
Individual Project
Final Report

London Loop: A mobile guide through
the London Outer Orbital Path

Emma Hulme
Under the supervision of Professor Michael Huth

June 18, 2015

1

Abstract

The London Loop is a 150 mile signed walk along public footpaths,
through parks, woods and fields around the edge of Outer London.
Currently, there exists a guide book, a section on the Transport for
London website, and some information from the walker of the Lon-
don Loop themselves. However, we are in an age today where society
breathes technology, where society searches online for an answer to
a problem before their brain can even respond. So how is our tech-
nology driven society to find such beautiful scenery as can be found
on a walk like the London Loop? My solution is therefore to create
a smart phone app to effectively guide a walker through the London
Loop walk, interactively taking the user step-by-step from their front
door to the walk, through the walk, and back.

With careful research into the current methods used to guide a
walker through the London Loop, and research into how I could prac-
tically make use of these methods in a smart phone app through the
use of online resources, I was able to develop a smart phone app which
could solve these problems, and provide motivation for more users to
begin the London Loop walk.

2

Acknowledgements

I take this opportunity to express gratitude to my project supervisor, Profes-
sor Michael Huth, for his guidance and support. I also thank my parents and
my partner for their constant support, encouragement and time throughout
this project.

3

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Objectives . 9

1.2.1 Core Objectives . 9
1.2.2 Extended Objectives 10

2 Background 10
2.1 Existing Applications . 11

2.1.1 Google Maps . 12
2.1.2 Transport For London 13
2.1.3 Citymapper . 13
2.1.4 TripAdvisor City Guide App 13
2.1.5 London Tours App . 14
2.1.6 MapMyWalk . 14
2.1.7 Split Audio Tours . 14
2.1.8 New York Pass Guide 14
2.1.9 Sheep Spotter . 15
2.1.10 Conclusion . 15

2.2 Mobile Operating System . 16
2.3 Mobile Framework . 17
2.4 Online Server . 19
2.5 Database . 20
2.6 APIs . 20
2.7 Development Environment . 22
2.8 Version Control . 22
2.9 Software Development Methods 22
2.10 Summary of Background Research 23

3 Specification and Project Plan 25
3.1 Specification . 25
3.2 Project Plan . 27

4 Design 30
4.1 Software Design . 30

4.1.1 Web Service . 30
4.1.2 Database Design . 31

4.2 User Interface Design . 32
4.3 Mock Mobile Design . 36
4.4 Testing and Feedback . 46

4

5 Implementation 49
5.1 Creating the skeleton app . 49
5.2 Creating the list of London Loop walks 50
5.3 Adding the map fragment . 52
5.4 Linking the walks to its own page 53
5.5 Switching to an internal database 53
5.6 Navigating the user . 54
5.7 Adding the weather service . 58
5.8 Setting up the web service . 59
5.9 Creating the Statistics Screen 59
5.10 Facebook API . 60
5.11 Conclusion . 60

6 Evaluation 61
6.1 Testing . 63
6.2 Human Feedback . 64
6.3 Choice of API . 65
6.4 What I learnt . 66

7 Conclusions and Future Work 68
7.1 Future Work . 68

8 References 70

Appendices 75

5

1 Introduction

1.1 Motivation

People are becoming more reliant on technology and less active these days.
Our eyes are glued to static screens, mobile phones an extension to our hands.
We are more content to sit around on social networking sites, playing video
games, watching television than to go out and enjoy our surroundings. As
a result of the change in lifestyles, the UK has seen a rise in obesity. The
risk of type-2 diabetes and heart disease is increasing in children, with a
third of children overweight by the end of primary school education [1]. Ad-
ditionally, “more than a third of obese adults perceive themselves as being
just overweight; a fifth of overweight adults think that they are healthy” [2],
suggesting that people are unknowingly putting on weight.

Having seen this, my motivation for this project is clear: to encourage people
to become more active. Despite London reaching a population of 8.6 million
[3], 47% of the 1572 square kilometre city is green space [4], giving Londoners
little excuse not to go out and exercise, and yet research shows that London-
ers spend less time walking than anywhere else in the UK [5].

This is where I introduce the London Outer Orbital Path. Also known as
the “London LOOP”, it is a 150-mile walk along the edge of Outer London.
It is divided into 24 sections in 3 groups - “blue” for South London, “green”
for North-West London, and “yellow” for North-East London. Proposed in
1990 in a meeting between ramblers and the Countryside Commission, the
London LOOP opened its first section in 1996, becoming fully accessible in
2001. The walk is fully sign-posted with the London LOOP logo, a flying
kestrel, as seen on the cover page, and there is a guidebook written by David
Sharp [6] which details each section of the walk together with photographic
illustrations.

However, the question lies: how can I encourage people whose lives revolve
around their gadgets and devices to go on a walk like this? In order to best
answer this question, I decided to go on a London Loop walk myself. To pre-
pare for this walk, I had a look for what information I could find regarding
the walk and found the following.

• The London Loop Book [6]

Pro: Comprehensive guide on the surroundings during the walk,
and on points of interest.

6

Pro: Mentions all points of transport near the walk and during the
walk.

Pro: Has pictures of certain landmarks and points of interest.

Con: Maps are difficult to follow.

• The London Loop Wikipedia page [7]

Pro: Contains the geographic coordinates of each section start point

Con: No information regarding the actual walk route

• London Loop Transport for London page [8]

Pro: Provides nearest station to start and end

Pro: Provided printable PDF files for each walk which described
the route with a clear line on different map segments

Con: Has “Did you know?” boxes telling the walker about different
places during the walk

• Saturday Walkers Club [9]

Pro: GPX/KML file containing entire route

Con: Difficult to load GPX/KML file onto phone or device without
third party software.

Instantly, I began searching on my smart phone ways to get to the walk, using
the geographic coordinates from the Wikipedia page, aided by the guidance
of the Transport for London PDF file. However, once I arrived at the begin-
ning of the walk it was much easier to navigate my way using a combination
of the London Loop signposts and David Sharp’s book. By reading his book,
I noticed that it was not so much there to show walkers the way to go, but
to inform on what places of interest there were on the walk. In particular,
it would should the walker an interesting place such as a castle or woods to
detour to during the walk.

Having completed a walk with barely any technology, I realised that the
best way to make the London Loop both more accessible and more attrac-
tive would be to create a smart phone application that could incorporate all
the current resources into one useful and interactive guide for London Loop
walkers. This leads me to the Project Proposal, written as follows.

The London Loop is, according to Wikipedia, “a 240-kilometre
(150 mi) signed walk along public footpaths, and through parks,
woods and fields around the edge of Outer London”.

7

There exists a standard book - by David Sharp - that describes
about equal length walks on that loop, with descriptions of how
to get to the start of the walk, where to stop for drinks and food,
etc.

But there does not seem to exist a suitable smart phone app
that walkers of the London Loop could use to plan walks, navigate
walks, find out information about points of interest, etc.

The project will produce a workable smartphone app for a
standard platform of the student’s choice that will meet these re-
quirements. Time permitting, the app could explore interaction
modes with walkers that would not be possible through conven-
tional means such as guide books.

8

1.2 Objectives

It is clear from my motivation and project proposal that the main objective
is to create a smart phone application for walkers of the London LOOP.
However, in order to clarify this, and then expand on the functionality and
usability of this smart phone application, I have put together a list of core
objectives.

1.2.1 Core Objectives

Obj 1. The interface must have a good design and be clear without any ambi-
guity.

Obj 2. The interface must be easy to use regardless of technical skill.

Obj 3. The app must be flexible and work on a variety of smart phones with
different screen sizes, operating system versions and processors.

Obj 4. The app must not require user authentication to function.

Obj 5. The app must navigate the user to the walk of the their choice from
their current location.

Obj 6. The app must navigate the user through the London LOOP walks.

Obj 7. The app must allow users to discover points of interest during the walk
and learn more about them.

Obj 8. The app must point out places where users can stop for a break (e.g.
a shop or restaurant)

Obj 9. The app must retain statistical data about the user’s walk, such as time
walked, distances walked, etc. so that the user can track their progress.

Obj 10. The app must clearly show the user when they are beginning and ending
a walk.

Objectives 1-4 are clearly core elements that should be achieved in any
well designed smart phone application, whilst objectives 5-10 expand on the
project proposal for the application’s functionality. However, if I were to
complete these early and have time to implement more functionality, the fol-
lowing list of extended objectives includes what I would like the smart phone
application to be able to do in chronological order of implementation.

9

1.2.2 Extended Objectives

Ext 1. The app could allow users to navigate from the end of the walk to a
location of their choice.

Ext 2. The app could allow users to pause the walk midway through and pick
it up at a later date.

Ext 3. The app could keep a count of how many users are currently walking
on a particular walk, and how many walks have been completed by the
app’s users as a whole.

Ext 4. The app could allow users to save their data through either an email
address or social media user authentication so that the information can
be retained.

Ext 5. The app could allow users to input and update points of interest, restau-
rants, and shops, etc. and have the ability to include images (taken
from either the smart phone’s gallery or camera) - Any user uploaded
data should be moderated on the server by an administrator prior to
being visible to all other users to ensure no offensive data is uploaded.

Ext 6. The app could allow users to share their photographs and experiences
online with social media.

Ext 7. If a user were to use authentication via email address or social media,
then the user could be given an option to allow other users to see their
position via the navigation view and contact them either via social
media, email or in messages within the app.

Ext 8. Each walk should contain a “chatroom” style view so that walkers can
talk to other walkers.

2 Background

Before beginning implementation of my smart phone application, I identified
that some initial background research must be done before I could make
some essential decisions regarding the application. In particular, I needed to
make the following choice in technologies, tools and app-specific aspects of
the project:

B1 Mobile Operating System

B2 Mobile Framework

10

B3 Online Server

B4 Database

B5 APIs

B6 Development Environment

B7 Version Control

B8 Software Development Methods

I also identified that it was essential to do some research on smart phone
apps already on the market before I could make any of these decisions, and
I did this by looking at major smart phone stores such as Google Play, iOS
App Store and the Windows Store.

2.1 Existing Applications

Looking back at my objectives, I notice that the app is made of two main
parts - Obj 5 and 6. The app must be able to navigate the user to the London
Loop, and also navigate the user through the London Loop, with Obj 7 to
10 subsidiaries to Obj 6.

Therefore, with these objectives in mind, I separated my research into these
two parts. Clearly, an important part of any app guiding a user from point
A to point B is that it must be easy to use (Obj 5). In particular, to cus-
tomize the journey plan to the user’s own needs, taking into account any
delays, cancellations or closures to provide a selection of realistic options to
choose from. This is key to getting the user to the destination in the fastest
time possible and in the way they want. For example, users who own specific
travel cards which limited them to only certain modes of transport may want
to filter their journey, and so a method of customizing the journey would be
important to those users.

In order to efficiently compare apps currently available, I formulated a table
of comparison of these aspects in different smart phone apps (Table 1), rating
each aspect of the app up to 5 stars.

11

App Ease Transport Interactive Realistic
of use Mode Filters Navigation Durations

Google Maps PPP PP PPPP PPP

Transport for London PPPP PPPPP P PPPP

Citymapper PPPPP PPPP PPPPP PPPPP

Table 1: Comparison of applications that plan routes

Similarly, Table 2 shows a comparison of smart phone apps which work
as an interactive guidebook, again with a rating of up to 5 stars.

App Ease of Use Planned Route Location Tracker
TripAdvisor PPPPP PPPPP PPPPP

London Tours PPP PPP

MapMyWalk PP PPP PPPPP

Split Audio Tours PPP PPPP PPPP

New York Pass Guide PPPP PPPP PPPP

Sheep Spotter PPPPP PPP PPPPP

Surrounding Information Personal Stats Social Media
TripAdvisor PPPPP PP PPPP

London Tours PPP PP PPP

MapMyWalk PPPPP PPPPP

Split Audio Tours PPPP

New York Pass Guide PPP

Sheep Spotter PPPP PPPPP

Table 2: Comparison of different Mobile Apps in relation to my requirements

2.1.1 Google Maps

Google Maps [12] is one of the most well known apps for navigation. It is
useful for looking up different places and allows users to update information
presented on the map. However, in regards to transport, it does not allow
specific customisation of the user’s journey, allowing you to choose your pre-
ferred method of transport, but not restrict it. On the other hand, this app
is flawless as a navigation aid, planning a route on a map that the user can
follow, with the option of turn-by-turn navigation where a voice guides you
on your way and takes traffic and travel updates to give the best estimated
duration of the journey as possible.

12

2.1.2 Transport For London

The Transport for London app [13] is the best app in terms of transport
choice, giving users the option to filter the modes of transport, travel via
a different place, specify accessibility requirements, and also to choose the
maximum time the user is willing to walk. I found this incredibly useful
as having spent the day walking one of the sections of the London Loop, I
was able to choose a shorter route when I was no longer willing to walk any
longer. Transport for London is also very useful in terms of status updates,
giving information regarding any disturbances to the journey at hand, so
that the user avoids any trouble in the journey.

2.1.3 Citymapper

I found that Citymapper [14] had the cleanest and easiest to use UI to use,
giving users a variety of options, and anticipating that users may only want
to use buses or trains, and so gives suggestions of the journey as such. Addi-
tionally, it provides suggestions for how long it would take by foot, bicycle,
and taxi, alongside the estimated costs of the taxi. In particular, I found
this useful as it showed me what the actual distance of the journey was in a
quantitative form that I could easily understand - the time it would take to
walk is much easier to compare than a number of miles a particular journey
was. On the other hand, it also saw the potential in the journey, for example
a journey that would be sped up by the future Crossrail train lines currently
being built.

2.1.4 TripAdvisor City Guide App

I first looked at the TripAdvisor City Guide App [15]. Its design was simple,
but the main menu had so many buttons, meaning that I had to scroll down
to see all of them which was too much information to start off with. I felt
that they could have broken down the menu into sections and subsections
rather than grouping everything together, as many of the sections searched
for something nearby, be it a shop, food or attraction. Despite this, the
user interface was simple. The suggested itineraries were important as they
provided planned routes that I could go on which would, for example, not
miss any of the most famous parts of London. I found the app particularly
useful as it used GPS tracking to help guide me on the route. Additionally, if
I were to want directions to a shop nearby, I could click on “Point Me There”
and it would guide me with an arrow, much like a compass, and tell me how
far away I am.

13

2.1.5 London Tours App

My first impressions of the London Tours App [16] was not quite the same. It
requires an update before each start of the application, which is not appealing
to any user. However, once the app is up and running, its design is much
more elegant than TripAdvisor’s app. However, whilst it provided itineraries
similar to TripAdvisor, it does not guide you with a map, preferring simple
descriptions instead. It has more weight on the social media aspect, by asking
if the user wants to add a photo or ‘like’ each attraction. The City Map tab
of the app takes you to a great map of London, which isn’t explained except
for some icons at the top and seems like an interactive key for the map. The
load time is very slow, and it is not clear what each icon does.

2.1.6 MapMyWalk

The MapMyWalk App [17] seemed the most elegant so far. There was a a
clear menu that described each section of the app and I was able to create
my own routes or use those created by other users. I could add friends via
Facebook, Twitter, the contacts on my phone or find friends already using
the app. I could record my “workout”, and see when friends were on a certain
route. This was a useful feature to consider for users of my own app to find
others walking the LOOP.

2.1.7 Split Audio Tours

Split Audio Tours [18] was a different type of app also. It did not guide me in
the same way as the other apps, but used audio guides to explain attractions,
whilst allowing the user to see on a map where all the attractions are by
number. This is a way of guiding users on a route that I had not considered
before and may be a useful extension for the app to include.

2.1.8 New York Pass Guide

The New York Pass Guide [19] has a very clean UI, with sample itineraries,
as well as the ability to create a personal itinerary. Within each attraction,
there is the option to go to it on a map, find out specific details such as
opening times, phone number and address, as well as the ability to “like” it.
However, this is only within the app and does not allow the user to interact
with any social media.

14

2.1.9 Sheep Spotter

Sheep Spotter [20], a paid app which guides the user around London and
Bristol to find all the Shaun the Sheep statues scattered around. When
using the app, it would notify the user if they came within close proximity
of a Shaun, and so the user would be able to press a button so as to say that
they have found that Shaun. On the other hand, if the app were not able to
attain a location, the user could enter a 4 digit code instead of pressing the
button as before. Additionally, the app would be able to tell the user where
the nearest Shaun was and how far it was. It also had an arrow to direct the
user which way to walk. As an app aimed towards the younger generation,
I found this very easy to use, with a clean and colourful UI. In regards to
planned routes, it had a list of routes the user could take to discover Shauns,
with an estimated duration of a route, and it contained a personalised page
where the user could see which Shauns they had found, and achieve trophies,
like rewards, for finding Shauns in a certain manner, such as by walking
backwards or completing different routes.

2.1.10 Conclusion

Looking at different apps gave me a good idea of how to proceed with my
own app. I discovered the importance of a clean and easy to use UI, as it
often hindered my experience of the app when the UI was difficult to use.
Additionally, when registration is required, I am almost immediately put off
using a smart phone app. This brings me back to Obj. 1-4.

In terms of Obj 5, I have established the importance of allowing the user
to customise their journey, and to guide the user along the journey - but
not requiring a location signal as users will often lose a signal, when being
underground for example, during the course of the journey.

I have discovered plentiful ways that I could navigate the user through a
walk (Obj 6), including to use a rotating arrow which would guide the user
along the path. Additionally, I could bring up notifications when the user
comes within proximity of a certain sight, so that the user does not miss out
on it.

In regards to Obj 7 and 8, I could use some kind of notification or marker to
show where users can rest and where places of interest are.

Looking at Obj 9 and 10, I was able to reflect on my use of the Sheep

15

Spotter app and in particular their statistics screen. This led me to consider
collecting certain data, such as how many times a walk has been completed,
how many hours people have spent walking, how many hours or miles all app
users have walked collectively, and how many people are using the app. In
addition to this, it should be clear that these statistics are being collected at
a point where the user knows the walk is beginning, and knows when it is
ending.

Having done this research, I could now begin to develop my own designs
and make informed decisions about my choice in technologies, tools and app-
specific aspects of the project meaning that I could begin implementation.

2.2 Mobile Operating System

In order to make a choice on mobile operating system, I must first look at
what my options are. Doing so, I have compiled a table of different mobile
operating systems, with Wikipedia as my aid [10], from both a technical and
personal point of view. This is visible in Table 3

16

Free and Open No Development Common APIs for
OS Source License Cost smart phones and tablets
Android Yes Yes Yes
iOS No No No
Windows Phone No Yes 8.1+
Firefox OS Yes Yes Yes
Blackberry OS No Yes No
Sailfish OS Yes Yes Yes
Mer Yes Yes Yes
Tizen Yes Yes No
Ubuntu Touch OS Yes Yes Yes

Familiar with Familiar Programming Easy access
OS Interface Language to Devices
Android Yes Yes Yes
iOS Yes No Yes
Windows Phone Yes Yes Yes
Firefox OS No Yes No
Blackberry OS Yes Some No
Sailfish OS No Some No
Mer No Yes No
Tizen No Yes No
Ubuntu Touch OS No Yes No

Table 3: Comparison of available Mobile Operating Systems

Having seen how much each mobile operating system varies, I concluded
that the best choice for me was to develop my smart phone app for the
Android operating system. This was due to my familiarity with the Android
programming language - Java - but also due to the development cost being
free, making the process of beginning development much quicker than, for
example, iOS, where a membership is required to develop any applications.
Additionally, as an Android phone owner, it made it much easier for me to
test any Android app as I would not have to rely on only an emulator.

2.3 Mobile Framework

Following section 2.2, I know that I will develop my app in the Android De-
velopment environment. Therefore, with some online help [11], I formulated
a table, as can be seen in Table 4, which lists the main aspects of each
framework that supports the Android operating system.

17

Framework Languages Tools

Android SDK Java, XML Eclipse IDE, Android Studio
Android SDK, ADT

PhoneGap HTML, CSS, PhoneGap Development
JavaScript Tools, Development Code

Sencha Touch HTML5, CSS3, Sencha Touch
JavaScript

jQuery Mobile HTML5, CSS3, jQuery Mobile
JavaScript, jQuery

RHOMobile HTML, CSS, RhoStudio
JavaScript, Ruby

Titanium HTML, CSS, Titanium Mobile
Mobile Javascript
Corona Lua Corona SDK,

Lua editor of your choice
Adobe AIR HTML, JavaScript, Adobe AIR SDK

Action Script 3.0
Adobe Flex Action Script 3.0 Adobe Flex SDK

(Eclipse based)
Unity3d JavaScript, Unity3d

C#, Boo
Flixel Action Script 3.0 Flixel

Table 4: Discussion of Mobile Development Frameworks

The most well known choice would be the Android SDK, which includes
its own emulator, reducing development and test time. However, there is also
the option of using a JavaScript framework - PhoneGap and Sencha Touch
are two of these, which allow you to build applications using HTML, CSS
and JavaScript. Sencha Touch is more designed for user interface, whereas
PhoneGap is useful to access aspects of the phone itself such as GPS, com-
pass, camera, accelerometer, etc. Additionally, JQuery Mobile is an HTML5-
based user interface system used for creating basic layouts, navigations, and
so on.

RHOMobile, best suited for Ruby developers is based on the Model View
Controller architecture, and includes offline capabilities using Rhosync which
includes sync capabilities. On the other hand, Titanium is best suited for
those with a background in JavaScript and Java, as it builds a bridge be-
tween the two in Android.

18

Based on FLASH and HTML/JS technologies, Adobe Air runtime enables
you to build applications with HTML, JavaScript, Action Script, Flex, Adobe
Flash Professional, and Adobe Flash Builder, giving a lot of flexibility. Simi-
larly, Flex is a cross-platform tool to create Rich Internet Applications(RIAs).
It can be used to build applications which run using Flash player or Adobe
AIR and enables server integration with PHP, JAVA, Ruby, .NET, SAP back-
end.

For games, there is Corona SDK, Unity3d, and Flixel. Corona SDK in-
cludes inbuilt libraries giving access to all the necessary physics engines that
games require. Alternatively, Unity3d itself is a games engine, allowing the
creation of 3 dimensional games, and Flixel is an open source game-making
library, best used for the creation of FLASH games.

However, I was not aiming to make a smart phone game app, and it made
the most sense to use a framework which would be as familiar as possible
to what I am accustomed to. I also welcomed the many tutorials and in-
formation available online and in books, especially as this was the first app
I was to make. I also anticipated some learning curves in my development
process. Therefore, it seemed to me that my choices were between Android
SDK, PhoneGap, Sensha Touch and Titanium. Having seen that the Android
SDK uses tools such as Eclipse IDE and Android Studio, which is based on
Intellij IDEA, both of which I have experience in, it seemed that Android
SDK made the most sense.

2.4 Online Server

To be able to update my application from an online server, I had to choose
the architectural style of the web service, where I should host the web server,
and what languages I should write the web service in.

In choosing the architectural style, I was left to decide between REST (REp-
resentational State Transfer), a simple stateless architecture that generally
runs over HTTP, and SOAP (Simple Object Access Protocol), a messaging
protocol that allows programs that run on disparate operating systems (such
as Windows and Linux) to communicate using Hypertext Transfer Protocol
(HTTP) and its Extensible Markup Language (XML). In particular, for the
Android development environment, it seems that SOAP is not as well sup-
ported, requiring third party libraries to make calling SOAP Web Servers
easier. Additionally, REST does not require as much bandwidth as SOAP,
making it better fit to use over the internet. Therefore, I concluded that it

19

was an easy decision to choose a RESTful web server for my application.

For whom to host my web server, I was inclined to choose the Department
of Computing’s Apache Cloudstack, which I had used previously during my
group project. This made it much easier for me to host my web server online
as I already knew how the interface would work. In addition, it would not
restrict me to a specific amount of space, api calls, or require a subscription
fee to be paid, unlike services like Microsoft Azure and Amazon EC2.

Therefore, all that was left to be decided were the languages on my web
server. The obvious choices for this are Python, PHP or Ruby. Having not
had much experience in any of these before, I discovered online that Python
is the easiest to learn, whilst Ruby is the hardest - but yet Ruby has the
best usability. On the other hand, PHP has the lowest usability but ranked
in the middle for ease of learning [21]. However, having searched online for
“RESTful API Android”, the most common search results involve PHP as
the language used in the web service. Therefore, I concluded to use PHP as
my language of choice, as it may not be as easy to learn as Python, but it
had the most information provided online to help me in the creation of this
web service.

2.5 Database

In terms of a database, the choice for internal database was clear - SQLite,
as it is already integrated into every Android App. I also needed to choose
the database that would host on the web service I created. Indeed, the
Department of Computing’s Apache Cloudstack allowed me to create an
Ubuntu or Windows virtual machine, meaning that I was free to install any
database tools I require. Therefore, I found my choices were between using
SQL Server on a Windows VM, or MySQL on an Ubuntu VM. As I was
most familiar with the Linux environment and command line, I found that
MySQL was the best option for my application, with plenty of tutorials
to follow. In addition to that, I also found that I would easily be able to
connect a MySQL database to a PHP web service through the use of a free
software tool, PHPMyAdmin - which can be installed and configured on a
Linux virtual machine.

2.6 APIs

Throughout my app, I required the use of several third party APIs to attain
information about the local transport, weather and to be able to include a

20

map interface in my app. Therefore, I made a comparison of these APIs, as
seen in Tables 5 to 7.

API Price Filter Format

Google Maps Free No (Preferred only) JSON
Transport for London Free Yes JSON
Transport Free Yes JSON
Citymapper Free Yes Open in app

Table 5: Comparison of Map and Directions API

API Limit/Cost Accuracy Format

Yahoo Weather 2000/day Geographic Coordinates JSON/XML
Accu Weather Premium Postcode JSON
Met Office 2000/day Geographic Coordinates JSON/XML
Forecast.io 1000/day Geographic Coordinates JSON
OpenWeatherMap 1200/minute Geographic Coordinates JSON/HTML
WeatherBug Premium

Table 6: Comparison of Weather API

API Limits Active Users Format

Facebook Free 1.44 billion JSON
Twitter 15-180/15 minutes 302 million JSON
Instagram 5,000/hour 300 million JSON
Tumblr 1000/minute 206 million JSON
Google Plus 10,000/day 111 million JSON

Table 7: Comparison of Social Media API

For the simple map API, it was clear that Google Maps would be the
best option, as it was easy to integrate into an Android app as an activity
already incorporated into the Android interface. However, as an API for
transportation, it did not allow users to filter their journey. On the other
hand, although Citymapper was the best app, as discussed in section 2.1.3,
its API would only allow the user to open the route in their own app, and
thus was not as useful. Therefore, I was left to decide between the Trans-
port for London and Transport API. As the Transport API pulls data from
both Transport for London and Citymapper, it made the most sense to use
Transport API as it retrieves information from several sources.

21

For a weather API, I could see from table 2.6 that OpenWeatherMap has
the best API for my app, allowing up to 1200 API requests per minute. Ad-
ditionally, OpenWeatherMap has the clearest online documentation, which
should make it much easier to set a request for the weather information using
the geographic coordinates of each London LOOP section.

Similarly, from table 7, it was clear that Facebook had the highest num-
ber of active users out of any social media, followed by Twitter, Instagram,
Tumblr and the least used social media site, Google Plus. Since the limits
were all extremely high, and the return of the APIs are all JSON, it made
sense to use Facebook, the most popular social media application in the
world.

2.7 Development Environment

Despite being an Eclipse user since my first year studying, I decided that it
was worth looking into other options. Android Studio, the main competi-
tor to Eclipse in Android development tools, is based on the IntelliJ IDEA
platform, and allows the user to create activities from a list available, and
additionally integrates the Gradle set of build tools. This meant that, as
someone who has never created an Android app before, I had a set of tools
readily available which does not require installed plugins and add-ons to
work. With a clear user interface, Android Studio also allowed me to easily
run and debug my app directly onto my phone or through an emulator.

2.8 Version Control

As with any project, it was necessary to use a revision control system. As
Android Studio can be integrated with git, I had chosen to work on GitLab
[25]. This is a revision control system which I was accustomed to throughout
use in my course, and allowed me to easily back up my work and keep different
versions of it so that there was always a current working version. To begin
my project, I have created a group on GitLab, “london-loop”, and a project
within, “londonloopapp” [26], where my project repository resides.

2.9 Software Development Methods

It is important before starting any project to work, it was necessary to have a
strategy to planning all the workload, and to keep track of work progression.

22

I decided to use the Iterative Development Model [27], as can be seen in
Figure 1, to help manage the project.

Figure 1: Iterative Development Model

Therefore, I completed my initial planning, where I examined the exist-
ing data and decided what my objectives are, as already seen in section 1.2.
Following this, I created a full list of requirements, or features, which I will
implement in my project. This includes a set of initial designs to be used in
my app, and a simple timetable of how to complete my objectives. Then,
having analysed and redesigned my ideas until I have a clear understanding
of what I want my app to include, I was able to begin the implementation
phase. In order to manage my progress, I used a web-based project manage-
ment application, Trello [28], modelled by the kanban scheduling system, to
manage tasks and personal deadlines so that I could stay on track with my
project, and adapt my goals and project plan if required. Additionally, once
I began implementation, I also began testing my application, and evaluation
of any hurdles I come across.

2.10 Summary of Background Research

Having completed my initial background research, I come to the following
conclusions for choice in technologies.

B1 Mobile Operating System - Android OS

B2 Mobile Framework - Android SDK

B3 Database - SQLite and mySQL

23

B4 Online Server - Apache Cloudstack

B5 APIs - Google Maps, TransportApi, OpenWeatherMap, Facebook

B6 Development Environment - Android Studio

B7 Version Control - GitLab

B8 Software Development Methods - Iterative Development Model

This left me in a position to begin creating the design and development
process to my project.

24

3 Specification and Project Plan

3.1 Specification

To begin designing my app, I first settled on a main list of features for my
app as follows.

1. List of London LOOP walks

(a) Shows user which region of London the walk is in

(b) Details the distance of the walk and the estimated time it would
take to complete

2. Map of London LOOP walks

(a) Marker showing walk locations

3. Detail of London LOOP walk

(a) Information about the walk

(b) Suggestions for attire for the current day’s weather conditions

(c) “Start” button which prompts you to be navigated to the walk’s
start point or to start the walk

4. Navigation to start point of a walk

(a) Filters route as required by the user

(b) Gives user different options to take

(c) Guides user to the route, updating the guide as the user moves
forward

(d) Allows user to choose whether to start walk straight away once
they have reached the start point for it.

5. Navigation through walk

(a) Guides user to the route, updating the guide as the user moves
forward

(b) Shows user nearby points of interest, places of rest, shops, etc.

(c) Allow user to choose whether to start next walk straight away or
navigate somewhere else.

6. Navigation from end of walk

25

(a) Filters route as required by the user

(b) Allow user to choose type a postcode or station name as a desti-
nation.

(c) Guides user to the destination, updating the guide as the user
moves forward

7. Statistics Page

(a) Give user information of their progress - walks completed, time
taken, miles walked

(b) Gives user information of global progress - people currently walk-
ing, walks completed by everyone, time taken by everyone, miles
walked by everyone

These can be summarised in figure 2.

Figure 2: Functionality of App

Additionally, I created a list of extensions which expand on the core
functionality of my app as follows.

1. See how many times each walk is completed

2. Allow the user to pause a walk and continue it at a later date without
losing information.

3. Store user information online so that personal statistics can be retrieved
on a different device.

26

4. See how many people are currently walking on a given walk

5. Progress bar so that user knows how far they are through the walk

6. Social Media Interaction

(a) Check-In Facebook Button

(b) Share photograph with Facebook

(c) Find others using the app

7. Voice navigation

3.2 Project Plan

Following my background and design sections, I established a clear under-
standing of how I wanted my app to behave. Therefore, I created a timetable,
as seen in figure 3 showing where I wanted to be in the time up to the dates
I hand in my project.

Figure 3: Project Plan

In my timetable, I gave myself 6 weeks to plan my project, 7 weeks to
design my project, and 20 weeks to implement it. Following my first week
of exams, I was to begin testing and debugging my app, whilst still imple-
menting the project. In terms of my final report (this report), I planned to
begin writing in the week of the 18th of May, the week between my two last
exams. I chose this week, as I would be primarily revising for my final exam,
and so writing would be the least taxing part of my project to do.

Having created an overall timetable, I also realised it would be important
to create a detailed timetable for my implementation, as seen in figure 4.
Here, I allowed myself a 2 week break prior to my computing exams on the
week commencing the 23rd as I had 3 computing exams. On the other hand,
I did not plan to stop working during my maths exams as I had only 2 maths
exams on different weeks of May. I hoped to complete as much of the core

27

features during my Easter holidays, so that I don’t have too much implemen-
tation to do following my exams and would have time to implement some
extensions to my project.

Figure 4: Detailed Implementation Timetable

Additional to my project timetables, I have also used a kanban scheduling
system to manage my project - Trello. “Projects are represented by boards,
which contain lists (corresponding to task lists). Lists contain cards (corre-
sponding to tasks). Cards are supposed to progress from one list to the next
(via drag-and-drop), for instance mirroring the flow of a feature from idea to
implementation. Users can be assigned to cards. Users and boards can be
grouped into organizations [29].” How I used this can be seen in figure 5.

28

Figure 5: London Loop Project Board [28]

Following section 2.8 Version Control and 2.9 Software Development Meth-
ods, I intended to fully utilize Git’s support for branching and merging in
the development process. I created a new branch for a particular section or
feature of my project, and merged into the ‘master’ branch when that fea-
ture or section was fully functional and working. In this way, I always have
a working iteration of my project on the ‘master’ branch.

I also held weekly meetings with my supervisor, Professor Michael Huth.
This helped me to aim to have a new iteration of my app complete before
each meeting so that I could show how my project was progressing.

29

4 Design

4.1 Software Design

4.1.1 Web Service

For my web service, I wanted to create a CRUD RESTful PHP Web service.
Therefore, I used the model in figure 6 to visualise how the client side (smart
phone) interacts with the web service.

Figure 6: RESTful Web Service

Additionally, to ensure that every API request is successful, the JSON
response will be issued with a status code as follows.

Status Code Meaning
0 Success
1 Failed retrieving data
2 Failed updating data

30

4.1.2 Database Design

I designed a schema for each of the database tables as can be seen in table 8

Table Name Type Definition

Node NodeId int primary key
Name text name of node (e.g. Erith,

Old Bexley, ..)
Latitude real latitude of node

Longitude real longitude of node
Section SectionId int primary key

StartNode int id of start node
EndNode int id of end node

Description text description of walk section
Length real length of walk in miles

Gps GpsId int primary key
GpsNo int incremental number of gps item

within its section
GpsLat real latitude of gps coordinate

GpsLong real longitude of gps coordinate
GpsSection int id of section that gps item

corresponds to
GpsNote text note (can be null) that

tells user where to go next
Marker MarkerId int primary key

SectionId int id of section that
marker corresponds to

Latitude real latitude of marker
Longitude real longitude of marker

Type int 0 for place, 1 for shop/restaurant,
2 for seating area

Url text url which will open when
info window is clicked

Statistics WalkId int id of section the statistics
corresponds to, 0 for all

CurrentlyWalking int number of people
currently walking section

WalkTime int time spent walking in minutes
MilesWalked real miles walked

Table 8: Database Schema

31

4.2 User Interface Design

Before embarking on designing the visual aspect of my app, I first had a look
at current design strategies for smart phone apps, as well as the branding for
the London LOOP itself. In particular, I have found that Google’s Material
Design is the most comprehensive guide as well as catered towards the An-
droid system.

Google’s Material Design states their goals as “Create a visual language
that synthesizes classic principles of good design with the innovation and
possibility of technology and science” and “Develop a single underlying sys-
tem that allows for a unified experience across platforms and device sizes.
Mobile precepts are fundamental, but touch, voice, mouse, and keyboard
are all first-class input methods.” In this way, Google has outlined key prin-
ciples for style (e.g. colour, typography, imagery), layout (e.g. structure,
measurements), components (e.g. buttons, dialogs, lists), and patterns (e.g.
navigation drawer, scrolling techniques). In designing my smart phone app,
I will bear all these guidelines in mind so that I can produce the best expe-
rience possible for the user.

Looking at the available material for the London LOOP online and in books,
I find that the London LOOP is signposted with the logo as seen in figure 7.

Figure 7: London LOOP sign

The flying kestrel, the symbol of the London LOOP is also seen on Trans-
port for London’s London LOOP website, as seen in figure 8.

32

Figure 8: TFL London LOOP Logo

From figures 7 and 8, I designed my first draft of the logo I wanted to
use for the app - this would be the launcher icon users seen on their smart
phone’s home screen or ‘App’ folder. This can be seen in Figure 9, where I
have taken the kestrel from figures 7 and 8, and made that my logo.

Figure 9: First draft of my app’s logo

However, due to the detail, I noticed that the icon may be quite ambiguous
when overlayed on different backgrounds. In order to check this, I have taken
the icon and placed it on top of a selection of backgrounds [31], as seen
in figure 10. However, one can clearly see that the icon appears well on
contrasting colours, but is not as easily visible on similar colours such as the
yellow and blue backgrounds.

33

Figure 10: My first draft logo on different backgrounds

As a result, I turned to research alternative ideas for the logo, and came
across a logo designed by a third party [32], as seen in figure 11.

Figure 11: London LOOP Logo designed by Tudor Prisacariu

Therefore, I wanted to make a logo that was more contemporary and
minimalistic, like figure 11, and so, taking the outline of the London LOOP
(Figure 12), and taking the outline of the river Thames across London, I
created a second draft of my logo (Figure 13).

34

Figure 12: Outline of London LOOP

Figure 13: Second and final draft of my London Loop app’s logo

Checking again if my new icon would be clearly visibly on various back-
grounds (Figure 14), I could see that this new icon is much clearer and
unambiguous.

35

Figure 14: My first draft logo on different backgrounds

Therefore, I concluded that this is the best icon to use as my app’s logo.

The next step in creating the branding for my app was to create the name of
my app. The maximum number of characters for an Android App is 12, and
as “The London Loop” is too long at 15, I had to come up with a shorter
title for my app. I went through names such as “LOOP”, “London Loop”,
and “LOOP Walker”. However, I settled for “London Loop” in the end, as
it was clear and simple.

4.3 Mock Mobile Design

Following the list of features in section 3.1, I created a series of mock designs
for my app, as seen in figures 15 and 16.

36

F
ig

u
re

15
:

L
on

d
on

L
O

O
P

M
o
ck

u
p
s

37

F
ig

u
re

16
:

L
on

d
on

L
O

O
P

M
o
ck

u
p
s

co
n
t.

38

However, as these are only my first designs, created prior to beginning
implementation, I expected to make changes as I went along with building
my app. Figures 17- 21 show the mockups I made later on in the project.

Figure 17 shows the navigation drawer I will have, which is a contrast to
the tabbed buttons I had in my first mockups. However, I realised that
it would be unnecessary to have tabs on the screen at all times because it
is unlikely that the user would need to switch tabs once embarking on a walk.

For the list of walks, I changed the user interface to have a card style design,
conforming to Google’s Material Design, and added an icon letting the user
know which part of London the walk is in - blue for South, green for North
West and Yellow for North East. For the map of walks, I used different
coloured pins, again with blue for South, green for North West and Yellow
for North East, to visualise where the walks are in London.

The cards in the list of walks, and the pins in the map of walks would then
take the user to see the detail of the walk, as seen in figure 18. Here, the user
would be told a short description of the walk, as well as be given weather
information about that area so that the user can be prepared for the walk
if they choose to go on it. Once the user clicks start they are taken to the
“What do you want to do?” page where they can either choose for the app
to take them to the start of the walk, with filters of mode of transport, or
to go straight into the walk if they are already there. If the user chooses to
ask the app to plan a journey to the walk, then it would show the user the
different options they can take. When the user clicks on one of these options,
they are taken to the screen shown in figure 19. Here, the app has planned
the journey on a map interface, and contains an information section below
which not only tells the user where to go, but also updates this information
as the user moves forward, and allows the user to skip forward or backward
in the journey in the case that a connection has been lost, for example on
the underground.

Once the user has reached the start of the walk, the app would prompt
them to start the walk, allowing the user to choose yes, or no if they wish to
have a break prior to starting the walk. In that case, they can come back to
the app when they are ready and click on the button “I am at the start point”.

When the user begins their walk (figure 20), they are guided in much the
same way as the journey to the walk, with the added feature of markers on
the map that show points of interest, and a checked flag showing the end so

39

that the user can see where the walk ends. Once they reach this end, they
are given the option of what to do next. They are then given a similar option
to before they start the walk where they can type a location for the app to
guide them to, or, if they feel up to it, continue the loop and start the next
walk.

The final page on the app is the statistics page (figure 21) where the user can
see information about their progress on the London Loop, how many walks
they have completed, how long they have spent walking, how many miles
they have walked, plus additional information about how many other people
are walking at the moment, how many walks people have completed, and so
on. Additionally, by pressing the 3 dot button on the action bar, the user
can get more information about the London Loop and the app.

40

F
ig

u
re

17
:

L
on

d
on

L
O

O
P

M
o
ck

u
p
s

41

F
ig

u
re

18
:

L
on

d
on

L
O

O
P

M
o
ck

u
p
s

co
n
t.

42

F
ig

u
re

19
:

L
on

d
on

L
o
op

M
o
ck

u
p
s

co
n
t.

43

F
ig

u
re

20
:

L
on

d
on

L
o
op

M
o
ck

u
p
s

co
n
t.

44

F
ig

u
re

21
:

L
on

d
on

L
o
op

M
o
ck

u
p
s

co
n
t.

45

4.4 Testing and Feedback

An essential part to any development process is testing, and although it
would be ideal to make the development of my project test-driven, I found
that this was not as easy as it seemed. The main requirement for testing my
app is the use of location services, and without physically taking the device
to that location to test it, I could not know that the app would work. There-
fore, with the help of friends and family, I was able to install my app onto
their devices so that I was not the only person using my app, and so that
they could provide feedback on any bugs they found, and the experience of
using my app on site.

In order to quantify some of this feedback, I created a survey for them to
complete so that I could see what aspects of my app I need to work on (fig-
ures 22 to 24). In particular, I asked users several questions relating to the
design and functionality of the app.

Using feedback from users during the testing process, I was able to fix any
bugs that I had not found myself in the app, and make the app easier to un-
derstand. Additionally, using the results produced by the surveys from not
just users who tested the app, but users who had not tried the app before, I
was able to achieve feedback regarding how useful users found each feature,
as well as what they thought of the branding of the app.

46

Figure 22: My London Loop App Survey

47

Figure 23: My London Loop App Survey cont.

48

Figure 24: My London Loop App Survey cont.

5 Implementation

As discussed in section 2, I use the Android Operating System (2.2) with the
Android SDK (2.3), and implementing my app in the Android Studio IDE
(2.7). I also use a virtual machine I created on Department of Computing’s
Apache Cloudstack for my web service (2.4) and database(2.5).

5.1 Creating the skeleton app

In order to begin my project, I began by creating a simple Navigation Drawer
Activity from the window in figure 25.

49

Figure 25: My London Loop App Survey cont.

Then, I added my 3 pages - ‘Walks’, ‘Map’, ‘Statistics’. I wanted the user
to see the walks in two different styles of lists - one in a conventional list,
and one where the user clicks on a marker on a map to see what walk it is,
whilst having a third page for the user’s own statistics.

5.2 Creating the list of London Loop walks

Before creating my internal database, I set up my dummy data in an Ar-
rayList holding a class WalkViewItem, whose constructor can be seen in the
listing 1.

Listing 1: LocationListener

public WalkViewItem(Drawable icon, String title, String

description) {

50

this.icon = icon;

this.title = title;

this.description = description;

}

However, following redesigns, I removed the icon from the WalkViewItem,
and have redevloped the class WalkViewItem into two separate classes, NodeItem
and SectionItem, with their constructors seen in the listing 2.

Listing 2: NodeItem and SectionItem constructors

public NodeItem(long nodeId, String name, double latitude,

double longitude) {

this.nodeId = nodeId;

this.name = name;

this.latitude = latitude;

this.longitude = longitude;

}

public SectionItem(long id, NodeItem start_node, NodeItem

end_node, String description, double miles) {

this.id = id;

this.startNode = start_node;

this.endNode = end_node;

this.description = description;

this.miles = miles;

}

I then created the new icons, as in my mockups (figure 17) which separate
the walks into their sections of the map - North-West, North-East and South.
This can be seen in figure 26.

51

Figure 26: Walk List

5.3 Adding the map fragment

Following my mockups in section 4.3, I created my maps page, as seen in
figure 27.

Figure 27: Map of Walks

Again, I have followed a similar pattern to that of the walks page, chang-

52

ing the colour of the marker to the colour of that section of the London
Loop.

5.4 Linking the walks to its own page

Additionally, alongside both methods to visualise the walks, I also included
the walk detail page. Both the marker’s info window and the walk’s card
takes the user to the walk detail page. Here, I implemented a small piece
of information about the walk, taken from Transport for London’s London
Loop page [8], as well as nearest train stations to the start and end point.

As can be seen in figure 28, I opted for the user to receive weather updates
within the walk detail, as I was able to get weather information from my API
(OpenWeatherMap as discussed in 2.6) to be specific to the location. Prior
to this, I had considered making a separate page - but who would click on
it?, as well as including it in the navigation bar - but what if the user never
opens it? Therefore, it was clear to conclude to include weather information
just above the “Start” button so that users see it before making a move.

Figure 28: Walk Detail Screen

5.5 Switching to an internal database

As I discussed in section 5.2, I originally used dummy data for all the sections
and nodes. However, in order to port this information into a database, I had
to create a database helper class, MySQLiteHelper, extending SQLiteOpen-
Helper. There, I stated strings of the database, tables and columns, and

53

used them to help me form a “CREATE TABLE” statement for each of the
tables, as well as methods to create, upgrade, drop and close the database.
Additionally, each table has methods to get, get all and set elements in the
database. Alongside these default methods, I set up new methods such as to
select from a certain table where an element coincided with one from another
table, and a method to check if a table existed so that the creation of the
database occuring in MainActivity.java was not repeated.

The creation of this database occurs in MainActivity upon the first time the
app is installed in a method known as ‘createWalks()’. This method takes
text files held in the raw folder of the project’s resource directory, parses
them, and inputs the data into the SQLite database. The implementation of
this can be seen in more detail in Appendices A.

5.6 Navigating the user

Once the user clicks the ‘Start’ button, they are given two options - to be
guided to the walk, or to start the walk immediately, as seen in figure 29.

Figure 29: Start Walk Screen

If they want to be guided to the walk, I created 4 checkbox filters for
the user to choose from which are defaulted to be checked. This means that
the user can uncheck them if they decide that they do not want to use a
particular mode of transport. I then create an API request, for example

54

http://transportapi.com/v3/uk/public/journey/from/lonlat:
-0.1824585,51.515412/to/lonlat:-0.411109,51.470567.json?
api key=377843b343d1e052ac4d024fd9b7c93a&app id=6109f899
&modes=bus-tube-train-boat

which takes the ‘from’ location to be the user’s current location’s longitude
and latitude, the longitude and latitude of the start point of the walk to be
the ‘to’ location, the API key and id which is generated upon registering an
account with transportapi.com, and a filter of modes (where each mode is
removed upon unchecking a box).

Upon searching for a journey, the app first executes an AsyncTask which
gets the user’s current location, and then executes a second AsyncTask which
sends the API request on a separate thread. Following a result from the API,
the app either parses the returned JSON format into an ArrayList of RouteIt-
ems which are then displayed as shown in figure 30, or it produces an error
message in a Toast which returns the user back to the search page. The
implementation of this process is detailed in Appendices B.

Figure 30: List of journey options

Then, once the user clicks on a route, the user is navigated as shown in
figure 31. Here, I defined a location listener, as described in listing 3, to take
a location changed event and change the text below as required.

Listing 3: LocationListener

55

// Define a listener that responds to location updates

LocationListener locationListener = new LocationListener() {

public void onLocationChanged(Location location) {

// Called when a new location is found by the network

location provider.

mLastLocation = location;

hasLocation = true;

setMapText();

}

public void onStatusChanged(String provider, int status,

Bundle extras) {}

public void onProviderEnabled(String provider) {}

public void onProviderDisabled(String provider) {}

};

Figure 31: Screen showing guide from current location to London Loop

Additionally, if the user requires to see the text ahead themselves, then
there are left and right arrow buttons to navigate through the journey text,
as well as blue pins placed on the map to show milestones in the journey.

Once the user reaches the start of the walk, a button prompts the user
to start the walk (figure 32), to which they respond with yes or no. If they

56

start the walk, then a new navigation map begins in much the same manner
as with the navigation to the walk. However, the map pulls data from the
Marker table in the database, therefore creating a new (pink) marker pin
across the screen showing places of interest to the user (figure 33).

Figure 32: Prompt to start walk

Figure 33: Screen showing route plan for London Loop walk

57

Once the user has completed the walk, they are given a similar option to
when they began of what to do next. If they choose to start the next walk,
the navigation continues to the next walk. If they choose to leave, then they
can enter a location (postcode or station name) as a destination, and much
in the same way as when planning the journey to the Loop, it plans a journey
somewhere else.

5.7 Adding the weather service

In order to retrieve information regarding the weather, I followed the example
as shown in figure 34. Therefore, taking the geographic coordinates of each
walk, I send a JSON request to the OpenWeatherMap API, and then parse
the returned JSON response to present the data required. In particular, I
hold an if-else case on the response’s main weather and display the weather
note as seen in table 9.

Main Weather Text
Clear Sky It’s a nice clear day today.

Perfect day for a walk.
Few Clouds There are only a few clouds in the sky today.

Nothing to worry about.
Scattered Clouds There’s only a few clouds in the sky today.

Nothing to worry about.
Broken Clouds It’s very cloudy today
Shower Rain It’s raining today,

so don’t forget your coat and umbrella.
Rain It’s raining today,

so don’t forget your coat and umbrella.
Thunderstorm There’s going to be thunderstorms today

so take a coat and be careful
Snow It’s snowing today so don’t forget some warm clothes

and a carrot for your snowman.
Mist It’s misty today, so be careful when you’re walking.

Table 9: Personalised weather notes

Additionally, I would also display the day’s lowest and highest tempera-
ture in degrees Celcius so that the user also has some quantitative information
about the day’s weather.

58

Figure 34: Example Weather Request and Response

5.8 Setting up the web service

In order to set up a web service, I first created an online virtual machine
on the Department of Computing’s Apache Cloudstack. This can be seen
at the IP address 146.169.46.77, with port 55000. Initially, I was using port
80, however the Department of Computing locks the virtual machines so
that their IP address is inaccessible from outside of the Department of Com-
puting’s network or VPN. Therefore, following a lengthy process requesting
access outside the network, so that I could allow my friends and family to
easily test my app, I was allowed access on May 30th 2015.

To create my web service, I installed PHP, MySql, as well as phpMyAdmin
onto the virtual machine where I was able to create my server side database
easily using the phpMyAdmin web interface. Following this, I proceeded to
create CRUD(Create, Read, Update, Delete) functions in PHP, so that the
app can perform these tasks on the database. Of course, I intended from the
beginning not to require user authentication, so I do not have to worry about
registration of user accounts and the security of the passwords. Instead, I
use this to update information regarding the statistics about the users, and
to hold a copy of all the information about the London Loop (e.g. a backup
copy of the internal SQLite database) which can later be updated so that
the app takes the information from the online server and stores it on its own
database.

5.9 Creating the Statistics Screen

In my statistics screen, I wanted the app to show off what the user had
accomplished as well as some other statistics they may find interesting. These
include statistics about how many people are currently using the app to walk,

59

and how many walks have been completed by everyone collectively. I used
the internal database to create a small Statistics table which I only use for
the user of the app. When the user completes a walk, their statistics are
changed to show that they have completed an extra walk, walked an extra so
many miles, and spent so much time walking. Similarly, the online database
will store a set of statistics for all the users - for example where any one user
completing a certain walk would increment the WalksCompleted column.

5.10 Facebook API

Although the Facebook login no longer features in my app, I had tried to
incorporate it into my app, creating a login button which was functional
and returned information regarding the user when the login and password
was input in the Facebook pop-up login screen. However, I soon ran into
problems regarding what to do with the information, as I did not intend
to have a table of user ids online, and therefore decided that it was more
important to complete my core features than to move onto extensions too
early in the project. I therefore left it in the additional specification for the
possibility of the user being taken directly to the Facebook app from my
London Loop app to post a photo onto their wall, for example.

5.11 Conclusion

In order to implement my app according to the specification (section 3.1)
and objectives (section 1.2), I followed specification step-by-step, filling in its
functionality as written in order. I also observed parts of the implementation
which was unnecessary, such as the Facebook login, as it was extremely time
consuming for the little functionality which it would add. However, I believe
that I fulfilled my core requirement as necessary, leaving a small window to
work on some of my extra specifications before the project hand in date.

60

6 Evaluation

Coming to the completion of my project, I reflect back on my methods to
solve my problem, the issues faced, and the limitations of my solution. In
particular, I begin by comparing my project plan (figure 4 from section 3.2)
with the actual events that occurred throughout the course of the project.
As seen in figure 35, the project plan is highlighted in blue and the actual
events are highlighted in red below. In particular, I notice that I did not
allow enough time in February to write my interim report, and so had less
time to implement my app, as planned previously. However, I was aided
by the time I had planned to leave for my March Computing exams and so
slowly became back on track.

I also found during the process of implementation that some of the different
features were easier to implement in a different order, for example imple-
menting the walk detail before the map list as I only had to create a link
from the map to the same walk detail from the map marker. Additionally, I
found that the statistics page was not so easy to complete without the exter-
nal database fully working, and so found it more difficult to implement until
the 30th May 2015 when I was given access to my virtual machine without
being connected to Department of Computing’s network.

Therefore, I had become behind schedule by some weeks in terms of im-
plementation, and began the core work in March. Fortunately, I had already
allowed time during March for my exams at the end of that month. There-
fore, in April, I was only behind in implementing the map list and internal
database. I then began balancing my work with my own revision for the
exams in May, but found that the majority of my work on this project was
concentrated following my exams when I could fully focus on my app.

In retrospect, however, I would have preferred to have kept closer to my
plan, and given more time to my project before January so that I had a head
start before I had to focus on my revision.

61

F
ig

u
re

35
:

C
om

p
ar

is
on

of
Im

p
le

m
en

ta
ti

on
p
la

n
(b

lu
e)

w
it

h
ac

tu
al

ev
en

ts
(r

ed
)

62

6.1 Testing

During the course of the project, Android released a new version of their oper-
ating system - Android Lollipop. This brought in it new functionality which
was not compatible with the previous versions. Therefore, in order to ensure
that my app would work on both old devices and updated/new devices, I
delayed upgrading my own smart phone to Android Lollipop and kept the
original KitKat operating system installed. Particular new features, namely
a new CardView and RecyclerView were included in the upgrade. This was
perfectly designed to conform to Google’s Material Design discussed in sec-
tion 4.2 User Interface Design. However, I noticed that the use of this would
push the minimum SDK version to be 21 (that of the new Lollipop operating
system). Therefore, in my ‘build.gradle’ files, I set my target SDK to be 21,
but kept my minimum SDK to be version 16, so that any Lollipop-only code
would not be allowed to build. On the other hand, I would have also had to
ensure that any code would not only work on my un-upgraded phone, but
also on a phone which uses Lollipop. Therefore, I tested the London Loop
app on both Lollipop and KitKat phones to ensure maximum compatibility.

In terms of testing out in the Loop itself, I was also able to discover new
bugs in my code which I had not found earlier such as the following.

• When two checkpoints are too close to each other, the app updates
the notes between them and so the user may not be getting the most
accurate data regarding the walk.

Solution: To decrease the distance the user has to be to a check-
point for the correct note to be displayed. This requires heavy in field
testing to ensure that all cases are accounted for.

• The app crashing when its orientation is landscape and the view is a
map view.

Short Term Solution: To fix orientation to portrait.

Long Term Solution: To find out why the map causes a crash on
landscape and solve the problem.

• Inaccuracy of the start point led users to cross a road which was un-
necessary.

Solution: To find out exactly where the walk starts so that the
geographic coordinates are correct and would not lead walkers astray.

This allowed me to find solutions to problems which I may not have realised
on my own or with my own device.

63

6.2 Human Feedback

In order to establish what other users thought of my app, I created a survey
asking users of the app to provide feedback on their experience using the
London Loop app, wherein the full results are visible in Appendices D. To
summarize my results, I found that users have overall found the app easy to
use, navigate, and visually appealing. This enforces the idea that design is a
vital part in creating any product, and having completed a strong selection
of mockups, I have been able to produce an app which is both aesthetically
pleasing and clear to use.

The majority of users have also found the app easy to use both when nav-
igating to the walk and when navigating during the walk, showing me that
I have implemented the navigation in a way which is simple to use, and
behaves correctly - particularly when the user’s location changes. However,
many of the users chose the option “Not so often” when describing how often
the app crashed or froze, suggesting that there are still problems within the
app that I have not yet realised every edge case when coding the app.

In asking users what they thought of the different features, the colour coding
and global statistics seemed the least important feature of the app, whilst
noting the use of filters on modes of transport, the navigation notes updat-
ing upon location changing, and information regarding the walk itself such
as estimated time and length to be the most useful features in the app. Since
these are the core features of the app, with the colour coding a touch on the
appearance and the global statistics something that may not be useful, but
may be interesting to the user, I found these statistics to conform with how
I hoped the app would appear to users.

In terms of branding, users found a clear connection between my logo (
figure 13) and the London Loop. This was very good news as it means that
users will be able to remember the logo, and associate it with the app and
walks.

From the written feedback from users, I learnt that the app had encour-
aged users to go out and complete the walks and thus bringing me back to
my motivation in section 1.1 - “To encourage people to become more active.”
I am now confident that the app can be used as a tool to allow users to be
more active and explore more of the city around them.

64

6.3 Choice of API

Having chosen my APIs since section 2.6, I created a survey to ask potential
users what sorts of websites and apps they use for similar features. The ques-
tions are shown below in figure 36, and the results are visible in Appendix
E.

Figure 36: App Survey

To summarise these results, I found that contrary to what I had believed,
more people used Google Maps than any other method to plan their journeys.
I also found that the majority of people preferred Citymapper to Transport
for London. However, due to Google Map’s lack of filtering, I was swayed to
choose a different API, as previously discussed in 2.6. This choice was the
transportAPI, a resource which pulls data from both Transport for London
and Citymapper. Therefore, with few results being from any other category
other the three already mentioned, I am confident that my choice was still
the correct one.

Google Maps also surpassed all other results in terms of looking up places,
suggesting that people were accustomed to the Google Map interface and by
using it in my app, brought something familiar and more appealing to users.
However, for mapping out routes, Google Maps would only allow 8 waypoints
per path, and so I instead had to consider an alternative. This was the use

65

of drawing a path or ellipse across the map interface, and updating the text
guiding the user on location changed events. This meant that the app was
guiding the user itself and not requiring a Google api to do so.

The majority of answers regarding the weather were in the Other section,
with the majority using the BBC website or their inbuilt phone app. How-
ever, as BBC does not provide an API, I am satisfied that my decision was
not wrong. The OpenWeatherMap allows me to pinpoint exactly where I
want weather information about, not only just in a city but in a particu-
lar location. Additioanlly, the inbuilt app for Android, Accu Weather, is a
premium API service and so out of my reach for this project. Therefore, I
am left between Met Office, Yahoo Weather and OpenWeatherMap. MetOf-
fice does not allow the user to choose a specific location but instead it must
include a code for the location, making the request more difficult to form.
Similarly, Yahoo Weather uses an id called ‘woeid’ to define locations. This
makes the OpenWeatherMap the easiest to use and thus justifying my choice
from earlier.
It is clear from the results that Facebook is the most popular Social Media
interface that people use and so if I were to use any social media interaction
in my app, I would use Facebook. However, as discussed earlier, I chose
against including any interaction in my app unless time permits.

6.4 What I learnt

As this was the first time I had created a smart phone app, I expected there
to be many learning curves during the implementation phase. In particular,
what I found most difficult about how to start was where to start. I had all
the tools required to make an app, but I did not know how to utilize them
to something that would appear on a smart phone. Therefore, I completed
several online tutorials, video tutorials, read books and viewed sample apps
from Google’s Developers website. In this way, I created and recreated sev-
eral basic apps, allowing me to build a solid understanding of how Android
apps work.
In particular, I found that Android has two UI components - fragments and
activities. A Fragment represents a behaviour or a portion of user interface
in an Activity, which means that a single activity can contain multiple frag-
ments. This allows users with larger screens to be able to see two fragments
at the same time, as well as for the app to retain the state of each activity
so that the user can click the back button without losing the state of the
previous fragment.
Additionally, the use of XML files for the visual aspect of implementation was

66

new to me, and I quickly learnt how to create layouts for different fragments,
and create ‘drawable’ files for the layout files to contain. This allowed me to
reuse the same layout or drawable multiple times in different situations - for
example when using the same button style in different areas of the app.

The biggest learning curve I found was the use of AsyncTask to request
data from an API, and also the creation of my own API. In order to send a
requestion to an API, I must first create a class within the class where I want
to use the data which extends AsyncTask. I can then add a ProgressDialog
in the method ‘onPreExecute’ if required so that users know that the app
is working on something. Then, overriding the method ‘doInBackground’, I
perform the task of sending the HTTP request, retrieving the results, then
do something with it in the method ‘onPostExecute’. This became even
more difficult when it came to my web service. I had successfully created my
database online however when it came to reading and updating the database
data from the app, I struggled. I was able to achieve the GET request from
my database; however I was unable to send a POST request, but after a long
process of following different tutorials online and reading up on the process
of sending a request to a RESTful API, I was successfully able to update the
database.

67

7 Conclusions and Future Work

Having now created a working smart phone app which, as my Project Pro-
posal discusses, can be used by walkers of the London Loop to plan and
navigate walks, as well as to find out more information about points of inter-
est, I can see that my app fulfils all of its core objectives, and also fulfils the
extended objective “The app should keep a count of how many users are cur-
rently walking on a particular walk” but also extends that to an abundance
of statistics which the user can keep track of, as seen in the specification.

Through the project itself, I have learnt a great deal about London, and
discovered places I had not seen before. From trying to walk the London
Loop with only a book to hand, to testing out my app, I have been inspired
not only to complete my app fully, but also to complete every walk on the
London Loop and discover a London far different to that of the busy urban
streets of Central London.

7.1 Future Work

As this is not a fully complete app, only containing data for one of the walks
(Walk 10: Hatton Cross to Hayes and Harlington), the first piece of future
work to be completed would of course be to flesh out the entire app, filling
in all the details of each individual walk so that the app can be used through
all of the London Loop.

I would then begin on the extended objectives I could not complete, such
as holding user information online so that the user could retain their statis-
tics if they were to switch to another device, and the ability for users to
upload their own points of interests, restaurants, shops, etc. This would be
incredibly useful as shops close down and new shops open. It would be im-
possible to keep track of all these occurrences without user input.

Although I had begun the process of including social media, I never com-
pleted it, and thus would like to finish this task, and most likely incorporate
it into the user information stored online, so that users do not have to regis-
ter with an email address but can instead use their Facebook account.

More options would be to allow users to upload images of their walk and
share it with other users, giving new walkers the ability to see what others
have seen on that walk. However, this would require a moderation system
online where images posted would be reviewed and stored in a secure place

68

which could not be altered.

All in all, there are many ways I could take this app further, and with
more time, I would like to be able to fulfil these ideas to build a fully fledged
London Loop smart phone app.

69

8 References

[1] Kurt Wood (19 May 2015)
British children facing a rising tide of type 2 diabetes, says NHS chief
Available from:
http://www.diabetes.co.uk/news/2015/may/british-children-facing-a-
rising-tide-of-type-2-diabetes,-says-nhs-chief-97493834.html [Accessed on
20th May 2015]

[2] Kurt Wood (13 May 2015)
British people unaware of their obesity, survey suggests
Available from: http://www.diabetes.co.uk/news/2015/may/British-
people-unaware-of-their-obesity,-survey-suggests-96976829.html
[Accessed on 20th May 2015]

[3] BBC News London (2 February 2015)
London’s population hits 8.6m record high
Available from:
http://www.bbc.co.uk/news/uk-england-london-31082941 [Accessed on
5th February 2015]

[4] Simon Usborne (25 September 2014)
47 per cent of London is green space: Is it time for our capital to
become a national park?
Available from: http://www.independent.co.uk/environment/47-per-
cent-of-london-is-green-space-is-it-time-for-our-capital-to-become-a-
national-park-9756470.html [Accessed on 5th February
2015]

[5] Robin Yapp (17 September 2014)
Londoners walk less and can’t fit in time for exercise, research shows
Available from: http://www.standard.co.uk/news/london/londoners-
walk-less-and-cant-fit-in-time-for-exercise-research-shows-
9737043.html?origin=internalSearch [Accessed on 5th February
2015]

[6] Sharp, David, and Colin Saunders (2012)
The London Loop (Recreational Path Guides)
Published by: London: Aurum [2012, Print Edition]

[7] Wikipedia (9 May 2015)
London Outer Orbital Path

70

Available from:
http://en.wikipedia.org/wiki/London Outer Orbital Path [Accessed on
21st May 2015]

[8] Transport for London (2015)
London LOOP
Available from: http://www.tfl.gov.uk/modes/walking/loop-walk
[Accessed on 21th May 2015]

[9] Saturday Walkers Club (March 2014)
London Loop - Download GPS Route
Available from: http://www.walkingclub.org.uk/long-distance-
path/london-loop/download-GPX-KML.shtml [Accessed on 10th
February 2015]

[10] Wikipedia (15 June 2015)
Comparison of mobile operating systems
Available from:
http://en.wikipedia.org/wiki/Comparison of mobile operating systems
[Accessed on 17th June 2015]

[11] Jude Aakjaer (1 February 2012)
Android Development: Do You Know Your Options?
Available from: http://www.sitepoint.com/android-development-do-
you-know-your-options/ [Accessed on 10th June
2015]

[12] Google Inc. (15 Jube 2015)
Maps
Available from:
https://play.google.com/store/apps/details?id=com.google.android.apps.maps&hl=en
[Accessed on 17th June 2015]

[13] LondonNut.com (4 November 2015)
London Transport Planner
Available from:
https://play.google.com/store/apps/details?id=com.london.londontransport&hl=en
[Accessed on 4th June 2015]

[14] Citymapper Limited (16 June 2015)
Citymapper - Bus, Tube, Rail
Available from: https://citymapper.com/london/apps [Accessed on
17th June 2015]

71

[15] TripAdvisor LLC (2 June 2015)
London City Guide
Available from:
https://play.google.com/store/apps/details?id=com.tripadvisor.android.apps.cityguide.london&hl=en
[Accessed on 17th June 2015]

[16] GPSmyCity.com, Inc. (27 March 2015)
London Map and Walks
Available from:
https://play.google.com/store/apps/details?id=com.gpsmycity.android.u4
[Accessed on 17th June 2015]

[17] MapMyFitness, Inc. (15 June 2015)
Walk with Map My Walk
Available from:
https://play.google.com/store/apps/details?id=com.mapmywalk.android2
[Accessed on 17th June 2015]

[18] Mobitrips (7 November 2013)
Split City Walks Guided Tour
Available from:
https://play.google.com/store/apps/details?id=com.mytoursapp.android.app315
[Accessed on 11th February 2015]

[19] Mission Communications Ltd (26 March 2015)
New York Pass - Travel Guide
Available from: https://itunes.apple.com/gb/app/new-york-pass-travel-
guide/id429167326?mt=8 [Accessed on 17th June
2015]

[20] Aardman Animations Ltd. (11 June 2015)
Sheep Spotter
Available from:
http://shaunthesheep.com/games/shaun-city-sheep-spotter [Accessed
on 17th June 2015]

[21] Renee (16 November 2012)
Code Wars: Ruby vs Python vs PHP [Infographic]
Available from: https://blog.udemy.com/modern-language-wars/
[Accessed on 12th June 2015]

[22] Transport for London (2015)
OPEN DATA USERS: Our Feeds

72

Available from: https://www.tfl.gov.uk/info-for/open-data-users/our-
feeds?intcmp=3671 [Accessed on 12th June
2015]

[23] Transport API (2015)
System Properties Comparison Microsoft SQL Server vs. MySQL vs.
SQLite
Available from: http://www.transportapi.com [Accessed on 12th June
2015]

[24] Emma Hulme (15 June 2015)
My London Loop App Survey
Available from: https://www.surveymonkey.com/s/D2J8R8J [Accessed
on 17th June 2015]

[25] GitLab (2015)
GitLab Version Control
Available from: https://about.gitlab.com/ [Accessed on 13th February
2015]

[26] Emma Hulme (17 June 2015)
London LOOP / LondonLoopApp
Available from:
https://gitlab.doc.ic.ac.uk/london-loop/londonloopapp.git [Accessed on
17th June 2015]

[27] Wikipedia (9 June 2015)
Iterative and incremental development
Available from:
http://en.wikipedia.org/wiki/Iterative and incremental development
[Accessed on 17th June 2015]

[28] Emma Hulme (17 June 2015)
London Loop Project Board
Available from: https://trello.com/b/kfXkxCS5/london-loop [Accessed
on 17th June 2015]

[29] Wikipedia (17 June 2015)
Trello
Available from: http://en.wikipedia.org/wiki/Trello [Accessed on 17th
June 2015]

[30] Google (2015)

73

Material Design
Available from:
http://www.google.com/design/spec/material-design/introduction.html
[Accessed on 12th June 2015]

[31] Mobile Themes (12 June 2013)
android-mobile-phone-system-smartphones-640x480-wallpaper-40 0
Available from: http://www.mobiwalls.net/android-wallpapers/android-
640x480-wallpapers/12/android-mobile-phone-system-smartphones-
640x480-wallpaper-40 0.html [Accessed on 13th June
2015]

[32] Tudor Prisacariu (2011)
LONDON LOOP
Available from: http://verde.io/work/london-loop/ [Accessed on 12th
June 2015]

[33] Survey Monkey (12 June 2015)
App Survey
Available from: https://www.surveymonkey.com/s/XCH32NX
[Accessed on 17th June 2015]

74

Appendices
A. Method showing the creation of the SQLite Database

private void createWalks(){

Resources resources = getResources();

NodeItem[] nodeItems = setUpNodes();

SectionItem[] sectionItems = setUpSections(nodeItems);

setUpMarkers(sectionItems);

if(db.hasTableCount(db.getReadableDatabase(), "Statistics")

== false){

long i = 0;

while (i < 25){

//index i-0 for all walks collectively, i=1-24 for

individual walks

db.createStatItem(new StatItem(i, 0, 0, 0));

i++;

}

}

if(db.hasTableCount(db.getReadableDatabase(), "Gps") ==

false){

InputStream inputStream =

resources.openRawResource(R.raw.gps);

BufferedReader br = null;

String line = "";

String cvsSplitBy = "\\+";

try {

br = new BufferedReader(new

InputStreamReader(inputStream));

while ((line = br.readLine()) != null) {

// use comma as separator

String[] gpsString = line.split(cvsSplitBy);

if (gpsString.length == 5){

GPSItem gpsItem = new

GPSItem(Long.parseLong(gpsString[0]),

Integer.parseInt(gpsString[1]),

new LatLng(Double.parseDouble(gpsString[2]),

Double.parseDouble(gpsString[3])),

sectionItems[Integer.parseInt(gpsString[4])-1],

"");

db.createGPSItem(gpsItem);

} else {

75

GPSItem gpsItem = new

GPSItem(Long.parseLong(gpsString[0]),

Integer.parseInt(gpsString[1]),

new LatLng(Double.parseDouble(gpsString[2]),

Double.parseDouble(gpsString[3])),

sectionItems[Integer.parseInt(gpsString[4])-1],

gpsString[5]);

db.createGPSItem(gpsItem);

}

}

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

} finally {

if (br != null) {

try {

br.close();

} catch (IOException e) {

e.printStackTrace();

}

}

}

}

}

private NodeItem[] setUpNodes(){

Resources resources = getResources();

NodeItem nodeItems[] = new NodeItem[25];

InputStream inputNodeStream =

resources.openRawResource(R.raw.nodes);

BufferedReader br = null;

String line = "";

String cvsSplitBy = ",";

try {

br = new BufferedReader(new

InputStreamReader(inputNodeStream));

int j = 0;

long k = 1;

76

while ((line = br.readLine()) != null) {

// use comma as separator

String[] nodeString = line.split(cvsSplitBy);

nodeItems[j] = new NodeItem(k, nodeString[0],

Double.parseDouble(nodeString[1]),

Double.parseDouble(nodeString[2]));

j++;

k++;

}

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

} finally {

if (br != null) {

try {

br.close();

} catch (IOException e) {

e.printStackTrace();

}

}

}

if(db.hasTableCount(db.getReadableDatabase(), "Node") ==

false){

for (int i = 0; i < 25; i++){

db.createNode(nodeItems[i]);

}

}

return nodeItems;

}

private SectionItem[] setUpSections(NodeItem[] nodeItems){

Resources resources = getResources();

SectionItem[] sectionItems = new SectionItem[24];

77

InputStream inputSectionStream =

resources.openRawResource(R.raw.sections);

BufferedReader br = null;

String line = "";

String cvsSplitBy = "\\+";

try {

br = new BufferedReader(new

InputStreamReader(inputSectionStream));

int j = 0;

long k = 1;

while ((line = br.readLine()) != null) {

// use comma as separator

String[] sectionString = line.split(cvsSplitBy);

sectionItems[j] = new SectionItem(k, nodeItems[j],

nodeItems[j+1], sectionString[1],

Double.parseDouble(sectionString[0]));

j++;

k++;

}

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

} finally {

if (br != null) {

try {

br.close();

} catch (IOException e) {

e.printStackTrace();

}

}

}

if (db.hasTableCount(db.getReadableDatabase(), "Section") ==

false){

78

for (int i = 0; i < 24; i++){

db.createSection(sectionItems[i]);

}

}

return sectionItems;

}

private void setUpMarkers(SectionItem[] sectionItems){

Resources resources = getResources();

InputStream inputSectionStream =

resources.openRawResource(R.raw.markers);

BufferedReader br = null;

String line = "";

String cvsSplitBy = ",";

ArrayList<MarkerItem> markerItems = new

ArrayList<MarkerItem>();

try {

br = new BufferedReader(new

InputStreamReader(inputSectionStream));

while ((line = br.readLine()) != null) {

// use comma as separator

String[] markerString = line.split(cvsSplitBy);

int sectionNo = Integer.parseInt(markerString[1])-1;

SectionItem s = sectionItems[sectionNo];

LatLng l = new

LatLng(Double.parseDouble(markerString[2]),Double.parseDouble(markerString[3]));

String name = markerString[4];

Long id = Long.parseLong(markerString[0]);

MarkerItem markerItem;

if (markerString.length == 5){

79

markerItem = new MarkerItem(id, s, l, name);

} else {

String text = markerString[5];

String url = markerString[6];

markerItem = new MarkerItem(id, s, l, name, text,

url);

}

markerItems.add(markerItem);

}

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

} finally {

if (br != null) {

try {

br.close();

} catch (IOException e) {

e.printStackTrace();

}

}

}

if (db.hasTableCount(db.getReadableDatabase(), "Marker") ==

false){

for (MarkerItem m : markerItems){

db.createMarkerItem(m);

}

}

}

80

B. Code showing the use of AsyncTask to retrieve the user’s current
location and a list of possible journeys for the user to take to the walk

public static String GET(String url){

InputStream inputStream = null;

String result = "";

try {

// create HttpClient

HttpClient httpclient = new DefaultHttpClient();

// make GET request to the given URL

HttpResponse httpResponse = httpclient.execute(new

HttpGet(url));

// receive response as inputStream

inputStream = httpResponse.getEntity().getContent();

// convert inputstream to string

if(inputStream != null)

result = convertInputStreamToString(inputStream);

else

result = "Failed!";

} catch (Exception e) {

Log.d("InputStream", e.getLocalizedMessage());

}

return result;

}

private static String convertInputStreamToString(InputStream

inputStream) throws IOException {

BufferedReader bufferedReader = new BufferedReader(new

InputStreamReader(inputStream));

String line = "";

String result = "";

while((line = bufferedReader.readLine()) != null)

result += line;

inputStream.close();

return result;

}

81

private ArrayList<Location> convertStringToCoord(String

coordinates){

String delims = "[\\[\\],]+";

String[] tokens = coordinates.split(delims);

ArrayList<Location> locations = new ArrayList<Location>();

for (int i = 1; i < tokens.length; i++){

if (i % 2 != 0){

Location l = new Location("TfL journey planning API");

l.setLongitude(Double.parseDouble(tokens[i]));

l.setLatitude(Double.parseDouble(tokens[i+1]));

locations.add(l);

}

}

return locations;

}

private ArrayList<RouteItem> getRouteItems(JSONObject

jsonObject) throws JSONException {

JSONArray routeArray = jsonObject.getJSONArray("routes");

routeItems = new ArrayList<RouteItem>();

for (int i = 0; i < routeArray.length(); i++){

String duration =

routeArray.getJSONObject(i).getString("duration");

JSONArray partArray =

routeArray.getJSONObject(i).getJSONArray("route_parts");

RoutePart[] routeParts = new RoutePart[partArray.length()];

for (int j = 0; j < partArray.length(); j++){

String mode =

partArray.getJSONObject(j).getString("mode");

String from_point_name =

partArray.getJSONObject(j).getString("from_point_name");

String to_point_name =

partArray.getJSONObject(j).getString("to_point_name");

String destination =

partArray.getJSONObject(j).getString("destination");

String line_name =

partArray.getJSONObject(j).getString("line_name");

String part_duration =

partArray.getJSONObject(j).getString("duration");

82

String departure_time =

partArray.getJSONObject(j).getString("departure_time");

String arrival_time =

partArray.getJSONObject(j).getString("arrival_time");

String coordinates =

partArray.getJSONObject(j).getString("coordinates");

ArrayList<Location> locations =

convertStringToCoord(coordinates);

RoutePart rp = new RoutePart(mode, from_point_name,

to_point_name, destination, line_name,

part_duration, departure_time, arrival_time,

locations);

routeParts[j] = rp;

}

routeItems.add(new RouteItem(duration, routeParts));

}

return routeItems;

}

private class LocationControl extends AsyncTask<Context, Void,

Void>

{

private final ProgressDialog dialog = new

ProgressDialog(getActivity());

protected void onPreExecute()

{

this.dialog.setMessage("Determining your location...");

this.dialog.show();

}

protected Void doInBackground(Context... params)

{

Long t = Calendar.getInstance().getTimeInMillis();

while (!hasLocation &&

Calendar.getInstance().getTimeInMillis() - t < 30000) {

try {

Thread.sleep(Long.valueOf(1000));

} catch (InterruptedException e) {

e.printStackTrace();

}

};

83

return null;

}

protected void onPostExecute(final Void unused)

{

if(this.dialog.isShowing())

{

this.dialog.dismiss();

}

//does the stuff that requires current location

planJourney(mLastLocation, sectionItem);

}

}

private class HttpAsyncTask extends AsyncTask<String, Void,

String> {

private final ProgressDialog dialog = new

ProgressDialog(getActivity());

protected void onPreExecute()

{

this.dialog.setMessage("Planning routes...");

this.dialog.show();

}

@Override

protected String doInBackground(String... urls) {

return GET(urls[0]);

}

// onPostExecute displays the results of the AsyncTask.

@Override

protected void onPostExecute(String result) {

JSONObject json = null;

try {

json = new JSONObject(result);

routeItems = getRouteItems(json);

setListAdapter(new RouteAdapterItem(getActivity(),

routeItems, getActivity(), sectionItem.getId()));

if(this.dialog.isShowing())

{

84

this.dialog.dismiss();

}

} catch (JSONException e) {

Toast.makeText(getActivity(), "Unable to retrieve

routes, please check internet connection and try

again", Toast.LENGTH_SHORT).show();

if(this.dialog.isShowing())

{

this.dialog.dismiss();

}

getActivity().getSupportFragmentManager().popBackStack();

}

}

}

85

C. Code showing how the notes for the walk are updated

public View onCreateView(LayoutInflater inflater, ViewGroup

container,

Bundle savedInstanceState) {

View rootView = inflater.inflate(R.layout.fragment_gps_maps,

container, false);

//initialize layout

walkNumber = getArguments().getLong("walkNumber", 0);

db = new MySQLiteHelper(getActivity());

dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss");

startDate = new Date();

statItem = db.getStatItem(walkNumber);

globalStat = db.getStatItem(0);

sectionItem = db.getSection(walkNumber + 1);

gpsItemList = db.getGPSItemFromSection(sectionItem);

markerItemList = db.getMarkerItemFromSection(sectionItem);

//set current item to first gpsItem

currentItem = gpsItemList.get(1);

currentNo = currentItem.getIncr();

//get buttons and textview from xml

mapNavText = (TextView)

rootView.findViewById(R.id.gpsMapText);

gpsButton = (Button) rootView.findViewById(R.id.gpsButton);

pButton = (Button) rootView.findViewById(R.id.preGPSButton);

nButton = (Button) rootView.findViewById(R.id.nextGPSButton);

//initialise text

mapNavText.setText(currentItem.getNote());

//set on click listeners for pre/next buttons

pButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

86

if (currentItem.getIncr()==1){

//do nothing

} else{

setText(prevItemWithNote(gpsItemList.get(currentNo)));

}

}

});

nButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

if (currentItem.getIncr()==gpsItemList.size()){

//do nothing

} else{

setText(nextItemWithNote(gpsItemList.get(currentNo)));

}

}

});

// Acquire a reference to the system Location Manager

LocationManager locationManager = (LocationManager)

getActivity().getSystemService(Context.LOCATION_SERVICE);

// Define a listener that responds to location updates

LocationListener locationListener = new LocationListener() {

public void onLocationChanged(Location location) {

// Called when a new location is found by the network

location provider.

mLastLocation = location;

hasLocation = true;

setMapText();

}

public void onStatusChanged(String provider, int status,

Bundle extras) {}

public void onProviderEnabled(String provider) {}

public void onProviderDisabled(String provider) {}

};

// Register the listener with the Location Manager to receive

location updates

87

locationManager.requestLocationUpdates(LocationManager.NETWORK_PROVIDER,

0, 0, locationListener);

locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER,

0, 0, locationListener);

setUpMapIfNeeded();

drawPaths();

drawMarkers();

params = new ArrayList<NameValuePair>();

return rootView;

}

private void setMapText(){

mapNavText.setText(currentItem.getNote());

for (int i = 2; i <= gpsItemList.size(); i++){

Location l = new Location("gpsCoord");

l.setLatitude(gpsItemList.get(i).getLatLng().latitude);

l.setLongitude(gpsItemList.get(i).getLatLng().longitude);

if (gpsItemList.get(i) != currentItem &&

mLastLocation.distanceTo(l) < 50){

setText(gpsItemList.get(i));

}

}

}

private void setText(GPSItem gpsItem){

if (gpsItem.getNote().equals("")){

//do nothing

} else {

mapNavText.setText(gpsItem.getNote());

currentItem = gpsItem;

currentNo = gpsItem.getIncr();

//if final gpsItem

if (gpsItem.getIncr() == gpsItemList.size()){

gpsButton.setText("What do you want to do now?");

gpsButton.setVisibility(View.VISIBLE);

gpsButton.setOnClickListener(new View.OnClickListener() {

88

@Override

public void onClick(View v) {

Date date = new Date();

long diff = date.getTime() - startDate.getTime();

long minutes = diff / (60 * 1000) % 60;

//save stats internally

statItem.setMiles(statItem.getMiles() +

sectionItem.getMiles());

statItem.setTime(statItem.getTime() + minutes);

statItem.setCompleted(statItem.getCompleted() + 1);

globalStat.setMiles(globalStat.getMiles() +

sectionItem.getMiles());

globalStat.setTime(globalStat.getTime() + minutes);

globalStat.setCompleted(globalStat.getCompleted() +

1);

db.updateStatItem(statItem);

db.updateStatItem(globalStat);

//save stats online

new putDataTask().execute();

FragmentManager fragmentManager =

getActivity().getSupportFragmentManager();

EndWalkFragment wdf =

EndWalkFragment.newInstance(walkNumber);

fragmentManager.beginTransaction()

.add(R.id.container, wdf)

// Add this transaction to the back stack

.addToBackStack("gpsFrag")

.commit();

}

});

}

}

}

private GPSItem nextItemWithNote(GPSItem gpsItem){

GPSItem curr = gpsItemList.get(gpsItem.getIncr()+1);

89

while (curr.getNote().equals("")){

//last item will always have a note

curr = gpsItemList.get(curr.getIncr()+1);

}

currentNo = curr.getIncr();

return curr;

}

private GPSItem prevItemWithNote(GPSItem gpsItem){

GPSItem curr = gpsItemList.get(gpsItem.getIncr()-1);

while (curr.getNote().equals("")){

//first item will always have a note

curr = gpsItemList.get(curr.getIncr()-1);

}

currentNo = curr.getIncr();

return curr;

}

90

D
.

R
es

u
lt

s
fr

om
L

on
d
on

L
o
op

A
p
p

S
u
rv

ey

91

92

93

94

95

E
.

R
es

u
lt

s
fr

om
A

p
p

S
u
rv

ey

96

97

