Computability, Algorithms, and Complexity

Course 240

Contents

Introduction 5
Books and other reading 6
Notes on the text 7
| Computability 8
1 Whatis an algorithm? 8
1.1 Theproblem. 8
1.2 Whatisanalgorithm?. 10
1.3 Turingmachines 13
1.4 Whyuse Turingmachines? 16
1.5 Church’'sthesis 17
1.6 Summaryofsection. 21
2 Turing machines and examples 21
2.1 Whatexactlyisa Turing machine? 22
2.2 Input and output of a Turingmachine 22
2.3 Representing Turingmachines 25
2.4 Examples of Turingmachines 29
2.5 Summaryofsection. Lo 40
3 Variants of Turing machines 40
3.1 Computationalpower 41
3.2 Two-way-tape Turingmachines 41
3.3 Multi-tape Turing machines 45
3.4 Othervariants e 54
3.5 Summaryofsection. 56
4 Universal Turing machines 57
4.1 Standard Turingmachines 57
4.2 Codes for standard Turing machines 58
4.3 Theuniversal Turingmachine 61

4.4 Coding e 63

Contents

4.5 Summary of section

5 Unsolvable problems
5.1 Introduction
5.2 The halting problem
5.3 Reduction
5.4 (del’'s incompleteness theorem
5.5 Summary of section

Part | in a nutshell

5.6

I Algorithms

6 Use of algorithms
Run time function of an algorithm
6.2 Choice of algorithm
Implementation
6.4 Useful books on algorithms
6.5 Summary of section

6.1

6.3

7 Graph algorithms

7.1 Graphs: the basics
Representing graphs
7.3 Algorithm for searching a graph
Paths and connectedness
7.5 Trees, spanning trees
7.6 Complete graphs
Hamiltonian circuit problem (HCP)
7.8 Summary of section

7.2

7.4

1.7

8 Weighted graphs
Example of weighted graph
Minimal spanning trees
Prim’s algorithm to find a MST
8.4 Shortest path
8.5 Travelling salesman problem (TSP)
Polynomial time reduction
NP-completeness taster
8.8 Summary of section
Part Il in a nutshell

8.1
8.2
8.3

8.6
8.7

8.9

Il Complexity

9 Basic complexity theory
9.1 Yes/no problems

9.2 Polynomial time Turing machines
9.3 Tractable problems —theclassP
9.4 Intractable problems?
9.5 Exhaustive search in algorithms

10 Non-deterministic Turing machines

10.1 Definition of non-deterministic TM
10.2 Examplesof NDTMs
10.3 Speedof NDTMs
10.4 TheclassNP

10.5 Simulation of NDTMs by ordinary TMs

11 Reduction in p-time

11.1 Definition of p-time reduction<’
11.2 <isapre-order

11.3 Closure of NP under p-time reduction

11.4 The P-problems aré-easiest
11.5 Summaryofsection.

12 NP-completeness

12.1 Introduction

12.2 Proving NP-completeness by reduction

12.3 Cook'stheorem

12.4 Sample exam questions on Parts I, 11l

125 Partillinanutshell

Index

Contents

.......... 133

Introduction

This course has three parts:
I: computability,

lI: algorithms,

[ll: complexity.

In Part | we develop a model of computing, and use it to examine the fundamental
properties and limitations of computers in principle (notwithstanding future advances
in hardware or software). Part Il examines some algorithms of interest and use, and
Part Il develops a classification of problems according to how hard they are to solve.

Parts | and Il are fairly theoretical in approach, the aim being to foster understand-
ing of the intrinsic capabilities of computers, real and imagined. Some of the material
was crucial for the development of modern computers, and all of it has interest beyond
its applications. But there are also practical reasons for teaching it:

e Itis a good thing, perhaps sobering for computer scientists, to understand more
about what computers can and can't do.

e You can honourably admit defeat if you know a problem is impossible or hope-
lessly difficult to solve. It saves your time. E.g., it is an urban myth that a
programmer in a large British company was asked to write a program to check
whether some communications software would ‘loop’ or not. We will see in
section 5 that this is an impossible task, in general.

e The material we cover, especially in Part |, is part of the ‘computing culture’,
and all computer scientists should have at least a nodding acquaintance with it.

e The subject is is of wide, indeed interdisciplinary interest. Popular books like
Penrose’s (see list above) and Hofstadtersdél, Escher, Bach’ cover our sub-
ject, and there was quite a famous West End play (‘Breaking the Code’) about
Turing’s work a few years ago. The ‘Independent’ printed a long article on
Godel’s theorem on 20 June 1992, in which it was said:

It is a measure of the achievement of Kurbdel that his Incom-
pleteness Theorem, while still not considered the ideal subject with
which to open a dinner party conversation, is fast becoming one
of those scientific landmarks — like Einstein’s Theory of Relativ-
ity and Heisenberg’s Uncertainty Principle — that educated people,

even those with no scientific training, feel obliged to know some-
thing about.

Lucky you: we do @del’s theorem in section 5.

Books and other reading

Texts (should be in the bookshop & library)

e V. J. Rayward-SmithA first course in computabilitfjyicGraw Hill, 19957
An introductory paperback that covers Parts | and Ill of the course, and
some of Part Il. More detailed than this course.

e D. Harel,The Science of Computingddison-Wesley, 1989.

A good book for background and motivation, with fair coverage of this
course and a great deal more. Some may find the style diffuse. Less
detailed than this course.

Advanced/reference textsSee also the books on algorithms listed on page 96.

e Robert SedgewickAlgorithms,Addison-Wesley, 2nd ed., 1988.
A practical guide to many useful algorithms and their implementation. A
reference for Part Il of the course.
e J. Bell, M. Machover,A course in mathematical logidyorth Holland,
1977.
A good mathematical text, for those who wish to read beyond the course.
e G. Boolos, R. JeffreyComputability and LogicCambridge University
Press, 1974.
A thorough text, but mathematically demanding.
e M. R. Garey, D. S. JohnsoiGomputers and intractability — a guide to
NP-completenesgreeman, 1979.
The ‘NP-completeness bible’. For reference in Part lll.
e J. E. Hopcroft & J. D. Ullmanintroduction to automata theory, languages

and computationAddison-Wesley, 1979. 2nd edn., J. E. Hopcroft, R.
Motwani, J. D. Ullman, Addison-Wesley, 2001, ISBN: 0-201-44124-1.

A classic text with a wealth of detail; but it concentrates on abstract lan-
guages and so has a different approach from ours.

Notes on the text 7

Papers See also Stephen Cook’s paper listed on page 154.

e A.M. Turing, On computable numbers with an application to the Entschei-
dungsproblemProceedings of the London Mathematical Society (Series
2), vol. 42 (1936), pp. 230-265.

One of the founding papers of computer science, but very readable. Con-
tains interesting philosophical reflections on the subject, the first descrip-
tion of the Turing machine, and a proof that some problems are unsolvable.

e G.Boolos, Notices of American Mathematical Society, vol. 36 no. 4 (April
1989), pp. 388-390. A new proof ofd@el’s incompleteness theorem.

Popular material See also Chown’s article mentioned on page 21.

e A. HodgesEnigma,Vintage, 2nd edition, 1992.

A biography of Alan Turing. Readable and explains some key ideas from
this course (e.g., the halting problem) in clear terms.

e R. PenroseThe Emperor's New Mindyintage. Mainly physics but de-
scribes Turing machines in enough rigour to cover most of Part | of this
course (e.g., halting problem). Enjoyable, in any case.

Notes on the text

The text and index are copyrigHt)) lan Hodkinson. You may use them freely so long
as you do not sell them for profit.

The text has been used by lan Hodkinson and Margaret Cunningham as coursenotes
in the 20-lecture second-year undergraduate course ‘240 Computability, algorithms,
and complexity’ in the Department of Computing at Imperial College, London, UK,
since 1991.

Italic font is used for emphasis, amald to highlight some technical term<.g.
means ‘for exampleyiz. means ‘namely’,i‘e’ means ‘that is’, andff means ‘if and
only if’. § means ‘section’ — for example§5.3.3’ refers to the section called ‘The
Turing machineEDIT’ starting on page 74.

There are bibliographic references on pages 6, 21, 96, and 154.

Part |

Computability

1. What is an algorithm?

We begin Part | with a problem that could pose difficulties for those who think com-
puters are ‘all-powerful’. To analyse the problem, we then discuss the general notion
of an algorithm (as opposed to particular algorithms), and why it is important.

1.1 The problem

At root, Part | of this course is about paradoxes, such as:

The least number that is not definable by an English sentence having
fewer than 100 letters.

(The paradox is that we have just defined this number by such a sentence. Think about
it) C.C. Chang and H.J. Keisler kindly dedicated their book ‘Model Theory’ to all
model theorists who have never dedicated a book to themselves. (Is it dedicated to
Chang and Keisler, or not?)

Paradoxes like this often arise becausseif-referencavithin the statement. The
first one implicitly refers to all (short) English sentences, including itself. The second
refers implicitly to all books, including ‘Model Theory’. Now computing also uses
languages — formal programming languages — that are capable of self-reference (for
example, programs can alter, debug, compile or run other programs). Are there similar
paradoxes in computing?

Here is a candidate. Take a high-level imperative programming language such as
Java. Each program is a string of English characters (letters, numbers, punctuation,
etc). So we can list all the syntactically correct programs in alphabetical order, as
P1, P, Ps,... Every program occurs in this list.

EachP, will output some string of symbols, possibly the empty string. We can
treat it as outputting a string of binary bits (0 or 1). Most computers work this way —
if the output appears to us as English text, this is because the binary output has been
treated as ASCII (for example), adecodednto English.

Now consider the following prograf®:

8

1.1. The problem 9

1 repeat forever

2 generate the next program R, in the list

3 run P, as far as the nth bit of the output

4 if P, terminates or prompts for input before the nth bit is output then
5 output 1

6 else if the nth bit of B,'s output is 0 then

7 output 1

8 else if the nth bit of Py's output is 1 then

9 output 0

10 end if

11 end repeat

e This language is not quite Java, but the idea is the same — certainly we could
write it formally in Java.

e Generating and running the next program (lines 2 and 3) is easy — we generate
all strings of text in alphabetical order, and use an interpreter to check each string
in turn for syntactic errors. If there are none, the string is our next program, and
the interpreter can run it. This is slow, but it works.

e \We assume that we can write an interpreter in our language — certainly we can
write a Java interpreter in Java.

e In each trip round the loop, the interpreter is provided with the text of the next
program,P,, and the numben. The interpreter run®,, halting execution if
(a) P, itself halts, (b)P, prompts for input or tries to read a file, or (&) has
producedh bits of output.

e All other steps o are easy to implement.

SoP is a legitimate program. S8 is in the list ofP,s. WhichP, is P?

Suppose thaP is Py, say. TherP has the same output &. Now on the seventh
loop of P, P (i.e., P) will be generated, and run as far as its seventh output bit. The
possibilities are:

1. Py halts or prompts for input before it outputs 7 bits (impossible, as the code for
P = Py has no HALT or READ statement!)

2. Py does output bit 7, and it's 0. Théhoutputs 1 (look at the code above). But
this 1 will be the 7th output bit o = P, a contradiction!

3. Py does output bit 7, and it's 1. Théhoutputs O (look at the code again). But
this O will be P’s 7th output bit, and® = P!

This is a contradiction: P, outputs 0 therP outputs 1, and vice versa; yBtwas
supposed to bBy. SoP is notP; after all.

In the same way we can show thaits notP, for anyn, becausé differs fromP,
at the nth place of its output. $dis not in our list of programs. This isnpossibleas
the list contains all programs of our language!

10 1. What is an algorithm?

Exercise 1.1 What is wrong?

Paradoxes might not be too worrying in a natural language like English. We might
suppose that English is vague, or the speaker is talking nonsense. But we think of com-
puting as a precise engineering-mathematical discipline. It is used for safety-critical
applications. Certainly it should not admit any paradoxes. We should therefore exam-
ine our ‘paradox’ very carefully.

It may be that it comes from some quirk of the programming language. Perhaps
a better version of Java or whatever would avoid it. In Part | of the course our aim is
first to show that the ‘paradox’ above is extremely general and occurs in all reasonable
models of computing. We will do this by examining a very simple model of a computer.
In spite of its simplicity we will give evidence for its being fully general, able to do
anything that a computer — real or imagined — could.

We will then rediscover the ‘paradox’ in our simple model. | have to say at this
point that there is no real paradox here. The argument above contained an implicit
assumption. [What?] Nonetheless, there is still a problem: the implicit assumption
cannot be avoided, because if it could, we really would have a paradox. So we cannot
‘patch’ our progranP to remove the assumption!

But now, because our simple model is so general, we are forced to draw funda-
mental conclusions about the limitations of computing itself. Certain precisely-stated
problems are unsolvable by a computer even in principle. (We cannot write a patch for
P.)

There are lots of unsolvable problems! They include:

e checking mechanically whether an arbitrary program will halt on a given input
(the ‘halting problem’)

e printing out all the true statements about arithmetic and no false oriete(&
incompleteness theorem).

e deciding whether a given sentence of first-order predicate logic is valid or not
(Church’s theorem).

Undeniably these are problems for which solutions would be very useful.

In Part Il of the course we will apply the idea of self-reference again to NP-
complete problems — not now to the question of what we can compute, but to how
fast can we compute it. Here our results will be more positive in tone.

1.2 Whatis an algorithm?

To show that our ‘paradox’ is not the fault of bad language design we must take a
very general view of computing. Our view is that computers (of any kind) implement
algorithms. So we will examine what an algorithm is.

First, a definition from Chambers Dictionary.

1.2. What is an algorithm? 11

algorithm, al’go-ridhm, n. a rule for solving a mathematical problem in
a finite number of steps. [Root: Late Latahgorismus, from the Ara-
bic nameal-Khwarazmi, the native of Khvarazm (Khiva), i.e., the 9th
century mathematician Abu Ja’far Mohammed ben Musa.]

We will improve on this, as we’ll see.

1.2.1 Early algorithms

One of the earliest algorithms was devised between 400 and 300 B.C. by Euclid: it
finds the highest common factor of two numbers, and is still used. The sieve of Eratos-
thenes is another old algorithm. Mohammed al-Khazmi is credited with devising

the well-known rules for addition, subtraction, multiplication and division of ordinary
decimal numbers.

Later examples of machines controlled by algorithms include weaving looms (1801,
the work of J. M. Jacquard, 1752—-1834), the player piano or piano-roll (the pianola,
1897 — arguable, as there is an analogue aspect (what?)), and the 1890 census tabu-
lating machine of Herman Hollerith, immortalised as the ‘H’ of the ‘format’ statement
in the early programming language Fortran (eE@RMAT 4Habcd). These machines
all used holes punched in cards. In the 19th century Charles Babbage planned a multi-
purpose calculating machine, the ‘analytical engine’, also controlled by punched cards.

1.2.2 Formalising Algorithm

In 1900, the great mathematician David Hilbert asked whether there is an algorithm
that answers every mathematical problem. So people tried to find such an algorithm,
without success. Soon they began to think it couldn’t be done! Eventually some asked:
can weprovethat there’s no such algorithm? This question involved issues quite dif-
ferent from those needed to devise algorithms. It raised the need to be precise about
what an algorithm actually is: to formalise the notiortalforithm’ .

Why did no-one give a precise definition afgorithm in the preceding two thou-
sand years? Perhaps because most questions on algorithms are of thiedoome
to solve this problem I've got. This can be done without a formal definition of algo-
rithm, because we know an algorithm when we see one. Just as an elephant is easy to
recognise but hard to define, you can write a program to sort a list without knowing
exactlywhat an algorithm is. It is enough to invent something that intuitively is an
algorithm, and that solves the problem in question. We do this all the time.

But suppose we had a problem (like Hilbert’s) for which many attempts to find
an algorithmic solution had failed. Then we might suspect that the task is impossible,
so we would like tgprovethat no algorithm solves the problem. To have any hope of
doing this, it is clearhessentiato define precisely what an algorithm is, because we've
got to know what counts as an algorithm. Similarly, to answer questions concerning
all algorithms we need to knoexactlywhat an algorithm is. Otherwise, how could
we proceed at all?

12 1. What is an algorithm?

1.2.3 Why formalise Algorithm?

As we said, we formalisalgorithm so that we can reason about algorithms in general,
and (maybe) prove that some problems have no algorithmic solution. Any formalisa-
tion of the idea of amlgorithm should be:

e preciseand unambiguous, with no implicit assumptions, so we know what we
are talking about. For maximum precision, it should be phrased in the language
of mathematics.

e simpleand without extraneous details, so we can reason easily with it.
e general so that all algorithms are covered.

Once formalised, an idea can be explored with rigour, using high-powered mathe-
matical techniques. This can pay huge dividends. Once gravity was formalised by
Newton asF = Gmymy/r?, calculations of orbits, tides, etc., became possible, with all
that that implies. Pay-offs from the formalisationaiforithm included the modern
programmable computer itsélf. This is quite a spectacular pay-offl Others include
the answer to Hilbert's question, related work in complexity (see Part Ill) and more
besides.

1.2.4 Algorithm formalised

The notion of an algorithm was not in fact made formal until the mid-1930s, by math-
ematicians such as Alan Turing in England and (independently) Alonzo Church in
America. Church and Turing used their formalisations to show that some mathemat-
ical problems have no algorithmic solution — they are unsolvable. (Turing used our
‘paradox’ to do this.) Thus, after 35 years, Hilbert’'s question got the answer ‘NO’.
Turing’s formalisation was by the primitive computer called (nowadays!the
ing machine. The Turing machine first appeared in his paper in the reading list, in
1936, some ten years before ‘real’ computers were invehfaring’s formalisation
of the notion of an algorithm wasan algorithm is what a Turing machine imple-
ments.
We will describe the Turing machine at length below. We will see thatgtesise
andsimple just as a formalisation should be. However, to claim thatfilliy general
— covering all known and indeed all conceivable algorithms — may seem rash, es-
pecially when we see how primitive a Turing machine is. But Turing gave substantial
evidence for this in his paper, evidence which has strengthened over the years, and the
usual view nowadays is that the Turing machine is fully general. For historical reasons,
this view is known aChurch’s thesis, or sometimes (better) as ti@&hurch—Turing
thesis. We will examine the evidence for it after we have seen what a Turing machine
is.

1This is, of course, an arguable historical point; Hodges’ book (listed on p. 7) examines the historical
background.
2Turing later became one of the pioneers in their development.

1.3. Turing machines 13

T
o [Tl ol e[—

finite) /@) 1 2 A3 4 5 6\
() symbols from ‘blank’
square alphabet ¥ symbol
number state set Q

not visible
(starting state @

to TM head!) :E\
{ 2277 Turing — final states

instruction
table &

machine
-- ——-| head

Figure 1.1: A Turing machine

1.3 Turing machines

We, also, will use Turing machines to formalise the concelgbrithm. Here we
explain in outline what a Turing machine (TM) is; we’ll do it formally in section 2. As
we go through, think about how the Turing machine, our formalisaticalgdrithm,

fits our requirements girecisionandsimplicity. Afterwards, we’ll say more about its
generalityand why we use it in this course.

1.3.1 Naming of parts

There are several, mildly different but equally powerful, versions of the TM in the
textbooks. We now explain what our chosen version of theig,Mnd what itdoes

In a nutshell, a Turing machine consists dieadthat moves up and downtape,
reading and writing as it goes. At each stage it’s in one of finitely matstes. It
has aninstruction table that tells it what to do at each step, depending on what it's
reading and what state it’s in.

The tape The main memory of a TM is a 1-way-infinitape, viewed as laid out from
left to right. The tape goes off to the right, forever. It is divided istpuares,
numbered 0, 1, 2, ...; these numbers are for our convenience andta®en
by the Turing machine.

The alphabets In each square of the tape is written a singjyenbol. These symbols
are taken from some finitelphabet. We will use the Greek lettesigma (%)
to denote the alphabet. The alphakas part of the Turing machinex is just
a set of symbols, but it will always be finite with at least two symbols, one of
which is a speciadblank symbol which we always write ag\'. Subject to these
restrictions, a Turing machine can have any finite alphalve¢ like.

14 1. What is an algorithm?

A blank in a square really means that the square is empty. Having a symbol for
‘empty’ is convenient — we don’t have to have a special case for empty squares,
so things are keimple

The read/write head The TM has a singléead,as on a tape recorder. The head can
read and write to the tape.
At any given moment the head of the TM is positioned over a particular square
of the tape — the&urrent square. At the start, the head is over square 0.

The set of statesThe TM has a finite seQ of states. There is a special statp in
Q, called thestarting state or initial state. The machine begins in the starting
state, and changes state as it goes along. At any given stage, the machine will
be ‘in’ some particular state i, called thecurrent state. The current state is
one of the two factors that determine, at each stage, what it does next (the other
is the symbol in the square where the head is). The state of the TM corresponds
roughly to the current instruction together with the contents of the registers in a
conventional computer. It gives our ‘current position’ within the algorithm.

1.3.2 Starting a TM; input

A Turing machine starts off in the initial state, with its head over square 0. At the
beginning, the tape will contain a finite number (possibly zero) of non-blank symbols,
left-justified; this string of non-blank symbols constitutes itgut to the Turing ma-
chine. The rest of the tape squares will be blank (i.e., they congain

1.3.3 Therunofthe TM

A run is a step-by-step computation of the TM. At each step of a run:

(a) the headeadsthe symbol on the current tape square (the square where the head
now is).

Then the TM does three things.
(b) First, the heaavrites some symbol fronZ to the current tape square.
Then:
(c) the TM maymoveits head left or right along the tape by one square,
(d) the TM goes into a new state.

Now the next step begins: it does (a)—(d) again, perhaps making different choices in
(b)—(d) this time. And so on, step by step.
Note that:

e The TM writesbeforemoving the head.

1.3. Turing machines 15

e In (b), the TM could write the same symbol as it just read. So in this case, the
tape contents will not change.

e Similarly, in (d) the state of the TM may not change (as perhaps in a loop). In
(c), the head may not move.

Also notice that the tape will always contain only finitely many non-blank symbols,
because at the start only finitely many squares are not blank, and at most one square is
altered at each step.

1.3.4 The instruction table

At each step (b)—(d) above, there are ‘choices’ to be made. Which symbol to write?
Which way to move? And which state to enter? The answers depdgpodn:

() which symbol the machine reads from the current tape square;

(i) the current state of the machine.

The machine has anstruction table, telling it what to do when, in any given state,
a given symbol is read. We write the instruction tabledathe Greek lettedelta. o
corresponds to thprogramof a conventional computer. It is in effect just a list with
five columns:

current_state; current_symbol; new_state; new_symbol; move
current_state; current_symbol; new_state; new_symbol; move
current_state; current_symbol; new_state; new_symbol; move

Knowing the current state and symbol, the Turing machine can read down the list
to find the relevant line, and take action according to what it finds. To avoid ambiguity,
no pair (current-state; current-symbol) should occur in more than one line of tRe list.
(You might think that every such pair should occur somewhere in the list, but in fact
we don’t insist on this: sedalting below.)

Clearly, the ‘programming language’ is very low-level, like assembler. This fits
our wish to keep things simple. But we will see some higher-level constructs for TMs
later.

1.3.5 Stopping a TM; output
The run of a TM can terminate in just three different ways.

1. Some states dp are designated special states, cali@dl statesor halting
states.We write F for the set of final stated: is a subset 0. If the machine
gets into a state ifr, then it stops there and then. In this case we sawlils
and succeedsand theoutput is whatever is left on the tape, from square 0 up
to (but not including) the first blank.

3In Part Ill we drop this condition!

16 1. What is an algorithm?

2. Sometimes there may y® applicable instruction in a given state when a
particular symbol is read, because the pair (current-state; current-symbol) does
not occur in the instruction tabi If so, the TM is stuck: we say thatlialts
and fails. The output isundefined— that is,there isn’t an output.

3. If the head is over square 0 of the tape and triesiéwe left from square 0O
along the tape, we count it as ‘no applicable instruction’ (because there is no
tape square to the left of square 0, so the TM is stuck again). So in this case the
machine also halts and fails. Again, the output is undefined.

Of course the machine may never halt — it may go on running forever. If so, the output
is again undefined. E.g., it may be writing the decimal expansianaf the tape ‘to

the last place’ (there is a Turing machine that does this). Or it may get into a loop: i.e.,
at some point of the run, its ‘configuration’ (state, tape and head position) are exactly
the same as at some earlier point, so that from then on, the same configurations will
recycle again, forever. (A machine computinghever does this, as the tape keeps
changing as more digits are printed. It never halts, but it doesn’t loop, either.)

1.3.6 Summary

The Turing machine has a 1-way infinite tape, a read/write head, and a finite set of
states. It looks at its state and reads the current square, and then writes, moves and
changes state according to its instruction taliket-State, Read, Write, Move, Next-
State It does this over and over again, until it halts, if at all. And that's it!

1.4 Why use Turing machines?

Although the Turing machine is based on 1930s technology, we will use it in this course
because:

e [t fits the requirements that the formalisation of algorithm shouldreeiseand
simple (We'll make it even more precise in section 2.) d¢sneralitywill be
discussed when we come to Church’s thesis — the architecture of the Turing
machine allows strong intuitive arguments here.

e |t remains the most common formalisationadforithm. Researchers, research
literature and textbooks usually use Turing machines when a formal definition
of computability is needed, so after this course you’ll be able to understand them
better.

e It is the standard benchmark for reasoning about the time or space used by an
algorithm (see Part Il1).

e |t crops up in popular material such as articles in New Scientist and Scientific
American, and books by the likes of D. Hofstadter.

1.5. Church’s thesis 17

e It is now part of the computing culture. Its historical importance is great and
every computer scientist should be familiar with it.

Why not adopt (say) a Cray YMP as our model? We could, but it would be too complex
for our work. Our aim here is to study the concept of computability. We are concerned
with which problems can be solved principle, and not (yet) with practicality. So a

very simple model of a computer, whose workings can be explained fully in a page
or two, is better for us than one that takes many manuals to describe, and may have
unknown bugs in it. And one can prove that a TM can solve exactly the same problems
as andealisedCray with unlimited memory!

1.4.1 How and why is a Turing machinedealised?

A TM is anidealised computer,because the amounts of time and tape memory that
it is allowed to use are@nbounded This is not to say that it can usefinitely much
time or memory. It can’t (unless it runs forever — e.g., when it ‘loops’). Think of a
computer with infinitely many disk drives and RAM chips, which we allow to work
on a problem for many years or even centuries. However long it runs for, at the end
it will have executed only finitely many instructions. Because it can access only a
finite amount of memory per instruction, on termination it will only have used a finite
amount of disk space and RAM. But if we only gave it a fixed finite number of disks,
iIf it ran for long enough it might fill them all up and run out of memory.

So our idealisation is this: only finitely much memory and time will get to be used
In any given calculation, or run; but we set no limit on how much can be used.

We make these idealisations because our noticagirithm should not depend
on the state of technology, or on our budgets. For example, the funttion= x2
on integers is intuitively computable by al-Klwnazmi’'s multiplication algorithm, al-

though no existing computer could compute it fo¢ 1010 (say). A TM can compute
x? for all integersx, because it can use as much time and memory as it needs for the
In question. So idealising gives us a better model.

Nonetheless, the notion of being computable using only so much time or space is
an important refinement of the notion @@mputable. It gives us a formal measure of
the complexity (difficulty) of a problem. In Part Ill we will examine this in detalil.

1.5 Church’s thesis

Why should we believe — with Church and Turing — that such a primitive device as a
Turing machine is a good formalisation atgorithm and could calculate not only all
that a modern computer can, but anything that is in principle calculable?

First, is there anything to formalise at all? Maydey definition of algorithm has
exceptions, and there are exceptions to the exceptions, and so on. It is a notable fact
about our world that this seems not to be so. Though the Turing machine looks very
different to Church’s alternative formalisation alfjorithm,* exactly the same things

4Alonzo Church (c. 1935) used the lambda calculus — the basis of LISP.

18 1. What is an algorithm?

turned out to be algorithms under either definitiortieir definitions werequivalent.

Now if two people independently put forward quite different-looking definitions of
algorithm that turn out to be equivalent, we may take it as evidence for the correctness
of both. Such a ‘coincidence’ hints that there is in nature a genuine class of things that
are algorithms, one that fits most definitions we offer.

This and other considerations (below) made Church put forward his faieasss,
which says that the definition is the correct one.

This is also known as th€hurch-Turing thesisand, when phrased in terms of
Turing machines, it is certainly argued for in Turing’s 1936 paper, which was writ-
ten without knowing Church’s work. But the shorter title is probably more common,
though less just.

1.5.1 What does Church’s thesis say?

Roughly, it says:A problem can be solved by an algorithm if and only if it can be
solved by a Turing machindlore formally, it says that unctionis computablef and
only if it is computable by a Turing machine.

1.5.2 What does it mean?

When we see Turing machines in action below, it will be clear that each one imple-
ments an algorithm (because we know an algorithm when we see one). So few people
would reject the if direction<) of the thesiS. The heart of the thesis lies in the only

if (=) direction: every algorithmically-solvable problem can be solved by a Turing
machine.

It is important to understand the status of this statement. It is loéarem It
cannot beproved that’s why it's called a thesis.

Why can’t we prove it? Is it that there are (obviously) infinitely many algorithms,
so to check that each of them can be implemented by a Turing machine would take
infinitely long and so is impossible? No! | agree that if there were finitely many
algorithms, wecouldin principle check that each one can be implemented by a Turing
machine. But the fact that there are infinitely many is not of itself a fatal problem, as
there might be other ways of showing that every algorithm can be implemented by a
Turing machine than just checking them one by oflteis not impossible to reason
about infinite collectionsCompare: there are infinitely many right triangles; but we
are still able to establish (some!) properties of all of them, such as ‘the square of the
hypotenuse is equal to the sum of the squares of the other two sides’.

No; the real problem is that, although the notion of a Turing machine is completely
precise (we will give a mathematical definition below), we have seen that the notion of
an algorithm is anntuitive, informalone, with roots going back two thousand years.
We can'’t prove Church’s thesis, because it is not — cannot be — stated precisely
enough.

5Some would say that a Turing machine only implements an algorithm if we can be sure that its
computation will terminate, or even that we know how long it will take.

1.5. Church’s thesis 19

Instead, Church’s thesis is more likedafinitionof algorithm. It says: ‘Here is
a mathematical model’, and it asks us to accept — and in this course we do accept
this — that any algorithm that we could possibly imagine fits the model and could be
implemented by a Turing machine.

So Church’s thesis is the claim that the Turing machine is a fully general formali-
sation ofalgorithm.

This is rather analogous to a scientific theory. For example, Newton'’s theory of
gravity says that gravity is an attractive force that acts between any two bodies and de-
pends on their masses and the square of the distance separating them. This formalises
our intuitive idea of gravity, and the formalisation has been immensely useful. But we
could not prove it correct.

Of course, Newton’s theory of gravity was falsified by experiment. In the same
way, Church’s thesis could in a sensedigproved,if we found something that intu-
itively was an algorithm but that we could prove was not implementable by a Turing
machine. We would then have to revise the thesis.

1.5.3 Evidence for the thesis

Given a new scientific theory, we would check its predictions by experimenting, and
conduct ‘thought experiments’ to study its consequences. Since Church’s thesis for-
malises the notion adlgorithm, which is absolutely central to computer science, we
had better examine carefully the evidence for its correctness. This evidence also de-
pends on ‘observations’ and ‘thought experiments’. In Turing’s original 1936 paper,
listed on p. 7, three kinds of evidence are suggested:

(a) Giving examples of large classes of numbers which are computable.

(b) A proof of the equivalence of two definitions (in case the new definition has a greater
intuitive appeal).

(c) Adirect appeal to intuition.
Let us examine these.

(a) Turing machines can do a wide range of algorithmic-like activities. They can
compute arithmetical and logical functions, partial derivatives, do recursion, etc.
In fact, no-one has yet found an algorithm that cannot be implemented by a
Turing machine.

(b) All other suggested definitions of algorithm have turned out to be equivalent (in
a precise sense) to Turing machines. These include:

e Software: the lambda-calculus (due to Church), production systems (Emil
Post), partial recursive functions (Stephen Kleene), present-day computer
languages.

e Hardware: register or counter machines, idealisations of our present-day
computers, idealised parallel machines, and idealised neural nets.

20 1. What is an algorithm?

They all look very different, but can solve (at best) precisely the same problems
as Turing machines. As we will see, various souped-up versions of the Turing
machine itself — evenon-deterministic variants — are also equivalent to the
basic model.

The essential features of the Turing machine are:

e its computations work in a discrete way, step by step, acting on only a
finite amount of information at each stage,

e it uses finite but unbounded storage.

Any model with these two features will probably lead to an equivalent definition
of algorithm.

(c) There are intuitive arguments that any algorithm could be implemented by a
Turing machine. In his paper, Turing imagines someone calculating (computing)
by hand.

It is always possible for the computer to break off from his work, to go
away and forget all about it, and later to come back and go on with it. If
he does this he must leave a note of instructions (written in some standard
form) explaining how the work is to be continued. ... We will suppose that
the computer works in such a desultory manner that he never does more than
one step at a sitting. The note of instructions must enable him to carry out
one step and write the next note. Thus the state of progress of the compu-
tation at any stage is completely determined by the note of instructions and
the symbols on the tape. ... This [combination] may be called the “state
formula”. We know that the state formula at any given stage is determined
by the state formula before the last step was made, and we assume that the
relation of these two formulae is expressible. In other words we assume that
there is an axiom which expresses the rules governing the behaviour of the
computer, in terms of the relation of the state formula at any stage to the state
formula at the preceding stage. If this is so, we can construct a machine to
write down the successive state formulae, and hence to compute the required
number. (pp. 253-4).

So for Turing, any calculation that a person can do on paper could be done by a
Turing machine: type (c) (i.e., intuitive) evidence for Church’s thesis. He also showed
that 1 e, etc., can be printed out by a TM (type (a) evidence), and in an appendix
proved the equivalence to Church’s lambda calculus formalisation (type (b)).

1.5.4 Other paradigms of computing

We can vary the notion @lgorithm by dropping the requirement that it must take only
finitely many steps. This leads to new notions gfrablem, such as the ‘problem’

an operating system or word processor tries to solve, and has given rise to work on
reactive systems.These are not supposed to terminate with an answer, but to keep
running forever; their behaviour over time is what is of interest.

1.6. Summary of section 21

Is Church’s thesis really true then? Can Turing machines do interactive work?
Well, as the ‘specification’ for an interactive system corresponds to a function whose
input and output are ‘infinite’ (the interaction can go on forever), the Turing machine
model needs modifyingBut the basic Turing machine hardware is still adequate —
it's only how we use it that changed:or example, every time the Turing machine
reaches a halting state, we might look at its output, overwrite it with a new input of our
choice (depending on the previous output), and set it off again from the initial state.
We could model a word processor like this. The collection of all the inputs and outputs
(the ‘behaviour over time/at infinity’) is what counts now. This is research material
and beyond the scope of the course. See Harel's book for more information on reactive
systems.

More recent challenges to Church’s thesis include quantum computers — whether
they violate the thesis depends on who you read (go to the third-year course on quan-
tum computing). Another is a Turing machine dropped into a rotating black hole.
Theoretically, such a ‘Marvin machine’ could run forever, yet we could still read the
‘answer’ after its infinitely long computation. Recent research (still in progress) sug-
gests this might be possible in principle in certain kinds of solution to Einstein’s equa-
tions of general relativity. Whether it could ever be practically possible is quite another
guestion, and whether it would violate Church’s thesis is debated among philosophers.

Those who want to find out more could start with the artisleash and graby
Marcus Chown, New Scientist vol 174 issue 2337, 6 April 2002, page 24, online via
http://archive.newscientist.com/

1.6 Summary of section

We viewed computers as implementing (running) algorithms. We gave a worrying
‘paradox’ in a Java-like language. To find out how serious it is for computing, we
needed to make the notion afgorithm completely precise (formal). We discussed
early algorithms, and Hilbert’'s question which prompted the formalising of the vague,
intuitive notion ofalgorithm. Turing’s formalisation was viduring machines, and

we explained what a Turing machine is. We finally discugSkdrch’s thesis, saying

that Turing machines can implemariy algorithm. Since this is really a definition so
can’t be proved, we looked at evidence for it.

2. Turing machines and examples

We must now define Turing machines more precisely, using mathematical notation.
Then we will see some examples and programming tricks.

22 2. Turing machines and examples
2.1 What exactly is a Turing machine?
Definition 2.1 A Turing machine is a 6-tupleM = (Q,,1,do,d,F), where:

e Qs a finite non-empty set. The element<pére callecstates.

2 is afinite set of at least two elements or symbalss called thealphabet of
M. We require that\ € .

| is a non-empty subset a&f with A ¢ 1. | is called thenput alphabet of M.

Jo € Q. qo is called thestarting state, or initial state.

0:(Q\F)xZ—QxxZx{-10,1}is a partial function, called thiastruction
table of M. (Q\ F is the set of all states i but not inF.)

F is a subset of). F is called the set diinal or halting states oM.

2.1.1 Explanation

Q, Z, qo, andF are self-explanatory, and we’'ll explainin §2.2.1 below. Let us
examine the instruction table If g is the current state anglthe character ok in
the current squareé)(q,s) (if defined) will be a triple(q',s,0) € Q x £ x {—1,0,1}.
This represents thimstructionto maked the next state oM, to write ' in the old
square, and to move the head in directtbn-1 for left, O for no move+1 for right.
So the line

q S q’ s’ d
of the ‘instruction table’ 0§1.3.4 is represented formally as

5(a,s) = (d,s,d).

We can represent the entire table as a partial funéiarthis way, by lettingd(first
two symbols) = last three symbols, for each line of the table. The tablé aady the
same information. Functions are more familiar mathematical objects than ‘tables’, so
it is now standard to use a function for the instruction table. But it is not essential:
Turing used tables in his original paper.

Note thatd(q,s) is undefined ifg € F (why?). Also,d is apartial function: it is
undefined for those argumeris, s) that didn’t occur in the table. So it's OK to write
0:QxX—QxXZx{-1,0,1}, ratherthad: (Q\F) xX— QxXZx{-1,0,1}, since
0 is partial anyway.

2.2 Input and output of a Turing machine

We now have to discuss thape contentsf a TM. First some notation to help us.

2.2. Input and output of a Turing machine 23

Definition 2.2 (Words)

1. A word is a finite string of symbols. Examplev = abaa\AaabA is a word.
The length ofw is 10 (note that the blanks\' count as part of the word and
contribute to its length).

2. If Zis a set, avord of Z is a finite string of elements &. We writeZ* for the
set of all words o2. So the above word is in {a,b,c,A}*, even thouglt is
not used. Remember:veord of X is anelementof the setz*.

3. There is a unique word of length 0, and it lies in &ty we write thisempty
word ase. Also, each symbol iix is already a word oE, of length 1.

4. Clearly, ifw,w are words ofz then we can form a new word &f by writing
W straight aftemw. We denote this concatenation v, or, when it is clearer,
w.w.

5. We also define well-known functiohead : ¥* — X andtail : ¥* — >* by:

e if se Zandw e 2* thenhead(sw) =s
o tail(sw)=w
e head(g) =tail(e) =¢

So, e.g.,

a
baaAAaabA

head(abaarnaabn)
tail(abaa\Naabn)

2.2.1 The input word

A Turing machineM = (Q,Z,1,0p,9,F) starts a run with its head positioned over
square O of the tape. Left-justified on the tape is some wond |I. Recall thatl
is the input alphabet d¥1, and does not contain. Sow contains no blanks.

So for example, if the word i =wp, ..., wn_1 € I*, thenwg goes in square Qv; in
square 1, and so on, up to square 1. The rest of the tape (squanes+1,n+2,...)
contains only blanks. The contents of the tape are shown in figure 2.1.

Tape Wo W1 Wy Wh-1 N 0 S

0 1 2 n-1 n n+1

Figure 2.1: Tape with contents

The wordw is theinput of M for the coming run. It is the initial data that we have
provided forM.

24 2. Turing machines and examples

Note thatw can have any finite length 0. M will probably want to read all oWv.
How doesM know wherew ends? WellM can just move its head rightwards until its
head reads a blank\' on the tape. Then it knows it has reached the end of the input.
This is whyw must contain no blanks, and why the remainder of the tape is filled up
with blanks (\). If wwere allowed to have blanks in ¥ could not tell whether it had
reached the end a¥. Effectively, A is the ‘end-of-data’ character for the input.

Of course M might put blanks anywhere on the tape when it is running. In fact it
can write any letters fro. The extra letters of \ | are used for rough (or ‘scratch’)
work, and we call therscratch characters.

2.2.2 Run of a Turing machine

This is as explained i§1.3.3. At stage 0, the TNM = (Q,Z,1,0o,d,F) is in stateg
with its head over square 0 of the tape. Ibet 0 and suppose (inductively) that at
stagen, M is in stateq (whereq € Q), with its head over square(wheres > 0), and
the symbol in squareis a (wherea €).

1. If g€ F thenM halts & succeeds.
2. Otherwise, i®(q,a) is undefinedM halts & fails.
3. Otherwise, suppose tha(g,a) = (d,a’,d).

(@) If s+d < 0thenM halts & fails.

(b) Otherwise, at stage+ 1, the contents of squargwill be &, all other
squares of the tape will be the same as at stagjee state oM will be ¢/,
and its head will be over squase-d.

2.2.3 Output of a Turing machine

Like the input, theoutput of a Turing machineM = (Q,Z,1,qp,d,F) is a word inZ*.
The output depends on the input. Just as the input is what is on the tape to begin with,
so the output is what is on the tape at the end of the run, up to but not including the
first blank on the tape —-assuming\V halts successfullyf, on a certain inputM halts
and fails, or does not halt, then the output for that inputirdefined— that is, there
isn’t one.

Recall that at each stage, only finitely many characters on the tape are non-blank.
So the output is &nite word of Z*. It can be the empty word, or involve symbols from
> that are not i, but it never containg.

Exercise 2.3 Consider the Turing machind = ({qo,q1,02}, {1, A}, {1},00,9,{02}),
with instruction table:

Jdo 1 01 A 1
Jo A 02 A 0
O1 1 do 1 1

2.3. Representing Turing machines 25

Sodis given by:3(qo, 1) = (d1,A, 1), 8(do,A) = (d2,A,0), andd(dz,1) = (qo, 1, 1).
List the successive configurations of the machine and tapeMritdlts, for inputs
1111, 11111 respectively. What is the outpubbin each case?

Definition 2.4 (Input-output function of M) Given a Turing machiné = (Q, 2,1,
Jo, 9, F), we can define a partial functiofy : 1 — Z* by: fm(w) is the output ofM
when given inputv.

The functionfy is called theinput-output function of M, or thefunction com-
puted by M. fy is apartial function — it is not defined on any woms of 1* such that
M halts and fails or does not halt when given input

Exercise 2.5Let M be in exercise 2.3. Let" abbreviate 1111... In(times). For
whichnis fiy(1") defined?

2.2.4 Church’s thesis formally

Letl,J be any alphabets (finite and non-empty). Adie some algorithm all of whose
inputs come from* and whose outputs are alwaysldh (For example, ifA is al-
Khwarazmi's decimal addition algorithm, then we can takadJ to be{0,1,...,3.)
Consider a Turing machind = (Q,Z,1,do,d,F), for someX containingl andJ. We
say thatM implementsA if for any wordw € |*, if wis given toA and toM as input,
thenA has an output if and only ¥ does, and in that case their output is the same. If
you like,M computes the same function As

We can now state Church’s thesis formally as follows:

e ‘Given any algorithm, there is some Turing machine that implements it.” Or:

e ‘Any algorithmically computable function is Turing-computable — computable
by some Turing machine.” Or:

e ‘For any finiteX and any functionf : ¥* — X*, f is computable iff there is a
Turing machineM such thatf = fy,.’

This is formal, but it is still imprecise, as the intuitive notion of ‘algorithm’ is still (and
has to be) involved.

2.3 Representing Turing machines

2.3.1 Flowcharts of Turing machines

Written as a list of 5-tuples, the instruction tadef a TM M can be hard to under-
stand. We will often find it easier to represditas agraph or flowchart. The nodes
of the flowchart are the statesMf. \We use square boxes for the final states, and round
ones for other states. An example is shown in figure 2.2.

The arrows between states represent the instruction daBach arrow is labelled
with one or more triples front x ~ x {—1,0,1}. If one of the labels on the arrow

26 2. Turing machines and examples

(a,b,-1) '
' q } B q
(b,c,1)

Figure 2.2: part of a flowchart of a TM

from stateq to stateq' is (a,&’,d), this means that iM readsa from the current square
while in stateq, it must writea/, then takeq as its new state, and move the head
by d (+1 for right, O for ‘no move’, and-1 for left). Thus, for eachg,a) € Q x Z,

if 8(g,a) = (d,a,d) then we draw an arrow from statpto stateqd’, labelled with
(a,d,d).

By allowing multiple labels on an arrow, as in figure 2.2, we can combine all arrows
from g to g into one. We can attach more than one label to an arrow either by listing
them all, or (shorthand) by usingwariable (s,t,X,y,z, etc.), and perhaps attaching
conditions. So for example, the labék;a, 1) if x # A,a from stateq to stateq’ in
figure 2.3 below means that when in statef any symbol other tham or a is read,
then the head writes and moves right, and the state changeq tdt is equivalent to
adding lots of labelgb,a, 1), one for eactb € ~ with b # A, a.

@ (x,a,1)if x#[] a - q

Figure 2.3: labels with variables

The starting state is indicated by an (unlabelled) arrow leading to it from nowhere
(soqis the initial state in figure 2.3). All other arrows must have labels.

Exercises 2.6

1. No arrows leave any final state. How does this follow from definition 2.1? Can
there be a non-final (i.e., round) state from which no arrows come, and what
would happen if the TM got into such a state?

2. Figure 2.4 is a flowchart of the Turing machine of exercises 2.3 and 2.5 above.
Try doing the exercises using the flowchart. Is it easier?

Warning Becaus&is a function, each state of a flowchart should hawenore than
onearrow labelled(a,?,?) leaving it, for anya € > and any values ?, ?. And if you
forget an arrow or label, the machine might halt and fail wrongly.

2.3. Representing Turing machines 27

4 Loy
q0 ql
(C.00)

q2

Figure 2.4: flowchart of TM of exercises 2.3, 2.5

2.3.2 Turing machines as pseudo-code

Another way of representing a Turing machine is in an impergiseudo-computer
language.The language is not a formal one: its syntax is usually made up as appropri-
ate for the problem in hantiThe permitted basic operations are only Turing machine
reads, writes and head movements. However, rather complicated control structures are
allowed, such ag-then statements angthile anduntil loops. A Turing machine usu-

ally implements if-then statements by using different states. It implements loops by
repeatedly returning to the same state.

Warning Pseudo-code makes programming Turing machines less repetitive, as if-
then structures etc. are needed very frequently. Many-track and many-tape machines
(see later) are represented more easily.

However, there is a risk when writing pseudo-code that we depart too far from the
basic state-changing idea of the Turing machine. The code must represent a real Turing
machine. Whatever code we write, we must always be sure that éasalybe turned
into an actual Turing machine. Assuming Church’s thesis, this will always be possible;
butit should always be obvious how to dokor example,

solve the problem
halt & succeed

IS not acceptable pseudocode, nor is

count the number of input symbols
if it is even then halt and succeed else halt and fail

(It is not obvious how the counting is done.) Nested loops are also risky — how are
they implemented?

Halting: include a statement for halt & succeed, as above. For halt & fail, include
a ‘halt & fail’ statement explicitly, or just arrange that no instruction is applicable.

LIt has been formalised in some final-year and group projects.

28 2. Turing machines and examples
2.3.3 lllustration
Example 2.7 (Deleting characters)Fix an alphabel. Let us define a TMM with

fm(w) = head(w) for eachw € 17,

where the functiorhead is as in definition 2.2M will have three statesskip, erase,
andstop.SoQ = {skip erasestop}. Skipis the start state, argtopis the only halting
state. We can take the alphabetb bel U{A}. dis given by:

e J(skipx) = (erasex,1) forall x € Z,
e J(erasex) = (stopA,0) forall x € .

SoM = (Q,Z,I,skip,d, {stop}). M is pictured in figure 2.5.

skip erase

(x,03,0)

stop

Figure 2.5: machine fdread(w)

The namesof the states are not really needed in a flowchart, but they can make it
more readable. In pseudo-code:

move right
write A
halt & succeed

Note theclosecorrespondence between the two versions.

All M does is erase square 1. We did not need to erase the entire input word,
because the output of a Turing machine is defifdd35,52.2.3) to be the characters
on the tapaup to one square before the first blartfere, we made square 1 blank, so
the output will consist of the symbol in square O, if it is not blanke drit is.

Exercises 2.8 (Unary notation, unary addition) We can represent the numbeon
the tape by 111... In(times). This isunary notation. So O is represented by a blank
tape, 2 by two 1s followed by blanks, etc. For short, we write the string 111..n1 of
1's as1". In this course]1™ will NOT meanlx 1x 1...x 1 (ntimes). Note:1? is &.

2.4. Examples of Turing machines 29

1. Supposé = {1,+}. Draw a flowchart for a Turing machiri with input alpha-
betl, such thatfy(1". +.1™) = 1"*™. (Remember that ‘. means concatenation.
E.g., ifthe inputis ‘111+11’, the outputis ‘11111’.) $badds unary numbers.
(There is a suitable machine with 4 states. Beware of the cas® and/or
m=20.)

2. Write a pseudo-code version df.

2.4 Examples of Turing machines

We will now see more examples of Turing machines. Because Turing machines are
so simple, programming them can be a tedious matter. Fortunately, over the years
TM hackers have hit upon several useful labour-saving devices. The examples will

illustrate some of these ‘programming techniques’ for TMs. They are:

e storing finite amounts of data in the state,
e multi-track tapes,

e subroutines.

Warning These devices are to help the programnidrey involve no change to the
definition of a TM(In section 3 we will consider genuine variants of the TM that make
for even easier programming — though these are no more powerful in theory, as we
would expect from Church’s thesis.)

2.4.1 Storing a finite amount of information in the state

This is a very useful technique. First an example.

2.4.1.1 Shifting machines

Example 2.9 (Shifting a word to the right) We want a Turing machink! such that
fm(w) = head(w).w for all w € {0,1}*. SoM shifts its input one square to the right,
leaving the first character alone. E.fy(1011) = 11011 See figure 2.6 for a solution.

The M above only works for inputs ig0,1}*, but we could design a similar ma-
chineM, = (Qi,1 U{A},l,00,0,F) to shift a word ofl* to the right, wherd is any
finite alphabet. Ifl has more than 2 symbols théf would need more states than
M above (how many?). But the idea will be the same for dacio we would like to
expresdM; uniformlyin 1.

Supposeve could introduce int®, a special stateeerix) with a parameter, X,
that can take any value in We could then us& to remember the symbol just read.
Usingseertx), the tabled, can be given very simply as follows:

30 2. Turing machines and examples

00,1) > m
q0 " |seen_0

Figure 2.6: a shifterfyy(w) = head(w).w

e J(qo,a) = (seerta),a,1) forallainl,
e J(seerfa),b) = (seerb),a, 1) foralla,bin I,
e J(seena),) = (qi1,a,0) forallainl.

For an equivalent flowchart, see figure 2.7.

Figure 2.7: the ‘shifter’ TM drawn using parameters in states

Each arrow leading teeerix) is labelled with one or more 4-tuples. The last entry
of each 4-tuple is an ‘assignment statement’, saying wlteicomes wheseertx) is
entered.

The pseudo-code will use a variabdex can take only finitely many values. We
need not mention the initial write, as we only need specify writes that actually alter the
tape.

2.4. Examples of Turing machines 31

read current symbol and put it into X
move right
repeat until x= A
swap current symbol with x
move right
end repeat
halt & succeed

This will work for anyl.

2.4.1.2 Using parameters in states is legal

In fact we can use states like=erix) without changing the formal definition of the
Turing machine at all! We just observe that whilst it's convenient to viegenx)
as a single state with a parametemwe could equally get away with the collection
seena),seertb), ... of states, one for each letter linif we are prepared to draw them
all in and connect all the arrows correctly. This is a bit like multiplicati@nk 4 is
convenient, but if we only have addition we can view this as shorthar8H&+ 3+ 3.

What we do is this. For each lettepof | we introduce &ingle statecalledseena),
or if you prefer,seen. Becausd is finite, this introduces only finitely many states.
So the resulting state set is finite, and so is allowed by the definition of a Turing
machine. In fact, ifl = {ay,...,an} thenQ, = {qo,q1,Seenay),...,seenan)}: i.e.,
n+ 2 states in all. Ther®d, as above is just a partial function fro@® x (1 U{A})
intoQ x (1U{A}) x{0,1,—1}. So our machine i&, = (Q;,l U{A},1,00,0,F) —a
genuine Turing machine!

So althoughseerix) is conveniently viewed by us as a single state with a param-
eter ranging ovel, for the Turing machine it is really many states, nansderia;),
seenay), ... seenay,), one for each element of

So we can in effect allow parametetsn the states of Turing machinesp long
asx can take only finitely many valueBoing so is just a useful piece of notation, to
help us write programs. This notation represents the idea of storogiaded finite
amount of information in the state (as in the registers on a computer).

Warning We cannot store any parametethat can take infinitely many values, or
even an unbounded finite number of values. That would force the underlying genuine
state sef to be infinite, in contravention of the definition of a Turing machine. So,
e.g., for anyl, we get a Turing machink, that works forl. M; is built in a uniform

way, but we donot (cannot) get asingle Turing machineM that works for anyi!
Similarly, we cannot use a parameter in a state to count the length of the input word,
since even though the length of the input is always finite, there is no finite upper bound
on it.

32 2. Turing machines and examples

2.4.1.3 What we can do with parameters in states

Example 2.10 (Testing whether two strings are equal)We will design a Turing ma-
chine M with input alphabet, such thatfy (w1, wp) is defined ifw; = wy (but we
don’t care what value it has), and undefined otherwise. ThM isalts & succeeds if
w1 = W», and halts & fails, or never halts, ¥, # wo.

First, how can a TM take more than one argument as input? We saw in exercise 2.8
a TM to calculaten+ min unary. Its arguments wedd and1™, separated by+'. So
here we assume thatcontains a delimiter,«’, say, andw;,w, are words ofl not
containing %'. That is, the input tape t¥ looks like figure 2.8.

wl w2 0 0

Figure 2.8: initial tape oM

We will use a parameter to remember the last character seen. We will also need
to tick off characters once we have checked them. So w#llétave full alphabet
>~ =1U{A,v}, wherey (‘tick’) is a new character not im. We will overwrite each
character with/, once we've checked it. Figure 2.9 shows a flowchartMor

(ay,0,x:=a) If &*
(*,*,0, X:= *)

seen(x) (b,b,1) If
bz *

hait | (GO0 if

(*’*’1)

Figure 2.9: TM to check ifv; = wo

M overwrites the leftmost unchecked charactemafwith /, passing to state
seerix) and remembering what the character was using the parareftéseen’. (But
If X is x, this means it has checked allwi, so it only remains to make sure there are
no more uncompared charactersvaf) Then it moves right until it sees, when it
jumps to statéesty), remembering asy. In this state it moves past afls (which are
the checked charactersw$). It stops when it finds a character a-say — that isn’t
 (1.e.,alis the first unchecked charactenef). It compares with y, the remembered
character ofv;. There are three possibilities:

2.4. Examples of Turing machines 33

1. a= A andy = x. So all characters aofi, have been checked againgt without
finding a difference, and, has the same length ag. Hencew; = wy, soM
halts and succeeds (state halt).

2. a#Yy. M has found a difference, so it halts & fails (there’s no applicable instruc-
tion in statetest(y)).

3. a=yandy # x. So the characters matcM overwrites the current character
(a) with %, and returns left until it sees\a One move right then puts it over the
next character ofv; to check, and the process repeats.

Exercises 2.11

1. TryMonthe inputd23«123 12«13, 1x11, 12«1, x1, 1%, andx* (in the last three,
w1, Wo, or both are emptyg])). What is the output oM in each case?

2. What would go wrong if the ‘begin> seen’ arrow was just labelléd, v/,0,x:=
a)?

Please don’t worry if you found that hard; Turing machines that need as many as five
states (not counting any parameters) are fairly rare, and anyway we’ll soon see ways to
make things easier. By the way, it's a good idea to write your Turing machines using
as few states as you can.

3. Design a Turing maching to calculate the functiotail : I* — 1*,

4. Design a Turing machind that checks that the first character of its input does
not appear elsewhere in the input. How will you makeutput the answer?

2.4.2 Multiple tracks

Above, we found it convenient to put (finite amounts of) data in the state of a Turing
machine. So a state took the fomx) or (g,x), wherex could take any of finitely
many values. Then we could specify the instruction table more easily.

In the same way, many problems would be simpler to solve with Turing machines
if we were allowed to use a tape with more than one track — as on a stereo cassette,
which has four tracks all told. The string comparison example shows how useful this
can be. TheM’ of figure 2.9 above was pretty complex. Wouldn't it be easier to use
two tracks?

As before, let's cheat for a moment and do this. We would like the tapé tuf
have two tracks, witlw; on the first track andv, on the second track, as shown in
figure 2.10.

ThenM can simply move its head along the tape, testing at each stage whether the
characters in tracks 1 and 2 are the same. See figure 2.11. Wexyyitexs notation
for a square having in track 1 andy in track 2. M halts and fails if it finds a square
with different symbols in tracks 1 and 2.

The two-trackM is much easier to design. So it might be useful for Turing ma-
chines in general to be able to have a multi-track tape.

34 2. Turing machines and examples

track 1 wl L H

tape
track 2 w2

0 0
U U

Figure 2.10: two-track tape for word-comparison TMI,

(@0O,01)

halt

Figure 2.11: flowchart fomM

2.4.2.1 Using tracks is legal

In fact, as with statesye can effectively divide the tape into tracks without modifying
the formal definition of the Turing maching&o divide the tape intm tracks, we add
a finite number of new individual symbols of the fof(ay, . ..,an) to Z, whereay, .. .,
an are any symbols. Eadla,...,a,) is a single symbol, ifx, and may be written to
and read from the tape as usual. But whenésegr. .., an) is in a square, we caview
this square as divided intoparts, thdth part containing the ‘single’ symbal. So if
n = 2 say, and many squares have pairs of the fgxmy) in them, the tape begins to
look as though it is divided into two tracks (figure 2.12):

If the only symbols on the tape areand symbols of the fornfay, ..., a,), we can
consider the tape as actually divided imtracks. Note that # (A, A).

Warning The tuple§ay,...,a,) are just single symbols in the Turing machine’s al-
phabet. The tracks only help us to think about Turing machine operations — they
exist only in the mind of the programmedo change to the definition of a Turing ma-
chine has been mad€ompare arrays in an ordinary computer. The akéy 6) will

usually be implemented as a 1-dimensional memory area of 30 contiguous cells. The
division into a 2-dimensional array is done in software.

Warning We cannot divide the tape into infinitely many tracks — this would vio-
late the requirement that be finite. (But see 2-dimensional-tape Turing machines in
§3.4.1.)

2.4. Examples of Turing machines 35

The real tape

(@b)| (@a)| (La)| b)) g| (Oop| a O

We view it as:

Track 1 a a 1 2

Track 2 b a a b 0

Figure 2.12: tracks on tape

2.4.2.2 \What we can do with tracks

Because a Turing machine can write and move according to exactly what it reads, it
can effectively read from and write to the tracks independently. Thus e.g., it can shift
a single track right by one square (cf. example 2.9). In fact, anything we can do with a
1-track machine we can also do on any given track of a multi-track machine.

Cross-track operations are also possible. For example, this Turing machine copies
track 1 as far as its first blank to track 2 (figure 2.13):

((a,b),(a,a),1)

if a2

((Cb),(0D),0)
-

Figure 2.13: track copier

2.4.2.3 String comparison revisited

Now let's see in detail how to solve the string comparison problem using 2 tracks. The
Input iswy x W as before: all on one track. See figure 2.14.
The Turing machine we want will have three stages:

Stage 1: replace the 1-track input by 2 tracks, with left-justified on track 1, and
wo, with len(wy) + 1 blanks before it, on track 2). This part can be done much

36 2. Turing machines and examples

Figure 2.14: initial tape contents

as in figure 2.13 (how exactly?) Then return to square 0. The resulting tape has
2 tracks as far as the input went; after that, it has only one. Also, while we're at
it, we mark square 0 with & in track 2 (figure 2.15).

track 1 wl 0 0 L 0 .-
— — — -+ - F - - — O
track 2 * r H r N w2

Figure 2.15: tape after Stage 1

Stage 2: shiftws left to align it withw;. E.g., use some versiontfil (exercise 2.11)(3)
repeatedly, until the is gone (see figure 2.16).

track 1 wl 0
______ —_ - - - - = 0
O

track 2 w2 [l

Figure 2.16: tape after Stage 2

Stage 3: compare the tracks as far as their fit&, halting & failing if a difference is
found. This is easy — see figure 2.11.

Exercise: work out the details.

So comparing two words is easier with two tracks. But tapes with more than one
track are useful even if there’'s only one input. An example is implicit marking of
square 042.4.3 below); we'll see others in section 3.

2.4.2.4 Setting up and removing tracks

In the string comparison example 2.10 above, the two argumeantg, were provided

on a l-track tape, one after the other (figure 2.8/2.14). We then put them on different
tracks (figure 2.15). If there were 16 arguments, we could put them left-justified on a
16-track tape in a similar way (think about how to do it).

2.4. Examples of Turing machines 37

But often it is best to set up trackl/namically— as we go along. This saves
doing it all at the beginning. (Besides, however much of the tape we set up as 2 tracks
initially, we might want to use even more of the tape later, so every so often we’d have
to divide more of the tape into tracks, which is messy.)

So, each time our machine enters a square that is not divided into 2 tracks (i.e.,
doesn’t have a symbol of the foria, b) in it), it immediately replaces the symbol
found —a, say — by the pai(a, A), and then carries on. This is so easy to do (just
add instructions of the fornig,a,q, (a,A),0) to 9, for all non-pairsa € %) that we
won't often mention the setting up of tracks explicitly.

Similarly, whenM has finished its calculations using many tracks, the output will
have to be presented on a single track tape, as per the definition of oujuRiB.
Assuming that the answer is on trackM will erase all tracks but the first, so that the
tape on termination has a single track that looks like track 1 of the ‘scratch’ tape. It
need only do this as far as the firsin track 1. See figure 2.17 for how to do this with
a three-track scratch tape, assumihdpas brought its head to square O:

((xy,2),x1)
if x£0

(Cy,z),00)

Figure 2.17: returning to a single track

2.4.3 Implicit marking of square 0 of the tape

Our Turing machines halt and falil if they try to leave the left hand end of the tape. As
we may wish to avoid a halt & fail, it helps when programming to be able to tell when
the head is in square 0. We have seen the need for this in the examples. We want to
mark square 0 with a special symbol,«’, say. Then when the head reads, ‘we
know it is in square 0.

But square 0 may contain an important symbol already, which would be lost if we
simply overwrote it with %’.

There are several ways to manage here:

1. Create an extra track, with’'in square 0 and blanks in the remaining squares.
To see if the head is in square 0, just read the new track.

2. For eachain X add a new charactea#’ (or * (a,*)’) to Z. To initialise, replace
the characteb in square 0 by«. From then on, write a starred character iff you
read one. So square 0 is always the only square with a starred character. This is
much the same as adding an extra track.

38 2. Turing machines and examples

3. Includex as a special character bf To initialise, shift the input right one place
and insert« in square 0. Then carry out all operations on squares 1,2,..., using
+ as a left end marker. This works OK, but involves some tedious copying, so is
not recommended when designing actual TMs!

4. Write your TM carefully so it doesn’t need to return to square 0. This is possible
surprisingly often, but few can be bothered to do it.

2.4.3.1 Convention

Because we can always know when in square 0 (by using one of these ways), we will
assume that a Turing machine always knows when its head is over square 0 of the tape.
square 0 is assumed to baplicitly marked. This saves us having to mention the
extra track explicitly when describing the machine, and so keeps things simple.

2.4.3.2 Examples of implicit marking (fragments of TMs)

repeat until read a or square 0 reached
write a
move left

end repeat

halt & succeed

For a flowchart, see figure 2.18.

(x,x,0) if x=a or
head in sq. O -

Figure 2.18: implicit marking of square 0 in flowcharts

We often need to return the head to square 0. This can be done very simply, using
a loop:

move left until in square 0

Nonetheless, my own view is thatturn to square 0’ is too high-level pseudo-code
(see thavarningin §2.3.2), and should not be used.

2.4. Examples of Turing machines 39

2.4.4 Subroutines

It is quite in order to string several Turing machines together. Informally, when a
final state of one is reached, the state changes to the initial state of the next in the
chain. This can be done formally by collecting up the states and instruction tables of
all the machines in the chain, and for each final state of one machine, adding a new
instruction that changes the state to the initial state of the next machine in the chain,
without altering the tape or moving the head. The number of states in the ‘chain’
machine is the sum of the numbers of states for the individual machines, so is finite.
Thus we obtain a single Turing machine from the machines in the chain; again we have
not changed the basic definition of the Turing machine. We will use this technique
repeatedly.

Warning When control passes to the next Turing machine in the chain, the head may
not be over square 0. Moreover, the tape following the ‘input’ may contain the previous

machine’s scratchwork and so not be entirely blank. Each machine’s design should
allow for these possibilities, e.g., by returning the head to square 0 before starting, or
otherwise.

2.4.5 Exercises

We end this section with some problems that illustrate the techniques we have seen
here.

Exercises 2.12

1. (subtraction) Suppose thht= {1,—}. Design a Turing machin® = (Q, Z,
l,qo, 0, F) such that

n o oqm _ 1n-m ifnzm,
f(1%. =17 = {e, otherwise.

M performs subtraction on unary numbers.

2. (unary multiplication) Suppose= {1, «x}. Design a Turing machin® such that
fm (1" %.1M) = 1"M Hint: use 3 tracks and repeated addition and subtraction.

3. (inverting words) Let be an alphabet. Find a Turing machide= (Q,Z,1,dp,
d,F) such thatfyy (w) is the reverse ofv. E.g.: use storage in states and marking
of square 0.

4. (unary-binary conversion)

(a) Design a machin® to add 1 to a binary number (much easier than in
decimal!). That is, if ifn > 0is a number lety € {0,1}* be the binary
expansion o, without leading zeros, written with the least significant
digits on the left. (E.g., ‘13’ = 1011. This makes things easier.) Define ‘0’
to be a single zero. We then requiig(‘n’) = ‘n+ 1 for all n> 0.

40 3. Variants of Turing machines

(b) ExtendM to a machine that converts a unary number to its binary equiva-
lent. Hint: use two tracks.

(c) Design a Turing machine that converts a binary number to unary.

5. (primality testing) Design a TM that, given as input some binary number, tests
whether it is prime. [Again, a 3-track machine is useful. See Hopcroft & Ull-
man, p. 154].

2.5 Summary of section

We defined a Turing machine formally, as a finite state machine with a finite symbol
alphabet and a 1-way infinite tape. We explained why we chose it as our formalisation
of algorithm, and how it is idealised from a real computer. We discussed Church’s
thesis.

We explained input and output for Turing machines and defined the input-output
function fy for a Turing machineM. We saw that a Turing machine can be repre-
sented as a flowchart or by pseudo-code. We gave examples of Turing machines that
solve particular problems: unary-binary conversion, arithmetical operations, etc. We
considered ways of programming Turing machines more easily: storing finite amounts
of data in the state set (cf. registers), using many tracks on the tape (cf. arrays), and
chaining Turing machines (cf. subroutines).

3. Variants of Turing machines

In this section we examine some variants of the TM we considered before. The main
examples we have in mind are machines with a two-way infinite tape, or more than
one tape. We will see that in computational power they are all the same as the ordinary
model. This is in line with Church’s thesis, and provides some evidence for the ‘truth’
of the thesis.

Nonetheless, variants of the basic Turing machine are still useful. Just as in real
life, the more complex (expensive) versions can be easier to program (user-friendly),
whilst the simpler, cheaper models can be easier to understand and so prove things
about. For example, suppose we wanted to prove that ‘register machines’ are equiva-
lent in power to Turing machines. This amounts to showing that Turing machines are
no better and no worse than register machines (with respect to computational power).
We could show this directly. But clearly it might be easier to prove thateapTur-
ing machine is no better than a register machine, which in turn is no better than an
expensivauring machine. As in fact both kinds of Turing machine have equal com-
putational power, this is good enough.

3.1. Computational power 41

First we need to make precise what we mean by equal computational power.

3.1 Computational power

Comparing two different kinds of machine can be like comparing a car and a cooker.
How can we begin? But a functioh: I* — Z* is a more abstract notion than a ma-
chine. We will compare different kinds of computing machine by comparing their
input-output functionsas with the formal version of Church’s thes§2(2.4). To show
that cheap and expensive Turing machines are equivalent, we will show that any func-
tion computable by one kind is computable by the other.

Formally:

Definition 3.1 Let M1, M, be Turing machines, possibly of different kinds, with the
same input alphabet. We say th&t andM, areequivalentif fy, = fm,. That is,M
andM, compute the same function. They have the same input-output function.

So to show that two kinds of Turing machine have equal computational power, we
will show that for any machine of one kind there is an equivalent one of the other kind.

3.1.1 Proving different machines have equal computational power

As one might expect, it is usually easy to show that an expensive makhinean
compute any function that a cheap machihean. We must work harder to prove that
any algorithm performable by an expensié can done by a cheaper machiMe We
will see several examples below.

The details of the proofs are not so important. Tineortant pointis that in each
case, althougM™ is (presumably) solving some problem, we mint try to make the
cheap machin# solve the problem directly. Instead we cheat and mdkaimic or
simulateM™, parrot fashion. The same happens when a Macintosh emulates a PC. We
need no deep understanding of what kind of algoritiiiscan perform, but only of
the nuts-and-bolts design bf itself. This is a very profound idea, and we will see it
again later (UTMs in section 4, and reduction, in section 5 and Part Il of the course).

Aside: it helps ifM™ is not too much more complex thawh. So getting a 1-tape
Turing machineM to imitate a Cray YMP would be best done by going through several
increasingly complex machine desigMs, ..., M,. We would show that an ordinary
Turing machineM is equivalent tdvl; (each can simulate the othelj; is equivalent
to My, ..., Mn_1 is equivalent tdMl,,, and thatM,, is equivalent to the Cray. This will
show that a Turing machine is equivalent to a Cray.

3.2 Two-way-tape Turing machines

We could easily (with a little more cash) allow the tape of a Turing machine to be
infinite in both directions. In fact this is a commdefinitionof ‘Turing machine’, and

Is used in Rayward-Smith’s book (our definition, using a one-way infinite tape, is used
in Hopcroft & Ullman’s).

42 3. Variants of Turing machines

Here’s a picture of a 2-way infinite tape Turing machine:

- B A F A B A U 3 U I
-3 2 -1 0 1 2 3 4 5 6
M +

Figure 3.1: a two-way infinite tape TNIJ*

Definition 3.2 (Two-way-infinite tape TM) A two-way infinite tape Turing ma-
chine has the forrM* = (Q,Z,1,qo,8,F), exactly as before. The tape now goes right
and left forever, so the head BF* can move left from square 0 to squares, —2, etc.,
without halting and failing. You can't tellfrom the 6-tuple definition what kind of tape
the machine has; this information must be added as a rider. Of course, by default the
tape is 1-way infinite, as that’s our definition of a Turing machine.)

The input to M* is written initially in square€,1,...,n. All squares> n and
< 0 are blank. IfM* terminates, the output is taken to be whatever is in squares
0,1,...,m—1, where the first blank square O is in squaren. So we can define the
input-output functionfy,+ for a two-way infinite tape machine as before.

Exercise 3.3 (This is too easy!)Since we can't tell from the 6-tuple definition what
kind of tape the machine has, we can alter an ordinary TM by giving it a two-way infi-
nite tape to run on: the result is a working machine. Find a 1-way infinite tape Turing
machine that has a different input-output function if we give it a two-way infinite tape
In this way.

Now 2-way infinite tape Turing machines still seem algorithmic in nature, so if
Church’s thesis is true, they should be able to compute exactly the same functions as
ordinary Turing machines. Indeed they céor. every two-way infinite Turing machine
there is an equivalent ordinary Turing machine, and vice verBait we can't just
guote Church'’s thesis for this, as we are still gathering evidence for the thesis! We
must prove it. If we can do this, it will provide some type (b) evidence §de®.3) for
the correctness of Church'’s thesis as a definitioalgbrithm.

Two-way machines seem intuitively more powerful than ordinary ones. So it
should be easy to prove:

Theorem 3.4 If M = (Q,Z,1,00,9,F) is an ordinary Turing machine, then there is a
two-way infinite Turing machin®l* equivalent taMi.

And it is. We takeM* = (Q,= U {fail},1,qo,5,F), where ‘fail’ is a new symbol
notinZ. M* begins by moving left to squarel, writing ‘fail’ there, and moving right

3.2. Two-way-tape Turing machines 43

to square 0 again. Then it behaves exactlyvasexcept that if it ever reads ‘fail’ it
halts and fails. Clearlyy = fy+. QED.
As we might expect, the converse is a little harder.

Theorem 3.5 LetM* = (Q,Z,1,qo,8,F) be a two-way infinite Turing machine. Then
there is an ordinary Turing machind equivalent tavi*.

PROOF The idea is to curl théwo-waytape round in a U-shape, makinglitway
infinite but with two tracks. The top track will have the same contents as squares
0,1,2,...of the two-way infinite tape dfi*. The bottom track will have a special
symbol %’ in square 0, to mark the end of the tape, and squas2s .. will contain

the contents of squaresl, —2,... of M*'s tape. See figure 3.2.

- U C F A B A U 3 | g [-»

-3 /\2-1 0 1 2 3 4 5 6
q

M q(-1)

Figure 3.2: tape contents bf* and its shadow

The 1-way tape oM holds the same information &*'s 2-way tape .M will use
it to follow M*, move for move. It keeps track of whethdr* is currently left or right
of square 0, by remembering this (a finite amount of information!) in its state, as in
§2.4.1.

In pseudo-code, it is quite easy to spedily The variabletrack will hold 1 if
M¥ is now reading a positive square or 0, aatl if M* is reading a negative square.
For M, +1 means ‘top track’ and-1 means ‘bottom track’. The variabM*-state
holds the state dfi*. Note that these variables can only take finitely many values, so
they can be implemented as a parameter in the stathk af in§2.4.1. Remember
(§2.4.2.1) that in reality, two-track squares\k tape hold pairga, b), where we view
a as the contents of the top track, amthe contents of the bottom track.

track ;= 1; M*-state := Qg % initially M* reads square 0 in state qo
if reading a then write (a,) % initialise square 0
repeat until M*-state is a halting state of M*

44 3. Variants of Turing machines

if the current square contains a (say), and a is not a pair of symbols, then

if track = 1 then write (a,A) else write (A,a) end if % dynamic track set-up
end if
if track = 1 then % M® is reading a square >0
case [we are reading (a,b) and 3(M*-state,a) = (q,a,d)]: % & from M=
write (@,b) % write to top track
M*-state :=
if b=+ and d = —1 then % M= in square 0 and moving left. ..
move right; track := —1
else
move in direction d % track = 1 so M moves the same way as M
end if
end case
else if track = —1 then % M¥ is reading a square <0
case [we are reading (a,b) and 3(M*-state,b) = (q,b/,d)]:
write (a,b) % write to bottom track
M*-state :=q
move in direction —d % track = —1, so M moves ‘wrong’ way
if now reading * in track 2 then track:=1 % M= now in square 0
end case
end if
end repeat
% M¥ has halted & succeeded, so clean up & output
move left until read * in track 2 % return to square 0
repeat while not reading A in track 1
if reading (a,b) (say) then write a % replace two tracks with one
move right
end repeat
write A; halt & succeed % blank to mark end of output

SoM mimics M*, move for move. Note that the case statements involve a fixed
finite number of options, one case for each trifgea, b) whereq € Q anda,b € . So
we can implement them by ‘hard-wiring’, using finitely many stateSlo#Ve stipulate
that if no option applies, the case statement halts & fails.

WhenM* halts and succeeds (if everNl removes the bottom track, the old top
track up to its firstA (which is M*’s output) becoming the whole width of the tape.
Thus, the output oM is the same a®™ in all cases, and sbl is equivalent taVi*.

QED.

Try this on a simple example, followingl’s attempts to keep up witM*. What
happens iM* halts and fails?

3.3. Multi-tape Turing machines 45

3.3 Multi-tape Turing machines

With a lot more cash we could allow our machines to have more than one tape. Fig-
ure 3.3 shows a picture of a 3-tape Turing machine. Notice how it differs from a 1-tape

0 13 4 5 6

Tape2| | & * & !] 0 | —»

0 1 2 3 4 5

Tape3| A & 3 % G (%) O [——

0 1 2\35 6

state held
in here —{ Control

Figure 3.3: a three-tape TM caught in action

machine with 3 tracks. Here, there dneee headsvhich can movendependentlyn
their own tapes. At each step:

e All 3 heads read their squares; the 3 symbols found are passed to control.
e Depending on these 3 symbols and on its current state, control then:

— tells each head what to write;
— tells each head which way to move;
— moves into a new state.

e The process repeats.

The moves, new symbols and state are determined bingteiction table, and de-

pend on the old state aradl three old symbols. So what one head writes can depend
on what the other heads just read. In many ways, a many-tape Turing machine is
analogous t@oncurrent executioras in effect we have several communicating Turing
machines running together.

46 3. Variants of Turing machines

Warning Do not confusemulti-tape TMs with multi-track TMs. | know they are
similar as English words, but these names are in general use and we are stuck with
them. They mean quite different things. Think of tape recorders. Two old mono tape
recorders (2 tapes, with 1 track each) amt the sameas one stereo tape recorder

(1 tape, 2 tracks). They are in princiddetter,because (a) we could synchronise them

to get the capabilities of a single stereo machine, but (b) we can use them in other ways
too, e.g., for editing. Similar considerations apply to Turing machines.

3.3.1 The multi-tape machine formally

A 3-tape machine can be written formally Bls= (Q,Z,1,0p,d,F), where all compo-
nents except solely for the instruction taBlare as for the usual Turing machine. In
the 3-tape maching,is a partial function

0:QXIXIXI—-QxIxIxXZx{-10,1} x{-1,0,1} x {-1,0,1}.
The definition of then-tape machine is the same, except that we have:
0:Qx2"—-Qx2"x{-1,01}".

Here, and below, iSis any set thei®" is the sef{(ay,...,an) ' a1,...,8, € S}.
3.3.1.1 Remarks

1. Forn=1, this is the same Turing machine as in definition 2.1.

2. How can you tell how many tapes the Turing machi@ex,1,qo,d,F) has?
Only by looking atd. If d takes 1 state argument andymbol arguments, there
aren tapes.

3. Note that it is NOT correct to write, e.dQ3,23,13,qo, 8, F3) for a 3-tape ma-
chine. One Turing machine, one state set, one alphabgere is a single state
set in a 3-tape Turing machine, and so we write iQa#f each of the three heads
were in its own state fror, then the state of the whole machine would indeed
be a triple inQ3. But remember, everything is linked up, and one head’s actions
depend on what the other heads read. With so much instantaneous communica-
tion between heads, it is meaningless to say that they have individual Sthées.
machine as a wholes in some state — songein Q.

And there is one alphabet: the set of characters that can occur in the squares on
the tapes. We useXf when there were 3 tracks on a single tape, because this
involved changing the symbols we were allowed to write in a single square of a
tape. So if you writez3, you should be thinking of a 8ack machine. In fact,

after using 3-tape machines for a while you won't want to bother with tracks
any more, except to mark square 0.

3.3. Multi-tape Turing machines 47

3.3.1.2 Computations

How does a many-tape TM operate? Consider (for instance) a 3-tape mathine
(Q,%,1,00,0,F). At the beginning, each head is over square 0 of its tape. Assume that
at some stagé\l is in stateq and reads the symbal from head number (for each

I =1,2,3). Suppose that

3(q,a1,a2,a3) = (d, b1, bz, bz, d1,do, d3).

Then for each = 1,2, 3, headi will write the symbolb; in its current square and then
move in directiond; (0 or =1 as usual), and/ will go into stateq. M halts and
succeeds iff is a halting state. It halts and fails if there is no applicable instruction, or
if any of the three heads tries to move left from square 0. The definition oftape
machine is similar.

3.3.1.3 Input/output. The function computed byM

The input, a wordv of 1, is placed left-justified on tape 1, with onls afterwards. All
other tapes are blank. M halts and succeeds, the outgytw) is taken to be whatever
Is on tape 1 from square O up to the character before the first blaibkdfesn’t halt
& succeed, its output ow is undefined. So as beforgy is a partial function from*
into ~*: thefunction computed by M.

Notice that the input-output conventions are as for an ordinary Turing machine. So
ann-tape machine is just an ordinary Turing machine # 1.

3.3.2 Old tricks on the new machine

We can write many-tape machines as flowcharts. For a 2-tape machine, the labels on
arrows will be 6-tuples fronx# x {0,1, —1}2, written

((a,b),(a,b), (d,d),

which meangake this arrow if head 1 readsa and head 2b; get head 1 to writea’
and head 2b/, and move head 1 in directiond (0 or +1) and head 2 in direction
d’. Some people prefer to write this label @sa’,d,b,b’,d’), dealing with tape 1 first,
then tape 2. This obscures the fact that each tape’s write depends calMthatheads
read. Whichever notation you use, you should explain it.

We can also use pseudo-code; this is very suitable as it can easily refer to individual
tapes (as for tracks). Indeed, all the programming techniques we saw in section 2 can
still be used for multi-tape machines. For example, we can store information in states,
and can divide each tape into tracks (each tape can have a different number of tracks).
So e.g., by adding one extra track to each tape and puttingquare 0 of that track,

a many-tape machine can tell at any stage whether one of its heads is in square O.
Therefore, we continue to allow square 0 of each tape to be implicitly marked.

However, having many tapes is itself one of the most useful ‘tricks’ of all for
programming Turing machines. For this reason we will use many-tape machines very
often. An example may illustrate how they can help.

48 3. Variants of Turing machines

Example 3.6 (detecting palindromes (a yes/no problem)let | be an alphabet with
at least 2 symbols. Aalindrome of | is a wordw of | such thatw is the reverse
of itself (if w= ajay...an then revers@v) = apan_1...a1). E.g., ‘abracadabra’ is
(sadly) not a palindrome; Napoleonalle was | ere | saw Elbais.

We now describe a 2-tape Turing machike= (Q,Z,1,qp,d,F) that halts and
succeeds ifv is a palindrome, and halts and fails otherwise. (The actual odtpt)
of M is unimportant; what matters is whethdr halts and succeeds, because this is
enough to tell us the answer — whethgris a palindrome or not. Problems like
palindrome detection, with only two possible answers for each instance, are called
yes/no problemsor decision problems.We’ll see more of these in Part lll.)

The idea is very simple. Initially, the wond is on tape 1M first copiesw to tape
2. Then it moves head 1 back to the beginning of the original copyafi tape 1, and
head 2 to the end of the new copy on tape 2. It now executes the following:

if the symbols read by the two heads are different then halt and fail
repeat until head 2 reaches square 0

move head 1 right and move head 2 left

if the symbols read by the two heads are different then halt and fail
end repeat

Note that a 2rack machine could not do this, as it has only one head. Note also
that we can’t take a shortcut by stopping when the heads meet in the middle: a 2-tape
Turing machine doesn’t know when its heads cross, unless it has arranged to count
moves.

Exercises 3.7

1. Draw a flowchart for this machine. The main bit is shown in figure 3.4. (This

-1))
q.0

o

((x),(x,x),(0,0))
ifh2insq.0

Figure 3.4: main part of palindrome tester

halts & fails if the heads read different characters — there’s no applicable in-
struction.) Now try to design a single-tape Turing machine that does the same
job. That should convince you that many-tape machines can help programming
considerably. (For a solution see Harel's book, p.202.)

3.3. Multi-tape Turing machines 49

2. Letl be an alphabet. Design a 2-tape Turing machhsuch thatfy(w) =
reverséw) for all w € I*. Can you design aN such thatfy(w) = wxw? (The
output isw, followed by ax, followed by a copy ofv. E.g.:abcxabg)

3.3.3 Many-tape versus l1-tape Turing machines

In the exercise, the 1-tape Turing machine that you came up with probably didn’t look
much like the original 2-tape machine. If we tried to find 1-tape equivalents for more
and more complex Turing machines with more and more tapes, our solutions (if any)
would probably look less and less like the original. Can weslbethat any n-tape
Turing machine has a 1-tape equivalent — as it should have by Church’s thesis?

In the following important theorem, waovethat for anyn > 1, n-tape Turing ma-
chines have exactly the same computational power as 1-tape machines. Thus Church’s
thesis survives, and in fact the theorem provides further evidence for the thesis.

Just as in the two-way-infinite tape case (theorem 3.4), we will design a 1-tape
machine thamimicsor simulateshe n-tape machine itself, rather than trying to solve
the same problem directly, perhaps in a very different way. But now, giagtestep
of the n-tape machine will be mimicked byhany step®f the 1-tape machine. We
are really proving thatve can simulate a bounded concurrent system on a sequential
machine albeit slowly.

Theorem 3.8 Letn be any whole number, with> 2. Then:

1. For any ordinary, 1-tape Turing machié, there is am-tape Turing machine
My that is equivalent tou.

2. For anyn-tape Turing machin®l,, there is an ordinary, 1-tape Turing machine
M that is equivalent tovi,,.

PROOF To show (1) is easy (because expensive is ‘obviously better’ than cheap).
Given an ordinary 1-tape Turing machiig we can make it into an-tape Turing
machine by adding extra tapes and heads but telling it not to use them. In short, it
ignores the extra tapes and goes on ignoring them!

Formally, ifM = (Q,Z,1,qo,0,F), we defineM, = (Q,Z,1,q0,%,F) by:

0:QxX"—-QxI"x{-1,01}"
d(q,a1,...,an) = (q,b1, \,A,...,A,d1,0,0,...,0) whered(q,a1) = (d,b1,d1).

(Recall thatd is the only formal difference between TMs with different numbers of
tapes.) ClearlyM, computes the same function lés so it's equivalent tou.

The converse (2), showing that cheap is really just as good as expensive, is of
course harder to prove. For simplicity, we only do it foe 2, but the idea for largem
Is the same.

So letM5 be a 2-tape Turing machine. We will construct a 1-tape Turing machine
M that simulatesM». As we said, eacM-instruction will correspond to an entire
subroutine foM. The idea is very simplev simulatesM, by drawing a diagram or

50 3. Variants of Turing machines

picture ofM2’s initial configuration, and then updating the picture to keep track of the
movedM, makes.

M has a singlél-tracktape (cf.§2.4.2). At each stage, track 1 will have the same
contents as tape 1 ®fl,. Track 2 will show the location of head 1 df;, by having
an X in the current location of head 1 and a blank in the other squares. Tracks 3 and 4
will do the same for tape 2 and head 2\d3.

Example 3.9 Suppose that at some point of execution, the tapes and hedtjsarve
as in figure 3.5. Then the tape M will currently be looking like figure 3.6.

Tapel| A B A C D —
0 "~ 3 4 5 6
Tape 2 D A D D A —

0 1 2 \ 3 4 5 l@
Control

\
track 1| A B A C D
track 2 X
e LT P e T [Tyt P >—>
track 3 D A D D A
track 4 X
J
0 1 2 3 4 5 6

Figure 3.6: a single 4-track tape with the same data

So the tape oM will always show the current layout ®f,’s tapes and heads. We have
to show howM can update its tape to keep tracki$. Let us describd1’s operation
from start to finish, beginning with the setting-up of the tracks.

3.3. Multi-tape Turing machines 51

Initialisation Recall that initially both heads d¥l, are over square 0; tape 1 carries
the input ofM», and tape 2 oM, is blank. M is trying to compute the same
function asM», so we can assume its input is the same. That is, initidlly
(single) tape is the same as tape b

First, M sets up square 0. Suppose that tape Wp{and so alsd/’s tape) has
the symbokin square 0. TheM writes(a, X, A, X) in square 0. This is because
it knows that both heads &, start in square 0 — so that’s where the Xs should
be! And it knows tape 2 d¥; is blank.

But these Xs will move around later, with the headdwf, so also, square O
should be markedM can mark square 0 with an extra track — §2.4.3. So
really M’s tape hadive tracks; but we agreed i§2.4.3.1 not to mention this
track, for simplicity.

We'll assumedynamic track set-up,as in§2.4.2.4. So whenevdéfd moves into

a square whose contents are not of the foanb, c, d), but justa, it immediately
overwrites the square witfa, A, A, A), and then continues. This is because to
begin with,M’s tape is the same as tape 1\#, and tape 2 oM is blank. So

(a, A\, A\, A) is the right thing to write.

We assume also thst always knows the current stageof M» (initially qp). It
can keep this information in its state set as well, because the stateMet®f
also finite.

M must now update the tape after each movdVef repeating the process until
M, halts. Suppose thal, is about to execute an instruction (i.e., to read from and
write to the tapes, move the heads, and change state). Whaas done this, its head
positions and tape contents may be differéitupdates its own tape to reflect this, in
two stages:

Stage 1: Finding out whatM, knows First M’'s head sweeps from square O to the
right. As it does so, it will come across the X markers in tracks 2 and 4. When
it hits the X in track 2, it looks at the symbol in track 1 of the same square.
This is the symbol that head 1 85 is currently scanning. Suppose itas,
say. M rememberghis symbol a;’ in its own internal states — cf2.4.1. It
can do this because there are only finitely many possible symbolajtieatld
be € is finite). Similarly, M will eventually find the X in track 4, and then it
also remembers the symbol a2, say — in track 3 of the same squam is
the symbol that head 2 &, is currently scanning. Of courskl might find the
X in track 4 before or even at the same time as the X in track 2. In any event,
once it has found both X&/ knows both the current symbdls, a, that My is
scanning.

Stage 2: Updating the tapeWe assume tha#l ‘knows’ theinstruction tabled of M.
This never changes so can be ‘hard-coded’ in the instruction taiMe A& with
the 2-way-infinite tape simulation (theorem 3.8),does not have tecompute
0 — & is built into M in the sense that the instruction tableMfis based on it.

52 3. Variants of Turing machines

E.g., a pseudo-code representatioriofvould involve a long case statement,
one case for each line of the instruction tabldvbf

M now has enough information to work out whds will do next. For, onceM
knowsas, ap, andg, then since it knows, it also knows the value

3(q,a1,a2) = (q,b1,bp,d1,d2) € Qx T2 x {~1,0,1}2,

if defined. If it is not defined (becaudd, has no applicable instructioniy
halts and fails (ad, does). Assume it is defined. Théhis head sweeps back
leftwards, updating the tape to reflect wihvt does. That is:

Procedure Sweepleft % pre: head starts off over the rightmost X
set donel, done?2 to false
repeat
if track 2 has X and not donel then
set donel to true
write by in track 1 and A in track 2 % so erasing the X

move in direction dj % follow the move of head 1 of My
write X in track 2 (leaving the other tracks aldfejew position of head 1
move in direction —dj % back to where we were

end if

(a similar routine for head 2 of My, using tracks 3 and 4 and variable done?2)

move left

until in square 0

M ends up in square O with the correct tape pictuiiygs new pattern.

If g is not a halting state favl,, M now forgetsM»’s old stateq, remembers the new
stateq’, and begins the next sweep at Stage 1 above.

The output Suppose then thaf is a halting state foM,. So at this pointM, will
halt and succeed with the output on tape 1. As track 'sftape always looks
the same as tape 1 bfy, this same output word must now be on track M
tape.M now demolishes the other three tracks in the usual way, leaving a single
track tape containing the contents of the old track 1, up to the first blank.

M has simulated every move bf,. So for all inputs inl*, the output oM is the
same as that d¥1,. Thusfy = fu,, andM is equivalent tdM,, as required. QED.

Summary We showed that any algorithm implementable by a 2-tape madhyrie
implementable by a 1-tape machikk

Exercises 3.10

1. Write out the pseudo-code routine to handle tracks 3 ancb#vérpleft.

3.3. Multi-tape Turing machines 53

2.

Draw flowcharts of the parts & that handle stages 1 and 2 above. It's not too
complicated if you use parameters to stageay,q,d,bq,by,d1, anddy, as in
62.4.1.

. Why do we ‘move-d;’ after writing X in track 2? (Hint: what if the heads are

both in square 67?)

Why do we need the variablmnel in SweeplLeft? What might happen if we
omitted it?

. What alterations would be needed to simulate-éampe machine?

. Suppose that at some poMp tries to move one of its heads left from square 0.

M> halts and fails in this situation. What wi\l do?

. Suppose that on some inplit; never halts. What wilM do?
. How could we mak#& more efficient?

. (Quite long.) LetM» be the ‘reverser’ 2-tape Turing machine of exercise 3.7.

SupposéMl, is given as input a word of length How many steps wilM, take
before it halts? IfM is the 1-tape machine that simulatds, as above, how
many steps (roughly!) will it take?

3.3.4 Exam questions on Turing machines

1.

(a) Design a Turing machind with input alphabeta, b,c}, which, given
as input a woradw of this alphabet, outputs the word obtained franty
deleting all occurrences o&". For example,fy(bcaba = bcb

You may use pseudo-code or a flow-chart diagram; in the latter case, you
should explain your notation for instructions. You may use several tapes,
and you can assume that square 0 of each tape is implicitly marked.

(b) Briefly explain how you would design a Turing machidewith the same
input alphabet aM, that moves all occurrences @& in its input word to
the front (left), leaving the order of the other characters unchanged. Thus,
fn(bcabg = aabcb

The two parts carry, respectively, 65% and 35% of the marks.

(a) Explain the difference between draek and a 2tapeTuring machine.

Below, the notatiori” denotes a string 111...1 ofl’'s. The symbok is used
as a delimiter. You may assume that square O of each Turing machine tape is
implicitly marked.

(b) Design a 2-tape Turing machimé with input alphabet{1}, such that
if the initial contents of tape 1 ar#” (for somen > 0) and the initial
contents of tape 2 arE" (for somem > 0), thenM halts and succeeds if
and only ifm dividesn without remainder. You may use pseudo-code or a

54 3. Variants of Turing machines

flow-chart diagram; in the latter case you should explain your notation for
instructions.

(c) By modifying M or otherwise, briefly explain how you would design a
(2-tape) Turing machin®* with input alphabef1, «}, such that for any
n>0andm> 0, fy«(1"«1™) = 1", wherer is the remainder when dividing
n by m.

The three parts carry, respectively, 20%, 45% and 35% of the marks.

3. (a) What isChurch’s thesis? Explain why it cannot be proved but could
possibly be disproved. What kinds of evidence for the thesis are there?

(b) Design a 2-tape Turing machihé with input alphabet, such that ifwy
andw, are words ol of equal length, the initial contents of tape 1 are
and the initial contents of tape 2 ase, thenM halts and succeedsw; is
ananagram (i.e., a rearrangement of the lettersyaf and halts and fails
otherwise.

For example, ifw; = abcaandw, = cabg M halts and succeeds;w; =
abcaandw, = cabh M halts and fails.

You may use pseudo-code or a flow-chart diagram; in the latter case you
should explain your notation for instructions. You may assume that square
zero of each Turing machine tape is implicitly marked.

The two parts carry, respectively, 40% and 60% of the marks. [1993]

3.4 Other variants

We briefly mention some other kinds of Turing machine, and how they are proved
equivalent to the original version.

3.4.1 Two-dimensional tapes

We can have a Turing machine with a 2-dimensional ‘tape’ with squares labelled by
pairs of whole numbergn, m) (for all n,m > 0). Reading, writing and state changing
are as before, but at each step the head can move left, right, up, or downis &0
partial function: Q x ~ — Q x Z x {L,R U,D,0}.

When the run starts, the input word is on tkeaxis’ — in squares0,0), (1,0), ...,
(k,0) for somek > 0 — and all other squares of the tape containThe machine must
leave the output on theaxis as well, but it can use the rest of the plane as work space.
Thus itis like a 1-tape machine with an unbounded number of tracks on the tape, except
that access to other tracks is not instantaneous, as the head must move there first. As
the input word is finite and only 1 symbol is written at each step, at all times there will
only be finitely many non-blank symbols on the 2-dimensional tape.

3.4. Other variants 55

3.4.1.1 Simulating a 2-dimensional Turing machine

We will show how a ‘big’ 2-dimensional machine can be simulated by a ‘little’ 2-tape
machine. Then we will know by theorem 3.8 that the big machine can be simulated by
a 1-tape machine too.

The contents of the big 2-dimensional tape are kept on little tape 1 in the following
format. The data on tape 1 is divided into segments of equal length, separated by
a marker, **’. The segments list in order the non-blank rows of the big tape. For
example, suppose the non-blank part of the big tape is as in figure 3.7:

Figure 3.7: 2-dimensional tape

Then tape 1 of the little machine will contain the three segments
AlAalx 1110 * abAaA x

— or the same but with longer segments filled out by blanks. Note the deulliethe
end. Tape 2 of the little machine is used for scratch work.

Head 1 of the little machine is over the symbol corresponding to where the big
machine’s head is. If big head moves left or right, so does little head 1. If however,
big head moves up, little head 1 must move to the corresponding symbol in the next
segment to the right. So the little machine must remember the offset of head 1 within
its current segment. This offset is put on tape 2, e.g., in unary notation. So in this case,
little head 1 moves left until it sees’ For each move left, little head 2 writes a 1 to
tape 2. Whenx’ is hit, head 1 moves right to the next! Then for each further move
of head 1 right, head 2 deletes a 1 from tape 2. When all the 1's have gone, head 1 is
over the correct square, and the next cycle commences.

Sometimes the little machine must add a segment to tape 1 (if big head moves
higher on the big tape than ever before), or lengthen each segment (if big head moves
further right than before). It is easy to add an extra segment of blanks on the end of
tape 1 of the right length — tape 2 is used to count out the length. Adding a blank at
the end of each segment can be done by shifting, as in example 2.9. The little machine
can do all this, return head 1 to the correct position (how?), and then implement the
move of the big head as above — there is now room for it to do so.

56 3. Variants of Turing machines

This bears out Turing’s remark in his pioneering paper that whilst people use paper
to calculate, the 2-dimensional character of the paper is never strictly necessary. Again
we have found evidence of type (b) for Church’s thesis. A similar construction can
be used to show that for amy> 1, n-dimensional Turing machines are equivalent to
ordinary ones.

3.4.2 Turing machines with limited alphabet

We can imagine Turing machines with alphabgt= {0,1,A} andl = {0,1}. Unlike

the previous variants, these are seemihgggpowerful (cheaper) than the basic model.
But they can compute any functidiy : | — | for any Turing machin®. The idea is

to simulate a given Turing machin€,2,1,qo,d,F) by coding its scratch characters
(those ofz\ 1) as strings of 1s. E.g., we li&tas{sy,...,s} and represerg by a string

1' of i 1s. Exercise: work out the details. We will develop this idea considerably in the
next section.

3.4.3 Non-deterministic Turing machines

We will define these and show that they’re equivalent to ordinary machines in Part Il|
of the course.

3.4.4 Other machines and formalisms

Ordinary Turing machines have the same computational powegaster machines,

and also more abstract systems such adaimdda calculusand partial recursive
functions. No-one has found a formalism that is intuitively algorithmic in nature but
has more computational power. This fact provides further evidence for Church’s thesis.

3.5 Summary of section

We considered what it means for two different kinds of machine to have the same

computational power, deciding that it meant that they could compute the same class of
functions. Examples such as palindrome detection showed how useful many-tape TMs
can be. We proved or indicated that the ordinary Turing machine has the same com-
putational power as the variants: 2-way infinite tape machines, multi-tape machines,
2-dimensional tape machines, limited character machines, and non-deterministic ma-
chines. This provided evidence for Church’s thesis.

57

4. Universal Turing machines

We nowadays accept that a single computer can solve a vast range of problems, rang-
ing from astronomical calculations to graphics and process control. But before com-
puters were invented there were many kinds of problem-solving machines, with quite
different ‘hardware’. Turing himself helped to design code-breaking equipment with
dedicated hardware during the second world war. These machines could do nothing
but break codes. Turing machines themselves come in different kinds, with different
alphabets, state sets, and even hardware (many tapes, etc).

It was Turing’s great insight that this proliferation is unnecessary. In his 1936 paper
he described a single general-purpose Turing machine, that can solve all problems that
any Turing machine could solve.

This machine is called aniversal Turing machine. We call itU. U is not magic
— itis an ordinary Turing machinayith a state set, alphabet, etc, as usual. If we want
U to calculatefy (w) for some arbitrary Turing machird and inputw to M, we giveU
the inputw plus a description oM. We can do this becaud¢ = (Q,2,1,qo,d,F) can
be described by a finite amount of informatidhthen evaluate$y (w) by calculating
whatM would do, given inputv — rather in the way that the 1-tape Turing machine
simulated a 2-tape Turing machine in theorem 3.8.

So really,U is programmable:it is aninterpreterfor arbitrary Turing machines.

In this section, we will show how to build.

4.1 Standard Turing machines

In fact we have been lyinguU will not be able to handlarbitrary Turing machines.
For example, iM has a bigger input alphabet thendoes, then some legitimate input
words forM cannot be given tt at all. There’s a similar problem with the output.

So when we buildJ, we will only deal with the restricted casesthndard Turing
machines. This just means that their alphabet is fixed. Though the ‘computer alpha-
bet’ {0,1} is often used for this purpose, we will use the following, more convenient
standard character set. In §4.4 we will indicate why using a fixed alphabet is not
really a restriction at all.

Definition 4.1 We letC be the alphabefta,b,c,...,A,B,...,0,1,2,...,|,@, ..} of char-
acters that you would find on any typewriter (about 88 in all; noteAhatot included
in C).

Definition 4.2 A Turing machineSis said to bestandard if:

58 4. Universal Turing machines

1. it conformsexactlyto definition 2.1, and

2. its input alphabet i€ and its full alphabet i€ U {A}.

Warning By (1) of this definition, we know that:

e Shas a single one-way infinite tape (a multi-tape TM wmaant of the TM of
definition 2.1).

e the tape ofShas only one track
e any marking of square 0 is done explicitly.

Extra tracks and implicit marking of square O are implemented by adding symbols to
the alphabet (se§2.4.2.1). There is no point in fixing our alphabetGsand then
changing it by adding these extra symbols.

4.2 Codes for standard Turing machines

We need a way of describing a standard Turing maching.t8o we introduce a key
notion, that ofcoding a Turing machine, so we can represent it awta We will
code each standard Turing machiBby a wordcod€S) of C, in such a way that the
operations ofScan be reconstructed froood€S) by an algorithm. So:

e Sis a standard Turing machine;

e cod€S) will be aword ofC, representing.

Then we will desigrlJ so thatfy (cod€S) xw) = fg(w) for all standard Turing ma-
chinesSand all wordsw € C* .1

4.2.1 Details of the coding

Let S= (Q,CU{A},C,0q0,0,F) be any standard Turing machine. Let us suppose that
Q=1{0,1,...,n},qo =0, andF = {f,f +1,...,n} for somen > 0 and somef < n.
(There is no loss of generality in making this assumption:¢ge2.3.1 below.)

Much as in§2.1.1, we think of the instruction tabfeas a list of 5-tuples, of the

form
(a,s,9',s,d)
whered(q,s) = (d,,d). For each 5-tuple in the list we have:
0<qg<f, 0<d<n sdecCu{r}, de{-10,1}.

Sis then specified completely by this list, together with the numbensd f .

1we will input the pair(cod€S),w) toU in the usual way, by giving it the stringbd€ S) concatenated
with the stringw, with a delimiting character, say in between.

4.2. Codes for standard Turing machines 59

There are many ways of coding this information. We will use a simple one. Con-
sider theword
n, f7t17t27 cee 7tN

where the list of 5-tuples ig, to, . . ., ty in some arbitrary orderand all numbersry, f
and the numberg, d andd in the 5-tuples) are written in decimal (say). This is a word
of our coding alphabef U {A}. We letcod€S) be the word ofC obtained from this
by replacing everyA’ by the five-letter word blank’. (As we will be givingcod€S)

as input to Turing machines, we don’t waxnto appear in it.)

4.2.2 Checking whether a word codesa TM

If we have a wordwv of C, we can check by an algorithmwf is the code for a Turing
machine. E.g., ‘;;()101,y%-)" is no good, whilst the code shown in figure 4.1 is OK
(3 states, 0, 1, 2; state 2 is halting; if in state 1 and read ‘a’, go to state 2, wraead
move left).

2.2. (1.a. 2. bl ank. -1)

decimal number: 1 decimal number instruction
less than number of first halting
of states state

Figure 4.1: code(a very simple TM)

In generalw must have the form

na f,(X,y,X,y,d), (X)yaxay)d)v' . ')(Xayvxayvd)

wheren, f,x, andd are decimal numbers with< f <n,0<x<n,and-1<d <1,
andy is some single character 6f or ‘blank’.

Exercises 4.3

1. There are several other checks (to do with final states, functionaliby arfid
more) to be made before we are swes a code for a genuine TM. Explain
these.

2. In a 5-tuple(x,y,x,y,d), eachy could be any of:
0123456789 , = () blank

Is the code ofSreally unambiguous?

2Unlike in a conventional computer, the order of the instructipissnot part ofSand clearly does not
affect the waySworks.

60 4. Universal Turing machines

4.2.3 Remarks on the coding
4.2.3.1 Generality of coding

We assumed tha@ = {0,1,...,n} andF = {f, f +1,... n} for somef <n. This is
not really a restriction, because given any old standard Turing ma&hin¢Q,C U
{n},C,00,0,F), we can always rename its states without changing its behaviour, so
long as we then adjusp, d, andF accordingly.

We can therefore rename the state®ito 0,1, ...,n (whereShasn+ 1 states), so
that

e the initial state is O

e the final states come at the end of the listing — i.e., theyfafet+ 1,... n for
somef <n.

Note: if o were also a final state & we could not assume thatconsists of the
states at thendof the list. E.g., we might havE = {qp,qz73}. So our coding would
not work. But such a TM would halt immediately, so we can take its code to be ‘0,0,
or the code of any other Turing machine that halts immediately, as all such machines
have the same input-output function (namely the identity). Similarl, # 0 then
the Turing machine never halts and succeeds, so it never outputs anything, and we can
take its code to be ‘1,1, or the code of any other Turing machine that never halts and
succeeds.

4.2.3.2 (Non-)uniqgueness of code of S

There are many ways of renaming the st&pad Sto 0,1, ...,n. And for a givenS, we

can list the instruction 5-tuplds, ...ty in many different orders. We get a different

word cod€S) representing the san& for each possible renaming and ordering.
Socod€YS) is really arelation, because it is not uniquely defined. We don’t mind

this. Below, whereeod€S) comes up, it will stand foany code ofS. We don't care

which actual code is used; any order of instructions or states will do. There is still an

algorithm to tell whether any givew is or is not the code of some Turing machine

S (with the instructions listed isomeorder). If we really wanted &unctionfrom

standard Turing machines to words, we coulddet€S) be thefirst word of C (in

alphabetical order) that cod&s

Exercise 4.4 Could we design a TM to decide whether womtlg w, of C code the
samelM?

4.2.3.3 Standard is needed

We could not code a non-standard TM without more definitions. First, an arbNtary
may have alphabéf £ C — or it may have alphabél but uses many tracks, which
comes to the same thing. A®d€M) must be a word o€, not of Z, we'd need to
represent each symbol lhby a symbol or word o€. If M had alphabe€ but used

more than one tape, we'd have to change the instruction format: e.g., the instruction
table of a 3-tape machine is a list of 11-tuples!

4.3. The universal Turing machine 61

4.2.3.4 Other codings

Our coding has somedundancy E.g., we don't really need the brackets ‘(" and)’,

or the numben at the front (why not?). There are also other, rather different codings
available. For example, Rayward-Smith’s book gives one using prime factorisation, in
which the code o8is always a number, usually called tG&del numberof S

Exercise 4.5 How could we turn oucod€S) into a number?

We stress that these are only detdisonly needs to be able to recover the work-
ings of Sfrom cod€'S). We can use any coding that allows this.

4.2.4 Summary

The point behind these details is that each standard Turing maShiaa be repre-
sented by a finite piece of information, and hence can be coded by acodglS)
of C, in such a way thaive can reconstrucs from cod€S). The wordcod€S) € C*
carries all the information abo& It is really anameor planof S.

4.3 The universal Turing machine

Now we can build the universal machibde It has the following specification:

e If the input toU is cod€S) xw,®> whereS s a standard Turing machine and
w e C*, thenU will output fs(w). (If fs(w) is undefined, then so is the output of
U.)

e If the input is not of this form, we don’t care whidtdoes.

That is,
fu (COdE(S) * W) = fs(W)

for all standard Turing machiné&sand allw € C*.

The input alphabet of) will be C, butU will not be standard, as it will have 3
tapes with square 0 (implicitly) markéd.

How doedJ work? Suppose that

S=({0,1,...,n},CU{A},C,0,8,{f,f+1,...,n})

for somef < n. Assume the input tt is cod€S) xw. U will simulate the run o§on
inputw. We will ensure that at each stage during the simulation:

e tape 1 keeps its original conterdsd€S) * w, for reference;

3Recall thatcod€S) is not unique. But any code f@ carries all the information abo&® In fact, it
will be clear thatJ will output fs(w) given inputs*w, wheresis anycode forS.

41f we wish, we can use theorem 3.8 to find a one-tape equivalddt ahd then, as the output of
will be a word ofC (why?), apply theorem 4.7 below to find a standard TM equivalebt to

62 4. Universal Turing machines

e tape 2 is always the same as the current tag® of
e head 2 ol is always in the same position as the hea&,of

e tape 3 holds the current state$fin the same decimal format as in the instruc-
tions on tape 1. So e.g., #is in state 56, the contents of tape 3.bfre ‘5’ in
square 0 and ‘6’ in square 1, the rest being blank.

Step 1: Initialisation: U begins by writing 0 in square 0 of tape 3. The rest of tape
3 is already blank, so it now represents the initial state O &f $ien copiew
from tape 1 to tape 2. (The womd is whatever is after the pair of characters
)* or a string of the form n, f,*’ on tape 1, sdJ can find it.) It then returns
all three of its heads to square 0. The three tapes (and head 2) are now set up as
above.

Step 2: Simulation: For each execution step 8fU does several things.

1. Maybe the current statpof Sis a halting state. To find out) first com-
pares the numbeg on tape 3 with the numbefr in cod€S). U can find
what f is by looking just after the first ‘; on tape 1. They are in the same
decimal format, st can use a simple string comparison to check whether
g< forq>f.

2. If g> f, this means thais now in a halting state. Because tape 2Jas
alwaysthe same as the tape 8&fthe output ofSis now on tape 2 o). U
now copies tape 2 to tape 1, terminated by a blank, and halts & succeeds.

3. If g< f thenq is not a halting state, anflis about to execute its next
instruction. So head 1 & scans through the list of instructions (the rest
of cod€S), still on tape 1) until it finds a 5-tuple of the forfq,s,d',s,d)
where:

e ((as above) iSs current state as held on tape 3. Head 3 repeatedly
moves along in parallel with head 1, to check this.

e sisthe symbol that head 2 is now scanning — i3 current symbol.
A direct comparison of the symbols read by heads 1 and 2 will check
this. (If sis ‘blank’, U tests whether head 2 is reading

4. If no such tuple is found on tape 1, this means thaasno applicable
instruction,and will halt and fail. Hencé&J halts and fails too (e.qg., by
moving heads left until they run off the tape).

5. So assume th&t has found on tape 1 the pafig;s of the instruction
(9,s,d,5,d) thatSis about to executeSwill write s, move its head by
d, and change state @f. To match thisU needs to know what, o,
andd are. It finds out by looking further along the instruction 5-tuple it
just found on tape 1, using the delimiter ‘,’ to keep track of where it is in
the 5-tuple’> Head 2 ofU can now writes' at its current location (by just

5The awful possibility thas and/ors is the delimiter ‘, can be got round by careful counting.

4.4. Coding 63

copying it from tape 1, except that if it islank, head 2 writes\), and
then move byd (d is also got from tape 1). FinalllJ copies the decimal
numberq from tape 1 to tape 3, replacing tape 3’s current contents. After
returning head 1 to squareld,is ready for the next step of the run&fit

now repeats Step 2 again.

Thus, every move dbis simulated byJ. Clearly,U halts and succeeds if and only
if Sdoes, and in that case, the outputlbis just fs(w). Hence,fy (cod€S) «xw) =
fs(w), andU is the universal machine we wanted.

Exercises 4.6

1. What doed) do if Stries at some step to move its head left from square O of its
tape?

2. (Important) Why do we not hold the state ®in the state ofJ (cf. storing a
finite amount of information in the states, agh4.1 and theorems 3.5 and 3.8)?
After all, the state set dbis finite!

3. By using theorem 3.8, and then theorem 4.7 below, we can reglacigh an
equivalent standard TM. So we can assumeltha standard, so thabdgU)
exists and is a word .

Let Sbe a standard TM, and lete C*. What isfy (codgU) « cod€S) xw)?

Using an interpreter was a key step in our original paradox, and so we are now
well on the way to rediscovering it in the TM setting. In fact we will not Ws¢o do
this, but will give a direct argument. NonetheleSsis an ingenious and fascinating
construction — and historically it led to the modern programmable computer.

4.4 Coding

A Turing machine can have any finite alphabet, but the madhibeilt above can only
‘interpret’ standard Turing machines, with alpha@efThis is not a serious restriction.
Computers use only 0 and 1 internally, yet they can work with English text, Chinese,
graphics, sound, etc. They do this tyding.

Coding is not the secret art of spies — that is callegptography. Coding means
turning information into a different (e.g., condensed) format, but in such a way that
nothing is lost, so that we catecodeit to recover the original form. (Cryptography
seeks codings having decodings that are hard to find without knowing them.) Examples
of codings are ASCII, Braille, hashing and some compression techniques, Morse code,
etc., (think of some more). A computer stores graphics in coded (e.g., bit-mapped)
form.

Here, we will indicate briefly how to use coding to get round the restrictiondhat
can only ‘do’ standard machines.

64 4. Universal Turing machines

4.4.1 Using the alphabeC for coding

Just as ASCII codes English text into words{6f1}, so the characters and words of
any finite alphabeX can be coded as words ©f

1. C has about 88 characters, so we choose a whole nukrswerh that:
(number of words o€ of lengthk) = 88¢ > size of.

2. We can then assign to eagl = a unique word o€ of lengthk. We write this
word ascod€a). There are enough words Gfof lengthk to ensure that no two
different symbols ot get the same code. (Formally we choose a 1-1 function
code: £ — CX: exactly what function we choose is not important).

3. We can now code anyord w = a;ay...a, of Z, by concatenating the codes of
the letters ofwv:

cod€e)
coddajay...an)

€
codga;).codday). --- .codga,) € C*

This is just as in ASCII, Morse, etc. We see thatldajay. .. ay) is a word of
C of lengthkn.

4. We also need tdecodethe codes. There is a unique partial functobecode
C* — Z* given by:

e decodécodgw)) = w for allwe Z*,
e decodév) is undefined ifvis a word ofC* that is not of the forntodgw).

For any finiteX, we can choos& and a functioncodeas above, and define
decodeaccordingly.

As an example of the same idea, we can code wor@stsklf as words of 0,1}, using
ASCIl. We have e.g.codd (space) = 01000000 codg AB) = 0100000101000010
anddecod¢01000100 = D.

4.4.2 Scratch characters

Coding helps us in two ways. First, a Turing machine will often need tcsassch
characters: characters that are used only in the machine’s calculations, and do not
appear in its input or output. Examples are characters(fke ..,an) used in multi-
track work §2.4.2); we also use scratch characters for marking squdj2.4.8). We

now show that in factscratch characters are never strictly needéfe do this only

for standard Turing machines, but the idea in general is just the same.

Theorem 4.7 (elimination of scratch characters)LetM = (Q,2,C,do,d,F) be a Tur-
ing machine with input alphabé&t and any full alphabek. Suppose thaty : C* — C*

— i.e., the output d¥1 is always a word o€. Then there is a standard Turing machine
Sthat is equivalent tov.

4.5. Summary of section 65

PROOF (sketch; cf. Rayward-Smith, Theorem 2.6) The idea is toSyet mimic M

by working with codes throughout. Choose an encoding funatame: >~ — C*. The

input wordw is a word ofC. But asX is contained irC, w is also a word of, sow

itself can be codedS begins by encodinw itself, to obtain a (longer) wordod&w)

of C. Scan then simulate the action bf, working with codes of characters all along.

WhateverM does with the symbols &, M* does with their codes.

If the simulation halts S can decode the information on the tape to obtain the

required output. The decoding only has to cope with codes of charactérs {m},

as we are told that the output consists only of characte@ iBecauses simulates

all operations oM, we havefs = fy, soSandM are equivalent. At no stage do8s

need to use any other characters thaor those IinC. SoScan be taken to be standard.
QED.

We can now us® to interpret any Turing machiné with input alphabeC and
such thatfy : C* — C*. We first apply the theorem to obtain an equivalent standard
Turing machines, and then passod€S) to U.

4.4.3 Replacing a Turing machine by a standard one
But what if theinput alphabebf M is bigger tharC? Maybe

aBy®ad — /J_{p\/q—> —r}

is a possible input word favl; we arenot allowedto pass this tdJ, as it’'s not a word
of U’s input alphabet. BuM is presumably executing some algorithm, so we’d like
to have a crack at simulating.

Well, coding can help here, too. Just as computers can do English (or Chinese)
word processing with their limited 0-1 alphabet, so we can design a new Turing ma-
chineM* that parallels the action d&fl, but working with codes of the characters that
M actually uses. We'll describe briefly how to do this; it’s like eliminating scratch
characters.

AssumeM has full alphabek. > could be very large, but it is finite (because the
definition of Turing machine only allows finite alphabets). Choose a coding function
code: Z — C*. WhereM is given inputw € C*, we’ll give codgw) to M*. From then
on, M* will work with the codes of characters froknjust as in theorem 4.7 abovist
will halt and succeed on inpumt if and only if M* halts and succeeds on inmadew).

The output ofM* in this case will becod€ fyy(w)), the code oM’s output, and this
carries the same information as the actual oufgiftv) of M.

4.5 Summary of section

We have built a universal Turing machite U can simulate any standard Turing
machinesS (i.e., one with input alphabet and full alphabeCU {A}), yielding the
same result aSon the same input. We only have to glvethe additional information
cod€S) —i.e., the program of. SoU serves as an interpreter for TMs.

66 5. Unsolvable problems

To this end we explained how to specify a standard TM as a coded word. Standard
TMs use the standard alphalé&t We showed how standard machines are in effect as
good as any kind of TM, by coding words of an arbitrary alphabet as wor@samid
having a standard Turing machine work directly on the codes. We used this idea to
eliminate the need for scratch characters.

5. Unsolvable problems

5.1 Introduction

In this section, we will show that some problems, although not vague in any way,
are inherentlyunsolvableby a Turing machine. Church’s thesis then applies, and we
conclude that there is no algorithm to solve the problem.

5.1.1 Why is this of interest?

e Many of these problems are not artificial, ‘cooked-up’ examples, but fundamen-
tal questions such as ‘will my program halt?’ whose solutions would be of great
practical use.

e Increasingly, advanced computer systems employ techniques (such as theorem
provers and Prolog) based tmgic. As logic is an area rich in unsolvable prob-
lems, it is important for workers in these application areas to be aware of them.

e The methods for proving unsolvability can be exploited further, in complexity
theory (Part 1ll). This is an active area of current research, also very relevant to
advanced systems.

e |t shows the fundamental limitations of computer science. If we accept Church’s
thesis, these problems will never be solved, whatever advances in hardware or
software are made.

e Even if hardware advances, etc., cause Church’s thesis to be updated in the
fullness of time, the unsolvable problems are probably not going to go away.
Their unsolvability arises not because the algorithms we have are not powerful
enough, but because they are too powerful! We saw in section pamadoxes
cause unsolvability. Paradoxes usually arise becauselfeference,and al-
gorithms are powerful enough to allow self-reference. (We saw in section 4 that
a Turing machine can be coded as data, and so given as input to another Turing
machine such dd. Compilers take programs as input — they can even compile

5.2. The halting problem 67

themselves!) As any amendment to Church’s thesis would probably mean that
algorithms are even more powerful than was previously thought, the unsolvable
problems would likely remain in some form, and even proliferate.

5.1.2 Proof methods

Ouir first (algorithmically) unsolvable problems are problems about Turing machines
themselves (and so — by Church’s thesis — about algorithms themselves). Their
unsolvability is proved byassumingthat some Turing machine solves the problem,
and then obtaining aontradiction (e.g.,0 = 1, black = white, etc).A contradiction

Is impossible!Such an impossibility shows that our assumption was wrong, since all
other steps in the argument are (hopefully) OK. So there’s no Turing machine that
solves the problem, after all.

We can then use the methodrefduction to show that further problems are also
unsolvable. The old, unsolvable problenreslucedto the new one, by showing that
any (Turing machine) solution to the new problem would yield a Turing machine so-
lution to the old. As the old problem is known to be unsolvable, this is impossible; so
the new problem has no Turing machine solution either.

A sophisticated example of reduction is used in the proof 0fi€'s first incom-
pleteness theoreni%.4).

5.2 The halting problem

This is the most famous example of an unsolvable problem. The halting problem (or
‘HP’) is the problem ofwhether a given Turing machine will halt on a given ingiebr

the same reasons as in section 4, we will restrict attention to standard Turing machines
(we saw ing4.3 that this is not really a restriction!) In this setting, the halting problem
asks, given the input

e cod€S), for a standard Turing machirg
e a wordw of C (see definition 4.1 for the alphaley,

whether or noB halts and succeeds when given input

Question Why can we not just usd of section 4 to do this, by gettirld to simulate
Srunning onw, and seeing whether it halts or not?

5.2.1 The halting problem formally

Formally, leth : C* — C* be the partial function given by

e h(x) =1if x=codg$S)*w for some standard Turing machiBeandS halts and
succeeds on input

68 5. Unsolvable problems

e h(x) =0if x=cod€$S) «w for some standard Turing machiBeandSdoes not
halt and succeed on input

e h(x) is arbitrary (e.g.,undefined) if x is not of the formcod€&S) «w for any
standard Turing machir@and wordw € C*.

Big question: is this functioh Turing-computable? Is there a Turing machkiheuch
that fy = h? Such arH would solve the halting problem.

Warning Our choice of values 1, O fdris not important.Any two different words
of C would do. What matters is that, on inpedd€g S) «w, H always halts & succeeds,
and we can tell from its output whether or rvould halt & succeed on inpuwt.

The halting problem is not a toy problem. SuchHhmvould be very useful. As we
now demonstrate, regrettably there is no sHchT his fact has serious repercussions.

Theorem 5.1 (Turing, 1936) The halting problem is unsolvable.

This means that there is no Turing machidesuch thatfy = h. Informally, it
means that there’s no Turing machine that will decide, for arbitGeapdw, whether
Shalts & succeeds on input or not.

PROOF Assume for contradiction that the partial functibn(as above) is Turing
computable. Clearly, ih is computable it is trivial to compute the partial function
g:C* — C* given by:

_J 1, if h(wsxw) =0,
g(w) = {undefined otherwise

(Here, wxw is justw followed by a “*, followed byw.) So letM be a Turing machine
with fyy = g. By theorem 4.7 (scratch character elimination) we can assumiitisat
standard, so it has a code, namebdeM).

There are two cases, according to whetj@odgM)) is defined or not.

Case 1:g(codgM)) is defined. Theng(codgM)) = 1 [by def. ofg],
soh(codgM) xcodgM)) = 0 [also by def. ofg],
soM does not halt & succeed on inpedgM) [by def. ofh],
so fm(cod&M)) is undefined [by def. of Turing machines],
sog(codgM)) is undefined [becausk = g].
This contradicts the case assumption (which vggedd€M)) is defined’). So
we can't be in case 1.

Case 2:g(codgM)) is not defined. Then fy(codgM)) is undefined [becausk, =
al,
soM does not halt & succeed on inpeadgM) [by def. of TMs],

soh(codgM) xcodgM)) = O [by def. ofh],

5.2. The halting problem 69

sog(codgM)) = 1 [by def. ofg],

so g(codédM)) is defined! This contradicts the case assumption, too, so we
cannot be in case 2 either.

But clearly eitherg(codgM)) is defined, or it isn't. So we must be in one of the
two cases. This is a contradiction. Bes not Turing computable. QED.

Another way of seeing the proof: Suppose for contradiction th&t is a Turing
machine that solves HP. We don’t know hélwoperates. We only know thdt; = h.
Consider the simple modificatidl of H shown in figure 5.1. If the input t™ is w,

+ (assume input is w O C¥)

add *w after w, so
tape has w*w

halt & 0 on tape
succeed

(halt & fail)

Figure 5.1: an impossible TM

thenM adds a« afterw, then adds a copy af after it, leaving W+ w' on the tape. It

then returns to square 0, calsas a subroutine, and halts & succeeds/fails according
to the output oH, as in the figure. Note that these extra operations (copying, etc.,) are
easy to do with a TM. So iH exists, so doebl.

Clearly M outputs only 0, if anything. Sdy : C* — C*, and by theorem 4.7
(elimination of scratch characters) we can assumeMhatstandard. SM has a code,
viz. cod€M).

Consider the run oM when its input icoddM). M will send input codgM) x
codédM)’ to H. Now as we assumed solves HP, the output ¢i on inputcodgM) x
codgM) says whetheM halts and succeeds when given inpatl€M).

But we are now in the middle of this very run —Nfon inputcodéM)! H is
saying whether theurrent runwill halt & succeed or not! The run hasn't finished yet,
butH is supposed to predict how it will end — in success or failure. This is clearly a
difficult task forH! In fact, M is designed to find out wh&t predicts,and then do the
exact oppositeLet us continue and see what happens.

The input toH wascoddM) « codgM), andcod€M) is the code for a standard
Turing machine (1 itself). SoH will definitely halt and succeed. Suppaddeoutputs
1 (saying thaiM halts and succeeds on inpradgM)). M now moves to a state with

70 5. Unsolvable problems

no applicable instruction (look at figure 5.1M has now halted and failed on input
codédM), soH was wrong.

Alternatively,H decides thaM halts and fails on inputodgM). SoH outputs O.
In this caseM gleefully halts and succeeds: agathyas wrong.

ButH was assumed to be corrdot all inputs. This is a contradiction. SH does
not exist. QED.

5.2.2 The halting problem is hard

Warning: do not think that HP is an easy problem. It is not (and in general, no
algorithmically unsolvable problems are easy). I've heard the following argument:

1. We proved that there’s no Turing machine that solves the halting problem.
2. So by Church’s thesis, the halting problem is unsolvable by an algorithm.

3. Butour brains are algorithmic — just complicated computers running a complex
algorithm.

4. We can solve the halting problem, as we can tell whether a program will halt or
not. So there is an algorithm to solve the halting problem — us!

(2) and (4) are in conflict. So what’s going on?

Firstly, many people would not agree with (3). See Penrose’s book, listed on
page 6. But in any case, | don’t believe (4). Consider the following pseudo-code
program:

n,p: integer. stp: Boolean % ‘nis the sum of two primes’
set nto 4
set stp to true
repeat while stp

set stp to false

repeat with p=2ton—2

if prime(p) and prime(n— p) then set stp to true

end repeat

add 2 ton
end repeat

function prime(p) % assume p > 2
i,p: integer
repeat with i =2to p—1
if i divides p without remainder then return false
end repeat
return true
end prime

5.2. The halting problem 71

The functionprime returns true if the argument is a prime number, and false other-
wise. The main program halts if some even nunmberis not the sum of two primes.
Otherwise it runs forever. As far as | know, no-one knows whether it halts or not. See
Goldbach’s conjectures6.4). (And of course we could design a Turing machine doing
the same job, and no-one would know whether it halts or not.)

Exercises 5.2

1.

Write a program that halts iff Fermat’s last theorem is false. (This theorem was
only proved in around 1995, after 300 years of effort. So telling if your program
halts can be quite hard!)

What happens if we rewire the Turing machiMeof figure 5.1, swapping the
0 and 1, so thaM halts and succeedsHkf outputs 1, and halts and failshkf’s
output is 0? What if we omit the duplicator that adds/ after w? [Try the
resulting machines on some sample inputs.]

Show that there is no Turing machiXesuch that for all standard Turing ma-
chinesS and wordsw of C, fx(cod€S)«w) = 1if Shalts(successfully or not)
on inputw, and O otherwise.

Let the functionf : C* — C* be given by:f(w) = a.fy(w) if w=coddM) for
some standard Turing machiideand fy(w) is defined, and otherwise (here,
ac Cis just the letter!). Prove thatf is not Turing computable.

. (similar to part of exam question, 1991) Létbe a Turing machine such that

fx(w) = wsxwfor all w e C*. LetY be ahypotheticalTuring machine such that
for every standard Turing machi@and wordw of C,

fy(codgs) +w) = {1 1T fs(W) =0

SoY tells us whether or nd outputs 0 on inpuiv.

(a) How might we build a standard Turing machMesuch that for aliv e C*,
we havefy (w) = fy(fx(w))?

(b) By evaluatingfiy(cod€M)), or otherwise, deduce th¥tdoes not exist.

. Prove that HP is unsolvable by using the ‘Java-style’ diagonal paradox of sec-

tion 1. [Use the universal machine of section 4.]

A super Turing machineis like an ordinary TM except thatandZ are allowed

to be infinite. Find a super TM that solves HP for ordinary TMs. [Hint: take
the alphabet to b€*.] Deduce that super TMs can ‘compute’ non-algorithmic
functions. What if instead we & be infinite?

72 5. Unsolvable problems

5.3 Reduction

So the halting problem, HP, is not solvable by a Turing machine. There is no machine
H as above. (By Church’s thesis, HP has no algorithmic solution.) We can use this fact
to show that a range of other problems have no solution by Turing machines.

The method is to reduce HP to a special case of the new problem. The idea is very
simple. We just show thah order to solve HP (by a Turing machine), it is enough to
solve the new problenWe could say that the task of solving Héducesto the task of
solving the new problem, or that HP ‘is’special casef the new problem. So if the
new problem had a TM solution, so would HP, contradicting theorem 5.1. This means
that the new problem doesn’t have a TM solution.

5.3.1 Reduction and unsolvability

In general, we say that a problemr@ducesto another problem, B, if we can convert
any Turing machine solution to B into a Turing machine solution tb A.

Thus, if we knew somehow that A had no Turing machine solution (as we do for
A = HP), we could deduce that B had no Turing machine solution either.

Example 5.3 Multiplication reduces taaddition,? because we could easily modify

an addition algorithm to do multiplication. So if we knew that multiplication could
not be done by an algorithm, we couldn’t hope to find an algorithm that does addition.
Another example: we reduced Goldbach’s conjecture to HBi.2 above.

Warning A reduces to B = you can use B to solve A. Please get it the right way
round!

Warning It is vital to realise that we can reduce A tovBhether or not A and B are
solvable. The point is thaif we weregivena solution to B, we could use it to solve

A, so that Ais ‘no harder’ than B. (These free, magic solutions to problems like B are
calledoracles) Not all unsolvable problems reduce to each oth8ome unsolvable
problems are more unsolvable than others! We’ll see more of this idea in Part Ill.

5.3.2 The Turing machineM[w]|

Reduction is useful in showing that problems are unsolvable. We will see some exam-
ples in a moment. The following Turing machine will be useful in doing them.

1This is a bit vague, but it will do for now. (The main problem is what ‘convert’ means.) We will treat
reduction more formally in section 11, but | can tell you in advance that we will be saying something like
this: A reduces to B if there exists a Turing machMehat converts inputs to A into inputs to B in such
a way that ifMg is a Turing machine solving B, then the Turing machine given by ‘firstvyrthen run
Mg’ solves A. This is what happens in most of the examples below.

2In this sense, addition isarderthan multiplication, because if you can add you can easily multiply,
but not vice versa.

SE.g.: the problem ‘does the standard BMeturn infinitely often to its initial state when run ov®’
is unsolvable but does not reduce to HP.

5.3. Reduction 73

SupposeM is any Turing machine, and a word of its input alphabet, We write
M [w] for the new Turing machirfethat does the following:

1. First, it overwrites its input withv;
2. then it returns to square 0O;

3. then it runa\.

It's easy to see that there always is a TM doing this, whatByandw are. Here’s an
example.

Example 5.4 SupposeTAlIL is a Turing machine such théta, (w) = tail(w) (for all
w € C*). SoTAIL deletes the first character wf and shifts the rest one square to the
left. See exercise 2.11(3) on page 33.

The machinélAlL[hello_world] first writes ‘hellaworld’ on the tape, overwriting
whatever was there already. Then it returns to square 0 andiedllsas a subroutine.
This means that its output will be the rather coarse ‘altrld’ on any input.The input
Is immediately overwritten, so it doesn’t matter what it is.

Figure 5.2 shows the Turing machimélL[hello] as a flowchart.

» . (x.h.1y . (x.e.ly, . (x.L1) <3> (X,|,1)>@ (x,0,1
‘ ‘ (x,0,-1)
@ xe-l xI-1 xI-1 X,0,-1

(%,h,0]

TM TAIL to calculate TAIL[hello]
‘tail’ function

Figure 5.2: the TMTAIL[hello|

5.3.2.1 Important properties ofM|w]

Because the input el [w] doesn’t matter, it is clear that for any Turing machiiend
any wordw of I, we have:

1. fmw(v) = fm(w) for any wordv of 1.

2. M halts and succeeds on inputiff M[w] halts and succeeds on inpufor any
or all wordsv of I.

4A less succinct notation fdvi[w] would be w, thenM’.

74 5. Unsolvable problems

5.3.2.2 MakingM|w] from M and w

Given M andw, it's very easy to mak&i[w]. The part that writesv is always like
the ‘helloworld’ machine — it hasv hard-wired in, with a state for each character of
w. Note that it adds a blank after, to kill long inputs (see states 5-6 in figure 5.2).
Returning to square O is easy; and thdnis called as a subroutine. In figure 5.2,
M = TAIL, w = hello.

5.3.2.3 MakingM[w] standard
Moreover, ifM is standard, them[w] can be made standard, td¢See§4.1.)
e The part ofM|w| that writesw is certainly standard.

e If we do the return to square 0 by implicitly marking square 0, we will NOT
get a standard Turing machine. So we don't. Instead, we Hard-wired
return to square 0. Notice howTAlIL[hellg] in figure 5.2 returns to square 0: by
writing ‘olleh’ backwards! In generaM|w] writesw forwards, and then returns
to square 0 by writingv again, backwards, but with the head moving left.

e AsM is known to be standard, there’s no problem with that pah .

5.3.3 The Turing machineEDIT

It's not only easy for us to geM{w| from M andw, we can even design a Turing
machine to do it! There is a Turing machine that takes as inpd&S) « w, for any
standard Turing machin® and wordw of C, and outputscoddSw]|). We call this
machineEDIT — it edits codes of TMs.

How doe<EDIT work? It adds instructions (i.e., 5-tuples) on to the endaufgS).
The new instructions are for writing and returning to square 0. They will involve
some numbeN of new states: a new initial state, and a state for writing each character
of w, both ways. SAd\ = 1+ 2-lengthiw). (For example, in figure 5.2 we added
new state®),1,...,10, soN = 11, i.e., one more than twice the number of characters
in ‘hello’.) The states of theM-part of M{w|] were numbered®, 1,2, ... in cod€S).
Now they will be numbered,N+1,N+2,.... SOEDIT must also increase all state
numbers in the oldod€S) by N.

This sounds complicated, but it is really very simplRoughpseudo-code for
EDIT is as follows. RemembeEDIT’s input is cod€S) xw, and its output should
becodgSw]).

% The states o§w] are those oEplus1+ 2-lengthlw) new ones, numbered
%0,1,...,2-lengthiw). So first, renumber the states mentionedod€S)

% (currently0,1,...) asl1+2-lengthw),2+2-lengthw),.. ..

Add 1+ 2-lengthw) to all state numbers in cod€S), including n and f at the front
% Sjw| overwrites its input withwA’ so add instructions for this at the end of the code.

5To show this, we could just use scratch character elimination. But it would make the m&ghiifie
(below) more complicated. So we try to makew] standard in the first place.

5.3. Reduction 75

% In figure 5.2 we'd get0,a,1,h,1),(1,a,2,e,1),(2,8,3,1,1),..., forallain CuU{blank}.

s:=0 % s will be current state number (s=0,1,...,2-lengthw)).

repeat with g=1 to length(w)
for each a€ CU{blank}, add an instruction 5-tuple ‘(s,a,s+ 1, (qth char of w),1)’
s:=s+1

end repeat

for each a€ CU{blank}, add an instruction 5-tuple ‘(s,a,s+1,blank, —1)’

s:=s+1

% Sjw]| returns to square 0 and hands ovegto

% Add instructions for this, in the way we said.

repeat with g=lengthl'w) down to 2
for each a€ CU{blank}, add an instruction 5-tuple ‘(s,a,s+1, (gth char of w),—1)’
si=s+1

end repeat

for each a€ CU{blank}, add an instruction 5-tuple ‘(s,a,s+ 1, (1st char of w),0)’

halt & succeed

Of course, this does not show all the details of how to transform the input word
cod€S) xw into the output woraccodg Swy).

Exercises 5.5

1. Write out the code of théead-calculating machineM shown in figure 2.5
(p. 28), assuming to keep it short that the alphabet is ¢alp, A}. Then write
out the code oM[ab]. Do a flowchart for it. Does it have the number of states
that | claimed above? What is its output on inputsb@p, (i) A? (Don't just
guess; run your machine and see what it outputs!)

2. Would you implement the variabtgin the pseudocode f&DIT using a param-
eter in one oEDIT’s states, or by an extra tape? Why?

3. Write proper pseudocode (or even a flowchart)EQIT.

5.3.4 The empty-input halting problem, EIHP

This is the problem of whether or not a Turing machine halts and succeeds on the
empty inpute. As before, we only consider standard Turing machines.

You might think EIHP looks easier than HP, as it only asks about the haltigg of
on a single fixed input. Well done — you noticed that EIHP reduces to HP! Easier it
may be, but EIHP is still so hard as to besolvable— it has no algorithmic solution.
We show this by reducing HP to EIHP.

To say that EIHP isolvableis to say that there is a Turing machigé such that
for any standard Turing machirg

1 if Shalts and succeeds on ingut
fei(codd(s)) = {O gtherwise - .

76 5. Unsolvable problems

Theorem 5.6 EIHP is unsolvable — there is no such Turing mactttie

PrRoOOF We will prove this by showing that HP reduces to EIHPo assume we're
given a Turing machin&]l that solves EIHP. We convert it into a Turing machtie
as shown in figure 5.3H first runsgDIT (see§5.3.3), then returns to square 0, then

(x,x,0) if sq. (

EDIT [——® El

(x,x,-1)
if not sq.

H

Figure 5.3: EIHP solution gives HP solution

callsgl as a subroutine. We showed how to m&keI T, we’re givenEl, and the rest
is easy. So we can really makkas above.

We claim thatH solves HP. Let's feed intbl an inputcod€S) «w of HP. H runs
EDIT, which convertzod€S) «w into codg Sw]). This wordcod€Sw]) is then fed
into EI, which (we are told) outputs 1 fw| halts and succeeds on inpgtand 0
otherwise.

But (cf. §5.3.2.1, withv = €) Sw] halts and succeeds on inpuiff S halts and
succeeds ow.

So the output oH is 1 if Shalts and succeeds an and O otherwise. Thu${
solves HP, as claimed, amee have reduced HP to EIHP.

So by the argument at the beginning;6t3, EIHP has no Turing machine solution.
El does not exist. QED.

Exercises 5.7
1. Reduce EIHP to HP (easy).

2. Theuniform halting problem, UHP, is the problem of whether a (standard)
Turing machine halts & succeeds on every possible input. Show by reduction of
HP that UHP is unsolvable. [Hint: use the machine of figure 5.3.]

3. Thesometimes-halts problem,SHP, is the problem of whether a (standard)
Turing machine halts & succeeds on at least one input. Show by reduction of
HP that SHP is unsolvable.

4. [Challenge!] Show that the problem of deciding whether or not two arbitrary
standard Turing machine&}, S, areequivalent (definition 3.1) is not solvable
by a Turing machine.

5.3. Reduction 77

5.3.5 Real-life example of reduction

As we can simulate Turing machines on ordinary computers (if enough memory is
available), and vice versa, it follows that the halting problem for Turing machines
reduces to the HP for Java. For if we had a Java program to tell whettagbiuwrary
Java program halts, we can apply it to the TM simulator, so Java could solve HP for
TMs. But (cf. Church’s thesis) the Java halting program could be implemented on a
TM, so we’d have a TM that could solve the HP for Turing machines, contradicting
theorem 5.1.

So there is no Java program that will take as input an arbitrary Java prdgram
and arbitrary inpuk, and tell whetheP will halt on inputx. For a particulaP and
X you may be able to tell, but there is no general strategy (algorithm) that will work.
The paradox of section 1 can also be used to show this. Thus it is better to write
well-structured programs that can easily be seen to halt as required!

5.3.6 Sample exam questions on HP etc.

1. (a) Explain what the halting problem is. What does it mean to say that the
halting problem is unsolvable?

(b) Explain what the technique of reduction is, and how it can be used to show
that a problem is unsolvable.

(c) Let C be the standard typewriter alphabet. The symbol * is used as a
delimiter. Let the partial functiori : C* — C be given by

1 if Shalts and succeeds on input
f(cod€S)xw) = { and its output contains the symbol 0,
0 otherwise,

for any standard Turing machir&and wordw of C.

Prove, either directly or by reduction of the halting problem, that there is
no Turing machinév such thatfy, = f.

2. (a) Explain what the empty-input halting problem is. What does it mean to
say that the empty-input halting problem is unsolvable?

(b) The empty-output problem asks, given a standard Turing madhiaed
input wordw to M, whether the outputy (w) of M onw is defined and is

empty €).
Let EO be a hypothetical Turing machine solving the empty-output prob-
lem:
_ 1 if fm(w) =g,
feo(codeM) w) = {O otherwise,

for any standard Turing machifé& and wordw of the typewriter alphabet
C.

78 5. Unsolvable problems

Let DUPLICATE be a Turing machine such thijypricaTe(W) = wxw

for any wordw of C.

By considering the Turing machingé partially described by figure 5.4,
prove thateEO cannot exist. (You must decide how to fill in the shaded
parts.)

X If EO outputs :

DUPLICATE —®{ EC

If EO outputs |

Figure 5.4: the TMX

(c) Can there exist a Turing machiie€) such that
_[&, if fu(w) =g,
feo(codeM) «w) { 1 otherwise

for all standard Turing machiné&$ and wordsv of C? Justify your answer.
The three parts carry, respectively, 30%, 50%, 20% of the marks.

3. In this questionC denotes the standard typewriter alphabet.

(a) What does it mean to say that a partial functppnC* — C* is (Tur-
ing-)computable?

(b) Letg:C* — C* be a partial function that ‘tells us whether the output of a
standard Turing machine on a given input is “hello” or not’. That is, for
any standard Turing machirg&and wordw of C,

90005 =] omeruise.

Show thafg is not computable.

(c) LetU be the universal Turing machine. Uet C* — C* be a partial func-
tion such that for any word of C,

_ [y if fy(x) = hello,
h(x) {n otherwise.

Given thatg asin part b is not computable, deduce thetnot computable
either.

The three parts carry, respectively, 25%, 50% and 25% of the marks.

4. In this question:

5.4. Bdel’s incompleteness theorem 79

e C denotes the standard typewriter alphabet.

e If Sis a standard Turing machine amda word ofC, Swj] is a standard
Turing machine that overwrites its input withand then run&.

So fg[w|(x) = fs(w) for any wordx of C.

e EDIT is a standard Turing machine such that for any standard Turing ma-
chineSand wordw of C, fgpT(cod€S) «w) = codg Sw]).

e REVis a standard Turing machine that reverses its input (so, for example,
fREv(abC) = cba).

e U is a (standard) universal Turing machine.

(a) Define what it means to say that a partial functjol©* — C* is (Turing-)
computable.

(b) Letg:C* — C* be a partial function that “tells us whether or not a stan-
dard Turing machine halts and succeedsnput w*w'. That is, for any
standard Turing maching@and wordw of C,

if Shalts & succeeds on inputxw,
g(coddS) +w) = {ﬁ otherwise. P
Show thatg is not computable.
(c) Evaluate:
I. fu(coddREV)xdeal)
ii. fu(fepiT(cod€REV) xstock « share
iii. fu(fepiT(codgU)« coddREV) x buy) x sell)

The three parts carry, respectively, 20%, 40% and 40% of the marks. [1994]

5.4 Godel's incompleteness theorem

We sketch a final unsolvability result, first proved by the great Austrian logician Kurt
Godel in 1931. One form of the theorem states tihatre is no Turing machine that
prints out all true statements (‘sentences’) about arithmetic and no false®ofgth-
metic is the study of the whole numbdi@,1,2,...} with addition and multiplication.

A ‘Godel machine’ is a hypothetical Turing machine that prints out all the true sen-

tences (and no false ones) of thaguage of arithmetic. This is a first-order language
with:

e The function symbols+’ and ‘-’ (plus and times), and the successor funcittn
e The relation symbok (and= of course)

e The constant symbol 0

6Such a machine would never halt. It would print out successive truths, separated on thestagayby
We just have to keep looking at the output every so often.

80 5. Unsolvable problems

e The variablex, x',x”, X", ... (infinitely many)

e The connectives (and),V (or), — (implies),— (not), < (iff)
e The quantifiers/, 3

e The brackets (and)

There are 19 symbols here. Think of them as forming an alphabelote thatx
is two symbolsx and’. (We'll cheat and use,z ... as abbreviations for variables
X, X", ...) The successor functid®represents addition of 1. 869 has value 3.
This is anextremelypowerful language. E.gx is prime is expressible by the
formula
T(X) =def (X> D) A (VWz(X=y-Z—y=XVZ=X)).
Goldbach’s conjectureis expressible by the sentence
GC =def X(X> SDA Jy(Xx=y-SD) — JyFz(T(y) AT(Z) AX=Y+2Z)).
Exercise 5.8 What doesGC say? Isvywz(S®-y-y=z-z— y=0) true?

Whether Goldbach’s conjecture is true is still unknown, 200 years or so after Goldbach
asked it. So if we had a ‘@Gdel machine’, we could wait and see whett€t or -GC
was in its output. Thus it would solve Goldbach’s conjecture (eventually).

Regrettably:

Theorem 5.9 There is no ®del machin€.

PROOF (sketch) We reduce HP to the problem ad@l machine would be solving, if
such a machine existed. In fact we show that for any standard Turing madhamel
word w of the alphabeC, the statementM halts on inputw’ can be algorithmically
written as a sentencé€of arithmetic! (This shows some of the power of this language.)
We could then solve the halting problem by waiting to see whicK @i =X occurs
in the output of a @del machings. But we proved that HP has no Turing machine
solution, so this is a contradiction. Hence there is no $bich

We will only be able tosketchthe argument for obtaining from codgS) xw —
in full, the proof is quite long. The idea, though, is very simple:

e A configuration of M is the combination (current state, tape contents, head
position).

e A run of M can be modelled by a sequence of configurationsl ofGiven any
configuration in a run, we can work out the next configuration in a well-defined
way using the instruction tabkeof M.

e \We cancodeany configuration as a number. The relationship between succes-
sive configurations in a run &l then becomes an arithmetical relation between
their codes. This relation is expressible in the language of arithmetic. (Cf. Tur-
ing’s statement quoted on page 20.)

'Godel’s first incompleteness theorem. Equivalently (for mathematicians), there is no recursive ax-
iomatisation of true arithmetic.

5.4. Bdel’s incompleteness theorem 81

e We can write a formula coding entire sequences of numbers (configurations),
of any length, as a single number. Thus the entire ruk @fan be represented
as a single numbec, We can write a formuld(c) expressing that the list of
configurations coded byforms a successful (halting) run bf on inputw.

e We then write a sentencé= IxR(x) of arithmetic saying that there exists) @
run of M onw that ends in a halting state. Sois true if and only ifM halts on
w, as required.

QED.

The same idea comes up again in section 12 (Cook’s theorem).

Godel’s theorem can also be proved using our old parddexeast number not
definable by a short English sentencesee Boolos’ paper in the reading list. For
assume that there was such adsl machine:G, say. Because o&’s mechanical
Turing-machine nature, it turns out that propertiesGhare themselves statements
about arithmetic. Crudely, the statement ‘this statement is not in the outpght of
can be written as a sentengef arithmetic. This leads to a contradiction, sir®is in
the output ofG iff Sis false. Of course, &del's proof didn’t use Turing machines —
they hadn’'t been invented in 1931.

5.4.1 Details of the proof

The following couple of pages of details are for interest only; they’re not likely to be examined!!
There are eleven easy steps.

1. Asin§4.2.1, letM have state sép = {0,1,2,...,q9}, where 0 is the initial state and the
halting states aré, f +1,...,Q.

2. Let’s begin bycoding a configuration ofM as a sequence of numberd)e can code the
state by itself, and the head position by the number of the tape square that the head is reading.
And as the alphabet d&fl is C, we can code the symbols on the tape by their ASCII equivalents,
using O forA (say). (Any ASCII code is a number: e.g., the ASCII code for ‘A is ASCII(A) =
01000001 in binary, i.e., 64+1 = 65. ASCII(B) = 66, etc.)

So the configuration ‘in statk, with head over squarg the tape contents up to the last
non-\ beingag (square 0)a; (square 1), ...an (squaram)’ can be represented by the sequence
of numbers:

(k,r,ASCll(ap),ASClI(a1),...,ASCll(am))

For example, if squares 5, 6, ... are blank, the configuration shown in figure 5.5 can be rep-
resented by the sequence (6,3,65,66,65,0,51), the ASCII codes for A, B, 3 being 65, 66, 51
respectively.

3. Useful Technical FactThere is a formul&8EQX, y,) of the language of arithmetic with
the following useful property. Given any sequeriag a, . .., a,) of numbers, there is a number
¢ such that for all numbers

e SEQCc,0,2) is true if and only ifz=ag

e SEQCc,1,2)is true if and only ifz= a;

82 5. Unsolvable problems

A B A U 3 O O —»

0 1 2 3 4 5 6

Figure 5.5: a Turing machine configuration

e SEQc,n,z) is true if and only ifz= ay,.

We can use such a formuBEQto code the sequencay, ay, . ..,an) by the single numbes.
We can recovefap,ay, . .., a,) from c usingSEQ

Finding such a formul&EQis not easy, but it can be done. For example, we might try
to code(ap,ay, . ..,an) by the numbec = 2%+1.30+1. . pantl where the firsn+ 1 primes
arepo=2,pL=3,...,pn.2 E.g., the sequence (2,0,3) would be coded By 230+1.53+1 —
15,000. Because any whole number factors uniquely into primes, we can regevér. .., a,+
1, and hencéayp, ay, . . ., a,) itself, from the numbec. So it is enough if we can write a formula
SEQX,Y,z) saying ‘the highest power of thgh prime that dividex is z+ 1'. In fact we can
write such a formulabut there are simpler ones available (and usually the simple versions are
used in proving that there is a formusQlike this!)

4. In fact we want taode a configuration ofM as a single number.Using SEQ we can
code the configuratiofk,r, ASCll(ag),ASCll(az),...,ASClI(am)) as a single numbec, If we
do this, therBEQc,0,k), SEQc, 1,r), SEQc,2,ASCll(ap)), ...,SEQc,m+2,ASClI(an)) are
true, and in each case the number in the third slot i®thgone that makes the formula true.

5. Relationship between successive configuratiddgppose thaM is in a configuration
coded (as in (4)) by the number If M executes an instruction successfully, without halting &
failing, it will move to a new configuration, coded by say. What is the arithmetical relationship
betweerc andc’?

Let ¢ code(k,r,ASClI(ag),ASClI(ay),...,ASCll(am)). Assume that <m° SoM is in
statek, and its head is reading the symlsl= a, say. But we know the instruction tabde
of M. Assume thab(k,a) = (kK',b,d), wherek' is the new statebh is the symbol written, and
d the move. So it’ codes the next configuratiqi’,r’, ASCII(ag),ASCII(&}), . ..,ASCII(af,))
of M, we know that (i)r' =r +d, and (ii) & = & unlessi =r, in which caseg; =b. So in
this case, the arithmetical relationship betweemdc’ is expressible by the following formula

8We usea; + 1, etc., becausa may be 0; if we just used; then 0 wouldn't show up as a power of 2
dividing c. So we'd haveeodd2,0,3) = codg2,0,3,0,0,0) — not a good idea.

%f r > m, M is readingA. This is a special case which we omit for simplicity. Think about what we
need to do to allow for it.

5.4. Bdel’s incompleteness theorem 83
F(c,c .k a kK, b,d):10

vr ([SEQC, 0,k) ASEQc,1,r) ASEQc,r +2,ASCll(a)]
% statek, head in sqr readsa
— [SEQC/,0,K') ASEQC,1,r +d) ASEQC/,r +2,ASCII(b))
% new state, head pos & char
AVi(i > 2A1 £ T +2 — YX(SEQC,i,X) < SEQ(d,i,x))])
%rest of tape is unchanged

Note that we obtain the valu&§ b, andd from k anda, via d.

To express — for arbitrary codesc’ of configurations — that’ codes the next configuration
afterc, we need one statemehtc,c’, k,a k',b,d) like this for each lingk,a, k', b,d) of 8. Let
N(c,c’) be the conjunction (‘and’) of all thedes. N is the formula we want, becaubtc,c’) is
true if and only if, whenever M is in the configuration coded by c then its next configuration (if it
has one) will be the one coded by ¢

6. Coding a successful rum successful (halting) run d¥1 is a certain finite sequence of
configurations. We can code each of these configurations as a ngnsbesbtaining a sequence
of codes,cp,Ci,...,Ch. For these to be the codes of a successful (halting) rud oh w, we
require:

e Cp codes the starting configuration of MSo we wantSEQco,0,0) [state is O ini-
tially], andSEQcop, 1,0) [head over square O initially], and also some formulas expressing
that the tape initially contains the input wonwd= wows ...wy. We can use the formu-
lasSEQcp, 2, ASClI(wp)), SEQCp, 3,ASCII(w1)), ..., andSEQco, m+ 2, ASCII(wp)).

We can write all this as a finite conjunctidfcy) (I for ‘initial’).

e Cii1 is always the ‘next’ configuration of M aftef.cWe can write this asN(c;,Ci;+1)
holds for each < n'.

e C, codes a halting configuration of MRecalling thatf, f +1,...,q are the halting states
of M, we can write this as a finite disjunction (‘or’),

H(cn) = SEQCcy,0, f) VSEQC,,0,f+1)V...VSEQCc,,0,q),
saying that, is a configuration in whiclM is in a halting state.

7. Coding a successful run as a single numbewe now use the formul&EQto code the
entire(n-+ 2)-sequenceén, cy,...,Cy) as a single numbeg, say, we can express the constraints
in (6) as properties af:

e WX(SEQg,1,X) — (X))
e VnVivxVy(SEQQ,0,n) A1 <i<n+1ASEQQ,i,x)ASEQQ,i+1Yy) — N(XY))
e VnVX(SEQQ,0,n) ASEQQ,n+1,x) — H(X))

10We've cheated and used 1,2,3 in this formula, rather 88a8%, andSS®. We will continue to cheat
like this, to simplify things. Also, the formula only worksdf > 0, as there’s no—' in the language of
arithmetic so ifd = —1 we can’t writer +d. If d = —1, we replacSEQ(c, 2,r) inline 1 bySEQc, 2,r + 1)
andSEQC,2,r +d) in line 2 by SEQC/, 2,r).

84 5. Unsolvable problems

(Note thatcy, ..., c, are entries 12,....n+1 of g.)

8. Let the conjunction/) of these three formulas in (7) ig). So for any numbeg, R(g)
holds just wherg codes a successful run Bf on inputw. So the statement ‘M halts on input w’
is equivalent to the truth aixR(x).

9. R can be constructed algorithmicallotice that what I've just described is an algorithm
(implementable by a Turing machine) to constrR¢x), given the data: (a) how many statds
has, (b) which states are halting states, (c) the instruction dedifi®1, and (d) the input word.
This information is exactly whatodgM) « w contains! So there is an algorithm (or Turing
machine) that construcBxR(x) from codgM) = w.

10. Reducing HP to the &del machinelf we had a ®del machine, we could now solve
the halting problem by an algorithm as follows.

1. Givencod€M) andw, whereM is a standard Turing machine amda word ofC, we
construct the sentené&xR(x).

2. Then we wait and see wheth&R(x) or -3xR(X) turns up in the output db. This tells
us which of them is true. (One of them will turn up, because one of them is true; and
prints all and only true statements. So we won't have to wait forever.)

3. If IxR(x) turns up, then it's true, so by (8 must halt & succeed on input. So we
print ‘halts’ in this case — and we’d be right! We print ‘doesn’t haltS¥R(x) turns up;
similarly, we’d be right in this case too.

So these algorithmic steps would solve the halting problem by a Turing machine.
11. Conclusion. But we know the halting problem can’t be solved by a Turing machine.
This is a contradiction. S@ does not exist (because this is the only assumption we made).

5.4.2 Other unsolvable problems

e Deciding whether a sentence of first-order predicate logic is valid or not. Church
showed that any algorithm to do this could be modified to print out (roughly) all
true statements of arithmetic and no false ones. We've shown this is impossible.

e Post's correspondence problem. This has the stamp of a real problem about it
— it doesn’t mention algorithms or Turing machines. Given wags. ., ay,
b1,...,by of C, the question is: is there a non-empty sequeitg...,i(k) of
numbers< n such that the words;)3 - .- k) andbjy)bj2)... b are the
same? There is no algorithm to decide, in the general case, whether there is or
not. This can be shown by reducing HP to this problem; see Rayward-Smith for
details.

Exercises 5.10

1. Show that there is no algorithm to decide whether a sent&®méarithmetic is
true or false. [Hint: any Turing machine to do this could be modified to give a
Godel machine.]

2. Show that there is no Turing machiNesuch that for all sentencésof arith-
metic, fy(A) = 1if Ais true, and undefined A is false.

5.5. Summary of section 85

3. Complete the missing details in the proof cbd&l's theorem. Find out (from
libraries) how to write the formul8EQ

5.5 Summary of section

We saw the significance of unsolvable problems for computing. We proved that there
IS no Turing machine that says whether an arbitrary Turing machine will halt on a

given input (‘HP is unsolvable’). By showing that a solution to certain other problems

would give a solution to HP (the technique of reduction), we concluded that they were
also unsolvable. In this way, we proved that EIHP is unsolvable, and that there is no
Turing machine that prints out exactly the true sentences of arithmetic. So doing this
is another unsolvable problem.

5.6 Partlin anutshell

Sections 1-2: A Turing machine (TM) is a 6-tupl®& = (Q,Z,1,qo,d,F) whereQ is
a finite set (of states}, is a finite set of symbols (the full alphabel) 0 is
the input alphabety O I, A € Z\ | is the blank symbolgp € Q is the initial
stated: Qx X — Qx X x {0,1,—1} is a partial function (the instruction table),
andF (a subset o)) is the set of final states. We vieM as having a 1-way
infinite tape with squares number@édL, 2, ... from left to right. In each square
Is written a symbol fronk; all but finitely many squares contain Initially the
tape contains a word of | (a finite sequence of symbols froij followed by
blanks. w is the input toM. M has a read/write head, initially over square O.
At each pointM is in some state iQ, initially go. At each stage, if the head is
over a square containinge Z, andM is in stateq € Q, then ifg € F, M halts
and succeeds. Otherwise, &t,a) = (d,b,d); M writesb to the square, goes
to stateq’, and the head moves left, right, or not at all, according as—1, 1,
or 0, respectively. 18(q,a) is undefined or if the move would talké’s head off
the tapeM halts and fails. The output & is the final tape contents, terminated
by the firstA; the output is only defined 1 halts & succeeds. We writéy :
I* — Z* for the partial function taking the input word to the output word; here,
>* is the set of words ok, and similarly forl. A partial functionf : I* — X* is
said to be Turing computable if it is of the forfg for some Turing machini!.

Church’s thesis (or better, the Church—Turing thesis) says that all algorithmically
computable functions are Turing computable. As algorithm is a vague, intuitive
concept, this can't be proved. But there is evidence for it, and it is generally
accepted. The evidence has 3 forms:

1. A wide class of functions are Turing-computable. No known algorithm
cannot be implemented by a TM.

2. The definition of computability provided by the TM is equivalent to all
other definitions so far suggested.

86

5. Unsolvable problems

3. Intuitively, any algorithm ought to be implementable by a TM.

Various tricks for simplifying TM design have been suggested. They help the
user to design TMs, without changing the definition of a TM. We can divide the
tape into finitely many tracks without changing the definition of a TM, since for

n tracks, ifg is in tracki of a square (for each< n) the tuple(ay,...,a,) € "

can be viewed as a single symbol occupying the squareX"As finite, it can

be the alphabet of a legitimate TM. Using many tracks simplifies comparing
and marking characters and square 0. Often we mark square O implicitly. Track
copying operations, etc., are easy to do.

Similarly we can structure the states@ This amounts to augmentir@ by

a set of the formQ x X for some non-empty. Typically X will be Z or 2"

for somen. This allowsM'’s behaviour to be more easily specified: when in a
state(g,a) € Q x %, the behaviour depending @ncan be specified separately

from that depending oa. SinceQ x X is a finite set, it can be the state set of a
legitimate TM.

We often use ‘flowcharts’ to specify TMs. A pseudo-code representation is also
possible but care is needed to ensure that the code can easily be transformed into
areal TM.

Section 3: Variants of TMs have been suggested, making for easier TM design. In

particular, the multi-tape TM is extremely useful: there are availaligpes,
each with its own head, and the instruction tabi®w has the fornd: Q x 2" —
QxX"x{0,1,—1}", interpreted in the natural way. The input and output are by
convention on tape 1. An-tape machiné, can be simulated by an ordinary
Turing machineM. M divides its single tape int@n tracks. For eachin the
rangel <i < n, track2i — 1 contains the contents of tapef M, and track?i
contains a marker denoting the position of head M, over its tape. Sd’s
tape contains a picture of the tapes and headdofFor each step dfl,’s run,

M updates its tape (picture) accordingly, keeping the specified formatM As
simulates every step of the computatiorMy, it can duplicate the input-output
function ofM,.

In a similar way it an be shown that a 2-way infinite tape machine, a machine
with a 2-dimensional tape, etc, can all be simulated by an ordinary TM. Thus
they all turn out to be equivalent in computational power to the original TM.
This provides evidence for Church’s thesis.

Section 4: A ‘universal’ Turing machin&J can be designed, which can simulate any

ordinary Turing machindl. Clearly, for this to be possible we must restrict the
alphabetz andl of M to a standard form; but essentially no loss of generality
results, since we can code the symbols and words of any finite alphabet by words
of a fixed standard alphabet. Given a wavdand a description of a Turing
machineSwith standard alphabet} will output fs(w). The description oSis

also aword¢tod€S)’ in the standard alphabdtl works by using the description
‘cod€S)’ to simulate the action oS onw.

5.6. Partlin a nutshell 87

Section 5: One advantage of formalising ‘computable’ is that theorems about ‘com-
putable’ can be proved. We could not hope to show that some problems (func-
tions) were not algorithmically solvable (computable) without a formal defini-
tion. In fact many problems are not solvable by a TM. The halting problem
(HP),will M halt on input w, is not. This is shown by contradiction: assuming
that the Turing machinkl solves HP, we construct a Turing machiMehat on
a certain input (vizcod€M)) halts iff H saysM will not halt on this input. This
Is impossible, std does not exist.

Once a problem is known to be unsolvable, other problems can also be shown
unsolvable, by reducing them to the first one. Or one can proceed from first
principles in each case. One such is EIHP, eéngpty-input halting problem.
Another is the famous &lel theorem, that there is no algorithm to print all true
statements of arithmetic. We proved this by reducing HP to the problem.

Part Il

Algorithms

6. Use of algorithms

We now take a rest from Turing machines, and examine the use of algorithms in general
practice. There are many: quicksort, mergesort, treesort, selection and insertion sort,
etc., are jussomeof the sorting algorithms in common use, and for most problems
there is more than one algorithm. How to choose the right algorithm? There is no
‘best’ search algorithm (say): it depends on the application, the implementation, the
environment, the frequency of use, etc, etc. Comparing algorithms is a subtle issue
with many sides.

6.1 Run time function of an algorithm

Consider some algorithm’s implementation, in Java, say. It takes inputs of various
sizes. For an input of sizg we want to assign a measuirén) of its use of resources,
and, usually, minimise it. Usually(n) is thetime taken by the algorithm on inputs of
sizen, in the worst or the average case (at our choice).

Calculatingf (n) exactly can be problematic:

e The time taken to execute an individual Java instruction can vary even on a
single machine, if the environment is shared. So the run time of even the same
program for the same data on the same machine may vary.

e There can be a wide variation of use of resources over all the inputs of a fixed
sizen. The worst case may be rare in practice, the average case unrepresentative.

e Some algorithms may run better on certain kinds of input. E.g., some text
string searching algorithms prefer strings of English text (whose patterns can
be utilised) to binary strings (which are essentially random).

e Often we do not understand the algorithm well enough to workfout

So how to proceed? Much is known about some algorithms, and you can look up
information. (We list some books at the end of the section; Sedgewick’s is a good

88

6.1. Run time function of an algorithm 89

place to begin.) Other algorithms are still mysterious. Maybe you designed your own
algorithm or improved someone else’s, or you have a new implementation on a new
system. Then you have to analyse it yourself.

Often it's not worth the effort to do a detailed analysis: rough rules of thumb are
good enough. Suggestions:

e |dentify theabstract operationsused by the algorithm (read, if-then, +, etc). To
maximise machine-independence, base the analysis on the abstract operations,
rather than on individual Java instructions.

e Most of the (abstract) instructions in the algorithm will be unimportant resource-
wise. Some may only be used once, in initialisation. Generally the algorithm
will have an ‘inner loop’. Instructions in the inner loop will be executed by far
the most often, and so will be the most important. Where is the inner loop?
A ‘profiling’ compilation option to count the different instructions that get exe-
cuted can help to find it.

e By counting instructions, find a good upper bound for the worst case run time,
and if possible an average case figure. It will usually not be worth finding an
exact value here.

e Repeatedly refine the analysis until you are happy. Improvements to the code
may be suggested by the analysis: see later.

6.1.1 Typical time functions

You can usually obtain the run-time function of your algorithm beeurrence rela-
tion (see below). Most often, you will get a run time function

f(n) =c-g(n) +smaller terms
wheren is the input size and:
e Cis a constant (witlt > 0);

e the ‘smaller terms’ are significant only for smalbr sophisticated algorithms;
e g(n) is one of the following functions:

1. constant (algorithm is said to run@nstant time);

2. logn (algorithm runs irlog time);

3. n(algorithm runs irflinear time);

4. nlogn (algorithm runs irog linear time);

5. n? (algorithm runs imuadratic time);

6. n° (algorithm runs ircubic time);

7. 2" (or k" for somek > 1) (algorithm runs irexponential time).

These functions are listed in order of growth: réogrows faster thamlogn asn
increases. The graph in figure 6.1 shows some similar functions.

90 6. Use of algorithms

27
10 ”
24 n
10
21 2"
10
18] 2N
10 2 4 n
N 1.1
154 (approx.
10 n!)
12
10 100n°
9
10 100n°
g ‘ | “‘— 100
3 M Z0n|
10 7 10l0g n
g g
0 e —ipt 4‘_10
IU I | I 1 | I 1
2 4 8 16 32 64 128 256 512 1024

Figure 6.1: growth rates of functions (log scales)

6.1.2 Why these functions?

Why do the functions above come up so often? Because algorithms typically work in
one of a few standard ways:

1. Simple stack pushes and pops will taikestant time,assuming the data is of a
small size (e.g., 32 bits for each entry in an integer stack). Algorithms running
in low constant time are ‘perfect’.

2. An algorithm may work by dealing with one character of its input at a time,
taking the same time for each. Thus (roughly, and up to a choice of time units)
we get

f(n)=n — linear time.

Algorithms running in linear time are usually very good.

3. It may repeatedly loop through the entire input to eliminate one item (e.g., the
largest). In this case we’ll have

f(n)=n+f(n-1).

So
f(n) = n4+f(n-1)
n+(n—-1+1f(n-2))

N (N—1)+ (N—2)+-+3+2+ (1),

6.1. Run time function of an algorithm 91

This is anarithmetic progression, so we getf (n) = n?/24n/2 + k for some
constank. Thek andn/2 are small compared with? for largen, so this al-
gorithm runs inquadratic time. An algorithm that considers aif? pairs of
characters of tha-character input also takes quadratic time.

Algorithms running in quadratic time can be sluggish on larger inputs.

4. Maybe the algorithm throws away half the input in each step, as in binary search,
or heap accessing (s§é.3.4). So

f(n)=1+1f(n/2)

(this is only an approximation if is not a power of 2). Then letting= 2%, we
get

f(2) = 1+ f(2<Y

1+ (14 f(2¢72))

x+ f(29)
X+ Kk

for some constark. As f(2¥) is aboutx, f(n) is aboutlog,(n): this algorithm
runs inlog time.

The log function grows very slowly and algorithms with this run-time are usu-
ally excellent in practice.

5. The algorithm might recursively divide the input into two halves, but make a
pass through the entire input before, during or after splitting it. This is a very
common ‘divide and conquer’ scheme, used in mergesort, quicksort (but see
below), etc. We have

f(n)=n+2f(n/2)

roughly —n to pass through the whole input, pléisn/2) to process each half.
So, using a trick oflividing by the argumengnd lettingn = 2* again,

f(2¥)/2¢ = 2¥/2*+2-1(2%/2)/2
= 1+ f(21) /21

14 (14 f(2¢2) /22

x+ f(20)/20
X+C,

for some constartt Sof (2¥) = 2%(x+c) = 2*-x+smaller terms. Thus, roughly,
f(n) = nlog,n+ smaller terms. We havelag linear algorithm.

Log linear algorithms are usually good in practice.

Exercise 6.1 What if it divides the input into three?

92 6. Use of algorithms

6. Maybe the input is a set afpositive and negative whole numbers, and the algo-
rithm must find a subset of the numbers that add up to 0. If it does an exhaustive
search, in the worst case it has to check all possible subs@sefthem. This
takesexponential time. Algorithms with this run time are probably going to
be appalling, unless their average-case performance is betteirfthkex algo-
rithm from optimisation is an example).

7. If the problem is to find all anagrams of thdetter input word, it might try all
n! possible orderings of theletters. The factorial functionl =1x2x3x...n
grows at about the rate af, even faster thag".

Quicksort This is a borderline case. In the average case, the hope is that in each re-
cursive call quicksort divides its input into two rougldgualparts. By case 5 above,
this means log linear time average-case performance. In the worst case, in each recur-
sive call the division gives a big and a small part. Then case 3 is more appropriate, and
it shows that quicksort runs in quadratic time in the worst case.

In practice, quicksort performs very well — and it can sort ‘in place’ without using
much extra space, which is good for large sorting jobs.

6.1.3 TheO-notation (revision)

This helps us make precise the notion ‘my algorithm runs in log time’ etc. It lets us
talk about functiond (n) for large n, andup to a constant factor.

Definition 6.2 Let f,g be real-valued functions on whole numbers (i.e., functions
from {1,2,3,...} into the set of real numbers).

1. We say thatf is O(g) (‘ f is of the order of @) if there are numberm andc
such thatf (n) < c-g(n) whenevemn > m.

2. We say thaf is 6(g) (‘theta of @) if f is O(g) andgis O(f). This means that
f andg have the same order of growth.

So f is of the order ofg iff for all large enoughn (i.e., n > m), f(n) is at most
g(n) up to some constant factar, Taking logs, this means thadr all large enougm,
log f(n) < ¢ +logg(n), wherec’ is a constant= logc). I.e.,log f (n) is eventually no
more than a constant amount abdegg(n).

Similarly, f is8(qg) iff there is a constart such that for all large enoughlog f (n)
andlogg(n) differ by at mostc.

So in the graph of figure 6.1, is O(g) iff for large enoughn, the line forf is at
most a constant amount higher than thatddit could be much lower, though!) And
f is 6(g) if eventually (i.e., for large enough) the lines forf andg are vertically
separated by at most a fixed distance.

Definition 6.3 We can now say that an (implementation of an) algorithm ruriegn
time (or linear time) if its run-time functionf (n) is 8(logn) (or B(n), respectively).
We defineruns in quadratic, log linear, exponential time, etc, in the same way.

6.1. Run time function of an algorithm 93

Exercises 6.4

1. Show thatf is 6(g) iff there arem, c, d (with d > O, possibly a fraction) such
thatd-g(n) < f(n) <c-g(n) foralln>m.

2. Show that iff is O(g) then there are,d such that for alh, f(n) < max(c,d-
g(n)). Is the converse true?

3. [Quite long.] Check that the functions §6.1.1 are listed in increasing order of
growth: if f is beforeg in the list thenf is O(g) but not6(g). [Calculus, taking
logs, etc., may help.]

4. Let ¥ be the set of all real-valued functions on whole numbers. Define a binary
relationE on ¥ by: E(f,g) holds iff f is 8(g). Show thatE is an equivalence
relation on ¥ (see§7.1 if you've forgotten what an equivalence relation is).
(Some peopleefined() to be theE-class off.)

Show also thatf is O(g)’ is a pre-order (reflexive and transitive) gn

5. Show that for anw,b,x > 0, log,(x) = log,(X) - log,(b). Deduce thalog,(n) is
6(log,(n)). Conclude that when we say an algorithm runs in log time, we don't
need to say what base the log is taken to.

6.1.4 Merits of rough analysis

Note that the statement ‘my algorithm runs in log time’ (or whatever) will only be
an accurate description of its actual performafordarge n (so the smaller terms are
insignificant), andip to a constant factofc). A more detailed analysis can be done if
these uncertainties are significant, but:

e A rough analysis is quicker to do, and often surprisingly accurate. E.g., most
time will be spent in the inner loop (*90% of the time is spent in 10% of the
code’), so you might eveignorethe rest of your program.

e You may not know whether the algorithm will be run on a Cray or a PC (or
both). Each instruction runs faster by roughly a constant factor on a Cray than
on a PC, so we might prefer to keep the constant facadrove.

e You may not know how good the implementation of the algorithm is. If it uses
more instructions than needed in the inner loop, this will increase its running
time by roughly a constant factor.

e The run time of an algorithm will depend on the format of the data provided to
it. E.g., hexadecimal addition may run faster than decimal addition. So if you
don’t know the data format, or it may change, an uncertainty of a constant factor
Is again introduced.

94 6. Use of algorithms

6.1.5 Demerits of rough analysis

In the analysis it's often easy to shdws O(one of the functiong above). To provd

is B(g) is harder. If you can only show the worst case run time funcfioa be O(g),

so thatf (n) < c-g(n) whenevemn > m, then remember thatis an upper bound only.
In any case, whether you have anor aB-estimate,

e the worst case may be rare;
e the constant is unknown and could be large;
e the constanmis unknown and could be large.

This can be important in practice. For example, though for very larges have
2nlog,(n)? < n%2, in fact 2nlog,(n)? > n®? until n gets to about half a million. The
moral is: although you should think twice before usingréralgorithm instead of an
nlogn one, nonetheless tmé algorithm may sometimes be the best choice.

6.1.6 The bottom line (almost...)

Generally, algorithms that run in linear or even log linear time are fine. Quadratic time
algorithms are not so good for very large inputs, but algorithms #(th up ton® are

of some use. Exponential time algorithms are hopeless even for quite small inputs,
unless their average-case performance is much better (e.g., the simplex algorithm).

6.1.7 Average case runtime

The average case run time is harder to obtain and more machine-dependent. So your
long, complex analyses may only be of any use on your current machine, and may not
be worth the effort. Also the average case may not be easy to define mathematically or
helpfully: what is ‘average’ English text? But average cases are useful in geometrical
and sorting algorithms, etc.

6.2 Choice of algorithm

So how to choose, in the end? Don'’t ignore the run time funcfior). Much better
algorithms may not be much harder to implement.

But don't idolise it either, as the run time will only be estimatedftyy) for large
inputs (and other caveats above). Moreover, programmers’ time is money, so it may be
best to keep things simple. The constant factors(im may be unknown or wrong: a
factor of 10 is easy to overlook in a rough calculation. So use empirical tests to check
performance. But beware: empirical comparison of two algorithm implementations
can be misleading unless done on similar machines, delays due to shared access are
borne in mind, and equal attention has been paid to optimising the two implementations
(e.g., by cutting redundant instructions and procedure calls in the inner loop).

6.3. Implementation 95

Your choice of algorithm may also be influenced by other factors, such as the
prevalent data structures (linked list, tree, etc.,) in your programming environment, as
some algorithms take advantage of certain structures. The algorithm’s space (memory)
usage may also be important.

6.3 Implementation

We've seen some of the factors involvedcimoosingan algorithm. But the same algo-
rithm can bemplementedn many different ways, even in the same language. What
advice is there here?

6.3.1 Keepitsimple

Go for simplicity first. A brute force solution may be fine if the algorithm is only go-

ing to be used infrequently, or for small inputs. So why waste your expert time? (Of
course, the usage may change, so be ready to re-implement.) If the result is too slow,
it’s still a good check of correctness for more sophisticated algorithms or implemen-
tations. There are algorithms that are prey to bugs that merely slow up performance,
maintaining correctness. A program can be used for speed comparisons, showing
up such bugs.

6.3.2 Optimisation

Only do this if it's worth it: if the implementation will be used a lot, or if you know it
can be improved. If it is, improve it incrementally:

e Get a simple version going first. It may do as it is!

e Check any known maths for the algorithm against your simple implementation.
E.g., if a supposedly linear time algorithm takes ages to run, something’s wrong.

e Find the inner loop and shorten it. Use a profiling option to find the heavily-
used instructions. Are they in what you think is the inner loop? Look at every
instruction in the inner loop. Is it necessary, or inefficient? Remove procedure
calls from the loop, or even (last resort!) implement it in assembler. But try
to preserve robustness and machine-independence, or more programmers’ time
may be needed later.

e Check improvements by empirical testing at each stage — this helps to elimi-
nate the bad improvements. Watch out for diminishing returns: your time may
nowadays be more expensive than the computer’s.

An improvement by a factor of even 4 or 5 might be obtained in the end. You may
even end up improving the algorithm itself.

If you're building a large system, try to keep it amenable to improvements in the
algorithms it uses, as they can be crucial in performance.

96 7. Graph algorithms

6.4 Useful books on algorithms

1. Robert SedgewickAlgorithms, Addison-Wesley, 2nd ed., 1988. A practical
guide to many useful algorithms and their implementation.

2. A.V. Aho, J.E. Hopcroft, J.D. Ullimarifhe design and analysis of algorithms,
Addison-Wesley, 1975. For asymptotic worst-case performance.

3. D.E, Knuth,The art of computer programmin@, volumes, Addison-Wesley.
Does more average-case analysis, and a full reference for particular algorithms.

4. G.H. GonnetHandbook of algorithms and data structuresgdison-Wesley,
1984. Worst- and average-case analysis, and covers more recent algorithms.

The last three are listed in Sedgewick. Maybe that’s why all four are from the same
publisher.

6.5 Summary of section

We examined some practical issues and advice to do with choice and implementation
of algorithms. We introduced the run time function of an algorithm, in worst case
or average case form. It is often most sensible to make do with a rough calculation
of the run time function, obtaining it only for large input sizg &nd up to a constant
factor (). In practice, more detailed calculations may be needed.OFhetation helps

to compare functions in these terms. We saw how some common algorithm designs
give rise to certain run time functior{®ogn, n,nlogn,n?); these are calculated using
recursive equations by considering the ‘inner loop’ of the algorithm.

/. Graph algorithms

We will now examine some useful algorithms. We concentrate on algorithms to handle
graphs, as they are useful, quite challenging, easy to visualise, and will be needed in
Part Ill.

7.1 Graphs: the basics

Relations (revision) Recall that ebinary relation R(x,y) on a setX is a subset of
X x X. We usually write R(x,y) holds’, or just R(x,y)’, rather than (x,y) € R. Ris
said to be:

7.1. Graphs: the basics 97

reflexive, if R(x,X) holds for allxin X

irreflexive, if R(x,x) holds for no elementin X

symmetric, if wheneverR(x,y) holds then so doeR(y, X)

transitive, if wheneverR(x,y) andR(y, z) hold then so doeR(x, z)

anequivalence relation,if it is reflexive, symmetric, and transitive.

Definition 7.1 A graph is a pair(V,E), whereV is a non-empty set ofertices or
nodes,andE is a symmetric, irreflexive binary relation &h

We can represent a graph by drawing the nodes as little circles, and putting a line
(‘edge’) between nodesy iff E(x,y) holds. In figure 7.1, the graph i$%,2,3,4,5,8,
{(1,3),3,1), (2,3).,(3,2), (4,5),(5,4), (5,6),(6,5), (4,6),(64)

Figure 7.1: two drawings of the same graph (6 nodes, 5 edges)

If G= (V,E) is a graph, and,y € V, we say that there’s amdgefrom x to y iff
E(x,y) holds. We think of x,y) and(y,X) as representing treameedge, so the number
of edges inG is half the number ofx,y) for which E holds. So the graph in figure 7.1
has 5 edges, not 10. We’ll usually writefor the number of nodes of a graph, aad
for the number of edges.

Exercise 7.2 Show that any graph with nodes has at mostn—1)/2 edges.

Examples There are many examples of graphs, and many problems can be repre-
sented in terms of graphs. The London tube stations form the nodes of a graph whose
edges are the statio(s §') that are one stop apart. The world’s airports form the nodes

of a graph whose edge pairs consist of airports that one can fly between by Aer Lingus
without changing planes. The problem of pairing university places to students can be
considered as a graph: we have a node for each place and each student, and we ask
for every student to be connected to a unique place by an edge. Electrical circuits: the
wires form the edges between the nodes (transistors etc).

98 7. Graph algorithms

Other graphs There are more ‘advanced’ graphs. Directed graphs do not require
thatE is symmetric. In effect, we allow arrows on edges, giving each edge a direction.
There may now be an edge froxo y, but no edge frony to x. The nodes could
represent tasks, and an arrow frarto b could say that we should dobeforeb. They
might be players in a tournament: an arrow from Merlin to Gandalf means Merlin won.
Weighted graphs(see section 8) have edges labelled with numbers, called weights
or lengths. If the nodes represent cities, the weights might represent distances between
them, or costs or times of travel.

Graph algorithms Many useful algorithms for dealing with graphs are known, but
as we will see, some are not easy. For example, no fast way to tell whether a graph
can be drawn on paper without edges crossing one another was known until 1974,
when R.E. Tarjan developed an ingenidingar timealgorithm. We’ll soon see graph
problems with no known efficient algorithmic solution.

7.2 Representing graphs

How to input a graph(V,E) into a computer? First rename the vertices so that they
are calledl,2,...,n for somen. (Maybe use a hashing technique to do this if the
vertices originally have names, like London tube stations.) Typically you'll then input
the numbem of vertices, followed by a delimitex, followed by a list of all pairs

(x,y) € E — perhaps omitting the dual pafy,x) unless the graph is directed. The
same information can be input using ax n Boolean array (thedge matrix of the
graph). If the graph is weighted, the weight of an edge can be added after the edge.
This format can be input to a Turing machine if all numbers are input in binary (say)
and there’s a terminating.

How to representhe graph in a computer? We could just use the edge matrix (see
Sedgewick’s book). But it's often better to useriked list, especially if the graph has
relatively few edges. Finding edges is then faster. The graph in figure 7.1 would be
represented by:

1—-3
2—3
3—-1-2
4—-5—-6
5-4—-6
6—-5—14

Each line begins with a header vertex (1-6), and lists all vertices connected to it by an
edge. There’s redundancy (e.g., the ed&) shows up in lines 1 and 3), but this is
useful for queries such as ‘which vertices are connecte®'tdf operations such as
deleting a node from a graph are important, it can help to add pointers from the head
of each line of the list to the corresponding entries in bodies of the other lines. Here,
1 would get a special pointer to the second entry of line 3. The overhead cost of doing
this should be borne in mind.

7.3. Algorithm for searching a graph 99

A linked list can represent directed graphs: the entries in a line headgdizy
those nodey such that there’s an arrow frorto y. The weights in a weighted graph
can be held in an integer field attached to each non-header entry in the list.

7.3 Algorithm for searching a graph

We want to devise a general purpose algorithm that will rapidly visit every node of a
graph, travelling only along graph edges. Such an algorithm will be useful for graph
searches, measurements, etc. For example, starting from Dublin (or anywhere reach-
able from Dublin, for that matter) it would trace out all airports reachable by Aer
Lingus, even with plane changes.

7.3.1 The search strategy

The general idea will be this. At any stage of the search, some graph vertices will have
beenvisited. Others will be accessible from the already-visited vertices in one step,
by a single edge. They are on thienge of the visited nodes, and are ripe for visiting
next. The other vertices will biar away, neither visited nor (yet) on the fringe.

We will repeatedly:

e choose a fringe vertex,
e visit it and so promote it to ‘visited’ status

e replace it on the fringe by its immediate (but unvisited) neighbours: i.e., those
unvisited nodes that are connected to it by an edge.

7.3.2 Depth-first and breadth-first search

At each stage, we must decide which fringe vertex to visit next. The choice depends
on what we're trying to do. Two common choices are:

depth-first Visit the newestfringe vertex next: the one that most recently became a
fringe vertex. (Last in, first out: implementation could use a stack.)

breadth-first Visit the oldestfringe vertex next. (First in, first out: implementation
could use a queue.)

In the breadth-firstapproachall neighbours of the start nodget visited first, then the
next nearest, and so on. This strategy would be good for a group of people searching
for something in a maze. In contrast, the neighbours of the starting node tend to be
visited later in thedepth-firstapproach. As the next place to visit is usually close by,
this approach is good for a single person searching a maze.

Compared with depth-first search (heavy arrows in figure 7.4 below), the edges
traced out in breadth-first search (figure 7.5) tend to form a squatter and bushier pattern,
with many short branches. Figure 7.2 shows the kind of shapes to expect. Note that

100 7. Graph algorithms

unlike when searching @iee (e.g., in implementing Prolog), the difference between
breadth first and depth-first search igraphis not just theorderin which vertices are
visited. Thepath actually takeralso differs.

Figure 7.2: depth-first and (right) breadth-first search trees

7.3.3 More general priority schemes

There’s a more general way of choosing a fringe vertex to visit next. Whenever we
add a vertex to the fringe, we assign p@ority. At each stage, the fringe vertex with
the highest priority will be visited next. If there are several fringe vertices with equal
priorities, we can choose any of them; the algorithm is non-deterministic.

We can choose any scheme to assign priority. If we let highest priority = newest,
we get depth-first search; if we let highest priority = oldest, we get breadth-first search.
So both breadth-first and depth-first search can be done using priorities. We'll see the
effects of other priority schemes $8.3.

7.3.4 The data structure: priority queue

There is a data structure callegrority queue for implementing general, user-chosen
priorities. It generalises stacks and queues. It's often implementetiespaand any
access typically takes log time (with stacks and queues, access takes constant time).
For our purposes, we’ll assume the priority queue has the following specification.
7.3.4.1 Specification of priority queue
The priority queue consists tiiples (x,y, p), where:
e XIS anentry;
e yis alabel of x (it can be any extra information we want);

e pisthepriority of x. It's a number.

7.3. Algorithm for searching a graph 101

Itis xthat’s in the queue (with labgland priorityp). Soat most one-entry is allowed
in the queue at any time.

1. We can ‘push’ onto the priority queue any entrywith any labely, and any
priority p.

2. The push has no effectxfis already an entry in the queue with higher or equal
priority thanp. l.e., if the queue contains a trip(&, z, q), wherez is any label
andq is a priority higher than or equal 1o, the pusidoesn’t do anything.

3. Anyx-entry already in the queue but with lower priority thars removedl.e.,
if the queue contains a triplg, z, g), with any labelz, andq a lower priority
thanp, then the pusireplacest with (x,y, p).

4. A ‘pop’ operation always removes from the queue (and returns) an @niry)
with highest possible priority.

7.3.5 Theuvisit algorithm in detalil

In ‘pseudo-code’, our algorithm is as follows. The nodes of the graph are represented
by the numbers 1 ta.

visited n): global Boolean array, initially all false; x: integer
repeat with x=1ton
if not visitedx) then visit(x)
end repeat
procedure visit(X)
X,¥,Z: integer % to represent vertices
empty the fringe (priority queue)
push X into fringe, with label x, and any priority
repeat until fringe is empty
0 pop (X,y,p) from fringe % So x was the queue entry; y was its label;
% and p was the (highest possible) priority.
11 set visited x) to true % Anything else you want to do to the new
% current node, X, such as printing it, do it here!
% y tells us the edge (y,x) used to get to x.
12 repeat for all nodes z connected to x by an edge
13 if not visitedz) then push z into fringe, with label x and chosen priority
14 end repeat
15 end repeat
16 end visit

H OWO~NOOT AWDNH

Note that in line 10, there could be several fringe nodes of equal highest priority.
The priority queue non-deterministically pops any such node. The repeat in line 12
does not need to test all nodesf the graph: it just examines the body of liref the
linked list (§7.2). The order in which line 12 runs through thés not specified. The
labely in line 10 is useful because it tells us how we got to the current nodé/e

102 7. Graph algorithms

usually want to know theoute we took when searching the graph, as well as which
nodes we visited and in what order. Knowing the order that we visited the nodes in is
not enough to determine the route: see the example below.

7.3.6 Depth-first search: example

Let’s see how the algorithm runs on an example graph. Visitingéeest fringe vertex
first conducts alepth-first search of the graph, only moving along edges. Running
visit(1) on the graph in figure 7.3, represented by the linked list below, visits nodes in
the order 1,7,6,3,5,4,2. See figure 7.4.

6 5

Figure 7.3: another graph

1-2—-5—-6-7

2—1—6

3—-4—-5—6

4—3—5

5—-1—-3—-4

6—41—-2—3

7—1
1 2 3 4
7 6 5

Figure 7.4: depth-first search

The ‘tree’ produced (heavy arrows in figure 7.4) tends to have only a few branches,
which tend to be long. Cf. figure 7.2 (left).

7.3. Algorithm for searching a graph 103

7.3.6.1 Execution

We show the execution as a table. Initially, the fringe consist4,6f 0), where the la-

bel x indicates we've just started, 1 is the starting node, and 0 is the (arbitrary) priority.
We pop it from the fringe. The immediate neighbours of 1 are numbered 2, 5, 6 and
7. Assume we push them in this order. The fringe becof@gs 1), (5,1,2), (6,1,3),
(7,1,4), in the format 0f§7.3.4.1; the third figure is the (increasing) priority.

| fringe | pop |visited| print | push | comments |
(1,%,0) | (1,%,0) 1 2,1,1)
)
)
)

(

(S,
(6,
(7

Y

A WN

Y
Y
Y

|k PP

(7,1,4) 7 edge No unvisited neighbours of 7, so
‘4,7 no push.

NN N TN TN TN N
oM Noo N
PR RRPRPRPRPPR
WNRDNWNR

-

-

(6,1,3) 6 edge| (2,6,5) | ‘Backtrack’ to visit 6 from 1. Push

‘1,6' | (3,6,6) | of 2 has better priority than the
current fringe entry2,1, 1), which
Is replaced.

\U

N N | N N

(5,1,2) | (3,6,6) 3 edge| (4,3,7) | The view of 5 from 3 replaces the

(2,6,5) ‘6,3 | (5,3,8) | older view from 1.

(3,6,6)

(2,6,5) | (5,3,8) 5 edge| (4,5,9) | Again, this push involves updat-

(4,3,7) ‘3,5 ing the priority of node 4.

(5,3,8)

(2,6,5) | (4,5,9) 4 edge| - No unvisited neighbours of 4, so

(4,5,9) ‘5,4 no push.

(2,6,5) | (2,6,5) 2 edge| - Another backtrack! No unvisited
‘6,2’ neighbours of 2, so no pushes.

empty Terminate call ovisit(1). Return.

7.3.6.2 Warning: significance of the label 'y’

Notice that the nodes were visited in the order 1,7,6,3,5,4,2, but that this does not
determine the route. Did we go to 2 from 1 or from 6? Did we arrive at 4 from 3, or
from 5? That's why we have to keep the lalgeh the queue, so that we can tell how

we got to each node. This will be even more important in section 8, where the route
taken is what we're actually looking for.

Exercises 7.3
1. What route do we get if we start at 2, or 4, instead of 1?

2. What alterations to the code §.3.5 would be needed to implement the fringe
with an ordinary stack?

104 7. Graph algorithms

3. Work out how to deduce the path taken in depth-first search, if you know only (a)
the graph, and (b) the order in which its nodes were visited. (The main problem,
of course, is to handle backtracking.) Can you do the same for breadth-first
search (see below)?

7.3.7 Breadth-first search: example

Visiting the oldest fringe vertex firstonducts areadth-first search of the graph,

only moving along edges. Runningsit(1) on the graph above leads to the sequence
1,2,5,6,7,3,4 of visits shown in figure 7.5. Note that the tree is squatter than in the
depth-first case.

5 6 7

Figure 7.5: breadth-first search

Exercise 7.4 Work out the execution sequence and try it from different starting nodes.

7.3.8 Run time of the algorithm

Let's simplify by approximating, and only counting data accesses. The fringe is ad-
ministered by a priority queue that stores nodes in priority order. As we said, this
is often implemented by a heap: a kind of binary data structure. If a heap contains
m entries, accessing it (read or write) takes tilngm in the worst case (cf. binary
search§6.1.2). Suppose the graph hasodes ana edges. Clearly the fringe never
contains more than entries, so let's assume each fringe access takeddongworst
case). However, we count only 1 for emptying the fringe in line 7 of the code, and 1
for the first push in line 8. Obviously, eacfsitedarray access takes constant time:
independent oh ande.

e [nitialisation of then elements of theisitedarray to false (line 1), tha reads
from itin line 3, and initialisation of the fringe (lines 7-8): total2n+ 2.

e Every node is removed from the fringe exactly once (line 10). This invatves
accesses, each taking tirmdogn. Total: nlogn.

7.4. Paths and connectedness 105

e For each node visited, every neighbouris obtained from the linked list (only
count 1 for each access to this, since we just follow the links) and checked to
see if it's been visited (lines 12-16; count 1). As each graph ¢rg? gets
checked twice in this way, once frorand once fronz, the total time cost here
IS2x 2e=4e.

e Not all zconnected tx get written to the fringe, because of the test in line 13.
If zis put on the fringe when &t thenx will not be put on the fringe later, when
at z, asx will by then have been visited. So each edge results in at most one
fringe-write. Hence the fringe is written to at mastimes. Each write takes
logn. Total: elogn.

Grand total:2n+ 2+ nlogn+4e+elogn. This is satisfactorily low, and the algorithm
Is useful in practice. Neglecting smaller terms, we conclude:

The algorithm takes tim&((n+ e)logn) (i.e., log linear time) in the
worst case.

The performance of graph algorithms is often statefi(ase), not justf(n).

7.4 Paths and connectedness

Definition 7.5 If x, yare nodes in a graph path from xtoyin the graph is a sequence
Vo, V1, ..., Vk Of nodes, such thdt > 0, vo = X, vk =Y, and(Vv;,Vvi;+1) is an edge for each
I with 0 <'i < k. Thelength of the path ik — i.e., the number oédgesdn it. The path
Is non-backtracking if the v; are all different.

Figure 7.6: paths

In figure 7.6 (left), the heavy lines show the path ACHFDE from A to E. (They
also represents the path EDFHCA from E to A — we can't tell the direction from the
figure.) This path is non-backtracking. In the centre, BHFEHC (or BHEFHC?) is a
path from B to C, but it's dacktracking patlbecause H comes up twice. On the right,
the heavy line is an attempt to represent the path HFH, which again is backtracking.

106 7. Graph algorithms

1 2 3 1 2 3
@

Figure 7.7: a disconnected graph; a depth-first search tree for it

7.4.1 Connectedness

The graph of figure 7.3 isonnected: there’s a path along edges between any two
distinct (= different) vertices. In contrast, the graph on the left of figure 7.7 is discon-
nected. There’s no path from 1 to 3.

What if we run the algorithm on a disconnected graph like this? In depth-first
mode, it traces out the heavy lines on the right of figure ¥igit(1) starts at 1 and
worms its way round to 2,6,5 and 7. But then it terminates,\asit 3) is called (line
3 of the code ir§7.3.5). Whatever priority scheme we adopsjt(1) will only visit all
nodes reachable from 1.

7.4.2 Connected components

The nodes reachable from a given node of a graph foonormected componentf

the graph. Any graph divides up into disjoint connected components; it's connected
iff there’s only one connected component. On any graph, a calls@f(x) visits all

the nodes of the connected component contairin@bviously,visit can’t jump be-

tween connected components by using edges, so we have to set it off again on each
component. Line 3 of the code does this: it will be executed once for each connected
component. The number of timesit is called counts the connected components of
the graph.

Exercises 7.6

1. Try the algorithm on figure 7.7, starting at 4, in depth- and breadth-first modes.
How often isvisit called in each case?

2. LetG = (V,E) be a graph. Define a binary relatienonV by: x~ yif x=yor
there is a path from to y. Check that- is an equivalence relation dh (The
equivalence classes are the connected componets of

7.5 Trees, spanning trees

We've already seen in the examples that our algorithm traces out a tree-like graph: the
heavy lines in figures 7.4-7.5 and 7.7. We can say quite a lot about trees.

7.5. Trees, spanning trees 107

7.5.1 Trees
A tree is a special kind of graph:
Definition 7.7 (very important!) A treeis a connected graph with no cycles.

But what's a cycle?

Definition 7.8 A cyclein a graph is a path from a node back to itself without using a
node or edge twice.

So paths of the form ABA, and figures-of-eight such as ABCAEDA (see figure 7.8),

are not cycles.
E A B
AH B
D C

Figure 7.8: these are not cycles!

In figure 7.7, 1,2,6,5,1 is a cycle.
A B & C @2
®,

Figure 7.9:A (tree),B,C (not trees)

In figure 7.9,A is a tree.B has a cycle (several in fact), so isn’t a tré2has no
cycles but isn’'t connected, so isn't a tree. It splits into three connected components,
the ringed 1,2 and 3, which are trees. Such a ‘disconnected tree’ is cdtiexbta

7.5.2 Spanning trees

A call of the visit procedure always traces out a tree. For as it always visits new
(unvisited) nodes, it never traces out a cycle. Moreover, if the grapglbnsected,

a singlevisit call visits all the nodes, so the whole algorithm’s trace is a tree. As
it contains all the nodes, it's calledspanning treefor the graph. If the graph is
disconnected we get a spanning tree for each connected component.

Definition 7.9 (very important!) A tree containing all the nodes of a graph (and only
using edges from the graph) is called@anning treefor the graph.

108 7. Graph algorithms

Only a connected graph can have a spanning tree, but it can have more than one
spanning tree. The breadth-first and depth-first searches above gave different spanning
trees (figures 7.4 and 7.5).

A spanning tree is the quickest way to visit all the nodes of a (connected) graph
from a starting node, as no edge is wasted. The algorithm starts with the initial vertex
and no edges. Every step adds a single node and edge, so the number of nodes visited
Is always one ahead of the number of edges. Because of this, the number of edges in
the final spanning tree mne lesghan the number of nodes.

If we run the algorithm on &ree, it will trace out the entire tree, using all the edges
in the tree. (A tred is connected, so the algorithm generates a spanning trefeT .

Every edge ofl isin T'. For if e= (x,y) were not an edge df’, then asx andy are
in T/, there’s a (non-backtracking) path fromo y in T’; and this path, plus, gives a
cycle in the original tre§ — impossible. S@’ = T.) Thus we see:

Proposition 7.10 Any tree withn vertices has — 1 edges.

7.5.3 Testing for cycles

If the originalconnectedyraph (withn nodes) has n edges, it must have a cycle. For,
any edge not in a spanning tree must connect two nodes that are already joined by a
path in the tree. Adding the extra edge to this path gives a cycle.

We can use this to find out if @onnectedgraph has a cycle. Just count its ver-
tices and edges. There’s a cycle iff (no. of edgegno. of vertices). If the graph is
disconnected, we could do this for every connected component in turn.

Another way to test for cycles is to modify the algorithfi7 3.5) to check, each
time round the main loop of lines 9-17, whether the test in line 13 is failed more
than once.If this ever happens, there’s a cyclegcause the algorithm has found two
‘visited’ neighboursz of the current nod&. One suclzis the node one step higher in
the tree thax (if any) — this is the node we arrived afrom. The otherz indicates a
cycle.

Example: when at node 5 during the depth-first search of figure 7.4, nodes 1 and 3
were rejected as fringe contenders because they had been visited earlier. Node 3 is the
previous node in the search tree; but node 1’s visibility from 5 indicates the presence
of a cycle, as we can travel from 5 to 1 directly and then return to 5 via the tree (via 6
and 3). See figure 7.10.

Exercises 7.11

1. LetU = (SL) whereSis the set of London tube stations, apdy) € L iff xis
exactly one stop away from IsU a connected graph? Is it a tree? If not, find
a cycle.

2. Show that any two distinct nodesy of a tree are connected byuaiquenon-
backtracking path.

3. Show thatanygraph (even if disconnected) with at least as many edges as ver-
tices must contain a cycle. [Hint: you could add some edges between compo-
nents.]

7.6. Complete graphs 109

Figure 7.10: cycle 51635

4. Show that no graph with 10 nodes and 8 edges is connected.

5. Show that any connected graph withodes andh — 1 edges (for soma > 1) is
atree. Find a graph withnodes anah — 1 edges (for soma) that’s not a tree.

6. LetG = (V,E) be a graph witm nodes, and’ = (V,P) a subgraph (so every
edge ofT is an edge o65). Show thafTl is a spanning tree @ iff it's connected
and hasr— 1 edges.

7. Figure 7.11 is a picture of the maze at Hampton Court, on the river west of
London, made by Messrs. Henry Wise and George London in 1692. Draw a
graph for this maze. Put nodes at the entrance, the centre, and at all ‘choice
points’ and dead ends. Join two nodes with an edge if you can walk directly
between them without going through another node. Is the graph connected? Is
it a tree? What information about the maze is not represented in the graph?

///IJJ/AA \&\

Figure 7.11: Hampton Court maze

7.6 Complete graphs

Graphs with the maximum possible number of edges are cedisgplete graphs.

110 7. Graph algorithms

Definition 7.12 A graph(V,E) is said to becompleteif (x,y) € E for all x,y € V with
X £ Y.

Exercises 7.13
1. What spanning trees are obtained by depth first and breadth-first search in the

complete graph of figure 7.12? How many writes to the fringe are there in each
case?

4

Figure 7.12: a complete graph on 6 vertices

2. How many edges does a complete grapim gartices have?
7.7 Hamiltonian circuit problem (HCP)

Definition 7.14 A Hamiltonian circuit of a graph is a cycle containing all the nodes
of the graph. See figure 7.13.

NN

Figure 7.13: a graph (left) with a Hamiltonian circuit (right)

Definition 7.15 The Hamiltonian circuit problem (HCP) asks: does a given graph
have a Hamiltonian circuit?

7.8. Summary of section 111

Warning HCP is, it seems, much harder than the previous problems. Our search
algorithm is no use here: we want a ‘spanning cycle’, not a spanning tree. An algorithm
could check every possible ordered list of the nodes in turn, stopping if one of them is
a Hamiltonian circuit. If the graph hasnodes, there are essentially at most-1)! /2
such lists:n! ways of ordering the nodes, but we don’t care which is the start node (so
divide byn), or which way we go round (so divide by 2). Whether a given combination
is a Hamiltonian circuit can be checked quickly, so the-1)! part dominates the time
function of this algorithm. Butn— 1)! is not O(n¥) for any numbek. It is not even
0(2") (exponential time).

There is no knowmolynomial time solution to this problem: one with time func-
tion O(n¥) for somek. We will look at it again later, as it is one of the important class
of NP-complete problems.

Exercise 7.16 (Puzzle)Consider the squares on a chess-board as the nodes of a graph,
and let two squares (nodes) be connected by an edge iff a knight can move from one
square to the other in one move. Find a Hamiltonian circuit for this graph.

7.8 Summary of section

We examined some examples of graphs, and wrote a general purpose graph searching
algorithm, which chooses the next node to examine according to its priority. Different
priorities gave us depth-first and breadth-first search. We saw that it traced out a span-
ning tree of each connected component of the graph. We can use it to count or find
the connected components, or to check for cycles. It runs in tiia+ e)logn) at

worst (on a graph witim nodes an@ edges). We defined a complete graph, and briefly
looked at the (hard) Hamiltonian circuit problem.

8. Weighted graphs

Now we’ll consider the more exotic but still usefwkeighted graph. We’ll examine
some weighted graph problems and algorithms to solve them. Sedgewick’s book has
more details.

8.1 Example of weighted graph

Imagine the nodes A-E in figure 8.1 are towns. An oil company wants to build a
network of pipes to supply all the towns from a refinery at A. The numbers on the

112 8. Weighted graphs

edges represent the cost of building an oil pipeline from one town to another: e.g.,
from A to D it's £5 million. The problem is to find the cheapest network.

Figure 8.1: a weighted graph

8.1.1 Whatis a weighted graph?

We can represent the map above by a weighted graph. The nodes are the towns A-E,
all edges are present, and the weight on each edge is the cost of building a pipe between
the towns it connects.

Definition 8.1 Formally, aweighted graphis a triple(V,E,w), where:
e (V,E)isagraph

e W:E — {1,2,...} isamap providing a number (the weight) for each vertex pair
(‘edge’).

We require thatv(x,y) = w(y,x) for all (x,y) € E (so that each edge gets a well-
defined weight). We’'ll usually assume that weighted grapph&,w) are connected
(this means thatV, E) is connected).

So a weighted graph is just a graph with a number attached to each edge. The numbers
might be distances, travel times or costs, electrical resistances, etc. Often, depending
on the problem{V,E) will be a completegraph, as we can easily represent a ‘non-
edge’ by a very large (or small) weight. We can also use fractional or real-number
weights if we want. Figure 8.1 represents a complete weighted graph, as all edges are
present.

8.2 Minimal spanning trees

A proposed network of pipes can be represented lyaph (V,P). V is the set of
towns as above, arfdis the set of proposed pipelines. We put an edgg) in P iff

8.2. Minimal spanning trees 113

Figure 8.2: two possible pipelines

a pipe is to be built directly betweerandy. Two possible pipe networks are given in
figure 8.2.

Clearly, the cheapest network will have only one pipeline route from any town to
any other. For if there were two different ways of getting oil from A to B (e.g., via C or
via E and D, as on the left of figure 8.2), it would be cheaper to cut out one of the pipes
(say the expensive one from A to E). The remaining network would still link all the
towns, but would be cheaper. In general, if theregy@ein the proposed network, we
can remove an edge from it and get a cheaper network that still links up all the towns.
So:

e the pipes the company builds should forrtree.

The right hand pipeline network in figure 8.2 does not connect all the towns. As every
town should lie on the network,

e the tree should be spanning tre€of the complete graph with vertices A-E).

e And its total cost should be least possible.

Definition 8.2 A minimal spanning tree (MST) of a (connected) weighted graph
(V,E,w) is a graphV,P) such that:

1. (V,P)is connected
2. PCE

3. the sum of the weights of the edgesHins as small as possible, subject to the
two previous constraints.

A minimal spanning tre¢V, P) will be atree,for (as above) we could delete an edge
from any cycle, leaving edges still connecting all the nodes but with smaller total
weight. BecauséV, P) must be connected, it must bespanning treef (V,E).

A MST will give the oil company a cheapest network. There may be more than
one such tree: e.g., if all weights (W, E, w) are equal, any spanning tree(®t E) will
do. Though one might find a MST in the graph of figure 8.1 by inspection, this will be
harder if there are 100 towns, say. We need an algorithm to find a MST.

114 8. Weighted graphs

8.3 Prim’s algorithm to find a MST

Our search algorithm gavespanning treecan we modify it to give aninimalone in a
weighted graph? Let’s try the following: when we push a node (town) onto the fringe,
its priority will be the length of the edge joining it to the current node. A short length
will mean high priority for popping, a long one low priority. See below for an example
of this algorithm in action.

8.3.1 Proving correctness of Prim’s algorithm

This idea seems intuitively correct. The graph will be explored using the shortest
edges first, so the spanning tree produbad a good chancef being minimal. But
how can we beurethat italwaysdelivers a MST iranyweighted graph? After all, the
algorithm operates ‘locally’, working out from a start node; whereas a MST is defined
‘globally’, as a spanning tree of least weight. Maybe the best edges to use are at one
side of the graph, but if we start the algorithm at the other side, it'll only find them at
the end, when it's too late. (S&8.5.1 below for an apparently similar case, where
these difficulties seem fatal.)

So we shoulgroveits correctness. This is not so hard if we know the following
property of MSTs. (If we don't, it can be seriously nasty!)

8.3.1.1 Useful ‘separation’ property

Let (V,E,w) be any connected weighted graph, @né (V,P) be any spanning tree of
it. We say thafl has theseparation property’ if:

(x) Givenanydivision of the nodes iV into two sets,T containsone of the shortest
(lowest weight) edges connecting a node in one set to a node in the other.

That is, there is no edge B between the two sets that is shorter than every edde in
between them.

Example 8.3 Figure 8.3 shows a weighted graph, the weight y) being the distance
between the nodesandy as measured in the diagram. The bold lines form a spanning

Figure 8.3: does this tree have the separation property? (weigigtance)

8.3. Prim’s algorithm to find a MST 115

tree; the light lines are the graph edges not in the tree. We've chosen an arbitrary
division of the nodes into sek§, Y. If the spanning tree has the separation property, no
graph edge fronX to Y should be shorter than the three heavy tree edges crossing the
X=Y division.

Warning — what the separation property is not. There might bemore than one
shortest edge froX to Y. (They’ll all be of equal length, of course. For example, this
happens if all graph edges have the same length!) The separation property says that
least one of thens in the spanning tree.

The separation property is talking about shork¥esty edgesnot shortest pathgt
is falsein general that the shortegath between any node of and any node oY is
the path through the tree. Look for yourself. The top two nodes in figure 8.4 below are
connected by an edge of length 12. But the path between them in the tree shown has
length4+ 7+ 6+ 5= 22— and the tree does in fact have the separation property.

8.3.1.2 Separation property for MSTs?

What's all this got to do with Prim’s algorithm? Well, we will show treaty MST has
the separation property.et’'s see an example first.

Example 8.4 The heavy edges in figure 8.4 form an MST (you can check this later).
On the left X is the set of nodes in the circle, a¥ids the rest. There are two least-Y

Figure 8.4: the MST has one of the least weight X-Y (and Z-T) edges

edges (of weight 5), and one of them is indeed in the MST shown, as the separation
property says. On the right, | used a different divisi@dn; T, of the same weighted
graph. The shorte&—T edge is of length 3 — and again, it's in the MST.

So the separation property might just hold for this MST, if we checked al>ééts

But in general? In fact, any MST has the separation property. But we can’t establish
this by checking all possible MSTs of all weighted graphs — there are infinitely many
of them, and we wouldn’t have the time. We will have to prove it.

Theorem 8.5 Any MST has the separation property.

116 8. Weighted graphs

PrRoOOF We will show that any spanning tree that does not have the separation property
is not an MST.
Suppose then that:

e T is a spanning tree of the weighted grajpphE,w).
e there’s a division oV into two setsX,Y

e there’'s an edge = (x,y) € X x Y that's shorter than any edge dfconnecting
X andyY.

(For an example, see the spanning tree shown in figure 8.3.) We’'ll show thatot a
MST.

AsT is aspanning tree, there’s a unique patf iconnectingctoy (the dotted line
in figure 8.5). This path must cross over frofrto Y by some edge’ = (X,y’) € E.
(We let€ be any cross-over edge if there’s more than one.)

Figure 8.5: a short edgefrom X toY

Let's replaceg byein T. We getT* = (V, (PuU{e}) \ {€}) (see figure 8.6). Then:
e Aseis shorter tha®, T* has smaller total weight than.

e T* hasno cyclesAlthough addingeto T produces a unique cycle, takiegout
destroys it again.

e T*isconnectedFor if zt € V are different nodes, there was a path froto t
in T. If this path didn’t use the edgg, it’s still a path inT*. If it did use€/, then
the path needed to get froxhto y. But we can get fronx’ toy' in T*, by going
viae. So we can still get fromatot in T*.

SoT* is a spanning tree. Bat* has smaller total weight thah. SoT was not a
MST. The separation property is proved. QED.

8.3. Prim’s algorithm to find a MST 117
‘ I I

Figure 8.6: new spanning tr¢ (¢ replaced bye)

8.3.1.3 Proof of correctness of Prim’s algorithm

We're not finished yet. We showed any MST has the separation property; but we still
have to show our algorithm builds a MST.

Theorem 8.6 Prim’s algorithm always finds a MST.

PROOFE Assume for simplicity that all graph edges have different weights (lengths).
(The algorithm finds a MST even if they don’t: proving this is a tutorial exercise.) Let
T be any MST. At each stage, our proposed algorithm adds to its half-builiXtree
the shortest possible edge connecting the nodeswaith the remaining nodeg. (As

all edges have different weights, there is exactly one such edge.) By the ‘separation’
property (theorem 8.5), the MST also includes this edgesv&oy edge of the tree built

by the algorithm is inT .

Example 8.7 Figure 8.7 shows Prim’s algorithm half way through building a MST for
the graph in figure 8.4.

Next
edge
to add

Figure 8.7: Prim’s algorithm in progress

118 8. Weighted graphs

X is the half-built tree — the nodes already visited.is the rest. In the next step,
the algorithm will add the edge shown, as it has highest priority on the fringe at the
moment (check this!) But by the separation property, this edgeeishortestX—Y
edge. Soitis also in any MST — e.g., it's in the one shown in figure 8.4.

But all spanning trees have the same number of edgesl(where the whole
graph has nodes; see proposition 7.10). We know the algorithm always builds a
spanning tree — so it choosas- 1 edges. Bufl is a MST, so also has— 1 edges.
Since the algorithm only chooses edges in the MS&nd it chooses the same number
of edgesii— 1) asT has, it follows that the tree built by the algoritheiT. So Prim’s
algorithm does indeed produce a MST. This is true even with fractional or real-number
weights. QED.

Exercises 8.8 (challenge!)

1. Deduce that if all edges in a weighted graph have different weights, then it has
auniqueMST. Mustthis still be true if some edges have equal weigGehit
still be true?

2. Is it true that any spanning tree (of a weighted graph) that has the separation
property is a MST of that graph? (This, ‘separation propestyMST’, is the
converse of theorem 8.5.)

3. Here’s a proposed algorithm to find a MST of a connected weighted @aph

1 Start with any spanning tree T of G.
2 Pick any X—Y division of the nodes of G.

3 If T doesn’t have a shortest X—Y edge, replace an X-Y edge of T
with a shorter one [as in the proof in §8.3.1.3, especially figures 8.5
and 8.6].

4 Repeat steps 2—-3 until T doesn’t change any more, whichever X, Y
are picked.

(a) Does this terminate?
(b) If it does, is the resulting trek a MST of G?
(c) If so, would you recommend this algorithm? Why?

Warning If we run Prim’s algorithm on the graph in figure 8.1, starting from node
A, we get a MST — we just proved this. If we start it from node D, we also get a MST
— we proved that the algorithralwaysgives a MST. So wherever we start it from,
it delivers a MST. Of course, we may not always get the same one. But if all edges
had different weights, we would get the same MST wherever we started it from (by
exercise 8.8(1) above).

Soto get an MST, there is no need to run the algorithm from each node in turn, and
take the smallest tree found. It gives an MST wherever we start it from.

8.3. Prim’s algorithm to find a MST 119

Try the algorithm on figure 8.1, starting from each node in turn. What is the total
weight of the tree found in each case? (They should all be the same!) Do you get the
same tree?

8.3.2 Implementation and execution of Prim’s algorithm

We can use thevisit’ algorithm of§7.3.5. When we pustx, y) onto the fringe (priority
queue) we give it priorityv(X,y), wherelow weight = high priority for popping(We
can write this as ‘puslx, y,w(x,y)) onto fringe’.) E.qg., if edge (A,C) has weight 4 we
push (A,C,4) onto the fringe. When we pop an edge (x,y) we pop onehigtiest
priority — i.e., lowestweight.

A run of MST(A) for the weighted graph in figure 8.1 looks like this. First, push
(A,%,0) into queue. The run is then as shown in the table. The MST we get is ‘AB,
AC, CD, CE’, of total length 12:

| fringe | pop |visited| print | push | comments |

(A,%,0) | (A *,0) A (B,A 1)

(C,A3)

(D,A,5)

(E,A,8)
(B,A1) | (B,A 1) B edge | (C,B,4) | C,D, andE are already in the
(C,A,3) ‘A,B" | (D,B,6) | fringe with better priority, so
(D,A,5) (E,B,9) | the pushes have no effect.
(E,A,8)
(C,A)3) | (C,A3) C edge | (D,C,2) | Both pushes have better pri-
(D,A,5) ‘A,C" | (E,C,6) | ority than the current fringe
(E,A,8) entries, which are replaced.
(D,C,2) | (D,C,2) D edge | (E,D,7) | This push has lower priority
(E,C,6) ‘C,D’ than current entryE, C, 6) for

E, so no dice.
(E,C,6) | (E,C,6) E edge —
‘C.E

empty Terminate.

Figure 8.8 shows the MST found in this run.

8.3.3 Run time of Prim’s algorithm

On graphs with few edges, the algorithm runs in ticg¢n+ e) logn), where there are
n nodes ane edges. Cf§7.3.8.

Exercise 8.9 (Kruskal's algorithm for MST) Another algorithm to find an MST, due
to Kruskal, runs inD(eloge). This exercise is to check that it works. L&t E,w) be a
connected weighted graph witimodes an@ edges. The algorithm works as follows:

1 Sort the edges in E. Let the result be E = {s1,...,S} in order of weight,
so that w(sy) <w(sp) <--- <W(S).

120 8. Weighted graphs

Figure 8.8: the MST found from figure 8.1

2 setT:=0seti:=1

3 repeat until T contains n— 1 edges

4 if the graph (V,TU{s}) has no cycles then set T:=TU{s}
5 add 1 to i

6 end repeat

7 output T

Let T be the output. S& C E.
1. Show tha{V,T) is a spanning tree 4V, E).
2. Show thatV,T) has the separation property.

3. Deduce thatV,T) is a MST of (V,E,w). (It may help to simplify by assuming
all edges ok have different weights, but try to eliminate this assumption later.)

4. Show that, using a suitable sorting algorithm (suggest one), Kruskal’s algorithm
runs in timeO(eloge).

8.4 Shortest path

Suppose in a weighted graph we want to find the path of least possible length from
nodex to nodey. We use the algorithm to build a spanning tree, starting &br each
nodez added to the tree, we keep a tally of its distad¢® from x through the tree

as built so far, and add to the fringe all neighboucs$ z with priority d(z) +w(zt).

We stop whery gets into the tree. The shortest path fraro y is then the unique
path fromx to y through the tree. This algorithm is essentially due to Dijkstra (a big
cheese). Exercise: try it on an example. And prove it correct!!

8.5. Travelling salesman problem (TSP) 121

8.5 Travelling salesman problem (TSP)

Example: Consider figure 8.1 again. Suppose the numbers on the edges represent road
distances between the towhsA salesperson lives iA and wants to make a round

trip, visiting each city just once and returning home at the end. The manager conjures
a figure,d, out of the air. If the whole trip is more thathmiles, no expenses can be
claimed.

Problem: Is there a route of length d?
We can formalise this problem using weighted graphs.

Problem (TSP): Given a complete weighted grap¥i, E, w) (that is,(V,E) is a com-
plete g;zaph), and a numbdy is there a Hamiltonian circuit i, E) of total length at
mostd”~

As the graph is complete, there will be many Hamiltonian circuits, but they may all
be longer thaml.

This is not a toy problem: variants arise in network design, integrated circuit de-
sign, robotics, etc. See Harel's book, p.153. TSP is another hard problem. The ex-
haustive search algorithm for HCP also works for TSP. Therérarel)! /2 possible
routes to consider (see page 111). For each route, we find its length (this can be done
in time O(n)) and compare it withd. As for HCP, this algorithm runs even slower
than exponential time. There is no known polynomial time solution to TSP. Some
heuristics and sub-optimal solutions in special cases are known.

8.5.1 Nearest neighbour heuristic for TSP

One might hope that the following algorithm would find the shortest Hamiltonian cir-
cuit in any weighted grap{Vv, E,w):

1 start by letting currentnodebe any node of V
2 repeat until all nodes have been visited
3 go to the nearest node to currentnode
% [the node x such that w(x, currentnode is least]
4 end repeat

This is called thenearest neighbour heuristic. It works locally, choosing the
nearest neighbour to the current node every time. It's the nearest algorithm to Prim’s
algorithm for finding a MST §8.3), and it is similarly fast. But while Prim’s algorithm

Yimportant: roads between the towns may not be straight! I.e., there may be threestouwasdz,
with w(X, z) > w(X,y) +Ww(y, z).

2This is the ‘yes-no’ version of TSP. The ‘original’ version is ‘given a complete weighted graph
(V,E,w), find a Hamiltonian circuit of minimal length’.

122 8. Weighted graphs

Is correct, actually delivering a MST, the performance of the nearest neighbour heuris-
tic is absolutely diabolical in many cases — it's one of the worst TSP heuristics of all.
The energetic will find seriously incriminating evidence in Rayward-Smith’s book; the
rest of us may just try the heuristic on the graph shown in figure 8.9.

start 1

15 1

1

Figure 8.9: a bad case for nearest neighbour

One might easily think that the nearest neighbour heuristic was ‘intuitively a cor-
rect solution’ to TSP. It takes the best edge at each step, yes? But in fact, it is far
from being correct. Intuition is surely very valuable. Here we havawaful warning
against relying on it uncritically. Nonetheless, nearest neighbour is used as an initial
stage in some more effective heuristics.

Exercise 8.10 Suppose we had a polynomial time algorithm that solved TSP. Show
how it could be used to solve the ‘original’ version of TSP mentioned in footnote 2.
(Creativity is called for.)

8.6 Polynomial time reduction

Though similar to TSP, HCP seems rather easier. Wefaanalisethis using the

reduction of section 5, with the new feature that now we want the reduction tadie

Suppose we have a fast methHeaf transforming a grapks into a complete weighted
graphG* plus a numbed, so thatG has a Hamiltonian circuit ifG* has a round trip
of length< d. Thatis:

e Gis an instance of HCP,
e F(G) =(G*,d) is an instance of TSP,
e the answers (yes or no) are the sameGas for(G*, d).

Then any fast metholll of solving TSP could also be used to solve HCP quickly. For,
given an instanc& of HCP, we transform it quickly int& (G) and applyM, which is
also fast. Whatever answit gives toF (G) (yes or no) will also be the correct answer
to G. By fast we meantakes polynomial time (see§7.7) in the worst case. This
technique is callegolynomial time (p-time) reduction. See Part Ill.

8.6. Polynomial time reduction 123

Figure 8.10: an instandg@ of HCP ... but s it a yes-instance?

Example 8.11 (p-time reduction of HCP to TSP) Suppose that we have an instance
of HCP: a graph such as the one shown in figure 8.10.
We can turn it into an instance of TSP by:

e defining the distance between nodemndy by

~J1, if xisjoined toy in the graph,
d(x,y)_{Z’ otherwise

e defining the boundd’ to be the number of nodes.

m— — distance 1

= distance 2

Figure 8.11: the instande(G) of TSP;d = 6

We get figure 8.11. This conversion takes time ab@uif there aren nodes, so is
p-time. Then

e any Hamiltonian circuit in the original graph yields a round trip of lengtin
the weighted graph.

e Conversely, any round trip in the weighted graph must obviously comtain
edges; if it is of length< n then all its edges must have length 1. So they
must be real edges of the original graph.

124 8. Weighted graphs

So the original graph has a Hamiltonian circuit iff there’s a route of lergthin the
corresponding weighted graph. E.g., in figure 8.11, the routes,, c3,C4,Cg,Cs,C1)
has length 6.

8.7 NP-completeness taster

So HCP is ‘no harder’ than TSP. In fact they are about the same difficulty: one can
also reduce TSP to HCP in p-time, though this is more tricky. Both TSP and HCP are
examples oNP-complete problems. Around 1,000 problems are now known to be
NP-complete, and they all reduce to each other in p-time. In practice, NP-complete
problems arentractable: currently, even moderately large instances of them can't
be handled in a reasonable time, and most people believe that no fast solution exists.
We'll examine NP-completeness in Part Ill.

8.8 Summary of section

We discussed weighted graphs and applications. Using a ‘short edge = high priority’
fringe popping strategy, we found an algorithm for finding a minimal spanning tree
(MST) in a weighted graph, and proved it correct. There’s a unique MST if all edges
have different weights. We gave an algorithm to find the shortest path between two
nodes of a weighted graph. We mentioned the (hard) travelling salesman problem, and
showed that any fast solution to it would provide a fast solution to the Hamiltonian
circuit problem £7.7). No polynomial time solution to either of these is known.

8.9 Partllin a nutshell

Section 6: When choosing an algorithm it helps to know roughly the tifje) that
it'll take to run on an input of a given size As there are many inputs of a
given sizen, we usually consider the worst or the average case. Worst case
run time estimates are easier to find. Usually a rough estimate will do: we
get f(n) = c-g(n) + smaller terms. The uncertainties in the estimate may be
important and should be borne in mind.

g above can often be calculated by a recurrence relation. Because many algo-
rithms use one of a few standard techniquesften has one of the following
forms: constanipogn; n;nlogn;n?; or 2", and we say the algorithm runsgon-

stant time, log time, etc.

Implementation should use careful experiments and may involve optimising the
code.Keep it simplas a sound rule.

O notation is useful for comparing growth rates of functions. For functiggs
if f(n) <c-g(n) for all large enougim then we say that is O(g). If f is O(g)
andgis O(f), we say thatf is 6(g).

8.9. Part Il in a nutshell 125

Section 7: A graph is a collection of vertices anodes,some of which are connected
by edges.Many problems can be represented as problems about graphs. A com-
mon graph searching algorithm proceeds from a start node through the graph
along edges to other nodes. At each point, the immediate neighbours of the cur-
rent node are added to the ‘fringe’ of vertices to visit next. Which fringe vertex
is actually picked for visiting depends on gsority, which can be assigned in
any way. E.g., giving top priority to the most recent fringe entrant (stack), or the
oldest (queue), leads tepth-first andbreadth-first search, respectively.

Each call visits an entireonnected componenbf the graph: those nodes ac-
cessible from the start node by going along edges. The algorithm traces out a
tree (aconnectedgraph with nacycleg made of graph edges and including ev-
ery vertex (aspanning treg. If the graph is not connected (hasl connected
component), the algorithm will have to be called more than once. So we can
use it to count connected components. If it ever examines a node that was vis-
ited earlier (not counting the immediately previous node), the graph e

On a graph withn nodes anck edges, the algorithm runs in worst case time
O((n+e)logn).

We saw that running the algorithm on a tree gives the whole tree, which therefore
has 1 less edge than the number of nodes.

A complete graphis one with all possible edges. Bamiltonian circuit in a
graph is a cycle visiting all nodes. The problem of whether a given graph has
such a circuit — thédamiltonian circuit problem (HCP) — is hard. Exhaus-

tive search can be used; there is no known polynomial time algorithm (i.e., one
running in timeO(nX) in the worst case, for somi§ to detect whether a graph
has such a cycle.

Section 8: In a weighted graph we attach a positive whole number (a weight, or
length) to each edge. A common problem is to find a spanning tree of least
possible total weight (a minimal spanning tree, or MST). We showed that the
algorithm above will produce a MST if at each stage we always choose the
fringe node closest to the visited nodes. We can use a similar method to find the
shortest path between two nodes.

Given a weighted graph and a bouhdhetravelling salesman problem (TSP)
asks if there’s a Hamiltonian circuit in the graph of total weightd. This
problem has many applications, but is hard. The position is similar to HCP.

We canreduce HCP to TSP rapidly (with worst case time function of the order
of a polynomial). Any putative fast solution to TSP could then be used to give
a fast solution to HCP. In fact one can also reduce TSP to HCP in p-time, so
HCP and TSP are about equally hard. They are ‘NP-complete’ (see Part IlI).
Currently they are intractable, and most people expect them to remain so.

Part |l

Complexity

In Part | of the course we saw that some problems are algorithmically unsolvable.
Examples:

e the halting problem (will a given TM halt on a given input?)

e deciding the truth of an arbitrary statement about arithmetic.

But there are wide variations in difficulty even amongstsbkrableproblems. In prac-
tice it's no use to know that a problem is solvable, if all solutions take an inordinately
long time to run. So we need to refine our view of the solvable problems. In Part Il
we will classify them according to difficulty: how long they take to soltdote: the
problems in Part 11l are solvable by an algorithm; but they may not be solvable in a
reasonable time.

Earlier, we formalised the notion ofsilvable problemas one that can be solved
by a Turing machine (Church’s thesis). We did this to be able to reason about al-
gorithms in general. We will now formalise tlemmplexity of a problem, in terms
of Turing machines, so that we can reason in general about the varying difficulty of
problems.

We will classify problems into four levels of difficulty or complexity. (There are
many finer divisions).

1. The class P of tractable problems that can be solved efficiently (in polynomial
time: p-time).

2. The intractable problems. Even though these are algorithmically solvable, any
algorithmic solution will run in exponential time (or slower) in the worst case.
Such problems cannot be solved in a reasonable time, even for quite small in-
puts, and for practical purposes they are unsolvable for most inputs, unless
the algorithm’s average case performance is good. The exponential function
dwarfs technological changes (figure 6.1), so hardware improvements will not
help much (though quantum computers might).

3. The class NP of problems. These form a kind of half-way house between the
tractable and intractable problems. They can be solved in p-time, buhbg-a
deterministic algorithm. Could they have p-time&leterministic solutions?

This is the famous question ‘P = NP?" — is every NP-problem a P-problem?
The answer ishoughtto beno, though no-one hgsrovedit. So these problems
are currently believed to be intractable, but haven’t been proved so.

126

127

4. The class NPC of NP-complete problems. In a precise sense, these are the hard-
est problems in NP. Cook’s theorem (section 12) shows that NP-complete prob-
lems exist (e.g., ‘PSAT’); examples include the Hamiltonian circuit and travel-
ling salesman problems we saw in sections 7-8, and around 1,000 others (so
far). All NP-complete problems reduce to each other in polynomial time (see
68.6). So a fast solution to any NP-complete problem would immediately give
fast solutions to all the others — in fact to all NP problems. This is one rea-
son why most people believe NP-complete problems have no fast deterministic
solution.

Why study complexity? It is useful in practice. It guides us towards the tractable
problems that are solvable with fast algorithms. Conversely, NP-complete problems
occur frequently in applications. Complexity theory tells us that when we meet one, it
might be wise not to seek a fast solution, as many have tried to do this without success.

On a more philosophical level, Church’s thesis defined an algorithm to be a Turing
machine. So two Turing machines that differ even slightly represent two different
algorithms. But if each reduces quickly to the other, as all NP-complete problems
do, we might wish to regard them as teamealgorithm —even if they solve quite
different problems!So the notion of fast reducibility of one problem or algorithm to
another gives us a higher-level view of the notion of algorithm.

So in Part Il we will:

1. define the run time function of a Turing machine,

2. introduce non-deterministic Turing machines and define their run time function
also,

3. formalise fast reduction of one problem to another,

4. examine NP- and NP-complete problems.

9. Basic complexity theory

We begin by introducing the notions needed to distinguish between tractable and in-
tractable problems. The classes NP and NPC will be discussed in sections 10 and 12.
9.1 Yes/no problems

We will only deal with ‘yes/no problems’, so that we can ignore the output of a Turing
machine, only considering whether it halts & succeeds or halts & fails. This simplifi-

128 9. Basic complexity theory

cation will be especially helpful when we consider non-deterministic Turing machines
(section 10).

Definition 9.1 A yes/no problem is one with answer yes or no. Each yes/no problem
has a set oinstances— the set of valid inputs for that problem. The yes-instances
of a problem are those instances for which the answer is ‘yes’. The others are the
no-instances.

Many problems can be put in yes/no form:

| Problem | instances | yes-instances | no-instances |
primality binary binary binary
representations | representations | representations
of numbers of primes of non-primes
Halting all pairs all those pairs | the pairs
problem: (codegM),w) (code&M),w) (codgM), w)
DoesM halton | whereM is a such thaiM halts| such that
inputw? standard TM, & succeeds omw | doesn’t halt &
andw a word of succeed omw
C
HCP all (finite) graphs witha | graphs with no
graphs Hamiltonian Hamiltonian
circuit circuit
TSP all pairs(G,d), | all pairs(G,d) | all pairs(G,d)
whereGis a such thats has & such thats has
weighted graph,| Hamiltonian no Hamiltonian
andd >0 circuit of length | circuit of length
<d <d

9.1.1 Acceptance, rejection, solving

Even if we ignore its output, a Turing machine can still ‘communicate’ with us by
halting & succeeding (‘yes’), or halting & failing (‘no’), so it can answer yes/no prob-
lems. Of course, we may have to code the instances of the problem as words, so they
can be input to a Turing machine. For Had€M) is given to the TM, adM itself

IS a machine, not a word. The coding of instances into words shoulddsenable:

we do not allow unary representation of numbers, and cheating (such as coding all
yes-instances as ‘yes’ and all no-instances as ‘no’) is not allowed.

Definition 9.2

1. A Turing machineM is said toaccepta wordw of its input alphabet iV halts
and succeeds on input

2. M is said toreject wif M halts and fails on inpud.

3. A Turing machinéM is said tosolvea yes/no problem A if:

9.1. Yes/no problems 129

e every instance of A is a word of the input alphabetb{or can be coded
as one in a reasonable way);

e M accepts all the yes-instances of A;
e M rejects all the no-instances of A.

Example 9.3

1. In example 3.6 we saw a Turing machine that halts and succeeds if its input
word is a palindrome, and halts & fails if not. This machine solves the yes/no
problem isw e I* a palindrome?, wherel is its input alphabet.

2. The universal Turing machithédoesnotsolve the halting problem. If we give it
codgM) xw for some standaril and wordw € C*, thenU does halt & succeed
on the yes-instances (see the table aboBe}.it doesnot halt & fail on all the
no-instances: iM runs forever orw, U never halts orodgM) = w.

9.1.1.1 Our problems must have infinitely many y- and n-instances

We do not consider yes/no problems with only finitely many yes-instances, or only
finitely many no-instancesThey are too easy! E.g., if the yes-instances of a yes/no
problem X are jusy,...,yn, @ Turing machinévl can solve X by checking to see if
the input wordw is one of they;. (They; are ‘hard-wired’ intoM; we can do this as
there are only finitely many of them.) If it i8) halts and succeeds; otherwise it halts
and fails. No ‘calculation’ is involved. E.g., ‘Is 31 prime?’ has no instances at all, and
Is solved by the trivial Turing machine whose initial state is halting.

This may seem odd. For example, one of the Turing machines in figure 9.1 (both
with input alphabeC, say) solves the yes/no problem:

‘Is (a) Goldbach’s conjecture true, and ()= w?’

The instances of this problem are all wordsf C. The yes-instances are thassuch
that (a) Goldbach’s conjecture is true, and {bx w. The no-instances are the rest.
So if the conjecture is true, everwy € C* is a yes-instance, s solves it Y halts &
succeeds on any input). If not, eveme C* is a no-instance, sN solves it (\ halts &
fails on any input). Of course, we don’t know whicBlut the problem is solvable-
either byY or by N.

- Jv =

Figure 9.1: Which machine solves Goldbach’s conjecture?

For a problem to be solvable according to our definition, we are only concerned
that a Turing machine solution exists, not in how to find it. So Goldbach’s conjecture
really is too easy for us! We are only interested in problems with infinitely many yes-
and infinitely many no-instances.

130 9. Basic complexity theory

9.2 Polynomial time Turing machines

As for algorithms in section 6, we want to define how long a Turing machine takes to
run. Of course, we have to bear in mind that a Turing machine can run for different
numbers of steps on different words of any given length. Here, we considerotisé
caseonly. The warnings in section 6 about doing this still apply: e.g., our Turing
machine may usually be very quick, taking the maximum time on only a few inputs.

9.2.1 Run time function of Turing machines

Definition 9.4 LetM = (Q,X,1,0o,d,F) be a Turing machine. We writémey (n) for
the the length of théongestrun of M on any input of sizen (we want the worst case).
timey (n) will be « if M does not halt on some input of lengthWe call the function
timey : {0,1,2,...} — {0,1,2,...,0} therun time function of M.

9.2.2 p-time Turing machines

Definition 9.5 A Turing machineM is said torun in polynomial time (p-time) if
there is some polynomial(n) = ag+ a;n+ agn’ + ... + axnk, where the coefficients
ao, .. .,ax are non-negative whole numbers, such that:

timey(n) < p(n) foralln=0,1,2,....
That is,no run ofM on any word of lengtim lasts longer tharp(n) steps.

Turing machines that run in p-time are considered to be fast. This is a broad but still
useful categorisation — see the Cook—Karp thesis below.

Note We do not use th&-notation in the definition oM running in p-time (e.g.,
by saying timey(n) is O(nk)’ for somek). We require thatimey(n) should be at
mostp(n), not just at most- p(n) for some constant. This is no restriction because
c- p(n) is a polynomial anyway. But further, we require thiey (n) < p(n) for all

n, however smallso that we are sure what happens forrallWe have to be a bit
more careful than with the more liber@lnotation, but there are some benefits of this
approach:

Proposition 9.6 p-time Turing machines always halt.

PROOEF If M is p-time then for some polynomigain), M takes at mosp(n) steps to
run on any wordv of lengthn. But p(n) is always finite, for any. SoM always halts
(succeeding or failing) on any input; it can’t run forever. QED.

The following exercise shows that insisting on a firm polynomial bound on run
time for all nis not really a restriction.

Exercise 9.7Let f : I* — ¥* be any partial function. Show that the following are
equivalent:

9.3. Tractable problems — the class P 131

1. f = fy for some Turing machin® running in p-time,

2. f = fi+ for some Turing machin®* such thatimey(n) is O(n*) for somek.
Hint: for ‘1", tabulate all ‘short’ inputs foM* as a look-up table.

9.3 Tractable problems — the class P

Our main interest is in when a problemtiactable: when it has a reasonably fast
solution. Here we define ‘tractability’ formally, and look at some examples.

9.3.1 Cook—Karp thesis

Tractable problems can be solved in a reasonable time for instances of reasonable size.
We would like to make this more precise.

The graph in figure 6.1 on page 90 showed fiaynomialg 100, etc.,) grow at a
manageable rate. The degree of the polynorkial (lefinition 9.5) can usually be mas-
saged down to 5 or better. Aegn < nfor all n > 1 (exercise: prove it!), even run time
functions such as logn are bounded by a polynomial (herg). The problems we saw
in sections 7—8 are all solvable in polynomial time, except (probably) the Hamiltonian
circuit and travelling salesman problems, HCP and TSP. Al-&ta&mi’s algorithms
for arithmetic are tractable, as are most sorting and other algorithms in common use.

On the other hand, problems that only have algorithms exjonentiarun time
function (or worse) are effectively no better than unsolvable ones for even moderately
large inputs, unless their average-case performance is better (here, we only consider
worst-case).

So, rather as in Church’s thesis, we will equatetthetable problemsga vague no-
tion, since what is tractable depends on our technology and resources) wiiokihe
lems solvable in p-timéa precise notion). Doing so is sometimes called Glo®k—

Karp thesis, after S. Cook (of whom more later), and R. Karp. The Cook—Karp thesis
is useful, but a little crude; more people disagree with it than with Church’s thesis.
(For one thing, some people think average-case complexity is more important than
worst-case in practice.)

932 P

Adopting the Cook—Karp thesis, we make the following important definition.

Definition 9.8
1. Avyes/no problem is said to leactable if it can be solved by a Turing machine
running in p-time.

2. Analgorithm is said to be tractable if it can be implemented by a Turing machine
that runs in polynomial time.

3. We write P for the class of tractable yes/no problems: those that are solvable by
a Turing machine running in polynomial time.

132 9. Basic complexity theory

9.3.2.1 Pisclosed under complementation

The class P has some nice properties. We look at one now, to practice using P. We will
see more nice properties of P in section 11.

Definition 9.9 Thecomplementof a yes/no problem is got by exchanging the answers
yesandno. What were the yes-instances now become the no-instances, and vice versa.
E.g., the complement of ‘is prime?’ is ‘isn composite?’.

If S is a class of problems (e.g., P), we write-$ for the class consisting of the
complements of the problems g Clearly,§ = co-co-S.

Proposition 9.10 P is closed under complementation.
That s, if Ais in P, the complementary problem to A is also in P. OrPco-P.

PROOF For if A is a yes/no problem solvable in p-time by a Turing machhewe

can rewireM so that (a) the halting states are no longer halting states, so that entering
one now causes a halt and fail, and (b) when®&¥es in a ‘halt and fail’ situation (no
applicable instruction), control passes to a new state, which is halting. The rewired
machineM’ (see figure 9.2) also runs in p-time. A8 accepts exactly the words that

M rejects, it solves the complementary problem to A, which is therefore in P. QED.

1 __halting rewire M to get
M sglves |~~~ states -~ _ _ M' solving
Rr.o em complementary
in
time - — _no applicable_- problem to A
P instruction ~ In p-time

Figure 9.2: sketch of why P is closed under complementation

Exercise 9.11 The proof above doesn’t explain in detail what happend ifries to
move left from square 0. How would you do this?
Show that co-P =P (i.e., not just').

9.3.2.2 Primality testing

It can be hard to tell if a problem is tractable. Here’s one that was open for 2000 years:

9.4. Intractable problems? 133

Primality problem: ‘given a whole numbex, is it prime?’ Non-primality (compos-
iteness) problem: ‘given a whole numbeiis it composite (i.e., not prime)?’

One solution is to check all possible factgrsf x (all integersy with 2 <y < /X).

If xis given in binary, then an input of lengthcould represent axof up to abou®",
which hasy/2" = (1/2)" possible factors. This approach will therefore take exponential
time.

Until quite recently, no p-time algorithm for primality or for non-primality test-
ing was known, though people were hopeful that one would be found, and some su-
perb probabilistic algorithms had been devised. But in 2002, Agrawal, Kayal, and
Saxena, from Kampur, India, published an ingenious (deterministic) polynomial-time
algorithm that determines whether an input numivés prime or composite. (They
instantly became world-famous). So primality testing is now known to be tractable.

A great deal of work has been done in this area, but as it is a crucial field for
cryptography (see Harel’'s book), some of the work is probably not published.

9.4 Intractable problems?

Definition 9.12 An algorithm is said to béntractable if it can’t be implemented by
a p-time Turing machine. A yes/no problem is said tardeactable if (i) it is algo-
rithmically solvable, but (ii) it is not tractabléll solutionsnecessarilyuse intractable
algorithms.

Some problems are known to be intractable. There are many examples from logic:
one is deciding validity of sentences of first-order logic written with only two variables
(possibly re-used: likelx3dy(x < y A Ix(y < x))). This problem is solvable, but all
algorithms must take at least exponential time.

But many common problems have not been proved to be either tractable or in-
tractable! Typical examples are HCP and TSP. All knaigorithmsto solve these
problems are intractable, but it is not known if fh@blemsare themselves intractable.
Maybe there’s a fast algorithm that everyone’s missed. For reasons to be seen in sec-
tion 12, this is not thought likely.

Besides TSP and HCP, problems in this category include:

Propositional satisfaction (PSAT) Here we consider formulas @iropositional
logic. They are written using an alphabletvith atoms, py, po, ps,...,* connectives
A (and),V (or), — (not), — (implies) and« (iff), and brackets), (. This is as for
arithmetic §5.4), but there are no quantifiers this time. Any formula is a word, of
and can be given as input to a Turing machine.

We can assign varying truth values (true or false) to the atoms. We lwfdea
particular assignment: so e.dp,p1) = true, h(p,) = false is possible. Then we can

1As in section 546 is 3 symbolsp, 4, and 6. So all formulas can be written with a finite alphabet
including p and the numbers 0-9 say, plus—, etc.

134 9. Basic complexity theory

recursively work out the truth value of any formula

h(-A) =true iff h(A)=false

h(AAB) =true iff h(A)=h(B)=true

h(Av B) =true iff atleastone ofi(A),h(B) are true

h(A— B) =true iff eitherh(A) is false orn(B) is true or both
h(A «— B) =true iff h(A)=h(B).

So for example, ih makesp = p; true andg = po false, then:

e h(p— q) =false,
e h(((p—q) — p) — p) =true,
e h((pAQ)V(=pA—Q)) =h(p« q) =false.

Problem (PSAT, propositional satisfiability) Given a formula&A, is there some as-
signment to the atoms oA such thah(A) = true? That is: i\ satisfiable?

A Turing machine could check whethArs satisfiable by checking every valuation
for the atoms ilA—i.e., searching the ‘truth table’ & We want to find out how long
this might take. For each atom there are 2 possible valuesufp), so forn atoms
there are2" possible valuations. So we need to estimate how many Atbas, in the
worst case.

To simplify, we assume that every atom has the same length (say 1) as a word.
Whilst this will be false in general (e.g., the 1,000,000th at@uooooe Will have
length 8), it will be true e.g., for up to 10,000 atoms if we use base 10,000 (say) for
arithmetic; and solving PSAT for an arbitrary formula with 10,000 different atoms is
currently unthinkable.

Under this assumption, for amy> O we can easily find formulas withatoms that
have length at mogir. We can prove this by induction an If r = 1 then certainly
both p and—p have length< 6. If it’s true for r, let A haver atoms and be of length
< 6r. Choose an atorp not occurring inA. Then(pAA), (p— A), (-AA—p), etc.,
haver +1 atoms. Their length is the length Af plus 1 forp (thanks to our simplifying
assumption), plus 2 for (,), plus 1 for the connective, etc.), and at most 2 for
possible-s. The total is< (length ofA) 4+ 6 < 6r +6 = 6(r +1). QED?

Hence for anyn (divisible by 6) there are formulas of lengthwith at leastn/6
atoms. So in the worst case, there are at [24Stdifferent valuations for A of length
n. So the run time on an input of lengthis at least2"/6 = (\6@)” in the worst case
— exponential. There are more sophisticated methods (tableaux etc.), but no known
tractable one. PSAT is NP-complete — see section 12.

2In fact if B,C haves, t atoms (all different) and are of length6s— 5, 6t — 5, respectively, the(BAC),
(B—C), (-BVv-C), etc., haves+t =r atoms and are of length 6s— 5+ 6t —5+ 5= 6r — 5. This gives
even more formulas.

9.5. Exhaustive search in algorithms 135

9.5 Exhaustive search in algorithms

We now discuss a common obstacle to finding a fast solution: the need to conduct an
exhaustive search for it.
Broadly, the yes/no problems we've seen fall into two types:

(3) Is there a needle in the haystack?We want to show that there is a solution
amongst the many possibilitie©neway to do so (we cannot rule out the possi-
bility that there are other ways) is to actually find a solution — e.g., a factor of a
composite number, a (short) Hamiltonian circuit (HCP and TSP), or a valuation
making a formula true (PSAT).

(V) Is there no needle in the haystackVe want to show that none of the possible
solutions is in fact a solutionComplementsof type () problems are of this
type. E.g., to showA is not satisfiable, we want to establish that theress
assignmenh that make® true.

Type () problems intuitively seem harder than typ#,(just as finding an algorithm
for a given problem is easier than proving there’s no algorithm that works. But often
it's not known whether they really are harder, in the sense that the time complexity of
a Turing machine solution is necessarily higher.

Exhaustive search (try all possible solutions) can be used) ind), but it leads
to intractability, as the number of possible solutions tends to rise at least exponentially
with the input size. It could be called exhausting search. We very much want to avoid
it.

But at least, for any possible solution that the search throws up, we generally have
a fast (p-time) way of checking that it actually is a solution. This is certainly so in all
the cases we've seen. For example, it's fast to check whether a given possible factor
of a number really is a factor. It’s fast to check whether a possible Hamiltonian circuit
(= a listing of the nodes in some order) really is a Hamiltonian circuit, and whether
a given Hamiltonian circuit has total lengthd. It’s fast to check whether a given
valuation of the atoms of a formula actually makes the formula true.

So the real barrier to efficient solution of these problems is the search part.

Now for some problems, a clever search strategy has been invented, rendering them
tractable. For example, consider the following yes-no problem.

| Problem | instances | yes-instances | no-instances |
Spanning tree | all pairs(G,d), | those pairs those pairs
weights whereG is a (G,d) whereG | (G,d) where all
connected has a spanning | spanning trees
weighted graph,| tree of weight | of G have
andd > 0Ois a <d weight>d
number

This can be solved by finding a MST (section 8) and comparing its total weight
with d. Not only is the length comparison is fast, but there’s also a fast (log linear)
algorithm to find a MST. It's as though we have a metal detector that guides us to the
needle if there is one, so we don't need to examine the whole haystack.

136 9. Basic complexity theory

For other problems such as HCP and TSP (tyg 6o clever search strategy has
yet been found, and no tractable solutions are kndwn.
So problems subdivide further:

(31) Problems of type) for which a clever (i.e., p-time) search strategy is available.
(32) Problems of type) for which no clever search strategy is known.

The type) problems subdivide similarly. E.gis every spanning tree of length
> d? is type(V1), as we can find a MST and see if it weighs in at more tthaithe
table gives more examples.

J) Is there a needle? | V) Is there no needle?
1) a fast search strategyDoes the weighted ‘|s every spanning tree
is known graphG have a of the weighted graph
spanning tree of weight G of total weight> d?
<d?
2) no fast search TSP, HCP, PSAT (and | ‘Is every Ham. circuit
strategy is known as yetall NP-complete of length> d?’ ‘Is the
problems) given formula
unsatisfiable?’

The point is that we know where to look for a tree of lengtld if there is one. We
can narrow down the search space to a small size that can be searched tractably, given
that we have a fast algorithm to check that a given possible solution to the problem is
actually a solution.

Now, importantly, if we can narrow down the search space in this way, then it's
just as easy to find a solution as to check that there isn’t a solution! Both involve
going through the same shrunken search spacay@g31) and (V1) problems are
equally easy (they are tractable)his really follows from the fact that P is closed
under complement (proposition 9.10). Once we know a tyg(oblem is tractable
(in P), its complement, a typ&) problem, will also be tractable.

The type (2) problemseento be intractable, but the only (!) source of intractabil-
ity is our inability to find a clever strategy to replace exhaustive search. They would
become tractable if we had a good search strategy.

Which problems become tractable if we discGuhe cost of exhaustive search?
This is a kind of science fiction question: what would it be like if ...? The answer is:
over a thousand commonly encountered ones: the NP problems. They are af)type (
their complements, of type&/}, would simultaneously become tractable, too.

And could there really be a clever search strateigy these problems, one that
we've all missed? Most people think not, but no-one is sure. We explore these inter-
esting questions in the next section, using a new kind of Turing machine.

3There are fast probabilistic and genetic ‘solutions’ to TSP that are sometimes very effective, but they
are not guaranteed to solve the problem.

“There are several ways of doing the discounting, depending on what kind of information we want
from the exhaustive search. The simplest way is to discount the cost of search ia{ywelklems —
those involving simply seeing whether there exisisd solution among many possibilities — and this is
the approach we will take in section 10. Another way usegles.

137

10. Non-deterministic Turing machines

A non-deterministic Turing machine is one that can makehoicesof which ‘instruc-

tion’ to execute at various points in a run. So what happens during the noot is
determinedin advance. Such a machine gives us an exhaustive search for free, be-
cause by using a sequence of choices it can sigpgssthe solution (which part of

the haystack to check). We don't specify which choices are made, or how, because we
are interested in solving problems when we’re given a search for free, not in the mech-
anism of the search. We can view the non-deterministic parts of a non-deterministic
Turing machineN as ‘holes’, waiting to be filled by a clever search strategy if it's ever
invented. (Such holes are rather like variables in equations —xergx® +2x+1=0

— and we know how useful variables can be.) In the meantime we can still study the
behaviour ofN — by studying non-determinism itsélf.

So: a non-deterministic Turing machine is like an ordinary one, but more than one
instruction may be applicable in a given state, reading a given symbol. If you like, the
instruction tabled can havemore than oneentry for each paifg,a) € Q x Z. When
in stateq and reading, the machine can choose which instruction to execute. This is
why these machines are called non-deterministic: their behaviour on a given input is
not determined in advance.

10.1 Definition of non-deterministic TM

Definition 10.1 Formally, anon-deterministic Turing machine (NDTM) is a 6-tuple
= (Q,Z,1,q0,8,F) as before, but nowd is a (totaf) function
3: (Q\F) x & — 2Q>x{01-1}

Here, 2% is the set of all subsets of (the power set oK). E.g., if X = {1,2} then
={0,{1}, >{(2} {1,2}}. If X hasn elements the@* has2" elements, which explains
the notatior2”. Sod(q,a) is now asetof triples(d’,a,d) in Q x ~ x {0,1,—1}.

10.1.1 Operation of NDTM

A non-deterministic Turing maching has a one-way infinite tape and a single head,
as usual. (We can consider 3-tape variants etc., if we whhb&gins in statej with

LAt first sight, a guessing machine may allow even more for free than exhaustive searches. We'll see
in §10.4 that in fact it doesn’t!

2We can taked to be atotal function, rather than @artial one, because if we want there to be no
applicable instruction in statgwhen reading symbda, we defined(q,a) = 0 (empty set).

138 10. Non-deterministic Turing machines

its head in square 0. In stagigand reading symba, N works like this:
e If g € F thenN halts and succeeds.

e OtherwiseN can go into statg’, write symbola’, and move the head in direc-
tiond € {0,1, -1}, forany(d,a,d) € 6(q,a).

e N has free choice as to whicly,a’,d) € 6(g,a) to take.

e 9(g,a) = 0 means that there is no applicable instruction. In this &akalts and
fails. N also halts and fails if its head tries to move left off the tape.

Of course, there are NDTMN such thad(qg,a) always either contains a single triple
(d,a,d) oris empty. Such aN will behave like an ordinary Turing machine — deter-
ministically. So the ordinary Turing machine ispecial cas®f a non-deterministic
Turing machine. We have agageneralisedthe definition of a Turing machine, as
we did with then-tape Turing machine in section 3 (thdape model generalises the
ordinary one, as could be 1).

10.1.2 Input and output of NDTM

As usual, thenput of a NDTM N is taken to be the contents of the tape before the run,
up to but not including the first blank.

However, we have a problem in defining tbetput of N for a given input. This
Is becauséN may well have more than one successful run (one in which it halts and
succeeds) starting with input. For each such run we may get a different ‘output’ —
so which one is the ‘real’ output ™ onw?

We could defineN’s output to be thesetof all wordsx of Z such that after some
successful run df, the tape contents (up to the first blank) arée., fy(w) would be
the set of all possible outputs bfonw. So fy would be a (totad) function fy @ 1" —

2%,

This is getting complicated. Again we simplify matters by considering only yes/no
problems. With thesd\’s ‘output’ is just yes or no, according to wheth¢@ccepts or
rejects the input. So we don’t need to consider its output word(s) at all.

Therefore we do not define the output of a NDTM. But we do need to revise
definition 9.2 (acceptance/rejection of input) to cover NDTMs.

10.1.3 Accepting and rejecting for NDTMs

Definition 10.2 A Turing machineN (non-deterministic or otherwise) is saidgocept
the inputw € 1 * if there exists successful run dfl (one in whichN halts and succeeds)
givenw as input. If all runs on inpuv end in a halt-and-failN is said to rejectv. This
agrees with our previous definition whihis deterministict

3If there is no successful run dfonw, thenfy (w) = 0. So again we can takig, to be atotal function.
4If N is deterministic then it has only one run @n So by definition,N acceptsw if N halts and
succeeds on inpwt, and rejectsv if it halts & fails onw. This is just as before (definition 9.2).

10.2. Examples of NDTMs 139

The definition ofsolving a yes/no problem is the same as for deterministic Tur-
ing machines (definition 9.2)N should accept the yes-instances and reject the no-
instances.

There is a lot of dubious mysticism surrounding the way NDTMs make their
choices. Some writers talk about magic coins, others, lucky guesses, etc etc. In my
view, there is no magic or luck involved. According to the above definition, a NDTM
N accepts an inputv if it is possiblefor N to halt & succeed on inpu. If you re-
member this simple statement, you'll save yourself a lot of headadhesuld have
to make all the right choices — somehow — but we don’t need to say how! We are
not claiming that NDTMs are (yet) a practical form of computation. They are a tool
for studying complexity. As we said, non-determinism is a ‘hole’ waiting to be filled
in by future discoveries.

Exercise 10.3What's wrong with this argument: the non-deterministic Turing ma-
chine in figure 10.1 solves any yes/no problem, because given a yes-instance, it can
move to state;, and given a no-instance it can move to stgteAs it's non-determin-

istic, we don’t need to say how it chooses! [Look at the definition of solving.]

x,OJ
(x,x,0

z

Figure 10.1: a TM to solve any problem??

10.2 Examples of NDTMs

Let's see some examples. In each one, notice how the machine first guesses a solution,
and then checks that it really is a solution. Both processes are fast.

Example 10.4 (Non-primality testing) Given a numben, is it composite? We can
make a 2-track NDTM that:

1. guesses numbemwith 1 <m<n;
2. dividesn by m (deterministically, in p-time);

3. if there’s no remainder then it halts and succeeds (‘yes’); otherwise it halts and
fails (‘no’).

140 10. Non-deterministic Turing machines

(0,(0,00),0) Is (number on track 2)
= A bigger than 1 and less

no than (number on track 1)1

ql remainder 0 yes

B Divide (number on track 1
by (number on track 2)

A4

(x,(x,0),1
(x,(x,1),1
if x=0 or

N

g

remainder = 0

Figure 10.2: a NDTM solving non-primality problem

See figure 10.2. The input is a binary number, on trackNlnon-deterministically
writes out a number on track 2. Notice howo instructions are applicable in staig
when reading 0 or 1 on track N can write either O or 1 in track 2. But if it's reading
aAintrack 1, itmustwrite A and go to box A. This means that it writes Os and 1s until
the end of the input: it can’t run forever. It ends withhand goes to box A.

Now it halts and succeeds iff the number it wrote was not 0, dhe input
(subroutine A), and there’s no remainder on dividing the input by the guessed number
(subroutine B). A and B can be done deterministically in p-time, using ordinary long
division, etc.

Following figure 10.2 through, we see that the only way thatn halt and succeed
Is by finding a factor. If the input is composite, thercould possiblyhalt and succeed
— it has only (!) to guess the right factor. But if the input is prinNecannothalt
and succeed, whatever guesses it makes. It can only halt and fail. Nesatees the
non-primality yes/no problem.

In figure 10.3,N (in stateqg) has guessed ‘10?’ (in binary) as a factor of 55
(110111 in binary). It's about to guess the last digit, ‘?’". If it chooses 0, leaving ‘100’
= 4, it will halt & fail after B. But it could pick 1, leaving ‘101’ = 5. Then it will halt
and succeed. So it can possibly halt & succeed on this input, so 55 is not prime.

Figure 10.3: willN be lucky?

Exercise 10.5Why doesn't this approach work for the problemrigrime?’

10.3. Speed of NDTMs 141

Example 10.6 (Travelling salesperson problem) Aninstance consists of the dis-

tances between the cities, and the bodyall coded in some sensible manner (no unary

notation, etc.). The answer is ‘yes’ if there is a route of length and ‘no’ otherwise.
We can design a NDTNN that:

1. non-deterministically guesses a route around the cities;
2. works out its length (it can do this deterministically, in p-time);

3. if the length is< d then it halts and succeeds (‘yes’); otherwise it halts and fails
(‘no’).
Clearly, if there is a route of lengtd d thenN could possiblyhalt and succeed — it
only has to guess right in (i). But if there is no such rolMezannothalt and succeed.
It can only halt and fail. HencH solves TSP.

Example 10.7 (PSAT) Problem: Given a formula of propositional logic, isA satis-
fiable? Using a NDTM, we can guess an assignrheahd then easily check in p-time
whether or noh(A) = true.

Exercise 10.8 How can we solve the Hamiltonian circuit problem using a fast NDTM?

10.3 Speed of NDTMs

What does it mean to say that a non-deterministic Turing madiingns in p-time?
To answer this we have to defitieney(n), as we did for deterministic TMs i§9.2.1.

But becauséN can guess, there are now many possible run$ oh any given input
w € |*. The runs are of three kinds (see figure 10.4):

1. successful (accepting) runs that end in a halt & succeed;
2. rejecting runs (ending in a halt & fail);

3. infinite runs in whichN never halts.
There are several ways of defining the run timéof We will take the simplest:

Definition 10.9 (Run time function for NDTMs) timey(n) is the length of the long-
est possible run (i.e., the depth of the tree in figure 10.4) khabuld make on any
word of lengthn. Sotimey(n) < co.

Again, this definition reduces to that §9.2.1 whenrN is deterministic, as it then
has only one run on any input.

Exercise 10.10 (for mathematicians: cf. Knig’s tree lemma) Is definition 10.9
well-defined? What isimey(n) if N has arbitrarily long finite runs on words of length
n, yet no infinite run? Then there’d be no longest run.

But in fact this can’t happen! Show that for anyif for all r > 0 there is a run of
N of length at least on some wordv of lengthn, thenN must also have an infinite
run on somaw of lengthn.

SWe could follow Rayward-Smith and ignore the no-inputs. For most purposes (e.g., Cook’s theorem)
the choice doesn’t matter very much.

142 10. Non-deterministic Turing machines

accepting acc acc rejecting runs

runs (ending (ending in

in halt & infinite halt & fail))
succeed) FUNS acc acc rej

Figure 10.4: tree of runs of a NDTM on some input

10.4 The class NP

Definition 10.11 (p-time NDTMs) We say that a non-deterministic Turing machine
N runs in polynomial time (p-time) if there is a polynomiap(n) with positive coef-
ficients such thatimey(n) < p(n) for all n > 0. That is, no run oN on any input of
lengthn lasts longer thamp(n) steps.

This is as before. As for deterministic Turing machines, a p-time non-deterministic
Turing machine always halts (cf. proposition 9.6).

Definition 10.12 (The class NP of problems) We define NP to be the class of all
yes/no problems A such that there is some NDNNhat runs in p-time and solves A:
N accepts all the yes-instances of A, and rejects all the no-instances.

The class NP is very important. It is the class of ‘typg problems’ (se€9.5) that
would succumb to a clever search strategy. It contains many commonly occurring
problems of practical importance. For instance, each NDTM described in the examples
of §10.2 has p-time complexity, so PSAT, TSP, HCP, and compositeness testing are all
in NP. As Pratt proved in 1977, so is primality testing (it is now known to be in P).

We said that an NDTM is a Turing machine with ‘holes’ waiting to be filled by
a clever search strategy. In effect, all the hoped-for strategy needs do is to search the
tree of figure 10.4, to find an accepting run. Thus the remark in footnote 1 on p. 137 is
justified!

10.4.1 P =NP?

Clearly PC NP (simply because p-time deterministic TMs are special cases of p-time
NDTMs). It is not known whetheP = NP — this is probably the most famous open
guestion in computer science. Most computer scientists believe tgatlP, but they

may all be wrong. Unlike Church’s thesis, the question P = NP is precisely stated.
Whether P = NP or not shouldn’t be a matter of belief. We want to prove it, one way
or the other. A lot of work has been done, but no-one has yet published a proof.

10.5. Simulation of NDTMs by ordinary TMs 143

10.5 Simulation of NDTMs by ordinary TMs

We now show that although NDTMs seem faster, they can’t solve any more Y/N prob-
lems than deterministic Turing machines. This gives our last hefty chunk of evidence
for Church’s thesis.

The idea is very simple. We saw that NDTMs are just a quick way of doing an
exhaustive search. So now we’ll do the exhaustive search in full — deterministically.

As usual, we check the easy part first: NDTMs can do anything that ordinary TMs
can. This is true because a deterministic Turing machine is a special case of a NDTM.

Formally, given an ordinary Turing machii= (Q,Z,1,do,d,F), we can convert
itintoa NDTM,N = (Q,Z,1,q0,0,F), as follows. For each € Qandac Z, let

/ ~ J{%(g,a)}, if &(qg,a) is defined,
o(a.3) = {(b, otherwise.

ThenN behaves exactly @4 does — deterministically! SN solves the same problem
asM.
Now we check the hard part.

Theorem 10.13 Any yes/no problem solvable by a NDTM can also be solved by a
deterministic Turing machine.

PROOF [sketch] We will show that any NDTNN can be simulated by a 3-tape deter-
ministic Turing machiné/l. M will accept/reject the same input wordsids

The idea is thaM simulatesall possible run®f N on the given input. At each point
of the run ofN there is possibly a fork, whelN chooses which of several instructions
to execute. So the runs of form the branches of a tree (see figure 10.K).will
construct and search this tree in a breadth-first fashion, halting and succeeding as soon
as it finds a branch that ends in a ‘halt & succeed’Nor

The search must be breadth-first because branches corresponding toMuhsbf
never terminate (e.g., loops) ardinite. A depth-first search would takd off down
such a branch forever, never to return. But the next branch along might represent a
‘halt & succeed’ run, which is whal is looking for.

Breadth-first searches are expensive in memory usage. Fortunately, Turing ma-
chines have lots of memory!

1. Each node of the tree (see figure 10.4) corresponds to the configurafin of
when ‘at’ that node, namely the following information:
e the current state dfl,
e the current contents d¥’s tape,
e the position ofN’s head on its tape.
The configuration determines the possible next moves,@nd so determines
which nodes lie immediately below the current node in the tree. Note that the

tree isfinitely branching(i.e., there are only finitely many children of each
node), becausl has only finitely many choices in any configuration.

144 10. Non-deterministic Turing machines

2. We can represent a configurationNbby a wordsxt, where:

e sis aword representing the current staté&dk.g., the decimal state num-
ber),

e x iS a delimiter,

e t is a ‘2-track word’ withN'’s current tape contents (up to the last non-
blank character) in track 1, and an X in track 2 marking the current head
position (cf. section 3). Note thatcould be arbitrarily long but is always
finite.

If gis a state oN, wa word ofZ, andk > 0 a number, let us writeonfig g, w, k)
for the words=t corresponding to the configuration whe\ds in stateq, w is
on the tape, and the headMfis over squar.

3. Any level of the tree of runs dfl can be represented by a finite sequence of con-
figurations of the forns«t, each separated from the next by another delimiter,
sayx*x. Using this data storage methdd,can simulate\.

4. Initially, N’s input wordw is on tape 1 oM. M replaces it withconfig go, w, 0),
using tape 2 for scratch work (copying etc.).

5. Aftern cycles, the tree has been explored to depffoot = depth 0). Tape 1 of
M will hold all those labelled configuratiorss:t attached to nodes in levelof
the tree.

6. Now, for each step dfi, M updates tape 1.

7. First,M checks to see if any configuration so far on tape 1 is a ‘halt & succeed’
for N (i.e., it involves a halting state fdx). If M finds any, it also halts and
succeeds: the search is over.

8. Otherwise,M moves successively through the configuratisrg on tape 1.
Eachsxt corresponds to a node at lewelof the tree. It may have several
child nodesat leveln+ 1. there will be one for each possible move Mfin
the configuratiors«t. For each such possible moveMfin turn, M calculates
the configuration of the corresponding ‘child’ node: the new label’. M can
do this because it ‘knows’ the instruction tableNdf If S «t’ would involve a
negative head position, it is invalid and is ignored.

Otherwise M appends it to the end of tape 2. Tape 3 is used for rough work.
9. SoM works outall possible moves dfl in each configuratios«t, one after the

other. If there are no valid children (e.g.,Nfhas no applicable instruction in
this configuration) then no change is made to tape 2.

SAlternatively we could use the technique of section 4 and promdeith codgN) on another tape.
This would allowM to simulate any NDTM with the right alphabet!

’Note: M doesnot halt and fail as soon as it finds a single rurNbthat halts and fails, becauséher
runsof N may be successful.

145

10. Having done all children of this configuratiest, head 1 moves to the next con-
figuration on tape 1, and the process repeats, the new children being appended
to tape 2. And so on, through all configurations on tape 1.

11. When every configuration on tape 1 has been dealt with in this way, tape 2 holds
the configurations corresponding to leve} 1 of the tree.M can copy tape 2
back over tape 1 and go on to the next cycle (step 7 above). If tape 2 is empty,
this means that there are no valid children. The tree has notevd], soM
halts and fails.

Now if N acceptav then there isomesuccessful run dl onw. So somewhere in
the tree there’s a configuration of the form

() config g, w, m),whereq is a halting state oN.

M will eventually find it, and will also halt and succeed. Malso acceptsv.
On the other hand, il rejectsw, then every run oN onw ends in a halt-and-fail.
So (cf. exercise 10.10) the tree will be finite, of deptlsay, with no configurations of
the form(1). M will eventually try to construct levei + 1 of the tree, which is empty.
At that point,M halts & fails. SoM rejectsw too.
SoN andM solve the same yes/no problem. This completes the proof. QED.

11. Reduction in p-time

We now use Turing machines to formalise the technique we sd8.810f reducing

one problem to another in p-time. Tipstime reduction gives fast non-deterministic
solutions to new yes/no problems from known fast non-deterministic solutions to old
ones. It gives a measure of the relative hardness of yes/no problems.

11.1 Definition of p-time reduction ‘<’

Definition 11.1 (p-time reduction) Let A, B be any two yes/no problems (not neces-
sarily in NP or even solvable by a Turing machine).

1. LetX be a deterministicTuring machine. We say that reducesA to B if:

(a) for every yes-instanog of A, fx(w) is defined and is a yes-instance of B
(b) for every no-instance of A, fx(w) is defined and is a no-instance of B.

We wantX to be deterministic because it should be ‘genuinely fast’, and have an output.

146 11. Reduction in p-time
2. We say that Areduces toB in polynomial time (or p-time) if there exists a
deterministic Turing machin¥ running in p-time that reduces A to B.
3. We writeA < B if A reduces to B in polynomial time.

4. We writeA ~ B if A <B andB <A.

If A <B then as in§8.6 we can use a fast solution to B to solve A quickly, by first
reducing the instance of A to an instance of B of the same ‘parity’ (yes or no), and then
applying the fast solution to B.

™™ to ™™ to
—1—> reduce > solve B
AtoB
TM that solves A

Figure 11.1: ifA < B, and we are given a solution to B, then we can solve A

Warning A < B implies that, but is1ot the same asany fast solution to B can be
used to solve A quickly. There might be other ways of using B to solve A than via
reduction (have a look at exercise 8.10 again).

Example 11.2 By example 8.11, HCP reduces to TSP, and the reduction can easily
done by a deterministic Turing machine running in p-time. So HCPSP.

Warning Don't try to reduce HCP to TSP in p-time as follows: given an insta@ce
of HCP,

e If Gis ayes-instance of HCP, outqu. d=3
e If Gis a no-instance of HCP, outpuw d=1

This is a reduction (why?), but it involves determining wheteis a yes- or a no-
instance. This is hard to do. There is no known p-time way to do it, so this reduction
is (probably) not p-time.

A machine reducing a problem A to another, B, need not be able to solve A; and its
design does not necessarily take account of whether it is given a yes- or a no-instance
of A. It may be very hard (even impossible) to solve A, and yet quite easy to reduce A
to B, by making simple changes to the instances in a way that preserves their yes—no
parity.

But sometimes the reduction does solve the original problem. See theorem 11.11
below for an example.

11.2. <is a pre-order 147

Example 11.3 (change of base)et a,b > 2. We can design a deterministic Turing
machineXa , running in p-time, such that for any numbegrif w represents in base

a then fy,, (w) represents in baseb. Change of base of arithmetic can be done in
polynomial time.

For any numbea > 2, let C, be the yes/no problem ‘is the representation in base
aof a prime number?’. Then for aryb > 2, X5, reduce<C, to Cy,. (Exercise: check
this.) SoCa < Cp (and by symmetryCy, < Cy) for anya, b > 2. SoCy ~ C,,.

So with respect to the ordering of difficulty, changing the base makes no differ-
ence at all.

Why do we not allona = 1 here — unary notation? Unary is a special case; the
exercise below shows why.

Exercise 11.4There is a deterministic Turing machiBg& that, given the binary rep-
resentation of a number as input, outputs the unary representation. (1) Design one. (2)
Show that no such machif can have polynomial time complexity. [Hint: how long
doesBU take to output the answer if the input is the binary representatiofi]of

11.2 < s a pre-order

We saw that ifA < B then we can use a fast solution to B to solve A quickly. So
if A <B then in effect A is no harder than B. Thus the relatidorordersthe yes/no
problems by increasing difficulty.

Butis <really an ordering at all’? In fact it's what’s calleghee-order: a reflexive,
transitive (se€7.1) binary relation. Other pre-orders include the ordering on numbers:
x < xfor all x, andx <y < zimpliesx < z The relationT on students given by T t
iff t is at least as tall asis a pre-order. The well-known binary relation likggy)
may be a pre-order, if everyone likes themselves (so Bob likes Bob, for example), and
whenever (say) Bob likes Chris and Chris likes Keith then also Bob likes Keith.

Theorem 11.5 The relation< defined above is pre-ordeion the class of yes/no prob-
lems.

PROOFE < is reflexive. To prove this we must show that for any yes/no problem A,
A < A holds. To proveA < A, we must find a deterministic p-time Turing machine
reducing A to A.

Let | be a finite alphabet in which all instances of A can be written. X.&e the
deterministic Turing machine

(%o, U{A},1,d0,0,{00}).

(Cf. Y of figure 9.1.)X just halts & succeeds without action, so its output is the same
as its input. Hence iv is a yes-instance of A thefx(w) = w is a yes-instance of A;
and similarly for no-instances. S6reduces A to A. MoreoveiX runs in polynomial
time, sincetimex(n) = O for all n.

148 11. Reduction in p-time

< is transitive. Let A, B, C be yes/no problems and assume that B andB < C.
We show thaiA < C.

As A < B, there is a deterministic p-time Turing machiXdhat reduces A to B.
Similarly, asB < C, there is another deterministic p-time Turing machyneeducing
B to C. Then the Turing machiné Y obtained by running(thenY (figure 11.2) is
deterministic. (We have to return to square 0 aitdrecause&’ expects to begin there.)

w (input word: Result:
¢ an instance of A) / a deterministic
Turing machine X*Y
:l:l:l:l:l o o reducingAtoCin
mark - .
squarsg M= rtn to Y _.f'tlme
0 - 1 Sq.O - outputfy(fx(w)),
an instance of C
deterministﬁ: output of X / deterministic
Turing machine on wis an Turing machine
reducing AtoBin jstance reducing B to C in
p-time of B p-time

Figure 11.2: reducing A to C (sg is transitive)

First we check thak =Y reduces A to C. lfiw is a yes-instance of A thefx (w)
is a yes-instance of B, and $g(fx(w)) is a yes-instance of C. Similarly ¥ is a no-
instance of A,fy(fx(w)) is a no-instance of C. S¥xY reduces A to C, as required.

Now we check thaX Y runs in p-time. Letp(n),q(n) be polynomials with pos-
itive coefficients such thaimex(n) < p(n) andtimey(n) < q(n) for all n > 0. If the
input wordw to X Y has lengtn, then:

1. Marking square 0 takes time 1.
2. RunningX onw takes time< p(n).

3. Returning to and unmarking square 0O takes tkn@here X’'s head is in square
k when X halts. How big could be? Well, X’s head began in square 0, and
moves at most 1 square per move.k3s at most the number of mov&smade.
But X made at mosp(n) moves. Sk < p(n).

4. RunningY takes time< g(length of fx (w)). What is the length ofx(w)? As
above X can write at most 1 output symbol per move. So

(length of fx (w)) < (no. of moves o on inputw) < p(n).
But g has positive coefficients, sorifincreases theq(n) can’t decreasé.So
q(length of fx (w)) < q(p(n)).
HenceY takes time< q(p(n)).

’E.Q., becaus%—g >0ifn>0.

11.3. Closure of NP under p-time reduction 149

The total run time oKX xY is thus at mosL + p(n) + p(n) +q(p(n)), which works out

to a polynomial. For example, jf(n) = 2n+ n3 andq(n) = 4+ 5n, then the expression

is 14 2(2n? + n®) 44+ 5(2n? + n3), which works out tcs + 14n? + 7n3, a polynomiall.
QED.

Remark 11.6
1. Steps 3 and 4 above are important.

2. We cannot just say: the symbollooks likethe usual orderind <2 <3...0on
numbers (it has a line under it it is net, but <), so thereforeA < A (etc).
The symbok may look like the ordering of numbers, but it has a quite different
meaning.To prove that< is reflexive and transitive we must use the definition
of <. No other way will do.

3. To prove that A reduces to A in p-time may seem a silly thing to do. It is not
silly. It is just trivial.

Exercise 11.7 Show that the relatiod ~ B given by ‘A < B andB < A’ (defini-
tion 11.1) is an equivalence relation (s€&1) on the class of all yes/no problems.
(Use the theorem.)

11.3 Closure of NP under p-time reduction

We said that ifA < B then we can use any given fast solution to B to solve A rapidly.
What if the fast ‘solution’ to B is by a p-time NDTM? We'd expect the resulting so-
lution to A also to be a (hopefully p-time) NDTM. Thus we expect that if B is in NP
then so is A. Let’s check this.

Theorem 11.8 Suppose A and B are yes/no problems, And B. If B is in NP, then
Alis also in NP.

PROOF Similar to before. As B is in NP, there is a non-deterministic Turing machine
N that solves B. Af\ < B, there is a deterministic Turing machiXereducing A to B.
We want to join upX to N as in figure 11.3 below (cf. figure 11.2).

Let us call the joined-up machinéxN. ThenX «N is a NDTM that solves A. For
if wis a yes-instance of A, thefx(w), the input toN, is a yes-instance of B. 94
acceptsfy (w). HenceX « N acceptsv. Similarly, if wis a no-instance of A theK «N
rejectsw.

So to show that A is in NP, it is enough to show:

Claim. The non-deterministic TNK « N runs in p-time.

Proof of claim. We must showimex.n(n) < r(n) for some polynomial (and for
all n). The count goes much as before. lete an instance of A. We calculate
how long X « N can run for on inputv. Assumetimex(n) < p(n) andtimey(n) <
q(n) for polynomialsp, q with positive coefficients. Let lengttv) = n. Then as in
theorem 11.5:

150 11. Reduction in p-time

. d Result: a
w (input wor non-deterministic
for yes/no problem A) Turing machine X*N

ST X*N solving yes/no
mark e problem
square O X Fo rtn to A in NP-time
0 IIIIIIIIIII * Sq.o

- N non-deterministic
dete‘rministic. output of X Turipg machine
Turing machine . is an instance solving yes/no
reducing AtoBin ¢ problem
p-time B in NP-time

Figure 11.3: using solution to B to solve A

e Marking square 0 takes a single instruction: time 1.
e X runs for time at mosp(n) on inputw. X halts with outputfx (w).
e Returning to square 0 takes time at mpgt), as before.

e Then the outpufx (w) of X is given as input tiN. As before,fx(w) has length
< p(n), so no run ol is longer tharg(p(n)).

So no run ofX « N is longer tharr (n) = 1+ 2p(n) +q(p(n)). This is a polynomial in
n. HenceX x N runs in p-time. This proves the claim.
As X xN is a p-time Turing machine solving A, Ais in NP. QED.

Remark We've showed that the concatenation (joining up) of p-time Turing ma-
chinesX,Y by sending the output of into Y as input, gives another p-time Turing
machineX «Y.Y can be non-deterministic, in which case sXisY.

Corollary 11.9 HCP is an NP problem.

PROOF TSP isin NP, by example 10.6. A simple formalisation of example 8.11 using
Turing machines shows that HGPTSP. So by the theorem, HCP isin NP also. QED.

We already knew this (exercise 10.8), but reduction is useful for other things — see
especially NP-complete problems in section 12. Some 1,000 other p-time reductions
of problems to NP problems are known.

11.4. The P-problems are-easiest 151

11.4 The P-problems are<-easiest

What are theeasiestyes/no problems, with respect to our ‘difficulty’ orderirgof
problems? In fact they are those in P — the yes/no problems solvable deterministically
in polynomial time.

First, we show that the-easiest problems are in Hhis is similar to the proof of
theorem 11.8, above. Essentially it shows that, like NP, P is closed downwards under
<.

Theorem 11.10If Ais a yes-no problem, andl < B for all yes-no problem8, then
AcP.

PROOF Choose an € P. Then there is a deterministic Turing machiMesolving
B in p-time. Also, there’s a deterministic p-time Turing mach¥eeducing A to B.
Then the machine shown in figure 11.4 below solves A in p-time — the proof is similar

to that of theorem 11.8. This shows ti#at P, as required. QED.
. d Result: a
w f(mput x//vor blem A deterministic
or yes/no problem A) Turing machine X*M
I solving yes/no
mark e problem
square X o rtnto A in p-time
0* :F:I:F.'.'..' * sq. 0 F
X M // i \deterministic
deterministic output of X Turing machine
Turing machine is an instance solving yes/no
reducing AtoBin ¢p problem
p-time B in p-time

Figure 11.4: solving Ain p-time, iIA <B e P

Now we show the other half, théte problems in P areC-easiest.This is a new
argument for us, and one that seems like a trick.

Theorem 11.111f A is any problem inP, and B is any yes/no problem at all, then
A <B.

PROOF.

Crudely, the idea is this. We want to show that we can find a fast solution to A
if we are allowed to use one for B. But we're told A is solvable in p-time, so we can
solve A directly, without using the solution for B! This is crude because we have to
show that A reduces to B in p-time, which is not quite the same (see the warning on
page 146). But the same trick works.

152 11. Reduction in p-time

LetM be a deterministic p-time Turing machine solving A. Choose any yes-instance
wz and no-instance, of B (remember our yes/no problems have infinitely many yes-
and no-instances (see p.129), so we can certainlyviinev,). Then letX be the
machine of figure 11.5.

|

. if M accepts W | rtnto *g output wl
input mark 59. 0
w .

sq. 0 if M rejects w_| N S

output w
X M' solves A sq.0 -
in p-time

Figure 11.5: reducing a P-problem to any problem

In the figure, butput wy’ is a Turing machine that outputs the wond as fixed
text (as in the ‘helloworld’ example). The Turing machineutput w,’ is similar. X
contains a likenesdl’ of M, slightly modified so that:

e if M halts and succeeds then control passesitput wy,
e if M halts and fails then control passesotatput wo.

We require thaM’ eventually passes control to the resgfso thatfx (w) is defined
for any instancev of A. This is true, because &% runs in p-time, it always halts (see
proposition 9.6).

Clearly, X is deterministic. By counting steps, as in theorems 11.5 and 11.8, we
can check thau runs in p-time.

We show thaiX reduces A to B. If the input tX is a yes-instances of A, thenM
will halt and succeed ow, soX outputsw;, a yes-instance of B. Alternatively, if the
input is a no-instance of A, thevl halts and fails, an&X outputsw,, a no-instance of
B. So by definition 11.1(1)X reduces A to B. S@ < B as required. QED.

Conclusion A yes-no problem Ais in P ifA < B for all yes-no problems B. Thus,
P is indeed the class &f-minimal, or easiest, problems.

Exercises 11.12
1. Check thaiv above does run in p-time.

2. Let~ be the equivalence relation of definition 11.1(4). Let A be any yes/no
problem in P. Show that for any yes/no problemB;- B iff B € P.

3. Intheorem 5.6, we reduced HP to EIHP. Is this reduction p-time?

11.5. Summary of section 153
11.5 Summary of section

We defined the relatior of p-time reduction between yes/no problems. The ordering

< is a pre-order, and we think of it as an ordering of difficultyAik B then A is no

harder than B. We writd ~ B if A < B andB < A — they are of the same difficulty.
Figure 11.6 sketches the yes/no problems.

< yes/no problems
— hard
problems

I NP

easiest
problems

Godel

P
(tractable)

unsolvable
HP

Figure 11.6: a view of y/n problems (£ NP)

Each~-class consist of all problems of a certaindifficulty (of A, B such that
A <BandB < A). By theorem 11.11 and exercise 11.12(2), P is an entiaass,
consisting of the<-easiest problems. & € NP then any<-easier problem is also in
NP. So NP is a union of classes: raclass overlaps NP on both sides. Of course the
shaded area in NP but outside P may be empty, so that PSAT and friends are all in P!
Whether this is so is the questi®= NP, which is unsolved.

You will probably survive if you remember that:

e < is reflexive and transitive,
e NP is closed downwards with respect<to
e P is the class o&£-minimal problems.

The problems in P are the-easiest. Is there is<d-hardest problem? We will investi-
gate this — at least within NP — in the final section.

12. NP-completeness

Cheer up — this is the last section. The holiday approaches.

154 12. NP-completeness

12.1 Introduction

Is there is a<-hardest problem? The answer is not at all obvious, even within NP.
Could it be that for any NP-problem, there’s always a harder one (still in NP)? If so,
there’d be harder and harder problems in NP (with respest)tidorming an infinite
sequence of increasingly hard problems, never stopping. Or maybe there are many
different<-hardest NP-problems, all unrelated¥y— after all, why should we expect

very different problems to reduce to each other? (Of course if P = NP then our question
is irrelevant. But most likelyP # NP. Ladner showed in 1975 that®#~ NP then there

are infinitely many~-classes within NP.)

In fact this doesn’t happen, at least within NP (and also within several other com-
plexity classes which we won't discuss). In a famous paper of 1971, Stephen Cook
proved that there are-hardest problems in NP. Such problems are callegtbifplete
problems.

What do we mean by g-hardest problem?

Definition 12.1 (NPC, Cook) A yes/no problem A is said to be Neompleteif
1. A€ NP,
2. B <A for all problemsB € NP.

The class of all NP-complete problems is denoted by NPC.

Exercise 12.2 Show that if A, B are NP-complete thén~ B. Show that if A is NP-
complete and\ ~ B then B is also NP-complete. So the NP-complete problems form
a single~-class.

12.1.1 NP-complete problems

But are there any NP-complete problems? Answer: yes.
Theorem 12.3 (Cook, 1971)NPC=# 0. In particular, PSAT is NP-complete.

We prove it in§12.3.

Some 1,000 examples of NP-complete problems are now known. They include
PSAT, the Hamiltonian circuit problem (HCP), the travelling salesman problem (TSP),
partition (given a set of integers, can it be divided into two sets with equal sum?)
scheduling(can a given set of tasks of varying length be done on two identical ma-
chines to meet a given deadline?) and many other problems of great practical impor-
tance. See texts, e.g., Garey & Johnson, for a longer list. Non-primality and primality
testing were known for a long time to be in NP, but are now known (since 2002) to be
in P, which is even better (remember tiRat NP).

1S.A. Cook,The complexity of theorem proving procedures,Proceedings of Third Annual ACM
Symposium on the Theory of Computing, 1971, pp. 151-158.

12.1. Introduction 155

12.1.2 Significance of NP-completeness

At first sight, TSP and PSAT have little in common. But by exercise 12.2, any NP-
complete problem is reducible in polynomial time to any other. Hence any solution to
TSP can be converted into a solution to PSAT that runs in about the same time — and
vice versa.

This means that we can regard an algorithm solving TSP as the same — in a sense
— as one that solves PSAT. To identify algorithms that are p-time reducible to each
other gives us a higher level view of algorithms.

If your boss gives you a hard-looking problem to solve, and you are feeling lazy,
one way to avoid solving it is to show that it can’t be solved by a Turing machine at all
(as in section 5). Few bosses would then persist.

If this is not possible, it's almost as good to show that it is NP-complete. NPC
problems are usually considered intractable, being the hardest in NP. If the boss insists
that you write a program to solve it, you could respond that most boffins believe no
such program would run in a reasonable time even for small inputs. You could produce
the graph in figure 6.1.

So the boss says: ‘You're a clever young person! Good degree and all that. You
ought to be able to find a really clever search strategy, giving a program that runs in
polynomial time — evem?® or so!” But NP-complete problems are thehardest in
NP. So not only would a clever program immediately give fast solutions to the 1,000
or so known NPcomplete problems— a huge range including TSP, PSAT, college
timetabling problems, map colouring problems, planning problems from Al, etc., etc.,
in totally different application areas — but &l problems inNP. Different groups
of people have been looking for fast solutions to these for years, without sifccess.
Some applications (e.g., in RSA cryptography) evay on the assumption that their
pet problem has no fast solution. So you would upset many apple-carts if you found
a polynomial time solution. With the military after you, you might have to become a
traveller, never visiting any city more than once.

No joy? You could hint that a p-time solution would solve P = NP and so make
you more famous than your boss. If that doesn’t work, you really are stuck, and if a
fast solution is essential you should consider:

e optimising your algorithm as far as possible;

e restricting the problem to certain special simpler inputs;

e hoping for the best in the average case;

e |ooking for a sub-optimal, probabilistic or genetic ‘solution’;
e finding heuristics (an Al-style approach).

See Harel's or Sedgewick’s book for these. For example, for the ‘flat’ version of TSP
where the map is ‘real’ — for any 3 citiesy, z, the distance from to z is at most the
sum of the distances fromto y and fromy to z— there is a p-time algorithm that

2But they haven’provedthere’s no fast solution. Maybe this failure indicates there is a fast solution!

156 12. NP-completeness

delivers a route round the cities of at most twice the optimal length. But for the general
version of TSP, the existence of such a polynomial time algorithm would imply P =
NP.

12.2 Proving NP-completeness by reduction

The best way to prove that a yes/no problem A is NP-complete is usually to show that:
1. Aisin NP, and
2. Ais >-harder than a known NP-complete problem B (e B).

For if A is >-harder than a-hardest problem in NP, but is still in NP, then A must
also be>-hardest in NP: i.e., NP-complete.

(1) is usually easy, but must not be forgotten. (For example, therers@vable
problems A that satisfy (2). Satisfiability fgredicate logic is unsolvable, but is
clearly> PSAT since PSAT is a special case of it. Such problems are not NP-complete,
being outside NP.) One can either prove (1) directly, a§li.2, or else show that
A < Cfor some C known to be in NP, and then use theorem 11.8.

To show (2), you must reduce a known NP-complete problem B to A in p-time.
Any B in NPC will do. There are now about 1000 Bs to choose from. A popular
choice is 3SAT:

3SAT: Given: a propositional formul& that is a conjunction oflausesof the form
XVYVZ, whereX,Y,Z are atoms (propositional variables) or negations of
atoms. E.g.F = (pvqV-r)A(=svxvw).3

Question: is there an assignmehtsuch thah(F) = true?
Cook showed that 3SAT is NP-complete in his 1971 paper. Because the instances of

3SAT are more limited than those of PSAT, it is often simpler to reduce 3SAT to the
original problem A than to reduce PSAT to it.

Exercises 12.4

1. Recall the definition of the class co-NP (definition 9.9). Show that NP = co-NP
iff NPCNco-NP#£ 0.4

2. [Quite hard; for mathematicians] Show PSAT3SAT, and HCP~ PSAT. You
can assume Cook’s theorem (below).

3The ‘3’ in 3SAT refers to there being 3 disjunct$, ¥, Z above) in each clause. The formiamay
use many more than 3 atoms.

4By exercise 9.11, if P = NP then NP = co-NP. It might be true that NP = co-NP and stiNP, but
this is thought unlikely. Cf. the discussiong@.5.

12.3. Cook’s theorem 157

12.3 Cook’s theorem

Of course, the first-discovered NP-complete problem, PSAT, wasn’t shown NP-com-
plete by reduction — no NPC problems to reduce to it were known! So to end, we'll
sketch Stephen Cook’s beautiful proof that PSAT is NP-complete.

We already showed (IBSAT € NP in example 10.7. So it's enough to show (2)
if A € NPthenA < PSAT. Fix anyA € NP. We want to build a deterministic p-time
Turing machineX such that:

e Given a yes-instanog of A, X outputs a satisfiable formukg, of propositional
logic;

e Given a no-instance of A, X outputs an unsatisfiable formukg, of proposi-

tional logic.

yes-instance satisfiable

w of A formula F w
no-instance unsatisfiable
wof A formula F

Figure 12.1: hoped-for X reducing A to PSAT

See figure 12.1X must construck, from w deterministically, and in p-time.

All we know is thatA € NP. So there’s a hon-deterministic Turing machide-=
(Q,%,1,00,0,F) solving A, and a polynomigb(n) such that no run ol on any input
of lengthn takes longer thamp(n) steps. AsN solves A, the yes-instances of A are
exactly thosew for which N has an accepting run (one that ends in a halting state
for N). Roughly, the formulds, will directly express conditions for there to be an
accepting run ofN on inputw! F, will be satisfiable iff there is such a run. Compare
Godel’s theorem{5.4), where we said there was a formBi) of arithmetic that said
x coded an accepting run of a Turing machMeon an inputw. This showed that we
can describe Turing machines by logical formulas, and was known before Cook. But
here we must use propositional logic, not arithmetic. Propositional logic is not usually
powerful enough to cope, but Cook’s insight was that it's OK heré\ &s'simple’ (it
runs in p-time, so essentially we can bound R(Xx)).

Table to represent a run of N on w When doed\ have an accepting run on?
We can easily (but verbosely) represent a rumNabn w of lengthn by atable (see
figure 12.2). The table hgs(n) + 1 big boxes, labelled ‘time’0,1,...,p(n). They
will represent the configuration &f at each step: its state, head position, and the tape
contents. Box 0 (magnified in figure 12.3 below) will represidist configuration at

158 12. NP-completeness

Box number (time)# 0 1 - p(n)

segment 1
Q| rows
(current

state)
segment 2

> | rows

(tape

contents)
segment 3
(head N o _
position) p(n)+1 columns

Figure 12.2: table representing a ruiNobnw of lengthn

time O: initially. Box 1 will represent the configuration at time 1, and so on. We know
N halts by timep(n), so we don’t need any more boxes titaf, ..., p(n).

How does the table record a run Nfon w? Each box is divided horizontally
into three segments, to describe the configuratioN @it the time that concerns the
box (the ‘current time’). The first segment indicates the statd at that time. It's
divided into as many rows as there are states, one row for each state. We shade the
row of the current state. So® = {qp,...,qs} and the current state ¢, row i alone
will be shaded. In figure 12.3 (time 0) row O is shaded because initiallyin state
go- The second segment describes the current tape contents. Nevorly has at
mostp(n) moves, its head can never get beyond sqpéang¢. So all tape squares after
p(n) will always be blank, and we need only describe the contents up to spuare
We do it by chopping the segment up into rows and columns. The rows correspond
to symbols fromx = {ay,...,a;} say, wherea, = A, and the columns correspond to
square®, 1, ..., p(n) of the tape. We shade the intersection of ipgolumnj iff g; is
currently the character in squayeSo the shading for time 0 describes the initial tape
contentsw itself.

We can read oftv from figure 12.3: it isapa;asazas. The rest of the tape & = A.
Finally the third segment describ&Bs current head position. We divide it into
columns0,1,..., p(n), and shade the column where the head is. The head never moves

more tharmp(n) away from square 0 in any run (it hasn’t time), so we only ne@d + 1
columns for this. For the time 0 box (figure 12.3) we shade column OJ'sasead
begins in square 0. N halts beforep(n), we can leave all later boxes blank.

Will a table like that of figure 12.2 but witbandom shadingorrespond to a real
accepting run oN? No: there are four kinds of constraint.

1. Foreach < p(n), the box for tima must represent a genuine configuraiin)

STechnical point: by replacing(n) by p(n) +nif need be, we can assume thgh) > n. We still have
timau(n) < p(n). So we've room to record itself.

12.3. Cook’s theorem 159

time 0
0 e
ql —
qs — *
=1
al —»
a2 —
ar=0 —®»
head position—— [l
01 2 p(n)

Figure 12.3: box 0 represertsnfig qo, apa;a4azas, 0) (cf. theorem 10.13)

of N. So exactly one row of segment 1 in each box should be shaded (because
N is in exactly one state at each time). Similarly, just one column of segment 3
should be shaded, as the head is always in a unique position. And each column
of segment 2 should have exactly one shaded row (as each tape square always
has a single character).

2. C(0) must be the initial configuration df. So the box for time O should say
that the head is in square 0 and the statgyjsas in figure 12.3. Moreover, it
should say that the initial tape contents atre

3. The whole table must represent a ruMNofThe successive configuratioGst)
represented by the boxes should be related, as we have to be able to get from
C(t) toC(t + 1) by a single step oN. So there’ll be further constraints. Only
one tape character can change at a time; and the head position can vary by at
most 1. Compare boxes 0 and 1 of figure 12.2. And the new character and
position, and new state, are related to the oldb¥.g., we can read off from
figure 12.2 thatqo, ap, gz, a2, 1) is an instruction oN.

4. The run indicated by the table must be accepting. This is a constraint on the
final state, as shown in segment 1 of the last non-empty box. If the shaded state
Is in F, the run is accepting; otherwise, not.

Any accepting run oN on w meets these constraints and we can fill in a table for
it. Conversely, if we fill in the table so as to meet the four constraints, we do get an
accepting run oN onw. So the questiodoesN acceptw is the same asan we fill

in the table subject to the four constraints?

160 12. NP-completeness

Describing the table with logic Filling in squares of the table is really a logical
Boolean operation — either a square is shaded (1), or not (0). Let’s introduce a propo-
sitional atom for each little square of the table. The atom’s being true will mean that
its square is filled in. So a valuatiosmof the atoms corresponds exactly (in a 1-1 way)

to a completed table (though it may not meet the constraints).

Describing the constraints with logic The constraints (1)—(4) above correspond to
constraints on the truth values of the atoms. It is possible to write a propositional
formula R, that expresses these constrairftg.does not say which squares are filled

in: it only expresses the constraints. (The constraints do determine how box O is filled
in, but boxes 1, 2, ...p(n) can be filled in in many different ways, corresponding to
the different choices made By during its run.) Given any valuationof the atoms

that maked~, true, we can read off froma a shading for the table that meets the four
constraints. And from any validly-completed table we can read off a valuatiothe
atoms such that(F,) = true. So the questiocan we fill in the table subject to the

four constraints? is the same as the questisthere a valuationv making R, true?

Writing Ky How do we writeR,? See Rayward-Smith for details. For example,
suppose the atoms corresponding to the little squares in the first column of segment 2
of box 0 arePy, Py, ..., P. If the first symbol ofw is ag, as it was above, then only the
first little square is shaded, so of tRg Py should be the only true atom. Therefore we
include the claus@y A —-Pi AP A ... A=P In Fy.

Writing Ry in full is tedious, but clearly it's an algorithmic process. And in fact,
if we know the part,2,1,0o,0, andF of N, we can design a deterministic Turing
machineX running in polynomial tim@that writes ouf,, when run on input!

The end We havefy(w) = F,. But now we're finished. Fory is a yes-instance of A

iff N acceptaw, iff there’s a way to fill in the table that meets the constraints, iff there’s
some valuatiov making fx (w) = Ry true, iff Ry is a yes-instance of PSAT. Henie
reduces A to PSAT. Sinc¥ is deterministic and runs in p-time, we ha&e< PSAT.

But this holds for any A in NP. So PSAT is NP-complete. QED and goodnight.

12.4 Sample exam questions on Parts I, I

1. (a) Explain the emphasised terms:

I. connectedyraph

ii. spanning tredof a connected graph)
lii. the Hamiltonian circuit problem
Iv. thetravelling salesman problem.

5To make this more plausible, let's ask how magmswe need. There amg(n) + 1 boxes. In each
box, segment 1 ha®| = s+ 1 rows, segment 2 hap(n)+1) x |~| = (p(n)+1)-(r+1) little squares, and
segment 3 hap(n) + 1 little squares. The total igo(n) + 1)[(p(n) +1)(r +2) + s+ 1] — a polynomial!!
So the number of atoms we need is a polynomiat.in

12.4. Sample exam questions on Parts Il, 111 161

(b) A maximal spanning treeof a connected weighted graghis a spanning
treeT of G, such that the sum of the weights of the edges is as large
as possible (i.e., no spanning tree®has larger total weight).
I. Suggest an algorithm to find a maximal spanning tree of a connected
weighted graph. (Do not prove your algorithm correct.)
ii. Use your algorithm to find a maximal spanning tree of the following
weighted graph:

2. (a) Briefly explain the difference between tiepth-first and breadth-first
methods of constructing a spanning tree of a connected graph.
(b) 1. List the edges of a spanning tree of the following graph, using the
depth-first method.
A

ii. Repeat b(i), using the breadth-first method.
(c) Explain the meaning of the emphasised terms:

I. A Hamiltonian circuit of a graph;
ii. A minimal spanning tree (MST) of a connected weighted graph.

(d) LetG be a connected weighted graph. Explain why any Hamiltonian cir-
cuit of G must have greater total weight than the total weight of any min-
imal spanning tree ofs. [Hint: transform a Hamiltonian circuit into a

spanning tree.]
3. Let A and B be yes/no problems.

(a) Explain what is meant when we say that:
I. A reduces to B in p-time (in symbolg, < B)
ii. AisinP
iii. Ais an NP-problem
iv. Alis NP-complete.

162 12. NP-completeness

For each of (i)-(iv), give an example of a problem A (or in (i), problems A
and B) satisfying the condition.

(b) Show that the p-time reduction orderirgof a(i) above igransitive on
yes/no problems.

(c) i. Show thatif A is an NP-problem, B is NP-complete ahd B then
Ais also NP-complete.

ii. IfA, Bareboth NP-complete, does it follow that> B? Justify your
answer.

4. (a) Let A and B be arbitrary yes-no problems. Define what it means to say
that Areduces toB in p-time (in symbols A < B).

(b) Let < be the relation of part a. Prove thatAf < B andB € NP then
A € NP.

(c) Let< be the relation of part a.

I. Define the class NPC of NP-complete yes-no problems.

ii. Let HCP, PSAT be the Hamiltonian circuit and propositional satisfac-
tion problems, respectively. Let A be a yes-no problem, and suppose
that HCP< A and A < PSAT. Prove directly from your definition
in part c(i) that A is NP-complete. [You can assume that HCP and
PSAT are NP-complete.]

12.5 Part lll in a nutshell

Section 9: We want to analyse the complexity of solvable problems in terms of how
long they take to solve. We introduce yes/no problems to simplify our discus-
sion. A Turing machine can solve such a problem by accepting (= halting &
succeeding on) the yes-instances, and rejecting (= halting & failing on) the no-
instances. So we don’'t need to consider its output. We defineuthéme
function timey(n) of a Turing machineéM to be the longest it can run for on
any input of sizen. A Turing machineuns in p-time if its run time function is
bounded by some polynomial. P is the class of ‘tractable’ yes/no problems solv-
able by some Turing machine running in p-time. We showed that P is closed un-
der complementation, and indedt= co-P. Whilst no-one has proved it, many
problems such as HCP (section 7), TSP (section 8) and PSAT (propositional sat-
isfaction) do appear intractable, although they are solvable by exhaustive search.
We are lacking an efficient search strategy.

Section 10: Whilst waiting for a strategy to be devised (though most think there isn’t
one) we can examine which problems would yield to such a strategy. To do
this we use th@on-deterministic Turing machine (NDTM), which can make
choices during a run. More than one instruction may be applicable in a single
configuration. (A strategy could be plugged into such a machine, narrowing
the choice to one again.) A NDTM acceptsits input iff it has at least one

12.5. Partlll in a nutshell 163

accepting run on that input. igjects an input if all its runs on that input end in
failure. It solvesa yes/no problem if it accepts the yes-instances and rejects the
rest, as before. Itaun time function timey(n) is the length of the longest run

of N on any input of sizer. The definition ofN running in p-time is as before.

NDTMs can solve yes/no problems like PSAT, HCP, TSP, etc., in p-time, as
they simply guess a possible solutiwto the input instances, acceptingw if x

Is in fact a solution. Checking thatis a solution tow (e.g.,x is a round trip of
length< din TSP, orin PSATx s a valuation making the propositional formula

A true) can be done in p-time. We let NP be the class of all yes/no problems
solvable by some NDTM in p-time. So TSP, HCP and PSAT are all in NP. As
deterministic Turing machines are a special case of NDTMs, any P problem is
in NP.

However, though faster than deterministic Turing machines, NDTMs can solve
no more yes/no problems. This gives more evidence for Church’s thesis. A de-
terministic Turing machine can simulate any NDTM by constructing all possible
runs in a breadth-first manner, and seeing if any is accepting. That is, it does a
full exhaustive search of the tree of runs of the NDTM.

Section 11: We can formalise the notion of a yes/no problem A being no harder than
another, B, byp-time reduction. To reduce Ato B in p-time A <B’) is to find
a (deterministic) p-time Turing machinéthat converts yes-instances of A into
yes-instances of B, and similarly for no-instances. Sicgfast, any given fast
solutionF to B can be used to solve A: first appty thenF. If F solves B non-
deterministically, the solution we get to A is also non-deterministic, BaafNP
andA < B then alsoA € NP: that is,<-easier problems than NP-problems are
also in NP.

It's easy to convert yes-instances of A into yes-instances of A and no-instances
of A into no-instances of A in p-time (leave them alone!), Ac< A and <

Is reflexive. < is transitive, as ifX converts A-instances to B-instances in p-
time, andY converts B-instances to C-instances in p-time, then runXitigen

Y converts A-instances to C-instances (always preserving parity: yes goes to
yes, no to no). Careful counting shows that this takes only p-time (remember to
return heads to square 0, and that the inpit toay be (polynomially) longer

than the original input tX). HenceA < B < CimpliesA < C, so< is transitive.

< is thus a pre-order.

Problems in P arec-easiest of all. For ifA € P and B is arbitrary, we can
convert instancew of A to instances of B in p-time and preserving parity) by
the following trick. As we can solve A completely in p-time, we find out in
p-time whethewv is yes or no for A. Then we hand over a fixed instance of B of
appropriate parity.

Section 12: The>-hardest problems in NP are called NP-complete. A yes/no problem
A is NP-complete if A'is in NP buf > B for all NP-problems B. Cook proved
in 1971 that PSAT is NP-complete, so NP-complete problems exist. His proof
went like this. We knowPSAT € NP. If A € NP, there’s a p-time NDTM

164

12. NP-completeness

N solving A. There’s a deterministic p-time Turing machiXethat given an
instancew of A, outputs a propositional formulg, expressing the constraints
that must be met iN is to have an accepting run en Any valuation making

Fw true shows that the constraints can be met, and gives an acceptingiun of
onw, and vice versa. Thus is a yes-instance of A iffy, is satisfiable. Hence

X reduces A to PSAT in p-time, and o< PSAT. This holds for allA € NP.
Thus PSAT is NP-complete.

As well as PSAT the NP-complete problems include 3SAT, HCP, TSP and some
1,000 other common problems. As they are all equaligard, a p-time solution

to any would yield p-time solutions for all. But as many of them have been
attacked seriously for years without success, it's probably not worth the effort
trying to write a fast algorithm for any of them. Perhaps through frustration,
people believe all NP-complete problems to be intractable: the famous question
‘P = NP?’ is thought almost universally to have the answer ‘no’. However, no-
one has proved it (or at least published a proof) either way. Unlike Church’s
thesis, which is by its nature unprovable, one day a pro#f-efNP or P £ NP

may appeatr.

Index

In the index, the symbok’ denotes the current heading.

3SAT 156

accepting 128, 138
Aer Lingus 97,99
Agrawal, M. 133
al-Khwarazmi, M. 11, 17, 25, 131
algorithm 8, 10, 11, 17, 18, 2Gee also
Prim’'s ~
formalising 11-12
in practice 88-95
other definitions of 19
arithmetic 79
arithmetic progression 91
array 34
average case 88, 92, 94, 96, 126, 131, 155

Babbage, C. 11
binary numbers 39
binary relation 96
black holes 21
blank 13, 23
in code of TM 59
breadth-first search 99, 104, 108, 143
Breaking the Code 5

Church, A. 10,12, 19, 84
Church’s thesis 12, 17-21, 66, 72, 127, 131
disproving 19
evidence 19, 40, 42, 49, 56, 143
formal statement 25
Church-Turing thesis 12
clause 156
code-breaking 57, 155
code of configuration 80-83
code of instance of problem 64, 128
code of TM 58-61
editing 74
codef) 64

165

code® 58, 67

complement of yes/no problem 132, 135
complete graph 109, 112

complexity 17, 53, 66, 127

composite number 133, 135, 139, 142
computable function 18
computational power 41

connected component 106, 107
connected graph 106, 108

constant time 89, 90

contradiction 9, 67, 69, 70, 72, 81
Cook, S. 154, 156, 157

Cook’s theorem 81, 127

Cook—Karp thesis 130, 131

Cray 17,41,93

cubic time 89

cycle 107-108, 110

decision problem 48ee alsgyes/no prob-
lem

delta @) 15

depth-first search 99, 102-104, 108, 143

Dijkstra, E. 120

directed graph 98, 99

disconnected graph 106

edge matrix 98

edge of graph 97

EDIT 74-76

empty word €) 23, 75

empty-input halting problem (EIHP) 75

equivalence class 106

equivalence relation 93, 97, 106, 149

exam questions 53, 71, 77, 160

exhaustive search 92, 135, 143

exponential time 89, 92, 94
intractability and 126, 131, 133-135

166

worse than 92, 111, 121

Fermat’s last theorem 71
flowcharts of Turing machines 25
forest 107

fringe 99, 103

Garey & Johnson 154

genetic algorithm 136, 155

Godel number 61

Godel’s theorem 5, 10, 67, 79, 157
proof of 80-84

Goldbach’s conjecture 71, 80, 129

graph 97

gravity 19

halting problem 10, 66-72, 80
empty-input~ (EIHP) 75
hardness of 70
sometimes- (SHP) 76
uniform~ (UHP) 76

Hamiltonian circuit 110, 121

Hamiltonian circuit problem (HCP) 110, 133,

135

NP(-complete) 127, 141, 142, 150, 154
TSP and 123, 146

Harel, D. 21,48, 121, 133, 155

head (function) 23, 28, 75

head (of Turing machine) 14

heap 100, 104

hello.world 73, 152

Hilbert, D. 11,12

Hofstadter, D. 5, 16

Hollerith, H. 11

Hopcroft & Ullman 40, 41

instance of problem 128
interpreter 9

intractable algorithm 133, 135
intractable problem 124,126, 133
irreflexive relation 97

Karp, R. 131
Kayal, N. 133
Kleene, S. 19

Konig's tree lemma 141
Kruskal's algorithm for MST 119-120

Ladner, R. 154

Index

lambda calculus 20, 56

length of path 105

linear time 89, 90, 94

linked list 98

log linear time 89, 91, 94, 105, 135

log time 89, 91

logic 10, 66, 84, 133, 156, 15%ee also
Godel’s theorem; propositional sat-
isfaction (PSAT)

loop 5, 15,16

maze 99, 109
minimal spanning tree (MST) 113-115, 117,
135
multi-tape Turing machine 45
concurrent system and 45, 49
simulation by 1-tape TM 49
Mlw] 73

nearest neighbour heuristic for TSP 121-
122
Newton, I. 12,19
no-instance 128
node (of graph) 97
non-backtracking path 105
non-deterministic Turing machine 20, 56,
137
accepting and rejecting input 138
examples 139-141
input and output 138
run 141, 143
simulation by deterministic TM 143-
145
NP 126, 136, 142, 149, 153, 154
NP-complete problem 10, 111, 124, 127,
134, 154, 155
NPC 154

O-notation 92
oracle 72,136

P 131,see alsgolynomial time
P=NP 142, 153-156
palindrome 48, 129
paradoxes 8-10, 66, 71
parameter (in state) 29, 51
finitely many values 31
partial recursive functions 56

Index

path 105
shortest 120
Penrose, R. 5,70
pianola 11
polynomial 130, 149, 150
polynomial time 111, 121, 122, 126, 133
polynomial time reduction 122, 127, 146—
153, 155
NP and 149-150
NPC and 156-160
Pand 151-152
reflexive and transitive 147-149
polynomial time Turing machine 130, 131,
142
Post, E. 19
Post’s correspondence problem 84
Pratt, V. 142
pre-order 93, 147
Prim’s algorithm 114,117,119
primality testing 40, 70, 128, 132-133, 142
priority queue 100, 119
entry, label, priority 100-101, 103
probabilistic algorithm 133, 136, 155
propositional satisfaction (PSAT) 133, 135,
141
3SAT 156
NP(-complete) 127,142, 154, 155, 157
pseudo-code 27
punched cards 11

guadratic time 89, 91, 94
quantum computers 21, 126
queue 99, 100

quicksort 91, 92

Rayward-Smith, V. 41, 61, 65, 84, 122, 141,
160

reactive systems 21

recurrence relation 89

reduction 67, 72, 76, 145ee alsolyno-
mial time ~

reflexive relation 97

register machine 40, 56

rejecting 128, 138

relation 96

reverse (of aword) 39, 48, 53

RSA cryptography 155

167

run time function 130, 141

satisfiable formula 134
Saxena, N. 133
scratch characters 24, 64

elimination of 64-65
Sedgewick, R. 88, 96, 98, 155
separation property 114-118
shifting 29, 35
simplex algorithm 92, 94
simulation 41, 49, 61, 65, 143
solvable problem 75, 126
solving yes/no problem 128
sometimes-halts problem (SHP) 76
spanning tree 107, 120
square zero

hard-wired returnto 74

marking of 37

implicit 38, 47
in standard TM 58

moving left from 16
stack 99, 100
standard character set 57
standard Turing machine 57, 61, 63, 64, 67

in EIHP 75

inHP 67
string comparison 32, 35
super Turing machine 71
symmetric relation 97

tail (function) 23, 33, 73
Tarjan, R. 98
theta @) notation 92
tracks 33
dynamic set-up 36
finitely many 34
in standard TM 58
removing 37
simulating 2-tape TM using 50
tractable algorithm 131
tractable problem 126, 131, 135
transitive relation 97
travelling salesman problem (TSP) 121, 133,
135
flat version 155
HCP and 123, 146
NP(-complete) 127, 140, 142, 150, 154,
155

168

tree 107,143
e=n—1 108
trick 21,91, 151
Turing, A. 5, 12, 20, 57
Turing-computable 25
Turing machine 12-16, 4Gsee alsonon-
deterministic~; standard-; univer-
sal~
alphabet 13, 22
coding of 58-61
configuration 16, 80-83, 143
current square 14
current state 14
equivalence of two TMs 41, 76
final state 15, 22
flowcharts of 25
formal definition of 22
function computed by 25
halting state 15, 22
halts and fails 16, 24
halts and succeeds 15, 24
head 14
idealised computer 17
initial state 14, 22
input 14, 23
input alphabet 22
input-output function of 25
instruction table 15, 16, 22
hard-coding of 51
in code of TM 58
non-deterministic 137
partial function 22
move 14
left from square zero 16
no applicable instruction 16
output 15,24
undefined 24
read 14
run 14, 24, 137
run time function 130
running forever 16
state 14, 22
subroutines 39
tape 13
two-dimensional 34
two-way infinite 41, 54
write 14

Index

unary numbers 28, 39
converting to binary 39
uniform halting problem (UHP) 76
universal Turing machine 57, 61-63, 67,
129
unsolvable problems 10, 68ee als@sodel’'s
theorem; halting problem

variable in flowchart label 26
vertex (of graph) 97

visit algorithm 99, 107, 119
visited node 99

warnings
halting problem 68, 70
HCP and TSP 111, 122, 146
minimal spanning trees 115, 118
priority queue 103
reduction 72, 146
Turing machines 46, 58
programming 26, 27, 29, 31, 34, 39
weight 98, 99, 112
weighted graph 98, 112
word 23
worst case 88, 92, 94, 96, 122, 134

yes-instance 128

yes/no problem 48, 128, 138
complementary problem 132, 135
solving 139

