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1 Introduction

Propositional temporal logic is now well established, both in its theory and its utility
for practical applications in computing. In contrast, predicate, or first-order, temporal
logic has been less studied. Unpublished results of Lindström and Scott in the 1960s
showed that even weak fragments of first-order temporal logic are highly undecidable,
and these and later similar results (see, e.g., [6,15]) may have suggested that other areas
were more profitable to work on.

Recently, however, some decidable fragments of first-order temporal logic have been
found. The so-called monodic fragments, originating in [15], have now been quite ex-
tensively investigated. In these fragments, formulas beginning with a temporal operator
are required to have at most one free variable. Also, the ‘first-order part’ of formulas
must lie in some decidable fragment of first-order logic with very mild closure properties.
Suitable fragments include the monadic fragment (with only unary relation symbols),
the one- and two-variable fragments, and the guarded, loosely guarded, and packed
fragments. [15] showed that the monodic fragments based on all these first-order frag-
ments are decidable over a wide range of linear flows of time. (We use ‘flow of time’
synonymously with ‘strict partial order’.) A notable case left open in [15] is for real
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numbers flow of time: while it was shown that decidability does hold for structures with
finite first-order domains, without this restriction it remains an open problem whether
any non-trivial monodic fragment is decidable over (R, <). Results for branching time
have also been established — some positive, some negative — and axiomatisations and
resolution and tableau procedures have been developed and implemented. For some of
this work see [2,4,5,7,12,17,19,28]. The expressive power of monodic fragments, though
obviously less than that of full first-order temporal logic, is still sufficient to encode
many other logics of interest; see [16] for some examples and applications.

Even more recently, the examination of the computational complexity of monodic frag-
ments has begun. In [13], it was shown that the one-variable fragment of linear first-
order temporal logic, even with sole temporal operator 2 (standing for ‘always in the
future’), is Expspace-hard over natural numbers time; consequently, so are the one-
variable, two-variable and monadic monodic fragments with the temporal connectives
Until and Since. This Expspace lower bound actually applies to any class of linear
flows of time containing a flow that embeds the natural numbers, and it holds both for
structures with arbitrary first-order domains and for structures where the domain is
finite.

Some upper bounds were established in [13], again both for arbitrary and for finite first-
order domains, but only for flow of time the natural numbers. Roughly speaking, it was
shown that the complexity of a monodic fragment over natural numbers time is at most
the maximum of Expspace and the complexity of the underlying first-order fragment.
In particular, it follows that over natural numbers time, the monodic packed fragment
(a generalised guarded fragment) has the same complexity as its pure first-order part —
2Exptime-complete. The proof is similar to the one in [27] giving a Pspace algorithm
to decide propositional temporal logic over natural numbers time.

For many, especially in computing, the only linear flow of time of importance is the
natural numbers, and [13] will be the start and end of the story. But other linear flows
of time have received attention, for example in modal logic and philosophy — see,
for example, Kamp’s expressive completeness results [18] and Burgess and Gurevich’s
decision procedures [3]. Recently, Reynolds established that the satisfiability problem
for propositional temporal logic with Until and Since over arbitrary linear time and
over the real numbers is Pspace-complete [25,24]. The proofs often require powerful
methods and cast new light on the inner workings of the logics. Proving results for
the real numbers is especially useful, as results for other flows of time can often be
derived as corollaries. It therefore seems (to us) natural to investigate the complexity
of monodic fragments over linear flows of time other than the natural numbers.

Here, we contribute to this investigation by showing that the monodic packed fragment
with Until and Since is 2Exptime-complete over quite a wide range of linear flows
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of time. For structures with arbitrary first-order domains, we prove in theorem 4.8
that satisfiability for monodic packed sentences is 2Exptime-complete over the class
of all linear flows of time, dense flows, discrete flows, the rationals, and some others.
With finite first-order domains, we can do better: in theorem 5.14, we show that the
monodic packed fragment is 2Exptime-complete over the real numbers, and hence over
essentially all commonly-used linear flows of time — for example, the natural numbers
(known from [13]), integers, rationals, all linear flows, all dense flows, all discrete flows,
and indeed any first-order definable class of linear flows. The same results hold for the
monodic guarded and loosely guarded fragments: see remark 6.1.

We concentrate on the monodic packed fragment here for three reasons. First, it is a
rather attractive monodic fragment, because equality can be included; for other monodic
fragments, adding equality can result in loss of decidability [5]. To include equality is
desirable in any case, but its presence also aids the handling of constants, and so makes
the proofs simpler. Second, it is a fragment for which the complexity of our algorithm
is theoretically optimal, because the first-order packed fragment is already 2Exptime-
complete. Third, by the same token, our results show that the monodic packed fragment,
a full-blown first-order temporal logic, is computationally no more expensive at all to
use than the non-temporal first-order packed fragment. We find this very striking.

Our proofs start off by applying the ‘quasimodel’ technique of [15], but in the main
they are similar to, and parts of them are actually borrowed from, the recent mosaic-
based work of Reynolds on complexity of propositional temporal logic with Until and
Since over linear and real time [25,24]. Reynolds established Pspace-completeness by
a sophisticated argument which we have not yet been able to generalise to the monodic
case; our proof for arbitrary domains follows the simpler proof of Exptime upper
bounds given early in [25]. The proof for finite domains, over the real numbers, extends
the argument in [15, §7] and involves ideas of [3,20] — in particular, the second, ‘model-
theoretic’ proof in [3] of decidability of propositional temporal logic with Until and Since
over the real numbers.

We would like to stress that because the methods in this paper only give 2Exptime

upper bounds, they are not entirely satisfactory. 2Exptime is a very high complexity,
and while the monodic packed fragment is 2Exptime-complete, for many monodic
fragments only Expspace lower complexity bounds are known. Examples include the
monodic 2-variable fragment, the monadic monodic fragment, and monodic guarded
and packed fragments with bounded number of variables. Generalising Reynolds’s more
powerful arguments to monodic fragments might be a way to obtain Expspace upper
bounds; this would certainly improve the results presented here.

Outline of paper In section 2, we define the monodic packed fragment formally.
Section 3 establishes some results on quasimodels, mosaics, and bags of mosaics that
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will be needed in both the main proofs. Section 4 contains the proof for arbitrary
domains and section 5 the proof for finite domains over the real numbers. We conclude
in section 6 with some remarks about possible extensions to our results.

Notation and conventions A linear order, or linear flow of time, is a pair (I, <),
where I is a non-empty set and < an irreflexive transitive relation on I satisfying
trichotomy: ∀xy(x < y∨x = y∨y < x). We write x ≤ y to abbreviate x < y∨x = y, and
x > y means y < x. We usually identify (notationally) a linear order or other classical
first-order structure with its domain. We use standard notation for intervals of a linear
order I: for x, y ∈ I, we let (x, y) = {z ∈ I : x < z < y}, [x, y] = {z ∈ I : x ≤ z ≤ y},
and define [x, y) and (x, y] similarly. We often let such an interval [x, y] also denote the
induced linear order ([x, y], < ∩ ([x, y]× [x, y])). A linear flow is dense if it has at least
two elements 2 and satisfies ∀xy(x < y → ∃z(x < z < y)).

For a structure M and a constant c of its signature, cM denotes the interpretation of
c in M . For a set I and sets Si (i ∈ I),

∏

i∈I Si denotes as usual the set of all maps
a : I →

⋃

i∈I Si such that a(i) ∈ Si for each i ∈ I. When I is finite, we sometimes
write maps in

∏

i∈I Si as the sequence of their values. We write x̄, ā, etc., for tuples of
variables, elements, etc. For an equivalence relation ∼ on a set S, we write S/∼ for the
set of ∼-classes, and s/∼ for the ∼-class of an element s ∈ S.

We use the term ‘mirror image’ in the usual way in temporal logic: the mirror image
of a condition is obtained by swapping past and future notions within it. For example,
we would exchange < with >, Until with Since, left with right, initial points with
endpoints, start with end, etc.

2 Monodic packed fragment

The guarded fragment was introduced by Andréka, van Benthem, and Németi in [1]
as a fragment of first-order logic with the ‘nice’ properties of modal logic (in particu-
lar, decidability with reasonable complexity). All quantifiers in guarded formulas are
relativised to an atomic formula (the ‘guard’). The packed fragment, introduced by
Marx in [21], extends the guarded fragment by allowing weaker guards, and has the
same complexity (2Exptime-complete), so we will use the packed fragment here. The
clique-guarded fragment defined in [8] is a syntactic variant of it.

The following combines the definition of monodic formulas from [15] with a minor

2 To avoid considering degenerate cases, in this paper we take ‘dense’ to imply that there are
at least two elements.
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modification of Marx’s definition of the packed fragment from [21].

Definition 2.1 (monodic packed fragment) Let L be a signature with at most
constants and relation symbols (no function symbols). An L-formula γ is said to be
a packing guard if γ is a conjunction of atomic and existentially-quantified atomic for-
mulas (i.e., of the form α or ∃x̄α, where α is atomic, possibly an equality) such that for
any two distinct free variables of γ, there is a conjunct of γ in which they both occur
free. The monodic packed fragment of predicate temporal logic in signature L consists
of the following formulas:

• Any atomic L-formula (which can be an equality, >, or ⊥) is monodic packed.
• Boolean combinations of monodic packed formulas are monodic packed.
• If x is a variable and ϕ, ψ are monodic packed formulas with free variable at most x,

then U(ϕ, ψ) and S(ϕ, ψ) (Until and Since, respectively) are monodic packed formu-
las.

• If γ is a packing guard, ϕ is a monodic packed formula, every free variable of ϕ is
free in γ, and x̄ is a tuple of variables, then ∃x̄(γ ∧ ϕ) is a monodic packed formula.

Any propositional temporal formula is monodic packed, since we allow nullary relation
symbols in L. So is any packed first-order formula — the first-order packed fragment
is contained in the monodic packed fragment.

Definition 2.2 For a formula ϕ, we let |ϕ| denote the length of (i.e., the number of
symbols in) ϕ.

Our complexity results will be stated in terms of |ϕ|. For formal complexity purposes,
algorithms must encode ϕ, subformulas of ϕ, etc., using symbols from a fixed finite
alphabet. This has the consequence that relation symbols, constants, and variables are
not stored as single symbols but as strings, such as R0, c16, x141. So storing ϕ takes space
O(|ϕ| log |ϕ|). This increase is at most quadratic and is never a problem in practice,
but it should be borne in mind.

Definition 2.3 Let L be as above and let T = (T, <) be a linear flow of time. A tem-
poral L-structure with flow of time T is a triple M = (T, D, (Mt : t ∈ T )), where D is
a non-empty set (the domain of M), each Mt is an L-structure with domain D, and
cMt = cMu for all constants c ∈ L and all t, u ∈ T .

Given M, t ∈ T , and an assignment h of variables into D, we define the semantics of
monodic packed formulas written with variables from the domain of h as follows:

• For atomic α, we let M, t, h |= α iff Mt, h |= α.
• M, t, h |= ¬ϕ iff M, t, h 6|= ϕ, and M, t, h |= ϕ ∧ ψ iff M, t, h |= ϕ and M, t, h |= ψ.
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• M, t, h |= ∃x̄ϕ iff M, t, g |= ϕ for some assignment g that agrees with h except
perhaps on the variables in x̄.

• M, t, h |= U(ϕ, ψ) iff there is u ∈ T with u > t, M, u, h |= ϕ, and M, v, h |= ψ for
all v ∈ T with t < v < u.

• M, t, h |= S(ϕ, ψ) iff there is u ∈ T with u < t, M, u, h |= ϕ, and M, v, h |= ψ for
all v ∈ T with u < v < t (i.e., the mirror image of the clause for Until).

Occasionally, for a formula ϕ with free variable x, if h(x) = a, we write M, t |= ϕ(a)
instead of M, t, h |= ϕ. For a sentence ϕ, we drop the assignment h and just write
M, t |= ϕ.

Note that our temporal structures have constant domains, and the interpretations of
constants and assignments to variables are rigid. Also, we use the ‘strict’ semantics of
Until (U) and Since (S) (u > t rather than u ≥ t, etc), this being more suitable for the
flows of time considered here. Strict Until and Since can express connectives such as
the non-strict and weak Until and Since, Tomorrow, etc. Indeed, [15] proves expressive
completeness results for monodic formulas written with them, over Dedekind complete
linear flows of time.

Abbreviations 3ψ abbreviates ψ ∨ U(ψ,>) ∨ S(ψ,>), and 2ψ abbreviates ¬3¬ψ.
The abbreviations ∨,→,∀ are defined as usual.

Definition 2.4 A monodic packed L-sentence ϕ is said to be satisfiable in a temporal
L-structure M with flow of time T if there is t ∈ T with M, t |= ϕ. In this case, we
say that ϕ is satisfiable in M, and that M is a model of ϕ.

We will be interested in satisfiability in temporal structures with arbitrary first-order
domains, as in the definition, and also in temporal structures whose first-order domains
are finite. These problems are different. The domain of any temporal structure in which
the monodic packed sentence 2∃x(P (x) ∧ ¬S(P (x),>)) (given in [15]) is satisfiable is
at least as large as its flow of time. As we are mainly interested in infinite flows of
time, this shows that satisfiability for arbitrary domains does not imply satisfiability
for finite domains.

The satisfiability problem for the packed fragment of first-order logic is 2Exptime-
complete [8,9,21]. Moreover, the packed fragment has the finite model property — any
satisfiable packed sentence has a finite model [11,14]. So the satisfiability problem for
the packed fragment over finite structures is the same as the satisfiability problem
over arbitrary structures, and is also 2Exptime-complete. Since the first-order packed
fragment is a subfragment of the monodic packed fragment, we deduce:

Proposition 2.5 Any satisfiability problem for the monodic packed fragment, whether
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over arbitrary temporal structures or over temporal structures with finite domains, is
2Exptime-hard.

3 Preliminaries

For the rest of the paper, we fix a packed monodic sentence ϕ with no function symbols.

There are two complexity proofs in this paper; this section develops some material
needed in both of them. The core idea in both proofs is to condense an arbitrary
temporal structure M into some finite object, preserving enough information to tell
whether ϕ was satisfiable in M. We do this using quasimodels and mosaics. Here, we
recall the technique of quasimodels from [15]; a quasimodel is the result of condensing
(essentially by filtration) the first-order part of a temporal structure but leaving the
flow of time intact. Then we introduce the mosaics (similar to those in [25,24]) and the
‘bags of mosaics’ that we will use to collapse the temporal part of a quasimodel into a
finite object and so complete the condensation process.

3.1 Types and state candidates

We let L be the finite signature consisting of the relation symbols and constants that
occur in ϕ. We also fix a variable x not occurring in ϕ.

Definition 3.1

(1) Define sub
x
ϕ to be the finite set

{ψ(x/y), ¬ψ(x/y), x = c, x 6= c : ψ(y) a subformula of ϕ, c a constant in L}.

Here, ψ(y) denotes that ψ is a sentence or has a single free variable, y, and ψ(x/y)
denotes the result of substituting x for all free occurrences of y in ψ.

(2) A type for ϕ is a maximal boolean consistent subset p ⊆ sub
x
ϕ. That is:

• for all ¬ψ ∈ sub
x
ϕ, we have ¬ψ ∈ p ⇐⇒ ψ /∈ p,

• for all ψ ∧ χ ∈ sub
x
ϕ, we have ψ ∧ χ ∈ p ⇐⇒ ψ ∈ p and χ ∈ p.

(3) We let T (ϕ) denote the (finite) set of types for ϕ.

For example, let M = ((I, <), D, (Mt : t ∈ I)) be a temporal structure, and for t ∈ I
and a ∈ D write tpt(a) = {ψ ∈ sub

x
ϕ : M, t |= ψ(a)}. This is a type for ϕ.
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Definition 3.2

(1) For each subformula ψ of ϕ of the form U(α, β) or S(α, β) with one (respectively
zero) free variable(s), we introduce a new unary (respectively, nullary) relation
symbol Rψ. The surrogate of ψ is Rψ(y) if ψ has free variable y, and Rψ if ψ is a
sentence.

(2) For any subformula ψ of ϕ, the formula ψ is obtained by replacing all maximal
subformulas U(α, β) and S(α, β) of ψ by their surrogates. For p ⊆ sub

x
ϕ, we write

p for {ψ : ψ ∈ p}.

Definition 3.3 A state candidate (for ϕ) is a non-empty set of types for ϕ. A realisable
state candidate (respectively, finitely realisable state candidate) is a state candidate Σ
such that for some (respectively, finite) structure M we have

M |=
∧

p∈Σ

∃x
∧

p ∧ ∀x
∨

p∈Σ

∧

p

︸ ︷︷ ︸

αΣ

.

Observe that the sentence αΣ here is (up to logical equivalence) in the packed fragment,
since we can guard the ∃x and ∀x by x = x. This has some consequences:

Lemma 3.4 A state candidate is realisable iff it is finitely realisable.

Proof. By [11,14], the packed fragment has the finite model property. So Σ is a re-
alisable state candidate iff αΣ has a model, iff it has a finite model, iff Σ is a finitely
realisable state candidate. 2

In spite of this lemma, we still wish to preserve the distinction between the two notions,
because our work may be applicable to other logics that do not have the finite model
property.

We will need to know how hard it is to decide whether a given set Σ of types is
a realisable state candidate. If we simply apply a decision procedure for the packed
fragment to αΣ, it could take treble exponential time in |ϕ|, since the length of αΣ is
potentially exponential in |ϕ|. Fortunately, we can do better:

Proposition 3.5 Let Σ be a set of types for ϕ. It is decidable in 2Exptime in |ϕ|

(i.e., in time at most 22f(|ϕ|)
, for some fixed polynomial f(n)) whether Σ is a realisable

state candidate.

Proof (sketch). The result can be seen quite easily by inspection of the proofs in [9,8]
that the satisfiability problem for the clique-guarded fragment (even with fixed point
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operators) is in 2Exptime. We will outline a similar argument.

Let us first review how satisfiability of a first-order packed sentence σ (with no function
symbols) is decided. One way to do it is by considering ‘pieces’ of a potential model
of σ. We formalise this as follows. All formulas below are implicitly put in negation-
normal form, with all negations pushed next to atomic formulas and double negations
removed. So we must take ∧,∨,¬,∀, and ∃ as primitive symbols. Assume that σ is
written with k variables. Introduce new constants w1, . . . , wk, called witnesses. Let W
be the set consisting of these witnesses together with the constants in σ. Below, c, c′,
etc., will range over W ; c̄ denotes a tuple of such c. Let S(σ) be the set of subformulas
of σ and their negations, together with x = y and x 6= y (where x and y are distinct
variables). Let C(σ) be the set of all sentences of the form ψ(c̄), where ψ(x̄) ∈ S(σ).
A condition is a maximal boolean consistent subset C of C(σ), containing all sentences
of the form c = c, such that if ψ(c̄, c1) ∈ C and c1 = c2 ∈ C then ψ(c̄, c2) ∈ C, and if
∀x̄ψ(x̄) ∈ C then ψ(c̄) ∈ C for all c̄. A condition can be thought of as describing the
‘piece’ of a model defined by the interpretations of the constants c.

The notion that we have enough pieces to form a model of σ is formalised by a saturated
set N of conditions: one such that

(1) there is C ∈ N with σ ∈ C,
(2) for each C ∈ N and each sentence ∃x̄ψ(x̄, c̄) ∈ C, where ∃x̄ψ(x̄, ȳ) ∈ S(σ), there is

D ∈ N such that (i) ψ(c̄′, c̄) ∈ D for some c̄′, and (ii) χ ∈ C ⇐⇒ χ ∈ D for each
χ ∈ C(σ) that only involves witnesses occurring in c̄.

If σ has a model, say M , let E be the set of all expansions of M to interpret the
witnesses. Then for each M+ ∈ E , the set C(M+) = {ψ ∈ C(σ) : M+ |= ψ} is a
condition, and N = {C(M+) : M+ ∈ E} is a saturated set of conditions. Conversely,
a model M of σ can be constructed from a saturated set of conditions in a step-by-
step fashion (cf. [9, theorem 3.7]). M satisfies each condition in N if the witnesses are
interpreted appropriately, and every element of M is named by some c ∈ W under some
such interpretation. So σ has a model iff there exists a saturated set of conditions. But
the existence of such a set can be decided in 2Exptime in |σ|, by a method of Pratt
[22]. The algorithm initialises N to be the set of all conditions; the size of this set is
at most doubly exponential. Then it loops, in each iteration deleting all conditions C
that fail property 2 above. On termination, the algorithm states that a saturated set
exists iff some C in the final N contains σ. (This is easily seen to be correct; for more
details, see theorem 4.7. If k is fixed in advance, the procedure only takes Exptime.)

A simple modification of this decides realisability of a given set Σ of types for ϕ. The
set S(σ) above is replaced by the set of all formulas ψ and their negations, where ψ
is a subformula of ϕ, together with x = y and x 6= y. Conditions are then defined
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as before. Notice that a condition C determines the type tpC(c) of any c ∈ W , via
tpC(c) = {ψ(x) ∈ sub

x
ϕ : ψ(c) ∈ C}. We can then show that Σ is realisable iff there is

a non-empty set N of conditions satisfying property 2 above, and such that

(3) all conditions in N agree on all L-sentences,
(4) Σ = {tpC(c) : C ∈ N , c ∈ W}.

These requirements ensure that all and only the types in Σ are realised in the model
built ‘step by step’ from N . The existence of such an N can be decided much as
before. Requirement (3) is handled by adding an outer loop running over all sets S of
L-sentences that can occur in conditions; the inner loop initialises N to the set of all
conditions containing S, and proceeds as before. The whole process takes in 2Exptime

in |ϕ| (and only Exptime if k is fixed in advance). 2

3.2 Runs and (pre-)quasimodels

Definition 3.6 Let I = (I, <) be a linear order. A map r : I → T (ϕ) is said to be a
run (over I) if the following three conditions hold:

(1) for each constant c ∈ L and each t, u ∈ I, we have x = c ∈ r(t) iff x = c ∈ r(u),
(2) for each U(α, β) ∈ sub

x
ϕ and each t ∈ I, we have U(α, β) ∈ r(t) iff:

(a) there is u ∈ I with t < u, α ∈ r(u), and β ∈ r(v) for all v ∈ I with t < v < u,
or

(b) I contains a maximal element y (say), U(α, β) ∈ r(y), and β ∈ r(v) for all
v ∈ I with v > t,

(3) the mirror image condition for Since.

We say that r is a full run 3 if it satisfies condition 1 and the (stronger) forms of
conditions 2 and 3 in which part (b) is deleted.

Continuing the example in section 3.1, for any a ∈ D the map ra : t 7→ tpt(a) is a full
run over I, and its restriction to any closed interval J of I is a run over J . The reader
should check that any full run is a run, so that deleting part (b) does indeed strengthen
conditions 2 and 3.

The following definition is crucial to the paper.

3 In [12,15], ‘full runs’ were simply called ‘runs’.

10



  

Definition 3.7 Let I be a linear order. A pre-quasimodel (for ϕ over I) is a triple

Q = (I, (Σt : t ∈ I),R),

where each Σt is a realisable state candidate and R ⊆
∏

t∈I Σt is a set of runs such that
Σt = {r(t) : r ∈ R} for each t ∈ I. Q is said to be a quasimodel (for ϕ) if each r ∈ R
is a full run, and ϕ ∈ r(t) for some r ∈ R and t ∈ I. Q is said to be finitary if each Σt

(t ∈ I) is a finitely realisable state candidate, and R is finite.

Definition 3.8 If Q = (I, (Σt : t ∈ I),R) is a pre-quasimodel for ϕ, and x ≤ y in I,
write Q ¹ [x, y] for

(

[x, y], (Σt : t ∈ [x, y]), {r ¹ [x, y] : r ∈ R}
)

.

(Recall that we identify the interval [x, y] with the induced suborder on it.)

Lemma 3.9 Q ¹ [x, y] is a pre-quasimodel. If Q is finitary then so is Q ¹ [x, y].

Proof. Straightforward. 2

The following result from [12] will be the starting point for our complexity results.

Fact 3.10 ([12, theorem 3]) Let I be any linear order. Then ϕ has a model with
flow of time I (and finite domain) iff there is a (respectively, finitary) quasimodel for
ϕ over I.

The proof of ‘⇒’ is straightforward: each element a of the domain D of a model M of
ϕ with flow of time T gives rise to a full run ra given by ra(t) = {ψ ∈ sub

x
ϕ : M, t |=

ψ(a)}, and we let Σt = {ra(t) : a ∈ D}. To prove the converse, given a quasimodel
Q = (I, (Σt : t ∈ I),R) of ϕ, we first take a model Mt |= αΣt

for each t ∈ T . We make a
suitable number of copies of runs in R, resulting in a multiset D, say; this is arranged to
be finite if Q is finitary. Then, in a ‘model-theoretic’ step which can be carried through
for the packed fragment even though equality is present, we manipulate the Mt so that
they all have domain D, and for all r ∈ D, t ∈ I, and ψ ∈ sub

x
ϕ, we have Mt |= ψ(r)

iff ψ ∈ r(t). We then form the temporal structure M = (I, D, (Mt : t ∈ I)), and show
by induction on subformulas ψ of ϕ that for any assignment h of the variables into D,
and any t ∈ I, M, t, h |= ψ iff Mt, h |= ψ. It follows that ϕ is satisfiable in M.

3.3 Mosaics

We will use ‘mosaics’ to describe runs. The following definition is based on one in
[24]. For convenience, we have retained only the conditions we need here, and we have
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dualised the notion of ‘cover’ from [24] by couching it in terms of satisfiability rather
than validity.

Definition 3.11 A mosaic (for ϕ) is a triple (A, B, C), where A and C are types for
ϕ, B ⊆ sub

x
ϕ, and:

(1) For each formula U(α, β) ∈ sub
x
ϕ with ¬β /∈ B, we have

U(α, β) ∈ A ⇐⇒ (α ∈ B ∪ C or β, U(α, β) ∈ C).

Note that all formulas mentioned are in sub
x
ϕ.

(2) A mirror image condition for Since.
(3) For each constant c ∈ L, the conditions x = c ∈ A, x = c ∈ B, x 6= c /∈ B, and

x = c ∈ C are equivalent.

For a mosaic m = (A, B, C) we write st(m) = A, end(m) = C and cov(m) = B (these
stand for start, end, cover).

The motivation for this definition is that runs can be represented by mosaics.

Definition 3.12 Let I be a linear order with endpoints x < y and with at least 3
points, and let r : I → T (ϕ). Define

mos(r) =
(

r(x),
⋃

z∈(x,y)

r(z), r(y)
)

.

Lemma 3.13 If r is a run over I, then m = mos(r) is a mosaic.

Proof. Let U(α, β) ∈ sub
x
ϕ, and assume that ¬β /∈ cov(m) =

⋃

z∈(x,y) r(z). As the r(z)
are types, β or ¬β is in each of them, so β ∈

⋂

z∈(x,y) r(z). Hence, as r is a run, we have
U(α, β) ∈ r(x) iff there is z ∈ I with z > x and α ∈ r(z), or β, U(α, β) ∈ r(y). This is
iff α ∈ cov(m) ∪ end(m) or β, U(α, β) ∈ end(m). The checks for Since are similar. The
checks for constants are easy and left to the reader. 2

There is a partial converse to this:

Lemma 3.14 If r : I → T (ϕ) and mos(r) is a mosaic then r satisfies condition 1 of
definition 3.6.

Proof. Let c be a constant in L, and let x, y ∈ I. Write m for mos(r). If x = c ∈ r(x),
then x = c ∈ st(m) ∪ cov(m) ∪ end(m). Now m is a mosaic, so this implies that
x 6= c /∈ st(m) ∪ cov(m) ∪ end(m) ⊇ r(y); and this implies that x = c ∈ r(y). 2
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3.4 Bags of mosaics

Just as mosaics will be used to describe runs, so sets of mosaics, or ‘bags’, will be used
to describe pre-quasimodels, which are at heart sets of runs. As a bag is a finite object,
this will complete the ‘condensation’ process discussed at the start of the section.

Definition 3.15 A bag (respectively, finitary bag) (for ϕ) is a set µ of mosaics such that
the sets st(µ) = {st(m) : m ∈ µ} and end(µ) = {end(m) : m ∈ µ} are (respectively,
finitely) realisable state candidates.

Definition 3.16 Let I be a linear order with endpoints x < y and with at least 3
points. Let Q = (I, (Σt : t ∈ I),R) be a pre-quasimodel over I. Define bag(Q) =
{mos(r) : r ∈ R}.

Lemma 3.17 For I,Q as above, bag(Q) is a bag. If Q is finitary then bag(Q) is a
finitary bag.

Proof. Trivial, by lemma 3.13 and since st(bag(Q)) = {st(m) : m ∈ bag(Q)} =
{st(mos(r)) : r ∈ R} = {r(x) : r ∈ R} = Σx, a (finitely) realisable state candidate,
and similarly for end, with y. 2

We now show how to tell from its bag whether a pre-quasimodel is a quasimodel.

Definition 3.18 A bag µ is said to be perfect if

(1) there is no formula U(α, β) ∈ sub
x
ϕ with U(α, β) ∈

⋃
end(µ),

(2) there is no formula S(α, β) ∈ sub
x
ϕ with S(α, β) ∈

⋃
st(µ),

(3) ϕ ∈
⋃

m∈µ

(

st(m) ∪ cov(m) ∪ end(m)
)

.

Lemma 3.19 Let Q = (I, (Σt : t ∈ I),R) be a pre-quasimodel for ϕ, where I has
endpoints and at least three points. Then bag(Q) is perfect iff Q is a quasimodel for ϕ.

Proof. Suppose that the endpoints of I are x, y with x < y. We have end(bag(Q)) =
{r(y) : r ∈ R}. Assume first that bag(Q) is perfect. Let U(α, β) ∈ sub

x
ϕ. So U(α, β) /∈

r(y) for all r ∈ R. As Q is a pre-quasimodel, if r ∈ R, t ∈ I and U(α, β) ∈ r(t),
there must be u > t in I with β ∈ r(u) and α ∈ r(v) for all v ∈ (t, u). The case of
Since is similar. This shows that each r ∈ R is a full run. Now take m ∈ bag(Q) with
ϕ ∈ st(m)∪ cov(m)∪ end(m), and r ∈ R with mos(r) = m. So ϕ ∈ r(t) for some t ∈ I.
So Q is a quasimodel for ϕ.

Conversely, assume that Q is a quasimodel for ϕ, and suppose for contradiction that
there is some U(α, β) ∈

⋃
end(bag(Q)), so U(α, β) ∈ r(y) for some r ∈ R. As r is a full
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run, there is u ∈ I with u > y, α ∈ r(u), etc., which is a contradiction. Similarly, we can
show that there is no formula S(α, β) ∈

⋃
st(bag(Q)). Moreover, as Q is a quasimodel

for ϕ, we have ϕ ∈ r(u) for some r ∈ R and u ∈ I. Let m = mos(r) ∈ bag(Q). Then
ϕ ∈

⋃

t∈I r(t) = st(m) ∪ end(m) ∪ cov(m). So bag(Q) is perfect. 2

3.5 Numbers and sizes

We will need bounds on the number of types, mosaics, and bags, and the space they
take up. The following is clear:

Lemma 3.20 Let |ϕ| = k, say.

(1) |sub
x
ϕ| ≤ 2k + 2 ≤ 4k (since k ≥ 1).

(2) The number |T (ϕ)| of types for ϕ is at most \(ϕ) = 22k (since no type contains a
formula and its negation).

(3) The number of mosaics is at most ](ϕ) = \(ϕ)3 = 28k.
(4) Any formula in sub

x
ϕ takes at most space k2 to write (see the comments following

definition 2.2), and a mosaic involves at most 8k such formulas. So any mosaic
can be written in space 8k3.

(5) Any bag can therefore be written in space 28k · 8k3.
(6) The number of bags is at most [(ϕ) = 228k

(this bounds the number of sets of
mosaics).

3.6 Sums

Both our proofs will work by decomposing pre-quasimodels into ‘sums’ of smaller ones.
So we have to introduce sums of mosaics and bags.

Definition 3.21 For mosaics m, ni for i ≤ k for some k < ω, we write m =
∑

i≤k ni if

(1) st(m) = st(n0), and end(m) = end(nk),
(2) st(ni+1) = end(ni) for each i < k,
(3) cov(m) = cov(n0) ∪

⋃

1≤i<k(st(ni) ∪ cov(ni) ∪ end(ni)) ∪ cov(nk).

Note that m is unique (if it exists). So we can write
∑

i≤k ni for m, if condition 2 holds.

Definition 3.22 For bags µ, νi for i ≤ k for some k < ω, write µ ≡
∑

i≤k νi if

(1) for all m ∈ µ there are ni ∈ νi (for each i ≤ k) with m =
∑

i≤k ni,
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(2) for all i ≤ k and ni ∈ νi, there are nj ∈ νj for each j ≤ k with j 6= i, and m ∈ µ,
such that m =

∑

j≤k nj.

We write ‘≡’ rather than ‘=’ because there can be several (or no) µ with µ ≡
∑

i≤k νi.
Of course, if k = 1 we write m = n0 + n1 and µ ≡ ν0 + ν1.

Lemma 3.23 Suppose that µ, ν0, . . . , νk are bags, and µ ≡
∑

i≤k νi. Then st(µ) =
st(ν0), end(µ) = end(νk), and end(νi) = st(νi+1) for each i < k.

Proof. Purely routine applications of the definitions. 2

4 Complexity of monodic fragments over linear time

In this section, we show that the satisfiability problem for the packed monodic fragment
over dense linear time with endpoints (and hence over several other kinds of linear flow
of time) is in 2Exptime. The method is an adaptation of [25, theorem 3]. The rough
idea is as follows. In any full run r in a quasimodel, all Until-formulas U(α, β) ∈ sub

x
ϕ

are ‘witnessed’. Whenever such a formula appears in a type r(t), there will be a ‘witness’
u > t with α ∈ r(u) and β ∈ r(v) for all v between t and u. All Since-formulas in sub

x
ϕ

are similarly witnessed. So a mosaic representing such a run should be decomposable
into smaller mosaics whose endpoints witness all Until and Since formulas, and all
formulas in its cover. Taking a run for each mosaic in the bag describing the quasimodel
suggests that the bag itself should also be decomposable into smaller ‘witnessing bags’
which in turn should be decomposable. We will show that there is a quasimodel for ϕ
iff there is a perfect bag that can be hereditarily decomposed in this way. This criterion
can be decided in 2Exptime.

Recall that ϕ is a fixed monodic packed sentence; all pre-quasimodels, types, mosaics,
bags, and so on, are for ϕ.

4.1 Defects and full decompositions

Definition 4.1 Let m = (A, B, C) be a mosaic. A defect in m is either

(1) (cover defect) a formula in B,
(2) (future defect) a formula U(α, β) ∈ A with either

(a) ¬β ∈ B, or
(b) α, β /∈ C, or
(c) α, U(α, β) /∈ C.
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(3) (past defect) the mirror image of condition 2.

Definition 4.2 Let k < ω.

(1) For mosaics m, ni for i ≤ k, we write m
full
=

∑

i≤k ni (full decomposition) if m =
∑

i≤k ni and
(a) for each cover defect β ∈ cov(m), there is i < k with β ∈ end(ni),
(b) for each future defect U(α, β) ∈ st(m), there is i < k with α ∈ end(ni) and

β ∈ end(nj) for all j < i and ¬β /∈ cov(nj) for all j ≤ i.
(c) a mirror image condition for past defects.

(2) For bags µ, νi for i ≤ k, we write µ
full
≡

∑

i≤k νi, and say that 〈ν0, . . . , νk〉 is a full
decomposition of µ, if

(a) for all m ∈ µ there are ni ∈ νi (each i ≤ k) with m
full
=

∑

i≤k ni,
(b) for all i ≤ k and ni ∈ νi, there are nj ∈ νj for each j ≤ k with j 6= i, and

m ∈ µ, such that m =
∑

j≤k nj. (We do not require
full
= here.)

Obviously, if µ
full
≡

∑

i≤k νi then µ ≡
∑

i≤k νi.

4.2 Decomposition trees

By a tree, we will mean a non-empty partially-ordered set (T, <) such that for each
‘node’ t ∈ T , the set {u ∈ T : u < t} is well-ordered. We write ht(t) (the height of t)
for the order-type of this set; it is a unique ordinal. The height ht(T ) of T is the least
ordinal α such that no node of T has height α. We will only consider rooted trees —
those with a unique node (the root) of height 0. We often write simply T for (T, <).
A successor of a node t is a node u > t; such a u is a child of t if ht(u) = ht(t)+1. Two
distinct nodes are siblings if they are both children of the same node. A leaf is a node
with no children. A tree is finitely branching if every node has finitely many children.

We will consider trees T of height ω, endowed with a binary relation ≺ such that for
any t ∈ T , the restriction of ≺ to the children of t (if any) is a linear ordering. We
extend ≺ ‘lexicographically’ to the whole of T by: for any t, u ∈ T , let t ≺ u iff t < u
or there are siblings t′, u′ with t′ ≤ t, u′ ≤ u, and t′ ≺ u′. It can be checked that this
defines a linear order, called here an earlier-later ordering, on T .

Definition 4.3 Let µ0 be a bag. A decomposition tree for µ0 is a pair (T, µ), where
T is a finitely branching rooted tree of height ω such that each node has at least two
children, endowed with a earlier-later ordering ≺ as above, and µ is a map associating
a bag µ(t) with each node t ∈ T , satisfying
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(1) µ(t0) = µ0, where t0 is the root of T ,
(2) for each t ∈ T , if the children of t are t0, . . . , tk with t0 ≺ · · · ≺ tk, then we have

µ(t)
full
≡

∑

i≤k µ(ti).

We often write T for (T, µ).

Lemma 4.4 Let Q = (I, (Σt : t ∈ I),R) be a pre-quasimodel for ϕ, where I is a dense
order with endpoints. Then bag(Q) has a decomposition tree, each node of which has
at most 4|ϕ| · 28|ϕ| children.

Proof. Assume that the endpoints of I are x, y, with x < y. We build a decomposition
tree (T, µ) for bag(Q) by induction, so that condition 2 of definition 4.3 holds for each
t ∈ T .

The nodes of T will be pairs of elements of I. We define the root of T to be 〈x, y〉, and
set µ(〈x, y〉) = bag(Q).

Suppose we have built the nodes of T of height ≤ n, for some n ≥ 0, and defined µ
on them to satisfy condition 2 of definition 4.3. Pick a node t of height n, and assume
inductively that t = 〈u, v〉, where u < v in I, and that µ(t) = bag(Q ¹ [u, v]). (By
lemma 3.9, Q ¹ [u, v] is a pre-quasimodel.) For each mosaic m ∈ µ(t), pick r ∈ R
with mos(r ¹ [u, v]) = m. Then, for each cover defect β ∈ cov(m) =

⋃

z∈(u,v) r(z), pick
a single z ∈ (u, v) with β ∈ r(z). Similarly, for each future defect U(α, β) of m, pick
z ∈ (u, v) with α ∈ r(z) and β ∈

⋂

t∈(u,z) r(t). The definitions of ‘run’ and ‘defect’
(definitions 3.6 and 4.1) allow us to do this. Pick similar witnesses for past defects. Do
this for all m ∈ µ(t).

Let the chosen points of (u, v) be d1, . . . , dk with u = d0 < d1 < · · · < dk+1 = v. As I
is dense, there are cover defects in each mos(r ¹ [u, v]), so k ≥ 1. To bound k above,
we observe that there are at most ](ϕ) = 28|ϕ| mosaics in µ(t), and we added at most
one point di for each defect in each of them. Given a mosaic m, each formula in sub

x
ϕ

could be a cover defect of m, but for any constant c, x = c and x 6= c cannot both
be cover defects. So there are at most 3|ϕ| cover defects of m. Each formula of the
form U(α, β) or S(α, β) in sub

x
ϕ could additionally be a future or a past defect of m,

respectively, and there are < |ϕ| of these. Hence, the number of defects of m is < 4|ϕ|.
So by lemma 3.20, k < 4|ϕ| · 28|ϕ|.

Define νi = bag(Q ¹ [di, di+1]) for each i ≤ k. By lemma 3.9, Q ¹ [di, di+1] is a pre-

quasimodel, so by lemma 3.17, νi is a bag. We claim that µ(t)
full
≡

∑

i≤k νi. Let m ∈ µ(t).
Suppose r ∈ R was the run we chose with mos(r ¹ [u, v]) = m. For each i ≤ k let
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ni = mos(r ¹ [di, di+1]) ∈ νi. Since we picked enough witnesses for r, we have

m = mos(r)
full
=

∑

i≤k

mos(r ¹ [di, di+1]) =
∑

i≤k

ni.

Conversely, for each i ≤ k and ni ∈ νi, there is r ∈ R with mos(r ¹ [di, di+1]) = ni. Let
nj = mos(r ¹ [dj, dj+1]) ∈ νj for each j ≤ k with j 6= i, and m = mos(r ¹ [u, v]) ∈ µ(t).

Then m =
∑

j≤k nj (we may not have
full
= here). Hence, µ(t)

full
≡

∑

i≤k νi, as claimed.

So we add to T the children t0 ≺ · · · ≺ tk of t with ti = 〈di, di+1〉 for each i ≤ k. This
is at least two and at most 4|ϕ| · 28|ϕ| children. We define µ(ti) = νi for each i. We have

µ(t)
full
≡

∑

i≤k µ(ti). Doing this for all nodes t of height n in T completes the induction.
The result is a decomposition tree T for bag(Q) with the required features. 2

Lemma 4.5 Any bag with a decomposition tree is of the form bag(Q) for some pre-
quasimodel Q over a dense linear order with endpoints.

Proof. Let (T, µ) be a decomposition tree for the bag µ0. We use it to build a pre-
quasimodel Q = (I, (Σt : t ∈ I),R) with bag(Q) = µ0. First we define the linear order
I. For each t ∈ T , we will associate rational numbers t− and t+, with t− < t+. With the
root, we associate 0, 1. Inductively, if we have associated t−, t+ with t, and the children
of t are t0, . . . , tk, say, with t0 ≺ · · · ≺ tk, we choose rationals t− = q0 < q1 < · · · <
qk+1 = t+ and set t−i = qi and t+i = qi+1 for each i ≤ k. We let I be the suborder of
(Q, <) consisting of all rationals associated with nodes of T . Clearly, I is dense and
has endpoints 0,1 — indeed, we could easily arrange that I = [0, 1] ∩ Q. Notice above
that t− = t−0 and t+ = t+k . Hence, each point in I associated with a node t ∈ T is also
associated with successors of t of all heights > ht(t).

For t ∈ T , we define Σt− = st(µ(t)) and Σt+ = end(µ(t)). Lemma 3.23 shows that this
determines a well-defined set Σx for each x ∈ I; it is a realisable state candidate since
each µ(t) is a bag.

It remains to define the set R of runs of Q.

Notation For l < ω let T (l) denote the (non-empty) set of nodes of T of height l, and
suppose that T (l) = {tl0, . . . , t

l
h(l)}, where tl0 ≺ · · · ≺ tlh(l). For each i ≤ h(l), we suppose

that the children of tli in T are tl+1
i−

≺ · · · ≺ tl+1
i+

, where 0 ≤ i− < i+ ≤ h(l + 1).

A walk along T (l) is a sequence 〈m0, . . . , mh(l)〉 ∈
∏

i≤h(l) µ(tli) such that end(mi) =
st(mi+1) for all i < h(l), and

∑

i≤h(l) mi ∈ µ0. For each l < ω, we will define a set Wl of
walks along T (l) so that ‘every mosaic in every bag from T (l) is hit by a walk in Wl’
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— formally, that

{mi : 〈m0, . . . , mh(l)〉 ∈ Wl} = µ(tli) for every i ≤ h(l). (4.1)

We define W0 as simply the set {〈m〉 : m ∈ µ0}. Let l < ω and assume inductively that
Wl is defined, satisfying (4.1). We obtain Wl+1 as follows.

(1) Fully decompose each walk in Wl. Let w = 〈m0, . . . , mh(l)〉 ∈ Wl. For each i ≤ h(l),

choose a mosaic nj ∈ µ(tl+1
j ) for each j with i− ≤ j ≤ i+, so that mi

full
=

∑

j nj.

This is possible because T is a decomposition tree, so µ(tli)
full
≡

∑

j µ(tl+1
j ). Then

∑

s≤h(l+1) ns =
∑

i≤h(l) mi ∈ µ0, so w′ = 〈n0, . . . , nh(l+1)〉 is a walk along T (l + 1).
Such a w′ is called a full decomposition of w. We put it into Wl+1. We do this for
each w ∈ Wl.

(2) Ensure that every mosaic in every bag from T (l+1) is hit by a walk. Let j ≤ h(l+1)
and let n be any mosaic in µ(tl+1

j ). Assume that tl+1
j is a child of tli, say, so that

i− ≤ j ≤ i+. Since µ(tli)
full
≡

∑

i−≤s≤i+ µ(tl+1
s ), we may choose mosaics ns ∈ µ(tl+1

s )
for each s with i− ≤ s ≤ i+, such that nj = n and m =

∑

i−≤s≤i+ ns ∈ µ(tli).
By the inductive hypothesis, there is 〈m0, . . . , mh(l)〉 ∈ Wl such that mi = m. As
T is a decomposition tree, for each k ≤ h(l) with k 6= i, we may choose mosaics
ns ∈ µ(tl+1

s ) for each k− ≤ s ≤ k+ with mk =
∑

k−≤s≤k+
ns. Then

∑

s≤h(l+1) ns =
∑

s≤h(l) ms ∈ µ0, so 〈n0, . . . , nh(l+1)〉 is a walk along T (l + 1). Put it into Wl+1. We
have nj = n as required. Doing this for each mosaic n ∈ µ(t) for each t ∈ T (l + 1)
completes the construction of Wl+1 and preserves (4.1).

So we have defined a set Wl of walks along T (l) for each l < ω. Let w = 〈m0, . . . , mh(l)〉 ∈
Wl. Suppose j ≤ h(l) and that the rationals x < y are associated with tlj. Then we define
w[x] = st(mj) ∈ Σx and w[y] = end(mj) ∈ Σy. If j < h(l) then end(mj) = st(mj+1), so
this is well-defined.

A run sequence is a sequence ρ = 〈wl, wl+1, . . .〉 for some l < ω, where for each i ≥ l,
wi ∈ Wi and wi+1 is a full decomposition of wi. For such a ρ, we define rρ ∈

∏

x∈I Σx

by letting rρ(x) = wi[x] for any i ≥ l such that x is associated with a node in T (i).
Since x is associated with a node of T (l) for all but finitely many l < ω, lemma 3.23
can be used to check that rρ is thereby well-defined and total. It also follows that if
ρ′ = 〈wl+1, wl+2, . . .〉 then rρ = rρ′ .

Claim. Let ρ = 〈wl0 , wl0+1, . . .〉 be a run sequence. Then rρ is a run on I.

Proof of claim. Because for each l ≥ l0, wl is fully decomposed by wl+1, it follows
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that if wl = 〈m0, . . . , mh(l)〉 then for each i ≤ j ≤ h(l) we have

mos(rρ ¹ [(tli)
−, (tlj)

+]) =
∑

i≤k≤j

mk. (4.2)

To see this, note first that if (tli)
− < z < (tlj)

+ then any formula in rρ(z) is in the cover
of

∑

i≤k≤j mk. Conversely, any formula in this cover either is in the start or end of, or is
a cover defect of, some mk. In either case, it is in the start or end of a mosaic refining mk

in the full decomposition wl+1 of wl, and hence is in rρ(z) for some z ∈ ((tli)
−, (tlj)

+).

Now we prove the claim. We require that condition 2 of definition 3.6 holds: for each
x ∈ I and U(α, β) ∈ sub

x
ϕ, we have U(α, β) ∈ rρ(x) iff:

(a) there is v ∈ I with x < v, α ∈ rρ(v), and β ∈ rρ(z) for all z ∈ I with x < z < v, or
(b) U(α, β) ∈ rρ(1), and β ∈ rρ(z) for all z ∈ I with z > x.

Let x ∈ I. If x = 1, there is nothing to prove. Assume x < 1. We may choose tli ∈ T (l)
for some l ≥ l0 (where i ≤ h(l)) such that x is the smaller of the two points of I
associated with tli. Let wl = 〈m0, . . . , mh(l)〉. So rρ(x) = st(mi).

By (4.2), for any j ≤ h(l), if β ∈ cov(mj) then β ∈ rρ(z) for some z ∈ I lying strictly
between the points associated with tlj.

Assume that U(α, β) ∈ rρ(x). Take the greatest integer j with i ≤ j ≤ h(l) and such
that U(α, β) ∈ st(mj) and ¬β /∈ cov(mk) ∪ end(mk) for all i ≤ k < j. (Since i has this
property, the set of such j is non-empty.)

• If U(α, β) ∈ end(mj) and ¬β /∈ cov(mj)∪ end(mj), then by maximality of j we must
have j = h(l), and it follows from (4.2) that ¬β /∈ cov(

∑

i≤k≤j mk) =
⋃

x<y<1 r(y),
so (b) above holds.

• If α ∈ end(mj) and ¬β /∈ cov(mj), then using (4.2), we see that (a) holds with ‘v’ as
(tlj)

+.
• Otherwise, U(α, β) is a future defect in mj. Now wl+1 fully decomposes wl. So if

wl+1 = 〈n0, . . . , nh(l+1)〉, then using the earlier notation, there is j− ≤ k < j+ with
α ∈ end(nk), β ∈ end(ns) for all j− ≤ s < k, and ¬β /∈ cov(ns) for all j− ≤ s ≤ k.
Let v be the greater point associated with tl+1

k . Then α ∈ rρ(v), and using (4.2) we
see that β ∈ rρ(z) for all z ∈ I with x < z < v, as required.

Conversely, if (a) or (b) holds, then by increasing l if need be, we may assume that the
‘v’ in (a), if applicable, is associated with a node in T (l) — say, v = (tlj)

+, and x = (tli)
−,

where i ≤ j ≤ h(l). If (b) holds, take v = 1, j = h(l), and again assume x = (tli)
−.

Let wl = 〈m0, . . . , mh(l)〉. By (4.2), ¬β /∈ cov(mj) and either α ∈ end(mj) (if (a) holds)
or β, U(α, β) ∈ end(mj) (if (b) holds). As mj is a mosaic, U(α, β) ∈ st(mj). If j > i
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then U(α, β) ∈ end(mj−1), and by (4.2), β ∈ end(mj−1) and ¬β /∈ cov(mj−1); so as
mj−1 is a mosaic, U(α, β) ∈ st(mj−1). Continuing inductively in this way, we obtain
U(α, β) ∈ st(mi) = rρ(x), as required.

The check for Since is similar. Finally let c ∈ L be a constant. To show that x =
c ∈ rρ(t) iff x = c ∈ rρ(u) for all t, u ∈ I, it suffices to show that for each l ≥ l0,
if wl = 〈m0, . . . , mh(l)〉, then x = c ∈ st(mi) iff x = c ∈ end(mi) for each i ≤ h(l).
But this is immediate since mi is a mosaic. (Alternatively, we could apply (4.2) and
lemma 3.14.) This proves the claim.

We set R = {rρ : ρ a run sequence}.

Claim. Q = (I, (Σx : x ∈ I),R) is a pre-quasimodel with bag(Q) = µ0.

Proof of claim. For arbitrary x ∈ I, it is required that Σx = {r(x) : r ∈ R}. Take
t ∈ T (l) (for some l < ω) such that x is associated with t, and take a type p ∈ Σx.
We have p = st(m) or p = end(m) for some m ∈ µ(t). Now m is hit by a walk in Wl:
there is w = 〈m0, . . . , mh(l)〉 ∈ Wl and i ≤ h(l) with mi = m. As each walk in each Wl′

is fully decomposed in Wl′+1, there is a run sequence ρ = 〈wl, wl+1, . . .〉 with wl = w.
Then rρ ∈ R and rρ(x) = p. Since p was arbitrary, we obtain Σx ⊆ {r(x) : r ∈ R}, and
the converse inclusion is trivial.

A similar argument shows that for each m ∈ µ0, there is a run sequence ρ = 〈w0, w1, . . .〉
with w0 = 〈m〉. By (4.2), mos(rρ) = m. Conversely, if ρ = 〈wl, wl+1, . . .〉 is a run
sequence with wl = 〈m0, . . . , mh(l)〉, say, then (4.2) and the definition of ‘walk’ yields
mos(rρ) =

∑

i≤h(l) mi ∈ µ0. It is now plain that bag(Q) = µ0. 2

Corollary 4.6 The following are equivalent:

(1) ϕ has a model whose flow of time is linear, dense, and with endpoints,
(2) there is a set B of bags such that:

(a) some bag µ0 ∈ B is perfect,

(b) for each µ ∈ B there are k ≤ 4|ϕ| · 28|ϕ| and ν0, . . . , νk ∈ B with µ
full
≡

∑

i≤k νi.

Proof. By fact 3.10, ϕ has a model with flow of time a dense linear order I with
endpoints, iff there is a quasimodel for ϕ over I. By lemma 3.19, this is iff there is a
pre-quasimodel Q over I with bag(Q) perfect. By lemmas 4.4 and 4.5, this is iff there
are a perfect bag µ0, and a decomposition tree T for µ0 with each node having at most
4|ϕ| · 28|ϕ| children.
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If there are such T and µ0, then B = {µ(t) : t ∈ T} satisfies the conditions of part 2
of the corollary. But given B, µ0 satisfying these conditions, we may easily construct a
decomposition tree for µ0 with the stated bound on numbers of children by induction
on heights of nodes, using bags from B to label nodes. 2

Theorem 4.7 The problem of whether a monodic packed sentence is satisfiable in some
temporal structure (with arbitrary first-order domain and) with a dense linear flow of
time with endpoints is 2Exptime-complete.

Proof. By proposition 2.5, the problem is 2Exptime-hard. So it remains only to de-
termine in 2Exptime whether ϕ is satisfiable over dense linear time with endpoints. To
do this, we will specify an algorithm that checks the criterion provided by corollary 4.6,
using an approach originating in [22] (we used it already in proposition 3.5).

The algorithm first constructs the set B0 of all bags, by enumerating all sets of mosaics
and placing each one in B0 iff its start and end are realisable state candidates; by
proposition 3.5, whether a set of types for ϕ is a realisable state candidate can be
tested in 2Exptime in |ϕ|. There are at most [(ϕ) bags (see lemma 3.20), so the
construction of B0 takes 2Exptime.

Now the algorithm loops to construct a chain B0 ⊇ B1 ⊇ · · · . Let n ≥ 0 and assume that
Bn has been constructed. For each µ ∈ Bn the algorithm searches for bags ν0, . . . , νk ∈

Bn for some k ≤ 4|ϕ| · 28|ϕ|, with µ
full
≡

∑

i≤k νi. If such bags can be found, the algorithm
includes µ in Bn+1; otherwise, µ is not included. There are at most double-exponentially
many sequences ν0, . . . , νk to check, for each of at most double-exponentially many bags

µ in Bn; and given ν0, . . . , νk, whether or not µ
full
≡

∑

i≤k νi can easily be determined in
2Exptime. So the construction of Bn+1 from Bn takes 2Exptime.

Once Bn+1 is constructed, the algorithm checks (in 2Exptime) whether there is a
perfect bag in Bn+1. If not, the algorithm terminates with result ‘ϕ is unsatisfiable’.
Otherwise, if Bn+1 = Bn, the algorithm terminates with result ‘ϕ is satisfiable’.
Otherwise, the next iteration begins. The number of iterations is therefore bounded
by |B0|, and so is at most double exponential. This algorithm therefore terminates in
2Exptime.

If the algorithm claims that ϕ is satisfiable, then clearly the final Bn it constructed
satisfies the conditions of corollary 4.6. Conversely, if there is a set B of bags as in
the corollary, then a simple induction shows that B ⊆ Bn for all n. The algorithm can
therefore never claim that ϕ is unsatisfiable, and hence it will eventually state that ϕ
is satisfiable. So the algorithm is correct. 2
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4.3 Corollaries

We can easily use theorem 4.7 to obtain complexity results over additional classes of
flows of time.

Theorem 4.8 The satisfiability problem for monodic packed sentences in temporal
structures with arbitrary first-order domains, over each of the following (classes of)
flows of time, is 2Exptime-complete.

(1) All linear flows.
(2) Discrete linear flows — those satisfying ∀x(∃y(x < y) → ∃z(x < z ∧ ¬∃t(x < t <

z))) and its mirror image obtained by replacing ‘<’ by ‘>’.
(3) Dense linear flows.
(4) More generally, any class C such that for some propositional temporal formula ξ

written with Until and Since, C is the class of linear flows in which ξ is satisfiable.
(5) The rationals, (Q, <).

Proof. By proposition 2.5, we already have 2Exptime-hardness, so we only need prove
that the above problems are in 2Exptime. First, we show that all the problems reduce
to problems of type 1. Let ϕ be a monodic packed sentence. Clearly, ϕ is satisfiable in
discrete time iff ϕ ∧ 2((U(>,>) → U(>,⊥)) ∧ (S(>,>) → S(>,⊥))) is satisfiable in
linear time, and satisfiable in dense time iff ϕ ∧ 2(U(>,>) → ¬U(>,⊥)) is satisfiable
in linear time. We next reduce each type 4 problem to linear satisfiability. Suppose that
ξ is a propositional formula and that C is the class of all linear flows of time in which
ξ is satisfiable. Given ϕ, we may rename its non-logical symbols so that none of them
occur in ξ. It is now clear that ϕ is satisfiable over a flow of time in C iff ϕ ∧ 3ξ is
satisfiable over linear time.

It remains to deal with case 5: (Q, <). It is not hard to see that ϕ is satisfiable over
Q iff it is satisfiable in a dense linear flow of time without endpoints. This can be
shown using the downward Löwenheim–Skolem theorem (see, e.g., [10]); similar results
for monodic fragments were shown in [15, theorem 15] and [12, theorem 1]. But ϕ is
satisfiable over such a flow iff ϕ ∧ 2(U(>,>) ∧ S(>,>) ∧ ¬U(>,⊥)) is satisfiable over
linear time.

So all the problems reduce (in logarithmic space) to case 1. The theorem is therefore
established if we show that satisfiability over linear time is decidable in 2Exptime. Let
ϕ be a monodic packed sentence, and let q be a propositional atom not occurring in
ϕ. Define the temporal relativisation ϕq of ϕ to q by induction on ϕ. If ϕ is atomic we
let ϕq = ϕ. We let (ϕ ∧ ψ)q = ϕq ∧ ψq, (¬ϕ)q = ¬ϕq, and (∃x̄(γ ∧ ϕ))q = ∃x̄(γ ∧ ϕq);
the main cases are U(ϕ, ψ)q = U(q ∧ ϕq, q → ψq), and S(ϕ, ψ)q = S(q ∧ ϕq, q → ψq). It
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should be clear that for any temporal structure M = ((T, <), D, (Mt : t ∈ T )), if (I, <)
is the suborder of (T, <) with I = {t ∈ T : Mt |= q}, then for any u ∈ I,

M, u |= ϕq ⇐⇒ ((I, <), D, (Mt : t ∈ I)), u |= ϕ. (4.3)

Finally we let

ϕδ = (q ∧ ϕq) ∧ U(>,>)
︸ ︷︷ ︸

≥2 elements

∧2¬U(>,⊥)
︸ ︷︷ ︸

dense

∧3¬U(>,>) ∧ 3¬S(>,>)
︸ ︷︷ ︸

with endpoints

.

Clearly, ϕδ is in the monodic packed fragment and is constructible in logarithmic space
in the size of ϕ. It is routine to check, using (4.3), that a sentence ϕ is satisfiable over
linear time iff ϕδ has a model with dense flow of time with distinct endpoints. So by
theorem 4.7, we may decide in 2Exptime whether ϕ is satisfiable over linear time. 2

We are unable to handle classes defined by arbitrary first-order sentences, as Until and
Since are not expressively complete over linear time (see [6] for background on this
notion). This could perhaps be remedied by adding the so-called Stavi connectives; we
conjecture that the methods described here generalise to handle these. When we come
to the real numbers, next, there will be no such limitation, as Until and Since are
expressively complete over this flow. We are unable to provide any complexity results
for temporal structures with flow of time (R, <) and with arbitrary domains — in
this context, it is an open problem whether any non-trivial monodic fragment is even
decidable.

5 Complexity with finite domains over real numbers

Now we show that the satisfiability problem for the monodic packed fragment over
(R, <) with finite first-order domains is also 2Exptime-complete. We can then show
by reduction that satisfiability with finite first-order domains over a wide range of linear
flows of time has the same complexity. We adapt the decision procedure for monodic
sentences over R with finite domains given in [15] (the 3-theories and characters of that
paper are replaced by mosaics and bags here). In §4, we decomposed a quasimodel or
perfect bag; now, we will construct a perfect bag from simpler bags. We will use three
kinds of construction operation: taking a sum of two bags, summing ω copies of a single
bag, either forwards or backwards, and ‘shuffling’ finitely many bags densely together,
with some realisable state candidates mixed in (this is how the construction must start
off). Our aim is to show that all and only the bags of pre-quasimodels of ϕ can be built
in this way. We prove by induction on the construction that any bag constructed like
this is the bag associated with a pre-quasimodel. Conversely, we use Ramsey’s theorem
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and properties of R in a way familiar from [3,20] to show that the bag of any pre-
quasimodel is constructible. It is then easy to write down a 2Exptime algorithm to
test whether there exists a perfect constructible bag, and hence a quasimodel of ϕ.

In this section, all bags, realisable state candidates, pre-quasimodels, etc., are implicitly
finitary, though sometimes we say ‘finitary’ explicitly, for emphasis. We do not use full
decompositions here. All intervals (e.g., [0,1]) are intervals in (R, <); recall that we also
write [0, 1] for the linear order ([0, 1], <).

Definition 5.1 A bag µ is said to be realisable if there is a finitary pre-quasimodel Q
for ϕ over [0, 1] with bag(Q) = µ.

5.1 Sums of bags

Recall from definition 3.22 the notion of µ ≡ ν0 + ν1, for bags µ, ν0, ν1.

Lemma 5.2 Suppose that µ, ν0, ν1 are bags with µ ≡ ν0+ν1. If ν0 and ν1 are realisable,
then so is µ.

Proof. For each i, let Qi = ([0, 1], (Σi
t : t ∈ [0, 1]),Ri) be a pre-quasimodel with

bag(Qi) = νi. We define Q = ([0, 1], (Σt : t ∈ [0, 1]),R) as follows. We let

Σt =







Σ0
2t, if t ∈ [0, 1/2],

Σ1
2t−1, if t ∈ [1/2, 1].

This is well-defined when t = 1/2, by lemma 3.23. For ri ∈ Ri (i = 0, 1) such that
r0(1) = r1(0), define r0 + r1 by

(r0 + r1)(t) =







r0(2t), if t ∈ [0, 1/2],

r1(2t − 1), if t ∈ [1/2, 1].

It is easily checked that r0 + r1 is a well-defined run in
∏

t∈[0,1] Σt and mos(r0 + r1) =
mos(r0) + mos(r1). Now we define R.

(1) Let m ∈ µ. There are n0 ∈ ν0 and n1 ∈ ν1 with m = n0 + n1. Pick ri ∈ Ri with
mos(ri) = ni (i = 0, 1), and put r0 + r1 into R. Note that mos(r0 + r1) = m. Do
this for each m ∈ µ.

(2) Let i < 2 and ri ∈ Ri. Let ni = mos(ri) ∈ νi. There is n1−i ∈ ν1−i with n0 +
n1 ∈ µ. Pick r1−i ∈ R1−i with mos(r1−i) = n1−i, and put r0 + r1 into R. Again,
mos(r0 + r1) ∈ µ. Do this for each i < 2 and each of the finitely many ri ∈ Ri

(recall that Qi is finitary).
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Clearly, R is finite. We check that Q is a finitary pre-quasimodel. Clearly, r(t) ∈ Σt

for all r ∈ R and t ∈ [0, 1]. Let t ∈ [0, 1] and p ∈ Σt. We require p = r(t) for some
r ∈ R. Suppose that t ∈ [0, 1/2]; the other case is similar. As p ∈ Σ0

2t and Q0 is a
pre-quasimodel, there is r0 ∈ R0 with r0(2t) = p. By the second clause defining R,
there is r1 ∈ R1 with r0 + r1 ∈ R; then (r0 + r1)(t) = r0(2t) = p as required.

Now we check that bag(Q) = µ. It is clear by construction that mos(r) ∈ µ for every
r ∈ R. Conversely, let m ∈ µ. By the first clause defining R, there are n0 ∈ ν0, n1 ∈ ν1

with m = n0 + n1, and ri ∈ Ri (i = 0, 1) with mos(ri) = ni and r0 + r1 ∈ R. Clearly,
mos(r) = m. 2

5.2 Iteration

Now we consider sums of ω copies of a fixed mosaic and bag.

Definition 5.3

(1) Let m, n be mosaics. We write m ≡ n · ω if st(m) = st(n) = end(n), cov(m) =
st(n) ∪ cov(n), and for each formula S(α, β) ∈ end(m), we have ¬β /∈ cov(m).

We write m ≡ n · ω∗ if the mirror image of this holds.
(2) Let µ, ν be bags. We write µ ≡ ν · ω if

(a) for each m ∈ µ there is n ∈ ν with m ≡ n · ω,
(b) for each n ∈ ν there is m ∈ µ with m ≡ n · ω.
We define µ ≡ ν · ω∗ similarly.

Observe that if µ ≡ ν · ω or µ ≡ ν · ω∗ then st(ν) = end(ν).

Lemma 5.4 Let µ, ν be bags with µ ≡ ν · ω. If ν is realisable then so is µ. The same
holds when µ ≡ ν · ω∗.

Proof. Let Q = ([0, 1], (Σt : t ∈ [0, 1]),R) be a pre-quasimodel with bag(Q) = ν.
We will define a pre-quasimodel Q∗ = ([0, 1], (Σ∗

t : t ∈ [0, 1]),R∗) with bag(Q∗) = µ.
Pick real numbers 0 = x0 < x1 < · · · < 1 with sup{xi : i < ω} = 1, and an order-
isomorphism θi : [xi, xi+1] → [0, 1] for each i < ω. For t ∈ [0, 1], define

Σ∗
t =







Σθi(t), if i < ω and t ∈ [xi, xi+1],

end(µ), if t = 1.

This is well-defined, since st(ν) = end(ν) and so Σ0 = Σ1; it is a realisable state
candidate since Q is a pre-quasimodel and µ a bag. For each m ∈ µ and n ∈ ν with
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m ≡ n · ω, and r ∈ R with mos(r) = n, define rm ∈
∏

t∈[0,1] Σ
∗
t by

rm(t) =







r(θi(t)), if i < ω and t ∈ [xi, xi+1],

end(m), if t = 1.

Since m ≡ n · ω, r(0) = st(m) = end(m) = r(1), so this is well-defined.

Claim. rm is a run and mos(rm) = m.

Proof of claim. We have rm(0) = r(0) = st(n) = st(m), and rm(1) = end(m). Also,
⋃

t∈(0,1) rm(t) =
⋃

t∈[0,1] r(t) = st(n) ∪ end(n) ∪ cov(n) = cov(m). Hence, mos(rm) = m.

Now we check that rm is a run. As m is a mosaic, we know by lemma 3.14 that for each
constant c ∈ L and each t, u ∈ [0, 1], x = c ∈ rm(t) iff x = c ∈ rm(u). Now let t ∈ [0, 1);
let i < ω be such that t ∈ [xi, xi+1). Let U(α, β) ∈ sub

x
ϕ.

First assume that U(α, β) ∈ rm(t) and that there is no u ∈ (t, 1] with α ∈ rm(u)
and β ∈ rm(v) for all v ∈ (t, u). So U(α, β) ∈ r(θi(t)), and there is no u ∈ (θi(t), 1]
with α ∈ r(u) and β ∈ r(v) for all v ∈ (t, u). As r is a run, we obtain U(α, β) ∈
r(1) = end(n) = st(n) = r(0) = st(m), and β ∈

⋂

v∈(θi(t),1] r(v). So U(α, β) ∈ rm(xi+1).
Now if there is u ∈ (xi+1, xi+2] with α ∈ rm(u) and β ∈ rm(v) for all v ∈ (xi+1, u),
then β ∈ rm(v) for all v ∈ (t, u) and we contradict our assumption on rm. So there
is no u ∈ (0, 1] with α ∈ r(u) and β ∈ r(v) for all v ∈ (0, u). As U(α, β) ∈ r(0)
and r is a run, we deduce that β,¬α ∈

⋂

v∈(0,1] r(v). As the r(v) are types, we obtain
α,¬β /∈

⋃

v∈(0,1] r(v) = cov(n) ∪ end(n) = cov(m).

Now m is a mosaic and U(α, β) ∈ st(m): so α ∈ cov(m)∪end(m) or β, U(α, β) ∈ end(m).
Since α /∈ cov(m), we get α ∈ end(m) = rm(1) or β, U(α, β) ∈ end(m) = rm(1), and
we already have β ∈ rm(u) for all u ∈ (t, 1). We are done.

Next, suppose that there is u ∈ (t, 1) with α ∈ rm(u) and β ∈ rm(v) for all v ∈ (t, u).
Let i ≤ j < ω with u ∈ (xj, xj+1]. If j = i we obtain U(α, β) ∈ rm(t) since r is a run.
If j > i, we obtain U(α, β) ∈ rm(xj) = r(1) and β ∈ r(v) for all v ∈ (θi(t), 1], so again
U(α, β) ∈ r(θi(t)) = rm(t) since r is a run.

Now assume that α ∈ rm(1) or β, U(α, β) ∈ rm(1), and β ∈ rm(v) for all v ∈ (t, 1).
Then ¬β /∈ cov(n)∪end(n) = cov(m). As rm(1) = end(m) and m is a mosaic, U(α, β) ∈
st(m) = r(0). Hence also, U(α, β) ∈ st(m) = end(n) = r(1). As clearly β ∈

⋂

v∈(0,1] r(v),
and r is a run, we obtain U(α, β) ∈

⋂

v∈(0,1) r(v). It follows that U(α, β) ∈ rm(t).

Now let t ∈ (0, 1] and S(α, β) ∈ sub
x
ϕ. Most checks are similar to the Until case,
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except when t = 1. We consider only this case. Assume that S(α, β) ∈ rm(1) = end(m).
Because m ≡ n · ω, we have ¬β /∈ cov(m). As m is a mosaic, α ∈ st(m) ∪ cov(m) =
st(n)∪cov(n), or β, S(α, β) ∈ st(m) = st(n). We know from ¬β /∈ cov(m) that β ∈ rm(t)
for all t < 1. So (∗) α ∈ rm(t) for some t ∈ [0, 1) with β ∈ rm(u) for all u ∈ (t, 1), or
S(α, β) ∈ rm(0) and β ∈ rm(u) for all u ∈ [0, 1), as required. Conversely, if (∗) holds,
then we easily obtain ¬β /∈ cov(m) and, because r is a run, β, S(α, β) ∈ r(1) = st(m).
So S(α, β) ∈ end(m) as m is a mosaic. This proves the claim.

Now we define R∗.

(1) For each m ∈ µ, pick n ∈ ν with m ≡ n · ω, and r ∈ R with mos(r) = n, and put
rm into R∗.

(2) For each r ∈ R, let n = mos(r) ∈ ν, pick m ∈ µ with m ≡ n · ω, and put rm

into R∗.

Clearly, R∗ is finite (since R is). It can be checked that Q∗ = ([0, 1], (Σ∗
t : t ∈ [0, 1]),R∗)

is a finitary pre-quasimodel with bag(Q∗) = µ. The proof when µ ≡ ν ·ω∗ is the mirror
image. 2

5.3 Shuffles

This is the most interesting step. We ‘shuffle’ finitely many mosaics and types, and
finitely many bags and realisable state candidates, densely together.

Definition 5.5 Let σ be a set of mosaics, let τ be a non-empty set of types for ϕ, and
let m be a mosaic. We write m ≡ sh(σ, τ) (‘shuffle’) if

(1) cov(m) =
⋃

τ ∪
⋃

n∈σ

(

st(n) ∪ cov(n) ∪ end(n)
)

,

(2) for each formula U(α, β) ∈ sub
x
ϕ, the following are equivalent:

(a) U(α, β) ∈ st(m),
(b) ¬β /∈ cov(m) and ¬U(α, β) /∈ cov(m),
(c) U(α, β) ∈

⋃
τ ∪

⋃

n∈σ end(n).
(3) the mirror image condition for Since-formulas.

For example, imagine that we replace every rational q in (0, 1) by a copy Iq of [0, 1]
(this process is formalised in the proof of proposition 5.8 below). The resulting flow of
time remains isomorphic to [0, 1]. Imagine a run r over it, whose restriction rq to each
Iq satisfies mos(rq) ∈ σ, and each mosaic in σ is equal to mos(rq) for a dense set of
rationals q; and similarly, each r(i) for irrational i ∈ (0, 1) is in τ , and each type in τ
is the value of r(i) for a dense set of i. Then we will have mos(r) ≡ sh(σ, τ).
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Definition 5.6 Let B be a set of bags and C a non-empty set of realisable state can-
didates. Let µ be a bag. We write µ ≡ sh(B, C) if

(1) for each m ∈ µ, there are σ ⊆
⋃
B with σ ∩ ν 6= ∅ for all ν ∈ B, and τ ⊆

⋃
C with

τ ∩ Σ 6= ∅ for all Σ ∈ C, such that m ≡ sh(σ, τ),
(2) for each X ∈

⋃
B ∪

⋃
C, there are m ∈ µ, σ ⊆

⋃
B with σ ∩ ν 6= ∅ for all ν ∈ B,

and τ ⊆
⋃
C with τ ∩ Σ 6= ∅ for all Σ ∈ C, such that X ∈ σ ∪ τ and m ≡ sh(σ, τ).

Though there is no prior restriction on the sizes of B, C in shuffles, we can easily obtain
one:

Lemma 5.7 Let B be a set of bags, C a non-empty set of realisable state candidates, and
µ a bag. Suppose that µ ≡ sh(B, C). Then there are B0 ⊆ B and non-empty C0 ⊆ C with
|B0| ≤ ](ϕ) and |C0| ≤ \(ϕ), and with µ ≡ sh(B0, C0). (Here, ], \ are as in lemma 3.20.)

Proof.
⋃
B is a set of mosaics, so |

⋃
B| is bounded by the number of mosaics for ϕ,

which is at most ](ϕ) (see lemma 3.20). So we can choose B0 ⊆ B with |B0| ≤ ](ϕ) and
⋃
B0 =

⋃
B. Similarly, we may choose C0 ⊆ C with |C0| ≤ \(ϕ) and

⋃
C0 =

⋃
C. It is

plain that C0 6= ∅ and µ ≡ sh(B0, C0). 2

The conditions in definition 5.6 above are what is needed to ensure that — roughly
speaking — if µ ≡ sh(B, C) then a pre-quasimodel with bag µ can be obtained by
replacing each point in [0, 1] by either a pre-quasimodel with bag in B, or a realisable
state candidate from C, always replacing irrationals by realisable state candidates, all
to be done densely and bringing in the whole of B and C. This is the content of the
next proposition.

Proposition 5.8 Let B be a (possibly empty) set of realisable bags and C a non-empty
set of realisable state candidates. Let µ be a bag with µ ≡ sh(B, C). Then µ is realisable.

Proof. For each ν ∈ B, let

Qν = ([0, 1], (Σν
t : t ∈ [0, 1]),Rν)

be a pre-quasimodel such that bag(Qν) = ν. Choose a map ξ : (0, 1) → B∪C such that
ξ−1(X) = {t ∈ (0, 1) : ξ(t) = X} is dense in (0, 1) for each X ∈ B ∪ C and countable
for each X ∈ B; we can do this because C 6= ∅. Let

S = {t ∈ (0, 1) : ξ(t) ∈ B}.

S is either empty or a countable dense subset of [0, 1]. Define a linear order It for each
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t ∈ [0, 1], by

It =







[0, 1], if t ∈ S,

[0, 0], otherwise.

Define I to be the linear order
∑

t∈[0,1] It; formally this is

I =
⋃ {

It × {t} : t ∈ [0, 1]
}

,

endowed with the lexicographic ordering 〈x, t〉 < 〈y, u〉 iff t < u or (t = u and x < y).
I has endpoints and is dense, Dedekind complete, and separable; so (see, e.g., [26,
theorem 2.30]) it is isomorphic to [0, 1]. So it suffices to provide a finitary pre-quasimodel
Q = (I, (Σi : i ∈ I),R) over I with bag(Q) = µ.

First we define the realisable state candidates Σ〈x,t〉 for 〈x, t〉 ∈ I:

Σ〈x,t〉 =







st(µ), if t = 0,

end(µ), if t = 1,

Σξ(t)
x , if t ∈ S,

ξ(t), if t ∈ (0, 1) \ S.

We now attempt to define R. This will take some time. First, choose an equivalence
relation ∼ on (0, 1) refining ker(ξ) (i.e., with t ∼ u ⇒ ξ(t) = ξ(u)), such that each
∼-class is dense in (0, 1), and with |ξ−1(X)/∼| = |X| for each X ∈ B ∪ C. Note that
there are finitely many ∼-classes. Let Z be the set of all maps ζ defined on (0, 1) and
such that

ζ(t) = ζ(u) for all t, u ∈ (0, 1) with t ∼ u,

ζ(t) ∈ Rξ(t) if t ∈ S,

ζ(t) ∈ ξ(t) if t ∈ (0, 1) \ S.

Note that Z is finite. Each ζ ∈ Z picks a type or a run for each ∼-class. It induces a
choice of type for each interior point of I, and we will extend this to a run over I. For
each ζ ∈ Z, let

σζ = {mos(ζ(t)) : t ∈ S} ⊆
⋃
B,

τζ = {ζ(t) : t ∈ (0, 1) \ S} ⊆
⋃
C.

Note that τζ 6= ∅.
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Lemma 5.9 Suppose that σ ⊆
⋃
B with σ ∩ ν 6= ∅ for all ν ∈ B, and τ ⊆

⋃
C with

τ ∩ Σ 6= ∅ for all Σ ∈ C.

(1) Let t0 ∈ S and s ∈ Rξ(t0) be such that mos(s) ∈ σ. Then there is ζ ∈ Z with
ζ(t0) = s, σζ = σ, and τζ = τ .

(2) Let t1 ∈ (0, 1) \ S and p ∈ ξ(t1) ∩ τ . Then there is ζ ∈ Z with ζ(t1) = p, σζ = σ,
and τζ = τ .

Proof. For each ν ∈ B, we have |ξ−1(ν)/∼| = |ν| ≥ |σ∩ν| > 0, so since ν = bag(Qν) =
{mos(r) : r ∈ Rν}, we may choose a map θν : ξ−1(ν)/∼ → Rν such that

{

mos(θν(t/∼)) : t ∈ ξ−1(ν)
}

= σ ∩ ν. (5.1)

In part 1 of the lemma, we may assume that θξ(t0)(t0/∼) = s. Similarly, for each
Σ ∈ C, we have |ξ−1(Σ)/∼| = |Σ| ≥ |τ ∩ Σ| > 0, so we may choose a surjection
θΣ : ξ−1(Σ)/∼ → τ ∩ Σ. In part 2 of the lemma, we may assume that θξ(t1)(t1/∼) = p.

Now define ζ(t) = θξ(t)(t/∼), for each t ∈ (0, 1). Clearly, ζ ∈ Z. In part 1 of the lemma,
we have ζ(t0) = s, and in part 2 we have ζ(t1) = p. By (5.1), for each ν ∈ B we have
{mos(ζ(t)) : t ∈ (0, 1), ξ(t) = ν} = σ ∩ ν. It follows that

σζ = {mos(ζ(t)) : t ∈ S} =
⋃

ν∈B

(σ ∩ ν) = σ.

Similarly, τζ = τ . 2

Now, for each ζ ∈ Z and m ∈ µ with m ≡ sh(σζ , τζ), define r = rm
ζ ∈

∏

i∈I Σi by

r(x, t) =







st(m), if t = 0,

end(m), if t = 1,

(ζ(t))(x), if t ∈ S,

ζ(t), if t ∈ (0, 1) \ S.

(Here and below, we write r(x, t) instead of r(〈x, t〉).)

Lemma 5.10 Let m ∈ µ, ζ ∈ Z, and suppose that m ≡ sh(σζ , τζ). Then r = rm
ζ is a

run over I, and mos(r) = m.

Proof. That mos(r) = m is easily seen. We have r(0, 0) = st(m), r(0, 1) = end(m),
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and

⋃

〈x,t〉∈I,t∈(0,1)

r(x, t) =

(
⋃

t∈(0,1)\S

ζ(t)

)

∪

(
⋃

t∈S,x∈[0,1]

ζ(t)(x)

)

=
⋃

τζ ∪
⋃

t∈S

(

st(mos(ζ(t))) ∪ cov(mos(ζ(t))) ∪ end(mos(ζ(t)))
)

=
⋃

τζ ∪
⋃

n∈σζ

(

st(n) ∪ cov(n) ∪ end(n)
)

= cov(m).

Now we check that r is a run. As mos(r) is a mosaic, for any constant c in L, and
any 〈x, t〉, 〈y, u〉 ∈ I, if x = c ∈ r(x, t) then by lemma 3.14, x = c ∈ r(y, u). Next, let
U(α, β) ∈ sub

x
ϕ and 〈x, t〉 ∈ I with t < 1.

(1) Assume that U(α, β) ∈ r(x, t), and that there is no ‘witness’ 〈y, u〉 > 〈x, t〉 in I
with u < 1, α ∈ r(y, u), and β ∈ r(z, v) for all 〈z, v〉 ∈ (〈x, t〉, 〈y, u〉). We show
first that U(α, β) ∈ st(m).
(a) If t = 0, then obviously U(α, β) ∈ r(0, 0) = st(m).
(b) Assume now that t ∈ S. We have U(α, β) ∈ ζ(t)(x), and there is no witness to

it in ζ(t). As ζ(t) is a run, we must have U(α, β) ∈ ζ(t)(1) = end(mos(ζ(t))) ⊆
⋃

n∈σζ
end(n). As m ≡ sh(σζ , τζ), we obtain U(α, β) ∈ st(m).

(c) If t ∈ (0, 1)\S, then U(α, β) ∈ r(x, t) = ζ(t) ⊆
⋃

τζ , so by the shuffle conditions
we again obtain U(α, β) ∈ st(m).

Since m ≡ sh(σζ , τζ), it now follows from the shuffle conditions that ¬β /∈ cov(m).
So β ∈ r(z, v) for all 〈z, v〉 ∈ (〈x, t〉, 〈1, 0〉). By density and lack of a witness, we
also have α /∈ cov(m). As m is a mosaic, either α ∈ end(m) = r(0, 1), or else
β, U(α, β) ∈ end(m) = r(0, 1), as required.

(2) Next suppose that there is 〈y, u〉 > 〈x, t〉 in I with α ∈ r(y, u) and β ∈ r(z, v) for
all 〈z, v〉 ∈ (〈x, t〉, 〈y, u〉). We require that U(α, β) ∈ r(x, t).
(a) If t = u, then t ∈ S, so α ∈ ζ(t)(y) and β ∈ ζ(t)(z) for all z ∈ It with

x < z < y. As ζ(t) ∈ Rξ(t) is a run, we obtain U(α, β) ∈ ζ(t)(x) = r(x, t).
(b) Assume then that t < u. So by density, ¬β /∈ cov(m), and also α ∈ cov(m) ∪

end(m). As m is a mosaic, we have U(α, β) ∈ st(m). By shuffle conditions, this
implies that ¬U(α, β) /∈ st(m) ∪ cov(m) ⊇ r(x, t), so that U(α, β) ∈ r(x, t).

(3) Finally suppose that U(α, β) ∈ r(0, 1) = end(m) and β ∈ r(z, v) for all 〈z, v〉 >
〈x, t〉. Again we obtain ¬β /∈ cov(m) by density conditions, and clearly, β ∈
end(m). As m is a mosaic, U(α, β) ∈ st(m). So by shuffle conditions, ¬U(α, β) /∈
cov(m). As r(x, t) ⊆ st(m) ∪ cov(m), it follows that U(α, β) ∈ r(x, t) as before.

The proof for Since is a mirror image argument. 2
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We now define

R =
{

rm
ζ : ζ ∈ Z, m ∈ µ, m ≡ sh(σζ , τζ)

}

.

By lemma 5.10, R is a finite set of runs.

Claim 1. {mos(r) : r ∈ R} = µ.

Proof of claim. If r = rm
ζ ∈ R then by lemma 5.10, mos(r) = m ∈ µ. Conversely,

let m ∈ µ. Since µ ≡ sh(B, C), we have m ≡ sh(σ, τ) for some σ ⊆
⋃
B with σ ∩ ν 6= ∅

for all ν ∈ B, and some τ ⊆
⋃
C with τ ∩ Σ 6= ∅ for all Σ ∈ C. By lemma 5.9, there

is ζ ∈ Z with σζ = σ and τζ = τ . So m ≡ sh(σζ , τζ), so rm
ζ ∈ R, and by lemma 5.10,

mos(rm
ζ ) = m. This proves the claim.

Claim 2. Σi = {r(i) : r ∈ R} for each i ∈ I.

Proof of claim. It follows from the definitions that r(x, t) ∈ Σ〈x,t〉 for all 〈x, t〉 ∈ I
and rm

ζ ∈ R. For the converse, take 〈x, t〉 ∈ I and a type p ∈ Σ〈x,t〉. We have to produce
r ∈ R with r(x, t) = p. There are three cases.

(1) If t ∈ {0, 1}, then p = st(m) or p = end(m) for some m ∈ µ. By claim 1, there is
r ∈ R with mos(r) = m, and it follows that r(x, t) = p.

(2) If t ∈ S, let ν = ξ(t). Then p ∈ Σν
x, so as Qν is a pre-quasimodel, there is s ∈ Rν

with s(x) = p. Let mos(s) = n ∈ ν. Since µ ≡ sh(B, C), there are σ ⊆
⋃
B,

τ ⊆
⋃
C, and m ∈ µ, with n ∈ σ, σ ∩ ν ′ 6= ∅ for each ν ′ ∈ B, τ ∩ Σ 6= ∅ for each

Σ ∈ C, and m ≡ sh(σ, τ). By lemma 5.9, there is ζ ∈ Z with ζ(t) = s, σζ = σ, and
τζ = τ . So rm

ζ ∈ R and rm
ζ (x, t) = ζ(t)(x) = s(x) = p.

(3) Now assume that t ∈ (0, 1) \ S. As µ ≡ sh(B, C), there are m ∈ µ, σ ⊆
⋃
B with

σ ∩ ν 6= ∅ for all ν ∈ B, and τ ⊆
⋃
C with τ ∩Σ 6= ∅ for all Σ ∈ C, such that p ∈ τ

and m ≡ sh(σ, τ). By lemma 5.9, there is ζ ∈ Z with ζ(t) = p, σζ = σ, and τζ = τ .
Then rm

ζ ∈ R and rm
ζ (x, t) = ζ(t) = p.

This proves the claim. We can now see that Q = (I, (Σi : i ∈ I),R) is a finitary
pre-quasimodel with bag(Q) = m. Proposition 5.8 is now proved. 2

5.4 Soundness and completeness

We now show that our syntactic constructions of bags exactly match pre-quasimodels.
We repeat that all bags, pre-quasimodels, realisable state candidates, etc., are implicitly
assumed to be finitary.
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Definition 5.11 Define sets Sn (n < ω) of bags by induction as follows. Let S0 = ∅.
Given S3n for n < ω, define:

• S3n+1 is the union of S3n and the set of all bags µ such that µ ≡ sh(B, C) for some
B ⊆ Sn and some non-empty set C of realisable state candidates,

• S3n+2 is the union of S3n+1 and the set of all bags µ such that there are bags ν0, ν1 ∈
S3n+1 with µ ≡ ν0 + ν1,

• S3n+3 is the union of S3n+2 and the set of all bags µ such that µ ≡ ν ·ω or µ ≡ ν ·ω∗

for some ν ∈ S3n+2.

A bag µ is said to be constructible if µ ∈
⋃

n<ω Sn. That is, µ is obtainable from
realisable state candidates by finitely many applications of shuffle, ·ω, ·ω∗, and + (see
definitions 5.3, 5.6, and 3.22).

Proposition 5.12 A bag is constructible iff it is realisable.

Proof. A simple induction on n, using lemmas 5.2 and 5.4 and proposition 5.8, shows
that every bag in Sn is realisable.

The converse is similar to proofs in [15,3,20], so we will be brief. Take a finitary pre-
quasimodel Q = ([0, 1], (Σt : t ∈ [0, 1]),R). We wish to show that bag(Q) is con-
structible. Define a binary relation ∼ on [0, 1], by x ∼ y iff x = y, or x < y and
bag(Q ¹ [z, t]) is constructible for all x ≤ z < t ≤ y, or x > y and bag(Q ¹ [z, t]) is
constructible for all y ≤ z < t ≤ x. It is easily checked that if x < y < z in [0, 1] then

bag(Q ¹ [x, z]) ≡ bag(Q ¹ [x, y]) + bag(Q ¹ [y, z]). (5.2)

It follows that ∼ is transitive, and hence an equivalence relation. Clearly, each ∼-class
E is convex. We claim it is a closed interval in R. Suppose for example that y = sup(E).
We show that y ∈ E. Of course, y ∈ [0, 1], so it suffices to check that for each x ∈ E
with x < y, bag(Q ¹ [x, y]) is constructible. Choose x < x0 < x1 < · · · in E with
sup{xi : i < ω} = y. For a non-singleton closed interval I ⊆ [0, 1], let

χ(I) = 〈mos(r ¹ I) : r ∈ R〉.

Since R is finite, χ is finitely-valued. So we may suppose by Ramsey’s theorem [23] that
χ([xi, xj]) is constant for all i < j < ω. It can now be checked that bag(Q ¹ [x0, y]) ≡
bag(Q ¹ [x0, x1]) · ω. As x0 ∼ x1, bag(Q ¹ [x0, x1]) is constructible, so bag(Q ¹ [x0, y])
is constructible too. It follows by (5.2) that bag(Q ¹ [x, y]) is constructible as required.
The case of y = inf(E) is similar, using · ω∗.

Hence, bag(Q ¹ E) is constructible for each ∼-class E with |E| > 1. So it suffices to
show that [0, 1] is a ∼-class.
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Assume for contradiction that there are at least two ∼-classes. Since ∼-classes are closed
intervals, the condensation ordering [0, 1]/∼ is dense. Extend the aforementioned map
χ to singleton intervals by

χ([t, t]) = 〈r(t) : r ∈ R〉.

Choose a non-empty open interval O ⊆ [0, 1]/∼ such that |{χ(E) : E ∈ O}| is least
possible. So each value that χ takes on O is its value on a dense set of elements of O.
Let

B = {bag(Q ¹ E) : E ∈ O, |E| > 1},

C = {Σt : [t, t] ∈ O}.

Each ν ∈ B is constructible. Standard arguments using separability of R show that
there is a dense set of singleton ∼-classes in O, so C 6= ∅.

Now take any x, y ∈
⋃

O with x < y. We claim that bag(Q ¹ [x, y]) is constructible.

(1) If x ∼ y, this is clear.
(2) Assume that x 6∼ y and suppose that x is maximal and y minimal in their respective

∼-classes. It can be checked that for any r ∈ R we have

mos(r ¹ [x, y]) ≡ sh
(

{mos(r ¹ E) : E ∈ O, |E| > 1}, {r(t) : [t, t] ∈ O}
)

.

Hence, bag(Q ¹ [x, y]) ≡ sh(B, C), so is constructible.
(3) Assume that x 6∼ y and suppose that x is maximal in its ∼-class but y > y− =

inf(y/∼). Then y ∼ y−, so bag(Q ¹ [y−, y]) is constructible. As above, bag(Q ¹

[x, y−]) is constructible. Then by (5.2), bag(Q ¹ [x, y]) is constructible.
(4) The other two cases are proved by combinations of similar arguments.

This proves the claim. It follows that x ∼ y for any x, y ∈
⋃

O, contradicting that O
contains more than one ∼-class. 2

5.5 The algorithm

Theorem 5.13 The problem of whether a monodic packed sentence is satisfiable in a
temporal structure with finite first-order domain and flow of time [0, 1] is 2Exptime-
complete.

Proof. The problem is certainly 2Exptime-hard, by proposition 2.5. We turn to find-
ing an 2Exptime algorithm for satisfiability. Take a monodic packed sentence ϕ. The
following are equivalent:

(1) ϕ is satisfiable over [0, 1],
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(2) there exists a finitary quasimodel for ϕ over [0, 1] (by fact 3.10),
(3) there exists a perfect realisable finitary bag (by lemma 3.19),
(4) there exists a perfect constructible finitary bag (by proposition 5.12).

But the latter condition is easy to decide by a 2Exptime algorithm. We simply con-
struct the sets Sn of definition 5.11 by induction, stopping when either a perfect bag
is found in Sn, or when Sn = Sn+3 and no perfect bag has been found. Let us briefly
check that this can be done in 2Exptime. By lemma 5.7, S3n+1 is the union of S3n

and the set of all bags µ such that µ ≡ sh(B, C) for some B ⊆ Sn with |B| ≤ ](ϕ), and
some non-empty set C of realisable state candidates with |C| ≤ \(ϕ). These bounds are
exponential (see lemma 3.20); and since S3n is a set of bags and so is at most double-
exponential in size, there are at most doubly exponentially many sets B ⊆ S3n and sets
C of realisable state candidates to consider. Thus, S3n+1 is constructible from S3n in
2Exptime. So are S3n+2 and S3n+3, as is easily seen. So, much as in theorem 4.7, it is
plain that the chain of Sn can be constructed in 2Exptime. 2

5.6 Corollaries

The following is easily obtainable by the techniques of proposition 4.8 and the expressive
completeness of Until and Since over R ([18]; other proofs are given in [6]). Similar
reductions were given in [15, corollary 37]. The case of (N, <) was first proved in [13].

Theorem 5.14 The satisfiability problem for monodic packed sentences in temporal
structures with finite first-order domains, and with flow of time (in) any of the following,
is 2Exptime-complete:

(1) (R, <)
(2) (N, <)
(3) (Z, <)
(4) the class of all finite linear flows of time
(5) the class of all linear flows of time
(6) (Q, <)
(7) any given first-order-definable class of linear flows of time.

Proof. By proposition 2.5, we only have to show that the satisfiability problems are
solvable in 2Exptime. Consider the case of (R, <). For any monodic packed L-sentence
ϕ, let

ϕρ = (q ∧ ϕq) ∧ 3

(

¬q ∧ ¬S(>,>) ∧ U(¬q ∧ ¬U(>,>), q)
)

,

where the relativisation ϕq is as in theorem 4.8. If this formula is true at some time
in a temporal structure M = ([0, 1], D, (Mt : t ∈ [0, 1])) with finite domain D, then
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q is true in M at just the points in (0, 1), and ϕ is true at some time point in the
restricted structure ((0, 1), D, (Mt : t ∈ (0, 1))). The flow of time of this structure is
isomorphic to (R, <). Conversely, if ϕ is satisfiable in a temporal structure with flow
of time R and finite domain, then it is true at some time u in a temporal structure of
the form ((0, 1), D, (Mt : t ∈ (0, 1))) with finite D, since ((0, 1), <) ∼= (R, <). Let Nt be
an expansion of Mt making q true (for each t ∈ (0, 1)), and let N0, N1 be arbitrary L-
structures with domain D and making q false. Then ([0, 1], D, (Nt : t ∈ [0, 1])), u |= ϕρ.
We conclude that ϕ has a model with flow of time (R, <) iff ϕρ has a model with flow
of time [0, 1]. So part 1 follows by reduction from theorem 5.13. The remaining cases
are covered by reductions given in [15, corollary 37]. 2

6 Concluding remarks

We have established 2Exptime-completeness of the satisfiability problem for the mon-
odic packed fragment over temporal structures with arbitrary and with finite first-order
domains, over a range of (classes of) linear flows of time.

Remark 6.1 Theorems 4.8 and 5.14 also hold for the monodic guarded and monodic
loosely guarded fragments, since the first-order guarded and loosely guarded fragments
are 2Exptime-complete subfragments of the packed fragment.

Various issues remain outstanding:

(1) It may be of interest to extend the results of section 4 to classes of linear flows of
time defined by arbitrary first-order sentences.

(2) Though modifications would be needed because equality may have to be omitted,
our algorithms may work for other monodic fragments for which the problem of
deciding whether a state candidate is realisable is 2Exptime-hard. If this prob-
lem is, say, 2Expspace-complete, then we would expect a 2Expspace algorithm
to decide the monodic fragment. We would also expect our methods to provide
2Exptime algorithms to decide the monadic and 2-variable monodic fragments
over the same flows of time.

(3) As we said earlier, it would be highly desirable to give (if possible) an Expspace

algorithm to decide monodic fragments of which the first-order part is decidable
in Expspace, over the flows of time considered here.

(4) Among other important open problems, chief is whether any non-trivial monodic
fragment is even decidable in the case of arbitrary first-order domains with flow
of time the real numbers.

(5) It may be of interest to devise tableau- or resolution-style algorithms to decide the
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problems addressed in this paper.
(6) Complexity results for decidable monodic fragments over branching time also need

to be established.
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