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5

Introduction

This course has three parts:

I: computability,

II: algorithms,

III: complexity.

In Part I we develop a model of computing, and use it to examine the fundamental
properties and limitations of computers in principle (notwithstanding future advances
in hardware or software). Part II examines some algorithms of interest and use, and
Part III develops a classification of problems according to how hard they are to solve.

Parts I and III are fairly theoretical in approach, the aim being to foster understand-
ing of the intrinsic capabilities of computers, real and imagined. Some of the material
was crucial for the development of modern computers, and all of it has interest beyond
its applications. But there are also practical reasons for teaching it:

• It is a good thing, perhaps sobering for computer scientists, to understand more
about what computers can and can’t do.

• You can honourably admit defeat if you know a problem is impossible or hope-
lessly difficult to solve. It saves your time. E.g., it is an urban myth that a
programmer in a large British company was asked to write a program to check
whether some communications software would ‘loop’ or not. We will see in
section 5 that this is an impossible task, in general.

• The material we cover, especially in Part I, is part of the ‘computing culture’,
and all computer scientists should have at least a nodding acquaintance with it.

• The subject is is of wide, indeed interdisciplinary interest. Popular books like
Penrose’s (see list above) and Hofstadter’s ‘Gödel, Escher, Bach’ cover our sub-
ject, and there was quite a famous West End play (‘Breaking the Code’) about
Turing’s work a few years ago. The ‘Independent’ printed a long article on
Gödel’s theorem on 20 June 1992, in which it was said:

It is a measure of the achievement of Kurt Gödel that his Incom-
pleteness Theorem, while still not considered the ideal subject with
which to open a dinner party conversation, is fast becoming one
of those scientific landmarks — like Einstein’s Theory of Relativ-
ity and Heisenberg’s Uncertainty Principle — that educated people,
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even those with no scientific training, feel obliged to know some-
thing about.

Lucky you: we do G̈odel’s theorem in section 5.

Books and other reading

Texts (should be in the bookshop & library)

• V. J. Rayward-Smith,A first course in computability,McGraw Hill, 1995?
An introductory paperback that covers Parts I and III of the course, and
some of Part II. More detailed than this course.

• D. Harel,The Science of Computing,Addison-Wesley, 1989.
A good book for background and motivation, with fair coverage of this
course and a great deal more. Some may find the style diffuse. Less
detailed than this course.

Advanced/reference textsSee also the books on algorithms listed on page 96.

• Robert Sedgewick,Algorithms,Addison-Wesley, 2nd ed., 1988.
A practical guide to many useful algorithms and their implementation. A
reference for Part II of the course.

• J. Bell, M. Machover,A course in mathematical logic,North Holland,
1977.
A good mathematical text, for those who wish to read beyond the course.

• G. Boolos, R. Jeffrey,Computability and Logic,Cambridge University
Press, 1974.
A thorough text, but mathematically demanding.

• M. R. Garey, D. S. Johnson,Computers and intractability — a guide to
NP-completeness,Freeman, 1979.
The ‘NP-completeness bible’. For reference in Part III.

• J. E. Hopcroft & J. D. Ullman,Introduction to automata theory, languages
and computation,Addison-Wesley, 1979. 2nd edn., J. E. Hopcroft, R.
Motwani, J. D. Ullman, Addison-Wesley, 2001, ISBN: 0-201-44124-1.
A classic text with a wealth of detail; but it concentrates on abstract lan-
guages and so has a different approach from ours.
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Papers See also Stephen Cook’s paper listed on page 154.

• A.M. Turing,On computable numbers with an application to the Entschei-
dungsproblem,Proceedings of the London Mathematical Society (Series
2), vol. 42 (1936), pp. 230–265.
One of the founding papers of computer science, but very readable. Con-
tains interesting philosophical reflections on the subject, the first descrip-
tion of the Turing machine, and a proof that some problems are unsolvable.

• G. Boolos, Notices of American Mathematical Society, vol. 36 no. 4 (April
1989), pp. 388–390. A new proof of Gödel’s incompleteness theorem.

Popular material See also Chown’s article mentioned on page 21.

• A. Hodges,Enigma,Vintage, 2nd edition, 1992.
A biography of Alan Turing. Readable and explains some key ideas from
this course (e.g., the halting problem) in clear terms.

• R. Penrose,The Emperor’s New Mind,Vintage. Mainly physics but de-
scribes Turing machines in enough rigour to cover most of Part I of this
course (e.g., halting problem). Enjoyable, in any case.

Notes on the text

The text and index are copyright (c©) Ian Hodkinson. You may use them freely so long
as you do not sell them for profit.

The text has been used by Ian Hodkinson and Margaret Cunningham as coursenotes
in the 20-lecture second-year undergraduate course ‘240 Computability, algorithms,
and complexity’ in the Department of Computing at Imperial College, London, UK,
since 1991.

Italic font is used for emphasis, andbold to highlight some technical terms. ‘E.g.’
means ‘for example,viz. means ‘namely’, ‘i.e.’ means ‘that is’, andiff means ‘if and
only if’. § means ‘section’ — for example, ‘§5.3.3’ refers to the section called ‘The
Turing machineEDIT ’ starting on page 74.

There are bibliographic references on pages 6, 21, 96, and 154.



Part I

Computability

1. What is an algorithm?

We begin Part I with a problem that could pose difficulties for those who think com-
puters are ‘all-powerful’. To analyse the problem, we then discuss the general notion
of an algorithm (as opposed to particular algorithms), and why it is important.

1.1 The problem

At root, Part I of this course is about paradoxes, such as:

The least number that is not definable by an English sentence having
fewer than 100 letters.

(The paradox is that we have just defined this number by such a sentence. Think about
it!) C.C. Chang and H.J. Keisler kindly dedicated their book ‘Model Theory’ to all
model theorists who have never dedicated a book to themselves. (Is it dedicated to
Chang and Keisler, or not?)

Paradoxes like this often arise because ofself-referencewithin the statement. The
first one implicitly refers to all (short) English sentences, including itself. The second
refers implicitly to all books, including ‘Model Theory’. Now computing also uses
languages — formal programming languages — that are capable of self-reference (for
example, programs can alter, debug, compile or run other programs). Are there similar
paradoxes in computing?

Here is a candidate. Take a high-level imperative programming language such as
Java. Each program is a string of English characters (letters, numbers, punctuation,
etc). So we can list all the syntactically correct programs in alphabetical order, as
P1,P2,P3, . . . Every program occurs in this list.

EachPn will output some string of symbols, possibly the empty string. We can
treat it as outputting a string of binary bits (0 or 1). Most computers work this way —
if the output appears to us as English text, this is because the binary output has been
treated as ASCII (for example), anddecodedinto English.

Now consider the following programP:

8
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1 repeat forever
2 generate the next program Pn in the list
3 run Pn as far as the nth bit of the output
4 if Pn terminates or prompts for input before the nth bit is output then
5 output 1
6 else if the nth bit of Pn’s output is 0 then
7 output 1
8 else if the nth bit of Pn’s output is 1 then
9 output 0
10 end if
11 end repeat

• This language is not quite Java, but the idea is the same — certainly we could
write it formally in Java.

• Generating and running the next program (lines 2 and 3) is easy — we generate
all strings of text in alphabetical order, and use an interpreter to check each string
in turn for syntactic errors. If there are none, the string is our next program, and
the interpreter can run it. This is slow, but it works.

• We assume that we can write an interpreter in our language — certainly we can
write a Java interpreter in Java.

• In each trip round the loop, the interpreter is provided with the text of the next
program,Pn, and the numbern. The interpreter runsPn, halting execution if
(a) Pn itself halts, (b)Pn prompts for input or tries to read a file, or (c)Pn has
producedn bits of output.

• All other steps ofP are easy to implement.

SoP is a legitimate program. SoP is in the list ofPns. WhichPn is P?
Suppose thatP is P7, say. ThenP has the same output asP7. Now on the seventh

loop of P, P7 (i.e., P) will be generated, and run as far as its seventh output bit. The
possibilities are:

1. P7 halts or prompts for input before it outputs 7 bits (impossible, as the code for
P = P7 has no HALT or READ statement!)

2. P7 does output bit 7, and it’s 0. ThenP outputs 1 (look at the code above). But
this 1 will be the 7th output bit ofP = P7, a contradiction!

3. P7 does output bit 7, and it’s 1. ThenP outputs 0 (look at the code again). But
this 0 will beP’s 7th output bit, andP = P7!

This is a contradiction: ifP7 outputs 0 thenP outputs 1, and vice versa; yetP was
supposed to beP7. SoP is notP7 after all.

In the same way we can show thatP is notPn for anyn, becauseP differs fromPn
at the nth place of its output. SoP is not in our list of programs. This isimpossible, as
the list contains all programs of our language!



 

10 1. What is an algorithm?

Exercise 1.1 What is wrong?

Paradoxes might not be too worrying in a natural language like English. We might
suppose that English is vague, or the speaker is talking nonsense. But we think of com-
puting as a precise engineering-mathematical discipline. It is used for safety-critical
applications. Certainly it should not admit any paradoxes. We should therefore exam-
ine our ‘paradox’ very carefully.

It may be that it comes from some quirk of the programming language. Perhaps
a better version of Java or whatever would avoid it. In Part I of the course our aim is
first to show that the ‘paradox’ above is extremely general and occurs in all reasonable
models of computing. We will do this by examining a very simple model of a computer.
In spite of its simplicity we will give evidence for its being fully general, able to do
anything that a computer — real or imagined — could.

We will then rediscover the ‘paradox’ in our simple model. I have to say at this
point that there is no real paradox here. The argument above contained an implicit
assumption. [What?] Nonetheless, there is still a problem: the implicit assumption
cannot be avoided, because if it could, we really would have a paradox. So we cannot
‘patch’ our programP to remove the assumption!

But now, because our simple model is so general, we are forced to draw funda-
mental conclusions about the limitations of computing itself. Certain precisely-stated
problems are unsolvable by a computer even in principle. (We cannot write a patch for
P.)

There are lots of unsolvable problems! They include:

• checking mechanically whether an arbitrary program will halt on a given input
(the ‘halting problem’)

• printing out all the true statements about arithmetic and no false ones (Gödel’s
incompleteness theorem).

• deciding whether a given sentence of first-order predicate logic is valid or not
(Church’s theorem).

Undeniably these are problems for which solutions would be very useful.
In Part III of the course we will apply the idea of self-reference again to NP-

complete problems — not now to the question of what we can compute, but to how
fast can we compute it. Here our results will be more positive in tone.

1.2 What is an algorithm?

To show that our ‘paradox’ is not the fault of bad language design we must take a
very general view of computing. Our view is that computers (of any kind) implement
algorithms. So we will examine what an algorithm is.

First, a definition from Chambers Dictionary.
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algorithm, al’go-ridhm, n. a rule for solving a mathematical problem in
a finite number of steps. [Root: Late Latinalgorismus, from the Ara-
bic nameal-Khwārazmi, the native of Khw̄arazm (Khiva), i.e., the 9th
century mathematician Abu Ja’far Mohammed ben Musa.]

We will improve on this, as we’ll see.

1.2.1 Early algorithms

One of the earliest algorithms was devised between 400 and 300 B.C. by Euclid: it
finds the highest common factor of two numbers, and is still used. The sieve of Eratos-
thenes is another old algorithm. Mohammed al-Khwārazmi is credited with devising
the well-known rules for addition, subtraction, multiplication and division of ordinary
decimal numbers.

Later examples of machines controlled by algorithms include weaving looms (1801,
the work of J. M. Jacquard, 1752–1834), the player piano or piano-roll (the pianola,
1897 — arguable, as there is an analogue aspect (what?)), and the 1890 census tabu-
lating machine of Herman Hollerith, immortalised as the ‘H’ of the ‘format’ statement
in the early programming language Fortran (e.g.,FORMAT 4Habcd). These machines
all used holes punched in cards. In the 19th century Charles Babbage planned a multi-
purpose calculating machine, the ‘analytical engine’, also controlled by punched cards.

1.2.2 Formalising Algorithm

In 1900, the great mathematician David Hilbert asked whether there is an algorithm
that answers every mathematical problem. So people tried to find such an algorithm,
without success. Soon they began to think it couldn’t be done! Eventually some asked:
can weprovethat there’s no such algorithm? This question involved issues quite dif-
ferent from those needed to devise algorithms. It raised the need to be precise about
what an algorithm actually is: to formalise the notion of‘algorithm’ .

Why did no-one give a precise definition ofalgorithm in the preceding two thou-
sand years? Perhaps because most questions on algorithms are of the formfind one
to solve this problem I’ve got. This can be done without a formal definition of algo-
rithm, because we know an algorithm when we see one. Just as an elephant is easy to
recognise but hard to define, you can write a program to sort a list without knowing
exactlywhat an algorithm is. It is enough to invent something that intuitively is an
algorithm, and that solves the problem in question. We do this all the time.

But suppose we had a problem (like Hilbert’s) for which many attempts to find
an algorithmic solution had failed. Then we might suspect that the task is impossible,
so we would like toprovethat no algorithm solves the problem. To have any hope of
doing this, it is clearlyessentialto define precisely what an algorithm is, because we’ve
got to know what counts as an algorithm. Similarly, to answer questions concerning
all algorithms we need to knowexactlywhat an algorithm is. Otherwise, how could
we proceed at all?
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1.2.3 Why formalise Algorithm?

As we said, we formalisealgorithm so that we can reason about algorithms in general,
and (maybe) prove that some problems have no algorithmic solution. Any formalisa-
tion of the idea of analgorithm should be:

• preciseand unambiguous, with no implicit assumptions, so we know what we
are talking about. For maximum precision, it should be phrased in the language
of mathematics.

• simpleand without extraneous details, so we can reason easily with it.

• general, so that all algorithms are covered.

Once formalised, an idea can be explored with rigour, using high-powered mathe-
matical techniques. This can pay huge dividends. Once gravity was formalised by
Newton asF = Gm1m2/r2, calculations of orbits, tides, etc., became possible, with all
that that implies. Pay-offs from the formalisation ofalgorithm included the modern
programmable computer itself.1 This is quite a spectacular pay-off! Others include
the answer to Hilbert’s question, related work in complexity (see Part III) and more
besides.

1.2.4 Algorithm formalised

The notion of an algorithm was not in fact made formal until the mid-1930s, by math-
ematicians such as Alan Turing in England and (independently) Alonzo Church in
America. Church and Turing used their formalisations to show that some mathemat-
ical problems have no algorithmic solution — they are unsolvable. (Turing used our
‘paradox’ to do this.) Thus, after 35 years, Hilbert’s question got the answer ‘NO’.

Turing’s formalisation was by the primitive computer called (nowadays!) theTur-
ing machine. The Turing machine first appeared in his paper in the reading list, in
1936, some ten years before ‘real’ computers were invented.2 Turing’s formalisation
of the notion of an algorithm was:an algorithm is what a Turing machine imple-
ments.

We will describe the Turing machine at length below. We will see that it isprecise
andsimple, just as a formalisation should be. However, to claim that it isfully general
— covering all known and indeed all conceivable algorithms — may seem rash, es-
pecially when we see how primitive a Turing machine is. But Turing gave substantial
evidence for this in his paper, evidence which has strengthened over the years, and the
usual view nowadays is that the Turing machine is fully general. For historical reasons,
this view is known asChurch’s thesis,or sometimes (better) as theChurch–Turing
thesis.We will examine the evidence for it after we have seen what a Turing machine
is.

1This is, of course, an arguable historical point; Hodges’ book (listed on p. 7) examines the historical
background.

2Turing later became one of the pioneers in their development.
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Figure 1.1: A Turing machine

1.3 Turing machines

We, also, will use Turing machines to formalise the concept ofalgorithm. Here we
explain in outline what a Turing machine (TM) is; we’ll do it formally in section 2. As
we go through, think about how the Turing machine, our formalisation ofalgorithm,
fits our requirements ofprecisionandsimplicity. Afterwards, we’ll say more about its
generalityand why we use it in this course.

1.3.1 Naming of parts

There are several, mildly different but equally powerful, versions of the TM in the
textbooks. We now explain what our chosen version of the TMis, and what itdoes.

In a nutshell, a Turing machine consists of aheadthat moves up and down atape,
reading and writing as it goes. At each stage it’s in one of finitely many ‘states’. It
has aninstruction table that tells it what to do at each step, depending on what it’s
reading and what state it’s in.

The tape The main memory of a TM is a 1-way-infinitetape, viewed as laid out from
left to right. The tape goes off to the right, forever. It is divided intosquares,
numbered 0, 1, 2, . . . ; these numbers are for our convenience and arenot seen
by the Turing machine.

The alphabets In each square of the tape is written a singlesymbol. These symbols
are taken from some finitealphabet. We will use the Greek lettersigma (Σ)
to denote the alphabet. The alphabetΣ is part of the Turing machine.Σ is just
a set of symbols, but it will always be finite with at least two symbols, one of
which is a specialblank symbol which we always write as ‘∧’. Subject to these
restrictions, a Turing machine can have any finite alphabetΣ we like.
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A blank in a square really means that the square is empty. Having a symbol for
‘empty’ is convenient — we don’t have to have a special case for empty squares,
so things are keptsimple.

The read/write head The TM has a singlehead,as on a tape recorder. The head can
read and write to the tape.

At any given moment the head of the TM is positioned over a particular square
of the tape — thecurrent square. At the start, the head is over square 0.

The set of statesThe TM has a finite setQ of states. There is a special stateq0 in
Q, called thestarting state or initial state. The machine begins in the starting
state, and changes state as it goes along. At any given stage, the machine will
be ‘in’ some particular state inQ, called thecurrent state. The current state is
one of the two factors that determine, at each stage, what it does next (the other
is the symbol in the square where the head is). The state of the TM corresponds
roughly to the current instruction together with the contents of the registers in a
conventional computer. It gives our ‘current position’ within the algorithm.

1.3.2 Starting a TM; input

A Turing machine starts off in the initial state, with its head over square 0. At the
beginning, the tape will contain a finite number (possibly zero) of non-blank symbols,
left-justified; this string of non-blank symbols constitutes theinput to the Turing ma-
chine. The rest of the tape squares will be blank (i.e., they contain∧).

1.3.3 The run of the TM

A run is a step-by-step computation of the TM. At each step of a run:

(a) the headreadsthe symbol on the current tape square (the square where the head
now is).

Then the TM does three things.

(b) First, the headwrites some symbol fromΣ to the current tape square.

Then:

(c) the TM maymove its head left or right along the tape by one square,

(d) the TM goes into a new state.

Now the next step begins: it does (a)–(d) again, perhaps making different choices in
(b)–(d) this time. And so on, step by step.

Note that:

• The TM writesbeforemoving the head.
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• In (b), the TM could write the same symbol as it just read. So in this case, the
tape contents will not change.

• Similarly, in (d) the state of the TM may not change (as perhaps in a loop). In
(c), the head may not move.

Also notice that the tape will always contain only finitely many non-blank symbols,
because at the start only finitely many squares are not blank, and at most one square is
altered at each step.

1.3.4 The instruction table

At each step (b)–(d) above, there are ‘choices’ to be made. Which symbol to write?
Which way to move? And which state to enter? The answers dependonlyon:

(i) which symbol the machine reads from the current tape square;

(ii) the current state of the machine.

The machine has aninstruction table, telling it what to do when, in any given state,
a given symbol is read. We write the instruction table asδ, the Greek letterdelta. δ
corresponds to theprogramof a conventional computer. It is in effect just a list with
five columns:

current_state; current_symbol; new_state; new_symbol; move

current_state; current_symbol; new_state; new_symbol; move

current_state; current_symbol; new_state; new_symbol; move

..... ..... ..... ..... ....

Knowing the current state and symbol, the Turing machine can read down the list
to find the relevant line, and take action according to what it finds. To avoid ambiguity,
no pair (current-state; current-symbol) should occur in more than one line of the list.3

(You might think that every such pair should occur somewhere in the list, but in fact
we don’t insist on this: seeHalting below.)

Clearly, the ‘programming language’ is very low-level, like assembler. This fits
our wish to keep things simple. But we will see some higher-level constructs for TMs
later.

1.3.5 Stopping a TM; output

The run of a TM can terminate in just three different ways.

1. Some states ofQ are designated special states, calledfinal states or halting
states.We writeF for the set of final states.F is a subset ofQ. If the machine
gets into a state inF , then it stops there and then. In this case we say ithalts
and succeeds,and theoutput is whatever is left on the tape, from square 0 up
to (but not including) the first blank.

3In Part III we drop this condition!
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2. Sometimes there may beno applicable instruction in a given state when a
particular symbol is read, because the pair (current-state; current-symbol) does
not occur in the instruction tableδ. If so, the TM is stuck: we say that ithalts
and fails. The output isundefined— that is,there isn’t an output.

3. If the head is over square 0 of the tape and tries tomove left from square 0
along the tape, we count it as ‘no applicable instruction’ (because there is no
tape square to the left of square 0, so the TM is stuck again). So in this case the
machine also halts and fails. Again, the output is undefined.

Of course the machine may never halt — it may go on running forever. If so, the output
is again undefined. E.g., it may be writing the decimal expansion ofπ on the tape ‘to
the last place’ (there is a Turing machine that does this). Or it may get into a loop: i.e.,
at some point of the run, its ‘configuration’ (state, tape and head position) are exactly
the same as at some earlier point, so that from then on, the same configurations will
recycle again, forever. (A machine computingπ never does this, as the tape keeps
changing as more digits are printed. It never halts, but it doesn’t loop, either.)

1.3.6 Summary

The Turing machine has a 1-way infinite tape, a read/write head, and a finite set of
states. It looks at its state and reads the current square, and then writes, moves and
changes state according to its instruction table.Get-State, Read, Write, Move, Next-
State. It does this over and over again, until it halts, if at all. And that’s it!

1.4 Why use Turing machines?

Although the Turing machine is based on 1930s technology, we will use it in this course
because:

• It fits the requirements that the formalisation of algorithm should bepreciseand
simple. (We’ll make it even more precise in section 2.) Itsgeneralitywill be
discussed when we come to Church’s thesis — the architecture of the Turing
machine allows strong intuitive arguments here.

• It remains the most common formalisation ofalgorithm . Researchers, research
literature and textbooks usually use Turing machines when a formal definition
of computability is needed, so after this course you’ll be able to understand them
better.

• It is the standard benchmark for reasoning about the time or space used by an
algorithm (see Part III).

• It crops up in popular material such as articles in New Scientist and Scientific
American, and books by the likes of D. Hofstadter.
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• It is now part of the computing culture. Its historical importance is great and
every computer scientist should be familiar with it.

Why not adopt (say) a Cray YMP as our model? We could, but it would be too complex
for our work. Our aim here is to study the concept of computability. We are concerned
with which problems can be solvedin principle, and not (yet) with practicality. So a
very simple model of a computer, whose workings can be explained fully in a page
or two, is better for us than one that takes many manuals to describe, and may have
unknown bugs in it. And one can prove that a TM can solve exactly the same problems
as anidealisedCray with unlimited memory!

1.4.1 How and why is a Turing machineidealised?

A TM is an idealised computer,because the amounts of time and tape memory that
it is allowed to use areunbounded. This is not to say that it can useinfinitely much
time or memory. It can’t (unless it runs forever — e.g., when it ‘loops’). Think of a
computer with infinitely many disk drives and RAM chips, which we allow to work
on a problem for many years or even centuries. However long it runs for, at the end
it will have executed only finitely many instructions. Because it can access only a
finite amount of memory per instruction, on termination it will only have used a finite
amount of disk space and RAM. But if we only gave it a fixed finite number of disks,
if it ran for long enough it might fill them all up and run out of memory.

So our idealisation is this: only finitely much memory and time will get to be used
in any given calculation, or run; but we set no limit on how much can be used.

We make these idealisations because our notion ofalgorithm should not depend
on the state of technology, or on our budgets. For example, the functionf (x) = x2

on integers is intuitively computable by al-Khw̄arazmi’s multiplication algorithm, al-
though no existing computer could compute it forx> 101020

(say). A TM can compute
x2 for all integersx, because it can use as much time and memory as it needs for thex
in question. So idealising gives us a better model.

Nonetheless, the notion of being computable using only so much time or space is
an important refinement of the notion ofcomputable. It gives us a formal measure of
thecomplexity (difficulty) of a problem. In Part III we will examine this in detail.

1.5 Church’s thesis

Why should we believe — with Church and Turing — that such a primitive device as a
Turing machine is a good formalisation ofalgorithm and could calculate not only all
that a modern computer can, but anything that is in principle calculable?

First, is there anything to formalise at all? Maybeanydefinition of algorithm has
exceptions, and there are exceptions to the exceptions, and so on. It is a notable fact
about our world that this seems not to be so. Though the Turing machine looks very
different to Church’s alternative formalisation ofalgorithm,4 exactly the same things

4Alonzo Church (c. 1935) used the lambda calculus — the basis of LISP.
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turned out to be algorithms under either definition!Their definitions wereequivalent.
Now if two people independently put forward quite different-looking definitions of

algorithm that turn out to be equivalent, we may take it as evidence for the correctness
of both. Such a ‘coincidence’ hints that there is in nature a genuine class of things that
are algorithms, one that fits most definitions we offer.

This and other considerations (below) made Church put forward his famousThesis,
which says that the definition is the correct one.

This is also known as theChurch-Turing thesis,and, when phrased in terms of
Turing machines, it is certainly argued for in Turing’s 1936 paper, which was writ-
ten without knowing Church’s work. But the shorter title is probably more common,
though less just.

1.5.1 What does Church’s thesis say?

Roughly, it says:A problem can be solved by an algorithm if and only if it can be
solved by a Turing machine.More formally, it says that afunctionis computableif and
only if it is computable by a Turing machine.

1.5.2 What does it mean?

When we see Turing machines in action below, it will be clear that each one imple-
ments an algorithm (because we know an algorithm when we see one). So few people
would reject the if direction (⇐) of the thesis.5 The heart of the thesis lies in the only
if (⇒) direction: every algorithmically-solvable problem can be solved by a Turing
machine.

It is important to understand the status of this statement. It is not atheorem. It
cannot beproved: that’s why it’s called a thesis.

Why can’t we prove it? Is it that there are (obviously) infinitely many algorithms,
so to check that each of them can be implemented by a Turing machine would take
infinitely long and so is impossible? No! I agree that if there were finitely many
algorithms, wecould in principle check that each one can be implemented by a Turing
machine. But the fact that there are infinitely many is not of itself a fatal problem, as
there might be other ways of showing that every algorithm can be implemented by a
Turing machine than just checking them one by one.It is not impossible to reason
about infinite collections.Compare: there are infinitely many right triangles; but we
are still able to establish (some!) properties of all of them, such as ‘the square of the
hypotenuse is equal to the sum of the squares of the other two sides’.

No; the real problem is that, although the notion of a Turing machine is completely
precise (we will give a mathematical definition below), we have seen that the notion of
an algorithm is anintuitive, informalone, with roots going back two thousand years.
We can’t prove Church’s thesis, because it is not — cannot be — stated precisely
enough.

5Some would say that a Turing machine only implements an algorithm if we can be sure that its
computation will terminate, or even that we know how long it will take.
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Instead, Church’s thesis is more like adefinitionof algorithm. It says: ‘Here is
a mathematical model’, and it asks us to accept — and in this course we do accept
this — that any algorithm that we could possibly imagine fits the model and could be
implemented by a Turing machine.

So Church’s thesis is the claim that the Turing machine is a fully general formali-
sation ofalgorithm.

This is rather analogous to a scientific theory. For example, Newton’s theory of
gravity says that gravity is an attractive force that acts between any two bodies and de-
pends on their masses and the square of the distance separating them. This formalises
our intuitive idea of gravity, and the formalisation has been immensely useful. But we
could not prove it correct.

Of course, Newton’s theory of gravity was falsified by experiment. In the same
way, Church’s thesis could in a sense bedisproved,if we found something that intu-
itively was an algorithm but that we could prove was not implementable by a Turing
machine. We would then have to revise the thesis.

1.5.3 Evidence for the thesis

Given a new scientific theory, we would check its predictions by experimenting, and
conduct ‘thought experiments’ to study its consequences. Since Church’s thesis for-
malises the notion ofalgorithm, which is absolutely central to computer science, we
had better examine carefully the evidence for its correctness. This evidence also de-
pends on ‘observations’ and ‘thought experiments’. In Turing’s original 1936 paper,
listed on p. 7, three kinds of evidence are suggested:

(a) Giving examples of large classes of numbers which are computable.

(b) A proof of the equivalence of two definitions (in case the new definition has a greater
intuitive appeal).

(c) A direct appeal to intuition.

Let us examine these.

(a) Turing machines can do a wide range of algorithmic-like activities. They can
compute arithmetical and logical functions, partial derivatives, do recursion, etc.
In fact, no-one has yet found an algorithm that cannot be implemented by a
Turing machine.

(b) All other suggested definitions of algorithm have turned out to be equivalent (in
a precise sense) to Turing machines. These include:

• Software: the lambda-calculus (due to Church), production systems (Emil
Post), partial recursive functions (Stephen Kleene), present-day computer
languages.

• Hardware: register or counter machines, idealisations of our present-day
computers, idealised parallel machines, and idealised neural nets.
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They all look very different, but can solve (at best) precisely the same problems
as Turing machines. As we will see, various souped-up versions of the Turing
machine itself — evennon-deterministic variants — are also equivalent to the
basic model.

The essential features of the Turing machine are:

• its computations work in a discrete way, step by step, acting on only a
finite amount of information at each stage,

• it uses finite but unbounded storage.

Any model with these two features will probably lead to an equivalent definition
of algorithm.

(c) There are intuitive arguments that any algorithm could be implemented by a
Turing machine. In his paper, Turing imagines someone calculating (computing)
by hand.

It is always possible for the computer to break off from his work, to go
away and forget all about it, and later to come back and go on with it. If
he does this he must leave a note of instructions (written in some standard
form) explaining how the work is to be continued. . . . We will suppose that
the computer works in such a desultory manner that he never does more than
one step at a sitting. The note of instructions must enable him to carry out
one step and write the next note. Thus the state of progress of the compu-
tation at any stage is completely determined by the note of instructions and
the symbols on the tape. . . . This [combination] may be called the “state
formula”. We know that the state formula at any given stage is determined
by the state formula before the last step was made, and we assume that the
relation of these two formulae is expressible. In other words we assume that
there is an axiomA which expresses the rules governing the behaviour of the
computer, in terms of the relation of the state formula at any stage to the state
formula at the preceding stage. If this is so, we can construct a machine to
write down the successive state formulae, and hence to compute the required
number. (pp. 253–4).

So for Turing, any calculation that a person can do on paper could be done by a
Turing machine: type (c) (i.e., intuitive) evidence for Church’s thesis. He also showed
that π,e, etc., can be printed out by a TM (type (a) evidence), and in an appendix
proved the equivalence to Church’s lambda calculus formalisation (type (b)).

1.5.4 Other paradigms of computing

We can vary the notion ofalgorithm by dropping the requirement that it must take only
finitely many steps. This leads to new notions of aproblem, such as the ‘problem’
an operating system or word processor tries to solve, and has given rise to work on
reactive systems.These are not supposed to terminate with an answer, but to keep
running forever; their behaviour over time is what is of interest.
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Is Church’s thesis really true then? Can Turing machines do interactive work?
Well, as the ‘specification’ for an interactive system corresponds to a function whose
input and output are ‘infinite’ (the interaction can go on forever), the Turing machine
model needs modifying.But the basic Turing machine hardware is still adequate —
it’s only how we use it that changes.For example, every time the Turing machine
reaches a halting state, we might look at its output, overwrite it with a new input of our
choice (depending on the previous output), and set it off again from the initial state.
We could model a word processor like this. The collection of all the inputs and outputs
(the ‘behaviour over time/at infinity’) is what counts now. This is research material
and beyond the scope of the course. See Harel’s book for more information on reactive
systems.

More recent challenges to Church’s thesis include quantum computers — whether
they violate the thesis depends on who you read (go to the third-year course on quan-
tum computing). Another is a Turing machine dropped into a rotating black hole.
Theoretically, such a ‘Marvin machine’ could run forever, yet we could still read the
‘answer’ after its infinitely long computation. Recent research (still in progress) sug-
gests this might be possible in principle in certain kinds of solution to Einstein’s equa-
tions of general relativity. Whether it could ever be practically possible is quite another
question, and whether it would violate Church’s thesis is debated among philosophers.

Those who want to find out more could start with the articleSmash and grabby
Marcus Chown, New Scientist vol 174 issue 2337, 6 April 2002, page 24, online via
http://archive.newscientist.com/

1.6 Summary of section

We viewed computers as implementing (running) algorithms. We gave a worrying
‘paradox’ in a Java-like language. To find out how serious it is for computing, we
needed to make the notion ofalgorithm completely precise (formal). We discussed
early algorithms, and Hilbert’s question which prompted the formalising of the vague,
intuitive notion ofalgorithm. Turing’s formalisation was viaTuring machines, and
we explained what a Turing machine is. We finally discussedChurch’s thesis,saying
that Turing machines can implementanyalgorithm. Since this is really a definition so
can’t be proved, we looked at evidence for it.

2. Turing machines and examples

We must now define Turing machines more precisely, using mathematical notation.
Then we will see some examples and programming tricks.
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2.1 What exactly is a Turing machine?

Definition 2.1 A Turing machine is a 6-tupleM = (Q,Σ, I ,q0,δ,F), where:

• Q is a finite non-empty set. The elements ofQ are calledstates.

• Σ is a finite set of at least two elements or symbols.Σ is called thealphabet of
M. We require that∧ ∈ Σ.

• I is a non-empty subset ofΣ, with ∧ /∈ I . I is called theinput alphabet of M.

• q0 ∈ Q. q0 is called thestarting state,or initial state.

• δ : (Q\F)×Σ → Q×Σ×{−1,0,1} is a partial function, called theinstruction
table of M. (Q\F is the set of all states inQ but not inF .)

• F is a subset ofQ. F is called the set offinal or halting states ofM.

2.1.1 Explanation

Q, Σ, q0, and F are self-explanatory, and we’ll explainI in §2.2.1 below. Let us
examine the instruction tableδ. If q is the current state ands the character ofΣ in
the current square,δ(q,s) (if defined) will be a triple(q′,s′,δ) ∈ Q×Σ×{−1,0,1}.
This represents theinstruction to makeq′ the next state ofM, to write s′ in the old
square, and to move the head in directiond: −1 for left, 0 for no move,+1 for right.
So the line

q s q’ s’ d

of the ‘instruction table’ of§1.3.4 is represented formally as

δ(q,s) = (q′,s′,d).

We can represent the entire table as a partial functionδ in this way, by lettingδ(first
two symbols) = last three symbols, for each line of the table. The table andδ carry the
same information. Functions are more familiar mathematical objects than ‘tables’, so
it is now standard to use a function for the instruction table. But it is not essential:
Turing used tables in his original paper.

Note thatδ(q,s) is undefined ifq ∈ F (why?). Also,δ is apartial function: it is
undefined for those arguments(q,s) that didn’t occur in the table. So it’s OK to write
δ : Q×Σ → Q×Σ×{−1,0,1}, rather thanδ : (Q\F)×Σ → Q×Σ×{−1,0,1}, since
δ is partial anyway.

2.2 Input and output of a Turing machine

We now have to discuss thetape contentsof a TM. First some notation to help us.



0 1 2 n-1 n n+1
w w w … w ∧Tape n-10 1 2 ∧
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Definition 2.2 (Words)

1. A word is a finite string of symbols. Example:w = abaa∧∧aab∧ is a word.
The length ofw is 10 (note that the blanks ‘∧’ count as part of the word and
contribute to its length).

2. If Σ is a set, aword of Σ is a finite string of elements ofΣ. We writeΣ∗ for the
set of all words ofΣ. So the above wordw is in {a,b,c,∧}∗, even thoughc is
not used. Remember: aword of Σ is anelementof the setΣ∗.

3. There is a unique word of length 0, and it lies in anyΣ∗; we write thisempty
word asε. Also, each symbol inΣ is already a word ofΣ, of length 1.

4. Clearly, if w,w′ are words ofΣ then we can form a new word ofΣ by writing
w′ straight afterw. We denote this concatenation byww′, or, when it is clearer,
w.w′.

5. We also define well-known functionshead : Σ∗ → Σ andtail : Σ∗ → Σ∗ by:

• if s∈ Σ andw∈ Σ∗ thenhead(s.w) = s

• tail(s.w) = w

• head(ε) = tail(ε) = ε

So, e.g.,
head(abaa∧∧aab∧) = a
tail(abaa∧∧aab∧) = baa∧∧aab∧

2.2.1 The input word

A Turing machineM = (Q,Σ, I ,q0,δ,F) starts a run with its head positioned over
square 0 of the tape. Left-justified on the tape is some wordw of I . Recall thatI
is the input alphabet ofM, and does not contain∧. Sow contains no blanks.

So for example, if the word isw= w0, . . . ,wn−1∈ I∗, thenw0 goes in square 0,w1 in
square 1, and so on, up to squaren−1. The rest of the tape (squaresn,n+1,n+2, . . .)
contains only blanks. The contents of the tape are shown in figure 2.1.

Figure 2.1: Tape with contentsw

The wordw is theinput of M for the coming run. It is the initial data that we have
provided forM.
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Note thatw can have any finite length≥ 0. M will probably want to read all ofw.
How doesM know wherew ends? Well,M can just move its head rightwards until its
head reads a blank ‘∧’ on the tape. Then it knows it has reached the end of the input.
This is whyw must contain no blanks, and why the remainder of the tape is filled up
with blanks (∧). If w were allowed to have blanks in it,M could not tell whether it had
reached the end ofw. Effectively,∧ is the ‘end-of-data’ character for the input.

Of course,M might put blanks anywhere on the tape when it is running. In fact it
can write any letters fromΣ. The extra letters ofΣ\ I are used for rough (or ‘scratch’)
work, and we call themscratch characters.

2.2.2 Run of a Turing machine

This is as explained in§1.3.3. At stage 0, the TMM = (Q,Σ, I ,q0,δ,F) is in stateq0
with its head over square 0 of the tape. Letn ≥ 0 and suppose (inductively) that at
stagen, M is in stateq (whereq∈ Q), with its head over squares (wheres≥ 0), and
the symbol in squares is a (wherea∈ Σ).

1. If q∈ F thenM halts & succeeds.

2. Otherwise, ifδ(q,a) is undefined,M halts & fails.

3. Otherwise, suppose thatδ(q,a) = (q′,a′,d).

(a) If s+d < 0 thenM halts & fails.

(b) Otherwise, at stagen+ 1, the contents of squares will be a′, all other
squares of the tape will be the same as at stagen, the state ofM will be q′,
and its head will be over squares+d.

2.2.3 Output of a Turing machine

Like the input, theoutput of a Turing machineM = (Q,Σ, I ,q0,δ,F) is a word inΣ∗.
The output depends on the input. Just as the input is what is on the tape to begin with,
so the output is what is on the tape at the end of the run, up to but not including the
first blank on the tape —assumingM halts successfully.If, on a certain input,M halts
and fails, or does not halt, then the output for that input isundefined— that is, there
isn’t one.

Recall that at each stage, only finitely many characters on the tape are non-blank.
So the output is afiniteword ofΣ∗. It can be the empty word, or involve symbols from
Σ that are not inI , but it never contains∧.

Exercise 2.3 Consider the Turing machineM = ({q0,q1,q2},{1,∧},{1},q0,δ,{q2}),
with instruction table:

q0 1 q1 ∧ 1
q0 ∧ q2 ∧ 0
q1 1 q0 1 1
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Soδ is given by:δ(q0,1) = (q1,∧,1), δ(q0,∧) = (q2,∧,0), andδ(q1,1) = (q0,1,1).
List the successive configurations of the machine and tape untilM halts, for inputs

1111, 11111 respectively. What is the output ofM in each case?

Definition 2.4 (Input-output function of M) Given a Turing machineM = (Q,Σ, I ,
q0,δ,F), we can define a partial functionfM : I∗ → Σ∗ by: fM(w) is the output ofM
when given inputw.

The function fM is called theinput-output function of M, or thefunction com-
puted by M. fM is apartial function — it is not defined on any wordw of I∗ such that
M halts and fails or does not halt when given inputw.

Exercise 2.5 Let M be in exercise 2.3. Let1n abbreviate 1111. . . 1 (n times). For
whichn is fM(1n) defined?

2.2.4 Church’s thesis formally

Let I ,J be any alphabets (finite and non-empty). LetA be some algorithm all of whose
inputs come fromI∗ and whose outputs are always inJ∗. (For example, ifA is al-
Khwārazmi’s decimal addition algorithm, then we can takeI andJ to be{0,1,. . . ,9}.)
Consider a Turing machineM = (Q,Σ, I ,q0,δ,F), for someΣ containingI andJ. We
say thatM implementsA if for any wordw∈ I∗, if w is given toA and toM as input,
thenA has an output if and only ifM does, and in that case their output is the same. If
you like,M computes the same function asA.

We can now state Church’s thesis formally as follows:

• ‘Given any algorithm, there is some Turing machine that implements it.’ Or:

• ‘Any algorithmically computable function is Turing-computable — computable
by some Turing machine.’ Or:

• ‘For any finiteΣ and any functionf : Σ∗ → Σ∗, f is computable iff there is a
Turing machineM such thatf = fM.’

This is formal, but it is still imprecise, as the intuitive notion of ‘algorithm’ is still (and
has to be) involved.

2.3 Representing Turing machines

2.3.1 Flowcharts of Turing machines

Written as a list of 5-tuples, the instruction tableδ of a TM M can be hard to under-
stand. We will often find it easier to representM as agraph or flowchart. The nodes
of the flowchart are the states ofM. We use square boxes for the final states, and round
ones for other states. An example is shown in figure 2.2.

The arrows between states represent the instruction tableδ. Each arrow is labelled
with one or more triples fromΣ×Σ×{−1,0,1}. If one of the labels on the arrow



q q'(a,b,-1)
(b,c,1)

q q'(x,a,1) if x ≠ ∧, a
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Figure 2.2: part of a flowchart of a TM

from stateq to stateq′ is (a,a′,d), this means that ifM readsa from the current square
while in stateq, it must writea′, then takeq′ as its new state, and move the head
by d (+1 for right, 0 for ‘no move’, and−1 for left). Thus, for each(q,a) ∈ Q×Σ,
if δ(q,a) = (q′,a′,d) then we draw an arrow from stateq to stateq′, labelled with
(a,a′,d).

By allowing multiple labels on an arrow, as in figure 2.2, we can combine all arrows
from q to q′ into one. We can attach more than one label to an arrow either by listing
them all, or (shorthand) by using avariable (s, t,x,y,z, etc.), and perhaps attaching
conditions. So for example, the label ‘(x,a,1) if x 6= ∧,a’ from stateq to stateq′ in
figure 2.3 below means that when in stateq, if any symbol other than∧ or a is read,
then the head writesa and moves right, and the state changes toq′. It is equivalent to
adding lots of labels(b,a,1), one for eachb∈ Σ with b 6= ∧,a.

Figure 2.3: labels with variables

The starting state is indicated by an (unlabelled) arrow leading to it from nowhere
(soq is the initial state in figure 2.3). All other arrows must have labels.

Exercises 2.6

1. No arrows leave any final state. How does this follow from definition 2.1? Can
there be a non-final (i.e., round) state from which no arrows come, and what
would happen if the TM got into such a state?

2. Figure 2.4 is a flowchart of the Turing machine of exercises 2.3 and 2.5 above.
Try doing the exercises using the flowchart. Is it easier?

Warning Becauseδ is a function, each state of a flowchart should haveno more than
onearrow labelled(a,?,?) leaving it, for anya ∈ Σ and any values ?, ?. And if you
forget an arrow or label, the machine might halt and fail wrongly.



(1,∧,1)

(∧,∧,0)
(1,1,1)q0 q1

q2
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Figure 2.4: flowchart of TM of exercises 2.3, 2.5

2.3.2 Turing machines as pseudo-code

Another way of representing a Turing machine is in an imperativepseudo-computer
language.The language is not a formal one: its syntax is usually made up as appropri-
ate for the problem in hand.1 The permitted basic operations are only Turing machine
reads, writes and head movements. However, rather complicated control structures are
allowed, such asif-then statements andwhile anduntil loops. A Turing machine usu-
ally implements if-then statements by using different states. It implements loops by
repeatedly returning to the same state.

Warning Pseudo-code makes programming Turing machines less repetitive, as if-
then structures etc. are needed very frequently. Many-track and many-tape machines
(see later) are represented more easily.

However, there is a risk when writing pseudo-code that we depart too far from the
basic state-changing idea of the Turing machine. The code must represent a real Turing
machine. Whatever code we write, we must always be sure that it caneasilybe turned
into an actual Turing machine. Assuming Church’s thesis, this will always be possible;
but it should always be obvious how to do it.For example,

solve the problem
halt & succeed

is not acceptable pseudocode, nor is

count the number of input symbols
if it is even then halt and succeed else halt and fail

(It is not obvious how the counting is done.) Nested loops are also risky — how are
they implemented?

Halting: include a statement for halt & succeed, as above. For halt & fail, include
a ‘halt & fail’ statement explicitly, or just arrange that no instruction is applicable.

1It has been formalised in some final-year and group projects.



skip erase

stop

(x,x,1)

(x,∧,0)
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2.3.3 Illustration

Example 2.7 (Deleting characters)Fix an alphabetI . Let us define a TMM with

fM(w) = head(w) for eachw∈ I∗,

where the functionhead is as in definition 2.2.M will have three states:skip, erase,
andstop.SoQ = {skip,erase,stop}. Skipis the start state, andstopis the only halting
state. We can take the alphabetΣ to beI ∪{∧}. δ is given by:

• δ(skip,x) = (erase,x,1) for all x∈ Σ,

• δ(erase,x) = (stop,∧,0) for all x∈ Σ.

SoM = (Q,Σ, I ,skip,δ,{stop}). M is pictured in figure 2.5.

Figure 2.5: machine forhead(w)

Thenamesof the states are not really needed in a flowchart, but they can make it
more readable. In pseudo-code:

move right
write ∧
halt & succeed

Note theclosecorrespondence between the two versions.
All M does is erase square 1. We did not need to erase the entire input word,

because the output of a Turing machine is defined (§1.3.5,§2.2.3) to be the characters
on the tapeup to one square before the first blank.Here, we made square 1 blank, so
the output will consist of the symbol in square 0, if it is not blank, orε if it is.

Exercises 2.8 (Unary notation, unary addition) We can represent the numbern on
the tape by 111. . . 1 (n times). This isunary notation. So 0 is represented by a blank
tape, 2 by two 1s followed by blanks, etc. For short, we write the string 111. . . 1 ofn
1’s as1n. In this course,1n will NOT mean1×1×1. . .×1 (n times). Note:10 is ε.
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1. SupposeI = {1,+}. Draw a flowchart for a Turing machineM with input alpha-
betI , such thatfM(1n.+ .1m) = 1n+m. (Remember that ‘.’ means concatenation.
E.g., if the input is ‘111+11’, the output is ‘11111’.) SoM adds unary numbers.
(There is a suitable machine with 4 states. Beware of the casen = 0 and/or
m= 0.)

2. Write a pseudo-code version ofM.

2.4 Examples of Turing machines

We will now see more examples of Turing machines. Because Turing machines are
so simple, programming them can be a tedious matter. Fortunately, over the years
TM hackers have hit upon several useful labour-saving devices. The examples will
illustrate some of these ‘programming techniques’ for TMs. They are:

• storing finite amounts of data in the state,

• multi-track tapes,

• subroutines.

Warning These devices are to help the programmer.They involve no change to the
definition of a TM.(In section 3 we will consider genuine variants of the TM that make
for even easier programming — though these are no more powerful in theory, as we
would expect from Church’s thesis.)

2.4.1 Storing a finite amount of information in the state

This is a very useful technique. First an example.

2.4.1.1 Shifting machines

Example 2.9 (Shifting a word to the right) We want a Turing machineM such that
fM(w) = head(w).w for all w∈ {0,1}∗. SoM shifts its input one square to the right,
leaving the first character alone. E.g.,fM(1011) = 11011. See figure 2.6 for a solution.

TheM above only works for inputs in{0,1}∗, but we could design a similar ma-
chineMI = (QI , I ∪{∧}, I ,q0,δI ,FI ) to shift a word ofI∗ to the right, whereI is any
finite alphabet. IfI has more than 2 symbols thenMI would need more states than
M above (how many?). But the idea will be the same for eachI , so we would like to
expressMI uniformly in I .

Supposewe could introduce intoQI a special stateseen(x) with a parameter, x,
that can take any value inI . We could then usex to remember the symbol just read.
Usingseen(x), the tableδI can be given very simply as follows:



(0,0,1)

(0,1,1)(1,1,1)

(∧,0,0)(∧,∧,0)

(∧,1,0)

(0,0,1)

(1,1,1)

(1,0,1)

seen_0

seen_1

q0

q1

q0 seen(x)

q1

(s,s,1;x:=s) if s≠∧ 

(∧,x,0)
(s,x,1;x:=s)(∧,∧,0)
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Figure 2.6: a shifter:fM(w) = head(w).w

• δI (q0,a) = (seen(a),a,1) for all a in I ,

• δI (seen(a),b) = (seen(b),a,1) for all a,b in I ,

• δI (seen(a),∧) = (q1,a,0) for all a in I .

For an equivalent flowchart, see figure 2.7.

Figure 2.7: the ‘shifter’ TM drawn using parameters in states

Each arrow leading toseen(x) is labelled with one or more 4-tuples. The last entry
of each 4-tuple is an ‘assignment statement’, saying whatx becomes whenseen(x) is
entered.

The pseudo-code will use a variablex. x can take only finitely many values. We
need not mention the initial write, as we only need specify writes that actually alter the
tape.
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read current symbol and put it into x
move right
repeat until x = ∧

swap current symbol with x
move right

end repeat
halt & succeed

This will work for anyI .

2.4.1.2 Using parameters in states is legal

In fact we can use states likeseen(x) without changing the formal definition of the
Turing machine at all! We just observe that whilst it’s convenient to viewseen(x)
as a single state with a parameterx, we could equally get away with the collection
seen(a),seen(b), . . . of states, one for each letter inI , if we are prepared to draw them
all in and connect all the arrows correctly. This is a bit like multiplication:3× 4 is
convenient, but if we only have addition we can view this as shorthand for3+3+3+3.

What we do is this. For each lettera of I we introduce asingle state,calledseen(a),
or if you prefer,seena. BecauseI is finite, this introduces only finitely many states.
So the resulting state set is finite, and so is allowed by the definition of a Turing
machine. In fact, ifI = {a1, . . . ,an} thenQI = {q0,q1,seen(a1), . . . ,seen(an)}: i.e.,
n+ 2 states in all. ThenδI as above is just a partial function fromQI × (I ∪ {∧})
into QI × (I ∪{∧})×{0,1,−1}. So our machine isMI = (QI , I ∪{∧}, I ,q0,δI ,F) — a
genuine Turing machine!

So althoughseen(x) is conveniently viewed by us as a single state with a param-
eter ranging overI , for the Turing machine it is really many states, namelyseen(a1),
seen(a2), . . . seen(an), one for each element ofI .

So we can in effect allow parametersx in the states of Turing machines,so long
asx can take only finitely many values. Doing so is just a useful piece of notation, to
help us write programs. This notation represents the idea of storing abounded finite
amount of information in the state (as in the registers on a computer).

Warning We cannot store any parameterx that can take infinitely many values, or
even an unbounded finite number of values. That would force the underlying genuine
state setQ to be infinite, in contravention of the definition of a Turing machine. So,
e.g., for anyI , we get a Turing machineMI that works forI . MI is built in a uniform
way, but we donot (cannot) get asingle Turing machineM that works for anyI !
Similarly, we cannot use a parameter in a state to count the length of the input word,
since even though the length of the input is always finite, there is no finite upper bound
on it.



∧* w2w1 ∧ ...

seen(x)

(a,√,0,x:= a) if a≠*
(*,*,0, x:= *)

(b,b,1) if
b≠ *

test(y)

(*,*,1,y:= x)

(*,*,1)
(a,*,0) if a≠* and a=y

(a,a,-1) if
    a ≠ √

(√,√,1) (∧,∧,0) if
     y = *

return

begin

halt

M
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2.4.1.3 What we can do with parameters in states

Example 2.10 (Testing whether two strings are equal)We will design a Turing ma-
chine M with input alphabetI , such thatfM(w1,w2) is defined ifw1 = w2 (but we
don’t care what value it has), and undefined otherwise. That is,M halts & succeeds if
w1 = w2, and halts & fails, or never halts, ifw1 6= w2.

First, how can a TM take more than one argument as input? We saw in exercise 2.8
a TM to calculaten+m in unary. Its arguments were1n and1m, separated by ‘+’. So
here we assume thatI contains a delimiter, ‘∗’, say, andw1,w2 are words ofI not
containing ‘∗’. That is, the input tape toM looks like figure 2.8.

Figure 2.8: initial tape ofM

We will use a parameter to remember the last character seen. We will also need
to tick off characters once we have checked them. So we letM have full alphabet
Σ = I ∪{∧,

√}, where
√

(‘tick’) is a new character not inI . We will overwrite each
character with

√
, once we’ve checked it. Figure 2.9 shows a flowchart forM.

Figure 2.9: TM to check ifw1 = w2

M overwrites the leftmost unchecked character ofw1 with
√

, passing to state
seen(x) and remembering what the character was using the parameterx of ‘seen’. (But
if x is ∗, this means it has checked all ofw1, so it only remains to make sure there are
no more uncompared characters ofw2.) Then it moves right until it sees∗, when it
jumps to statetest(y), rememberingx asy. In this state it moves past all∗’s (which are
the checked characters ofw2). It stops when it finds a character —a, say — that isn’t
∗ (i.e.,a is the first unchecked character ofw2). It comparesa with y, the remembered
character ofw1. There are three possibilities:
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1. a = ∧ andy = ∗. So all characters ofw1 have been checked againstw2 without
finding a difference, andw2 has the same length asw1. Hencew1 = w2, soM
halts and succeeds (state halt).

2. a 6= y. M has found a difference, so it halts & fails (there’s no applicable instruc-
tion in statetest(y)).

3. a = y andy 6= ∗. So the characters match.M overwrites the current character
(a) with ∗, and returns left until it sees a

√
. One move right then puts it over the

next character ofw1 to check, and the process repeats.

Exercises 2.11

1. TryM on the inputs123∗123, 12∗13, 1∗11, 12∗1, ∗1, 1∗, and∗ (in the last three,
w1, w2, or both are empty (ε)). What is the output ofM in each case?

2. What would go wrong if the ‘begin→ seen’ arrow was just labelled(a,
√
,0,x :=

a)?

Please don’t worry if you found that hard; Turing machines that need as many as five
states (not counting any parameters) are fairly rare, and anyway we’ll soon see ways to
make things easier. By the way, it’s a good idea to write your Turing machines using
as few states as you can.

3. Design a Turing machineTI to calculate the functiontail : I∗ → I∗.

4. Design a Turing machineM that checks that the first character of its input does
not appear elsewhere in the input. How will you makeM output the answer?

2.4.2 Multiple tracks

Above, we found it convenient to put (finite amounts of) data in the state of a Turing
machine. So a state took the formq(x) or (q,x), wherex could take any of finitely
many values. Then we could specify the instruction table more easily.

In the same way, many problems would be simpler to solve with Turing machines
if we were allowed to use a tape with more than one track — as on a stereo cassette,
which has four tracks all told. The string comparison example shows how useful this
can be. The ‘M’ of figure 2.9 above was pretty complex. Wouldn’t it be easier to use
two tracks?

As before, let’s cheat for a moment and do this. We would like the tape ofM to
have two tracks, withw1 on the first track andw2 on the second track, as shown in
figure 2.10.

ThenM can simply move its head along the tape, testing at each stage whether the
characters in tracks 1 and 2 are the same. See figure 2.11. We write(x,y) as notation
for a square havingx in track 1 andy in track 2. M halts and fails if it finds a square
with different symbols in tracks 1 and 2.

The two-trackM is much easier to design. So it might be useful for Turing ma-
chines in general to be able to have a multi-track tape.



∧

w2
w1 ∧

∧ ∧

....

....
tape track 1

track 2
∧

((x,x),∧,1)
if x ≠ ∧

q0

((∧,∧),∧,1)

halt
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Figure 2.10: two-track tape for word-comparison TM,M

Figure 2.11: flowchart forM

2.4.2.1 Using tracks is legal

In fact, as with states,we can effectively divide the tape into tracks without modifying
the formal definition of the Turing machine.To divide the tape inton tracks, we add
a finite number of new individual symbols of the form(a1, . . . ,an) to Σ, wherea1, . . . ,
an are any symbols. Each(a1, . . . ,an) is a single symbol, inΣ, and may be written to
and read from the tape as usual. But whenever(a1, . . . ,an) is in a square, we canview
this square as divided inton parts, theith part containing the ‘single’ symbolai. So if
n = 2 say, and many squares have pairs of the form(x,y) in them, the tape begins to
look as though it is divided into two tracks (figure 2.12):

If the only symbols on the tape are∧ and symbols of the form(a1, . . . ,an), we can
consider the tape as actually divided inton tracks. Note that∧ 6= (∧,∧).

Warning The tuples(a1, . . . ,an) are just single symbols in the Turing machine’s al-
phabet. The tracks only help us to think about Turing machine operations — they
exist only in the mind of the programmer.No change to the definition of a Turing ma-
chine has been made.Compare arrays in an ordinary computer. The arrayA(5,6) will
usually be implemented as a 1-dimensional memory area of 30 contiguous cells. The
division into a 2-dimensional array is done in software.

Warning We cannot divide the tape into infinitely many tracks — this would vio-
late the requirement thatΣ be finite. (But see 2-dimensional-tape Turing machines in
§3.4.1.)



(a,b) (a,a) ∧(1,a) (2,b) a ∧(∧,∧)

a a 1 2
∧

∧baab
a ∧

The real tape

We view it as:

Track 1
Track 2

∧

((a,b),(a,a),1)
if a≠∧

((∧,b),(∧,∧),0)
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Figure 2.12: tracks on tape

2.4.2.2 What we can do with tracks

Because a Turing machine can write and move according to exactly what it reads, it
can effectively read from and write to the tracks independently. Thus e.g., it can shift
a single track right by one square (cf. example 2.9). In fact, anything we can do with a
1-track machine we can also do on any given track of a multi-track machine.

Cross-track operations are also possible. For example, this Turing machine copies
track 1 as far as its first blank to track 2 (figure 2.13):

Figure 2.13: track copier

2.4.2.3 String comparison revisited

Now let’s see in detail how to solve the string comparison problem using 2 tracks. The
input isw1∗w2 as before: all on one track. See figure 2.14.

The Turing machine we want will have three stages:

Stage 1: replace the 1-track input by 2 tracks, withw1 left-justified on track 1, and
w2, with len(w1)+1 blanks before it, on track 2). This part can be done much



w2w1 ∧ ....*

∧

w2
w1 ∧

∧

....track 1
track 2

∧

... ∧
∧

*
....

∧w2
w1 ∧ ....track 1

track 2
∧

∧ ....
∧ ....∧
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Figure 2.14: initial tape contents

as in figure 2.13 (how exactly?) Then return to square 0. The resulting tape has
2 tracks as far as the input went; after that, it has only one. Also, while we’re at
it, we mark square 0 with a ‘∗’ in track 2 (figure 2.15).

Figure 2.15: tape after Stage 1

Stage 2: shiftw2 left to align it withw1. E.g., use some version oftail (exercise 2.11)(3)
repeatedly, until the∗ is gone (see figure 2.16).

Figure 2.16: tape after Stage 2

Stage 3: compare the tracks as far as their first∧’s, halting & failing if a difference is
found. This is easy — see figure 2.11.

Exercise: work out the details.
So comparing two words is easier with two tracks. But tapes with more than one

track are useful even if there’s only one input. An example is implicit marking of
square 0 (§2.4.3 below); we’ll see others in section 3.

2.4.2.4 Setting up and removing tracks

In the string comparison example 2.10 above, the two argumentsw1, w2 were provided
on a 1-track tape, one after the other (figure 2.8/2.14). We then put them on different
tracks (figure 2.15). If there were 16 arguments, we could put them left-justified on a
16-track tape in a similar way (think about how to do it).



((x,y,z),x,1)
 if x≠∧

((∧,y,z),∧,0)
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But often it is best to set up tracksdynamically— as we go along. This saves
doing it all at the beginning. (Besides, however much of the tape we set up as 2 tracks
initially, we might want to use even more of the tape later, so every so often we’d have
to divide more of the tape into tracks, which is messy.)

So, each time our machine enters a square that is not divided into 2 tracks (i.e.,
doesn’t have a symbol of the form(a,b) in it), it immediately replaces the symbol
found —a, say — by the pair(a,∧), and then carries on. This is so easy to do (just
add instructions of the form(q,a,q,(a,∧),0) to δ, for all non-pairsa ∈ Σ) that we
won’t often mention the setting up of tracks explicitly.

Similarly, whenM has finished its calculations using many tracks, the output will
have to be presented on a single track tape, as per the definition of output in§2.2.3.
Assuming that the answer is on track 1,M will erase all tracks but the first, so that the
tape on termination has a single track that looks like track 1 of the ‘scratch’ tape. It
need only do this as far as the first∧ in track 1. See figure 2.17 for how to do this with
a three-track scratch tape, assumingM has brought its head to square 0:

Figure 2.17: returning to a single track

2.4.3 Implicit marking of square 0 of the tape

Our Turing machines halt and fail if they try to leave the left hand end of the tape. As
we may wish to avoid a halt & fail, it helps when programming to be able to tell when
the head is in square 0. We have seen the need for this in the examples. We want to
mark square 0 with a special symbol, ‘∗’, say. Then when the head reads ‘∗’, we
know it is in square 0.

But square 0 may contain an important symbol already, which would be lost if we
simply overwrote it with ‘∗’.

There are several ways to manage here:

1. Create an extra track, with ‘∗’ in square 0 and blanks in the remaining squares.
To see if the head is in square 0, just read the new track.

2. For eacha in Σ add a new character ‘a∗’ (or ‘ (a,∗)’) to Σ. To initialise, replace
the characterb in square 0 byb∗. From then on, write a starred character iff you
read one. So square 0 is always the only square with a starred character. This is
much the same as adding an extra track.



(x,a,-1) if x≠ a
and not in sq. 0

(x,x,0) if x=a or 
head in sq. 0
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3. Include∗ as a special character ofΣ. To initialise, shift the input right one place
and insert∗ in square 0. Then carry out all operations on squares 1,2,. . . , using
∗ as a left end marker. This works OK, but involves some tedious copying, so is
not recommended when designing actual TMs!

4. Write your TM carefully so it doesn’t need to return to square 0. This is possible
surprisingly often, but few can be bothered to do it.

2.4.3.1 Convention

Because we can always know when in square 0 (by using one of these ways), we will
assume that a Turing machine always knows when its head is over square 0 of the tape.
square 0 is assumed to beimplicitly marked. This saves us having to mention the
extra track explicitly when describing the machine, and so keeps things simple.

2.4.3.2 Examples of implicit marking (fragments of TMs)

repeat until read a or square 0 reached
write a
move left

end repeat
halt & succeed

For a flowchart, see figure 2.18.

Figure 2.18: implicit marking of square 0 in flowcharts

We often need to return the head to square 0. This can be done very simply, using
a loop:

move left until in square 0

Nonetheless, my own view is that ‘return to square 0’ is too high-level pseudo-code
(see thewarning in §2.3.2), and should not be used.
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2.4.4 Subroutines

It is quite in order to string several Turing machines together. Informally, when a
final state of one is reached, the state changes to the initial state of the next in the
chain. This can be done formally by collecting up the states and instruction tables of
all the machines in the chain, and for each final state of one machine, adding a new
instruction that changes the state to the initial state of the next machine in the chain,
without altering the tape or moving the head. The number of states in the ‘chain’
machine is the sum of the numbers of states for the individual machines, so is finite.
Thus we obtain a single Turing machine from the machines in the chain; again we have
not changed the basic definition of the Turing machine. We will use this technique
repeatedly.

Warning When control passes to the next Turing machine in the chain, the head may
not be over square 0. Moreover, the tape following the ‘input’ may contain the previous
machine’s scratchwork and so not be entirely blank. Each machine’s design should
allow for these possibilities, e.g., by returning the head to square 0 before starting, or
otherwise.

2.4.5 Exercises

We end this section with some problems that illustrate the techniques we have seen
here.

Exercises 2.12

1. (subtraction) Suppose thatI = {1,−}. Design a Turing machineM = (Q,Σ,
I ,q0,δ,F) such that

fM(1n.− .1m) =

{

1n−m if n≥ m,
ε, otherwise.

M performs subtraction on unary numbers.

2. (unary multiplication) SupposeI = {1,∗}. Design a Turing machineM such that
fM(1n.∗ .1m) = 1nm. Hint: use 3 tracks and repeated addition and subtraction.

3. (inverting words) LetI be an alphabet. Find a Turing machineM = (Q,Σ, I ,q0,
δ,F) such thatfM(w) is the reverse ofw. E.g.: use storage in states and marking
of square 0.

4. (unary-binary conversion)

(a) Design a machineM to add 1 to a binary number (much easier than in
decimal!). That is, if ifn > 0 is a number let ‘n’ ∈ {0,1}∗ be the binary
expansion ofn, without leading zeros, written with the least significant
digits on the left. (E.g., ‘13’ = 1011. This makes things easier.) Define ‘0’
to be a single zero. We then requirefM(‘n’) = ‘n+1’ for all n≥ 0.
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(b) ExtendM to a machine that converts a unary number to its binary equiva-
lent. Hint: use two tracks.

(c) Design a Turing machine that converts a binary number to unary.

5. (primality testing) Design a TM that, given as input some binary number, tests
whether it is prime. [Again, a 3-track machine is useful. See Hopcroft & Ull-
man, p. 154].

2.5 Summary of section

We defined a Turing machine formally, as a finite state machine with a finite symbol
alphabet and a 1-way infinite tape. We explained why we chose it as our formalisation
of algorithm, and how it is idealised from a real computer. We discussed Church’s
thesis.

We explained input and output for Turing machines and defined the input-output
function fM for a Turing machineM. We saw that a Turing machine can be repre-
sented as a flowchart or by pseudo-code. We gave examples of Turing machines that
solve particular problems: unary-binary conversion, arithmetical operations, etc. We
considered ways of programming Turing machines more easily: storing finite amounts
of data in the state set (cf. registers), using many tracks on the tape (cf. arrays), and
chaining Turing machines (cf. subroutines).

3. Variants of Turing machines

In this section we examine some variants of the TM we considered before. The main
examples we have in mind are machines with a two-way infinite tape, or more than
one tape. We will see that in computational power they are all the same as the ordinary
model. This is in line with Church’s thesis, and provides some evidence for the ‘truth’
of the thesis.

Nonetheless, variants of the basic Turing machine are still useful. Just as in real
life, the more complex (expensive) versions can be easier to program (user-friendly),
whilst the simpler, cheaper models can be easier to understand and so prove things
about. For example, suppose we wanted to prove that ‘register machines’ are equiva-
lent in power to Turing machines. This amounts to showing that Turing machines are
no better and no worse than register machines (with respect to computational power).
We could show this directly. But clearly it might be easier to prove that acheapTur-
ing machine is no better than a register machine, which in turn is no better than an
expensiveTuring machine. As in fact both kinds of Turing machine have equal com-
putational power, this is good enough.
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First we need to make precise what we mean by equal computational power.

3.1 Computational power

Comparing two different kinds of machine can be like comparing a car and a cooker.
How can we begin? But a functionf : I∗ → Σ∗ is a more abstract notion than a ma-
chine. We will compare different kinds of computing machine by comparing their
input-output functions,as with the formal version of Church’s thesis (§2.2.4). To show
that cheap and expensive Turing machines are equivalent, we will show that any func-
tion computable by one kind is computable by the other.

Formally:

Definition 3.1 Let M1,M2 be Turing machines, possibly of different kinds, with the
same input alphabet. We say thatM1 andM2 areequivalent if fM1 = fM2. That is,M1
andM2 compute the same function. They have the same input-output function.

So to show that two kinds of Turing machine have equal computational power, we
will show that for any machine of one kind there is an equivalent one of the other kind.

3.1.1 Proving different machines have equal computational power

As one might expect, it is usually easy to show that an expensive machineM+ can
compute any function that a cheap machineM can. We must work harder to prove that
any algorithm performable by an expensiveM+ can done by a cheaper machineM. We
will see several examples below.

The details of the proofs are not so important. Theimportant pointis that in each
case, althoughM+ is (presumably) solving some problem, we donot try to make the
cheap machineM solve the problem directly. Instead we cheat and makeM mimic or
simulateM+, parrot fashion. The same happens when a Macintosh emulates a PC. We
need no deep understanding of what kind of algorithmsM+ can perform, but only of
the nuts-and-bolts design ofM+ itself. This is a very profound idea, and we will see it
again later (UTMs in section 4, and reduction, in section 5 and Part III of the course).

Aside: it helps ifM+ is not too much more complex thanM. So getting a 1-tape
Turing machineM to imitate a Cray YMP would be best done by going through several
increasingly complex machine designsM1, . . . ,Mn. We would show that an ordinary
Turing machineM is equivalent toM1 (each can simulate the other),M1 is equivalent
to M2, . . . , Mn−1 is equivalent toMn, and thatMn is equivalent to the Cray. This will
show that a Turing machine is equivalent to a Cray.

3.2 Two-way-tape Turing machines

We could easily (with a little more cash) allow the tape of a Turing machine to be
infinite in both directions. In fact this is a commondefinitionof ‘Turing machine’, and
is used in Rayward-Smith’s book (our definition, using a one-way infinite tape, is used
in Hopcroft & Ullman’s).
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Here’s a picture of a 2-way infinite tape Turing machine:

Figure 3.1: a two-way infinite tape TM,M±

Definition 3.2 (Two-way-infinite tape TM) A two-way infinite tape Turing ma-
chinehas the formM± = (Q,Σ, I ,q0,δ,F), exactly as before. The tape now goes right
and left forever, so the head ofM± can move left from square 0 to squares−1,−2, etc.,
without halting and failing. (You can’t tellfrom the 6-tuple definition what kind of tape
the machine has; this information must be added as a rider. Of course, by default the
tape is 1-way infinite, as that’s our definition of a Turing machine.)

The input to M± is written initially in squares0,1, . . . ,n. All squares> n and
< 0 are blank. IfM± terminates, the output is taken to be whatever is in squares
0,1, . . . ,m−1, where the first blank square≥ 0 is in squarem. So we can define the
input-output functionfM± for a two-way infinite tape machine as before.

Exercise 3.3 (This is too easy!)Since we can’t tell from the 6-tuple definition what
kind of tape the machine has, we can alter an ordinary TM by giving it a two-way infi-
nite tape to run on: the result is a working machine. Find a 1-way infinite tape Turing
machine that has a different input-output function if we give it a two-way infinite tape
in this way.

Now 2-way infinite tape Turing machines still seem algorithmic in nature, so if
Church’s thesis is true, they should be able to compute exactly the same functions as
ordinary Turing machines. Indeed they can:for every two-way infinite Turing machine
there is an equivalent ordinary Turing machine, and vice versa.But we can’t just
quote Church’s thesis for this, as we are still gathering evidence for the thesis! We
must prove it. If we can do this, it will provide some type (b) evidence (see§1.5.3) for
the correctness of Church’s thesis as a definition ofalgorithm.

Two-way machines seem intuitively more powerful than ordinary ones. So it
should be easy to prove:

Theorem 3.4 If M = (Q,Σ, I ,q0,δ,F) is an ordinary Turing machine, then there is a
two-way infinite Turing machineM± equivalent toM.

And it is. We takeM± = (Q,Σ∪{fail}, I ,q0,δ±,F), where ‘fail’ is a new symbol
not inΣ. M± begins by moving left to square−1, writing ‘fail’ there, and moving right
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to square 0 again. Then it behaves exactly asM, except that if it ever reads ‘fail’ it
halts and fails. ClearlyfM = fM±. QED.

As we might expect, the converse is a little harder.

Theorem 3.5 Let M± = (Q,Σ, I ,q0,δ,F) be a two-way infinite Turing machine. Then
there is an ordinary Turing machineM equivalent toM±.

PROOF. The idea is to curl thetwo-waytape round in a U-shape, making it1-way
infinite but with two tracks.The top track will have the same contents as squares
0,1,2,. . . of the two-way infinite tape ofM±. The bottom track will have a special
symbol ‘∗’ in square 0, to mark the end of the tape, and squares1,2, . . . will contain
the contents of squares−1,−2, . . . of M±’s tape. See figure 3.2.

Figure 3.2: tape contents ofM± and its shadow

The 1-way tape ofM holds the same information asM±’s 2-way tape.M will use
it to follow M±, move for move. It keeps track of whetherM± is currently left or right
of square 0, by remembering this (a finite amount of information!) in its state, as in
§2.4.1.

In pseudo-code, it is quite easy to specifyM. The variabletrack will hold 1 if
M± is now reading a positive square or 0, and−1 if M± is reading a negative square.
For M, +1 means ‘top track’ and−1 means ‘bottom track’. The variableM±-state
holds the state ofM±. Note that these variables can only take finitely many values, so
they can be implemented as a parameter in the states ofM, as in§2.4.1. Remember
(§2.4.2.1) that in reality, two-track squares ofM’s tape hold pairs(a,b), where we view
a as the contents of the top track, andb the contents of the bottom track.

track := 1; M±-state := q0 % initially M± reads square 0 in state q0
if reading a then write (a,∗) % initialise square 0
repeat until M±-state is a halting state of M±
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if the current square contains a (say), and a is not a pair of symbols, then
if track = 1 then write (a,∧) else write (∧,a) end if % dynamic track set-up

end if
if track = 1 then % M± is reading a square ≥ 0

case [we are reading (a,b) and δ(M±-state,a) = (q,a′,d)]: % δ from M±

write (a′,b) % write to top track
M±-state := q
if b = ∗ and d = −1 then % M± in square 0 and moving left. . .

move right; track := −1
else

move in direction d % track = 1 so M moves the same way as M
end if

end case
else if track= −1 then % M± is reading a square < 0

case [we are reading (a,b) and δ(M±-state,b) = (q,b′,d)]:
write (a,b′) % write to bottom track
M±-state := q
move in direction −d % track= −1, so M moves ‘wrong’ way
if now reading ∗ in track 2 then track := 1 % M± now in square 0

end case
end if

end repeat
% M± has halted & succeeded, so clean up & output
move left until read ∗ in track 2 % return to square 0
repeat while not reading ∧ in track 1

if reading (a,b) (say) then write a % replace two tracks with one
move right

end repeat
write ∧; halt & succeed % blank to mark end of output

SoM mimics M±, move for move. Note that the case statements involve a fixed
finite number of options, one case for each triple(q,a,b) whereq∈ Q anda,b∈ Σ. So
we can implement them by ‘hard-wiring’, using finitely many states ofM. We stipulate
that if no option applies, the case statement halts & fails.

WhenM± halts and succeeds (if ever!),M removes the bottom track, the old top
track up to its first∧ (which is M±’s output) becoming the whole width of the tape.
Thus, the output ofM is the same asM± in all cases, and soM is equivalent toM±.

QED.

Try this on a simple example, followingM’s attempts to keep up withM±. What
happens ifM± halts and fails?
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3.3 Multi-tape Turing machines

With a lot more cash we could allow our machines to have more than one tape. Fig-
ure 3.3 shows a picture of a 3-tape Turing machine. Notice how it differs from a 1-tape

Figure 3.3: a three-tape TM caught in action

machine with 3 tracks. Here, there arethree headswhich can moveindependentlyon
their own tapes. At each step:

• All 3 heads read their squares; the 3 symbols found are passed to control.

• Depending on these 3 symbols and on its current state, control then:

– tells each head what to write;

– tells each head which way to move;

– moves into a new state.

• The process repeats.

The moves, new symbols and state are determined by theinstruction table, and de-
pend on the old state andall threeold symbols. So what one head writes can depend
on what the other heads just read. In many ways, a many-tape Turing machine is
analogous toconcurrent execution,as in effect we have several communicating Turing
machines running together.
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Warning Do not confusemulti-tape TMs with multi-track TMs. I know they are
similar as English words, but these names are in general use and we are stuck with
them. They mean quite different things. Think of tape recorders. Two old mono tape
recorders (2 tapes, with 1 track each) arenot the sameas one stereo tape recorder
(1 tape, 2 tracks). They are in principlebetter,because (a) we could synchronise them
to get the capabilities of a single stereo machine, but (b) we can use them in other ways
too, e.g., for editing. Similar considerations apply to Turing machines.

3.3.1 The multi-tape machine formally

A 3-tape machine can be written formally asM = (Q,Σ, I ,q0,δ,F), where all compo-
nents except solely for the instruction tableδ are as for the usual Turing machine. In
the 3-tape machine,δ is a partial function

δ : Q×Σ×Σ×Σ → Q×Σ×Σ×Σ×{−1,0,1}×{−1,0,1}×{−1,0,1}.

The definition of then-tape machine is the same, except that we have:

δ : Q×Σn → Q×Σn×{−1,0,1}n.

Here, and below, ifS is any set thenSn is the set{(a1, . . . ,an) : a1, . . . ,an ∈ S}.

3.3.1.1 Remarks

1. Forn = 1, this is the same Turing machine as in definition 2.1.

2. How can you tell how many tapes the Turing machine(Q,Σ, I ,q0,δ,F) has?
Only by looking atδ. If δ takes 1 state argument andn symbol arguments, there
aren tapes.

3. Note that it is NOT correct to write, e.g.,(Q3,Σ3, I3,q0,δ,F3) for a 3-tape ma-
chine.One Turing machine, one state set, one alphabet.There is a single state
set in a 3-tape Turing machine, and so we write it asQ. If each of the three heads
were in its own state fromQ, then the state of the whole machine would indeed
be a triple inQ3. But remember, everything is linked up, and one head’s actions
depend on what the other heads read. With so much instantaneous communica-
tion between heads, it is meaningless to say that they have individual states.The
machine as a wholeis in some state — someq in Q.

And there is one alphabet: the set of characters that can occur in the squares on
the tapes. We usedΣ3 when there were 3 tracks on a single tape, because this
involved changing the symbols we were allowed to write in a single square of a
tape. So if you writeΣ3, you should be thinking of a 3-track machine. In fact,
after using 3-tape machines for a while you won’t want to bother with tracks
any more, except to mark square 0.
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3.3.1.2 Computations

How does a many-tape TM operate? Consider (for instance) a 3-tape machineM =
(Q,Σ, I ,q0,δ,F). At the beginning, each head is over square 0 of its tape. Assume that
at some stage,M is in stateq and reads the symbolai from head numberi (for each
i = 1,2,3). Suppose that

δ(q,a1,a2,a3) = (q′,b1,b2,b3,d1,d2,d3).

Then for eachi = 1,2,3, headi will write the symbolbi in its current square and then
move in directiondi (0 or ±1 as usual), andM will go into stateq′. M halts and
succeeds ifq′ is a halting state. It halts and fails if there is no applicable instruction, or
if any of the three heads tries to move left from square 0. The definition of ann-tape
machine is similar.

3.3.1.3 Input/output. The function computed byM

The input, a wordw of I , is placed left-justified on tape 1, with only∧s afterwards. All
other tapes are blank. IfM halts and succeeds, the outputfM(w) is taken to be whatever
is on tape 1 from square 0 up to the character before the first blank. IfM doesn’t halt
& succeed, its output onw is undefined. So as before,fM is a partial function fromI∗

into Σ∗: thefunction computed byM.
Notice that the input-output conventions are as for an ordinary Turing machine. So

ann-tape machine is just an ordinary Turing machine ifn = 1.

3.3.2 Old tricks on the new machine

We can write many-tape machines as flowcharts. For a 2-tape machine, the labels on
arrows will be 6-tuples fromΣ4×{0,1,−1}2, written

((a,b),(a′,b′),(d,d′)),

which meanstake this arrow if head 1 readsa and head 2b; get head 1 to writea′

and head 2b′, and move head 1 in directiond (0 or ±1) and head 2 in direction
d′. Some people prefer to write this label as(a,a′,d,b,b′,d′), dealing with tape 1 first,
then tape 2. This obscures the fact that each tape’s write depends on whatall the heads
read. Whichever notation you use, you should explain it.

We can also use pseudo-code; this is very suitable as it can easily refer to individual
tapes (as for tracks). Indeed, all the programming techniques we saw in section 2 can
still be used for multi-tape machines. For example, we can store information in states,
and can divide each tape into tracks (each tape can have a different number of tracks).
So e.g., by adding one extra track to each tape and putting∗ in square 0 of that track,
a many-tape machine can tell at any stage whether one of its heads is in square 0.
Therefore, we continue to allow square 0 of each tape to be implicitly marked.

However, having many tapes is itself one of the most useful ‘tricks’ of all for
programming Turing machines. For this reason we will use many-tape machines very
often. An example may illustrate how they can help.



((x,x),(x,x),(1,-1))
if h2 not in sq. 0

((x,x),(x,x),(0,0))
if h2 in sq. 0
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Example 3.6 (detecting palindromes (a yes/no problem))Let I be an alphabet with
at least 2 symbols. Apalindrome of I is a wordw of I such thatw is the reverse
of itself (if w = a1a2 . . .an then reverse(w) = anan−1 . . .a1). E.g., ‘abracadabra’ is
(sadly) not a palindrome; Napoleon’s ‘able was I ere I saw Elba’ is.

We now describe a 2-tape Turing machineM = (Q,Σ, I ,q0,δ,F) that halts and
succeeds ifw is a palindrome, and halts and fails otherwise. (The actual outputfM(w)
of M is unimportant; what matters is whetherM halts and succeeds, because this is
enough to tell us the answer — whetherw is a palindrome or not. Problems like
palindrome detection, with only two possible answers for each instance, are called
yes/no problems,or decision problems.We’ll see more of these in Part III.)

The idea is very simple. Initially, the wordw is on tape 1.M first copiesw to tape
2. Then it moves head 1 back to the beginning of the original copy ofw on tape 1, and
head 2 to the end of the new copy on tape 2. It now executes the following:

if the symbols read by the two heads are different then halt and fail
repeat until head 2 reaches square 0

move head 1 right and move head 2 left
if the symbols read by the two heads are different then halt and fail

end repeat

Note that a 2-track machine could not do this, as it has only one head. Note also
that we can’t take a shortcut by stopping when the heads meet in the middle: a 2-tape
Turing machine doesn’t know when its heads cross, unless it has arranged to count
moves.

Exercises 3.7

1. Draw a flowchart for this machine. The main bit is shown in figure 3.4. (This

Figure 3.4: main part of palindrome tester

halts & fails if the heads read different characters — there’s no applicable in-
struction.) Now try to design a single-tape Turing machine that does the same
job. That should convince you that many-tape machines can help programming
considerably. (For a solution see Harel’s book, p.202.)
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2. Let I be an alphabet. Design a 2-tape Turing machineM such thatfM(w) =
reverse(w) for all w∈ I∗. Can you design anM such thatfM(w) = w∗w? (The
output isw, followed by a∗, followed by a copy ofw. E.g.:abc∗abc)

3.3.3 Many-tape versus 1-tape Turing machines

In the exercise, the 1-tape Turing machine that you came up with probably didn’t look
much like the original 2-tape machine. If we tried to find 1-tape equivalents for more
and more complex Turing machines with more and more tapes, our solutions (if any)
would probably look less and less like the original. Can we besure that any n-tape
Turing machine has a 1-tape equivalent — as it should have by Church’s thesis?

In the following important theorem, weprovethat for anyn≥ 1, n-tape Turing ma-
chines have exactly the same computational power as 1-tape machines. Thus Church’s
thesis survives, and in fact the theorem provides further evidence for the thesis.

Just as in the two-way-infinite tape case (theorem 3.4), we will design a 1-tape
machine thatmimicsor simulatesthen-tape machine itself, rather than trying to solve
the same problem directly, perhaps in a very different way. But now, eachsinglestep
of the n-tape machine will be mimicked bymany stepsof the 1-tape machine. We
are really proving thatwe can simulate a bounded concurrent system on a sequential
machine,albeit slowly.

Theorem 3.8 Letn be any whole number, withn≥ 2. Then:

1. For any ordinary, 1-tape Turing machineM, there is ann-tape Turing machine
Mn that is equivalent toM.

2. For anyn-tape Turing machineMn, there is an ordinary, 1-tape Turing machine
M that is equivalent toMn.

PROOF. To show (1) is easy (because expensive is ‘obviously better’ than cheap).
Given an ordinary 1-tape Turing machineM, we can make it into ann-tape Turing
machine by adding extra tapes and heads but telling it not to use them. In short, it
ignores the extra tapes and goes on ignoring them!

Formally, if M = (Q,Σ, I ,q0,δ,F), we defineMn = (Q,Σ, I ,q0,δ′,F) by:

δ′ : Q×Σn → Q×Σn×{−1,0,1}n

δ′(q,a1, . . . ,an) = (q′,b1,∧,∧, . . . ,∧,d1,0,0, . . . ,0) whereδ(q,a1) = (q′,b1,d1).

(Recall thatδ is the only formal difference between TMs with different numbers of
tapes.) Clearly,Mn computes the same function asM, so it’s equivalent toM.

The converse (2), showing that cheap is really just as good as expensive, is of
course harder to prove. For simplicity, we only do it forn = 2, but the idea for largern
is the same.

So letM2 be a 2-tape Turing machine. We will construct a 1-tape Turing machine
M that simulatesM2. As we said, eachM2-instruction will correspond to an entire
subroutine forM. The idea is very simple:M simulatesM2 by drawing a diagram or
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picture ofM2’s initial configuration, and then updating the picture to keep track of the
movesM2 makes.

M has a single4-track tape (cf.§2.4.2). At each stage, track 1 will have the same
contents as tape 1 ofM2. Track 2 will show the location of head 1 ofM2, by having
an X in the current location of head 1 and a blank in the other squares. Tracks 3 and 4
will do the same for tape 2 and head 2 ofM2.

Example 3.9 Suppose that at some point of execution, the tapes and heads ofM2 are
as in figure 3.5. Then the tape ofM will currently be looking like figure 3.6.

Figure 3.5:M2, with 2 tapes

Figure 3.6: a single 4-track tape with the same data

So the tape ofM will always show the current layout ofM2’s tapes and heads. We have
to show howM can update its tape to keep track ofM2. Let us describeM’s operation
from start to finish, beginning with the setting-up of the tracks.
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Initialisation Recall that initially both heads ofM2 are over square 0; tape 1 carries
the input ofM2, and tape 2 ofM2 is blank. M is trying to compute the same
function asM2, so we can assume its input is the same. That is, initiallyM’s
(single) tape is the same as tape 1 ofM2.

First,M sets up square 0. Suppose that tape 1 ofM2 (and so alsoM’s tape) has
the symbola in square 0. ThenM writes(a,X,∧,X) in square 0. This is because
it knows that both heads ofM2 start in square 0 — so that’s where the Xs should
be! And it knows tape 2 ofM2 is blank.

But these Xs will move around later, with the heads ofM2, so also, square 0
should be marked.M can mark square 0 with an extra track — cf.§2.4.3. So
really M’s tape hasfive tracks; but we agreed in§2.4.3.1 not to mention this
track, for simplicity.

We’ll assumedynamic track set-up,as in§2.4.2.4. So wheneverM moves into
a square whose contents are not of the form(a,b,c,d), but justa, it immediately
overwrites the square with(a,∧,∧,∧), and then continues. This is because to
begin with,M’s tape is the same as tape 1 ofM2, and tape 2 ofM2 is blank. So
(a,∧,∧,∧) is the right thing to write.

We assume also thatM always knows the current stateq of M2 (initially q0). It
can keep this information in its state set as well, because the state set ofM2 is
also finite.

M must now update the tape after each move ofM2, repeating the process until
M2 halts. Suppose thatM2 is about to execute an instruction (i.e., to read from and
write to the tapes, move the heads, and change state). WhenM2 has done this, its head
positions and tape contents may be different.M updates its own tape to reflect this, in
two stages:

Stage 1: Finding out whatM2 knows First M’s head sweeps from square 0 to the
right. As it does so, it will come across the X markers in tracks 2 and 4. When
it hits the X in track 2, it looks at the symbol in track 1 of the same square.
This is the symbol that head 1 ofM2 is currently scanning. Suppose it isa1,
say. M remembersthis symbol ‘a1’ in its own internal states — cf.§2.4.1. It
can do this because there are only finitely many possible symbols thata1 could
be (Σ is finite). Similarly,M will eventually find the X in track 4, and then it
also remembers the symbol —a2, say — in track 3 of the same square.a2 is
the symbol that head 2 ofM2 is currently scanning. Of course,M might find the
X in track 4 before or even at the same time as the X in track 2. In any event,
once it has found both Xs,M knows both the current symbolsa1,a2 that M2 is
scanning.

Stage 2: Updating the tapeWe assume thatM ‘knows’ theinstruction tableδ of M2.
This never changes so can be ‘hard-coded’ in the instruction table ofM. As with
the 2-way-infinite tape simulation (theorem 3.5),M does not have tocompute
δ — δ is built into M in the sense that the instruction table ofM is based on it.
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E.g., a pseudo-code representation ofM would involve a long case statement,
one case for each line of the instruction table ofM2.

M now has enough information to work out whatM2 will do next. For, onceM
knowsa1,a2, andq, then since it knowsδ, it also knows the value

δ(q,a1,a2) = (q′,b1,b2,d1,d2) ∈ Q×Σ2×{−1,0,1}2,

if defined. If it is not defined (becauseM2 has no applicable instruction),M
halts and fails (asM2 does). Assume it is defined. ThenM’s head sweeps back
leftwards, updating the tape to reflect whatM2 does. That is:

Procedure SweepLeft % pre: head starts off over the rightmost X
set done1, done2 to false
repeat

if track 2 has X and not done1 then
set done1 to true
write b1 in track 1 and ∧ in track 2 % so erasing the X
move in direction d1 % follow the move of head 1 of M2
write X in track 2 (leaving the other tracks alone)% new position of head 1
move in direction −d1 % back to where we were

end if
〈a similar routine for head 2 of M2, using tracks 3 and 4 and variable done2〉
move left

until in square 0

M ends up in square 0 with the correct tape picturingM2’s new pattern.

If q′ is not a halting state forM2, M now forgetsM2’s old stateq, remembers the new
stateq′, and begins the next sweep at Stage 1 above.

The output Suppose then thatq′ is a halting state forM2. So at this point,M2 will
halt and succeed with the output on tape 1. As track 1 ofM’s tape always looks
the same as tape 1 ofM2, this same output word must now be on track 1 ofM’s
tape.M now demolishes the other three tracks in the usual way, leaving a single
track tape containing the contents of the old track 1, up to the first blank.

M has simulated every move ofM2. So for all inputs inI∗, the output ofM is the
same as that ofM2. Thus fM = fM2, andM is equivalent toM2, as required. QED.

Summary We showed that any algorithm implementable by a 2-tape machineM2 is
implementable by a 1-tape machineM.

Exercises 3.10

1. Write out the pseudo-code routine to handle tracks 3 and 4 inSweepLeft.
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2. Draw flowcharts of the parts ofM that handle stages 1 and 2 above. It’s not too
complicated if you use parameters to storea1,a2,q,q′,b1,b2,d1, andd2, as in
§2.4.1.

3. Why do we ‘move−d1’ after writing X in track 2? (Hint: what if the heads are
both in square 6?)

4. Why do we need the variabledone1 in SweepLeft? What might happen if we
omitted it?

5. What alterations would be needed to simulate ann-tape machine?

6. Suppose that at some pointM2 tries to move one of its heads left from square 0.
M2 halts and fails in this situation. What willM do?

7. Suppose that on some input,M2 never halts. What willM do?

8. How could we makeM more efficient?

9. (Quite long.) LetM2 be the ‘reverser’ 2-tape Turing machine of exercise 3.7.
SupposeM2 is given as input a word of lengthn. How many steps willM2 take
before it halts? IfM is the 1-tape machine that simulatesM2, as above, how
many steps (roughly!) will it take?

3.3.4 Exam questions on Turing machines

1. (a) Design a Turing machineM with input alphabet{a,b,c}, which, given
as input a wordw of this alphabet, outputs the word obtained fromw by
deleting all occurrences of ‘a’. For example,fM(bcaba) = bcb
You may use pseudo-code or a flow-chart diagram; in the latter case, you
should explain your notation for instructions. You may use several tapes,
and you can assume that square 0 of each tape is implicitly marked.

(b) Brieflyexplain how you would design a Turing machineN, with the same
input alphabet asM, that moves all occurrences of ‘a’ in its input word to
the front (left), leaving the order of the other characters unchanged. Thus,
fN(bcaba) = aabcb

The two parts carry, respectively, 65% and 35% of the marks.

2. (a) Explain the difference between a 2-track and a 2-tapeTuring machine.

Below, the notation1n denotes a string 111. . . 1 ofn 1’s. The symbol∗ is used
as a delimiter. You may assume that square 0 of each Turing machine tape is
implicitly marked.

(b) Design a 2-tape Turing machineM with input alphabet{1}, such that
if the initial contents of tape 1 are1n (for somen ≥ 0) and the initial
contents of tape 2 are1m (for somem> 0), thenM halts and succeeds if
and only ifmdividesn without remainder. You may use pseudo-code or a
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flow-chart diagram; in the latter case you should explain your notation for
instructions.

(c) By modifying M or otherwise, briefly explain how you would design a
(2-tape) Turing machineM∗ with input alphabet{1,∗}, such that for any
n≥ 0 andm> 0, fM∗(1n∗1m) = 1r , wherer is the remainder when dividing
n by m.

The three parts carry, respectively, 20%, 45% and 35% of the marks.

3. (a) What isChurch’s thesis? Explain why it cannot be proved but could
possibly be disproved. What kinds of evidence for the thesis are there?

(b) Design a 2-tape Turing machineM with input alphabetI , such that ifw1
andw2 are words ofI of equal length, the initial contents of tape 1 arew1
and the initial contents of tape 2 arew2, thenM halts and succeeds ifw1 is
ananagram (i.e., a rearrangement of the letters) ofw2, and halts and fails
otherwise.
For example, ifw1 = abcaandw2 = caba, M halts and succeeds; ifw1 =
abcaandw2 = cabb, M halts and fails.
You may use pseudo-code or a flow-chart diagram; in the latter case you
should explain your notation for instructions. You may assume that square
zero of each Turing machine tape is implicitly marked.

The two parts carry, respectively, 40% and 60% of the marks. [1993]

3.4 Other variants

We briefly mention some other kinds of Turing machine, and how they are proved
equivalent to the original version.

3.4.1 Two-dimensional tapes

We can have a Turing machine with a 2-dimensional ‘tape’ with squares labelled by
pairs of whole numbers(n,m) (for all n,m≥ 0). Reading, writing and state changing
are as before, but at each step the head can move left, right, up, or down. Soδ is a
partial function: Q×Σ → Q×Σ×{L,R,U,D,0}.

When the run starts, the input word is on the ‘x-axis’ — in squares(0,0),(1,0), . . . ,
(k,0) for somek≥ 0 — and all other squares of the tape contain∧. The machine must
leave the output on thex-axis as well, but it can use the rest of the plane as work space.
Thus it is like a 1-tape machine with an unbounded number of tracks on the tape, except
that access to other tracks is not instantaneous, as the head must move there first. As
the input word is finite and only 1 symbol is written at each step, at all times there will
only be finitely many non-blank symbols on the 2-dimensional tape.
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3.4.1.1 Simulating a 2-dimensional Turing machine

We will show how a ‘big’ 2-dimensional machine can be simulated by a ‘little’ 2-tape
machine. Then we will know by theorem 3.8 that the big machine can be simulated by
a 1-tape machine too.

The contents of the big 2-dimensional tape are kept on little tape 1 in the following
format. The data on tape 1 is divided into segments of equal length, separated by
a marker, ‘*’. The segments list in order the non-blank rows of the big tape. For
example, suppose the non-blank part of the big tape is as in figure 3.7:

Figure 3.7: 2-dimensional tape

Then tape 1 of the little machine will contain the three segments

∧1∧a1∗1110a∗ab∧a∧∗∗

— or the same but with longer segments filled out by blanks. Note the double∗∗ at the
end. Tape 2 of the little machine is used for scratch work.

Head 1 of the little machine is over the symbol corresponding to where the big
machine’s head is. If big head moves left or right, so does little head 1. If however,
big head moves up, little head 1 must move to the corresponding symbol in the next
segment to the right. So the little machine must remember the offset of head 1 within
its current segment. This offset is put on tape 2, e.g., in unary notation. So in this case,
little head 1 moves left until it sees ‘∗’. For each move left, little head 2 writes a 1 to
tape 2. When ‘∗’ is hit, head 1 moves right to the next ‘∗’. Then for each further move
of head 1 right, head 2 deletes a 1 from tape 2. When all the 1’s have gone, head 1 is
over the correct square, and the next cycle commences.

Sometimes the little machine must add a segment to tape 1 (if big head moves
higher on the big tape than ever before), or lengthen each segment (if big head moves
further right than before). It is easy to add an extra segment of blanks on the end of
tape 1 of the right length — tape 2 is used to count out the length. Adding a blank at
the end of each segment can be done by shifting, as in example 2.9. The little machine
can do all this, return head 1 to the correct position (how?), and then implement the
move of the big head as above — there is now room for it to do so.
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This bears out Turing’s remark in his pioneering paper that whilst people use paper
to calculate, the 2-dimensional character of the paper is never strictly necessary. Again
we have found evidence of type (b) for Church’s thesis. A similar construction can
be used to show that for anyn≥ 1, n-dimensional Turing machines are equivalent to
ordinary ones.

3.4.2 Turing machines with limited alphabet

We can imagine Turing machines with alphabetΣ0 = {0,1,∧} andI = {0,1}. Unlike
the previous variants, these are seeminglylesspowerful (cheaper) than the basic model.
But they can compute any functionfM : I → I for any Turing machineM. The idea is
to simulate a given Turing machine(Q,Σ, I ,q0,δ,F) by coding its scratch characters
(those ofΣ\ I ) as strings of 1s. E.g., we listΣ as{s1, . . . ,sn} and representsi by a string
1i of i 1s. Exercise: work out the details. We will develop this idea considerably in the
next section.

3.4.3 Non-deterministic Turing machines

We will define these and show that they’re equivalent to ordinary machines in Part III
of the course.

3.4.4 Other machines and formalisms

Ordinary Turing machines have the same computational power asregister machines,
and also more abstract systems such as thelambda calculusandpartial recursive
functions. No-one has found a formalism that is intuitively algorithmic in nature but
has more computational power. This fact provides further evidence for Church’s thesis.

3.5 Summary of section

We considered what it means for two different kinds of machine to have the same
computational power, deciding that it meant that they could compute the same class of
functions. Examples such as palindrome detection showed how useful many-tape TMs
can be. We proved or indicated that the ordinary Turing machine has the same com-
putational power as the variants: 2-way infinite tape machines, multi-tape machines,
2-dimensional tape machines, limited character machines, and non-deterministic ma-
chines. This provided evidence for Church’s thesis.
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4. Universal Turing machines

We nowadays accept that a single computer can solve a vast range of problems, rang-
ing from astronomical calculations to graphics and process control. But before com-
puters were invented there were many kinds of problem-solving machines, with quite
different ‘hardware’. Turing himself helped to design code-breaking equipment with
dedicated hardware during the second world war. These machines could do nothing
but break codes. Turing machines themselves come in different kinds, with different
alphabets, state sets, and even hardware (many tapes, etc).

It was Turing’s great insight that this proliferation is unnecessary. In his 1936 paper
he described a single general-purpose Turing machine, that can solve all problems that
any Turing machine could solve.

This machine is called auniversal Turing machine. We call itU . U is not magic
— it is an ordinary Turing machine,with a state set, alphabet, etc, as usual. If we want
U to calculatefM(w) for some arbitrary Turing machineM and inputw to M, we giveU
the inputw plus a description ofM. We can do this becauseM = (Q,Σ, I ,q0,δ,F) can
be described by a finite amount of information.U then evaluatesfM(w) by calculating
whatM would do, given inputw — rather in the way that the 1-tape Turing machine
simulated a 2-tape Turing machine in theorem 3.8.

So really,U is programmable:it is an interpreter for arbitrary Turing machines.
In this section, we will show how to buildU .

4.1 Standard Turing machines

In fact we have been lying!U will not be able to handlearbitrary Turing machines.
For example, ifM has a bigger input alphabet thanU does, then some legitimate input
words forM cannot be given toU at all. There’s a similar problem with the output.

So when we buildU , we will only deal with the restricted case ofstandard Turing
machines.This just means that their alphabet is fixed. Though the ‘computer alpha-
bet’ {0,1} is often used for this purpose, we will use the following, more convenient
standard character set. In §4.4 we will indicate why using a fixed alphabet is not
really a restriction at all.

Definition 4.1 We letC be the alphabet{a,b,c,. . . ,A,B,. . . ,0,1,2,. . . ,!,@,£,. . .} of char-
acters that you would find on any typewriter (about 88 in all; note that∧ is not included
in C).

Definition 4.2 A Turing machineS is said to bestandard if:
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1. it conformsexactlyto definition 2.1, and

2. its input alphabet isC and its full alphabet isC∪{∧}.

Warning By (1) of this definition, we know that:

• Shas a single one-way infinite tape (a multi-tape TM is avariant of the TM of
definition 2.1).

• the tape ofShas only one track

• any marking of square 0 is done explicitly.

Extra tracks and implicit marking of square 0 are implemented by adding symbols to
the alphabet (see§2.4.2.1). There is no point in fixing our alphabet asC, and then
changing it by adding these extra symbols.

4.2 Codes for standard Turing machines

We need a way of describing a standard Turing machine toU . So we introduce a key
notion, that ofcoding a Turing machine, so we can represent it asdata. We will
code each standard Turing machineSby a wordcode(S) of C, in such a way that the
operations ofScan be reconstructed fromcode(S) by an algorithm. So:

• S is a standard Turing machine;

• code(S) will be aword ofC, representingS.

Then we will designU so that fU(code(S) ∗w) = fS(w) for all standard Turing ma-
chinesSand all wordsw∈C∗.1

4.2.1 Details of the coding

Let S= (Q,C∪{∧},C,q0,δ,F) be any standard Turing machine. Let us suppose that
Q = {0,1, . . . ,n}, q0 = 0, andF = { f , f + 1, . . . ,n} for somen ≥ 0 and somef ≤ n.
(There is no loss of generality in making this assumption: see§4.2.3.1 below.)

Much as in§2.1.1, we think of the instruction tableδ as a list of 5-tuples, of the
form

(q,s,q′,s′,d)

whereδ(q,s) = (q′,s′,d). For each 5-tuple in the list we have:

0≤ q < f , 0≤ q′ ≤ n, s,s′ ∈C∪{∧}, d ∈ {−1,0,1}.

S is then specified completely by this list, together with the numbersn and f .

1We will input the pair(code(S),w) toU in the usual way, by giving it the stringcode(S) concatenated
with the stringw, with a delimiting character, say∗, in between.
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There are many ways of coding this information. We will use a simple one. Con-
sider theword

n, f , t1, t2, . . . , tN

where the list of 5-tuples ist1, t2, . . . , tN in some arbitrary order,2 and all numbers (n, f
and the numbersq,q′ andd in the 5-tuples) are written in decimal (say). This is a word
of our coding alphabetC∪{∧}. We letcode(S) be the word ofC obtained from this
by replacing every ‘∧’ by the five-letter word ‘blank’. (As we will be givingcode(S)
as input to Turing machines, we don’t want∧ to appear in it.)

4.2.2 Checking whether a word codes a TM

If we have a wordw of C, we can check by an algorithm ifw is the code for a Turing
machine. E.g., ‘;;()101,y%-)’ is no good, whilst the code shown in figure 4.1 is OK
(3 states, 0, 1, 2; state 2 is halting; if in state 1 and read ‘a’, go to state 2, write ‘∧’ and
move left).

Figure 4.1: code(a very simple TM)

In general,w must have the form

n, f ,(x,y,x,y,d),(x,y,x,y,d), . . . ,(x,y,x,y,d)

wheren, f ,x, andd are decimal numbers with0≤ f ≤ n, 0≤ x≤ n, and−1≤ d ≤ 1,
andy is some single character ofC, or ‘blank’.

Exercises 4.3

1. There are several other checks (to do with final states, functionality ofδ, and
more) to be made before we are surew is a code for a genuine TM. Explain
these.

2. In a 5-tuple(x,y,x,y,d), eachy could be any of:

0 1 2 3 4 5 6 7 8 9 , − ( ) blank

Is the code ofSreally unambiguous?
2Unlike in a conventional computer, the order of the instructionsti is not part ofSand clearly does not

affect the waySworks.
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4.2.3 Remarks on the coding

4.2.3.1 Generality of coding

We assumed thatQ = {0,1, . . . ,n} andF = { f , f + 1, . . . ,n} for some f ≤ n. This is
not really a restriction, because given any old standard Turing machineS= (Q,C∪
{∧},C,q0,δ,F), we can always rename its states without changing its behaviour, so
long as we then adjustq0,δ, andF accordingly.

We can therefore rename the states inQ to 0,1, . . . ,n (whereShasn+1 states), so
that

• the initial state is 0

• the final states come at the end of the listing — i.e., they aref , f +1, . . . ,n for
somef ≤ n.

Note: if q0 were also a final state ofS, we could not assume thatF consists of the
states at theendof the list. E.g., we might haveF = {q0,q273}. So our coding would
not work. But such a TM would halt immediately, so we can take its code to be ‘0,0,’
or the code of any other Turing machine that halts immediately, as all such machines
have the same input-output function (namely the identity). Similarly, ifF = /0 then
the Turing machine never halts and succeeds, so it never outputs anything, and we can
take its code to be ‘1,1,’, or the code of any other Turing machine that never halts and
succeeds.

4.2.3.2 (Non-)uniqueness of code of S

There are many ways of renaming the statesQ of Sto 0,1, . . . ,n. And for a givenS, we
can list the instruction 5-tuplest1, . . . , tN in many different orders. We get a different
wordcode(S) representing the sameS, for each possible renaming and ordering.

Socode(S) is really arelation, because it is not uniquely defined. We don’t mind
this. Below, wherecode(S) comes up, it will stand foranycode ofS. We don’t care
which actual code is used; any order of instructions or states will do. There is still an
algorithm to tell whether any givenw is or is not the code of some Turing machine
S (with the instructions listed insomeorder). If we really wanted afunction from
standard Turing machines to words, we could letcode(S) be thefirst word of C (in
alphabetical order) that codesS.

Exercise 4.4 Could we design a TM to decide whether wordsw1,w2 of C code the
sameTM?

4.2.3.3 Standard is needed

We could not code a non-standard TM without more definitions. First, an arbitraryM
may have alphabetΣ 6= C — or it may have alphabetC but uses many tracks, which
comes to the same thing. Ascode(M) must be a word ofC, not of Σ, we’d need to
represent each symbol inΣ by a symbol or word ofC. If M had alphabetC but used
more than one tape, we’d have to change the instruction format: e.g., the instruction
table of a 3-tape machine is a list of 11-tuples!
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4.2.3.4 Other codings

Our coding has someredundancy. E.g., we don’t really need the brackets ‘(’ and ‘)’,
or the numbern at the front (why not?). There are also other, rather different codings
available. For example, Rayward-Smith’s book gives one using prime factorisation, in
which the code ofS is always a number, usually called theGödel numberof S.

Exercise 4.5 How could we turn ourcode(S) into a number?

We stress that these are only details.U only needs to be able to recover the work-
ings ofS from code(S). We can use any coding that allows this.

4.2.4 Summary

The point behind these details is that each standard Turing machineS can be repre-
sented by a finite piece of information, and hence can be coded by a wordcode(S)
of C, in such a way thatwe can reconstructS from code(S). The wordcode(S) ∈ C∗

carries all the information aboutS. It is really anameor planof S.

4.3 The universal Turing machine

Now we can build the universal machineU . It has the following specification:

• If the input toU is code(S) ∗w,3 whereS is a standard Turing machine and
w∈C∗, thenU will output fS(w). (If fS(w) is undefined, then so is the output of
U .)

• If the input is not of this form, we don’t care whatU does.

That is,
fU(code(S)∗w) = fS(w)

for all standard Turing machinesSand allw∈C∗.
The input alphabet ofU will be C, but U will not be standard, as it will have 3

tapes with square 0 (implicitly) marked.4

How doesU work? Suppose that

S= ({0,1, . . . ,n},C∪{∧},C,0,δ,{ f , f +1, . . . ,n})

for somef ≤ n. Assume the input toU is code(S)∗w. U will simulate the run ofSon
inputw. We will ensure that at each stage during the simulation:

• tape 1 keeps its original contentscode(S)∗w, for reference;

3Recall thatcode(S) is not unique. But any code forScarries all the information aboutS. In fact, it
will be clear thatU will output fS(w) given inputs∗w, wheres is anycode forS.

4If we wish, we can use theorem 3.8 to find a one-tape equivalent ofU , and then, as the output ofU
will be a word ofC (why?), apply theorem 4.7 below to find a standard TM equivalent toU .
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• tape 2 is always the same as the current tape ofS;

• head 2 ofU is always in the same position as the head ofS;

• tape 3 holds the current state ofS, in the same decimal format as in the instruc-
tions on tape 1. So e.g., ifS is in state 56, the contents of tape 3 ofU are ‘5’ in
square 0 and ‘6’ in square 1, the rest being blank.

Step 1: Initialisation: U begins by writing 0 in square 0 of tape 3. The rest of tape
3 is already blank, so it now represents the initial state 0 of S.U then copiesw
from tape 1 to tape 2. (The wordw is whatever is after the pair of characters
‘)*’ or a string of the form ‘n, f ,∗’ on tape 1, soU can find it.) It then returns
all three of its heads to square 0. The three tapes (and head 2) are now set up as
above.

Step 2: Simulation: For each execution step ofS, U does several things.

1. Maybe the current stateq of S is a halting state. To find out,U first com-
pares the numberq on tape 3 with the numberf in code(S). U can find
what f is by looking just after the first ‘,’ on tape 1. They are in the same
decimal format, soU can use a simple string comparison to check whether
q < f or q≥ f .

2. If q≥ f , this means thatS is now in a halting state. Because tape 2 ofU is
alwaysthe same as the tape ofS, the output ofS is now on tape 2 ofU . U
now copies tape 2 to tape 1, terminated by a blank, and halts & succeeds.

3. If q < f thenq is not a halting state, andS is about to execute its next
instruction. So head 1 ofU scans through the list of instructions (the rest
of code(S), still on tape 1) until it finds a 5-tuple of the form(q,s,q′,s′,d)
where:

• q (as above) isS’s current state as held on tape 3. Head 3 repeatedly
moves along in parallel with head 1, to check this.

• s is the symbol that head 2 is now scanning — i.e.,S’s current symbol.
A direct comparison of the symbols read by heads 1 and 2 will check
this. (If s is ‘blank’, U tests whether head 2 is reading∧.)

4. If no such tuple is found on tape 1, this means thatS hasno applicable
instruction,and will halt and fail. HenceU halts and fails too (e.g., by
moving heads left until they run off the tape).

5. So assume thatU has found on tape 1 the part ‘(q,s’ of the instruction
(q,s,q′,s′,d) thatS is about to execute.S will write s′, move its head by
d, and change state toq′. To match this,U needs to know whats′, q′,
andd are. It finds out by looking further along the instruction 5-tuple it
just found on tape 1, using the delimiter ‘,’ to keep track of where it is in
the 5-tuple.5 Head 2 ofU can now writes′ at its current location (by just

5The awful possibility thats and/ors′ is the delimiter ‘,’ can be got round by careful counting.
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copying it from tape 1, except that if it isblank, head 2 writes∧), and
then move byd (d is also got from tape 1). Finally,U copies the decimal
numberq′ from tape 1 to tape 3, replacing tape 3’s current contents. After
returning head 1 to square 0,U is ready for the next step of the run ofS. It
now repeats Step 2 again.

Thus, every move ofSis simulated byU . Clearly,U halts and succeeds if and only
if S does, and in that case, the output ofU is just fS(w). Hence, fU(code(S) ∗w) =
fS(w), andU is the universal machine we wanted.

Exercises 4.6

1. What doesU do if S tries at some step to move its head left from square 0 of its
tape?

2. (Important) Why do we not hold the state ofS in the state ofU (cf. storing a
finite amount of information in the states, as in§2.4.1 and theorems 3.5 and 3.8)?
After all, the state set ofS is finite!

3. By using theorem 3.8, and then theorem 4.7 below, we can replaceU with an
equivalent standard TM. So we can assume thatU is standard, so thatcode(U)
exists and is a word ofC.

Let Sbe a standard TM, and letw∈C∗. What is fU(code(U)∗code(S)∗w)?

Using an interpreter was a key step in our original paradox, and so we are now
well on the way to rediscovering it in the TM setting. In fact we will not useU to do
this, but will give a direct argument. Nonetheless,U is an ingenious and fascinating
construction — and historically it led to the modern programmable computer.

4.4 Coding

A Turing machine can have any finite alphabet, but the machineU built above can only
‘interpret’ standard Turing machines, with alphabetC. This is not a serious restriction.
Computers use only 0 and 1 internally, yet they can work with English text, Chinese,
graphics, sound, etc. They do this bycoding.

Coding is not the secret art of spies — that is calledcryptography. Coding means
turning information into a different (e.g., condensed) format, but in such a way that
nothing is lost, so that we candecodeit to recover the original form. (Cryptography
seeks codings having decodings that are hard to find without knowing them.) Examples
of codings are ASCII, Braille, hashing and some compression techniques, Morse code,
etc., (think of some more). A computer stores graphics in coded (e.g., bit-mapped)
form.

Here, we will indicate briefly how to use coding to get round the restriction thatU
can only ‘do’ standard machines.
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4.4.1 Using the alphabetC for coding

Just as ASCII codes English text into words of{0,1}, so the characters and words of
any finite alphabetΣ can be coded as words ofC.

1. C has about 88 characters, so we choose a whole numberk such that:

(number of words ofC of lengthk) = 88k ≥ size ofΣ.

2. We can then assign to eacha∈ Σ a unique word ofC of lengthk. We write this
word ascode(a). There are enough words ofC of lengthk to ensure that no two
different symbols ofΣ get the same code. (Formally we choose a 1–1 function
code: Σ →Ck; exactly what function we choose is not important).

3. We can now code anyword w = a1a2 . . .an of Σ, by concatenating the codes of
the letters ofw:

code(ε) = ε
code(a1a2 . . .an) = code(a1).code(a2). · · · .code(an) ∈C∗

This is just as in ASCII, Morse, etc. We see thatcode(a1a2 . . .an) is a word of
C of lengthkn.

4. We also need todecodethe codes. There is a unique partial functiondecode:
C∗ → Σ∗ given by:

• decode(code(w)) = w for all w∈ Σ∗,

• decode(v) is undefined ifv is a word ofC∗ that is not of the formcode(w).

For any finiteΣ, we can choosek and a functioncodeas above, and define
decodeaccordingly.

As an example of the same idea, we can code words ofC itself as words of{0,1}, using
ASCII. We have e.g.,code(〈space〉) = 01000000, code(AB) = 0100000101000010,
anddecode(01000100) = D.

4.4.2 Scratch characters

Coding helps us in two ways. First, a Turing machine will often need to usescratch
characters: characters that are used only in the machine’s calculations, and do not
appear in its input or output. Examples are characters like(a1, . . . ,an) used in multi-
track work (§2.4.2); we also use scratch characters for marking square 0 (§2.4.3). We
now show that in fact,scratch characters are never strictly needed.We do this only
for standard Turing machines, but the idea in general is just the same.

Theorem 4.7 (elimination of scratch characters)LetM =(Q,Σ,C,q0,δ,F) be a Tur-
ing machine with input alphabetC and any full alphabetΣ. Suppose thatfM : C∗ →C∗

— i.e., the output ofM is always a word ofC. Then there is a standard Turing machine
S that is equivalent toM.
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PROOF. (sketch; cf. Rayward-Smith, Theorem 2.6) The idea is to getS to mimic M
by working with codes throughout. Choose an encoding functioncode: Σ →C∗. The
input wordw is a word ofC. But asΣ is contained inC, w is also a word ofΣ, sow
itself can be coded!Sbegins by encodingw itself, to obtain a (longer) wordcode(w)
of C. Scan then simulate the action ofM, working with codes of characters all along.
WhateverM does with the symbols ofΣ, M∗ does with their codes.

If the simulation halts,S can decode the information on the tape to obtain the
required output. The decoding only has to cope with codes of characters inC∪{∧},
as we are told that the output consists only of characters inC. BecauseS simulates
all operations ofM, we havefS = fM, soSandM are equivalent. At no stage doesS
need to use any other characters than∧ or those inC. SoScan be taken to be standard.

QED.

We can now useU to interpret any Turing machineM with input alphabetC and
such thatfM : C∗ → C∗. We first apply the theorem to obtain an equivalent standard
Turing machineS, and then passcode(S) to U .

4.4.3 Replacing a Turing machine by a standard one

But what if theinput alphabetof M is bigger thanC? Maybe

αβγ⊗∂ →
∫

⊥{p∨q→¬r}

is a possible input word forM; we arenot allowedto pass this toU , as it’s not a word
of U ’s input alphabet. ButM is presumably executing some algorithm, so we’d likeU
to have a crack at simulatingM.

Well, coding can help here, too. Just as computers can do English (or Chinese)
word processing with their limited 0-1 alphabet, so we can design a new Turing ma-
chineM∗ that parallels the action ofM, but working with codes of the characters that
M actually uses. We’ll describe briefly how to do this; it’s like eliminating scratch
characters.

AssumeM has full alphabetΣ. Σ could be very large, but it is finite (because the
definition of Turing machine only allows finite alphabets). Choose a coding function
code: Σ →C∗. WhereM is given inputw∈C∗, we’ll give code(w) to M∗. From then
on,M∗ will work with the codes of characters fromΣ just as in theorem 4.7 above.M
will halt and succeed on inputw if and only if M∗ halts and succeeds on inputcode(w).
The output ofM∗ in this case will becode( fM(w)), the code ofM’s output, and this
carries the same information as the actual outputfM(w) of M.

4.5 Summary of section

We have built a universal Turing machineU . U can simulate any standard Turing
machineS (i.e., one with input alphabetC and full alphabetC∪ {∧}), yielding the
same result asSon the same input. We only have to giveU the additional information
code(S) — i.e., the program ofS. SoU serves as an interpreter for TMs.
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To this end we explained how to specify a standard TM as a coded word. Standard
TMs use the standard alphabetC. We showed how standard machines are in effect as
good as any kind of TM, by coding words of an arbitrary alphabet as words ofC and
having a standard Turing machine work directly on the codes. We used this idea to
eliminate the need for scratch characters.

5. Unsolvable problems

5.1 Introduction

In this section, we will show that some problems, although not vague in any way,
are inherentlyunsolvableby a Turing machine. Church’s thesis then applies, and we
conclude that there is no algorithm to solve the problem.

5.1.1 Why is this of interest?

• Many of these problems are not artificial, ‘cooked-up’ examples, but fundamen-
tal questions such as ‘will my program halt?’ whose solutions would be of great
practical use.

• Increasingly, advanced computer systems employ techniques (such as theorem
provers and Prolog) based onlogic. As logic is an area rich in unsolvable prob-
lems, it is important for workers in these application areas to be aware of them.

• The methods for proving unsolvability can be exploited further, in complexity
theory (Part III). This is an active area of current research, also very relevant to
advanced systems.

• It shows the fundamental limitations of computer science. If we accept Church’s
thesis, these problems will never be solved, whatever advances in hardware or
software are made.

• Even if hardware advances, etc., cause Church’s thesis to be updated in the
fullness of time, the unsolvable problems are probably not going to go away.
Their unsolvability arises not because the algorithms we have are not powerful
enough, but because they are too powerful! We saw in section 1 howparadoxes
cause unsolvability. Paradoxes usually arise because ofself-reference,and al-
gorithms are powerful enough to allow self-reference. (We saw in section 4 that
a Turing machine can be coded as data, and so given as input to another Turing
machine such asU . Compilers take programs as input — they can even compile
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themselves!) As any amendment to Church’s thesis would probably mean that
algorithms are even more powerful than was previously thought, the unsolvable
problems would likely remain in some form, and even proliferate.

5.1.2 Proof methods

Our first (algorithmically) unsolvable problems are problems about Turing machines
themselves (and so — by Church’s thesis — about algorithms themselves). Their
unsolvability is proved byassumingthat some Turing machine solves the problem,
and then obtaining acontradiction (e.g.,0 = 1, black = white, etc).A contradiction
is impossible!Such an impossibility shows that our assumption was wrong, since all
other steps in the argument are (hopefully) OK. So there’s no Turing machine that
solves the problem, after all.

We can then use the method ofreduction to show that further problems are also
unsolvable. The old, unsolvable problem isreduced to the new one, by showing that
any (Turing machine) solution to the new problem would yield a Turing machine so-
lution to the old. As the old problem is known to be unsolvable, this is impossible; so
the new problem has no Turing machine solution either.

A sophisticated example of reduction is used in the proof of Gödel’s first incom-
pleteness theorem (§5.4).

5.2 The halting problem

This is the most famous example of an unsolvable problem. The halting problem (or
‘HP’) is the problem ofwhether a given Turing machine will halt on a given input.For
the same reasons as in section 4, we will restrict attention to standard Turing machines
(we saw in§4.3 that this is not really a restriction!) In this setting, the halting problem
asks, given the input

• code(S), for a standard Turing machineS;

• a wordw of C (see definition 4.1 for the alphabetC),

whether or notShalts and succeeds when given inputw.

Question Why can we not just useU of section 4 to do this, by gettingU to simulate
Srunning onw, and seeing whether it halts or not?

5.2.1 The halting problem formally

Formally, leth : C∗ →C∗ be the partial function given by

• h(x) = 1 if x= code(S)∗w for some standard Turing machineS, andShalts and
succeeds on inputw
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• h(x) = 0 if x = code(S)∗w for some standard Turing machineS, andSdoes not
halt and succeed on inputw

• h(x) is arbitrary (e.g.,undefined) if x is not of the formcode(S) ∗w for any
standard Turing machineSand wordw∈C∗.

Big question: is this functionh Turing-computable? Is there a Turing machineH such
that fH = h? Such anH wouldsolve the halting problem.

Warning Our choice of values 1, 0 forh is not important.Any two different words
of C would do. What matters is that, on inputcode(S)∗w, H always halts & succeeds,
and we can tell from its output whether or notSwould halt & succeed on inputw.

The halting problem is not a toy problem. Such anH would be very useful. As we
now demonstrate, regrettably there is no suchH. This fact has serious repercussions.

Theorem 5.1 (Turing, 1936) The halting problem is unsolvable.

This means that there is no Turing machineH such thatfH = h. Informally, it
means that there’s no Turing machine that will decide, for arbitrarySandw, whether
Shalts & succeeds on inputw or not.

PROOF. Assume for contradiction that the partial functionh (as above) is Turing
computable. Clearly, ifh is computable it is trivial to compute the partial function
g : C∗ →C∗ given by:

g(w) =

{

1, if h(w∗w) = 0,
undefined, otherwise

(Here, ‘w∗w’ is just w followed by a ‘*’, followed byw.) So letM be a Turing machine
with fM = g. By theorem 4.7 (scratch character elimination) we can assume thatM is
standard, so it has a code, namelycode(M).

There are two cases, according to whetherg(code(M)) is defined or not.

Case 1:g(code(M)) is defined. Theng(code(M)) = 1 [by def. ofg],

soh(code(M)∗code(M)) = 0 [also by def. ofg],

soM does not halt & succeed on inputcode(M) [by def. ofh],

so fM(code(M)) is undefined [by def. of Turing machines],

sog(code(M)) is undefined [becausefM = g].

This contradicts the case assumption (which was ‘g(code(M)) is defined’). So
we can’t be in case 1.

Case 2:g(code(M)) is not defined. Then fM(code(M)) is undefined [becausefM =
g],

soM does not halt & succeed on inputcode(M) [by def. of TMs],

soh(code(M)∗code(M)) = 0 [by def. ofh],



H

(input w*w to H)

(assume input is w ∈ C*)

1 on tape0 on tapehalt &
succeed (halt & fail)

add *w after w, so
tape has w*w

M
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sog(code(M)) = 1 [by def. ofg],

so g(code(M)) is defined! This contradicts the case assumption, too, so we
cannot be in case 2 either.

But clearly eitherg(code(M)) is defined, or it isn’t. So we must be in one of the
two cases. This is a contradiction. Soh is not Turing computable. QED.

Another way of seeing the proof: Suppose for contradiction thatH is a Turing
machine that solves HP. We don’t know howH operates. We only know thatfH = h.
Consider the simple modificationM of H shown in figure 5.1. If the input toM is w,

Figure 5.1: an impossible TM

thenM adds a∗ afterw, then adds a copy ofw after it, leaving ‘w∗w’ on the tape. It
then returns to square 0, callsH as a subroutine, and halts & succeeds/fails according
to the output ofH, as in the figure. Note that these extra operations (copying, etc.,) are
easy to do with a TM. So ifH exists, so doesM.

Clearly M outputs only 0, if anything. SofM : C∗ → C∗, and by theorem 4.7
(elimination of scratch characters) we can assume thatM is standard. SoM has a code,
viz. code(M).

Consider the run ofM when its input iscode(M). M will send input ‘code(M) ∗
code(M)’ to H. Now as we assumedH solves HP, the output ofH on inputcode(M)∗
code(M) says whetherM halts and succeeds when given inputcode(M).

But we are now in the middle of this very run — ofM on inputcode(M)! H is
saying whether thecurrent runwill halt & succeed or not! The run hasn’t finished yet,
but H is supposed to predict how it will end — in success or failure. This is clearly a
difficult task forH! In fact, M is designed to find out whatH predicts,and then do the
exact opposite!Let us continue and see what happens.

The input toH wascode(M) ∗ code(M), andcode(M) is the code for a standard
Turing machine (M itself). SoH will definitely halt and succeed. SupposeH outputs
1 (saying thatM halts and succeeds on inputcode(M)). M now moves to a state with
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no applicable instruction (look at figure 5.1).M has now halted and failed on input
code(M), soH was wrong.

Alternatively,H decides thatM halts and fails on inputcode(M). SoH outputs 0.
In this case,M gleefully halts and succeeds: again,H was wrong.

But H was assumed to be correctfor all inputs.This is a contradiction. SoH does
not exist. QED.

5.2.2 The halting problem is hard

Warning: do not think that HP is an easy problem. It is not (and in general, no
algorithmically unsolvable problems are easy). I’ve heard the following argument:

1. We proved that there’s no Turing machine that solves the halting problem.

2. So by Church’s thesis, the halting problem is unsolvable by an algorithm.

3. But our brains are algorithmic — just complicated computers running a complex
algorithm.

4. We can solve the halting problem, as we can tell whether a program will halt or
not. So there is an algorithm to solve the halting problem — us!

(2) and (4) are in conflict. So what’s going on?
Firstly, many people would not agree with (3). See Penrose’s book, listed on

page 6. But in any case, I don’t believe (4). Consider the following pseudo-code
program:

n, p: integer. stp: Boolean % ‘n is the sum of two primes’
set n to 4
set stp to true
repeat while stp

set stp to false
repeat with p = 2 to n−2

if prime(p) and prime(n− p) then set stp to true
end repeat
add 2 to n

end repeat

function prime(p) % assume p≥ 2
i, p: integer
repeat with i = 2 to p−1

if i divides p without remainder then return false
end repeat
return true

end prime
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The functionprime returns true if the argument is a prime number, and false other-
wise. The main program halts if some even number> 2 is not the sum of two primes.
Otherwise it runs forever. As far as I know, no-one knows whether it halts or not. See
Goldbach’s conjecture (§5.4). (And of course we could design a Turing machine doing
the same job, and no-one would know whether it halts or not.)

Exercises 5.2

1. Write a program that halts iff Fermat’s last theorem is false. (This theorem was
only proved in around 1995, after 300 years of effort. So telling if your program
halts can be quite hard!)

2. What happens if we rewire the Turing machineM of figure 5.1, swapping the
0 and 1, so thatM halts and succeeds ifH outputs 1, and halts and fails ifH ’s
output is 0? What if we omit the duplicator that adds ‘∗w’ after w? [Try the
resulting machines on some sample inputs.]

3. Show that there is no Turing machineX such that for all standard Turing ma-
chinesSand wordsw of C, fX(code(S)∗w) = 1 if Shalts(successfully or not)
on inputw, and 0 otherwise.

4. Let the functionf : C∗ →C∗ be given by: f (w) = a. fM(w) if w = code(M) for
some standard Turing machineM and fM(w) is defined, anda otherwise (here,
a∈C is just the lettera!). Prove thatf is not Turing computable.

5. (similar to part of exam question, 1991) LetX be a Turing machine such that
fX(w) = w∗w for all w∈C∗. LetY be ahypotheticalTuring machine such that
for every standard Turing machineSand wordw of C,

fY(code(S)∗w) =
{

1 if fS(w) = 0,
0 otherwise

SoY tells us whether or notSoutputs 0 on inputw.

(a) How might we build a standard Turing machineM such that for allw∈C∗,
we havefM(w) = fY( fX(w))?

(b) By evaluatingfM(code(M)), or otherwise, deduce thatY does not exist.

6. Prove that HP is unsolvable by using the ‘Java-style’ diagonal paradox of sec-
tion 1. [Use the universal machine of section 4.]

7. A super Turing machine is like an ordinary TM except thatI andΣ are allowed
to be infinite. Find a super TM that solves HP for ordinary TMs. [Hint: take
the alphabet to beC∗.] Deduce that super TMs can ‘compute’ non-algorithmic
functions. What if instead we letQ be infinite?



 

72 5. Unsolvable problems

5.3 Reduction

So the halting problem, HP, is not solvable by a Turing machine. There is no machine
H as above. (By Church’s thesis, HP has no algorithmic solution.) We can use this fact
to show that a range of other problems have no solution by Turing machines.

The method is to reduce HP to a special case of the new problem. The idea is very
simple. We just show thatin order to solve HP (by a Turing machine), it is enough to
solve the new problem.We could say that the task of solving HPreducesto the task of
solving the new problem, or that HP ‘is’ aspecial caseof the new problem. So if the
new problem had a TM solution, so would HP, contradicting theorem 5.1. This means
that the new problem doesn’t have a TM solution.

5.3.1 Reduction and unsolvability

In general, we say that a problem Areducesto another problem, B, if we can convert
any Turing machine solution to B into a Turing machine solution to A.1

Thus, if we knew somehow that A had no Turing machine solution (as we do for
A = HP), we could deduce that B had no Turing machine solution either.

Example 5.3 Multiplication reduces toaddition,2 because we could easily modify
an addition algorithm to do multiplication. So if we knew that multiplication could
not be done by an algorithm, we couldn’t hope to find an algorithm that does addition.
Another example: we reduced Goldbach’s conjecture to HP in§5.2.2 above.

Warning A reduces to B = you can use B to solve A. Please get it the right way
round!

Warning It is vital to realise that we can reduce A to Bwhether or not A and B are
solvable.The point is thatif we weregivena solution to B, we could use it to solve
A, so that A is ‘no harder’ than B. (These free, magic solutions to problems like B are
calledoracles.) Not all unsolvable problems reduce to each other.3 Some unsolvable
problems are more unsolvable than others! We’ll see more of this idea in Part III.

5.3.2 The Turing machineM[w]

Reduction is useful in showing that problems are unsolvable. We will see some exam-
ples in a moment. The following Turing machine will be useful in doing them.

1This is a bit vague, but it will do for now. (The main problem is what ‘convert’ means.) We will treat
reduction more formally in section 11, but I can tell you in advance that we will be saying something like
this: A reduces to B if there exists a Turing machineM that converts inputs to A into inputs to B in such
a way that ifMB is a Turing machine solving B, then the Turing machine given by ‘first runM, then run
MB’ solves A. This is what happens in most of the examples below.

2In this sense, addition isharder than multiplication, because if you can add you can easily multiply,
but not vice versa.

3E.g.: the problem ‘does the standard TMS return infinitely often to its initial state when run onw?’
is unsolvable but does not reduce to HP.
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SupposeM is any Turing machine, andw a word of its input alphabet,I . We write
M[w] for the new Turing machine4 that does the following:

1. First, it overwrites its input withw;

2. then it returns to square 0;

3. then it runsM.

It’s easy to see that there always is a TM doing this, whateverM andw are. Here’s an
example.

Example 5.4 SupposeTAIL is a Turing machine such thatfTAIL(w) = tail(w) (for all
w∈C∗). SoTAIL deletes the first character ofw, and shifts the rest one square to the
left. See exercise 2.11(3) on page 33.

The machineTAIL[hello world] first writes ‘helloworld’ on the tape, overwriting
whatever was there already. Then it returns to square 0 and callsTAIL as a subroutine.
This means that its output will be the rather coarse ‘elloworld’ on any input.The input
is immediately overwritten, so it doesn’t matter what it is.

Figure 5.2 shows the Turing machineTAIL[hello] as a flowchart.

Figure 5.2: the TMTAIL[hello]

5.3.2.1 Important properties ofM[w]

Because the input toM[w] doesn’t matter, it is clear that for any Turing machineM and
any wordw of I , we have:

1. fM[w](v) = fM(w) for any wordv of I .

2. M halts and succeeds on inputw, iff M[w] halts and succeeds on inputv for any
or all wordsv of I .

4A less succinct notation forM[w] would be ‘w, thenM’.
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5.3.2.2 MakingM[w] from M and w

Given M andw, it’s very easy to makeM[w]. The part that writesw is always like
the ‘hello world’ machine — it hasw hard-wired in, with a state for each character of
w. Note that it adds a blank afterw, to kill long inputs (see states 5–6 in figure 5.2).
Returning to square 0 is easy; and thenM is called as a subroutine. In figure 5.2,
M = TAIL, w = hello.

5.3.2.3 MakingM[w] standard

Moreover, ifM is standard, thenM[w] can be made standard, too.5 (See§4.1.)

• The part ofM[w] that writesw is certainly standard.

• If we do the return to square 0 by implicitly marking square 0, we will NOT
get a standard Turing machine. So we don’t. Instead, we do ahard-wired
return to square 0. Notice howTAIL[hello] in figure 5.2 returns to square 0: by
writing ‘olleh’ backwards! In general,M[w] writesw forwards, and then returns
to square 0 by writingw again, backwards, but with the head moving left.

• As M is known to be standard, there’s no problem with that part ofM[w].

5.3.3 The Turing machineEDIT

It’s not only easy for us to getM[w] from M and w; we can even design a Turing
machine to do it! There is a Turing machine that takes as inputcode(S) ∗w, for any
standard Turing machineS and wordw of C, and outputscode(S[w]). We call this
machineEDIT — it edits codes of TMs.

How doesEDIT work? It adds instructions (i.e., 5-tuples) on to the end ofcode(S).
The new instructions are for writingw and returning to square 0. They will involve
some numberN of new states: a new initial state, and a state for writing each character
of w, both ways. SoN = 1+ 2 · length(w). (For example, in figure 5.2 we added
new states0,1, . . . ,10, soN = 11, i.e., one more than twice the number of characters
in ‘hello’.) The states of theM-part of M[w] were numbered0,1,2, . . . in code(S).
Now they will be numberedN,N +1,N +2, . . .. SoEDIT must also increase all state
numbers in the oldcode(S) by N.

This sounds complicated, but it is really very simple.Roughpseudo-code for
EDIT is as follows. Remember,EDIT’s input is code(S) ∗w, and its output should
becode(S[w]).

% The states ofS[w] are those ofSplus1+2· length(w) new ones, numbered
% 0,1, . . . ,2· length(w). So first, renumber the states mentioned incode(S)
% (currently0,1, . . .) as1+2· length(w),2+2· length(w), . . ..
Add 1+2· length(w) to all state numbers in code(S), including n and f at the front
% S[w] overwrites its input with ‘w∧’ so add instructions for this at the end of the code.

5To show this, we could just use scratch character elimination. But it would make the machineEDIT
(below) more complicated. So we try to makeM[w] standard in the first place.
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% In figure 5.2 we’d get(0,a,1,h,1),(1,a,2,e,1),(2,a,3, l ,1), . . ., for all a in C∪{blank}.
s := 0 % s will be current state number (s= 0,1, . . . ,2· length(w)).
repeat with q = 1 to length(w)

for each a∈C∪{blank}, add an instruction 5-tuple ‘(s,a,s+1,〈qth char of w〉,1)’
s := s+1

end repeat
for each a∈C∪{blank}, add an instruction 5-tuple ‘(s,a,s+1,blank,−1)’
s := s+1
% S[w] returns to square 0 and hands over toS.
% Add instructions for this, in the way we said.
repeat with q = length(w) down to 2

for each a∈C∪{blank}, add an instruction 5-tuple ‘(s,a,s+1,〈qth char of w〉,−1)’
s:= s+1

end repeat
for each a∈C∪{blank}, add an instruction 5-tuple ‘(s,a,s+1,〈1st char of w〉,0)’
halt & succeed

Of course, this does not show all the details of how to transform the input word
code(S)∗w into the output wordcode(S[w]).

Exercises 5.5

1. Write out the code of thehead-calculating machineM shown in figure 2.5
(p. 28), assuming to keep it short that the alphabet is only{a,b,∧}. Then write
out the code ofM[ab]. Do a flowchart for it. Does it have the number of states
that I claimed above? What is its output on inputs (i)bab, (ii) ∧? (Don’t just
guess; run your machine and see what it outputs!)

2. Would you implement the variableq in the pseudocode forEDIT using a param-
eter in one ofEDIT’s states, or by an extra tape? Why?

3. Write proper pseudocode (or even a flowchart!) forEDIT.

5.3.4 The empty-input halting problem, EIHP

This is the problem of whether or not a Turing machine halts and succeeds on the
empty input,ε. As before, we only consider standard Turing machines.

You might think EIHP looks easier than HP, as it only asks about the halting ofS
on a single fixed input. Well done — you noticed that EIHP reduces to HP! Easier it
may be, but EIHP is still so hard as to beunsolvable— it has no algorithmic solution.
We show this by reducing HP to EIHP.

To say that EIHP issolvableis to say that there is a Turing machineEI such that
for any standard Turing machineS,

fEI(code(S)) =
{

1 if Shalts and succeeds on inputε
0 otherwise



EDIT EI

(x,x,-1)
if not sq. 0

(x,x,0) if sq. 0

H
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Theorem 5.6 EIHP is unsolvable — there is no such Turing machineEI.

PROOF. We will prove this by showing that HP reduces to EIHP.So assume we’re
given a Turing machineEI that solves EIHP. We convert it into a Turing machineH,
as shown in figure 5.3.H first runsEDIT (see§5.3.3), then returns to square 0, then

Figure 5.3: EIHP solution gives HP solution

callsEI as a subroutine. We showed how to makeEDIT, we’re givenEI, and the rest
is easy. So we can really makeH as above.

We claim thatH solves HP. Let’s feed intoH an inputcode(S)∗w of HP. H runs
EDIT, which convertscode(S) ∗w into code(S[w]). This wordcode(S[w]) is then fed
into EI, which (we are told) outputs 1 ifS[w] halts and succeeds on inputε, and 0
otherwise.

But (cf. §5.3.2.1, withv = ε) S[w] halts and succeeds on inputε iff S halts and
succeeds onw.

So the output ofH is 1 if S halts and succeeds onw, and 0 otherwise. Thus,H
solves HP, as claimed, andwe have reduced HP to EIHP.

So by the argument at the beginning of§5.3, EIHP has no Turing machine solution.
EI does not exist. QED.

Exercises 5.7

1. Reduce EIHP to HP (easy).

2. Theuniform halting problem, UHP, is the problem of whether a (standard)
Turing machine halts & succeeds on every possible input. Show by reduction of
HP that UHP is unsolvable. [Hint: use the machine of figure 5.3.]

3. Thesometimes-halts problem,SHP, is the problem of whether a (standard)
Turing machine halts & succeeds on at least one input. Show by reduction of
HP that SHP is unsolvable.

4. [Challenge!] Show that the problem of deciding whether or not two arbitrary
standard Turing machinesS1,S2 areequivalent (definition 3.1) is not solvable
by a Turing machine.
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5.3.5 Real-life example of reduction

As we can simulate Turing machines on ordinary computers (if enough memory is
available), and vice versa, it follows that the halting problem for Turing machines
reduces to the HP for Java. For if we had a Java program to tell whether anarbitrary
Java program halts, we can apply it to the TM simulator, so Java could solve HP for
TMs. But (cf. Church’s thesis) the Java halting program could be implemented on a
TM, so we’d have a TM that could solve the HP for Turing machines, contradicting
theorem 5.1.

So there is no Java program that will take as input an arbitrary Java programP
and arbitrary inputx, and tell whetherP will halt on input x. For a particularP and
x you may be able to tell, but there is no general strategy (algorithm) that will work.
The paradox of section 1 can also be used to show this. Thus it is better to write
well-structured programs that can easily be seen to halt as required!

5.3.6 Sample exam questions on HP etc.

1. (a) Explain what the halting problem is. What does it mean to say that the
halting problem is unsolvable?

(b) Explain what the technique of reduction is, and how it can be used to show
that a problem is unsolvable.

(c) Let C be the standard typewriter alphabet. The symbol * is used as a
delimiter. Let the partial functionf : C∗ →C be given by

f (code(S)∗w) =

{

1 if Shalts and succeeds on inputw
and its output contains the symbol 0,

0 otherwise,

for any standard Turing machineSand wordw of C.
Prove, either directly or by reduction of the halting problem, that there is
no Turing machineM such thatfM = f .

2. (a) Explain what the empty-input halting problem is. What does it mean to
say that the empty-input halting problem is unsolvable?

(b) The empty-output problem asks, given a standard Turing machineM and
input wordw to M, whether the outputfM(w) of M on w is defined and is
empty (ε).
Let EO be a hypothetical Turing machine solving the empty-output prob-
lem:

fEO(code(M)∗w) =

{

1 if fM(w) = ε,
0 otherwise,

for any standard Turing machineM and wordw of the typewriter alphabet
C.



DUPLICATE EO

If EO outputs 1

If EO outputs 0

X
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Let DUPLICATE be a Turing machine such thatfDUPLICATE(w) = w∗w
for any wordw of C.
By considering the Turing machineX partially described by figure 5.4,
prove thatEO cannot exist. (You must decide how to fill in the shaded
parts.)

Figure 5.4: the TMX

(c) Can there exist a Turing machineEO′ such that

fEO′(code(M)∗w) =
{

ε, if fM(w) = ε,
1 otherwise

for all standard Turing machinesM and wordswof C? Justify your answer.

The three parts carry, respectively, 30%, 50%, 20% of the marks.

3. In this question,C denotes the standard typewriter alphabet.

(a) What does it mean to say that a partial functiong : C∗ → C∗ is (Tur-
ing-)computable?

(b) Let g : C∗ →C∗ be a partial function that ‘tells us whether the output of a
standard Turing machine on a given input is “hello” or not’. That is, for
any standard Turing machineSand wordw of C,

g(code(S)∗w) =
{

y if fS(w) = hello
n otherwise.

Show thatg is not computable.

(c) LetU be the universal Turing machine. Leth : C∗ →C∗ be a partial func-
tion such that for any wordx of C,

h(x) =
{

y if fU(x) = hello,
n otherwise.

Given thatg as in part b is not computable, deduce thath is not computable
either.

The three parts carry, respectively, 25%, 50% and 25% of the marks.

4. In this question:



    

5.4. G̈odel’s incompleteness theorem 79

• C denotes the standard typewriter alphabet.

• If S is a standard Turing machine andw a word ofC, S[w] is a standard
Turing machine that overwrites its input withw and then runsS.
So fS[w](x) = fS(w) for any wordx of C.

• EDIT is a standard Turing machine such that for any standard Turing ma-
chineSand wordw of C, fEDIT(code(S)∗w) = code(S[w]).

• REV is a standard Turing machine that reverses its input (so, for example,
fREV(abc) = cba).

• U is a (standard) universal Turing machine.

(a) Define what it means to say that a partial functiong : C∗ →C∗ is (Turing-)
computable.

(b) Let g : C∗ → C∗ be a partial function that “tells us whether or not a stan-
dard Turing machine halts and succeedson input w*w”. That is, for any
standard Turing machineSand wordw of C,

g(code(S)∗w) =
{

y if Shalts & succeeds on inputw∗w,
n otherwise.

Show thatg is not computable.

(c) Evaluate:

i. fU(code(REV)∗deal)
ii. fU( fEDIT(code(REV)∗stock)∗share)

iii. fU( fEDIT(code(U)∗code(REV)∗buy)∗sell)

The three parts carry, respectively, 20%, 40% and 40% of the marks. [1994]

5.4 Gödel’s incompleteness theorem

We sketch a final unsolvability result, first proved by the great Austrian logician Kurt
Gödel in 1931. One form of the theorem states thatthere is no Turing machine that
prints out all true statements (‘sentences’) about arithmetic and no false ones.6 Arith-
metic is the study of the whole numbers{0,1,2, . . .} with addition and multiplication.
A ‘Gödel machine’ is a hypothetical Turing machine that prints out all the true sen-
tences (and no false ones) of thelanguage of arithmetic.This is a first-order language
with:

• The function symbols ‘+’ and ‘·’ (plus and times), and the successor functionS

• The relation symbol< (and= of course)

• The constant symbol 0

6Such a machine would never halt. It would print out successive truths, separated on the tape by∗, say.
We just have to keep looking at the output every so often.
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• The variablesx,x′,x′′,x′′′, . . . (infinitely many)

• The connectives∧ (and),∨ (or),→ (implies),¬ (not),↔ (iff)

• The quantifiers∀,∃
• The brackets ( and )

There are 19 symbols here. Think of them as forming an alphabet,Σ. Note thatx′

is two symbols,x and ′. (We’ll cheat and usey,z, . . . as abbreviations for variables
x′,x′′, . . .) The successor functionSrepresents addition of 1. SoSSS0 has value 3.

This is anextremelypowerful language. E.g.,x is prime is expressible by the
formula

π(x) =de f (x > S0)∧ (∀y∀z(x = y·z→ y = x∨z= x)).

Goldbach’s conjectureis expressible by the sentence

GC=de f ∀x(x > SS0∧∃y(x = y·SS0) →∃y∃z(π(y)∧π(z)∧x = y+z)).

Exercise 5.8 What doesGC say? Is∀y∀z(SS0·y·y = z·z→ y = 0) true?

Whether Goldbach’s conjecture is true is still unknown, 200 years or so after Goldbach
asked it. So if we had a ‘G̈odel machine’, we could wait and see whetherGC or ¬GC
was in its output. Thus it would solve Goldbach’s conjecture (eventually).

Regrettably:

Theorem 5.9 There is no G̈odel machine.7

PROOF. (sketch) We reduce HP to the problem a Gödel machine would be solving, if
such a machine existed. In fact we show that for any standard Turing machineM and
word w of the alphabetC, the statement ‘M halts on inputw’ can be algorithmically
written as a sentenceX of arithmetic! (This shows some of the power of this language.)
We could then solve the halting problem by waiting to see which ofX or ¬X occurs
in the output of a G̈odel machineG. But we proved that HP has no Turing machine
solution, so this is a contradiction. Hence there is no suchG.

We will only be able tosketchthe argument for obtainingX from code(S) ∗w —
in full, the proof is quite long. The idea, though, is very simple:

• A configuration of M is the combination (current state, tape contents, head
position).

• A run of M can be modelled by a sequence of configurations ofM. Given any
configuration in a run, we can work out the next configuration in a well-defined
way using the instruction tableδ of M.

• We cancodeany configuration as a number. The relationship between succes-
sive configurations in a run ofM then becomes an arithmetical relation between
their codes. This relation is expressible in the language of arithmetic. (Cf. Tur-
ing’s statement quoted on page 20.)

7Gödel’s first incompleteness theorem. Equivalently (for mathematicians), there is no recursive ax-
iomatisation of true arithmetic.
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• We can write a formula coding entire sequences of numbers (configurations),
of any length, as a single number. Thus the entire run ofM can be represented
as a single number,c. We can write a formulaR(c) expressing that the list of
configurations coded byc forms a successful (halting) run ofM on inputw.

• We then write a sentenceX = ∃xR(x) of arithmetic saying that there exists (∃) a
run of M on w that ends in a halting state. SoX is true if and only ifM halts on
w, as required.

QED.

The same idea comes up again in section 12 (Cook’s theorem).
Gödel’s theorem can also be proved using our old paradoxthe least number not

definable by a short English sentence:see Boolos’ paper in the reading list. For
assume that there was such a Gödel machine:G, say. Because ofG’s mechanical
Turing-machine nature, it turns out that properties ofG are themselves statements
about arithmetic. Crudely, the statement ‘this statement is not in the output ofG’
can be written as a sentenceSof arithmetic. This leads to a contradiction, sinceS is in
the output ofG iff S is false. Of course, G̈odel’s proof didn’t use Turing machines —
they hadn’t been invented in 1931.

5.4.1 Details of the proof

The following couple of pages of details are for interest only; they’re not likely to be examined!!
There are eleven easy steps.

1. As in §4.2.1, letM have state setQ = {0,1,2, . . . ,q}, where 0 is the initial state and the
halting states aref , f +1, . . . ,q.

2. Let’s begin bycoding a configuration ofM as a sequence of numbers.We can code the
state by itself, and the head position by the number of the tape square that the head is reading.
And as the alphabet ofM is C, we can code the symbols on the tape by their ASCII equivalents,
using 0 for∧ (say). (Any ASCII code is a number: e.g., the ASCII code for ‘A’ is ASCII(A) =
01000001 in binary, i.e., 64+1 = 65. ASCII(B) = 66, etc.)

So the configuration ‘in statek, with head over squarer, the tape contents up to the last
non-∧ beinga0 (square 0),a1 (square 1), . . . ,am (squarem)’ can be represented by the sequence
of numbers:

(k, r,ASCII(a0),ASCII(a1), . . . ,ASCII(am))

For example, if squares 5, 6, . . . are blank, the configuration shown in figure 5.5 can be rep-
resented by the sequence (6,3,65,66,65,0,51), the ASCII codes for A, B, 3 being 65, 66, 51
respectively.

3. Useful Technical Fact:There is a formulaSEQ(x,y,z) of the language of arithmetic with
the following useful property. Given any sequence(a0,a1, . . . ,an) of numbers, there is a number
c such that for all numbersz:

• SEQ(c,0,z) is true if and only ifz= a0

• SEQ(c,1,z) is true if and only ifz= a1

. . . . . . . . . . . . . . . . . .



0 1 2 3 4 5 6
A B A ∧ 3 ∧ ∧

state 6
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Figure 5.5: a Turing machine configuration

• SEQ(c,n,z) is true if and only ifz= an.

We can use such a formulaSEQto code the sequence(a0,a1, . . . ,an) by the single numberc.
We can recover(a0,a1, . . . ,an) from c usingSEQ.

Finding such a formulaSEQ is not easy, but it can be done. For example, we might try
to code(a0,a1, . . . ,an) by the numberc = 2a0+1 ·3a1+1 · . . . · pan+1

n , where the firstn+1 primes
are p0 = 2, p1 = 3, . . . , pn.8 E.g., the sequence (2,0,3) would be coded by 22+1 ·30+1 ·53+1 =
15,000. Because any whole number factors uniquely into primes, we can recovera0+1, . . . ,an+
1, and hence(a0,a1, . . . ,an) itself, from the numberc. So it is enough if we can write a formula
SEQ(x,y,z) saying ‘the highest power of theyth prime that dividesx is z+ 1’. In fact we can
write such a formula,but there are simpler ones available (and usually the simple versions are
used in proving that there is a formulaSEQlike this!)

4. In fact we want tocode a configuration ofM as a single number.UsingSEQ, we can
code the configuration(k, r,ASCII(a0),ASCII(a1), . . . ,ASCII(am)) as a single number,c. If we
do this, thenSEQ(c,0,k), SEQ(c,1, r), SEQ(c,2,ASCII(a0)), . . . ,SEQ(c,m+2,ASCII(am)) are
true, and in each case the number in the third slot is theonlyone that makes the formula true.

5. Relationship between successive configurations.Suppose thatM is in a configuration
coded (as in (4)) by the numberc. If M executes an instruction successfully, without halting &
failing, it will move to a new configuration, coded byc′, say. What is the arithmetical relationship
betweenc andc′?

Let c code(k, r,ASCII(a0),ASCII(a1), . . . ,ASCII(am)). Assume thatr ≤ m.9 So M is in
statek, and its head is reading the symbolar = a, say. But we know the instruction tableδ
of M. Assume thatδ(k,a) = (k′,b,d), wherek′ is the new state,b is the symbol written, and
d the move. So ifc′ codes the next configuration(k′, r ′,ASCII(a′0),ASCII(a′1), . . . ,ASCII(a′m))
of M, we know that (i)r ′ = r + d, and (ii) a′i = ai unlessi = r, in which casea′r = b. So in
this case, the arithmetical relationship betweenc andc′ is expressible by the following formula

8We usea1 +1, etc., becausea1 may be 0; if we just useda1 then 0 wouldn’t show up as a power of 2
dividing c. So we’d havecode(2,0,3) = code(2,0,3,0,0,0) — not a good idea.

9If r > m, M is reading∧. This is a special case which we omit for simplicity. Think about what we
need to do to allow for it.
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F(c,c′,k,a,k′,b,d):10

∀r
(

[SEQ(c,0,k)∧SEQ(c,1, r)∧SEQ(c, r +2,ASCII(a)]

% statek, head in sq.r readsa
→ [SEQ(c′,0,k′)∧SEQ(c′,1, r +d)∧SEQ(c′, r +2,ASCII(b))

% new state, head pos & char

∧∀i(i ≥ 2∧ i 6= r +2→∀x(SEQ(c, i,x) ↔ SEQ(c′, i,x))]
)

%rest of tape is unchanged

Note that we obtain the valuesk′,b, andd from k anda, via δ.
To express — for arbitrary codesc,c′ of configurations — thatc′ codes the next configuration

afterc, we need one statementF(c,c′,k,a,k′,b,d) like this for each line(k,a,k′,b,d) of δ. Let
N(c,c′) be the conjunction (‘and’) of all theseFs. N is the formula we want, becauseN(c,c′) is
true if and only if, whenever M is in the configuration coded by c then its next configuration (if it
has one) will be the one coded by c′.

6. Coding a successful run.A successful (halting) run ofM is a certain finite sequence of
configurations. We can code each of these configurations as a numberc, so obtaining a sequence
of codes,c0,c1, . . . ,cn. For these to be the codes of a successful (halting) run ofM on w, we
require:

• c0 codes the starting configuration of M.So we wantSEQ(c0,0,0) [state is 0 ini-
tially], andSEQ(c0,1,0) [head over square 0 initially], and also some formulas expressing
that the tape initially contains the input wordw = w0w1 . . .wm. We can use the formu-
lasSEQ(c0,2,ASCII(w0)), SEQ(c0,3,ASCII(w1)), . . . , andSEQ(c0,m+2,ASCII(wm)).
We can write all this as a finite conjunctionI(c0) (I for ‘initial’).

• ci+1 is always the ‘next’ configuration of M after ci . We can write this as ‘N(ci ,ci+1)
holds for eachi < n’.

• cn codes a halting configuration of M.Recalling thatf , f +1, . . . ,q are the halting states
of M, we can write this as a finite disjunction (‘or’),

H(cn) = SEQ(cn,0, f )∨SEQ(cn,0, f +1)∨ . . .∨SEQ(cn,0,q),

saying thatcn is a configuration in whichM is in a halting state.

7. Coding a successful run as a single number.If we now use the formulaSEQto code the
entire(n+2)-sequence(n,c0, . . . ,cn) as a single number,g, say, we can express the constraints
in (6) as properties ofg:

• ∀x(SEQ(g,1,x) → I(x))

• ∀n∀i∀x∀y(SEQ(g,0,n)∧1≤ i < n+1∧SEQ(g, i,x)∧SEQ(g, i +1,y) → N(x,y))

• ∀n∀x(SEQ(g,0,n)∧SEQ(g,n+1,x) → H(x))

10We’ve cheated and used 1,2,3 in this formula, rather thanS0,SS0, andSSS0. We will continue to cheat
like this, to simplify things. Also, the formula only works ifd ≥ 0, as there’s no ‘−’ in the language of
arithmetic so ifd =−1 we can’t writer +d. If d =−1, we replaceSEQ(c,2, r) in line 1 bySEQ(c,2, r +1)
andSEQ(c′,2, r +d) in line 2 bySEQ(c′,2, r).
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(Note thatc0, . . . ,cn are entries 1,2, . . . ,n+1 of g.)
8. Let the conjunction (∧) of these three formulas in (7) beR(g). So for any numberg, R(g)

holds just wheng codes a successful run ofM on inputw. So the statement ‘M halts on input w’
is equivalent to the truth of∃xR(x).

9. R can be constructed algorithmically.Notice that what I’ve just described is an algorithm
(implementable by a Turing machine) to constructR(x), given the data: (a) how many statesM
has, (b) which states are halting states, (c) the instruction tableδ of M, and (d) the input wordw.
This information is exactly whatcode(M) ∗w contains! So there is an algorithm (or Turing
machine) that constructs∃xR(x) from code(M)∗w.

10. Reducing HP to the G̈odel machine.If we had a G̈odel machine,G, we could now solve
the halting problem by an algorithm as follows.

1. Givencode(M) andw, whereM is a standard Turing machine andw a word ofC, we
construct the sentence∃xR(x).

2. Then we wait and see whether∃xR(x) or ¬∃xR(x) turns up in the output ofG. This tells
us which of them is true. (One of them will turn up, because one of them is true, andG
prints all and only true statements. So we won’t have to wait forever.)

3. If ∃xR(x) turns up, then it’s true, so by (8)M must halt & succeed on inputw. So we
print ‘halts’ in this case — and we’d be right! We print ‘doesn’t halt’ if∃xR(x) turns up;
similarly, we’d be right in this case too.

So these algorithmic steps would solve the halting problem by a Turing machine.
11. Conclusion. But we know the halting problem can’t be solved by a Turing machine.

This is a contradiction. SoG does not exist (because this is the only assumption we made).

5.4.2 Other unsolvable problems

• Deciding whether a sentence of first-order predicate logic is valid or not. Church
showed that any algorithm to do this could be modified to print out (roughly) all
true statements of arithmetic and no false ones. We’ve shown this is impossible.

• Post’s correspondence problem. This has the stamp of a real problem about it
— it doesn’t mention algorithms or Turing machines. Given wordsa1, . . . ,an,
b1, . . . ,bn of C, the question is: is there a non-empty sequencei(1), . . . , i(k) of
numbers≤ n such that the wordsai(1)ai(2) . . .ai(k) andbi(1)bi(2) . . .bi(k) are the
same? There is no algorithm to decide, in the general case, whether there is or
not. This can be shown by reducing HP to this problem; see Rayward-Smith for
details.

Exercises 5.10

1. Show that there is no algorithm to decide whether a sentenceA of arithmetic is
true or false. [Hint: any Turing machine to do this could be modified to give a
Gödel machine.]

2. Show that there is no Turing machineN such that for all sentencesA of arith-
metic, fN(A) = 1 if A is true, and undefined ifA is false.
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3. Complete the missing details in the proof of Gödel’s theorem. Find out (from
libraries) how to write the formulaSEQ.

5.5 Summary of section

We saw the significance of unsolvable problems for computing. We proved that there
is no Turing machine that says whether an arbitrary Turing machine will halt on a
given input (‘HP is unsolvable’). By showing that a solution to certain other problems
would give a solution to HP (the technique of reduction), we concluded that they were
also unsolvable. In this way, we proved that EIHP is unsolvable, and that there is no
Turing machine that prints out exactly the true sentences of arithmetic. So doing this
is another unsolvable problem.

5.6 Part I in a nutshell

Sections 1–2:A Turing machine (TM) is a 6-tupleM = (Q,Σ, I ,q0,δ,F) whereQ is
a finite set (of states),Σ is a finite set of symbols (the full alphabet),I 6= /0 is
the input alphabet,Σ ⊇ I , ∧ ∈ Σ \ I is the blank symbol,q0 ∈ Q is the initial
state,δ : Q×Σ → Q×Σ×{0,1,−1} is a partial function (the instruction table),
andF (a subset ofQ) is the set of final states. We viewM as having a 1-way
infinite tape with squares numbered0,1,2, . . . from left to right. In each square
is written a symbol fromΣ; all but finitely many squares contain∧. Initially the
tape contains a wordw of I (a finite sequence of symbols fromI ), followed by
blanks. w is the input toM. M has a read/write head, initially over square 0.
At each point,M is in some state inQ, initially q0. At each stage, if the head is
over a square containinga∈ Σ, andM is in stateq∈ Q, then if q∈ F , M halts
and succeeds. Otherwise, letδ(q,a) = (q′,b,d); M writesb to the square, goes
to stateq′, and the head moves left, right, or not at all, according asd = −1,1,
or 0, respectively. Ifδ(q,a) is undefined or if the move would takeM’s head off
the tape,M halts and fails. The output ofM is the final tape contents, terminated
by the first∧; the output is only defined ifM halts & succeeds. We writefM :
I∗ → Σ∗ for the partial function taking the input word to the output word; here,
Σ∗ is the set of words ofΣ, and similarly forI . A partial function f : I∗ → Σ∗ is
said to be Turing computable if it is of the formfM for some Turing machineM.

Church’s thesis (or better, the Church–Turing thesis) says that all algorithmically
computable functions are Turing computable. As algorithm is a vague, intuitive
concept, this can’t be proved. But there is evidence for it, and it is generally
accepted. The evidence has 3 forms:

1. A wide class of functions are Turing-computable. No known algorithm
cannot be implemented by a TM.

2. The definition of computability provided by the TM is equivalent to all
other definitions so far suggested.
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3. Intuitively, any algorithm ought to be implementable by a TM.

Various tricks for simplifying TM design have been suggested. They help the
user to design TMs, without changing the definition of a TM. We can divide the
tape into finitely many tracks without changing the definition of a TM, since for
n tracks, ifai is in tracki of a square (for eachi ≤ n) the tuple(a1, . . . ,an) ∈ Σn

can be viewed as a single symbol occupying the square. AsΣn is finite, it can
be the alphabet of a legitimate TM. Using many tracks simplifies comparing
and marking characters and square 0. Often we mark square 0 implicitly. Track
copying operations, etc., are easy to do.

Similarly we can structure the states inQ. This amounts to augmentingQ by
a set of the formQ×X for some non-emptyX. Typically X will be Σ or Σn

for somen. This allowsM’s behaviour to be more easily specified: when in a
state(q,a) ∈ Q×Σ, the behaviour depending onq can be specified separately
from that depending ona. SinceQ×Σ is a finite set, it can be the state set of a
legitimate TM.

We often use ‘flowcharts’ to specify TMs. A pseudo-code representation is also
possible but care is needed to ensure that the code can easily be transformed into
a real TM.

Section 3: Variants of TMs have been suggested, making for easier TM design. In
particular, the multi-tape TM is extremely useful: there are availablen tapes,
each with its own head, and the instruction tableδ now has the formδ : Q×Σn→
Q×Σn×{0,1,−1}n, interpreted in the natural way. The input and output are by
convention on tape 1. Ann-tape machineMn can be simulated by an ordinary
Turing machineM. M divides its single tape into2n tracks. For eachi in the
range1≤ i ≤ n, track2i −1 contains the contents of tapei of Mn, and track2i
contains a marker denoting the position of headi of Mn over its tape. SoM’s
tape contains a picture of the tapes and heads ofMn. For each step ofMn’s run,
M updates its tape (picture) accordingly, keeping the specified format. AsM
simulates every step of the computation ofMn, it can duplicate the input-output
function ofMn.

In a similar way it an be shown that a 2-way infinite tape machine, a machine
with a 2-dimensional tape, etc, can all be simulated by an ordinary TM. Thus
they all turn out to be equivalent in computational power to the original TM.
This provides evidence for Church’s thesis.

Section 4: A ‘universal’ Turing machineU can be designed, which can simulate any
ordinary Turing machineM. Clearly, for this to be possible we must restrict the
alphabetsΣ andI of M to a standard form; but essentially no loss of generality
results, since we can code the symbols and words of any finite alphabet by words
of a fixed standard alphabet. Given a wordw and a description of a Turing
machineSwith standard alphabet,U will output fS(w). The description ofS is
also a word ‘code(S)’ in the standard alphabet.U works by using the description
‘code(S)’ to simulate the action ofSonw.
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Section 5: One advantage of formalising ‘computable’ is that theorems about ‘com-
putable’ can be proved. We could not hope to show that some problems (func-
tions) were not algorithmically solvable (computable) without a formal defini-
tion. In fact many problems are not solvable by a TM. The halting problem
(HP),will M halt on input w, is not. This is shown by contradiction: assuming
that the Turing machineH solves HP, we construct a Turing machineM that on
a certain input (viz.code(M)) halts iff H saysM will not halt on this input. This
is impossible, soH does not exist.

Once a problem is known to be unsolvable, other problems can also be shown
unsolvable, by reducing them to the first one. Or one can proceed from first
principles in each case. One such is EIHP, theempty-input halting problem.
Another is the famous G̈odel theorem, that there is no algorithm to print all true
statements of arithmetic. We proved this by reducing HP to the problem.



 

Part II

Algorithms

6. Use of algorithms

We now take a rest from Turing machines, and examine the use of algorithms in general
practice. There are many: quicksort, mergesort, treesort, selection and insertion sort,
etc., are justsomeof the sorting algorithms in common use, and for most problems
there is more than one algorithm. How to choose the right algorithm? There is no
‘best’ search algorithm (say): it depends on the application, the implementation, the
environment, the frequency of use, etc, etc. Comparing algorithms is a subtle issue
with many sides.

6.1 Run time function of an algorithm

Consider some algorithm’s implementation, in Java, say. It takes inputs of various
sizes. For an input of sizen, we want to assign a measuref (n) of its use of resources,
and, usually, minimise it. Usuallyf (n) is thetime taken by the algorithm on inputs of
sizen, in the worst or the average case (at our choice).

Calculatingf (n) exactly can be problematic:

• The time taken to execute an individual Java instruction can vary even on a
single machine, if the environment is shared. So the run time of even the same
program for the same data on the same machine may vary.

• There can be a wide variation of use of resources over all the inputs of a fixed
sizen. The worst case may be rare in practice, the average case unrepresentative.

• Some algorithms may run better on certain kinds of input. E.g., some text
string searching algorithms prefer strings of English text (whose patterns can
be utilised) to binary strings (which are essentially random).

• Often we do not understand the algorithm well enough to work outf .

So how to proceed? Much is known about some algorithms, and you can look up
information. (We list some books at the end of the section; Sedgewick’s is a good
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place to begin.) Other algorithms are still mysterious. Maybe you designed your own
algorithm or improved someone else’s, or you have a new implementation on a new
system. Then you have to analyse it yourself.

Often it’s not worth the effort to do a detailed analysis: rough rules of thumb are
good enough. Suggestions:

• Identify theabstract operationsused by the algorithm (read, if-then, +, etc). To
maximise machine-independence, base the analysis on the abstract operations,
rather than on individual Java instructions.

• Most of the (abstract) instructions in the algorithm will be unimportant resource-
wise. Some may only be used once, in initialisation. Generally the algorithm
will have an ‘inner loop’. Instructions in the inner loop will be executed by far
the most often, and so will be the most important. Where is the inner loop?
A ‘profiling’ compilation option to count the different instructions that get exe-
cuted can help to find it.

• By counting instructions, find a good upper bound for the worst case run time,
and if possible an average case figure. It will usually not be worth finding an
exact value here.

• Repeatedly refine the analysis until you are happy. Improvements to the code
may be suggested by the analysis: see later.

6.1.1 Typical time functions

You can usually obtain the run-time function of your algorithm by arecurrence rela-
tion (see below). Most often, you will get a run time function

f (n) = c·g(n)+smaller terms,

wheren is the input size and:

• c is a constant (withc > 0);

• the ‘smaller terms’ are significant only for smalln or sophisticated algorithms;

• g(n) is one of the following functions:

1. constant (algorithm is said to run inconstant time);
2. logn (algorithm runs inlog time);

3. n (algorithm runs inlinear time);

4. n logn (algorithm runs inlog linear time);

5. n2 (algorithm runs inquadratic time);

6. n3 (algorithm runs incubic time);

7. 2n (or kn for somek > 1) (algorithm runs inexponential time).

These functions are listed in order of growth: son2 grows faster thann logn asn
increases. The graph in figure 6.1 shows some similar functions.
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Figure 6.1: growth rates of functions (log scales)

6.1.2 Why these functions?

Why do the functions above come up so often? Because algorithms typically work in
one of a few standard ways:

1. Simple stack pushes and pops will takeconstant time,assuming the data is of a
small size (e.g., 32 bits for each entry in an integer stack). Algorithms running
in low constant time are ‘perfect’.

2. An algorithm may work by dealing with one character of its input at a time,
taking the same time for each. Thus (roughly, and up to a choice of time units)
we get

f (n) = n — linear time.

Algorithms running in linear time are usually very good.

3. It may repeatedly loop through the entire input to eliminate one item (e.g., the
largest). In this case we’ll have

f (n) = n+ f (n−1).

So
f (n) = n+ f (n−1)

= n+(n−1+ f (n−2))
= . . .
= n+(n−1)+(n−2)+ · · ·+3+2+ f (1).
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This is anarithmetic progression, so we getf (n) = n2/2+ n/2+ k for some
constantk. Thek andn/2 are small compared withn2 for largen, so this al-
gorithm runs inquadratic time. An algorithm that considers alln2 pairs of
characters of then-character input also takes quadratic time.

Algorithms running in quadratic time can be sluggish on larger inputs.

4. Maybe the algorithm throws away half the input in each step, as in binary search,
or heap accessing (see§7.3.4). So

f (n) = 1+ f (n/2)

(this is only an approximation ifn is not a power of 2). Then lettingn = 2x, we
get

f (2x) = 1+ f (2x−1)
= 1+(1+ f (2x−2))
= . . .
= x+ f (20)
= x+k

for some constantk. As f (2x) is aboutx, f (n) is aboutlog2(n): this algorithm
runs inlog time.

The log function grows very slowly and algorithms with this run-time are usu-
ally excellent in practice.

5. The algorithm might recursively divide the input into two halves, but make a
pass through the entire input before, during or after splitting it. This is a very
common ‘divide and conquer’ scheme, used in mergesort, quicksort (but see
below), etc. We have

f (n) = n+2 f (n/2)

roughly —n to pass through the whole input, plusf (n/2) to process each half.
So, using a trick ofdividing by the argument,and lettingn = 2x again,

f (2x)/2x = 2x/2x +2· f (2x/2)/2x

= 1+ f (2x−1)/2x−1

= 1+(1+ f (2x−2)/2x−2)
= . . .
= x+ f (20)/20

= x+c,

for some constantc. So f (2x) = 2x(x+c) = 2x ·x+smaller terms. Thus, roughly,
f (n) = n log2n+smaller terms. We have alog linear algorithm.

Log linear algorithms are usually good in practice.

Exercise 6.1 What if it divides the input into three?
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6. Maybe the input is a set ofn positive and negative whole numbers, and the algo-
rithm must find a subset of the numbers that add up to 0. If it does an exhaustive
search, in the worst case it has to check all possible subsets —2n of them. This
takesexponential time. Algorithms with this run time are probably going to
be appalling, unless their average-case performance is better (thesimplex algo-
rithm from optimisation is an example).

7. If the problem is to find all anagrams of then-letter input word, it might try all
n! possible orderings of then letters. The factorial functionn! = 1×2×3× . . .n
grows at about the rate ofnn, even faster than2n.

Quicksort This is a borderline case. In the average case, the hope is that in each re-
cursive call quicksort divides its input into two roughlyequalparts. By case 5 above,
this means log linear time average-case performance. In the worst case, in each recur-
sive call the division gives a big and a small part. Then case 3 is more appropriate, and
it shows that quicksort runs in quadratic time in the worst case.

In practice, quicksort performs very well — and it can sort ‘in place’ without using
much extra space, which is good for large sorting jobs.

6.1.3 TheO-notation (revision)

This helps us make precise the notion ‘my algorithm runs in log time’ etc. It lets us
talk about functionsf (n) for large n, andup to a constant factor.

Definition 6.2 Let f ,g be real-valued functions on whole numbers (i.e., functions
from {1,2,3, . . .} into the set of real numbers).

1. We say thatf is O(g) (‘ f is of the order of g’) if there are numbersm andc
such thatf (n) ≤ c·g(n) whenevern≥ m.

2. We say thatf is θ(g) (‘theta of g’) if f is O(g) andg is O( f ). This means that
f andg have the same order of growth.

So f is of the order ofg iff for all large enoughn (i.e., n ≥ m), f (n) is at most
g(n) up to some constant factor,c. Taking logs, this means thatfor all large enoughn,
log f (n) ≤ c′+ logg(n), wherec′ is a constant(= logc). I.e., log f (n) is eventuallyno
more than a constant amount abovelogg(n).

Similarly, f is θ(g) iff there is a constantc such that for all large enoughn, log f (n)
andlogg(n) differ by at mostc.

So in the graph of figure 6.1,f is O(g) iff for large enoughn, the line for f is at
most a constant amount higher than that forg (it could be much lower, though!) And
f is θ(g) if eventually (i.e., for large enoughn) the lines for f andg are vertically
separated by at most a fixed distance.

Definition 6.3 We can now say that an (implementation of an) algorithm runs inlog
time (or linear time) if its run-time function f (n) is θ(logn) (or θ(n), respectively).
We defineruns in quadratic, log linear, exponential time,etc, in the same way.



  

6.1. Run time function of an algorithm 93

Exercises 6.4

1. Show thatf is θ(g) iff there arem, c, d (with d > 0, possibly a fraction) such
thatd ·g(n) ≤ f (n) ≤ c·g(n) for all n≥ m.

2. Show that if f is O(g) then there arec,d such that for alln, f (n) ≤ max(c,d ·
g(n)). Is the converse true?

3. [Quite long.] Check that the functions in§6.1.1 are listed in increasing order of
growth: if f is beforeg in the list thenf is O(g) but notθ(g). [Calculus, taking
logs, etc., may help.]

4. LetF be the set of all real-valued functions on whole numbers. Define a binary
relationE on F by: E( f ,g) holds iff f is θ(g). Show thatE is an equivalence
relation onF (see§7.1 if you’ve forgotten what an equivalence relation is).
(Some peopledefineθ( f ) to be theE-class off .)

Show also that ‘f is O(g)’ is a pre-order (reflexive and transitive) onF .

5. Show that for anya,b,x > 0, loga(x) = logb(x) · loga(b). Deduce thatloga(n) is
θ(logb(n)). Conclude that when we say an algorithm runs in log time, we don’t
need to say what base the log is taken to.

6.1.4 Merits of rough analysis

Note that the statement ‘my algorithm runs in log time’ (or whatever) will only be
an accurate description of its actual performancefor large n (so the smaller terms are
insignificant), andup to a constant factor(c). A more detailed analysis can be done if
these uncertainties are significant, but:

• A rough analysis is quicker to do, and often surprisingly accurate. E.g., most
time will be spent in the inner loop (‘90% of the time is spent in 10% of the
code’), so you might evenignorethe rest of your program.

• You may not know whether the algorithm will be run on a Cray or a PC (or
both). Each instruction runs faster by roughly a constant factor on a Cray than
on a PC, so we might prefer to keep the constant factorc above.

• You may not know how good the implementation of the algorithm is. If it uses
more instructions than needed in the inner loop, this will increase its running
time by roughly a constant factor.

• The run time of an algorithm will depend on the format of the data provided to
it. E.g., hexadecimal addition may run faster than decimal addition. So if you
don’t know the data format, or it may change, an uncertainty of a constant factor
is again introduced.
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6.1.5 Demerits of rough analysis

In the analysis it’s often easy to showf is O(one of the functionsg above). To provef
is θ(g) is harder. If you can only show the worst case run time functionf to beO(g),
so thatf (n) ≤ c·g(n) whenevern≥ m, then remember thatg is an upper bound only.

In any case, whether you have anO- or aθ-estimate,

• the worst case may be rare;

• the constantc is unknown and could be large;

• the constantm is unknown and could be large.

This can be important in practice. For example, though for very largen we have
2n log2(n)2 < n3/2, in fact2n log2(n)2 > n3/2 until n gets to about half a million. The
moral is: although you should think twice before using ann2 algorithm instead of an
n logn one, nonetheless then2 algorithm may sometimes be the best choice.

6.1.6 The bottom line (almost. . . )

Generally, algorithms that run in linear or even log linear time are fine. Quadratic time
algorithms are not so good for very large inputs, but algorithms withf (n) up ton5 are
of some use. Exponential time algorithms are hopeless even for quite small inputs,
unless their average-case performance is much better (e.g., the simplex algorithm).

6.1.7 Average case run time

The average case run time is harder to obtain and more machine-dependent. So your
long, complex analyses may only be of any use on your current machine, and may not
be worth the effort. Also the average case may not be easy to define mathematically or
helpfully: what is ‘average’ English text? But average cases are useful in geometrical
and sorting algorithms, etc.

6.2 Choice of algorithm

So how to choose, in the end? Don’t ignore the run time functionf (n). Much better
algorithms may not be much harder to implement.

But don’t idolise it either, as the run time will only be estimated byf (n) for large
inputs (and other caveats above). Moreover, programmers’ time is money, so it may be
best to keep things simple. The constant factors inf (n) may be unknown or wrong: a
factor of 10 is easy to overlook in a rough calculation. So use empirical tests to check
performance. But beware: empirical comparison of two algorithm implementations
can be misleading unless done on similar machines, delays due to shared access are
borne in mind, and equal attention has been paid to optimising the two implementations
(e.g., by cutting redundant instructions and procedure calls in the inner loop).



 

6.3. Implementation 95

Your choice of algorithm may also be influenced by other factors, such as the
prevalent data structures (linked list, tree, etc.,) in your programming environment, as
some algorithms take advantage of certain structures. The algorithm’s space (memory)
usage may also be important.

6.3 Implementation

We’ve seen some of the factors involved inchoosingan algorithm. But the same algo-
rithm can beimplementedin many different ways, even in the same language. What
advice is there here?

6.3.1 Keep it simple

Go for simplicity first. A brute force solution may be fine if the algorithm is only go-
ing to be used infrequently, or for small inputs. So why waste your expert time? (Of
course, the usage may change, so be ready to re-implement.) If the result is too slow,
it’s still a good check of correctness for more sophisticated algorithms or implemen-
tations. There are algorithms that are prey to bugs that merely slow up performance,
maintaining correctness. A naı̈ve program can be used for speed comparisons, showing
up such bugs.

6.3.2 Optimisation

Only do this if it’s worth it: if the implementation will be used a lot, or if you know it
can be improved. If it is, improve it incrementally:

• Get a simple version going first. It may do as it is!

• Check any known maths for the algorithm against your simple implementation.
E.g., if a supposedly linear time algorithm takes ages to run, something’s wrong.

• Find the inner loop and shorten it. Use a profiling option to find the heavily-
used instructions. Are they in what you think is the inner loop? Look at every
instruction in the inner loop. Is it necessary, or inefficient? Remove procedure
calls from the loop, or even (last resort!) implement it in assembler. But try
to preserve robustness and machine-independence, or more programmers’ time
may be needed later.

• Check improvements by empirical testing at each stage — this helps to elimi-
nate the bad improvements. Watch out for diminishing returns: your time may
nowadays be more expensive than the computer’s.

An improvement by a factor of even 4 or 5 might be obtained in the end. You may
even end up improving the algorithm itself.

If you’re building a large system, try to keep it amenable to improvements in the
algorithms it uses, as they can be crucial in performance.



 

96 7. Graph algorithms

6.4 Useful books on algorithms

1. Robert Sedgewick,Algorithms,Addison-Wesley, 2nd ed., 1988. A practical
guide to many useful algorithms and their implementation.

2. A.V. Aho, J.E. Hopcroft, J.D. Ullman,The design and analysis of algorithms,
Addison-Wesley, 1975. For asymptotic worst-case performance.

3. D.E, Knuth,The art of computer programming,3 volumes, Addison-Wesley.
Does more average-case analysis, and a full reference for particular algorithms.

4. G.H. Gonnet,Handbook of algorithms and data structures,Addison-Wesley,
1984. Worst- and average-case analysis, and covers more recent algorithms.

The last three are listed in Sedgewick. Maybe that’s why all four are from the same
publisher.

6.5 Summary of section

We examined some practical issues and advice to do with choice and implementation
of algorithms. We introduced the run time function of an algorithm, in worst case
or average case form. It is often most sensible to make do with a rough calculation
of the run time function, obtaining it only for large input size (n) and up to a constant
factor (c). In practice, more detailed calculations may be needed. TheO-notation helps
to compare functions in these terms. We saw how some common algorithm designs
give rise to certain run time functions(logn,n,n logn,n2); these are calculated using
recursive equations by considering the ‘inner loop’ of the algorithm.

7. Graph algorithms

We will now examine some useful algorithms. We concentrate on algorithms to handle
graphs, as they are useful, quite challenging, easy to visualise, and will be needed in
Part III.

7.1 Graphs: the basics

Relations (revision) Recall that abinary relation R(x,y) on a setX is a subset of
X×X. We usually write ‘R(x,y) holds’, or just ‘R(x,y)’, rather than ‘(x,y) ∈ R’. R is
said to be:
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• reflexive, if R(x,x) holds for allx in X

• irreflexive, if R(x,x) holds for no elementx in X

• symmetric, if wheneverR(x,y) holds then so doesR(y,x)

• transitive, if wheneverR(x,y) andR(y,z) hold then so doesR(x,z)

• anequivalence relation,if it is reflexive, symmetric, and transitive.

Definition 7.1 A graph is a pair(V,E), whereV is a non-empty set ofvertices or
nodes,andE is a symmetric, irreflexive binary relation onV.

We can represent a graph by drawing the nodes as little circles, and putting a line
(‘edge’) between nodesx,y iff E(x,y) holds. In figure 7.1, the graph is ({1,2,3,4,5,6},
{(1,3),(3,1), (2,3),(3,2), (4,5),(5,4), (5,6),(6,5), (4,6),(6,4)}).

Figure 7.1: two drawings of the same graph (6 nodes, 5 edges)

If G = (V,E) is a graph, andx,y ∈ V, we say that there’s anedgefrom x to y iff
E(x,y) holds. We think of(x,y) and(y,x) as representing thesameedge, so the number
of edges inG is half the number of(x,y) for whichE holds. So the graph in figure 7.1
has 5 edges, not 10. We’ll usually writen for the number of nodes of a graph, ande
for the number of edges.

Exercise 7.2 Show that any graph withn nodes has at mostn(n−1)/2 edges.

Examples There are many examples of graphs, and many problems can be repre-
sented in terms of graphs. The London tube stations form the nodes of a graph whose
edges are the stations(s,s′) that are one stop apart. The world’s airports form the nodes
of a graph whose edge pairs consist of airports that one can fly between by Aer Lingus
without changing planes. The problem of pairing university places to students can be
considered as a graph: we have a node for each place and each student, and we ask
for every student to be connected to a unique place by an edge. Electrical circuits: the
wires form the edges between the nodes (transistors etc).
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Other graphs There are more ‘advanced’ graphs. Directed graphs do not require
thatE is symmetric. In effect, we allow arrows on edges, giving each edge a direction.
There may now be an edge fromx to y, but no edge fromy to x. The nodes could
represent tasks, and an arrow froma to b could say that we should doa beforeb. They
might be players in a tournament: an arrow from Merlin to Gandalf means Merlin won.

Weighted graphs(see section 8) have edges labelled with numbers, called weights
or lengths. If the nodes represent cities, the weights might represent distances between
them, or costs or times of travel.

Graph algorithms Many useful algorithms for dealing with graphs are known, but
as we will see, some are not easy. For example, no fast way to tell whether a graph
can be drawn on paper without edges crossing one another was known until 1974,
when R.E. Tarjan developed an ingeniouslinear timealgorithm. We’ll soon see graph
problems with no known efficient algorithmic solution.

7.2 Representing graphs

How to input a graph(V,E) into a computer? First rename the vertices so that they
are called1,2, . . . ,n for somen. (Maybe use a hashing technique to do this if the
vertices originally have names, like London tube stations.) Typically you’ll then input
the numbern of vertices, followed by a delimiter∗, followed by a list of all pairs
(x,y) ∈ E — perhaps omitting the dual pair(y,x) unless the graph is directed. The
same information can be input using ann×n Boolean array (theedge matrix of the
graph). If the graph is weighted, the weight of an edge can be added after the edge.
This format can be input to a Turing machine if all numbers are input in binary (say)
and there’s a terminating∧.

How to representthe graph in a computer? We could just use the edge matrix (see
Sedgewick’s book). But it’s often better to use alinked list, especially if the graph has
relatively few edges. Finding edges is then faster. The graph in figure 7.1 would be
represented by:

1→ 3
2→ 3
3→ 1→ 2
4→ 5→ 6
5→ 4→ 6
6→ 5→ 4

Each line begins with a header vertex (1–6), and lists all vertices connected to it by an
edge. There’s redundancy (e.g., the edge(1,3) shows up in lines 1 and 3), but this is
useful for queries such as ‘which vertices are connected tox?’ If operations such as
deleting a node from a graph are important, it can help to add pointers from the head
of each line of the list to the corresponding entries in bodies of the other lines. Here,
1 would get a special pointer to the second entry of line 3. The overhead cost of doing
this should be borne in mind.
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A linked list can represent directed graphs: the entries in a line headed byx are
those nodesy such that there’s an arrow fromx to y. The weights in a weighted graph
can be held in an integer field attached to each non-header entry in the list.

7.3 Algorithm for searching a graph

We want to devise a general purpose algorithm that will rapidly visit every node of a
graph, travelling only along graph edges. Such an algorithm will be useful for graph
searches, measurements, etc. For example, starting from Dublin (or anywhere reach-
able from Dublin, for that matter) it would trace out all airports reachable by Aer
Lingus, even with plane changes.

7.3.1 The search strategy

The general idea will be this. At any stage of the search, some graph vertices will have
beenvisited. Others will be accessible from the already-visited vertices in one step,
by a single edge. They are on thefringe of the visited nodes, and are ripe for visiting
next. The other vertices will befar away, neither visited nor (yet) on the fringe.

We will repeatedly:

• choose a fringe vertex,

• visit it and so promote it to ‘visited’ status

• replace it on the fringe by its immediate (but unvisited) neighbours: i.e., those
unvisited nodes that are connected to it by an edge.

7.3.2 Depth-first and breadth-first search

At each stage, we must decide which fringe vertex to visit next. The choice depends
on what we’re trying to do. Two common choices are:

depth-first Visit the newestfringe vertex next: the one that most recently became a
fringe vertex. (Last in, first out: implementation could use a stack.)

breadth-first Visit the oldestfringe vertex next. (First in, first out: implementation
could use a queue.)

In thebreadth-firstapproach,all neighbours of the start nodeget visited first, then the
next nearest, and so on. This strategy would be good for a group of people searching
for something in a maze. In contrast, the neighbours of the starting node tend to be
visited later in thedepth-firstapproach. As the next place to visit is usually close by,
this approach is good for a single person searching a maze.

Compared with depth-first search (heavy arrows in figure 7.4 below), the edges
traced out in breadth-first search (figure 7.5) tend to form a squatter and bushier pattern,
with many short branches. Figure 7.2 shows the kind of shapes to expect. Note that
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unlike when searching atree (e.g., in implementing Prolog), the difference between
breadth first and depth-first search in agraph is not just theorder in which vertices are
visited. Thepath actually takenalso differs.

Figure 7.2: depth-first and (right) breadth-first search trees

7.3.3 More general priority schemes

There’s a more general way of choosing a fringe vertex to visit next. Whenever we
add a vertex to the fringe, we assign it apriority. At each stage, the fringe vertex with
the highest priority will be visited next. If there are several fringe vertices with equal
priorities, we can choose any of them; the algorithm is non-deterministic.

We can choose any scheme to assign priority. If we let highest priority = newest,
we get depth-first search; if we let highest priority = oldest, we get breadth-first search.
So both breadth-first and depth-first search can be done using priorities. We’ll see the
effects of other priority schemes in§8.3.

7.3.4 The data structure: priority queue

There is a data structure called apriority queue for implementing general, user-chosen
priorities. It generalises stacks and queues. It’s often implemented as aheap, and any
access typically takes log time (with stacks and queues, access takes constant time).

For our purposes, we’ll assume the priority queue has the following specification.

7.3.4.1 Specification of priority queue

The priority queue consists oftriples (x,y, p), where:

• x is anentry;

• y is a label of x (it can be any extra information we want);

• p is thepriority of x. It’s a number.
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It is x that’s in the queue (with labely and priorityp). Soat most onex-entry is allowed
in the queue at any time.

1. We can ‘push’ onto the priority queue any entryx, with any labely, and any
priority p.

2. The push has no effect ifx is already an entry in the queue with higher or equal
priority than p. I.e., if the queue contains a triple(x,z,q), wherez is any label
andq is a priority higher than or equal top, the pushdoesn’t do anything.

3. Any x-entry already in the queue but with lower priority thanp is removed.I.e.,
if the queue contains a triple(x,z,q), with any labelz, andq a lower priority
thanp, then the pushreplacesit with (x,y, p).

4. A ‘pop’ operation always removes from the queue (and returns) an entry(x,y, p)
with highest possible priority.

7.3.5 Thevisit algorithm in detail

In ‘pseudo-code’, our algorithm is as follows. The nodes of the graph are represented
by the numbers 1 ton.

1 visited(n): global Boolean array, initially all false; x: integer
2 repeat with x = 1 to n
3 if not visited(x) then visit(x)
4 end repeat

5 procedure visit(x)
6 x,y,z : integer % to represent vertices
7 empty the fringe (priority queue)
8 push x into fringe, with label ∗, and any priority
9 repeat until fringe is empty
10 pop (x,y, p) from fringe % So x was the queue entry; y was its label;

% and p was the (highest possible) priority.
11 set visited(x) to true % Anything else you want to do to the new

% current node, x, such as printing it, do it here!
% y tells us the edge (y,x) used to get to x.

12 repeat for all nodes z connected to x by an edge
13 if not visited(z) then push z into fringe, with label x and chosen priority
14 end repeat
15 end repeat
16 end visit

Note that in line 10, there could be several fringe nodes of equal highest priority.
The priority queue non-deterministically pops any such node. The repeat in line 12
does not need to test all nodesz of the graph: it just examines the body of linex of the
linked list (§7.2). The order in which line 12 runs through thex is not specified. The
label y in line 10 is useful because it tells us how we got to the current node,x. We
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usually want to know theroute we took when searching the graph, as well as which
nodes we visited and in what order. Knowing the order that we visited the nodes in is
not enough to determine the route: see the example below.

7.3.6 Depth-first search: example

Let’s see how the algorithm runs on an example graph. Visiting thenewest fringe vertex
first conducts adepth-first search of the graph, only moving along edges. Running
visit(1) on the graph in figure 7.3, represented by the linked list below, visits nodes in
the order 1,7,6,3,5,4,2. See figure 7.4.

Figure 7.3: another graph

1→ 2→ 5→ 6→ 7
2→ 1→ 6
3→ 4→ 5→ 6
4→ 3→ 5
5→ 1→ 3→ 4
6→ 1→ 2→ 3
7→ 1

Figure 7.4: depth-first search

The ‘tree’ produced (heavy arrows in figure 7.4) tends to have only a few branches,
which tend to be long. Cf. figure 7.2 (left).
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7.3.6.1 Execution

We show the execution as a table. Initially, the fringe consists of(1,∗,0), where the la-
bel∗ indicates we’ve just started, 1 is the starting node, and 0 is the (arbitrary) priority.
We pop it from the fringe. The immediate neighbours of 1 are numbered 2, 5, 6 and
7. Assume we push them in this order. The fringe becomes(2,1,1), (5,1,2), (6,1,3),
(7,1,4), in the format of§7.3.4.1; the third figure is the (increasing) priority.

fringe pop visited print push comments
(1,∗,0) (1,∗,0) 1 (2,1,1)

(5,1,2)
(6,1,3)
(7,1,4)

(2,1,1) (7,1,4) 7 edge – No unvisited neighbours of 7, so
no push.(5,1,2) ‘1,7’

(6,1,3)
(7,1,4)
(2,1,1) (6,1,3) 6 edge (2,6,5) ‘Backtrack’ to visit 6 from 1. Push

of 2 has better priority than the
current fringe entry(2,1,1), which
is replaced.

(5,1,2) ‘1,6’ (3,6,6)
(6,1,3)

(5,1,2) (3,6,6) 3 edge (4,3,7) The view of 5 from 3 replaces the
older view from 1.(2,6,5) ‘6,3’ (5,3,8)

(3,6,6)
(2,6,5) (5,3,8) 5 edge (4,5,9) Again, this push involves updat-

ing the priority of node 4.(4,3,7) ‘3,5’
(5,3,8)
(2,6,5) (4,5,9) 4 edge – No unvisited neighbours of 4, so

no push.(4,5,9) ‘5,4’
(2,6,5) (2,6,5) 2 edge – Another backtrack! No unvisited

neighbours of 2, so no pushes.‘6,2’
empty Terminate call ofvisit(1). Return.

7.3.6.2 Warning: significance of the label ‘y’

Notice that the nodes were visited in the order 1,7,6,3,5,4,2, but that this does not
determine the route. Did we go to 2 from 1 or from 6? Did we arrive at 4 from 3, or
from 5? That’s why we have to keep the labely in the queue, so that we can tell how
we got to each node. This will be even more important in section 8, where the route
taken is what we’re actually looking for.

Exercises 7.3

1. What route do we get if we start at 2, or 4, instead of 1?

2. What alterations to the code in§7.3.5 would be needed to implement the fringe
with an ordinary stack?
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3. Work out how to deduce the path taken in depth-first search, if you know only (a)
the graph, and (b) the order in which its nodes were visited. (The main problem,
of course, is to handle backtracking.) Can you do the same for breadth-first
search (see below)?

7.3.7 Breadth-first search: example

Visiting the oldest fringe vertex firstconducts abreadth-first search of the graph,
only moving along edges. Runningvisit(1) on the graph above leads to the sequence
1,2,5,6,7,3,4 of visits shown in figure 7.5. Note that the tree is squatter than in the
depth-first case.

Figure 7.5: breadth-first search

Exercise 7.4 Work out the execution sequence and try it from different starting nodes.

7.3.8 Run time of the algorithm

Let’s simplify by approximating, and only counting data accesses. The fringe is ad-
ministered by a priority queue that stores nodes in priority order. As we said, this
is often implemented by a heap: a kind of binary data structure. If a heap contains
m entries, accessing it (read or write) takes timelogm in the worst case (cf. binary
search,§6.1.2). Suppose the graph hasn nodes ande edges. Clearly the fringe never
contains more thann entries, so let’s assume each fringe access takes timelogn (worst
case). However, we count only 1 for emptying the fringe in line 7 of the code, and 1
for the first push in line 8. Obviously, eachvisitedarray access takes constant time:
independent ofn ande.

• Initialisation of then elements of thevisitedarray to false (line 1), then reads
from it in line 3, and initialisation of the fringe (lines 7–8): total= 2n+2.

• Every node is removed from the fringe exactly once (line 10). This involvesn
accesses, each taking time≤ logn. Total: n logn.
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• For each nodex visited, every neighbourz is obtained from the linked list (only
count 1 for each access to this, since we just follow the links) and checked to
see if it’s been visited (lines 12–16; count 1). As each graph edge(x,z) gets
checked twice in this way, once fromx and once fromz, the total time cost here
is 2×2e= 4e.

• Not all z connected tox get written to the fringe, because of the test in line 13.
If z is put on the fringe when atx, thenx will not be put on the fringe later, when
at z, asx will by then have been visited. So each edge results in at most one
fringe-write. Hence the fringe is written to at moste times. Each write takes
logn. Total: e logn.

Grand total:2n+2+n logn+4e+e logn. This is satisfactorily low, and the algorithm
is useful in practice. Neglecting smaller terms, we conclude:

The algorithm takes timeO((n+ e) logn) (i.e., log linear time) in the
worst case.

The performance of graph algorithms is often stated asf (n,e), not just f (n).

7.4 Paths and connectedness

Definition 7.5 If x, y are nodes in a graph, apath from x to y in the graph is a sequence
v0,v1, . . . ,vk of nodes, such thatk > 0, v0 = x, vk = y, and(vi,vi+1) is an edge for each
i with 0≤ i < k. Thelength of the path isk — i.e., the number ofedgesin it. The path
is non-backtracking if the vi are all different.

Figure 7.6: paths

In figure 7.6 (left), the heavy lines show the path ACHFDE from A to E. (They
also represents the path EDFHCA from E to A — we can’t tell the direction from the
figure.) This path is non-backtracking. In the centre, BHFEHC (or BHEFHC?) is a
path from B to C, but it’s abacktracking pathbecause H comes up twice. On the right,
the heavy line is an attempt to represent the path HFH, which again is backtracking.
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Figure 7.7: a disconnected graph; a depth-first search tree for it

7.4.1 Connectedness

The graph of figure 7.3 isconnected: there’s a path along edges between any two
distinct (= different) vertices. In contrast, the graph on the left of figure 7.7 is discon-
nected. There’s no path from 1 to 3.

What if we run the algorithm on a disconnected graph like this? In depth-first
mode, it traces out the heavy lines on the right of figure 7.7.Visit(1) starts at 1 and
worms its way round to 2,6,5 and 7. But then it terminates, andvisit(3) is called (line
3 of the code in§7.3.5). Whatever priority scheme we adopt,visit(1) will only visit all
nodes reachable from 1.

7.4.2 Connected components

The nodes reachable from a given node of a graph form aconnected componentof
the graph. Any graph divides up into disjoint connected components; it’s connected
iff there’s only one connected component. On any graph, a call ofvisit(x) visits all
the nodes of the connected component containingx. Obviously,visit can’t jump be-
tween connected components by using edges, so we have to set it off again on each
component. Line 3 of the code does this: it will be executed once for each connected
component. The number of timesvisit is called counts the connected components of
the graph.

Exercises 7.6

1. Try the algorithm on figure 7.7, starting at 4, in depth- and breadth-first modes.
How often isvisit called in each case?

2. LetG = (V,E) be a graph. Define a binary relation∼ onV by: x∼ y if x = y or
there is a path fromx to y. Check that∼ is an equivalence relation onV. (The
equivalence classes are the connected components ofG.)

7.5 Trees, spanning trees

We’ve already seen in the examples that our algorithm traces out a tree-like graph: the
heavy lines in figures 7.4–7.5 and 7.7. We can say quite a lot about trees.
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7.5.1 Trees

A tree is a special kind of graph:

Definition 7.7 (very important!) A tree is a connected graph with no cycles.

But what’s a cycle?

Definition 7.8 A cycle in a graph is a path from a node back to itself without using a
node or edge twice.

So paths of the form ABA, and figures-of-eight such as ABCAEDA (see figure 7.8),
are not cycles.

Figure 7.8: these are not cycles!

In figure 7.7, 1,2,6,5,1 is a cycle.

Figure 7.9:A (tree),B,C (not trees)

In figure 7.9,A is a tree.B has a cycle (several in fact), so isn’t a tree.C has no
cycles but isn’t connected, so isn’t a tree. It splits into three connected components,
the ringed 1,2 and 3, which are trees. Such a ‘disconnected tree’ is called aforest.

7.5.2 Spanning trees

A call of the visit procedure always traces out a tree. For as it always visits new
(unvisited) nodes, it never traces out a cycle. Moreover, if the graph isconnected,
a singlevisit call visits all the nodes, so the whole algorithm’s trace is a tree. As
it contains all the nodes, it’s called aspanning tree for the graph. If the graph is
disconnected we get a spanning tree for each connected component.

Definition 7.9 (very important!) A tree containing all the nodes of a graph (and only
using edges from the graph) is called aspanning treefor the graph.
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Only a connected graph can have a spanning tree, but it can have more than one
spanning tree. The breadth-first and depth-first searches above gave different spanning
trees (figures 7.4 and 7.5).

A spanning tree is the quickest way to visit all the nodes of a (connected) graph
from a starting node, as no edge is wasted. The algorithm starts with the initial vertex
and no edges. Every step adds a single node and edge, so the number of nodes visited
is always one ahead of the number of edges. Because of this, the number of edges in
the final spanning tree isone lessthan the number of nodes.

If we run the algorithm on atree,it will trace out the entire tree, using all the edges
in the tree. (A treeT is connected, so the algorithm generates a spanning treeT ′ of T.
Every edge ofT is in T ′. For if e= (x,y) were not an edge ofT ′, then asx andy are
in T ′, there’s a (non-backtracking) path fromx to y in T ′; and this path, pluse, gives a
cycle in the original treeT — impossible. SoT ′ = T.) Thus we see:

Proposition 7.10 Any tree withn vertices hasn−1 edges.

7.5.3 Testing for cycles

If the originalconnectedgraph (withn nodes) has≥ n edges, it must have a cycle. For,
any edge not in a spanning tree must connect two nodes that are already joined by a
path in the tree. Adding the extra edge to this path gives a cycle.

We can use this to find out if aconnectedgraph has a cycle. Just count its ver-
tices and edges. There’s a cycle iff (no. of edges)≥ (no. of vertices). If the graph is
disconnected, we could do this for every connected component in turn.

Another way to test for cycles is to modify the algorithm (§7.3.5) to check, each
time round the main loop of lines 9–17, whether the test in line 13 is failed more
than once.If this ever happens, there’s a cycle,because the algorithm has found two
‘visited’ neighboursz of the current nodex. One suchz is the node one step higher in
the tree thanx (if any) — this is the node we arrived atx from. The otherz indicates a
cycle.

Example: when at node 5 during the depth-first search of figure 7.4, nodes 1 and 3
were rejected as fringe contenders because they had been visited earlier. Node 3 is the
previous node in the search tree; but node 1’s visibility from 5 indicates the presence
of a cycle, as we can travel from 5 to 1 directly and then return to 5 via the tree (via 6
and 3). See figure 7.10.

Exercises 7.11

1. LetU = (S,L) whereS is the set of London tube stations, and(x,y) ∈ L iff x is
exactly one stop away fromy. IsU a connected graph? Is it a tree? If not, find
a cycle.

2. Show that any two distinct nodesx,y of a tree are connected by auniquenon-
backtracking path.

3. Show thatanygraph (even if disconnected) with at least as many edges as ver-
tices must contain a cycle. [Hint: you could add some edges between compo-
nents.]
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Figure 7.10: cycle 51635

4. Show that no graph with 10 nodes and 8 edges is connected.

5. Show that any connected graph withn nodes andn−1 edges (for somen≥ 1) is
a tree. Find a graph withn nodes andn−1 edges (for somen) that’s not a tree.

6. Let G = (V,E) be a graph withn nodes, andT = (V,P) a subgraph (so every
edge ofT is an edge ofG). Show thatT is a spanning tree ofG iff it’s connected
and hasn−1 edges.

7. Figure 7.11 is a picture of the maze at Hampton Court, on the river west of
London, made by Messrs. Henry Wise and George London in 1692. Draw a
graph for this maze. Put nodes at the entrance, the centre, and at all ‘choice
points’ and dead ends. Join two nodes with an edge if you can walk directly
between them without going through another node. Is the graph connected? Is
it a tree? What information about the maze is not represented in the graph?

Figure 7.11: Hampton Court maze

7.6 Complete graphs

Graphs with the maximum possible number of edges are calledcomplete graphs.
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Definition 7.12 A graph(V,E) is said to becompleteif (x,y) ∈ E for all x,y∈V with
x 6= y.

Exercises 7.13

1. What spanning trees are obtained by depth first and breadth-first search in the
complete graph of figure 7.12? How many writes to the fringe are there in each
case?

Figure 7.12: a complete graph on 6 vertices

2. How many edges does a complete graph onn vertices have?

7.7 Hamiltonian circuit problem (HCP)

Definition 7.14 A Hamiltonian circuit of a graph is a cycle containing all the nodes
of the graph. See figure 7.13.

Figure 7.13: a graph (left) with a Hamiltonian circuit (right)

Definition 7.15 The Hamiltonian circuit problem (HCP) asks: does a given graph
have a Hamiltonian circuit?
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Warning HCP is, it seems, much harder than the previous problems. Our search
algorithm is no use here: we want a ‘spanning cycle’, not a spanning tree. An algorithm
could check every possible ordered list of the nodes in turn, stopping if one of them is
a Hamiltonian circuit. If the graph hasn nodes, there are essentially at most(n−1)!/2
such lists:n! ways of ordering the nodes, but we don’t care which is the start node (so
divide byn), or which way we go round (so divide by 2). Whether a given combination
is a Hamiltonian circuit can be checked quickly, so the(n−1)! part dominates the time
function of this algorithm. But(n−1)! is notO(nk) for any numberk. It is not even
O(2n) (exponential time).

There is no knownpolynomial time solution to this problem: one with time func-
tion O(nk) for somek. We will look at it again later, as it is one of the important class
of NP-complete problems.

Exercise 7.16 (Puzzle)Consider the squares on a chess-board as the nodes of a graph,
and let two squares (nodes) be connected by an edge iff a knight can move from one
square to the other in one move. Find a Hamiltonian circuit for this graph.

7.8 Summary of section

We examined some examples of graphs, and wrote a general purpose graph searching
algorithm, which chooses the next node to examine according to its priority. Different
priorities gave us depth-first and breadth-first search. We saw that it traced out a span-
ning tree of each connected component of the graph. We can use it to count or find
the connected components, or to check for cycles. It runs in timeO((n+ e) logn) at
worst (on a graph withn nodes andeedges). We defined a complete graph, and briefly
looked at the (hard) Hamiltonian circuit problem.

8. Weighted graphs

Now we’ll consider the more exotic but still usefulweighted graph. We’ll examine
some weighted graph problems and algorithms to solve them. Sedgewick’s book has
more details.

8.1 Example of weighted graph

Imagine the nodes A–E in figure 8.1 are towns. An oil company wants to build a
network of pipes to supply all the towns from a refinery at A. The numbers on the
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edges represent the cost of building an oil pipeline from one town to another: e.g.,
from A to D it’s £5 million. The problem is to find the cheapest network.

Figure 8.1: a weighted graph

8.1.1 What is a weighted graph?

We can represent the map above by a weighted graph. The nodes are the towns A–E,
all edges are present, and the weight on each edge is the cost of building a pipe between
the towns it connects.

Definition 8.1 Formally, aweighted graph is a triple(V,E,w), where:

• (V,E) is a graph

• w : E →{1,2, . . .} is a map providing a number (the weight) for each vertex pair
(‘edge’).

We require thatw(x,y) = w(y,x) for all (x,y) ∈ E (so that each edge gets a well-
defined weight). We’ll usually assume that weighted graphs(V,E,w) areconnected
(this means that(V,E) is connected).

So a weighted graph is just a graph with a number attached to each edge. The numbers
might be distances, travel times or costs, electrical resistances, etc. Often, depending
on the problem,(V,E) will be a completegraph, as we can easily represent a ‘non-
edge’ by a very large (or small) weight. We can also use fractional or real-number
weights if we want. Figure 8.1 represents a complete weighted graph, as all edges are
present.

8.2 Minimal spanning trees

A proposed network of pipes can be represented by agraph (V,P). V is the set of
towns as above, andP is the set of proposed pipelines. We put an edge(x,y) in P iff
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Figure 8.2: two possible pipelines

a pipe is to be built directly betweenx andy. Two possible pipe networks are given in
figure 8.2.

Clearly, the cheapest network will have only one pipeline route from any town to
any other. For if there were two different ways of getting oil from A to B (e.g., via C or
via E and D, as on the left of figure 8.2), it would be cheaper to cut out one of the pipes
(say the expensive one from A to E). The remaining network would still link all the
towns, but would be cheaper. In general, if there is acyclein the proposed network, we
can remove an edge from it and get a cheaper network that still links up all the towns.
So:

• the pipes the company builds should form atree.

The right hand pipeline network in figure 8.2 does not connect all the towns. As every
town should lie on the network,

• the tree should be aspanning tree(of the complete graph with vertices A–E).

• And its total cost should be least possible.

Definition 8.2 A minimal spanning tree (MST) of a (connected) weighted graph
(V,E,w) is a graph(V,P) such that:

1. (V,P) is connected

2. P⊆ E

3. the sum of the weights of the edges inP is as small as possible, subject to the
two previous constraints.

A minimal spanning tree(V,P) will be a tree, for (as above) we could delete an edge
from any cycle, leaving edges still connecting all the nodes but with smaller total
weight. Because(V,P) must be connected, it must be aspanning treeof (V,E).

A MST will give the oil company a cheapest network. There may be more than
one such tree: e.g., if all weights in(V,E,w) are equal, any spanning tree of(V,E) will
do. Though one might find a MST in the graph of figure 8.1 by inspection, this will be
harder if there are 100 towns, say. We need an algorithm to find a MST.



X Y

  

114 8. Weighted graphs

8.3 Prim’s algorithm to find a MST

Our search algorithm gave aspanning tree;can we modify it to give aminimalone in a
weighted graph? Let’s try the following: when we push a node (town) onto the fringe,
its priority will be the length of the edge joining it to the current node. A short length
will mean high priority for popping, a long one low priority. See below for an example
of this algorithm in action.

8.3.1 Proving correctness of Prim’s algorithm

This idea seems intuitively correct. The graph will be explored using the shortest
edges first, so the spanning tree producedhas a good chanceof being minimal. But
how can we besurethat italwaysdelivers a MST inanyweighted graph? After all, the
algorithm operates ‘locally’, working out from a start node; whereas a MST is defined
‘globally’, as a spanning tree of least weight. Maybe the best edges to use are at one
side of the graph, but if we start the algorithm at the other side, it’ll only find them at
the end, when it’s too late. (See§8.5.1 below for an apparently similar case, where
these difficulties seem fatal.)

So we shouldprove its correctness. This is not so hard if we know the following
property of MSTs. (If we don’t, it can be seriously nasty!)

8.3.1.1 Useful ‘separation’ property

Let (V,E,w) be any connected weighted graph, andT = (V,P) be any spanning tree of
it. We say thatT has the‘separation property’ if:

(∗) Givenanydivision of the nodes inV into two sets,T containsone of the shortest
(lowest weight) edges connecting a node in one set to a node in the other.

That is, there is no edge inE between the two sets that is shorter than every edge inT
between them.

Example 8.3 Figure 8.3 shows a weighted graph, the weightw(x,y) being the distance
between the nodesx andy as measured in the diagram. The bold lines form a spanning

Figure 8.3: does this tree have the separation property? (weight≈ distance)
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tree; the light lines are the graph edges not in the tree. We’ve chosen an arbitrary
division of the nodes into setsX,Y. If the spanning tree has the separation property, no
graph edge fromX to Y should be shorter than the three heavy tree edges crossing the
X−Y division.

Warning — what the separation property is not. There might bemore than one
shortest edge fromX toY. (They’ll all be of equal length, of course. For example, this
happens if all graph edges have the same length!) The separation property says thatat
least one of themis in the spanning tree.

The separation property is talking about shortestX−Y edges,not shortest paths.It
is falsein general that the shortestpathbetween any node ofX and any node ofY is
the path through the tree. Look for yourself. The top two nodes in figure 8.4 below are
connected by an edge of length 12. But the path between them in the tree shown has
length4+7+6+5 = 22 — and the tree does in fact have the separation property.

8.3.1.2 Separation property for MSTs?

What’s all this got to do with Prim’s algorithm? Well, we will show thatany MST has
the separation property.Let’s see an example first.

Example 8.4 The heavy edges in figure 8.4 form an MST (you can check this later).
On the left,X is the set of nodes in the circle, andY is the rest. There are two leastX−Y

Figure 8.4: the MST has one of the least weight X–Y (and Z–T) edges

edges (of weight 5), and one of them is indeed in the MST shown, as the separation
property says. On the right, I used a different division,Z−T, of the same weighted
graph. The shortestZ−T edge is of length 3 — and again, it’s in the MST.

So the separation property might just hold for this MST, if we checked all setsX,Y.
But in general? In fact, any MST has the separation property. But we can’t establish
this by checking all possible MSTs of all weighted graphs — there are infinitely many
of them, and we wouldn’t have the time. We will have to prove it.

Theorem 8.5 Any MST has the separation property.
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PROOF. We will show that any spanning tree that does not have the separation property
is not an MST.

Suppose then that:

• T is a spanning tree of the weighted graph(V,E,w).

• there’s a division ofV into two setsX,Y

• there’s an edgee= (x,y) ∈ X×Y that’s shorter than any edge ofT connecting
X andY.

(For an example, see the spanning tree shown in figure 8.3.) We’ll show thatT is not a
MST.

As T is a spanning tree, there’s a unique path inT connectingx to y (the dotted line
in figure 8.5). This path must cross over fromX to Y by some edgee′ = (x′,y′) ∈ E.
(We lete′ be any cross-over edge if there’s more than one.)

Figure 8.5: a short edgee from X to Y

Let’s replacee′ bye in T. We getT∗ = (V,(P∪{e})\{e′}) (see figure 8.6). Then:

• As e is shorter thane′, T∗ has smaller total weight thanT.

• T∗ hasno cycles.Although addinge to T produces a unique cycle, takinge′ out
destroys it again.

• T∗ is connected.For if z, t ∈V are different nodes, there was a path fromz to t
in T. If this path didn’t use the edgee′, it’s still a path inT∗. If it did usee′, then
the path needed to get fromx′ to y′. But we can get fromx′ to y′ in T∗, by going
via e. So we can still get fromz to t in T∗.

SoT∗ is a spanning tree. ButT∗ has smaller total weight thanT. SoT was not a
MST. The separation property is proved. QED.
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Figure 8.6: new spanning treeT∗ (e′ replaced bye)

8.3.1.3 Proof of correctness of Prim’s algorithm

We’re not finished yet. We showed any MST has the separation property; but we still
have to show our algorithm builds a MST.

Theorem 8.6 Prim’s algorithm always finds a MST.

PROOF. Assume for simplicity that all graph edges have different weights (lengths).
(The algorithm finds a MST even if they don’t: proving this is a tutorial exercise.) Let
T be any MST. At each stage, our proposed algorithm adds to its half-built treeX
the shortest possible edge connecting the nodes ofX with the remaining nodesY. (As
all edges have different weights, there is exactly one such edge.) By the ‘separation’
property (theorem 8.5), the MST also includes this edge. Soevery edge of the tree built
by the algorithm is inT.

Example 8.7 Figure 8.7 shows Prim’s algorithm half way through building a MST for
the graph in figure 8.4.

Figure 8.7: Prim’s algorithm in progress
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X is the half-built tree — the nodes already visited.Y is the rest. In the next step,
the algorithm will add the edge shown, as it has highest priority on the fringe at the
moment (check this!) But by the separation property, this edge isthe shortestX−Y
edge. So it is also in any MST — e.g., it’s in the one shown in figure 8.4.

But all spanning trees have the same number of edges (n− 1, where the whole
graph hasn nodes; see proposition 7.10). We know the algorithm always builds a
spanning tree — so it choosesn−1 edges. ButT is a MST, so also hasn−1 edges.
Since the algorithm only chooses edges in the MSTT, and it chooses the same number
of edges (n−1) asT has, it follows that the tree built by the algorithmis T. So Prim’s
algorithm does indeed produce a MST. This is true even with fractional or real-number
weights. QED.

Exercises 8.8 (challenge!)

1. Deduce that if all edges in a weighted graph have different weights, then it has
a uniqueMST. Must this still be true if some edges have equal weight?Can it
still be true?

2. Is it true that any spanning tree (of a weighted graph) that has the separation
property is a MST of that graph? (This, ‘separation property⇒ MST’, is the
converse of theorem 8.5.)

3. Here’s a proposed algorithm to find a MST of a connected weighted graphG.

1 Start with any spanning tree T of G.

2 Pick any X−Y division of the nodes of G.

3 If T doesn’t have a shortest X−Y edge, replace an X−Y edge of T
with a shorter one [as in the proof in §8.3.1.3, especially figures 8.5
and 8.6].

4 Repeat steps 2–3 until T doesn’t change any more, whichever X, Y
are picked.

(a) Does this terminate?

(b) If it does, is the resulting treeT a MST ofG?

(c) If so, would you recommend this algorithm? Why?

Warning If we run Prim’s algorithm on the graph in figure 8.1, starting from node
A, we get a MST — we just proved this. If we start it from node D, we also get a MST
— we proved that the algorithmalwaysgives a MST. So wherever we start it from,
it delivers a MST. Of course, we may not always get the same one. But if all edges
had different weights, we would get the same MST wherever we started it from (by
exercise 8.8(1) above).

So to get an MST, there is no need to run the algorithm from each node in turn, and
take the smallest tree found. It gives an MST wherever we start it from.
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Try the algorithm on figure 8.1, starting from each node in turn. What is the total
weight of the tree found in each case? (They should all be the same!) Do you get the
same tree?

8.3.2 Implementation and execution of Prim’s algorithm

We can use the ‘visit’ algorithm of§7.3.5. When we push(x,y) onto the fringe (priority
queue) we give it priorityw(x,y), wherelow weight = high priority for popping.(We
can write this as ‘push(x,y,w(x,y)) onto fringe’.) E.g., if edge (A,C) has weight 4 we
push (A,C,4) onto the fringe. When we pop an edge (x,y) we pop one withhighest
priority — i.e., lowestweight.

A run of MST(A) for the weighted graph in figure 8.1 looks like this. First, push
(A,∗,0) into queue. The run is then as shown in the table. The MST we get is ‘AB,
AC, CD, CE’, of total length 12:

fringe pop visited print push comments
(A,∗,0) (A,∗,0) A (B,A,1)

(C,A,3)
(D,A,5)
(E,A,8)

(B,A,1) (B,A,1) B edge (C,B,4) C,D, andE are already in the
fringe with better priority, so
the pushes have no effect.

(C,A,3) ‘A,B’ (D,B,6)
(D,A,5) (E,B,9)
(E,A,8)
(C,A,3) (C,A,3) C edge (D,C,2) Both pushes have better pri-

ority than the current fringe
entries, which are replaced.

(D,A,5) ‘A,C’ (E,C,6)
(E,A,8)
(D,C,2) (D,C,2) D edge (E,D,7) This push has lower priority

than current entry(E,C,6) for
E, so no dice.

(E,C,6) ‘C,D’

(E,C,6) (E,C,6) E edge –
‘C,E’

empty Terminate.

Figure 8.8 shows the MST found in this run.

8.3.3 Run time of Prim’s algorithm

On graphs with few edges, the algorithm runs in timeO((n+e) logn), where there are
n nodes ande edges. Cf.§7.3.8.

Exercise 8.9 (Kruskal’s algorithm for MST) Another algorithm to find an MST, due
to Kruskal, runs inO(e loge). This exercise is to check that it works. Let(V,E,w) be a
connected weighted graph withn nodes ande edges. The algorithm works as follows:

1 Sort the edges in E. Let the result be E = {s1, . . . ,se} in order of weight,
so that w(s1) ≤ w(s2) ≤ ·· · ≤ w(se).
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Figure 8.8: the MST found from figure 8.1

2 set T := /0; set i := 1
3 repeat until T contains n−1 edges
4 if the graph (V,T ∪{si}) has no cycles then set T := T ∪{si}
5 add 1 to i
6 end repeat
7 output T

Let T be the output. SoT ⊆ E.

1. Show that(V,T) is a spanning tree of(V,E).

2. Show that(V,T) has the separation property.

3. Deduce that(V,T) is a MST of(V,E,w). (It may help to simplify by assuming
all edges ofE have different weights, but try to eliminate this assumption later.)

4. Show that, using a suitable sorting algorithm (suggest one), Kruskal’s algorithm
runs in timeO(e loge).

8.4 Shortest path

Suppose in a weighted graph we want to find the path of least possible length from
nodex to nodey. We use the algorithm to build a spanning tree, starting atx. For each
nodez added to the tree, we keep a tally of its distanced(z) from x through the tree
as built so far, and add to the fringe all neighbourst of z with priority d(z)+ w(z, t).
We stop wheny gets into the tree. The shortest path fromx to y is then the unique
path fromx to y through the tree. This algorithm is essentially due to Dijkstra (a big
cheese). Exercise: try it on an example. And prove it correct!!
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8.5 Travelling salesman problem (TSP)

Example: Consider figure 8.1 again. Suppose the numbers on the edges represent road
distances between the towns.1 A salesperson lives inA and wants to make a round
trip, visiting each city just once and returning home at the end. The manager conjures
a figure,d, out of the air. If the whole trip is more thand miles, no expenses can be
claimed.

Problem: Is there a route of length≤ d?

We can formalise this problem using weighted graphs.

Problem (TSP): Given a complete weighted graph(V,E,w) (that is,(V,E) is a com-
plete graph), and a numberd, is there a Hamiltonian circuit of(V,E) of total length at
mostd?2

As the graph is complete, there will be many Hamiltonian circuits, but they may all
be longer thand.

This is not a toy problem: variants arise in network design, integrated circuit de-
sign, robotics, etc. See Harel’s book, p.153. TSP is another hard problem. The ex-
haustive search algorithm for HCP also works for TSP. There are(n−1)!/2 possible
routes to consider (see page 111). For each route, we find its length (this can be done
in time O(n)) and compare it withd. As for HCP, this algorithm runs even slower
than exponential time. There is no known polynomial time solution to TSP. Some
heuristics and sub-optimal solutions in special cases are known.

8.5.1 Nearest neighbour heuristic for TSP

One might hope that the following algorithm would find the shortest Hamiltonian cir-
cuit in any weighted graph(V,E,w):

1 start by letting current nodebe any node of V
2 repeat until all nodes have been visited
3 go to the nearest node to current node

% [the node x such that w(x,current node) is least]
4 end repeat

This is called thenearest neighbour heuristic. It works locally, choosing the
nearest neighbour to the current node every time. It’s the nearest algorithm to Prim’s
algorithm for finding a MST (§8.3), and it is similarly fast. But while Prim’s algorithm

1Important: roads between the towns may not be straight! I.e., there may be three towns,x,y, andz,
with w(x,z) > w(x,y)+w(y,z).

2This is the ‘yes-no’ version of TSP. The ‘original’ version is ‘given a complete weighted graph
(V,E,w), find a Hamiltonian circuit of minimal length’.
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is correct, actually delivering a MST, the performance of the nearest neighbour heuris-
tic is absolutely diabolical in many cases — it’s one of the worst TSP heuristics of all.
The energetic will find seriously incriminating evidence in Rayward-Smith’s book; the
rest of us may just try the heuristic on the graph shown in figure 8.9.

Figure 8.9: a bad case for nearest neighbour

One might easily think that the nearest neighbour heuristic was ‘intuitively a cor-
rect solution’ to TSP. It takes the best edge at each step, yes? But in fact, it is far
from being correct. Intuition is surely very valuable. Here we have anawful warning
against relying on it uncritically. Nonetheless, nearest neighbour is used as an initial
stage in some more effective heuristics.

Exercise 8.10Suppose we had a polynomial time algorithm that solved TSP. Show
how it could be used to solve the ‘original’ version of TSP mentioned in footnote 2.
(Creativity is called for.)

8.6 Polynomial time reduction

Though similar to TSP, HCP seems rather easier. We canformalise this using the
reduction of section 5, with the new feature that now we want the reduction to befast.
Suppose we have a fast methodF of transforming a graphG into a complete weighted
graphG∗ plus a numberd, so thatG has a Hamiltonian circuit iffG∗ has a round trip
of length≤ d. That is:

• G is an instance of HCP,

• F(G) = 〈G∗,d〉 is an instance of TSP,

• the answers (yes or no) are the same forG as for〈G∗,d〉.

Then any fast methodM of solving TSP could also be used to solve HCP quickly. For,
given an instanceG of HCP, we transform it quickly intoF(G) and applyM, which is
also fast. Whatever answerM gives toF(G) (yes or no) will also be the correct answer
to G. By fast we meantakes polynomial time (see§7.7) in the worst case.This
technique is calledpolynomial time (p-time) reduction. See Part III.
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Figure 8.10: an instanceG of HCP . . . but is it a yes-instance?

Example 8.11 (p-time reduction of HCP to TSP)Suppose that we have an instance
of HCP: a graph such as the one shown in figure 8.10.

We can turn it into an instance of TSP by:

• defining the distance between nodesx andy by

d(x,y) =

{

1, if x is joined toy in the graph,
2, otherwise

• defining the bound ‘d’ to be the number of nodes.

Figure 8.11: the instanceF(G) of TSP;d = 6

We get figure 8.11. This conversion takes time aboutn2 if there aren nodes, so is
p-time. Then

• any Hamiltonian circuit in the original graph yields a round trip of lengthn in
the weighted graph.

• Conversely, any round trip in the weighted graph must obviously containn
edges; if it is of length≤ n then all its edges must have length 1. So they
must be real edges of the original graph.



  

124 8. Weighted graphs

So the original graph has a Hamiltonian circuit iff there’s a route of length≤ n in the
corresponding weighted graph. E.g., in figure 8.11, the route(c1,c2,c3,c4,c6,c5,c1)
has length 6.

8.7 NP-completeness taster

So HCP is ‘no harder’ than TSP. In fact they are about the same difficulty: one can
also reduce TSP to HCP in p-time, though this is more tricky. Both TSP and HCP are
examples ofNP-complete problems.Around 1,000 problems are now known to be
NP-complete, and they all reduce to each other in p-time. In practice, NP-complete
problems areintractable: currently, even moderately large instances of them can’t
be handled in a reasonable time, and most people believe that no fast solution exists.
We’ll examine NP-completeness in Part III.

8.8 Summary of section

We discussed weighted graphs and applications. Using a ‘short edge = high priority’
fringe popping strategy, we found an algorithm for finding a minimal spanning tree
(MST) in a weighted graph, and proved it correct. There’s a unique MST if all edges
have different weights. We gave an algorithm to find the shortest path between two
nodes of a weighted graph. We mentioned the (hard) travelling salesman problem, and
showed that any fast solution to it would provide a fast solution to the Hamiltonian
circuit problem (§7.7). No polynomial time solution to either of these is known.

8.9 Part II in a nutshell

Section 6: When choosing an algorithm it helps to know roughly the timef (n) that
it’ll take to run on an input of a given sizen. As there are many inputs of a
given sizen, we usually consider the worst or the average case. Worst case
run time estimates are easier to find. Usually a rough estimate will do: we
get f (n) = c · g(n) + smaller terms. The uncertainties in the estimate may be
important and should be borne in mind.

g above can often be calculated by a recurrence relation. Because many algo-
rithms use one of a few standard techniques,g often has one of the following
forms: constant,logn;n;n logn;n2; or 2n, and we say the algorithm runs incon-
stant time, log time,etc.

Implementation should use careful experiments and may involve optimising the
code.Keep it simpleis a sound rule.

O notation is useful for comparing growth rates of functions. For functionsf ,g,
if f (n) ≤ c ·g(n) for all large enoughn then we say thatf is O(g). If f is O(g)
andg is O( f ), we say thatf is θ(g).
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Section 7: A graph is a collection of vertices ornodes,some of which are connected
by edges.Many problems can be represented as problems about graphs. A com-
mon graph searching algorithm proceeds from a start node through the graph
along edges to other nodes. At each point, the immediate neighbours of the cur-
rent node are added to the ‘fringe’ of vertices to visit next. Which fringe vertex
is actually picked for visiting depends on itspriority, which can be assigned in
any way. E.g., giving top priority to the most recent fringe entrant (stack), or the
oldest (queue), leads todepth-first andbreadth-first search, respectively.

Each call visits an entireconnected componentof the graph: those nodes ac-
cessible from the start node by going along edges. The algorithm traces out a
tree (aconnectedgraph with nocycles) made of graph edges and including ev-
ery vertex (aspanning tree). If the graph is not connected (has> 1 connected
component), the algorithm will have to be called more than once. So we can
use it to count connected components. If it ever examines a node that was vis-
ited earlier (not counting the immediately previous node), the graph has acycle.
On a graph withn nodes ande edges, the algorithm runs in worst case time
O((n+e) logn).

We saw that running the algorithm on a tree gives the whole tree, which therefore
has 1 less edge than the number of nodes.

A complete graphis one with all possible edges. AHamiltonian circuit in a
graph is a cycle visiting all nodes. The problem of whether a given graph has
such a circuit — theHamiltonian circuit problem (HCP) — is hard. Exhaus-
tive search can be used; there is no known polynomial time algorithm (i.e., one
running in timeO(nk) in the worst case, for somek) to detect whether a graph
has such a cycle.

Section 8: In a weighted graph we attach a positive whole number (a weight, or
length) to each edge. A common problem is to find a spanning tree of least
possible total weight (a minimal spanning tree, or MST). We showed that the
algorithm above will produce a MST if at each stage we always choose the
fringe node closest to the visited nodes. We can use a similar method to find the
shortest path between two nodes.

Given a weighted graph and a boundd, thetravelling salesman problem (TSP)
asks if there’s a Hamiltonian circuit in the graph of total weight≤ d. This
problem has many applications, but is hard. The position is similar to HCP.

We canreduceHCP to TSP rapidly (with worst case time function of the order
of a polynomial). Any putative fast solution to TSP could then be used to give
a fast solution to HCP. In fact one can also reduce TSP to HCP in p-time, so
HCP and TSP are about equally hard. They are ‘NP-complete’ (see Part III).
Currently they are intractable, and most people expect them to remain so.



 

Part III

Complexity

In Part I of the course we saw that some problems are algorithmically unsolvable.
Examples:

• the halting problem (will a given TM halt on a given input?)

• deciding the truth of an arbitrary statement about arithmetic.

But there are wide variations in difficulty even amongst thesolvableproblems. In prac-
tice it’s no use to know that a problem is solvable, if all solutions take an inordinately
long time to run. So we need to refine our view of the solvable problems. In Part III
we will classify them according to difficulty: how long they take to solve.Note: the
problems in Part III are solvable by an algorithm; but they may not be solvable in a
reasonable time.

Earlier, we formalised the notion of asolvable problemas one that can be solved
by a Turing machine (Church’s thesis). We did this to be able to reason about al-
gorithms in general. We will now formalise thecomplexity of a problem, in terms
of Turing machines, so that we can reason in general about the varying difficulty of
problems.

We will classify problems into four levels of difficulty or complexity. (There are
many finer divisions).

1. The class P of tractable problems that can be solved efficiently (in polynomial
time: p-time).

2. The intractable problems. Even though these are algorithmically solvable, any
algorithmic solution will run in exponential time (or slower) in the worst case.
Such problems cannot be solved in a reasonable time, even for quite small in-
puts, and for practical purposes they are unsolvable for most inputs, unless
the algorithm’s average case performance is good. The exponential function
dwarfs technological changes (figure 6.1), so hardware improvements will not
help much (though quantum computers might).

3. The class NP of problems. These form a kind of half-way house between the
tractable and intractable problems. They can be solved in p-time, but by anon-
deterministic algorithm. Could they have p-timedeterministic solutions?
This is the famous question ‘P = NP?’ — is every NP-problem a P-problem?
The answer isthoughtto beno, though no-one hasprovedit. So these problems
are currently believed to be intractable, but haven’t been proved so.
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4. The class NPC of NP-complete problems. In a precise sense, these are the hard-
est problems in NP. Cook’s theorem (section 12) shows that NP-complete prob-
lems exist (e.g., ‘PSAT’); examples include the Hamiltonian circuit and travel-
ling salesman problems we saw in sections 7–8, and around 1,000 others (so
far). All NP-complete problems reduce to each other in polynomial time (see
§8.6). So a fast solution to any NP-complete problem would immediately give
fast solutions to all the others — in fact to all NP problems. This is one rea-
son why most people believe NP-complete problems have no fast deterministic
solution.

Why study complexity? It is useful in practice. It guides us towards the tractable
problems that are solvable with fast algorithms. Conversely, NP-complete problems
occur frequently in applications. Complexity theory tells us that when we meet one, it
might be wise not to seek a fast solution, as many have tried to do this without success.

On a more philosophical level, Church’s thesis defined an algorithm to be a Turing
machine. So two Turing machines that differ even slightly represent two different
algorithms. But if each reduces quickly to the other, as all NP-complete problems
do, we might wish to regard them as thesamealgorithm —even if they solve quite
different problems!So the notion of fast reducibility of one problem or algorithm to
another gives us a higher-level view of the notion of algorithm.

So in Part III we will:

1. define the run time function of a Turing machine,

2. introduce non-deterministic Turing machines and define their run time function
also,

3. formalise fast reduction of one problem to another,

4. examine NP- and NP-complete problems.

9. Basic complexity theory

We begin by introducing the notions needed to distinguish between tractable and in-
tractable problems. The classes NP and NPC will be discussed in sections 10 and 12.

9.1 Yes/no problems

We will only deal with ‘yes/no problems’, so that we can ignore the output of a Turing
machine, only considering whether it halts & succeeds or halts & fails. This simplifi-
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cation will be especially helpful when we consider non-deterministic Turing machines
(section 10).

Definition 9.1 A yes/no problem is one with answer yes or no. Each yes/no problem
has a set ofinstances— the set of valid inputs for that problem. The yes-instances
of a problem are those instances for which the answer is ‘yes’. The others are the
no-instances.

Many problems can be put in yes/no form:
Problem instances yes-instances no-instances
primality binary

representations
of numbers

binary
representations
of primes

binary
representations
of non-primes

Halting
problem:
DoesM halt on
inputw?

all pairs
(code(M),w)
whereM is a
standard TM,
andw a word of
C

all those pairs
(code(M),w)
such thatM halts
& succeeds onw

the pairs
(code(M),w)
such thatM
doesn’t halt &
succeed onw

HCP all (finite)
graphs

graphs with a
Hamiltonian
circuit

graphs with no
Hamiltonian
circuit

TSP all pairs(G,d),
whereG is a
weighted graph,
andd ≥ 0

all pairs(G,d)
such thatG has a
Hamiltonian
circuit of length
≤ d

all pairs(G,d)
such thatG has
no Hamiltonian
circuit of length
≤ d

9.1.1 Acceptance, rejection, solving

Even if we ignore its output, a Turing machine can still ‘communicate’ with us by
halting & succeeding (‘yes’), or halting & failing (‘no’), so it can answer yes/no prob-
lems. Of course, we may have to code the instances of the problem as words, so they
can be input to a Turing machine. For HP,code(M) is given to the TM, asM itself
is a machine, not a word. The coding of instances into words should bereasonable:
we do not allow unary representation of numbers, and cheating (such as coding all
yes-instances as ‘yes’ and all no-instances as ‘no’) is not allowed.

Definition 9.2

1. A Turing machineM is said toaccepta wordw of its input alphabet ifM halts
and succeeds on inputw.

2. M is said toreject w if M halts and fails on inputw.

3. A Turing machineM is said tosolvea yes/no problem A if:
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• every instance of A is a word of the input alphabet ofM (or can be coded
as one in a reasonable way);

• M accepts all the yes-instances of A;
• M rejects all the no-instances of A.

Example 9.3

1. In example 3.6 we saw a Turing machine that halts and succeeds if its input
word is a palindrome, and halts & fails if not. This machine solves the yes/no
problem ‘is w∈ I∗ a palindrome?’, whereI is its input alphabet.

2. The universal Turing machineU doesnotsolve the halting problem. If we give it
code(M)∗w for some standardM and wordw∈C∗, thenU does halt & succeed
on the yes-instances (see the table above).But it doesnot halt & fail on all the
no-instances: ifM runs forever onw, U never halts oncode(M)∗w.

9.1.1.1 Our problems must have infinitely many y- and n-instances

We do not consider yes/no problems with only finitely many yes-instances, or only
finitely many no-instances.They are too easy! E.g., if the yes-instances of a yes/no
problem X are justy1, . . . ,yn, a Turing machineM can solve X by checking to see if
the input wordw is one of theyi. (Theyi are ‘hard-wired’ intoM; we can do this as
there are only finitely many of them.) If it is,M halts and succeeds; otherwise it halts
and fails. No ‘calculation’ is involved. E.g., ‘Is 31 prime?’ has no instances at all, and
is solved by the trivial Turing machine whose initial state is halting.

This may seem odd. For example, one of the Turing machines in figure 9.1 (both
with input alphabetC, say) solves the yes/no problem:

‘Is (a) Goldbach’s conjecture true, and (b)w = w?’

The instances of this problem are all wordsw of C. The yes-instances are thosew such
that (a) Goldbach’s conjecture is true, and (b)w = w. The no-instances are the rest.
So if the conjecture is true, everyw ∈ C∗ is a yes-instance, soY solves it (Y halts &
succeeds on any input). If not, everyw∈C∗ is a no-instance, soN solves it (N halts &
fails on any input). Of course, we don’t know which!But the problem is solvable—
either byY or byN.

Figure 9.1: Which machine solves Goldbach’s conjecture?

For a problem to be solvable according to our definition, we are only concerned
that a Turing machine solution exists, not in how to find it. So Goldbach’s conjecture
really is too easy for us! We are only interested in problems with infinitely many yes-
and infinitely many no-instances.
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9.2 Polynomial time Turing machines

As for algorithms in section 6, we want to define how long a Turing machine takes to
run. Of course, we have to bear in mind that a Turing machine can run for different
numbers of steps on different words of any given length. Here, we consider theworst
caseonly. The warnings in section 6 about doing this still apply: e.g., our Turing
machine may usually be very quick, taking the maximum time on only a few inputs.

9.2.1 Run time function of Turing machines

Definition 9.4 Let M = (Q,Σ, I ,q0,δ,F) be a Turing machine. We writetimeM(n) for
the the length of thelongestrun of M on any input of sizen (we want the worst case).
timeM(n) will be ∞ if M does not halt on some input of lengthn. We call the function
timeM : {0,1,2, . . .}→ {0,1,2, . . . ,∞} therun time function of M.

9.2.2 p-time Turing machines

Definition 9.5 A Turing machineM is said torun in polynomial time (p-time) if
there is some polynomialp(n) = a0 + a1n+ a2n2 + . . .+ aknk, where the coefficients
a0, . . . ,ak are non-negative whole numbers, such that:

timeM(n) ≤ p(n) for all n = 0,1,2, . . . .

That is,no run ofM on any word of lengthn lasts longer thanp(n) steps.

Turing machines that run in p-time are considered to be fast. This is a broad but still
useful categorisation — see the Cook–Karp thesis below.

Note We do not use theO-notation in the definition ofM running in p-time (e.g.,
by saying ‘timeM(n) is O(nk)’ for somek). We require thattimeM(n) should be at
mostp(n), not just at mostc · p(n) for some constantc. This is no restriction because
c · p(n) is a polynomial anyway. But further, we require thattimeM(n) ≤ p(n) for all
n, however small,so that we are sure what happens for alln. We have to be a bit
more careful than with the more liberalO-notation, but there are some benefits of this
approach:

Proposition 9.6 p-time Turing machines always halt.

PROOF. If M is p-time then for some polynomialp(n), M takes at mostp(n) steps to
run on any wordw of lengthn. But p(n) is always finite, for anyn. SoM always halts
(succeeding or failing) on any input; it can’t run forever. QED.

The following exercise shows that insisting on a firm polynomial bound on run
time for all n is not really a restriction.

Exercise 9.7 Let f : I∗ → Σ∗ be any partial function. Show that the following are
equivalent:
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1. f = fM for some Turing machineM running in p-time,

2. f = fM∗ for some Turing machineM∗ such thattimeM∗(n) is O(nk) for somek.

Hint: for ‘⇑’, tabulate all ‘short’ inputs forM∗ as a look-up table.

9.3 Tractable problems — the class P

Our main interest is in when a problem istractable: when it has a reasonably fast
solution. Here we define ‘tractability’ formally, and look at some examples.

9.3.1 Cook–Karp thesis

Tractable problems can be solved in a reasonable time for instances of reasonable size.
We would like to make this more precise.

The graph in figure 6.1 on page 90 showed thatpolynomials(100n2, etc.,) grow at a
manageable rate. The degree of the polynomial (k in definition 9.5) can usually be mas-
saged down to 5 or better. Aslogn≤ n for all n≥ 1 (exercise: prove it!), even run time
functions such asn logn are bounded by a polynomial (here,n2). The problems we saw
in sections 7–8 are all solvable in polynomial time, except (probably) the Hamiltonian
circuit and travelling salesman problems, HCP and TSP. Al-Khwārazmi’s algorithms
for arithmetic are tractable, as are most sorting and other algorithms in common use.

On the other hand, problems that only have algorithms withexponentialrun time
function (or worse) are effectively no better than unsolvable ones for even moderately
large inputs, unless their average-case performance is better (here, we only consider
worst-case).

So, rather as in Church’s thesis, we will equate thetractable problems(a vague no-
tion, since what is tractable depends on our technology and resources) with theprob-
lems solvable in p-time(a precise notion). Doing so is sometimes called theCook–
Karp thesis, after S. Cook (of whom more later), and R. Karp. The Cook–Karp thesis
is useful, but a little crude; more people disagree with it than with Church’s thesis.
(For one thing, some people think average-case complexity is more important than
worst-case in practice.)

9.3.2 P

Adopting the Cook–Karp thesis, we make the following important definition.

Definition 9.8
1. A yes/no problem is said to betractable if it can be solved by a Turing machine

running in p-time.

2. An algorithm is said to be tractable if it can be implemented by a Turing machine
that runs in polynomial time.

3. We write P for the class of tractable yes/no problems: those that are solvable by
a Turing machine running in polynomial time.
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9.3.2.1 P is closed under complementation

The class P has some nice properties. We look at one now, to practice using P. We will
see more nice properties of P in section 11.

Definition 9.9 Thecomplementof a yes/no problem is got by exchanging the answers
yesandno. What were the yes-instances now become the no-instances, and vice versa.
E.g., the complement of ‘isn prime?’ is ‘isn composite?’.

If S is a class of problems (e.g., P), we writeco-S for the class consisting of the
complements of the problems inS . Clearly,S = co-co-S .

Proposition 9.10 P is closed under complementation.

That is, if A is in P, the complementary problem to A is also in P. Or, co-P⊆ P.

PROOF. For if A is a yes/no problem solvable in p-time by a Turing machineM, we
can rewireM so that (a) the halting states are no longer halting states, so that entering
one now causes a halt and fail, and (b) wheneverM is in a ‘halt and fail’ situation (no
applicable instruction), control passes to a new state, which is halting. The rewired
machineM′ (see figure 9.2) also runs in p-time. AsM′ accepts exactly the words that
M rejects, it solves the complementary problem to A, which is therefore in P. QED.

Figure 9.2: sketch of why P is closed under complementation

Exercise 9.11The proof above doesn’t explain in detail what happens ifM tries to
move left from square 0. How would you do this?

Show that co-P = P (i.e., not just ‘⊆’).

9.3.2.2 Primality testing

It can be hard to tell if a problem is tractable. Here’s one that was open for 2000 years:
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Primality problem: ‘given a whole numberx, is it prime?’ Non-primality (compos-
iteness) problem: ‘given a whole numberx, is it composite (i.e., not prime)?’

One solution is to check all possible factorsy of x (all integersy with 2≤ y≤√
x).

If x is given in binary, then an input of lengthn could represent anx of up to about2n,
which has

√
2n = (

√
2)n possible factors. This approach will therefore take exponential

time.
Until quite recently, no p-time algorithm for primality or for non-primality test-

ing was known, though people were hopeful that one would be found, and some su-
perb probabilistic algorithms had been devised. But in 2002, Agrawal, Kayal, and
Saxena, from Kampur, India, published an ingenious (deterministic) polynomial-time
algorithm that determines whether an input numbern is prime or composite. (They
instantly became world-famous). So primality testing is now known to be tractable.

A great deal of work has been done in this area, but as it is a crucial field for
cryptography (see Harel’s book), some of the work is probably not published.

9.4 Intractable problems?

Definition 9.12 An algorithm is said to beintractable if it can’t be implemented by
a p-time Turing machine. A yes/no problem is said to beintractable if (i) it is algo-
rithmically solvable, but (ii) it is not tractable.All solutionsnecessarilyuse intractable
algorithms.

Some problems are known to be intractable. There are many examples from logic:
one is deciding validity of sentences of first-order logic written with only two variables
(possibly re-used: like∃x∃y(x < y∧∃x(y < x))). This problem is solvable, but all
algorithms must take at least exponential time.

But many common problems have not been proved to be either tractable or in-
tractable! Typical examples are HCP and TSP. All knownalgorithmsto solve these
problems are intractable, but it is not known if theproblemsare themselves intractable.
Maybe there’s a fast algorithm that everyone’s missed. For reasons to be seen in sec-
tion 12, this is not thought likely.

Besides TSP and HCP, problems in this category include:

Propositional satisfaction (PSAT) Here we consider formulas ofpropositional
logic. They are written using an alphabetI with atoms,p1, p2, p3, . . .,1 connectives
∧ (and),∨ (or), ¬ (not), → (implies) and↔ (iff), and brackets ), (. This is as for
arithmetic (§5.4), but there are no quantifiers this time. Any formula is a word ofI ,
and can be given as input to a Turing machine.

We can assign varying truth values (true or false) to the atoms. We writeh for a
particular assignment: so e.g.,h(p1) = true,h(p2) = false is possible. Then we can

1As in section 5,p46 is 3 symbols,p, 4, and 6. So all formulas can be written with a finite alphabetI
including p and the numbers 0–9 say, plus∧,¬, etc.
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recursively work out the truth value of any formulaA:

h(¬A) = true iff h(A) = false
h(A∧B) = true iff h(A) = h(B) = true
h(A∨B) = true iff at least one ofh(A),h(B) are true

h(A→ B) = true iff eitherh(A) is false orh(B) is true or both
h(A↔ B) = true iff h(A) = h(B).

So for example, ifh makesp = p1 true andq = p2 false, then:

• h(p→ q) = false,

• h(((p→ q) → p) → p) = true,

• h((p∧q)∨ (¬p∧¬q)) = h(p↔ q) = false.

Problem (PSAT, propositional satisfiability) Given a formulaA, is there some as-
signmenth to the atoms ofA such thath(A) = true? That is: isA satisfiable?

A Turing machine could check whetherA is satisfiable by checking every valuation
for the atoms inA — i.e., searching the ‘truth table’ ofA. We want to find out how long
this might take. For each atomp, there are 2 possible values ofh(p), so forn atoms
there are2n possible valuations. So we need to estimate how many atomA has, in the
worst case.

To simplify, we assume that every atom has the same length (say 1) as a word.
Whilst this will be false in general (e.g., the 1,000,000th atom,p1000000, will have
length 8), it will be true e.g., for up to 10,000 atoms if we use base 10,000 (say) for
arithmetic; and solving PSAT for an arbitrary formula with 10,000 different atoms is
currently unthinkable.

Under this assumption, for anyr > 0 we can easily find formulas withr atoms that
have length at most6r. We can prove this by induction onr. If r = 1 then certainly
both p and¬p have length≤ 6. If it’s true for r, let A haver atoms and be of length
≤ 6r. Choose an atomp not occurring inA. Then(p∧A), (p→ A), (¬A∧¬p), etc.,
haver +1 atoms. Their length is the length ofA, plus 1 forp (thanks to our simplifying
assumption), plus 2 for (, ), plus 1 for the connective (∧,→, etc.), and at most 2 for
possible¬s. The total is≤ (length ofA)+6≤ 6r +6 = 6(r +1). QED.2

Hence for anyn (divisible by 6) there are formulas of lengthn with at leastn/6
atoms. So in the worst case, there are at least2n/6 different valuationsh for A of length
n. So the run time on an input of lengthn is at least2n/6 = ( 6

√
2)n in the worst case

— exponential. There are more sophisticated methods (tableaux etc.), but no known
tractable one. PSAT is NP-complete — see section 12.

2In fact if B,C haves, t atoms (all different) and are of length≤ 6s−5,6t−5, respectively, then(B∧C),
(B→C), (¬B∨¬C), etc., haves+ t = r atoms and are of length≤ 6s−5+6t−5+5= 6r−5. This gives
even more formulas.
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9.5 Exhaustive search in algorithms

We now discuss a common obstacle to finding a fast solution: the need to conduct an
exhaustive search for it.

Broadly, the yes/no problems we’ve seen fall into two types:

(∃) Is there a needle in the haystack?We want to show that there is a solution
amongst the many possibilities.Oneway to do so (we cannot rule out the possi-
bility that there are other ways) is to actually find a solution — e.g., a factor of a
composite number, a (short) Hamiltonian circuit (HCP and TSP), or a valuation
making a formula true (PSAT).

(∀) Is there no needle in the haystack?We want to show that none of the possible
solutions is in fact a solution.Complementsof type (∃) problems are of this
type. E.g., to showA is not satisfiable, we want to establish that there’sno
assignmenth that makesA true.

Type (∀) problems intuitively seem harder than type (∃), just as finding an algorithm
for a given problem is easier than proving there’s no algorithm that works. But often
it’s not known whether they really are harder, in the sense that the time complexity of
a Turing machine solution is necessarily higher.

Exhaustive search (try all possible solutions) can be used in (∃) and (∀), but it leads
to intractability, as the number of possible solutions tends to rise at least exponentially
with the input size. It could be called exhausting search. We very much want to avoid
it.

But at least, for any possible solution that the search throws up, we generally have
a fast (p-time) way of checking that it actually is a solution. This is certainly so in all
the cases we’ve seen. For example, it’s fast to check whether a given possible factor
of a number really is a factor. It’s fast to check whether a possible Hamiltonian circuit
(= a listing of the nodes in some order) really is a Hamiltonian circuit, and whether
a given Hamiltonian circuit has total length< d. It’s fast to check whether a given
valuation of the atoms of a formula actually makes the formula true.

So the real barrier to efficient solution of these problems is the search part.
Now for some problems, a clever search strategy has been invented, rendering them

tractable. For example, consider the following yes-no problem.
Problem instances yes-instances no-instances
Spanning tree
weights

all pairs(G,d),
whereG is a
connected
weighted graph,
andd > 0 is a
number

those pairs
(G,d) whereG
has a spanning
tree of weight
< d

those pairs
(G,d) where all
spanning trees
of G have
weight≥ d

This can be solved by finding a MST (section 8) and comparing its total weight
with d. Not only is the length comparison is fast, but there’s also a fast (log linear)
algorithm to find a MST. It’s as though we have a metal detector that guides us to the
needle if there is one, so we don’t need to examine the whole haystack.



  

136 9. Basic complexity theory

For other problems such as HCP and TSP (type (∃)), no clever search strategy has
yet been found, and no tractable solutions are known.3

So problems subdivide further:

(∃1) Problems of type (∃) for which a clever (i.e., p-time) search strategy is available.

(∃2) Problems of type (∃) for which no clever search strategy is known.

The type (∀) problems subdivide similarly. E.g.,is every spanning tree of length
> d? is type(∀1), as we can find a MST and see if it weighs in at more thand. The
table gives more examples.

∃) Is there a needle? ∀) Is there no needle?
1) a fast search strategy
is known

‘Does the weighted
graphG have a
spanning tree of weight
< d?’

‘Is every spanning tree
of the weighted graph
G of total weight≥ d?’

2) no fast search
strategy is known as yet

TSP, HCP, PSAT (and
all NP-complete
problems)

‘Is every Ham. circuit
of length> d?’ ‘Is the
given formula
unsatisfiable?’

The point is that we know where to look for a tree of length≤ d if there is one. We
can narrow down the search space to a small size that can be searched tractably, given
that we have a fast algorithm to check that a given possible solution to the problem is
actually a solution.

Now, importantly, if we can narrow down the search space in this way, then it’s
just as easy to find a solution as to check that there isn’t a solution! Both involve
going through the same shrunken search space. Sotype(∃1) and (∀1) problems are
equally easy (they are tractable).This really follows from the fact that P is closed
under complement (proposition 9.10). Once we know a type (∃) problem is tractable
(in P), its complement, a type (∀) problem, will also be tractable.

The type (2) problemsseemto be intractable, but the only (!) source of intractabil-
ity is our inability to find a clever strategy to replace exhaustive search. They would
become tractable if we had a good search strategy.

Which problems become tractable if we discount4 the cost of exhaustive search?
This is a kind of science fiction question: what would it be like if . . . ? The answer is:
over a thousand commonly encountered ones: the NP problems. They are of type (∃);
their complements, of type (∀), would simultaneously become tractable, too.

And could there really be a clever search strategyfor these problems, one that
we’ve all missed? Most people think not, but no-one is sure. We explore these inter-
esting questions in the next section, using a new kind of Turing machine.

3There are fast probabilistic and genetic ‘solutions’ to TSP that are sometimes very effective, but they
are not guaranteed to solve the problem.

4There are several ways of doing the discounting, depending on what kind of information we want
from the exhaustive search. The simplest way is to discount the cost of search in type (∃) problems —
those involving simply seeing whether there exists (∃) a solution among many possibilities — and this is
the approach we will take in section 10. Another way usesoracles.
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10. Non-deterministic Turing machines

A non-deterministic Turing machine is one that can makechoicesof which ‘instruc-
tion’ to execute at various points in a run. So what happens during the run isnot
determinedin advance. Such a machine gives us an exhaustive search for free, be-
cause by using a sequence of choices it can simplyguessthe solution (which part of
the haystack to check). We don’t specify which choices are made, or how, because we
are interested in solving problems when we’re given a search for free, not in the mech-
anism of the search. We can view the non-deterministic parts of a non-deterministic
Turing machineN as ‘holes’, waiting to be filled by a clever search strategy if it’s ever
invented. (Such holes are rather like variables in equations — e.g.,x in x2+2x+1= 0
— and we know how useful variables can be.) In the meantime we can still study the
behaviour ofN — by studying non-determinism itself.1

So: a non-deterministic Turing machine is like an ordinary one, but more than one
instruction may be applicable in a given state, reading a given symbol. If you like, the
instruction tableδ can havemore than oneentry for each pair(q,a) ∈ Q×Σ. When
in stateq and readinga, the machine can choose which instruction to execute. This is
why these machines are called non-deterministic: their behaviour on a given input is
not determined in advance.

10.1 Definition of non-deterministic TM

Definition 10.1 Formally, anon-deterministic Turing machine (NDTM) is a 6-tuple
N = (Q,Σ, I ,q0,δ,F) as before, but now,δ is a (total2) function

δ : (Q\F)×Σ −→ 2Q×Σ×{0,1,−1}.

Here,2X is the set of all subsets ofX (the power set ofX). E.g., if X = {1,2} then
2X = { /0,{1},{2},{1,2}}. If X hasn elements then2X has2n elements, which explains
the notation2X. Soδ(q,a) is now asetof triples(q′,a′,d) in Q×Σ×{0,1,−1}.

10.1.1 Operation of NDTM

A non-deterministic Turing machineN has a one-way infinite tape and a single head,
as usual. (We can consider 3-tape variants etc., if we want.)N begins in stateq0 with

1At first sight, a guessing machine may allow even more for free than exhaustive searches. We’ll see
in §10.4 that in fact it doesn’t!

2We can takeδ to be atotal function, rather than apartial one, because if we want there to be no
applicable instruction in stateq when reading symbola, we defineδ(q,a) = /0 (empty set).
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its head in square 0. In stateq and reading symbola, N works like this:

• If q∈ F thenN halts and succeeds.

• Otherwise,N can go into stateq′, write symbola′, and move the head in direc-
tion d ∈ {0,1,−1}, for any(q′,a′,d) ∈ δ(q,a).

• N has free choice as to which(q′,a′,d) ∈ δ(q,a) to take.

• δ(q,a) = /0 means that there is no applicable instruction. In this caseN halts and
fails. N also halts and fails if its head tries to move left off the tape.

Of course, there are NDTMsN such thatδ(q,a) always either contains a single triple
(q′,a′,d) or is empty. Such anN will behave like an ordinary Turing machine — deter-
ministically. So the ordinary Turing machine is aspecial caseof a non-deterministic
Turing machine. We have againgeneralisedthe definition of a Turing machine, as
we did with then-tape Turing machine in section 3 (then-tape model generalises the
ordinary one, asn could be 1).

10.1.2 Input and output of NDTM

As usual, theinput of a NDTM N is taken to be the contents of the tape before the run,
up to but not including the first blank.

However, we have a problem in defining theoutput of N for a given input. This
is becauseN may well have more than one successful run (one in which it halts and
succeeds) starting with inputw. For each such run we may get a different ‘output’ —
so which one is the ‘real’ output ofN onw?

We could defineN’s output to be thesetof all wordsx of Σ such that after some
successful run ofN, the tape contents (up to the first blank) arex. I.e., fN(w) would be
the set of all possible outputs ofN on w. So fN would be a (total3) function fN : I∗ →
2Σ∗

.
This is getting complicated. Again we simplify matters by considering only yes/no

problems. With these,N’s ‘output’ is just yes or no, according to whetherN accepts or
rejects the input. So we don’t need to consider its output word(s) at all.

Therefore we do not define the output of a NDTM. But we do need to revise
definition 9.2 (acceptance/rejection of input) to cover NDTMs.

10.1.3 Accepting and rejecting for NDTMs

Definition 10.2 A Turing machineN (non-deterministic or otherwise) is said toaccept
the inputw∈ I∗ if there existsa successful run ofN (one in whichN halts and succeeds)
givenw as input. If all runs on inputw end in a halt-and-fail,N is said to rejectw. This
agrees with our previous definition whenN is deterministic.4

3If there is no successful run ofN onw, then fN(w) = /0. So again we can takefN to be atotal function.
4If N is deterministic then it has only one run onw. So by definition,N acceptsw if N halts and

succeeds on inputw, and rejectsw if it halts & fails onw. This is just as before (definition 9.2).
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The definition ofsolving a yes/no problem is the same as for deterministic Tur-
ing machines (definition 9.2):N should accept the yes-instances and reject the no-
instances.

There is a lot of dubious mysticism surrounding the way NDTMs make their
choices. Some writers talk about magic coins, others, lucky guesses, etc etc. In my
view, there is no magic or luck involved. According to the above definition, a NDTM
N accepts an inputw if it is possiblefor N to halt & succeed on inputw. If you re-
member this simple statement, you’ll save yourself a lot of headaches.N would have
to make all the right choices — somehow — but we don’t need to say how! We are
not claiming that NDTMs are (yet) a practical form of computation. They are a tool
for studying complexity. As we said, non-determinism is a ‘hole’ waiting to be filled
in by future discoveries.

Exercise 10.3What’s wrong with this argument: the non-deterministic Turing ma-
chine in figure 10.1 solves any yes/no problem, because given a yes-instance, it can
move to stateq1, and given a no-instance it can move to stateq2. As it’s non-determin-
istic, we don’t need to say how it chooses! [Look at the definition of solving.]

Figure 10.1: a TM to solve any problem??

10.2 Examples of NDTMs

Let’s see some examples. In each one, notice how the machine first guesses a solution,
and then checks that it really is a solution. Both processes are fast.

Example 10.4 (Non-primality testing) Given a numbern, is it composite? We can
make a 2-track NDTMN that:

1. guessesa numberm with 1 < m< n;

2. dividesn by m (deterministically, in p-time);

3. if there’s no remainder then it halts and succeeds (‘yes’); otherwise it halts and
fails (‘no’).



Is (number on track 2) 
bigger than 1 and less 
than (number on track 1)?

q0

(x,(x,0),1)
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if x= 0 or 1
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Figure 10.2: a NDTM solving non-primality problem

See figure 10.2. The input is a binary number, on track 1.N non-deterministically
writes out a number on track 2. Notice howtwo instructions are applicable in stateq0
when reading 0 or 1 on track 1:N can write either 0 or 1 in track 2. But if it’s reading
a∧ in track 1, itmustwrite∧ and go to box A. This means that it writes 0s and 1s until
the end of the input: it can’t run forever. It ends with a∧ and goes to box A.

Now it halts and succeeds iff the number it wrote was not 0, 1 or≥ the input
(subroutine A), and there’s no remainder on dividing the input by the guessed number
(subroutine B). A and B can be done deterministically in p-time, using ordinary long
division, etc.

Following figure 10.2 through, we see that the only way thatN can halt and succeed
is by finding a factor. If the input is composite, thenN could possiblyhalt and succeed
— it has only (!) to guess the right factor. But if the input is prime,N cannothalt
and succeed, whatever guesses it makes. It can only halt and fail. HenceN solves the
non-primality yes/no problem.

In figure 10.3,N (in stateq0) has guessed ‘10?’ (in binary) as a factor of 55
(110111 in binary). It’s about to guess the last digit, ‘?’. If it chooses 0, leaving ‘100’
= 4, it will halt & fail after B. But it could pick 1, leaving ‘101’ = 5. Then it will halt
and succeed. So it can possibly halt & succeed on this input, so 55 is not prime.

Figure 10.3: willN be lucky?

Exercise 10.5Why doesn’t this approach work for the problem ‘isn prime?’
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Example 10.6 (Travelling salesperson problem) An instance consists of the dis-
tances between the cities, and the boundd, all coded in some sensible manner (no unary
notation, etc.). The answer is ‘yes’ if there is a route of length≤ d, and ‘no’ otherwise.

We can design a NDTMN that:

1. non-deterministically guesses a route around the cities;

2. works out its length (it can do this deterministically, in p-time);

3. if the length is≤ d then it halts and succeeds (‘yes’); otherwise it halts and fails
(‘no’).

Clearly, if there is a route of length≤ d thenN could possiblyhalt and succeed — it
only has to guess right in (i). But if there is no such route,N cannothalt and succeed.
It can only halt and fail. HenceN solves TSP.

Example 10.7 (PSAT) Problem: Given a formulaA of propositional logic, isA satis-
fiable? Using a NDTM, we can guess an assignmenth, and then easily check in p-time
whether or noth(A) = true.

Exercise 10.8How can we solve the Hamiltonian circuit problem using a fast NDTM?

10.3 Speed of NDTMs

What does it mean to say that a non-deterministic Turing machineN runs in p-time?
To answer this we have to definetimeN(n), as we did for deterministic TMs in§9.2.1.
But becauseN can guess, there are now many possible runs ofN on any given input
w∈ I∗. The runs are of three kinds (see figure 10.4):

1. successful (accepting) runs that end in a halt & succeed;

2. rejecting runs (ending in a halt & fail);

3. infinite runs in whichN never halts.

There are several ways of defining the run time ofN.5 We will take the simplest:

Definition 10.9 (Run time function for NDTMs) timeN(n) is the length of the long-
est possible run (i.e., the depth of the tree in figure 10.4) thatN could make on any
word of lengthn. SotimeN(n) ≤ ∞.

Again, this definition reduces to that of§9.2.1 whenN is deterministic, as it then
has only one run on any input.

Exercise 10.10 (for mathematicians: cf. K̈onig’s tree lemma) Is definition 10.9
well-defined? What istimeN(n) if N has arbitrarily long finite runs on words of length
n, yet no infinite run? Then there’d be no longest run.

But in fact this can’t happen! Show that for anyn, if for all r ≥ 0 there is a run of
N of length at leastr on some wordw of lengthn, thenN must also have an infinite
run on somew of lengthn.

5We could follow Rayward-Smith and ignore the no-inputs. For most purposes (e.g., Cook’s theorem)
the choice doesn’t matter very much.
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Figure 10.4: tree of runs of a NDTM on some input

10.4 The class NP

Definition 10.11 (p-time NDTMs) We say that a non-deterministic Turing machine
N runs in polynomial time (p-time) if there is a polynomialp(n) with positive coef-
ficients such thattimeN(n) ≤ p(n) for all n≥ 0. That is, no run ofN on any input of
lengthn lasts longer thanp(n) steps.

This is as before. As for deterministic Turing machines, a p-time non-deterministic
Turing machine always halts (cf. proposition 9.6).

Definition 10.12 (The class NP of problems) We define NP to be the class of all
yes/no problems A such that there is some NDTMN that runs in p-time and solves A:
N accepts all the yes-instances of A, and rejects all the no-instances.

The class NP is very important. It is the class of ‘type (∃) problems’ (see§9.5) that
would succumb to a clever search strategy. It contains many commonly occurring
problems of practical importance. For instance, each NDTM described in the examples
of §10.2 has p-time complexity, so PSAT, TSP, HCP, and compositeness testing are all
in NP. As Pratt proved in 1977, so is primality testing (it is now known to be in P).

We said that an NDTM is a Turing machine with ‘holes’ waiting to be filled by
a clever search strategy. In effect, all the hoped-for strategy needs do is to search the
tree of figure 10.4, to find an accepting run. Thus the remark in footnote 1 on p. 137 is
justified!

10.4.1 P = NP?

Clearly P⊆ NP (simply because p-time deterministic TMs are special cases of p-time
NDTMs). It is not known whetherP= NP — this is probably the most famous open
question in computer science. Most computer scientists believe that P6= NP, but they
may all be wrong. Unlike Church’s thesis, the question P = NP is precisely stated.
Whether P = NP or not shouldn’t be a matter of belief. We want to prove it, one way
or the other. A lot of work has been done, but no-one has yet published a proof.



   

10.5. Simulation of NDTMs by ordinary TMs 143

10.5 Simulation of NDTMs by ordinary TMs

We now show that although NDTMs seem faster, they can’t solve any more Y/N prob-
lems than deterministic Turing machines. This gives our last hefty chunk of evidence
for Church’s thesis.

The idea is very simple. We saw that NDTMs are just a quick way of doing an
exhaustive search. So now we’ll do the exhaustive search in full — deterministically.

As usual, we check the easy part first: NDTMs can do anything that ordinary TMs
can. This is true because a deterministic Turing machine is a special case of a NDTM.

Formally, given an ordinary Turing machineM = (Q,Σ, I ,q0,δ,F), we can convert
it into a NDTM, N = (Q,Σ, I ,q0,δ′,F), as follows. For eachq∈ Q anda∈ Σ, let

δ′(q,a) =

{

{δ(q,a)}, if δ(q,a) is defined,
/0, otherwise.

ThenN behaves exactly asM does — deterministically! SoN solves the same problem
asM.

Now we check the hard part.

Theorem 10.13 Any yes/no problem solvable by a NDTM can also be solved by a
deterministic Turing machine.

PROOF. [sketch] We will show that any NDTMN can be simulated by a 3-tape deter-
ministic Turing machineM. M will accept/reject the same input words asN.

The idea is thatM simulatesall possible runsof N on the given input. At each point
of the run ofN there is possibly a fork, whenN chooses which of several instructions
to execute. So the runs ofN form the branches of a tree (see figure 10.4).M will
construct and search this tree in a breadth-first fashion, halting and succeeding as soon
as it finds a branch that ends in a ‘halt & succeed’ forN.

The search must be breadth-first because branches corresponding to runs ofN that
never terminate (e.g., loops) areinfinite. A depth-first search would takeM off down
such a branch forever, never to return. But the next branch along might represent a
‘halt & succeed’ run, which is whatM is looking for.

Breadth-first searches are expensive in memory usage. Fortunately, Turing ma-
chines have lots of memory!

1. Each node of the tree (see figure 10.4) corresponds to the configuration ofN
when ‘at’ that node, namely the following information:

• the current state ofN,

• the current contents ofN’s tape,

• the position ofN’s head on its tape.

The configuration determines the possible next moves ofN, and so determines
which nodes lie immediately below the current node in the tree. Note that the
tree isfinitely branching(i.e., there are only finitely many children of each
node), becauseN has only finitely many choices in any configuration.
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2. We can represent a configuration ofN by a words∗ t, where:

• s is a word representing the current state ofN (e.g., the decimal state num-
ber),

• ∗ is a delimiter,

• t is a ‘2-track word’ withN’s current tape contents (up to the last non-
blank character) in track 1, and an X in track 2 marking the current head
position (cf. section 3). Note thatt could be arbitrarily long but is always
finite.

If q is a state ofN, w a word ofΣ, andk≥ 0 a number, let us writeconfig(q,w,k)
for the words∗ t corresponding to the configuration whereN is in stateq, w is
on the tape, and the head ofN is over squarek.

3. Any level of the tree of runs ofN can be represented by a finite sequence of con-
figurations of the forms∗ t, each separated from the next by another delimiter,
say∗∗. Using this data storage method,M can simulateN.

4. Initially, N’s input wordw is on tape 1 ofM. M replaces it withconfig(q0,w,0),
using tape 2 for scratch work (copying etc.).

5. After n cycles, the tree has been explored to depthn (root = depth 0). Tape 1 of
M will hold all those labelled configurationss∗ t attached to nodes in leveln of
the tree.

6. Now, for each step ofN, M updates tape 1.

7. First,M checks to see if any configuration so far on tape 1 is a ‘halt & succeed’
for N (i.e., it involves a halting state forN). If M finds any, it also halts and
succeeds: the search is over.

8. Otherwise,M moves successively through the configurationss∗ t on tape 1.
Eachs∗ t corresponds to a node at leveln of the tree. It may have several
child nodesat leveln+ 1: there will be one for each possible move ofN in
the configurations∗ t. For each such possible move ofN in turn, M calculates
the configuration of the corresponding ‘child’ node: the new labels′ ∗ t ′. M can
do this because it ‘knows’ the instruction table ofN.6 If s′ ∗ t ′ would involve a
negative head position, it is invalid and is ignored.7

Otherwise,M appends it to the end of tape 2. Tape 3 is used for rough work.

9. SoM works outall possible moves ofN in each configurations∗ t, one after the
other. If there are no valid children (e.g., ifN has no applicable instruction in
this configuration) then no change is made to tape 2.

6Alternatively we could use the technique of section 4 and provideM with code(N) on another tape.
This would allowM to simulate any NDTM with the right alphabet!

7Note: M doesnot halt and fail as soon as it finds a single run ofN that halts and fails, becauseother
runsof N may be successful.
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10. Having done all children of this configurations∗t, head 1 moves to the next con-
figuration on tape 1, and the process repeats, the new children being appended
to tape 2. And so on, through all configurations on tape 1.

11. When every configuration on tape 1 has been dealt with in this way, tape 2 holds
the configurations corresponding to leveln+ 1 of the tree.M can copy tape 2
back over tape 1 and go on to the next cycle (step 7 above). If tape 2 is empty,
this means that there are no valid children. The tree has no leveln+ 1, soM
halts and fails.

Now if N acceptsw then there issomesuccessful run ofN onw. So somewhere in
the tree there’s a configuration of the form

(†) config(q,w,m),whereq is a halting state ofN.

M will eventually find it, and will also halt and succeed. SoM also acceptsw.
On the other hand, ifN rejectsw, then every run ofN on w ends in a halt-and-fail.

So (cf. exercise 10.10) the tree will be finite, of depthn, say, with no configurations of
the form(†). M will eventually try to construct leveln+1 of the tree, which is empty.
At that point,M halts & fails. SoM rejectsw too.

SoN andM solve the same yes/no problem. This completes the proof. QED.

11. Reduction in p-time

We now use Turing machines to formalise the technique we saw in§8.6 of reducing
one problem to another in p-time. Thisp-time reduction gives fast non-deterministic
solutions to new yes/no problems from known fast non-deterministic solutions to old
ones. It gives a measure of the relative hardness of yes/no problems.

11.1 Definition of p-time reduction ‘≤’

Definition 11.1 (p-time reduction) Let A, B be any two yes/no problems (not neces-
sarily in NP or even solvable by a Turing machine).

1. LetX be a deterministic1 Turing machine. We say thatX reducesA to B if:

(a) for every yes-instancew of A, fX(w) is defined and is a yes-instance of B

(b) for every no-instancew of A, fX(w) is defined and is a no-instance of B.

1We wantX to be deterministic because it should be ‘genuinely fast’, and have an output.
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2. We say that Areduces toB in polynomial time (or p-time) if there exists a
deterministic Turing machineX running in p-time that reduces A to B.

3. We writeA ≤ B if A reduces to B in polynomial time.

4. We writeA ∼ B if A ≤ B andB ≤ A.

If A ≤ B then as in§8.6 we can use a fast solution to B to solve A quickly, by first
reducing the instance of A to an instance of B of the same ‘parity’ (yes or no), and then
applying the fast solution to B.

Figure 11.1: ifA ≤ B, and we are given a solution to B, then we can solve A

Warning A ≤ B implies that, but isnot the same as,any fast solution to B can be
used to solve A quickly. There might be other ways of using B to solve A than via
reduction (have a look at exercise 8.10 again).

Example 11.2 By example 8.11, HCP reduces to TSP, and the reduction can easily
done by a deterministic Turing machine running in p-time. So HCP≤ TSP.

Warning Don’t try to reduce HCP to TSP in p-time as follows: given an instanceG
of HCP,

• If G is a yes-instance of HCP, output

• If G is a no-instance of HCP, output

This is a reduction (why?), but it involves determining whetherG is a yes- or a no-
instance. This is hard to do. There is no known p-time way to do it, so this reduction
is (probably) not p-time.

A machine reducing a problem A to another, B, need not be able to solve A; and its
design does not necessarily take account of whether it is given a yes- or a no-instance
of A. It may be very hard (even impossible) to solve A, and yet quite easy to reduce A
to B, by making simple changes to the instances in a way that preserves their yes–no
parity.

But sometimes the reduction does solve the original problem. See theorem 11.11
below for an example.
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Example 11.3 (change of base)Let a,b ≥ 2. We can design a deterministic Turing
machineXa,b running in p-time, such that for any numbern, if w representsn in base
a then fXa,b(w) representsn in baseb. Change of base of arithmetic can be done in
polynomial time.

For any numbera≥ 2, letCa be the yes/no problem ‘isw the representation in base
a of a prime number?’. Then for anya,b≥ 2, Xa,b reducesCa to Cb. (Exercise: check
this.) SoCa ≤ Cb (and by symmetry,Cb ≤ Ca) for anya,b≥ 2. SoCa ∼ Cb.

So with respect to the ordering≤ of difficulty, changing the base makes no differ-
ence at all.

Why do we not allowa = 1 here — unary notation? Unary is a special case; the
exercise below shows why.

Exercise 11.4There is a deterministic Turing machineBU that, given the binary rep-
resentation of a number as input, outputs the unary representation. (1) Design one. (2)
Show that no such machineBU can have polynomial time complexity. [Hint: how long
doesBU take to output the answer if the input is the binary representation ofn?]

11.2 ≤ is a pre-order

We saw that ifA ≤ B then we can use a fast solution to B to solve A quickly. So
if A ≤ B then in effect A is no harder than B. Thus the relation≤ orders the yes/no
problems by increasing difficulty.

But is≤ really an ordering at all? In fact it’s what’s called apre-order: a reflexive,
transitive (see§7.1) binary relation. Other pre-orders include the ordering on numbers:
x≤ x for all x, andx≤ y≤ z impliesx≤ z. The relationT on students given bys T t
iff t is at least as tall ass is a pre-order. The well-known binary relation likes(x,y)
may be a pre-order, if everyone likes themselves (so Bob likes Bob, for example), and
whenever (say) Bob likes Chris and Chris likes Keith then also Bob likes Keith.

Theorem 11.5 The relation≤ defined above is apre-orderon the class of yes/no prob-
lems.

PROOF. ≤ is reflexive. To prove this we must show that for any yes/no problem A,
A ≤ A holds. To proveA ≤ A, we must find a deterministic p-time Turing machine
reducing A to A.

Let I be a finite alphabet in which all instances of A can be written. LetX be the
deterministic Turing machine

(q0, I ∪{∧}, I ,q0, /0,{q0}).

(Cf. Y of figure 9.1.)X just halts & succeeds without action, so its output is the same
as its input. Hence ifw is a yes-instance of A thenfX(w) = w is a yes-instance of A;
and similarly for no-instances. SoX reduces A to A. Moreover,X runs in polynomial
time, sincetimeX(n) = 0 for all n.



w   (input word:
     an instance of A)

YX

output of X
on w is an 
instance
of B

deterministic
Turing machine
reducing A to B in 
p-time

Result: 
a deterministic 
Turing machine X*Y
reducing A to C in 
p-timertn to 

sq. 0
mark 
square
0

deterministic
Turing machine
reducing B to C in 
p-time

output f  (f  (w)), 
an instance of CY X

  

148 11. Reduction in p-time

≤ is transitive. Let A, B, C be yes/no problems and assume thatA ≤ B andB ≤ C.
We show thatA ≤ C.

As A ≤ B, there is a deterministic p-time Turing machineX that reduces A to B.
Similarly, asB ≤ C, there is another deterministic p-time Turing machineY reducing
B to C. Then the Turing machineX ∗Y obtained by runningX thenY (figure 11.2) is
deterministic. (We have to return to square 0 afterX becauseY expects to begin there.)

Figure 11.2: reducing A to C (so≤ is transitive)

First we check thatX ∗Y reduces A to C. Ifw is a yes-instance of A thenfX(w)
is a yes-instance of B, and sofY( fX(w)) is a yes-instance of C. Similarly ifw is a no-
instance of A,fY( fX(w)) is a no-instance of C. SoX ∗Y reduces A to C, as required.

Now we check thatX ∗Y runs in p-time. Letp(n),q(n) be polynomials with pos-
itive coefficients such thattimeX(n) ≤ p(n) andtimeY(n) ≤ q(n) for all n≥ 0. If the
input wordw to X ∗Y has lengthn, then:

1. Marking square 0 takes time 1.

2. RunningX onw takes time≤ p(n).

3. Returning to and unmarking square 0 takes timek, where X’s head is in square
k when X halts. How big couldk be? Well, X’s head began in square 0, and
moves at most 1 square per move. Sok is at most the number of movesX made.
But X made at mostp(n) moves. Sok≤ p(n).

4. RunningY takes time≤ q(length of fX(w)). What is the length offX(w)? As
above,X can write at most 1 output symbol per move. So

(length of fX(w)) ≤ (no. of moves ofX on inputw) ≤ p(n).

But q has positive coefficients, so ifn increases thenq(n) can’t decrease.2 So

q(length of fX(w)) ≤ q(p(n)).

HenceY takes time≤ q(p(n)).

2E.g., because
dq
dn

≥ 0 if n≥ 0.
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The total run time ofX ∗Y is thus at most1+ p(n)+ p(n)+q(p(n)), which works out
to a polynomial. For example, ifp(n) = 2n2+n3 andq(n) = 4+5n, then the expression
is 1+2(2n2+n3)+4+5(2n2+n3), which works out to5+14n2+7n3, a polynomial.

QED.

Remark 11.6

1. Steps 3 and 4 above are important.

2. We cannot just say: the symbol≤ looks likethe usual ordering1≤ 2≤ 3. . . on
numbers (it has a line under it: it is not<, but ≤), so thereforeA ≤ A (etc).
The symbol≤ may look like the ordering of numbers, but it has a quite different
meaning.To prove that≤ is reflexive and transitive we must use the definition
of ≤. No other way will do.

3. To prove that A reduces to A in p-time may seem a silly thing to do. It is not
silly. It is just trivial.

Exercise 11.7Show that the relationA ∼ B given by ‘A ≤ B and B ≤ A’ (defini-
tion 11.1) is an equivalence relation (see§7.1) on the class of all yes/no problems.
(Use the theorem.)

11.3 Closure of NP under p-time reduction

We said that ifA ≤ B then we can use any given fast solution to B to solve A rapidly.
What if the fast ‘solution’ to B is by a p-time NDTM? We’d expect the resulting so-
lution to A also to be a (hopefully p-time) NDTM. Thus we expect that if B is in NP
then so is A. Let’s check this.

Theorem 11.8 Suppose A and B are yes/no problems, andA ≤ B. If B is in NP, then
A is also in NP.

PROOF. Similar to before. As B is in NP, there is a non-deterministic Turing machine
N that solves B. AsA ≤ B, there is a deterministic Turing machineX reducing A to B.
We want to join upX to N as in figure 11.3 below (cf. figure 11.2).

Let us call the joined-up machineX ∗N. ThenX ∗N is a NDTM that solves A. For
if w is a yes-instance of A, thenfX(w), the input toN, is a yes-instance of B. SoN
acceptsfX(w). HenceX ∗N acceptsw. Similarly, if w is a no-instance of A thenX ∗N
rejectsw.

So to show that A is in NP, it is enough to show:

Claim. The non-deterministic TMX ∗N runs in p-time.
Proof of claim. We must showtimeX∗N(n) ≤ r(n) for some polynomialr (and for
all n). The count goes much as before. Letw be an instance of A. We calculate
how long X ∗N can run for on inputw. AssumetimeX(n) ≤ p(n) and timeN(n) ≤
q(n) for polynomialsp,q with positive coefficients. Let length(w) = n. Then as in
theorem 11.5:
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Figure 11.3: using solution to B to solve A

• Marking square 0 takes a single instruction: time 1.

• X runs for time at mostp(n) on inputw. X halts with outputfX(w).

• Returning to square 0 takes time at mostp(n), as before.

• Then the outputfX(w) of X is given as input toN. As before,fX(w) has length
≤ p(n), so no run ofN is longer thanq(p(n)).

So no run ofX ∗N is longer thanr(n) = 1+2p(n)+q(p(n)). This is a polynomial in
n. HenceX ∗N runs in p-time. This proves the claim.

As X ∗N is a p-time Turing machine solving A, A is in NP. QED.

Remark We’ve showed that the concatenation (joining up) of p-time Turing ma-
chinesX,Y by sending the output ofX into Y as input, gives another p-time Turing
machineX ∗Y. Y can be non-deterministic, in which case so isX ∗Y.

Corollary 11.9 HCP is an NP problem.

PROOF. TSP is in NP, by example 10.6. A simple formalisation of example 8.11 using
Turing machines shows that HCP≤ TSP. So by the theorem, HCP is in NP also. QED.

We already knew this (exercise 10.8), but reduction is useful for other things — see
especially NP-complete problems in section 12. Some 1,000 other p-time reductions
of problems to NP problems are known.
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11.4 The P-problems are≤-easiest

What are theeasiestyes/no problems, with respect to our ‘difficulty’ ordering≤ of
problems? In fact they are those in P — the yes/no problems solvable deterministically
in polynomial time.

First, we show that the≤-easiest problems are in P.This is similar to the proof of
theorem 11.8, above. Essentially it shows that, like NP, P is closed downwards under
≤.

Theorem 11.10 If Ais a yes-no problem, andA ≤ B for all yes-no problemsB, then
A ∈ P.

PROOF. Choose anyB ∈ P. Then there is a deterministic Turing machineM solving
B in p-time. Also, there’s a deterministic p-time Turing machineX reducing A to B.
Then the machine shown in figure 11.4 below solves A in p-time — the proof is similar
to that of theorem 11.8. This shows thatA ∈ P, as required. QED.

Figure 11.4: solving A in p-time, ifA ≤ B ∈ P

Now we show the other half, thatthe problems in P are≤-easiest.This is a new
argument for us, and one that seems like a trick.

Theorem 11.11 If A is any problem inP, and B is any yes/no problem at all, then
A ≤ B.

PROOF.
Crudely, the idea is this. We want to show that we can find a fast solution to A

if we are allowed to use one for B. But we’re told A is solvable in p-time, so we can
solve A directly, without using the solution for B! This is crude because we have to
show that A reduces to B in p-time, which is not quite the same (see the warning on
page 146). But the same trick works.
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LetM be a deterministic p-time Turing machine solving A. Choose any yes-instance
w1 and no-instancew2 of B (remember our yes/no problems have infinitely many yes-
and no-instances (see p. 129), so we can certainly findw1,w2). Then letX be the
machine of figure 11.5.

Figure 11.5: reducing a P-problem to any problem

In the figure, ‘output w1’ is a Turing machine that outputs the wordw1 as fixed
text (as in the ‘helloworld’ example). The Turing machine ‘output w2’ is similar. X
contains a likenessM′ of M, slightly modified so that:

• if M halts and succeeds then control passes tooutput w1,

• if M halts and fails then control passes tooutput w2.

We require thatM′ eventually passes control to the rest ofX, so thatfX(w) is defined
for any instancew of A. This is true, because asM runs in p-time, it always halts (see
proposition 9.6).

Clearly,X is deterministic. By counting steps, as in theorems 11.5 and 11.8, we
can check thatM runs in p-time.

We show thatX reduces A to B. If the input toX is a yes-instancew of A, thenM
will halt and succeed onw, soX outputsw1, a yes-instance of B. Alternatively, if the
input is a no-instance of A, thenM halts and fails, andX outputsw2, a no-instance of
B. So by definition 11.1(1),X reduces A to B. SoA ≤ B as required. QED.

Conclusion A yes-no problem A is in P iffA ≤ B for all yes-no problems B. Thus,
P is indeed the class of≤-minimal, or easiest, problems.

Exercises 11.12

1. Check thatM above does run in p-time.

2. Let ∼ be the equivalence relation of definition 11.1(4). Let A be any yes/no
problem in P. Show that for any yes/no problem B,A ∼ B iff B ∈ P.

3. In theorem 5.6, we reduced HP to EIHP. Is this reduction p-time?
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problems

hard
problems

≤ yes/no problems
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11.5 Summary of section

We defined the relation≤ of p-time reduction between yes/no problems. The ordering
≤ is a pre-order, and we think of it as an ordering of difficulty: ifA ≤ B then A is no
harder than B. We writeA ∼ B if A ≤ B andB ≤ A — they are of the same difficulty.

Figure 11.6 sketches the yes/no problems.

Figure 11.6: a view of y/n problems (ifP 6= NP)

Each∼-class consist of all problems of a certain≤-difficulty (of A, B such that
A ≤ B andB ≤ A). By theorem 11.11 and exercise 11.12(2), P is an entire∼-class,
consisting of the≤-easiest problems. IfA ∈ NP then any≤-easier problem is also in
NP. So NP is a union of classes: no∼-class overlaps NP on both sides. Of course the
shaded area in NP but outside P may be empty, so that PSAT and friends are all in P!
Whether this is so is the questionP= NP, which is unsolved.

You will probably survive if you remember that:

• ≤ is reflexive and transitive,

• NP is closed downwards with respect to≤,

• P is the class of≤-minimal problems.

The problems in P are the≤-easiest. Is there is a≤-hardest problem? We will investi-
gate this — at least within NP — in the final section.

12. NP-completeness

Cheer up — this is the last section. The holiday approaches.
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12.1 Introduction

Is there is a≤-hardest problem? The answer is not at all obvious, even within NP.
Could it be that for any NP-problem, there’s always a harder one (still in NP)? If so,
there’d be harder and harder problems in NP (with respect to≤), forming an infinite
sequence of increasingly hard problems, never stopping. Or maybe there are many
different≤-hardest NP-problems, all unrelated by≤ — after all, why should we expect
very different problems to reduce to each other? (Of course if P = NP then our question
is irrelevant. But most likely,P 6= NP. Ladner showed in 1975 that ifP 6= NP then there
are infinitely many∼-classes within NP.)

In fact this doesn’t happen, at least within NP (and also within several other com-
plexity classes which we won’t discuss). In a famous paper of 1971, Stephen Cook
proved that there are≤-hardest problems in NP. Such problems are called NP-complete
problems.

What do we mean by a≤-hardest problem?

Definition 12.1 (NPC, Cook1) A yes/no problem A is said to be NP-completeif

1. A ∈ NP,

2. B ≤ A for all problemsB ∈ NP.

The class of all NP-complete problems is denoted by NPC.

Exercise 12.2Show that if A, B are NP-complete thenA ∼ B. Show that if A is NP-
complete andA ∼ B then B is also NP-complete. So the NP-complete problems form
a single∼-class.

12.1.1 NP-complete problems

But are there any NP-complete problems? Answer: yes.

Theorem 12.3 (Cook, 1971)NPC 6= /0. In particular,PSAT is NP-complete.

We prove it in§12.3.
Some 1,000 examples of NP-complete problems are now known. They include

PSAT, the Hamiltonian circuit problem (HCP), the travelling salesman problem (TSP),
partition (given a set of integers, can it be divided into two sets with equal sum?)
scheduling(can a given set of tasks of varying length be done on two identical ma-
chines to meet a given deadline?) and many other problems of great practical impor-
tance. See texts, e.g., Garey & Johnson, for a longer list. Non-primality and primality
testing were known for a long time to be in NP, but are now known (since 2002) to be
in P, which is even better (remember thatP⊆ NP).

1S.A. Cook,The complexity of theorem proving procedures,Proceedings of Third Annual ACM
Symposium on the Theory of Computing, 1971, pp. 151–158.
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12.1.2 Significance of NP-completeness

At first sight, TSP and PSAT have little in common. But by exercise 12.2, any NP-
complete problem is reducible in polynomial time to any other. Hence any solution to
TSP can be converted into a solution to PSAT that runs in about the same time — and
vice versa.

This means that we can regard an algorithm solving TSP as the same — in a sense
— as one that solves PSAT. To identify algorithms that are p-time reducible to each
other gives us a higher level view of algorithms.

If your boss gives you a hard-looking problem to solve, and you are feeling lazy,
one way to avoid solving it is to show that it can’t be solved by a Turing machine at all
(as in section 5). Few bosses would then persist.

If this is not possible, it’s almost as good to show that it is NP-complete. NPC
problems are usually considered intractable, being the hardest in NP. If the boss insists
that you write a program to solve it, you could respond that most boffins believe no
such program would run in a reasonable time even for small inputs. You could produce
the graph in figure 6.1.

So the boss says: ‘You’re a clever young person! Good degree and all that. You
ought to be able to find a really clever search strategy, giving a program that runs in
polynomial time — evenn5 or so!’ But NP-complete problems are the≤-hardest in
NP. So not only would a clever program immediately give fast solutions to the 1,000
or so known NP-complete problems— a huge range including TSP, PSAT, college
timetabling problems, map colouring problems, planning problems from AI, etc., etc.,
in totally different application areas — but toall problems inNP. Different groups
of people have been looking for fast solutions to these for years, without success.2

Some applications (e.g., in RSA cryptography) evenrely on the assumption that their
pet problem has no fast solution. So you would upset many apple-carts if you found
a polynomial time solution. With the military after you, you might have to become a
traveller, never visiting any city more than once.

No joy? You could hint that a p-time solution would solve P = NP and so make
you more famous than your boss. If that doesn’t work, you really are stuck, and if a
fast solution is essential you should consider:

• optimising your algorithm as far as possible;

• restricting the problem to certain special simpler inputs;

• hoping for the best in the average case;

• looking for a sub-optimal, probabilistic or genetic ‘solution’;

• finding heuristics (an AI-style approach).

See Harel’s or Sedgewick’s book for these. For example, for the ‘flat’ version of TSP
where the map is ‘real’ — for any 3 citiesx,y,z, the distance fromx to z is at most the
sum of the distances fromx to y and fromy to z — there is a p-time algorithm that

2But they haven’tprovedthere’s no fast solution. Maybe this failure indicates there is a fast solution!
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delivers a route round the cities of at most twice the optimal length. But for the general
version of TSP, the existence of such a polynomial time algorithm would imply P =
NP.

12.2 Proving NP-completeness by reduction

The best way to prove that a yes/no problem A is NP-complete is usually to show that:

1. A is in NP, and

2. A is≥-harder than a known NP-complete problem B (i.e.,A ≥ B).

For if A is ≥-harder than a≥-hardest problem in NP, but is still in NP, then A must
also be≥-hardest in NP: i.e., NP-complete.

(1) is usually easy, but must not be forgotten. (For example, there areunsolvable
problems A that satisfy (2). Satisfiability forpredicate logic is unsolvable, but is
clearly≥ PSAT since PSAT is a special case of it. Such problems are not NP-complete,
being outside NP.) One can either prove (1) directly, as in§10.2, or else show that
A ≤ C for some C known to be in NP, and then use theorem 11.8.

To show (2), you must reduce a known NP-complete problem B to A in p-time.
Any B in NPC will do. There are now about 1000 Bs to choose from. A popular
choice is 3SAT:

3SAT: Given: a propositional formulaF that is a conjunction ofclausesof the form
X ∨Y ∨ Z, whereX,Y,Z are atoms (propositional variables) or negations of
atoms. E.g.,F = (p∨q∨¬r)∧ (¬s∨x∨w).3

Question: is there an assignmenth such thath(F) = true?

Cook showed that 3SAT is NP-complete in his 1971 paper. Because the instances of
3SAT are more limited than those of PSAT, it is often simpler to reduce 3SAT to the
original problem A than to reduce PSAT to it.

Exercises 12.4

1. Recall the definition of the class co-NP (definition 9.9). Show that NP = co-NP
iff NPC∩co-NP 6= /0.4

2. [Quite hard; for mathematicians] Show PSAT∼ 3SAT, and HCP∼ PSAT. You
can assume Cook’s theorem (below).

3The ‘3’ in 3SAT refers to there being 3 disjuncts (X,Y,Z above) in each clause. The formulaF may
use many more than 3 atoms.

4By exercise 9.11, if P = NP then NP = co-NP. It might be true that NP = co-NP and still P6= NP, but
this is thought unlikely. Cf. the discussion in§9.5.
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12.3 Cook’s theorem

Of course, the first-discovered NP-complete problem, PSAT, wasn’t shown NP-com-
plete by reduction — no NPC problems to reduce to it were known! So to end, we’ll
sketch Stephen Cook’s beautiful proof that PSAT is NP-complete.

We already showed (1)PSAT∈ NP in example 10.7. So it’s enough to show (2)
if A ∈ NP thenA ≤ PSAT. Fix anyA ∈ NP. We want to build a deterministic p-time
Turing machineX such that:

• Given a yes-instancew of A, X outputs a satisfiable formulaFw of propositional
logic;

• Given a no-instancew of A, X outputs an unsatisfiable formulaFw of proposi-
tional logic.

Figure 12.1: hoped-for X reducing A to PSAT

See figure 12.1.X must constructFw from w deterministically, and in p-time.
All we know is thatA ∈ NP. So there’s a non-deterministic Turing machineN =

(Q,Σ, I ,q0,δ,F) solving A, and a polynomialp(n) such that no run ofN on any input
of lengthn takes longer thanp(n) steps. AsN solves A, the yes-instances of A are
exactly thosew for which N has an accepting run (one that ends in a halting state
for N). Roughly, the formulaFw will directly express conditions for there to be an
accepting run ofN on inputw! Fw will be satisfiable iff there is such a run. Compare
Gödel’s theorem (§5.4), where we said there was a formulaR(x) of arithmetic that said
x coded an accepting run of a Turing machineM on an inputw. This showed that we
can describe Turing machines by logical formulas, and was known before Cook. But
here we must use propositional logic, not arithmetic. Propositional logic is not usually
powerful enough to cope, but Cook’s insight was that it’s OK here, asN is ‘simple’ (it
runs in p-time, so essentially we can boundx in R(x)).

Table to represent a run of N on w When doesN have an accepting run onw?
We can easily (but verbosely) represent a run ofN on w of lengthn by a table (see
figure 12.2). The table hasp(n) + 1 big boxes, labelled ‘time’:0,1, . . . , p(n). They
will represent the configuration ofN at each step: its state, head position, and the tape
contents. Box 0 (magnified in figure 12.3 below) will representN’s configuration at
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Figure 12.2: table representing a run ofN onw of lengthn

time 0: initially. Box 1 will represent the configuration at time 1, and so on. We know
N halts by timep(n), so we don’t need any more boxes than0,1, . . . , p(n).

How does the table record a run ofN on w? Each box is divided horizontally
into three segments, to describe the configuration ofN at the time that concerns the
box (the ‘current time’). The first segment indicates the state ofN at that time. It’s
divided into as many rows as there are states, one row for each state. We shade the
row of the current state. So ifQ = {q0, . . . ,qs} and the current state isqi, row i alone
will be shaded. In figure 12.3 (time 0) row 0 is shaded because initiallyN is in state
q0. The second segment describes the current tape contents. Now asN only has at
mostp(n) moves, its head can never get beyond squarep(n). So all tape squares after
p(n) will always be blank, and we need only describe the contents up to squarep(n).
We do it by chopping the segment up into rows and columns. The rows correspond
to symbols fromΣ = {a0, . . . ,ar} say, wherear = ∧, and the columns correspond to
squares0,1, . . . , p(n) of the tape. We shade the intersection of rowi, column j iff ai is
currently the character in squarej. So the shading for time 0 describes the initial tape
contents:w itself.5

We can read offw from figure 12.3: it isa0a1a4a3a4. The rest of the tape isar =∧.
Finally the third segment describesN’s current head position. We divide it into

columns0,1, . . . , p(n), and shade the column where the head is. The head never moves
more thanp(n) away from square 0 in any run (it hasn’t time), so we only needp(n)+1
columns for this. For the time 0 box (figure 12.3) we shade column 0, asN’s head
begins in square 0. IfN halts beforep(n), we can leave all later boxes blank.

Will a table like that of figure 12.2 but withrandom shadingcorrespond to a real
accepting run ofN? No: there are four kinds of constraint.

1. For eacht ≤ p(n), the box for timet must represent a genuine configurationC(t)

5Technical point: by replacingp(n) by p(n)+n if need be, we can assume thatp(n)≥ n. We still have
timeM(n) ≤ p(n). So we’ve room to recordw itself.
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Figure 12.3: box 0 representsconfig(q0,a0a1a4a3a4,0) (cf. theorem 10.13)

of N. So exactly one row of segment 1 in each box should be shaded (because
N is in exactly one state at each time). Similarly, just one column of segment 3
should be shaded, as the head is always in a unique position. And each column
of segment 2 should have exactly one shaded row (as each tape square always
has a single character).

2. C(0) must be the initial configuration ofN. So the box for time 0 should say
that the head is in square 0 and the state isq0, as in figure 12.3. Moreover, it
should say that the initial tape contents arew.

3. The whole table must represent a run ofN. The successive configurationsC(t)
represented by the boxes should be related, as we have to be able to get from
C(t) to C(t + 1) by a single step ofN. So there’ll be further constraints. Only
one tape character can change at a time; and the head position can vary by at
most 1. Compare boxes 0 and 1 of figure 12.2. And the new character and
position, and new state, are related to the old byδ. E.g., we can read off from
figure 12.2 that(q0,a0,q2,a2,1) is an instruction ofN.

4. The run indicated by the table must be accepting. This is a constraint on the
final state, as shown in segment 1 of the last non-empty box. If the shaded state
is in F , the run is accepting; otherwise, not.

Any accepting run ofN on w meets these constraints and we can fill in a table for
it. Conversely, if we fill in the table so as to meet the four constraints, we do get an
accepting run ofN on w. So the questiondoesN acceptw is the same ascan we fill
in the table subject to the four constraints?
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Describing the table with logic Filling in squares of the table is really a logical
Boolean operation — either a square is shaded (1), or not (0). Let’s introduce a propo-
sitional atom for each little square of the table. The atom’s being true will mean that
its square is filled in. So a valuationv of the atoms corresponds exactly (in a 1–1 way)
to a completed table (though it may not meet the constraints).

Describing the constraints with logic The constraints (1)–(4) above correspond to
constraints on the truth values of the atoms. It is possible to write a propositional
formulaFw that expresses these constraints.Fw does not say which squares are filled
in: it only expresses the constraints. (The constraints do determine how box 0 is filled
in, but boxes 1, 2, . . . ,p(n) can be filled in in many different ways, corresponding to
the different choices made byN during its run.) Given any valuationv of the atoms
that makesFw true, we can read off fromv a shading for the table that meets the four
constraints. And from any validly-completed table we can read off a valuationv to the
atoms such thatv(Fw) = true. So the questioncan we fill in the table subject to the
four constraints? is the same as the questionis there a valuationv making Fw true?

Writing Fw How do we writeFw? See Rayward-Smith for details. For example,
suppose the atoms corresponding to the little squares in the first column of segment 2
of box 0 areP0,P1, . . . ,Pr . If the first symbol ofw is a0, as it was above, then only the
first little square is shaded, so of thePi, P0 should be the only true atom. Therefore we
include the clauseP0∧¬P1∧¬P2∧ . . .∧¬Pr in Fw.

Writing Fw in full is tedious, but clearly it’s an algorithmic process. And in fact,
if we know the partsQ,Σ, I ,q0,δ, andF of N, we can design a deterministic Turing
machineX running in polynomial time6 that writes outFw when run on inputw!

The end We havefX(w) = Fw. But now we’re finished. For,w is a yes-instance of A
iff N acceptsw, iff there’s a way to fill in the table that meets the constraints, iff there’s
some valuationv making fX(w) = Fw true, iff Fw is a yes-instance of PSAT. HenceX
reduces A to PSAT. SinceX is deterministic and runs in p-time, we haveA ≤ PSAT.
But this holds for any A in NP. So PSAT is NP-complete. QED and goodnight.

12.4 Sample exam questions on Parts II, III

1. (a) Explain the emphasised terms:

i. connectedgraph
ii. spanning tree(of a connected graph)

iii. the Hamiltonian circuit problem
iv. the travelling salesman problem.

6To make this more plausible, let’s ask how manyatomswe need. There arep(n)+1 boxes. In each
box, segment 1 has|Q|= s+1 rows, segment 2 has(p(n)+1)×|Σ|= (p(n)+1) ·(r +1) little squares, and
segment 3 hasp(n)+1 little squares. The total is(p(n)+1)[(p(n)+1)(r +2)+s+1] — a polynomial!!
So the number of atoms we need is a polynomial inn.
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(b) A maximal spanning treeof a connected weighted graphG is a spanning
treeT of G, such that the sum of the weights of the edges inT is as large
as possible (i.e., no spanning tree ofG has larger total weight).

i. Suggest an algorithm to find a maximal spanning tree of a connected
weighted graph. (Do not prove your algorithm correct.)

ii. Use your algorithm to find a maximal spanning tree of the following
weighted graph:

2. (a) Briefly explain the difference between thedepth-first andbreadth-first
methods of constructing a spanning tree of a connected graph.

(b) i. List the edges of a spanning tree of the following graph, using the
depth-first method.

ii. Repeat b(i), using the breadth-first method.

(c) Explain the meaning of the emphasised terms:

i. A Hamiltonian circuit of a graph;
ii. A minimal spanning tree (MST) of a connected weighted graph.

(d) Let G be a connected weighted graph. Explain why any Hamiltonian cir-
cuit of G must have greater total weight than the total weight of any min-
imal spanning tree ofG. [Hint: transform a Hamiltonian circuit into a
spanning tree.]

3. Let A and B be yes/no problems.

(a) Explain what is meant when we say that:

i. A reduces to B in p-time (in symbols,A ≤ B)
ii. A is in P

iii. A is an NP-problem
iv. A is NP-complete.
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For each of (i)-(iv), give an example of a problem A (or in (i), problems A
and B) satisfying the condition.

(b) Show that the p-time reduction ordering≤ of a(i) above istransitive on
yes/no problems.

(c) i. Show that if A is an NP-problem, B is NP-complete andA ≥ B then
A is also NP-complete.

ii. If A, B are both NP-complete, does it follow thatA ≥B? Justify your
answer.

4. (a) Let A and B be arbitrary yes-no problems. Define what it means to say
that A reduces toB in p-time (in symbols,A ≤ B).

(b) Let ≤ be the relation of part a. Prove that ifA ≤ B and B ∈ NP then
A ∈ NP.

(c) Let≤ be the relation of part a.

i. Define the class NPC of NP-complete yes-no problems.
ii. Let HCP, PSAT be the Hamiltonian circuit and propositional satisfac-

tion problems, respectively. Let A be a yes-no problem, and suppose
that HCP≤ A and A ≤ PSAT. Prove directly from your definition
in part c(i) that A is NP-complete. [You can assume that HCP and
PSAT are NP-complete.]

12.5 Part III in a nutshell

Section 9: We want to analyse the complexity of solvable problems in terms of how
long they take to solve. We introduce yes/no problems to simplify our discus-
sion. A Turing machine can solve such a problem by accepting (= halting &
succeeding on) the yes-instances, and rejecting (= halting & failing on) the no-
instances. So we don’t need to consider its output. We define therun time
function timeM(n) of a Turing machineM to be the longest it can run for on
any input of sizen. A Turing machineruns in p-time if its run time function is
bounded by some polynomial. P is the class of ‘tractable’ yes/no problems solv-
able by some Turing machine running in p-time. We showed that P is closed un-
der complementation, and indeed,P= co-P. Whilst no-one has proved it, many
problems such as HCP (section 7), TSP (section 8) and PSAT (propositional sat-
isfaction) do appear intractable, although they are solvable by exhaustive search.
We are lacking an efficient search strategy.

Section 10: Whilst waiting for a strategy to be devised (though most think there isn’t
one) we can examine which problems would yield to such a strategy. To do
this we use thenon-deterministic Turing machine (NDTM), which can make
choices during a run. More than one instruction may be applicable in a single
configuration. (A strategy could be plugged into such a machine, narrowing
the choice to one again.) A NDTMN acceptsits input iff it has at least one
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accepting run on that input. Itrejectsan input if all its runs on that input end in
failure. It solvesa yes/no problem if it accepts the yes-instances and rejects the
rest, as before. Itsrun time function timeN(n) is the length of the longest run
of N on any input of sizen. The definition ofN running in p-time is as before.

NDTMs can solve yes/no problems like PSAT, HCP, TSP, etc., in p-time, as
they simply guess a possible solutionx to the input instancew, acceptingw if x
is in fact a solution. Checking thatx is a solution tow (e.g.,x is a round trip of
length≤ d in TSP, or in PSAT,x is a valuation making the propositional formula
A true) can be done in p-time. We let NP be the class of all yes/no problems
solvable by some NDTM in p-time. So TSP, HCP and PSAT are all in NP. As
deterministic Turing machines are a special case of NDTMs, any P problem is
in NP.

However, though faster than deterministic Turing machines, NDTMs can solve
no more yes/no problems. This gives more evidence for Church’s thesis. A de-
terministic Turing machine can simulate any NDTM by constructing all possible
runs in a breadth-first manner, and seeing if any is accepting. That is, it does a
full exhaustive search of the tree of runs of the NDTM.

Section 11: We can formalise the notion of a yes/no problem A being no harder than
another, B, byp-time reduction. To reduce A to B in p-time (‘A ≤B’) is to find
a (deterministic) p-time Turing machineX that converts yes-instances of A into
yes-instances of B, and similarly for no-instances. SinceX is fast, any given fast
solutionF to B can be used to solve A: first applyX, thenF . If F solves B non-
deterministically, the solution we get to A is also non-deterministic, so ifB∈NP
andA ≤ B then alsoA ∈ NP: that is,≤-easier problems than NP-problems are
also in NP.

It’s easy to convert yes-instances of A into yes-instances of A and no-instances
of A into no-instances of A in p-time (leave them alone!), soA ≤ A and≤
is reflexive. ≤ is transitive, as ifX converts A-instances to B-instances in p-
time, andY converts B-instances to C-instances in p-time, then runningX then
Y converts A-instances to C-instances (always preserving parity: yes goes to
yes, no to no). Careful counting shows that this takes only p-time (remember to
return heads to square 0, and that the input toY may be (polynomially) longer
than the original input toX). HenceA ≤B≤C impliesA ≤C, so≤ is transitive.
≤ is thus a pre-order.

Problems in P are≤-easiest of all. For ifA ∈ P and B is arbitrary, we can
convert instancesw of A to instances of B in p-time and preserving parity) by
the following trick. As we can solve A completely in p-time, we find out in
p-time whetherw is yes or no for A. Then we hand over a fixed instance of B of
appropriate parity.

Section 12: The≥-hardest problems in NP are called NP-complete. A yes/no problem
A is NP-complete if A is in NP butA ≥ B for all NP-problems B. Cook proved
in 1971 that PSAT is NP-complete, so NP-complete problems exist. His proof
went like this. We knowPSAT∈ NP. If A ∈ NP, there’s a p-time NDTM
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N solving A. There’s a deterministic p-time Turing machineX that given an
instancew of A, outputs a propositional formulaFw expressing the constraints
that must be met ifN is to have an accepting run onw. Any valuation making
Fw true shows that the constraints can be met, and gives an accepting run ofN
on w, and vice versa. Thusw is a yes-instance of A iffFw is satisfiable. Hence
X reduces A to PSAT in p-time, and soA ≤ PSAT. This holds for allA ∈ NP.
Thus PSAT is NP-complete.

As well as PSAT the NP-complete problems include 3SAT, HCP, TSP and some
1,000 other common problems. As they are all equally≤-hard, a p-time solution
to any would yield p-time solutions for all. But as many of them have been
attacked seriously for years without success, it’s probably not worth the effort
trying to write a fast algorithm for any of them. Perhaps through frustration,
people believe all NP-complete problems to be intractable: the famous question
‘P = NP?’ is thought almost universally to have the answer ‘no’. However, no-
one has proved it (or at least published a proof) either way. Unlike Church’s
thesis, which is by its nature unprovable, one day a proof ofP= NP or P 6= NP
may appear.
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