# Mathematical Methods for Computer Science

Peter Harrison and Jeremy Bradley Room 372. Email: {pgh,jb}@doc.ic.ac.uk

Web page: http://www.doc.ic.ac.uk/~jb/teaching/145/

Department of Computing, Imperial College London

Produced with prosper and LATEX

## **Methods Course Details**

- Course title: Mathematical Methods
- **Course lecturers:** 
  - Dr. J. Bradley (Weeks 2-5)
  - Prof. P. Harrison (Weeks 6-10)
- Course code: 145
- Lectures
  - Wednesdays: 11–12am, rm 308 (until 2nd November)
  - Thursdays: 10–11am, rm 308
  - Fridays: 11–12 noon, rm 308
- Tutorials
  - Thursdays: 11–12 noon OR Tuesdays 5–6pm
- Number of assessed sheets: 5 out of 8

#### **Assessed Exercises**

- Submission: through CATE
  - https://sparrow.doc.ic.ac.uk/~cate/
- Assessed exercises (for 1st half of course):
  - 1. set 13 Oct; due 27 Oct
  - 2. set 19 Oct; due 3 Nov
  - 3. set 26 Oct; due 10 Nov

You will find one of the following useful – no need to buy all of them:

- Mathematical Methods for Science Students. (2nd Ed). G Stephenson. Longman 1973. [38]
- Engineering Mathematics. (5th Ed). K A Stroud. Macmillan 2001. [21]
- Interactive Computer Graphics. P Burger and D Gillies. Addison Wesley 1989. [22]
- Analysis: with an introduction to proof. Steven R Lay. 4th edition, Prentice Hall, 2005.

### Maths and Computer Science

- Why is Maths important to Computer Science?
- Maths underpins most computing concepts/applications, e.g.:
  - computer graphics and animation
  - stock market models
  - information search and retrieval
  - performance of integrated circuits
  - computer vision
  - neural computing
  - genetic algorithms

# **Highlighted Examples**

- Search engines
  - Google and the PageRank algorithm
- Computer graphics
  - near photo realism from wireframe and vector representation

## Searching with...

| Y Go         | oogle        | - Galeo | 1           |                 |               |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /////        |                                    |                      |     |                                                  |     |
|--------------|--------------|---------|-------------|-----------------|---------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------|----------------------|-----|--------------------------------------------------|-----|
| <u>F</u> ile | <u></u> Edit | View    | <u>T</u> ab | <u>S</u> etting | s <u>G</u> o  | <u>B</u> ookmarks                                                | T <u>o</u> ols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>H</u> el  | р                                  |                      |     |                                                  | * a |
|              | Back         | • Þ     | ~ φ         | <u>ل</u>        | 🛞 Stop        | 100 🗘 🝼                                                          | http://                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ww.g         | oogle.co                           | m/                   |     |                                                  | 1   |
|              |              |         |             | M               | (eb Im<br>God | <b>ages Gro</b><br>ogle Search<br>Programs - 1<br>4 Google - Sea | UDS Notes the second se | ews<br>'m Fe | Froogle<br>eling Luc<br>ations - A | mor<br>:ky<br>bout G | e » | Advanced Search<br>Preferences<br>Language Tools |     |
| -            |              |         |             |                 |               |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                    |                      |     |                                                  | 5   |

## Searching for...



How does Google know to put Imperial's website top?

## The PageRank Algorithm



PageRank is based on the underlying web graph

## **Propagation of PageRank**



## PageRank

- So where's the Maths?
  - Web graph is represented as a matrix
  - Matrix is 9 billion  $\times$  9 billion in size
  - PageRank calculation is turned into an eigenvector calculation
  - Does it converge? How fast does it converge?



Ray tracing with: POV-Ray 3.6



Underlying wiremesh model



How can we calculate light shading/shadow?

- Key points of model are defined through vectors
- Vectors define position relative to an origin



### Vectors

- Used in (amongst others):
  - Computational Techniques (2nd Year)
  - Graphics (3rd Year)
  - Computational Finance (3rd Year)
  - Modelling and Simulation (3rd Year)
  - Performance Analysis (3rd Year)
  - Digital Libraries and Search Engines (3rd Year)
  - Computer Vision (4th Year)

## **Vector Contents**

- What is a vector?
- Useful vector tools:
  - Vector magnitude
  - Vector addition
  - Scalar multiplication
  - Dot product
  - Cross product
- Useful results finding the intersection of:
  - a line with a line
  - a line with a plane
  - a plane with a plane

## What is a vector?

- A vector is used :
  - to convey both direction and magnitude
  - to store data (usually numbers) in an ordered form

• 
$$\vec{p} = (10, 5, 7)$$
 is a *row* vector  
•  $\vec{p} = \begin{pmatrix} 10 \\ 5 \\ 7 \end{pmatrix}$  is a *column* vector

 A vector is used in computer graphics to represent the position coordinates for a point

### What is a vector?

- The dimension of a vector is given by the number of elements it contains. e.g.
  - (-2.4, 5.1) is a 2-dimensional real vector
  - (-2.4, 5.1) comes from set  $\mathbb{R}^2$  (or  $\mathbb{R} \times \mathbb{R}$ )
  - $\begin{array}{c}
     \\
    5 \\
    7 \\
    0
    \end{array}$ is a 4-dimensional integer vector (comes from set  $\mathbb{Z}^4$  or  $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ )

### **Vector Magnitude**

• The size or magnitude of a vector  $\vec{p} = (p_1, p_2, p_3)$  is defined as its length:

$$|\vec{p}| = \sqrt{p_1^2 + p_2^2 + p_3^2} = \sqrt{\sum_{i=1}^3 p_i^2}$$

• e.g. 
$$\left| \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \right| = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$$

• For an *n*-dimensional vector,  $\vec{p} = (p_1, p_2, \dots, p_n), |\vec{p}| = \sqrt{\sum_{i=1}^n p_i^2}$ 

### **Vector Direction**



### **Vector Angles**



• For a vector,  $\vec{p} = (p_1, p_2, p_3)$ :

• 
$$\cos(\theta_x) = p_1/|\vec{p}|$$

• 
$$\cos(\theta_y) = p_2/|\vec{p}|$$

• 
$$\cos(\theta_z) = p_3/|\vec{p}|$$

### **Vector addition**

Two vectors (of the same dimension) can be added together:

• So if  $\vec{p} = (p_1, p_2, p_3)$  and  $\vec{q} = (q_1, q_2, q_3)$  then:

$$\vec{p} + \vec{q} = (p_1 + q_1, p_2 + q_2, p_3 + q_3)$$

#### **Vector addition**



#### **Vector addition**



## **Scalar Multiplication**

- A scalar is just a number, e.g. 3. Unlike a vector, it has no direction.
- Multiplication of a vector  $\vec{p}$  by a scalar  $\lambda$  means that each element of the vector is multiplied by the scalar
- So if  $\vec{p} = (p_1, p_2, p_3)$  then:

$$\lambda \vec{p} = (\lambda p_1, \lambda p_2, \lambda p_3)$$

## **3D Unit vectors**

- We use  $\vec{i}$ ,  $\vec{j}$ ,  $\vec{k}$  to define the 3 unit vectors in 3 dimensions
- They convey the basic directions along x, y and z axes.

• So: 
$$\vec{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
,  $\vec{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ ,  $\vec{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 

• All unit vectors have magnitude 1; i.e.  $|\vec{i}| = 1$ 

### **Vector notation**

All vectors in 3D (or  $\mathbb{R}^3$ ) can be expressed as weighted sums of i, j, k

• i.e. 
$$\vec{p} = (10, 5, 7) \equiv \begin{pmatrix} 10 \\ 5 \\ 7 \end{pmatrix} \equiv 10\vec{i} + 5\vec{j} + 7\vec{k}$$

$$|p_1\vec{i} + p_2\vec{j} + p_3\vec{k}| = \sqrt{p_1^2 + p_2^2 + p_3^2}$$

## **Dot Product**

- Also known as: scalar product
- Used to determine how close 2 vectors are to being parallel/perpendicular
- The dot product of two vectors  $\vec{p}$  and  $\vec{q}$  is:

$$\vec{p} \cdot \vec{q} = |\vec{p}| \, |\vec{q}| \cos \theta$$

- where  $\theta$  is angle between the vectors  $\vec{p}$  and  $\vec{q}$
- For  $\vec{p} = (p_1, p_2, p_3)$  and  $\vec{q} = (q_1, q_2, q_3)$  then:

$$\vec{p} \cdot \vec{q} = p_1 q_1 + p_2 q_2 + p_3 q_3$$

### **Properties of the Dot Product**

$$\vec{p} \cdot \vec{p} = |\vec{p}|^2$$

- $\vec{p} \cdot \vec{q} = 0$  if  $\vec{p}$  and  $\vec{q}$  are perpendicular (at right angles)
- Commutative:  $\vec{p} \cdot \vec{q} = \vec{q} \cdot \vec{p}$
- Linearity:  $\vec{p} \cdot (\lambda \vec{q}) = \lambda (\vec{p} \cdot \vec{q})$
- Distributive over addition:

$$\vec{p}\cdot(\vec{q}+\vec{r})=\vec{p}\cdot\vec{q}+\vec{p}\cdot\vec{r}$$

## **Vector Projection**



- $\hat{n}$  is a unit vector, i.e.  $|\hat{n}| = 1$
- $\vec{a} \cdot \hat{n} = |\vec{a}| \cos \theta$  represents the *amount* of  $\vec{a}$  that points in the  $\hat{n}$  direction

## What can't you do with a vector...

The following are classic mistakes –  $\vec{u}$  and  $\vec{v}$  are vectors, and  $\lambda$  is a scalar:

- Don't do it!
  - Vector division:  $\frac{\vec{u}}{\vec{v}}$
  - Divide a scalar by a vector:  $\frac{\lambda}{\vec{u}}$
  - Add a scalar to a vector:  $\lambda + \vec{u}$
  - Subtract a scalar from a vector:  $\vec{u} \lambda$
  - Cancel a vector in a dot product with vector:

$$\frac{1}{\vec{a}\cdot\vec{n}}\vec{n}=\frac{1}{\vec{a}}$$

### **Example: Rays of light**



- A ray of light strikes a reflective surface...
- Question: in what direction does the reflection travel?

# **Rays of light**



# **Rays of light**



• Problem: find  $\vec{r}$ , given  $\vec{s}$  and  $\hat{n}$ ?

# **Rays of light**



angle of incidence = angle of reflection

$$\Rightarrow -\vec{s} \cdot \hat{n} = \vec{r} \cdot \hat{n}$$

- Also:  $\vec{r} + (-\vec{s}) = \lambda \hat{n}$  thus  $\lambda \hat{n} = \vec{r} \vec{s}$
- > Taking the dot product of both sides:
  ⇒  $\lambda |\hat{n}|^2 = \vec{r} \cdot \hat{n} \vec{s} \cdot \hat{n}$
# **Rays of light**



But n̂ is a unit vector, so |n̂|<sup>2</sup> = 1
⇒ λ = r̄ ⋅ n̂ - s̄ ⋅ n̂
...and r̄ ⋅ n̂ = -s̄ ⋅ n̂

$$\Rightarrow \lambda = -2\vec{s}\cdot\hat{n}$$

# **Rays of light**



Similar Finally, we know that:  $\vec{r} + (-\vec{s}) = \lambda \hat{n}$ ⇒  $\vec{r} = \lambda \hat{n} + \vec{s}$ ⇒  $\vec{r} = \vec{s} - 2(\vec{s} \cdot \hat{n})\hat{n}$ 

# **Equation of a line**



• For a general point,  $\vec{r}$ , on the line:

$$\vec{r} = \vec{a} + \lambda \vec{d}$$

• where:  $\vec{a}$  is a point on the line and  $\vec{d}$  is a vector parallel to the line

## **Equation of a plane**

• Equation of a plane. For a general point,  $\vec{r}$ , in the plane,  $\vec{r}$  has the property that:

$$\vec{r}.\hat{n} = m$$

- where:
  - *n̂* is the unit vector perpendicular to the plane
  - |m| is the distance from the plane to the origin (at its closest point)

## **Equation of a plane**



Equation of a plane (why?):

$$\vec{r}.\hat{n} = m$$

#### How to solve Vector Problems

- 1. IMPORTANT: Draw a diagram!
- 2. Write down the equations that you are given/apply to the situation
- 3. Write down what you are trying to find?
- 4. Try variable substitution
- 5. Try taking the dot product of one or more equations
  - What vector to dot with?

Answer: if eqn (1) has term  $\vec{r}$  in and eqn (2) has term  $\vec{r} \cdot \vec{s}$  in: *dot eqn (1) with*  $\vec{s}$ .

# **Two intersecting lines**

- Application: *projectile interception*
- Problem given two lines:

• Line 1: 
$$\vec{r_1} = \vec{a}_1 + t_1 \vec{d_1}$$

• Line 2: 
$$\vec{r_2} = \vec{a}_2 + t_2 \vec{d_2}$$

- Do they intersect? If so, at what point?
- This is the same problem as: find the values  $t_1$  and  $t_2$  at which  $\vec{r_1} = \vec{r_2}$  or:

$$\vec{a}_1 + t_1 \vec{d}_1 = \vec{a}_2 + t_2 \vec{d}_2$$

# How to solve: 2 intersecting lines

• Separate  $\vec{i}$ ,  $\vec{j}$ ,  $\vec{k}$  components of equation:

$$\vec{a}_1 + t_1 \vec{d}_1 = \vec{a}_2 + t_2 \vec{d}_2$$

- ...to get 3 equations in  $t_1$  and  $t_2$
- If the 3 equations:
  - contradict each other then the lines do not intersect
  - produce a single solution then the lines do intersect
  - are all the same (or multiples of each other) then the lines are identical (and always intersect)

# Intersection of a line and plane



- Application: ray tracing, particle tracing, projectile tracking
- Problem given one line/one plane:

• Line: 
$$\vec{r} = \vec{a} + t\vec{d}$$

- Plane:  $\vec{r} \cdot \hat{n} = s$
- Take dot product of line equation with n̂ to get:

$$\vec{r} \cdot \hat{n} = \vec{a} \cdot \hat{n} + t(\vec{d} \cdot \hat{n})$$

# Intersection of a line and plane

- With  $\vec{r} \cdot \hat{n} = \vec{a} \cdot \hat{n} + t(\vec{d} \cdot \hat{n})$  what are we trying to find?
  - We are trying to find a specific value of t that corresponds to the point of intersection
- Since  $\vec{r} \cdot \hat{n} = s$  at intersection, we get:  $t = \frac{s - \vec{a} \cdot \hat{n}}{\vec{d} \cdot \hat{n}}$
- So using line equation we get our point of intersection,  $\vec{r'}$ :

$$\vec{r'} = \vec{a} + \frac{s - \vec{a} \cdot \hat{n}}{\vec{d} \cdot \hat{n}} \vec{d}$$

# **Example: intersecting planes**



Problem: find the line that represents the intersection of two planes

# **Intersecting planes**

- Application: edge detection
- Equations of planes:
  - Plane 1:  $\vec{r} \cdot \hat{n}_1 = s_1$
  - Plane 2:  $\vec{r} \cdot \hat{n}_2 = s_2$
- We want to find the line of intesection, i.e. find  $\vec{a}$  and  $\vec{d}$  in:  $\vec{s} = \vec{a} + \lambda \vec{d}$
- If  $\vec{s} = x\vec{i} + y\vec{j} + z\vec{k}$  is on the intersection line:
  - $\Rightarrow$  it also lies in both planes 1 and 2
  - $\Rightarrow \vec{s} \cdot \hat{n}_1 = s_1 \text{ and } \vec{s} \cdot \hat{n}_2 = s_2$ 
    - Can use these two equations to generate equation of line

# **Example: Intersecting planes**

- Equations of planes:
  - Plane 1:  $\vec{r} \cdot (2\vec{i} \vec{j} + 2\vec{k}) = 3$
  - Plane 2:  $\vec{r} \cdot \vec{k} = 4$
- Pick point  $\vec{s} = x\vec{i} + y\vec{j} + z\vec{k}$ 
  - From plane 1: 2x y + 2z = 3
  - From plane 2: z = 4
- We have two equations in 3 unknowns not enough to solve the system
- But... we can express all three variables in terms of one of the other variables

## **Example: Intersecting planes**

- From plane 1: 2x y + 2z = 3
- From plane 2: z = 4
- Substituting (Eqn. 2) → (Eqn. 1) gives:  $\Rightarrow 2x = y 5$
- Also trivially: y = y and z = 4
- > Line:  $\vec{s} = ((y-5)/2)\vec{i} + y\vec{j} + 4\vec{k}$ ⇒  $\vec{s} = -\frac{5}{2}\vec{i} + 4\vec{k} + y(\frac{1}{2}\vec{i} + \vec{j})$
- ...which is the equation of a line

#### **Cross Product**



- Also known as: Vector Product
- Used to produce a 3rd vector that is perpendicular to the original two vectors
- Written as  $\vec{p} \times \vec{q}$  (or sometimes  $\vec{p} \wedge \vec{q}$ )
- Formally:  $\vec{p} \times \vec{q} = (|\vec{p}| |\vec{q}| \sin \theta)\hat{n}$ 
  - where  $\hat{n}$  is the unit vector perpendicular to  $\vec{p}$  and  $\vec{q}$ ;  $\theta$  is the angle between  $\vec{p}$  and  $\vec{q}$

# **Cross Product**

- From definition:  $|\vec{p} \times \vec{q}| = |\vec{p}| |\vec{q}| \sin \theta$
- In coordinate form:  $\vec{a} \times \vec{b} = \left| \begin{pmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \right|$

$$\Rightarrow \vec{a} \times \vec{b} = (a_2b_3 - a_3b_2)\vec{i} - (a_1b_3 - a_3b_1)\vec{j} + (a_1b_2 - a_2b_1)\vec{k}$$

Useful for: e.g. given 2 lines in a plane, write down the equation of the plane

#### **Properties of Cross Product**

- $\vec{p} \times \vec{q}$  is itself a vector that is perpendicular to both  $\vec{p}$  and  $\vec{q}$ , so:
  - $\vec{p} \cdot (\vec{p} \times \vec{q}) = 0$  and  $\vec{q} \cdot (\vec{p} \times \vec{q}) = 0$
- NOT commutative:  $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$ In fact:  $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- **>** NOT associative:  $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$
- Left distributive:  $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
- Right distributive:  $(\vec{b} + \vec{c}) \times \vec{a} = \vec{b} \times \vec{a} + \vec{c} \times \vec{a}$

#### **Properties of Cross Product**

- Final important vector product identity:
  - $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} (\vec{a} \cdot \vec{b})\vec{c}$
  - which says that:  $\vec{a} \times (\vec{b} \times \vec{c}) = \lambda \vec{b} + \mu \vec{c}$
  - i.e. the vector  $\vec{a} \times (\vec{b} \times \vec{c})$  lies in the plane created by  $\vec{b}$  and  $\vec{c}$

# Matrices

- Used in (amongst others):
  - Computational Techniques (2nd Year)
  - Graphics (3rd Year)
  - Performance Analysis (3rd Year)
  - Digital Libraries and Search Engines (3rd Year)
  - Computing for Optimal Decisions (4th Year)
  - Quantum Computing (4th Year)
  - Computer Vision (4th Year)

# **Matrix Contents**

- What is a Matrix?
- Useful Matrix tools:
  - Matrix addition
  - Matrix multiplication
  - Matrix transpose
  - Matrix determinant
  - Matrix inverse
  - Gaussian Elimination
  - Eigenvectors and eigenvalues

#### • Useful results:

- solution of linear systems
- Google's PageRank algorithm

## What is a Matrix?

- A matrix is a 2 dimensional array of numbers
- Used to represent, for instance, a network:



# **Application: Markov Chains**

Example: What is the probability that it will be sunny today given that it rained yesterday? (Answer: 0.25)



Example question: what is the probability that it's raining on Thursday given that it's sunny on Monday?

# **Matrix Addition**

In general matrices can have m rows and n columns – this would be an m × n matrix. e.g. a 2 × 3 matrix would look like:

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 0 & -1 & 2 \end{array}\right)$$

Matrices with the same number of rows and columns can be added:

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \end{pmatrix} + \begin{pmatrix} 3 & -1 & 0 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

## **Scalar multiplication**

As with vectors, multiplying by a scalar involves multiplying the individual elements by the scalar, e.g. :

$$\lambda A = \lambda \left( \begin{array}{ccc} 1 & 2 & 3 \\ 0 & -1 & 2 \end{array} \right) = \left( \begin{array}{ccc} \lambda & 2\lambda & 3\lambda \\ 0 & -\lambda & 2\lambda \end{array} \right)$$

• Now matrix subtraction is expressible as a matrix addition operation A = P = A + (P) = A + (P)

$$A - B = A + (-B) = A + (-1 \times B)$$

# **Matrix Identities**

- An identity element is one that leaves any other element unchanged under a particular operation e.g. 1 is the identity in 5 × 1 = 5 under multiplication
- There are two matrix identity elements: one for addition, 0, and one for multiplication, I.
- The zero matrix:

$$\left(\begin{array}{rrr}1&2\\3&-3\end{array}\right)+\left(\begin{array}{rrr}0&0\\0&0\end{array}\right)=\left(\begin{array}{rrr}1&2\\3&-3\end{array}\right)$$

• In general: A + 0 = A and 0 + A = A

# **Matrix Identities**

- For  $2 \times 2$  matrices, the multiplicative identity,  $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ :  $\begin{pmatrix} 1 & 2 \\ 3 & -3 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & -3 \end{pmatrix}$
- In general for square  $(n \times n)$  matrices: AI = A and IA = A

• The elements of a matrix, A, can be expressed as  $a_{ij}$ , so:

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

• Matrix multiplication can be defined so that, if C = AB then:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

# **Matrix Multiplication**

- Multiplication, AB, is only well defined if the number of columns of A = the number of rows of B. i.e.
  - $A \operatorname{can} \operatorname{be} m \times n$
  - B has to be  $n \times p$
  - the result, AB, is  $m \times p$
- Example:

$$\begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 6 & 7 \\ 8 & 9 \\ 10 & 11 \end{pmatrix} = \begin{pmatrix} 0 \times 6 + 1 \times 8 + 2 \times 10 & 0 \times 7 + 1 \times 9 + 2 \times 11 \\ 3 \times 6 + 4 \times 8 + 5 \times 10 & 3 \times 7 + 4 \times 9 + 5 \times 11 \end{pmatrix}$$

## **Matrix Properties**

$$A + B = B + A$$

- (A+B) + C = A + (B+C)
- $\lambda A = A\lambda$
- $> \lambda(A+B) = \lambda A + \lambda B$

$$\bullet \ (AB)C = A(BC)$$

- (A+B)C = AC + BC; C(A+B) = CA + CB
- But...  $AB \neq BA$  i.e. matrix multiplication is NOT commutative

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right) \neq \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array}\right)$$

## **Matrices in Graphics**

- Matrix multiplication is a simple way to encode different transformations of objects in computer graphics, e.g. :
- reflection
- scaling
- rotation
- translation (requires 4 × 4 transformation matrix)

# Reflection



Coordinates stored in matrix form as:

$$\left(\begin{array}{rrrr} 5 & 9 & 8 \\ 3 & 3 & 9 \end{array}\right)$$

# Reflection

The matrix which represents a reflection in the *x*-axis is:

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

This is applied to the coordinate matrix to give the coordinates of the reflected object:

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \left(\begin{array}{ccc} 5 & 9 & 8 \\ 3 & 3 & 9 \end{array}\right) = \left(\begin{array}{ccc} 5 & 9 & 8 \\ -3 & -3 & -9 \end{array}\right)$$

# Scaling



• Scaling matrix by factor of  $\lambda$ :

$$\left(\begin{array}{cc}\lambda & 0\\ 0 & \lambda\end{array}\right)\left(\begin{array}{c}1\\ 2\end{array}\right) = \left(\begin{array}{c}\lambda\\ 2\lambda\end{array}\right)$$

• Here triangle scaled by factor of 3

## Rotation

Provide a state of the sta



- Initially:  $x = r \cos \psi$  and  $y = r \sin \psi$
- After rotation:  $x' = r \cos(\psi + \theta)$  and  $y' = r \sin(\psi + \theta)$

## Rotation

- Require matrix R s.t.:  $\begin{pmatrix} x' \\ y' \end{pmatrix} = R \begin{pmatrix} x \\ y \end{pmatrix}$
- Initially:  $x = r \cos \psi$  and  $y = r \sin \psi$

• Start with  $x' = r \cos(\psi + \theta)$   $\Rightarrow x' = \underbrace{r \cos \psi}_{x} \cos \theta - \underbrace{r \sin \psi}_{y} \sin \theta$   $\Rightarrow x' = x \cos \theta - y \sin \theta$ • Similarly:  $y' = x \sin \theta + y \cos \theta$ • Thus  $R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ 

## **3D Rotation**

Anti-clockwise rotation of  $\theta$  about *z*-axis:

$$\begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Anti-clockwise rotation of  $\theta$  about *y*-axis:

$$\left( egin{array}{ccc} \cos heta & 0 & \sin heta \ 0 & 1 & 0 \ -\sin heta & 0 & \cos heta \end{array} 
ight)$$

Anti-clockwise rotation of  $\theta$  about x-axis:

$$\left( egin{array}{cccc} 1 & 0 & 0 \ 0 & \cos heta & -\sin heta \ 0 & \sin heta & \cos heta \end{array} 
ight)$$
## Transpose

- For a matrix P, the transpose of P is written P<sup>T</sup> and is created by rewriting the *i*th row as the *i*th column
- **o** So for:

$$P = \begin{pmatrix} 1 & 3 & -2 \\ 2 & 5 & 0 \\ -3 & -2 & 1 \end{pmatrix} \Rightarrow P^T = \begin{pmatrix} 1 & 2 & -3 \\ 3 & 5 & -2 \\ -2 & 0 & 1 \end{pmatrix}$$

Note that taking the transpose leaves the leading diagonal, in this case (1, 5, 1), unchanged

## **Application of Transpose**

- Main application: allows reversal of order of matrix multiplication
- If AB = C then  $B^T A^T = C^T$
- Example:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$
$$\begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 19 & 43 \\ 22 & 50 \end{pmatrix}$$

## **Matrix Determinant**

- The determinant of a matrix, *P*:
  - represents the expansion factor that a P transformation applies to an object
  - tells us if equations in  $P\vec{x} = \vec{b}$  are linearly dependent
- If a square matrix has a determinant 0, then it is known as singular
- The determinant of a  $2 \times 2$  matrix:

$$\left| \left( \begin{array}{cc} a & b \\ c & d \end{array} \right) \right| = ad - bc$$

#### $3 \times 3$ Matrix Determinant

• For a  $3 \times 3$  matrix:

$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$

...the determinant can be calculated by:

$$a_{1} \left| \begin{pmatrix} b_{2} & b_{3} \\ c_{2} & c_{3} \end{pmatrix} \right| - a_{2} \left| \begin{pmatrix} b_{1} & b_{3} \\ c_{1} & c_{3} \end{pmatrix} \right| + a_{3} \left| \begin{pmatrix} b_{1} & b_{2} \\ c_{1} & c_{2} \end{pmatrix} \right|$$
$$= a_{1}(b_{2}c_{3} - b_{3}c_{2}) - a_{2}(b_{1}c_{3} - b_{3}c_{1}) + a_{3}(b_{1}c_{2} - b_{2}c_{1})$$

## **The Parity Matrix**

- Before describing a general method for calculating the determinant, we require a parity matrix
- For a  $3 \times 3$  matrix this is:

$$\begin{pmatrix} +1 & -1 & +1 \\ -1 & +1 & -1 \\ +1 & -1 & +1 \end{pmatrix}$$

We will be picking *pivot* elements from our matrix A which will end up being multiplied by +1 or -1 depending on where in the matrix the pivot element lies (e.g. a<sub>12</sub> maps to -1)

## The general method...

The  $3 \times 3$  matrix determinant |A| is calculated by:

- 1. pick a row or column of *A* as a *pivot*
- 2. for each element x in the pivot, construct a  $2 \times 2$  matrix, B, by removing the row and column which contain x
- 3. take the determinant of the  $2\times 2$  matrix, B
- 4. let v =product of determinant of B and x
- 5. let u = product of v with +1 or -1 (according to parity matrix rule see previous slide)
- 6. repeat from (2) for all the pivot elements x and add the u-values to get the determinant

## Example

Find determinant of:

$$A = \begin{pmatrix} 1 & 0 & -2 \\ 4 & 2 & 3 \\ -2 & 5 & 1 \end{pmatrix}$$
  

$$|A| = +1 \times 1 \times \left| \begin{pmatrix} 2 & 3 \\ 5 & 1 \end{pmatrix} \right| + -1 \times 0 \times \left| \begin{pmatrix} 4 & 3 \\ -2 & 1 \end{pmatrix} \right|$$
  

$$+1 \times -2 \times \left| \begin{pmatrix} 4 & 2 \\ -2 & 5 \end{pmatrix} \right|$$
  

$$\Rightarrow |A| = -13 + (-2 \times 24) = -61$$

## Matrix Inverse

- The inverse of a matrix describes the reverse transformation that the original matrix described
- A matrix, A, multiplied by its inverse, A<sup>-1</sup>, gives the identity matrix, I
- That is:  $AA^{-1} = I$  and  $A^{-1}A = I$

#### **Matrix Inverse Example**

- The reflection matrix,  $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- The transformation required to undo the reflection is another reflection.
- A is its own inverse  $\Rightarrow A = A^{-1}$  and:

$$\left(\begin{array}{cc}1&0\\0&-1\end{array}\right)\left(\begin{array}{cc}1&0\\0&-1\end{array}\right)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)$$

#### $2 \times 2$ Matrix inverse

As usual things are easier for 2 × 2 matrices. For:

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

• The inverse exists only if  $|A| \neq 0$  and:

$$A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

 $\Rightarrow$  if |A| = 0 then the inverse  $A^{-1}$  does not exist (very important: true for any  $n \times n$  matrix).

#### $n \times n$ Matrix Inverse

- First we need to define C, the cofactors matrix of a matrix, A, to have elements  $c_{ij} = \pm$  minor of  $a_{ij}$ , using the parity matrix as before to determine whether is gets multiplied by +1 or -1
  - (The minor of an element is the determinant of the matrix formed by deleting the row/column containing that element, as before)
- Then the  $n \times n$  inverse of A is:

$$A^{-1} = \frac{1}{|A|}C^T$$

## **Linear Systems**

- Linear systems are used in all branches of science and scientific computing
- Example of a simple linear system:
  - If 3 PCs and 5 Macs emit 151W of heat in 1 room, and 6 PCs together with 2 Macs emit 142W in another. How much energy does a single PC or Mac emit?
  - When a linear system has 2 variables also called simultaneous equation
  - Here we have: 3p + 5m = 151 and 6p + 2m = 142

## **Linear Systems as Matrix Equations**

 Our PC/Mac example can be rewritten as a matrix/vector equation:

$$\left(\begin{array}{cc}3&5\\6&2\end{array}\right)\left(\begin{array}{c}p\\m\end{array}\right) = \left(\begin{array}{c}151\\142\end{array}\right)$$

Then a solution can be gained from inverting the matrix, so:

$$\left(\begin{array}{c}p\\m\end{array}\right) = \left(\begin{array}{cc}3 & 5\\6 & 2\end{array}\right)^{-1} \left(\begin{array}{c}151\\142\end{array}\right)$$

## **Gaussian Elimination**

- For larger n × n matrix systems finding the inverse is a lot of work
- A simpler way of solving such systems in one go is by Gaussian Elimination. We rewrite the previous model as:

$$\begin{pmatrix} 3 & 5 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} p \\ m \end{pmatrix} = \begin{pmatrix} 151 \\ 142 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 5 & | & 151 \\ 6 & 2 & | & 142 \end{pmatrix}$$

- We can perform operations on this matrix:
  - multiply/divide any row by a scalar
  - add/subtract any row to/from another

### **Gaussian Elimination**

Using just these operations we aim to turn:

$$\left(\begin{array}{ccc|c} 3 & 5 & 151 \\ 6 & 2 & 142 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & x \\ 0 & 1 & y \end{array}\right)$$

Why? ...because in the previous matrix notation, this means:

$$\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\left(\begin{array}{c}p\\m\end{array}\right) = \left(\begin{array}{c}x\\y\end{array}\right)$$

• So x and y are our solutions

### **Example Solution using GE**

• (r1) := 2 × (r1):
 
$$\begin{pmatrix}
 3 & 5 & | & 151 \\
 6 & 2 & | & 142
 \end{pmatrix}
 →
 \begin{pmatrix}
 6 & 10 & | & 302 \\
 6 & 2 & | & 142
 \end{pmatrix}
 •
 (r2) := (r2) - (r1):
 
$$\begin{pmatrix}
 6 & 10 & | & 302 \\
 6 & 2 & | & 142
 \end{pmatrix}
 →
 \begin{pmatrix}
 6 & 10 & | & 302 \\
 0 & -8 & | & -160
 \end{pmatrix}
 •
 (r2) := (r2)/(-8):$$$$

$$\left(\begin{array}{cc|c} 6 & 10 & 302 \\ 0 & -8 & -160 \end{array}\right) \rightarrow \left(\begin{array}{cc|c} 6 & 10 & 302 \\ 0 & 1 & 20 \end{array}\right)$$

## **Example Solution using GE**

$$\begin{array}{c|c} \bullet & (r1) := (r1) - 10 \times (r2): \\ & \begin{pmatrix} 6 & 10 & | & 302 \\ 0 & 1 & | & 20 \end{pmatrix} \rightarrow \begin{pmatrix} 6 & 0 & | & 102 \\ 0 & 1 & | & 20 \end{pmatrix} \\ \bullet & (r1) := (r1)/6: \\ & \begin{pmatrix} 6 & 0 & | & 102 \\ 0 & 1 & | & 20 \end{pmatrix} \rightarrow \boxed{\begin{pmatrix} 1 & 0 & | & 17 \\ 0 & 1 & | & 20 \end{pmatrix}} \end{array}$$

So we can say that our solution is p = 17 and m = 20

## Gaussian Elimination: $3 \times 3$

$$1. \begin{pmatrix} a & * & * & | & * \\ * & * & * & | & * \\ * & * & * & | & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * & | & * \\ 0 & * & * & | & * \\ 0 & * & * & | & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * & | & * \\ 0 & 1 & * & | & * \\ 0 & 0 & * & | & * \end{pmatrix}$$

$$3. \begin{pmatrix} 1 & * & * & | & * \\ 0 & 1 & * & | & * \\ 0 & 0 & c & | & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * & | & * \\ 0 & 1 & * & | & * \\ 0 & 1 & * & | & * \\ 0 & 0 & 1 & | & * \end{pmatrix}$$

## Gaussian Elimination: $3 \times 3$

\* represents an unknown entry

### **Linear Dependence**

- System of *n* equations is *linearly dependent*.
  - if one or more of the equations can be formed from a linear sum of the remaining equations
- For example if our Mac/PC system were:

• 
$$3p + 5m = 151$$
 (1)

• 
$$6p + 10m = 302$$
 (2)

- This is linearly dependent as: eqn  $(2) = 2 \times eqn (1)$
- i.e. we get no extra information from eqn (2)
- $\ensuremath{\bullet}$  ...and there is no single solution for p and m

#### **Linear Dependence**

- If *P* represents a matrix in  $P\vec{x} = \vec{b}$  then the equations generated by  $P\vec{x}$  are linearly dependent
  - iff |P| = 0 (i.e. P is singular)
- The rank of the matrix P represents the number of linearly independent equations in  $P\vec{x}$
- We can use Gaussian elimination to calculate the rank of a matrix

### **Calculating the Rank**

If after doing GE, and getting to the stage where we have zeroes under the leading diagonal, we have:

Then we have a linearly dependent system where the number of independent equations or rank is 2

## **Rank and Nullity**

- If we consider multiplication by a matrix M as a function:
  - $M :: \mathbb{R}^3 \to \mathbb{R}^3$
  - Input set is called the *domain*
  - Set of possible outputs is called the range
- The *Rank* is the dimension of the range (i.e. the dimension of right-hand sides,  $\vec{b}$ , that give systems,  $M\vec{x} = \vec{b}$ , that don't contradict)
- The Nullity is the dimension of space (subset of the domain) that maps onto a single point in the range. (Alternatively, the dimension of the space which solves  $M\vec{x} = \vec{0}$ ).

### **Rank/Nullity theorem**

- If we consider multiplication by a matrix M as a function:
  - $M :: \mathbb{R}^3 \to \mathbb{R}^3$
- If rank is calculated from number of linearly independent rows of M: nullity is number of dependent rows
- We have the following theorem:

Rank of M+Nullity of M = dim(Domain of M)

## **PageRank Algorithm**

- Used by Google (and others?) to calculate a ranking vector for the whole web!
- Ranking vector is used to order search results returned from a user query
- PageRank of a webpage, u, is proportional to:



• For a PageRank vector,  $\vec{r}$ , and a web graph matrix, P:

$$P\vec{r} = \lambda\vec{r}$$

## **PageRank and Eigenvectors**

- PageRank vector is an *eigenvector* of the matrix which defines the web graph
- An eigenvector,  $\vec{v}$  of a matrix A is a vector which satisfies the following equation:

$$A\vec{v} = \lambda\vec{v} \quad (*)$$

- where  $\lambda$  is an eigenvalue of the matrix A
- If A is an n × n matrix then there may be as many as n possible *interesting* v, λ eigenvector/eigenvalue pairs which solve equation (\*)

## **Calculating the eigenvector**

• From the definition (\*) of the eigenvector,  $A\vec{v} = \lambda\vec{v}$ 

$$\Rightarrow A\vec{v} - \lambda\vec{v} = \vec{0}$$

$$\Rightarrow (A - \lambda I)\vec{v} = \vec{0}$$

• Let *M* be the matrix  $A - \lambda I$  then if  $|M| \neq 0$  then:

$$\vec{v} = M^{-1}\vec{0} = \vec{0}$$

• This means that any interesting solutions of (\*) must occur when |M| = 0 thus:

$$|A - \lambda I| = 0$$

#### **Eigenvector Example**

Find eigenvectors and eigenvalues of

$$A = \left(\begin{array}{cc} 4 & 1 \\ 2 & 3 \end{array}\right)$$

• Using  $|A - \lambda I| = 0$ , we get: •  $\left| \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right| = 0$  $\Rightarrow \left| \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{pmatrix} \right| = 0$ 

#### **Eigenvector Example**

Thus by definition of a 2 × 2 determinant, we get:

• 
$$(4-\lambda)(3-\lambda)-2=0$$

This is just a quadratic equation in  $\lambda$  which will give us two possible eigenvalues

• 
$$\lambda^2 - 7\lambda + 10 = 0$$
  
 $\Rightarrow (\lambda - 5)(\lambda - 2) = 0$   
•  $\lambda = 5 \text{ or } 2$ 

• We have two eigenvalues and there will be one eigenvector solution for  $\lambda = 5$  and another for  $\lambda = 2$ 

## **Finding Eigenvectors**

• Given an eigenvalue, we now use equation (\*) in order to find the eigenvectors. Thus  $A\vec{v} = \lambda \vec{v}$  and  $\lambda = 5$  gives:



## **Finding Eigenvectors**

• This gives us two equations in  $v_1$  and  $v_2$ :

• 
$$-v_1 + v_2 = 0$$
 (1.*a*)

• 
$$2v_1 - 2v_2 = 0$$
 (1.b)

These are *linearly dependent*: which means that equation (1.b) is a multiple of equation (1.a) and vice versa

• 
$$(1.b) = -2 \times (1.a)$$

- This is expected in situations where |M| = 0 in  $M\vec{v} = \vec{0}$
- Eqn. (1.a) or (1.b)  $\Rightarrow v_1 = v_2$

#### **First Eigenvector**

•  $v_1 = v_2$  gives us the  $\lambda = 5$  eigenvector:

$$\left(\begin{array}{c} v_1 \\ v_1 \end{array}\right) = v_1 \left(\begin{array}{c} 1 \\ 1 \end{array}\right)$$

- We can ignore the scalar multiplier and use the remaining  $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$  vector as the eigenvector
- Checking with equation (\*) gives:

$$\left(\begin{array}{cc} 4 & 1 \\ 2 & 3 \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = 5 \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \quad \checkmark$$

## **Second Eigenvector**

So For 
$$A\vec{v} = \lambda\vec{v}$$
 and  $\lambda = 2$ :
$$\Rightarrow \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow 2v_1 + v_2 = 0 \text{ (and } 2v_1 + v_2 = 0\text{)}$$

$$\Rightarrow v_2 = -2v_1$$

• Thus second eigenvector is  $\vec{v} = v_1$ 

$$\left(\begin{array}{c}1\\-2\end{array}\right)$$

• ...or just 
$$\vec{v} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

## **Differential Equations: Contents**

- What are differential equations used for?
- Useful differential equation solutions:
  - 1st order, constant coefficient
  - 1st order, variable coefficient
  - 2nd order, constant coefficient
  - Coupled ODEs, 1st order, constant coefficient
- Useful for:
  - Performance modelling (3rd year)
  - Simulation and modelling (3rd year)

# **Differential Equations: Background**

- Used to model how systems evolve over time:
  - e.g. computer systems, biological systems, chemical systems
- Terminology:
  - Ordinary differential equations (ODEs) are first order if they contain a  $\frac{dy}{dx}$  term but no higher derivatives
  - ODEs are second order if they contain a  $\frac{d^2y}{dx^2}$  term but no higher derivatives

## **Ordinary Differential Equations**

- First order, constant coefficients:
  - For example,  $2\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$  (\*)

• Try: 
$$y = e^{mx}$$
  
 $\Rightarrow 2me^{mx} + e^{mx} = 0$   
 $\Rightarrow e^{mx}(2m+1) = 0$   
 $\Rightarrow e^{mx} = 0 \text{ or } m = -\frac{1}{2}$ 

- $e^{mx} \neq 0$  for any x, m. Therefore  $m = -\frac{1}{2}$
- General solution to (\*):

$$y = Ae^{-\frac{1}{2}x}$$
• First order, variable coefficients of type:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + f(x)y = g(x)$$

• Use integrating factor (IF):  $e^{\int f(x) \, dx}$ 

• For example: 
$$\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy = x$$
 (\*)

Multiply throughout by IF:  $e^{\int 2x \, dx} = e^{x^2}$ ⇒  $e^{x^2} \frac{dy}{dx} + 2xe^{x^2}y = xe^{x^2}$ ⇒  $\frac{d}{dx}(e^{x^2}y) = xe^{x^2}$ ⇒  $e^{x^2}y = \frac{1}{2}e^{x^2} + C$  So,  $y = Ce^{-x^2} + \frac{1}{2}$ 

- Second order, constant coefficients:
  - For example,  $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 5\frac{\mathrm{d}y}{\mathrm{d}x} + 6y = 0$  (\*)

• Try: 
$$y = e^{mx}$$
  
 $\Rightarrow m^2 e^{mx} + 5m e^{mx} + 6e^{mx} = 0$   
 $\Rightarrow e^{mx}(m^2 + 5m + 6) = 0$   
 $\Rightarrow e^{mx}(m + 3)(m + 2) = 0$ 

• 
$$m = -3, -2$$

- i.e. two possible solutions
- General solution to (\*):

$$y = Ae^{-2x} + Be^{-3x}$$

- Second order, constant coefficients:
  - If y = f(x) and y = g(x) are distinct solutions to (\*)
  - Then y = Af(x) + Bg(x) is also a solution of (\*) by following argument: •  $\frac{d^2}{dx^2}(Af(x) + Bg(x)) + 5\frac{d}{dx}(Af(x) + Bg(x))$ +6(Af(x) + Bg(x)) = 0•  $A\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2}f(x) + 5\frac{\mathrm{d}}{\mathrm{d}x}f(x) + 6f(x)\right)$ =0 $+B\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2}g(x) + 5\frac{\mathrm{d}}{\mathrm{d}x}g(x) + 6g(x)\right) = 0$

Second order, constant coefficients (repeated root):

• For example, 
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0 \quad (*)$$
  
• Try:  $y = e^{mx}$   
 $\Rightarrow m^2 e^{mx} - 6m e^{mx} + 9e^{mx} = 0$   
 $\Rightarrow e^{mx}(m^2 - 6m + 9) = 0$   
 $\Rightarrow e^{mx}(m - 3)^2 = 0$ 

• m = 3 (twice)

General solution to (\*) for repeated roots:

$$y = (Ax + B)e^{3x}$$

# **Applications: Coupled ODEs**

- Coupled ODEs are used to model massive state-space physical and computer systems
- Coupled Ordinary Differential Equations are used to model:
  - chemical reactions and concentrations
  - biological systems
  - epidemics and viral infection spread
  - large state-space computer systems (e.g. distributed publish-subscribe systems

#### **Coupled ODEs**

• Coupled ODEs are of the form:

$$\begin{pmatrix} \frac{\mathrm{d}y_1}{\mathrm{d}x} &= ay_1 + by_2\\ \frac{\mathrm{d}y_2}{\mathrm{d}x} &= cy_1 + dy_2 \end{cases}$$

If we let 
$$\vec{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$
, we can rewrite this as:

$$\left(\begin{array}{c}\frac{\mathrm{d}y_1}{\mathrm{d}x}\\\frac{\mathrm{d}y_2}{\mathrm{d}x}\end{array}\right) = \left(\begin{array}{c}a & b\\c & d\end{array}\right) \left(\begin{array}{c}y_1\\y_2\end{array}\right) \text{ or }\frac{\mathrm{d}\vec{y}}{\mathrm{d}x} = \left(\begin{array}{c}a & b\\c & d\end{array}\right)\vec{y}$$

### **Coupled ODE solutions**

• For coupled ODE of type:  $\frac{\mathrm{d}\vec{y}}{\mathrm{d}x} = A\vec{y}$  (\*)

• Try 
$$\vec{y} = \vec{v}e^{\lambda x}$$
 so,  $\frac{\mathrm{d}\vec{y}}{\mathrm{d}x} = \lambda \vec{v}e^{\lambda x}$ 

• But also 
$$\frac{\mathrm{d}\vec{y}}{\mathrm{d}x} = A\vec{y}$$
, so  $A\vec{v}e^{\lambda x} = \lambda\vec{v}e^{\lambda x}$ 

- Show solution of (∗) can be derived from an eigenvector solution of  $A\vec{v} = \lambda\vec{v}$
- For *n* eigenvectors  $\vec{v}_1, \ldots, \vec{v}_n$  and corresp. eigenvalues  $\lambda_1, \ldots, \lambda_n$ : general solution of (\*) is  $\vec{y} = B_1 \vec{v}_1 e^{\lambda_1 x} + \cdots + B_n \vec{v}_n e^{\lambda_n x}$

### **Coupled ODEs: Example**

Example coupled ODEs:

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}x} = 2y_1 + 8y_2\\ \frac{\mathrm{d}y_2}{\mathrm{d}x} = 5y_1 + 5y_2 \end{cases}$$

• So 
$$\frac{\mathrm{d}\vec{y}}{\mathrm{d}x} = \begin{pmatrix} 2 & 8 \\ 5 & 5 \end{pmatrix} \vec{y}$$

Require to find eigenvectors/values of

$$A = \left(\begin{array}{cc} 2 & 8\\ 5 & 5 \end{array}\right)$$

# **Coupled ODEs: Example**

• Eigenvalues of A: 
$$\begin{vmatrix} 2-\lambda & 8\\ 5 & 5-\lambda \end{vmatrix} = \lambda^2 - 7\lambda - 30 = (\lambda - 10)(\lambda + 3) = 0$$

- Thus eigenvalues  $\lambda = 10, -3$
- Giving:

$$\lambda_1 = 10, \vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \lambda_2 = -3, \vec{v}_2 = \begin{pmatrix} 8 \\ -5 \end{pmatrix}$$

Solution of ODEs:  

$$\vec{y} = B_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{10x} + B_2 \begin{pmatrix} 8 \\ -5 \end{pmatrix} e^{-3x}$$

# **Partial Derivatives**

- Used in (amongst others):
  - Computational Techniques (2nd Year)
  - Optimisation (3rd Year)
  - Computational Finance (3rd Year)

# **Differentiation Contents**

- What is a (partial) differentiation used for?
- Useful (partial) differentiation tools:
  - Differentiation from first principles
  - Partial derivative chain rule
  - Derivatives of a parametric function
  - Multiple partial derivatives

# Optimisation

Example: look to find best predicted gain in portfolio given different possible share holdings in portfolio



## Differentiation



• Gradient on a curve f(x) is approximately:

$$\frac{\delta y}{\delta x} = \frac{f(x + \delta x) - f(x)}{\delta x}$$

### **Definition of derivative**

• The derivative at a point x is defined by:

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x}$$

• Take 
$$f(x) = x^n$$

We want to show that:

$$\frac{\mathrm{d}f}{\mathrm{d}x} = nx^{n-1}$$

### **Derivative of** $x^n$

$$\begin{array}{l} \mathbf{\hat{d}} \frac{df}{dx} = \lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x} \\ = \lim_{\delta x \to 0} \frac{(x+\delta x)^n - x^n}{\delta x} \\ = \lim_{\delta x \to 0} \frac{\sum_{i=0}^n \binom{n}{i} x^{n-i} \delta x^i - x^n}{\delta x} \\ = \lim_{\delta x \to 0} \frac{\sum_{i=1}^n \binom{n}{i} x^{n-i} \delta x^i}{\delta x} \\ = \lim_{\delta x \to 0} \sum_{i=1}^n \binom{n}{i} x^{n-i} \delta x^{i-1} \\ = \lim_{\delta x \to 0} (\binom{n}{1} x^{n-1} + \sum_{i=2}^n \binom{n}{i} x^{n-i} \delta x^{i-1}) \\ \xrightarrow{\to 0} \operatorname{as} \delta x \to 0 \\ = \frac{n!}{1!(n-1)!} x^{n-1} = n x^{n-1} \end{array}$$

METHODS [10/06] - p. 121/129

# **Partial Differentiation**

- Ordinary differentiation  $\frac{df}{dx}$  applies to functions of one variable i.e.  $f \equiv f(x)$
- What if function f depends on one or more variables e.g.  $f \equiv f(x_1, x_2)$
- Finding the derivative involves finding the gradient of the function by varying one variable and keeping the others constant
- For example for  $f(x, y) = x^2y + xy^3$ ; partial derivatives are written:

• 
$$\frac{\partial f}{\partial x} = 2xy + y^3$$
 and  $\frac{\partial f}{\partial y} = x^2 + 3xy^2$ 

#### **Partial Derivative: example**



●  $f(x,y) = x^2 + y^2$ 

## **Partial Derivative: example**

• 
$$f(x,y) = x^2 + y^2$$
  
• Fix  $y = k \Rightarrow g(x) = f(x,k) = x^2 + k^2$   
• Now  $\frac{dg}{dx} = \frac{\partial f}{\partial x} = 2x$ 



#### **Further Examples**

• 
$$f(x,y) = (x+2y^3)^2$$
  
 $\Rightarrow \frac{\partial f}{\partial x} = 2(x+2y^3)\frac{\partial}{\partial x}(x+2y^3) = 2(x+2y^3)$ 

• If x and y are themselves functions of t then

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$

- So if  $f(x, y) = x^2 + 2y$  where  $x = \sin t$  and  $y = \cos t$  then:
  - $\frac{\mathrm{d}f}{\mathrm{d}t} = 2x\cos t 2\sin t = 2\sin t(\cos t 1)$

### **Extended Chain Rule**

If f is a function of x and y where x and y are themselves functions of s and t then:

• 
$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial s}$$
  
•  $\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t}$ 

• which can be expressed as a matrix equation:

$$\begin{pmatrix} \frac{\partial f}{\partial s} \\ \frac{\partial f}{\partial t} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} \\ \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} \end{pmatrix} \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

 Useful for changes of variable e.g. to polar coordinates

## Jacobian

The modulus of this matrix is called the Jacobian:

$$J = \begin{vmatrix} \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} \\ \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} \end{vmatrix}$$

Just as when performing a substitution on the integral:

$$\int f(x) \, \mathrm{d}x$$

we would use:  $du \equiv \frac{df(x)}{dx} dx$ 

• So if converting between multiple variables in an integration, we would use  $du \equiv J dx$ .

## **Formal Definition**

Similar to ordinary derivative. For a two variable function *f*(*x*, *y*) :

$$\frac{\partial f}{\partial x} = \lim_{\delta x \to 0} \frac{f(x + \delta x, y) - f(x, y)}{\delta x}$$

• and in the *y*-direction:

$$\frac{\partial f}{\partial y} = \lim_{\delta y \to 0} \frac{f(x, y + \delta y) - f(x, y)}{\delta y}$$

# **Further Notation**

- Multiple partial derivatives (as for ordinary derivatives) are expressed:
  - $\frac{\partial^2 f}{\partial x^2}$  is the second partial derivative of f
  - $\frac{\partial^n f}{\partial x^n}$  is the *n*th partial derivative of *f*
  - $\frac{\partial^2 f}{\partial x \partial y}$  is the partial derivative obtained by first partial differentiating by y and then x
  - $\frac{\partial^2 f}{\partial y \partial x}$  is the partial derivative obtained by first partial differentiating by x and then y
- If f(x, y) is a *nice* function then:  $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$