it is guaranteed to be used.

Define a least upper bound operator t and v on Ŝtate and identify the ⊥ and

> elements. Use Ŝtate to define a Use Analysis like a monotone framework
instance, i.e. specify the flow F , the extreme labels E, their initialization ι and
the transfer functions. Derive the data-flow equations for the following program
(after labelling it)

y := a*b

while (x < a ∗ b) do (
x := a+b;
y := a+b);

x := a*b;

Is this a may or a must analysis? How is it related to the VB analysis?

Discuss whether Ŝtate fulfills the Ascending/Descending Chain Conditions, and
whether the Use Analysis is computable, or how it can be made computable.

Solution Describe the property “usage of an expression” by a pair, the first
component is the minimal usage number, second component is maximum usage
number. Denote the projections of first and second element in a pair by

(x, y)|1 = x and (x, y)|2 = y.

Bottom:
⊥ = λe.(∞, 0) with e ∈ AExp?

Top:
> = λe.(0,∞) with e ∈ AExp?

Order:

σ1 v σ2 iff σ1(e)|1 ≥ σ2(e)|1 and σ1(e)|2 ≤ σ2(e)|2 ∀e ∈ AExp?

Least Upper Bound:

(σ1 t σ2)(e) = (min(σ1(e)|1, σ2(e)|1),max(σ1(e)|2, σ2(e)|2)) with e ∈ AExp?

This is a backward analysis, i.e. F = flowR.
The extremal labels E are therefore final(S), and the initialization is ι(`) =

λe.(0, 0). Use the following notation: (x, y) + 1 = (x+ 1, y + 1) for pairs.

3

Transfer functions:

[x:=a]` : f`(σ) =

 f`(σ)(e) = σ(e) + 1 if e ∈ AExp(a) and x 6∈ FV (e)
f`(σ)(e) = (0, 0) if x ∈ FV (e)
f`(σ)(e) = σ(e) otherwise

[skip]
`

: f`(σ) = σ

[b]
`

: f`(σ) =

{
f`(σ)(e) = σ(e) + 1 if e ∈ AExp(b)
f`(σ)(e) = σ(e) otherwise

These are similar to the VB analysis.
Labelling:

[y := a*b]1

while [(x < a ∗ b)]2 do (
[x := a+b]3;
[y := a+b]4);

[x := a*b]5;

Useentry(1) = f1(Useexit(1))

Useentry(2) = f2(Useexit(2))

Useentry(3) = f3(Useexit(3))

Useentry(4) = f4(Useexit(4))

Useentry(5) = f5(Useexit(5))

or more explicitely

Useentry(1) = Useexit(1)[(a ∗ b) 7→ Useexit(1)(a ∗ b) + 1]

Useentry(2) = Useexit(2)[(a ∗ b) 7→ Useexit(2)(a ∗ b) + 1]

Useentry(3) = Useexit(3)[(a+ b) 7→ Useexit(3)(a+ b) + 1]

Useentry(4) = Useexit(4)[(a+ b) 7→ Useexit(4)(a+ b) + 1]

Useentry(5) = Useexit(4)[(a ∗ b) 7→ Useexit(5)(a ∗ b) + 1]

Useexit(1) = Useentry(2)

Useexit(2) = Useentry(3) t Useentry(5)

Useexit(3) = Useentry(4)

Useexit(4) = Useentry(2)

Useexit(5) = [(a ∗ b) 7→ (0, 0), (a+ b) 7→ (0, 0)]

This a monotone framework instance so may/must does not really makes
sense. However, one can see it as a combination of a must and a may analysis.

4

If the minimal number of usages is zero then we can conclude that an ex-
pression is not very busy at the exit from a program point, otherwise it is very
busy.

The lattice Ŝtate does not fulfill the ACC/DCC but we only need

Ŝtate = (AExp? → |Lab?| × |Lab?|)

if we keep also information about which labels are already recorded and avoid
counting them twice. This results in a finite lattice and thus fulfills the ACC/DCC,
therefore the MFP solutions can then always be computed.

Exercise 3 Consider the following program:

[x:=1]1; [x:=x-1]2; [x:=2]3

Clearly x is dead at the exits from 2 and 3. But x is live at the exit of 1 even
though its only use is to calculate a new value for a variable that turns out to
be dead.

We shall say that a variable is a faint variable if it is dead or if it is
only used to calculate new values for faint variables; otherwise it is
strongly live.

In the example x is faint at the exits from 1, 2 and 3.
Define a Data Flow Analysis that detects Strongly Live variables.

Solution (Sketch) Two alternative approaches:

1. Base the analysis on the Live Variables Analysis. The function genLV must
be changed to take an additional input — a set of strongly live variables:

genLV : (Blocks? × P(Var?))→ P(Var?)

genLV([x := a]`, X) =

{
FV(a) if x ∈ X
∅ otherwise

genLV([skip]`, X) = ∅
genLV([b]`, X) = FV(b)

and also LVentry :

LVentry(`) = (LVexit(`)\killLV(B`)) ∪ genLV(B`, LVexit(`))

2. As a monotone framework with transfer functions:

f[x := a]`X =

{
(X\{x}) ∪ FV (a) if x ∈ X
X otherwise

f[skip]`X = X

f[b]`X = X ∪ FV (b)

5

Exercise 4 Consider the following Fun program:

(let f = (fn z => 1) in

(((fn x => x x)(fn y => y)) f))

Label the program and give a brief and informal description of its execution:
what’s the result? Evaluate the expression formally using the eval function (from
the lecture). For every step specify the environment ρ.

Solution

(let (f = fn z => 10)1 in

(((fn x => (x2 x3)4)5(fn y => y6)7)8 f9)10)11

It evaluates to fn z => 1.
Shorthand notation:

fz = (fn z => 10)1

fx = (fn x => (x2 x3)4)5

fy = (fn y => y6)7

t = (((fn x => (x2 x3)4)5(fn y => y6)7)8 f9)10

p = (let (f = fn z => 10)1 in

(((fn x => (x2 x3)4)5(fn y => y6)7)8 f9)10)11

Use ρ0 = [f 7→ ⊥, x 7→ ⊥, y 7→ ⊥, z 7→ ⊥].
Use ρ1 = [f 7→ [fz, ρ0], x 7→ ⊥, y 7→ ⊥, z 7→ ⊥].
Use ρ2 = [f 7→ [fz, ρ0], x 7→ [fy, ρ1], y 7→ ⊥, z 7→ ⊥].
Use ρ3 = [f 7→ [fz, ρ0], x 7→ [fy, ρ1], y 7→ [fy, ρ2], z 7→ ⊥].
Use ρ4 = [f 7→ [fz, ρ0], x 7→ [fy, ρ1], y 7→ [fz, ρ3], z 7→ ⊥].
Compute:

eval(ρ0, p) = eval(ρ0[f 7→ v1], ((fx fy)8 f9)10) = eval(ρ1, ((fx fy)8 f9)10)

as v1 = eval(ρ0, fz) = [fz, ρ0].
To compute eval(ρ1, ((fx fy)6 f9)10 we need eval(ρ1, (fx fy)8) and eval(ρ1, f

9).
On the one hand:

eval(ρ1, f
9) = ρ1(f) = [fz, ρ0]

on the other hand:

eval(ρ1, (fx fy)8) = eval(ρ2, (x
2 x3)4)

as eval(ρ1, fx) = [fx, ρ1] = [fn x => (x2 x3)4, ρ1] and eval(ρ1, fy) = [fy, %1]).
Then we have:

eval(ρ2, (x
2 x3)4) = eval(ρ3, fy) = [fy, ρ2]

6

as eval(ρ2, x
2) = eval(ρ2, x

3) = [fy, ρ1] = [fn y=>y, ρ1]).
Therefore:

eval(ρ1, ((fx fy)8 f9)10) = eval(ρ3, (fy f
9)10) = eval(ρ4, y

6)

and with eval(ρ3, fy) = [fy, ρ1]) and eval(ρ3, f) = [fz, ρ0] we get finally

eval(ρ4, y
6) = ρ4(y) = fz = (fn z => 10)1.

7

