
Exercises

Program Analysis (CO70020)

Sheet 3

Exercise 1 Consider the following while program:

[y := 2]1;
if [z > 1]2

then [x := 1]3

else [x := -1]4;
[y := x * x]5;

Perform a Constant Propagation Analysis CP for this program.

Exercise 2 Consider the following simple imperative language with statements:

S ::= skip | x:=a | S1 ; S2 | if b then S1 else S2 | while b do S

Define an instance of the monotone framework (similar to the Constant
Propagation Analysis CP) which performs a usage analysis Use of expressions.

For each program point, the Use Analysis will determine the min-
imum and maximum number of program points the value of an
arithmetic expression will be used when leaving this program point
and before any variables in the expressions get redefined.

Assume that labelling, flow (flow) and reverse flow (flowR), as well as initial
and final labels are defined as usual. Let AExp? be the set of arithmetic sub-
expressions in a program S. The lattice of abstract states is given by:

Ŝtate = (AExp? → N∞ ×N∞)

with N∞ = {0, 1, 2, . . .} ∪∞. These record (at every label) the number of times
an expression might be used and the number of times it is guaranteed to be used.

Define a least upper bound operator t and v on Ŝtate and identify the ⊥ and

> elements. Use Ŝtate to define a Use Analysis like a monotone framework
instance, i.e. specify the flow F , the extreme labels E, their initialization ι and
the transfer functions. Derive the data-flow equations for the following program
(after labelling it)

y := a*b

while (x < a ∗ b) do (
x := a+b;
y := a+b);

x := a*b;

1

Is this a may or a must analysis? How is it related to the VB analysis?

Discuss whether Ŝtate fulfills the Ascending/Descending Chain Conditions, and
whether the Use Analysis is computable, or how it can be made computable.

Exercise 3 Consider the following program:

[x:=1]1; [x:=x-1]2; [x:=2]3

Clearly x is dead at the exits from 2 and 3. But x is live at the exit of 1 even
though its only use is to calculate a new value for a variable that turns out to
be dead.

We shall say that a variable is a faint variable if it is dead or if it is
only used to calculate new values for faint variables; otherwise it is
strongly live.

In the example x is faint at the exits from 1, 2 and 3.
Define a Data Flow Analysis that detects Strongly Live variables.

Exercise 4 Consider the following Fun program:

(let f = (fn z => 1) in

(((fn x => x x)(fn y => y)) f))

Label the program and give a brief and informal description of its execution:
what’s the result? Evaluate the expression formally using the eval function (from
the lecture). For every step specify the environment ρ.

2

