Exercises

Program Analysis (CO70020)

Sheet 5

Exercise 1 Consider the following imperative language with statements of the form:

$$
\begin{gathered}
S::=\mathrm{x}:=\mathrm{a} \mid \text { skip }\left|S_{1} ; S_{2}\right| \text { if } b \text { then } S_{1} \text { else } S_{2} \mid \text { while } b \text { do } S \\
\quad \mid \text { choose } S_{1}\left|S_{2}\right| \ldots\left|S_{n}\right| \text { combine } S_{1}\left|S_{2}\right| \ldots \mid S_{n}
\end{gathered}
$$

In the choose statement only one of the $n \geq 1$ statements S_{i} is actually selected to be executed. The combine executes all of the n statements S_{i} in some sequence. In both statements the choices are made non-deterministicly.

Define a Live Variable Analysis LV, similar to the one for the simple while language, for this extended language. Define an appropriate labelling for statements/blocks and give a definition for the flow flow (together with init and final).

Solution Labelling:

$$
\begin{aligned}
S::= & {[\mathrm{x}:=\mathrm{a}]^{\ell} } \\
& {[\text { skip }]^{\ell} } \\
& S_{1} ; S_{2} \\
& \text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2} \\
& \text { choose } S_{1}\left|S_{2}\right| \ldots \mid S_{n} \\
& \text { combine } S_{1}\left|S_{2}\right| \ldots \mid S_{n} \\
& \text { while }[b]^{\ell} \text { do } S
\end{aligned}
$$

Initial Labels:

$$
\text { init : Stmt } \rightarrow \mathcal{P}(\mathbf{L a b})
$$

defined as:

$$
\begin{aligned}
\operatorname{init}\left([\mathrm{x}:=\mathrm{a}]^{\ell}\right) & =\{\ell\} \\
\operatorname{init}\left([\text { skip }]^{\ell}\right) & =\{\ell\} \\
\operatorname{init}\left(S_{1} ; S_{2}\right) & =\operatorname{init}\left(S_{1}\right) \\
\operatorname{init}\left(\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right) & =\{\ell\} \\
\operatorname{init}\left(\text { choose } S_{1}\left|S_{2}\right| \ldots \mid S_{n}\right) & =\bigcup_{i=1}^{n} \operatorname{init}\left(S_{i}\right) \\
\operatorname{init}\left(\operatorname{combine} S_{1}\left|S_{2}\right| \ldots \mid S_{n}\right) & =\bigcup_{i=1}^{n} \operatorname{init}\left(S_{i}\right) \\
\operatorname{init}\left(\text { while }[b]^{\ell} \text { do } S\right) & =\{\ell\}
\end{aligned}
$$

Final Labels:

$$
\text { final : Stmt } \rightarrow \mathcal{P}(\text { Lab })
$$

defined as:

$$
\begin{aligned}
\text { final }\left([\mathrm{x}:=\mathrm{a}]^{\ell}\right) & =\{\ell\} \\
\text { final }\left([\text { skip }]^{\ell}\right) & =\{\ell\} \\
\text { final }\left(S_{1} ; S_{2}\right) & =\text { final }\left(S_{2}\right) \\
\text { final }\left(\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right) & =\text { final }\left(S_{1}\right) \cup \text { final }\left(S_{2}\right) \\
\text { final }\left(\text { choose } S_{1}\left|S_{2}\right| \ldots \mid S_{n}\right) & =\bigcup_{i=1}^{n} \text { final }\left(S_{i}\right) \\
\text { final }\left(\text { combine } S_{1}\left|S_{2}\right| \ldots \mid S_{n}\right) & =\bigcup_{i=1}^{n} \text { final }\left(S_{i}\right) \\
\text { final }\left(\text { while }[b]^{\ell} \text { do } S\right) & =\{\ell\}
\end{aligned}
$$

Flow:

$$
\text { flow }: \mathbf{S t m t} \rightarrow \mathcal{P}(\mathbf{L a b} \times \mathbf{L a b})
$$

defined as:

$$
\begin{aligned}
\text { flow }\left([\mathrm{x}:=\mathrm{a}]^{\ell}\right)= & \emptyset \\
\text { flow }\left([\text { skip }]^{\ell}\right)= & \emptyset \\
\text { flow }\left(S_{1} ; S_{2}\right)= & \text { flow }\left(S_{1}\right) \cup \text { flow }\left(S_{2}\right) \cup \\
& \left\{\left(\ell, \ell^{\prime}\right) \mid \ell \in \operatorname{final}\left(S_{1}\right), \ell^{\prime} \in \operatorname{init}\left(S_{2}\right)\right\} \\
\text { flow }\left(\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right)= & \text { flow }\left(S_{1}\right) \cup \text { flow }\left(S_{2}\right) \cup \\
& \left\{\left(\ell, \ell^{\prime}\right) \mid \ell^{\prime} \in \operatorname{init}\left(S_{1}\right)\right\} \cup \\
& \left\{\left(\ell, \ell^{\prime}\right) \mid \ell^{\prime} \in \operatorname{init}\left(S_{2}\right)\right\} \\
\text { flow }\left(\text { choose } S_{1}\left|S_{2}\right| \ldots \mid S_{n}\right)= & \bigcup_{i=1}^{n} \text { flow }\left(S_{i}\right) \\
\text { flow }\left(\text { combine } S_{1}\left|S_{2}\right| \ldots \mid S_{n}\right)= & \bigcup_{i=1}^{n} \text { flow }\left(S_{i}\right) \cup \\
& \left\{\left(\ell_{i}, \ell_{j}\right) \mid \ell_{i} \in \operatorname{final}\left(S_{i}\right), \ell_{j} \in \operatorname{init}\left(S_{j}\right),\right. \\
& i=1, \ldots, n \wedge j=1, \ldots, n \wedge i \neq j\} \\
\text { flow }\left(\text { while }[b]^{\ell} \text { do } S\right)= & \text { flow }(S) \cup\{(\ell, \operatorname{init}(S))\} \cup \\
& \left\{\left(\ell^{\prime}, \ell\right) \mid \ell^{\prime} \in \operatorname{final}(S)\right\}
\end{aligned}
$$

There is no change in the local transfer functions (kill ${ }_{\mathrm{LV}}$ and $g e n_{\mathrm{LV}}$) as we have the same blocks as in the original language.

Exercise 2 Consider the following expression from which labels have been stripped:

$$
\begin{aligned}
& (\text { let } g=(\operatorname{fn} f=>(\text { if }(f 3) \text { then } 10 \text { else } 5)) \\
& \text { in }(g(\operatorname{fn} y=>(y>2))))
\end{aligned}
$$

Label the expression and give a brief and informal description of its execution: what does it evaluate to?

Write down the constraints for a 0-CFA and provide the least solution that satisfies the constraints.

Solution Labelled program:

$$
\begin{aligned}
& e=\left(\text { let } g=\left(\text { fn } f=>\left(\text { if }\left(f^{1} 3^{2}\right)^{3} \text { then } 10^{4} \text { else } 5^{5}\right)^{5}\right)^{6}\right. \\
& \left.\quad \text { in }\left(g^{8}\left(\text { fn } y=>\left(y^{9}>2^{10}\right)^{11}\right)^{12}\right)^{13}\right)^{14}
\end{aligned}
$$

Let $f_{6}=\mathrm{fn} f \Rightarrow e_{6}, f_{11}=\mathrm{fn} y \Rightarrow e_{11}$.

$$
\left\{C(7) \subseteq r(g), C\left(13 \subseteq C(14),\left\{f_{6}\right\} \subseteq C(7)\right.\right.
$$

$$
C(4) \subseteq C(6), C(5) \subseteq C(6), r(f) \subseteq C(1)
$$

$$
\left\{f_{6}\right\} \subseteq C(1) \Rightarrow C(2) \subseteq r(f),\left\{f_{11}\right\} \subseteq C(1) \Rightarrow C(2) \subseteq r(y)
$$

$$
\left\{f_{6}\right\} \subseteq C(1) \Rightarrow C(6) \subseteq C(3),\left\{f_{11}\right\} \subseteq C(1) \Rightarrow C(11) \subseteq C(3)
$$

$$
r(g) \subseteq C(8),\left\{f_{11}\right\} \subseteq \bar{C}(12), r(y) \subseteq \bar{C}(9)
$$

$$
\left\{f_{6}\right\} \subseteq C(8) \Rightarrow C(12) \subseteq r(f),\left\{f_{11}\right\} \subseteq C(8) \Rightarrow C(12) \subseteq r(y)
$$

$$
\left\{f_{6}\right\} \subseteq C(8) \Rightarrow C(6) \subseteq C(13),\left\{f_{11}\right\} \subseteq C(8) \Rightarrow C(11) \subseteq C(13)
$$

Solution: $C(1)=C(12)=r(f)=\left\{f_{11}\right\}, C(7)=C(8)=r(g)=\left\{f_{6}\right\}$. The rest is the empty set.

Exercise 3 Consider the following extraction function for $n \in \mathbb{N}$:

$$
\beta(n)= \begin{cases}\text { min bits to represent } n & \text { if } n<2^{8} \\ \text { overflow } & \text { otherwise }\end{cases}
$$

which allows for a Bit-Size analysis for "small" integers via Abstract Interpretation.

Describe the (abstract) property lattice and the concrete and abstract domain (incl. ordering and least upper bound operation). Furthermore, define the abstraction, α, and concretisation, γ, functions.

Construct formally the abstraction (in the sense of Abstract Interpretation) of the doubling and square function, i.e. $f^{\#}$ and $g^{\#}$ for

$$
f(n)=2 \times n \quad \text { and } \quad g(n)=n^{2}
$$

Solution Arguably even for 0 we need at least one bit, so with normal order $" \leq=\sqsubseteq "$ on \mathbb{N}

$$
1 \sqsubseteq 2 \sqsubseteq \ldots \sqsubseteq 8 \sqsubseteq \text { overflow }
$$

or if 0 is represented by 'nothing':

$$
0 \sqsubseteq 2 \sqsubseteq \ldots \sqsubseteq 8 \sqsubseteq \text { overflow }
$$

with this β is more formally:

$$
\beta(n)= \begin{cases}1 \text { or } 0 & \text { for } n=0 \\ k & \text { for } 1 \leq 2^{k-1} \leq n<2^{k} \wedge n<2^{8} \\ \text { overflow } & \text { otherwise }\end{cases}
$$

and $\mathcal{D}=\{1, \ldots, 8$, overflow $\}$ (or maybe $\mathcal{D}=\{1, \ldots, 8$, overflow $\}$). The least upper bound is essentially the maximum:

$$
k_{1} \sqcup k_{2}=\beta(n)= \begin{cases}\max \left(k_{1}, k_{2}\right) & \text { for } \max \left(k_{1}, k_{2}\right) \leq 8 \\ \text { overflow } & \text { otherwise }\end{cases}
$$

Bottom element could be 0,1 or some undefined \perp.

For abstraction/concretisation we have $\alpha: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{D}$ and $\gamma: \mathcal{D} \rightarrow \mathcal{P}(\mathbb{N})$:

$$
\alpha(N)= \begin{cases}1 & \text { for } N \subseteq\{0,1\} \\ k & \text { for } N \subseteq\left\{2^{k-1}, \ldots, 2^{k}-1\right\} \\ \text { overflow } & \text { otherwise }\end{cases}
$$

and

$$
\gamma(k)= \begin{cases}\{0,1\} & \text { for } k=1 \\ \left\{2^{k-1}, \ldots, 2^{k}-1\right\} & \text { for } k=2, \ldots, 8 \\ \mathbb{N} & \text { otherwise }\end{cases}
$$

Construct the abstract versions using induced abstraction $(n \in \mathcal{D})$:

$$
f^{\#}(n)=\alpha \circ f \circ \gamma(n)= \begin{cases}n+1 & \text { if } n<8 \\ \text { overflow } & \text { overflow }\end{cases}
$$

and

$$
g^{\#}(n)=\alpha \circ g \circ \gamma(n)= \begin{cases}2 \times n & \text { if } n<4 \\ \text { overflow } & \text { overflow }\end{cases}
$$

Exercise 4 Consider a Sign Analysis for the imperative While language. That is: We are interested in the sign of variables, i.e. whether we can guarantee that for a given program point and a variable x (at least) one of the following properties holds: $x=0, x<0, x>0, x \leq 0$ and $x \geq 0$.

Define a representation function β for this Sign Analysis. How can one define the corresponding correctness relation R_{β} ? State formally what it means that the transfer functions f_{ℓ} for all labels are fulfilling the correctness condition.

Solution Representation function $\beta: \mathbb{Z} \rightarrow S$

$$
\beta(x)= \begin{cases}=0 & \text { if } x=0 \\ <0 & \text { if } x<0 \\ >0 & \text { if } x>0\end{cases}
$$

Note: $\perp, \top, \leq 0$ and \geq not needed for β.
Correctness relation:

$$
v R_{\beta} l \quad \text { iff } \quad \beta(v) \sqsubseteq l
$$

Correctness, as

$$
v_{1} R_{\beta} l_{1} \wedge p \vdash v_{1} \leadsto v_{2} \Rightarrow v_{2} R_{\beta} f_{\ell}\left(l_{1}\right)
$$

or maybe also via R_{β}, with $l_{1} \triangleright l_{2}$ with $f_{\ell}\left(l_{1}\right)=l_{2}$:

$$
v_{1} R_{\beta} l_{1} \wedge p \vdash v_{1} \leadsto v_{2} \wedge p \vdash l_{1} \triangleright l_{2} \Rightarrow v_{2} R_{\beta} l_{2}
$$

