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Methods Course Details

Course title: Mathematical Methods

Course lecturers:

Dr. J. Bradley (Weeks 2-5)

Prof. P. Harrison (Weeks 6-10)

Course code: 145

Lectures

Wednesdays: 11–12am, rm 308 (until 2nd November)

Thursdays: 10–11am, rm 308

Fridays: 11–12 noon, rm 308

Tutorials

Thursdays: 11–12 noon OR Tuesdays 5–6pm

Number of assessed sheets: 5 out of 8
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Assessed Exercises

Submission: through CATE
https://sparrow.doc.ic.ac.uk/�cate/

Assessed exercises (for 1st half of course):
1. set 13 Oct; due 27 Oct
2. set 19 Oct; due 3 Nov
3. set 26 Oct; due 10 Nov
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Recommended Books

You will find one of the following useful – no need
to buy all of them:

Mathematical Methods for Science Students.
(2nd Ed). G Stephenson. Longman 1973.
[38]

Engineering Mathematics. (5th Ed). K A
Stroud. Macmillan 2001. [21]

Interactive Computer Graphics. P Burger and
D Gillies. Addison Wesley 1989. [22]

Analysis: with an introduction to proof. Steven
R Lay. 4th edition, Prentice Hall, 2005.
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Maths and Computer Science

Why is Maths important to Computer
Science?

Maths underpins most computing
concepts/applications, e.g.:

computer graphics and animation
stock market models
information search and retrieval
performance of integrated circuits
computer vision
neural computing
genetic algorithms
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Highlighted Examples

Search engines
Google and the PageRank algorithm

Computer graphics
near photo realism from wireframe and
vector representation
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Searching with...
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Searching for...

How does Google know to put Imperial’s website top?
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The PageRank Algorithm

List of Universities

Imperial CollegeImperial College

Imperial College

BBC News:

Imperial CollegeImperial College

Education

IEEE Research

Imperial CollegeImperial College

Awards

PageRank is based on the underlying web graph
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Propagation of PageRank

List of Universities

Imperial CollegeImperial College

Imperial College

BBC News:

Imperial CollegeImperial College

Education

IEEE Research

Imperial CollegeImperial College

Awards

Computing

Physics

Imperial College
Computing

Imperial College
Physics
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PageRank

So where’s the Maths?
Web graph is represented as a matrix
Matrix is 9 billion � 9 billion in size
PageRank calculation is turned into an
eigenvector calculation
Does it converge? How fast does it
converge?

METHODS [10/06] – p. 11/129



Computer Graphics

Ray tracing with: POV-Ray 3.6
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Computer Graphics

Underlying wiremesh model
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Computer Graphics

How can we calculate light shading/shadow?
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Computer Graphics

Key points of
model are defined
through vectors

Vectors define po-
sition relative to an
origin
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Vectors

Used in (amongst others):
Computational Techniques (2nd Year)
Graphics (3rd Year)
Computational Finance (3rd Year)
Modelling and Simulation (3rd Year)
Performance Analysis (3rd Year)
Digital Libraries and Search Engines (3rd
Year)
Computer Vision (4th Year)

METHODS [10/06] – p. 16/129



Vector Contents

What is a vector?

Useful vector tools:
Vector magnitude
Vector addition
Scalar multiplication
Dot product
Cross product

Useful results – finding the intersection of:
a line with a line
a line with a plane
a plane with a plane
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What is a vector?

A vector is used :
to convey both direction and magnitude

to store data (usually numbers) in an
ordered form~p = (10; 5; 7) is a row vector

~p =
0B� 1057
1CA is a column vector

A vector is used in computer graphics to
represent the position coordinates for a point
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What is a vector?

The dimension of a vector is given by the
number of elements it contains. e.g.(�2:4; 5:1) is a 2-dimensional real vector(�2:4; 5:1) comes from set IR2 (or IR� IR)0BBB�

�2570
1CCCA is a 4-dimensional integer vector

(comes from set ZZ4 or ZZ � ZZ � ZZ � ZZ)
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Vector Magnitude

The size or magnitude of a vector~p = (p1; p2; p3) is defined as its length:

j~pj =qp21 + p22 + p23 =
vuut 3X

i=1 p2i

e.g.

�������
0B� 345
1CA
������� =

p32 + 42 + 52 = p50 = 5p2

For an n-dimensional vector,~p = (p1; p2; : : : ; pn), j~pj =pPni=1 p2i
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Vector Direction

x
y

z
�x

�y�z
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Vector Angles

�x
j~pj

p1
For a vector, ~p = (p1; p2; p3):
os(�x) = p1=j~pj
os(�y) = p2=j~pj
os(�z) = p3=j~pj
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Vector addition

Two vectors (of the same dimension) can be
added together:

e.g.

0B� 12�1
1CA+
0B� 1�14
1CA =
0B� 213
1CA

So if ~p = (p1; p2; p3) and ~q = (q1; q2; q3) then:~p+ ~q = (p1 + q1; p2 + q2; p3 + q3)
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Vector addition

-

6
������

��*
6

y

x

~a
~b

~a+~b
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Vector addition

-

6
������

��*���
���

��
� 6

y

x

~a
do it

~b~

~a+~b = ~
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Scalar Multiplication

A scalar is just a number, e.g. 3. Unlike a
vector, it has no direction.

Multiplication of a vector ~p by a scalar �
means that each element of the vector is
multiplied by the scalar

So if ~p = (p1; p2; p3) then:�~p = (�p1; �p2; �p3)
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3D Unit vectors

We use~i, ~j, ~k to define the 3 unit vectors in 3
dimensions

They convey the basic directions along x, y
and z axes.

So: ~i =
0B� 100
1CA, ~j =
0B� 010
1CA, ~k =
0B� 001
1CA

All unit vectors have magnitude 1; i.e. j~ij = 1
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Vector notation

All vectors in 3D (or IR3) can be expressed as
weighted sums of~i;~j;~k
i.e. ~p = (10; 5; 7) �

0B� 1057
1CA � 10~i+ 5~j + 7~k

jp1~i+ p2~j + p3~kj =pp21 + p22 + p23
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Dot Product

Also known as: scalar product

Used to determine how close 2 vectors are to
being parallel/perpendicular

The dot product of two vectors ~p and ~q is:~p � ~q = j~pj j~qj 
os �
where � is angle between the vectors ~p and ~q

For ~p = (p1; p2; p3) and ~q = (q1; q2; q3) then:~p � ~q = p1q1 + p2q2 + p3q3
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Properties of the Dot Product

~p � ~p = j~pj2~p � ~q = 0 if ~p and ~q are perpendicular (at right
angles)

Commutative: ~p � ~q = ~q � ~p
Linearity: ~p � (�~q) = �(~p � ~q)
Distributive over addition:~p � (~q + ~r) = ~p � ~q + ~p � ~r
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Vector Projection

���
���

��
�

- -� ^n
~a

�
~a � ^n^n is a unit vector, i.e. j^nj = 1~a � ^n = j~aj 
os � represents the amount of ~a

that points in the ^n direction
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What can’t you do with a vector...

The following are classic mistakes – ~u and ~v are
vectors, and � is a scalar:

Don’t do it!

Vector division: ~u~v
Divide a scalar by a vector: �~u
Add a scalar to a vector: �+ ~u
Subtract a scalar from a vector: ~u� �

Cancel a vector in a dot product with
vector: 1~a � ~n ~n = 1~a��
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Example: Rays of light

���������������3QQQQQ s
A ray of light strikes a reflective surface...

Question: in what direction does the reflection
travel?
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Rays of light

���������������3QQQQQ s 6~s ~r^n

���������������3QQQQQ s QQQ k
6~s ~r

�~s
^n��

~r ~s ^n
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Rays of light

���������������3QQQQQ s QQQ k
6~s ~r

�~s
^n��

Problem: find ~r, given ~s and ^n?
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Rays of light

���������������3QQQQQ s QQQ k
6~s ~r

�~s
^n��

angle of incidence = angle of reflection) �~s � ^n = ~r � ^n
Also: ~r + (�~s) = �^n thus �^n = ~r � ~s

Taking the dot product of both sides:) �j^nj2 = ~r � ^n� ~s � ^n

METHODS [10/06] – p. 34/129



Rays of light

���������������3QQQQQ s QQQ k
6~s ~r

�~s
^n��

But ^n is a unit vector, so j^nj2 = 1) � = ~r � ^n� ~s � ^n
...and ~r � ^n = �~s � ^n) � = �2~s � ^n
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Rays of light

���������������3QQQQQ s QQQ k
6~s ~r

�~s
^n��

Finally, we know that: ~r + (�~s) = �^n) ~r = �^n+ ~s) ~r = ~s� 2(~s � ^n)^n
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Equation of a line

������
������

������
��

����*
���

��� I ���
���

���
���

�
~d ~r

~a
O

For a general point, ~r, on the line:
~r = ~a+ �~d

where: ~a is a point on the line and ~d is a
vector parallel to the line
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Equation of a plane

Equation of a plane. For a general point, ~r, in
the plane, ~r has the property that:~r:^n = m
where:^n is the unit vector perpendicular to the

planejmj is the distance from the plane to the
origin (at its closest point)
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Equation of a plane

����� �����
q

q
���

���
���

���
����

���
���

��Æ
((((((

6
6

~r
^n

^n
m

O
N P

Equation of a plane (why?):~r:^n = m
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How to solve Vector Problems

1. IMPORTANT: Draw a diagram!

2. Write down the equations that you are
given/apply to the situation

3. Write down what you are trying to find?

4. Try variable substitution

5. Try taking the dot product of one or more
equations

What vector to dot with?
Answer: if eqn (1) has term ~r in and eqn (2) has

term ~r � ~s in: dot eqn (1) with ~s.
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Two intersecting lines

Application: projectile interception

Problem — given two lines:

Line 1: ~r1 = ~a1 + t1 ~d1
Line 2: ~r2 = ~a2 + t2 ~d2

Do they intersect? If so, at what point?

This is the same problem as: find the valuest1 and t2 at which ~r1 = ~r2 or:

~a1 + t1 ~d1 = ~a2 + t2 ~d2

METHODS [10/06] – p. 41/129



How to solve: 2 intersecting lines

Separate~i, ~j, ~k components of equation:

~a1 + t1 ~d1 = ~a2 + t2 ~d2
...to get 3 equations in t1 and t2
If the 3 equations:

contradict each other then the lines do not intersect

produce a single solution then the lines do intersect

are all the same (or multiples of each other) then the lines

are identical (and always intersect)
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Intersection of a line and plane

����� �����

QQQQQQ
QQQs 6^n~d

Application: ray tracing, particle tracing,
projectile tracking

Problem — given one line/one plane:

Line: ~r = ~a+ t~d
Plane: ~r � ^n = s

Take dot product of line equation with ^n to
get: ~r � ^n = ~a � ^n+ t(~d � ^n)
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Intersection of a line and plane

With ~r � ^n = ~a � ^n+ t(~d � ^n) — what are we
trying to find?

We are trying to find a specific value of t
that corresponds to the point of intersection

Since ~r � ^n = s at intersection, we get:t = s�~a�^n~d�^n

So using line equation we get our point of
intersection, ~r0:

~r0 = ~a+ s� ~a � ^n~d � ^n ~d
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Example: intersecting planes

���
���

��	
���

���q6

HHHHHH
####

### aaaaaaq����^n1 ^n2

Problem: find the line that represents the
intersection of two planes
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Intersecting planes

Application: edge detection

Equations of planes:
Plane 1: ~r � ^n1 = s1
Plane 2: ~r � ^n2 = s2

We want to find the line of intesection, i.e. find~a and ~d in: ~s = ~a+ �~d
If ~s = x~i+ y~j + z~k is on the intersection line:) it also lies in both planes 1 and 2) ~s � ^n1 = s1 and ~s � ^n2 = s2

Can use these two equations to generate
equation of line
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Example: Intersecting planes

Equations of planes:

Plane 1: ~r � (2~i�~j + 2~k) = 3
Plane 2: ~r � ~k = 4

Pick point ~s = x~i+ y~j + z~k
From plane 1: 2x� y + 2z = 3
From plane 2: z = 4

We have two equations in 3 unknowns – not
enough to solve the system

But... we can express all three variables in
terms of one of the other variables
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Example: Intersecting planes

From plane 1: 2x� y + 2z = 3
From plane 2: z = 4

Substituting (Eqn. 2) ! (Eqn. 1) gives:) 2x = y � 5

Also trivially: y = y and z = 4
Line: ~s = ((y � 5)=2)~i + y~j + 4~k) ~s = �52~i+ 4~k + y(12~i+~j)

...which is the equation of a line
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Cross Product

HHHHHHHHj��������16 ~p~q�~p� ~q

Also known as: Vector Product

Used to produce a 3rd vector that is
perpendicular to the original two vectors

Written as ~p� ~q (or sometimes ~p ^ ~q)
Formally: ~p� ~q = (j~pj j~qj sin �)^n

where ^n is the unit vector perpendicular to~p and ~q; � is the angle between ~p and ~q
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Cross Product

From definition: j~p� ~qj = j~pj j~qj sin �
In coordinate form: ~a�~b =

�������
0B� ~i ~j ~ka1 a2 a3b1 b2 b3
1CA
�������) ~a�~b =(a2b3�a3b2)~i� (a1b3�a3b1)~j+(a1b2�a2b1)~k

Useful for: e.g. given 2 lines in a plane, write
down the equation of the plane
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Properties of Cross Product

~p� ~q is itself a vector that is perpendicular to both ~p
and ~q, so:~p � (~p� ~q) = 0 and ~q � (~p� ~q) = 0
If ~p is parallel to ~q then ~p� ~q = ~0

where ~0 = 0~i+ 0~j + 0~k
NOT commutative: ~a�~b 6= ~b� ~a

In fact: ~a�~b = �~b� ~a
NOT associative: (~a�~b)� ~
 6= ~a� (~b� ~
)

Left distributive: ~a� (~b+ ~
) = ~a�~b+ ~a� ~


Right distributive: (~b+ ~
)� ~a = ~b� ~a+ ~
� ~a
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Properties of Cross Product

Final important vector product identity:~a� (~b� ~
) = (~a � ~
)~b� (~a �~b)~

which says that: ~a� (~b� ~
) = �~b+ �~

i.e. the vector ~a� (~b� ~
) lies in the plane
created by ~b and ~
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Matrices

Used in (amongst others):
Computational Techniques (2nd Year)
Graphics (3rd Year)
Performance Analysis (3rd Year)
Digital Libraries and Search Engines (3rd
Year)
Computing for Optimal Decisions (4th Year)
Quantum Computing (4th Year)
Computer Vision (4th Year)
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Matrix Contents

What is a Matrix?
Useful Matrix tools:

Matrix addition

Matrix multiplication

Matrix transpose

Matrix determinant

Matrix inverse

Gaussian Elimination

Eigenvectors and eigenvalues

Useful results:
solution of linear systems

Google’s PageRank algorithm
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What is a Matrix?

A matrix is a 2 dimensional array of numbers

Used to represent, for instance, a network:

i i

i
� -

6

���
���

���I
1 2

3

�!
0B� 0 1 11 0 10 0 0
1CA
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Application: Markov Chains

Example: What is the probability that it will be
sunny today given that it rained yesterday?
(Answer: 0.25)

 0:6 0:40:25 0:75
!Sun Rain

Today

Sun

Rain

Ye
st

er
da

y

Example question: what is the probability that
it’s raining on Thursday given that it’s sunny
on Monday?
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Matrix Addition

In general matrices can have m rows and n
columns – this would be an m� n matrix. e.g.
a 2� 3 matrix would look like:

A =  1 2 30 �1 2
!

Matrices with the same number of rows and
columns can be added: 1 2 30 �1 2

!+ 3 �1 02 2 1
! =  4 1 32 1 3
!
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Scalar multiplication

As with vectors, multiplying by a scalar
involves multiplying the individual elements by
the scalar, e.g. :

�A = � 1 2 30 �1 2
! =  � 2� 3�0 �� 2�
!

Now matrix subtraction is expressible as a
matrix addition operationA�B = A+ (�B) = A+ (�1�B)
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Matrix Identities

An identity element is one that leaves any
other element unchanged under a particular
operation e.g. 1 is the identity in 5� 1 = 5
under multiplication

There are two matrix identity elements: one
for addition, 0, and one for multiplication, I.

The zero matrix: 1 23 �3
!+ 0 00 0
! =  1 23 �3
!

In general: A+ 0 = A and 0 + A = A
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Matrix Identities

For 2� 2 matrices, the multiplicative identity,

I =  1 00 1
!

:

 1 23 �3
!� 1 00 1
! =  1 23 �3
!

In general for square (n� n) matrices:AI = A and IA = A
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Matrix Multiplication

The elements of a matrix, A, can be
expressed as aij, so:

A =  a11 a12a21 a22
!

Matrix multiplication can be defined so that, ifC = AB then:


ij = nX
k=1 aikbkj
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Matrix Multiplication

Multiplication, AB, is only well defined if the
number of columns of A = the number of rows
of B. i.e.A can be m� nB has to be n� p

the result, AB, is m� p
Example:0� 0 1 23 4 5 1A0BB� 6 78 910 11

1CCA = 0� 0� 6 + 1� 8 + 2� 10 0� 7 + 1� 9 + 2� 113� 6 + 4� 8 + 5� 10 3� 7 + 4� 9 + 5� 11 1A
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Matrix Properties

A+B = B + A(A+B) + C = A+ (B + C)�A = A��(A+B) = �A+ �B(AB)C = A(BC)(A+B)C = AC +BC; C(A+B) = CA+ CB

But... AB 6= BA i.e. matrix multiplication is
NOT commutative0� 0 11 �1

1A0� 1 11 1
1A = 0� 1 10 0
1A 6= 0� 1 11 1
1A0� 0 11 �1
1A
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Matrices in Graphics

Matrix multiplication is a simple way to
encode different transformations of objects in
computer graphics, e.g. :

reflection

scaling

rotation

translation (requires 4� 4 transformation
matrix)
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Reflection

-

6
AAAAAA
�������

���
���

EEE
EEEE(5; 3) (9; 3)

(8; 9)
Coordinates stored in matrix form as: 5 9 83 3 9

!
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Reflection

The matrix which represents a reflection in
the x-axis is:  1 00 �1

!
This is applied to the coordinate matrix to give
the coordinates of the reflected object: 1 00 �1

! 5 9 83 3 9
! =  5 9 8�3 �3 �9
!
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Scaling

-

6



















Scaling matrix by factor of �: � 00 �
! 12
! =  �2�
!

Here triangle scaled by factor of 3
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Rotation

Rotation by angle � about origin takes(x; y)! (x0; y0)

-

6
������
���

���
��� (x; y)

xx0
(x0; y0)yy0 rr

 �
Initially: x = r 
os and y = r sin 

After rotation: x0 = r 
os( + �) andy0 = r sin( + �)
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Rotation

Require matrix R s.t.:

 x0y0
! = R xy
!
Initially: x = r 
os and y = r sin 
Start with x0 = r 
os( + �)) x0 = r 
os | {z }x 
os � � r sin | {z }y sin �

) x0 = x 
os � � y sin �
Similarly: y0 = x sin � + y 
os �

Thus R = 0� 
os � � sin �sin � 
os �
1A

METHODS [10/06] – p. 69/129



3D Rotation

Anti-clockwise rotation of � about z-axis:0BB� 
os � � sin � 0sin � 
os � 00 0 1
1CCA

Anti-clockwise rotation of � about y-axis:0BB� 
os � 0 sin �0 1 0� sin � 0 
os �
1CCA

Anti-clockwise rotation of � about x-axis:0BB� 1 0 00 
os � � sin �0 sin � 
os �
1CCA
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Transpose

For a matrix P , the transpose of P is writtenP T and is created by rewriting the ith row as
the ith column

So for:

P =
0B� 1 3 �22 5 0�3 �2 1
1CA) P T =
0B� 1 2 �33 5 �2�2 0 1
1CA

Note that taking the transpose leaves the
leading diagonal, in this case (1; 5; 1),
unchanged
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Application of Transpose

Main application: allows reversal of order of
matrix multiplication

If AB = C then BTAT = CT
Example: 1 23 4

! 5 67 8
! =  19 2243 50
!

 5 76 8
! 1 32 4
! =  19 4322 50
!
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Matrix Determinant

The determinant of a matrix, P :
represents the expansion factor that a P
transformation applies to an object

tells us if equations in P~x = ~b are linearly
dependent

If a square matrix has a determinant 0, then it
is known as singular

The determinant of a 2� 2 matrix:�����
 a b
 d
!����� = ad� b
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3� 3 Matrix Determinant

For a 3� 3 matrix:

A =
0B� a1 a2 a3b1 b2 b3
1 
2 
3
1CA

...the determinant can be calculated by:

a1 �����
 b2 b3
2 
3
!������a2
�����
 b1 b3
1 
3
!�����+a3
�����
 b1 b2
1 
2
!�����

= a1(b2
3� b3
2)� a2(b1
3� b3
1) + a3(b1
2� b2
1)
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The Parity Matrix

Before describing a general method for
calculating the determinant, we require a
parity matrix

For a 3� 3 matrix this is:0B� +1 �1 +1�1 +1 �1+1 �1 +1
1CA

We will be picking pivot elements from our
matrix A which will end up being multiplied by+1 or �1 depending on where in the matrix
the pivot element lies (e.g. a12 maps to �1)
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The general method...

The 3� 3 matrix determinant jAj is calculated by:

1. pick a row or column of A as a pivot

2. for each element x in the pivot, construct a2� 2 matrix, B, by removing the row and
column which contain x

3. take the determinant of the 2� 2 matrix, B

4. let v = product of determinant of B and x

5. let u = product of v with +1 or �1 (according
to parity matrix rule – see previous slide)

6. repeat from (2) for all the pivot elements x

and add the u-values to get the determinant
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Example

Find determinant of:

A =
0B� 1 0 �24 2 3�2 5 1
1CA

jAj = +1�1������
 2 35 1
!�����+�1�0������
 4 3�2 1
!�����

+1��2� �����
 4 2�2 5
!�����) jAj = �13 + (�2� 24) = �61
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Matrix Inverse

The inverse of a matrix describes the reverse
transformation that the original matrix
described

A matrix, A, multiplied by its inverse, A�1,
gives the identity matrix, I
That is: AA�1 = I and A�1A = I
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Matrix Inverse Example

The reflection matrix, A =  1 00 �1
!
The transformation required to undo the
reflection is another reflection.A is its own inverse ) A = A�1 and: 1 00 �1

! 1 00 �1
! =  1 00 1
!
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2� 2 Matrix inverse

As usual things are easier for 2� 2 matrices.
For: A =  a b
 d

!
The inverse exists only if jAj 6= 0 and:

A�1 = 1jAj
 d �b�
 a
!

) if jAj = 0 then the inverse A�1 does not exist
(very important: true for any n� n matrix).
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n� n Matrix Inverse

First we need to define C, the cofactors
matrix of a matrix, A, to have elements
ij = � minor of aij, using the parity matrix as
before to determine whether is gets multiplied
by +1 or �1

(The minor of an element is the
determinant of the matrix formed by
deleting the row/column containing that
element, as before)

Then the n� n inverse of A is:
A�1 = 1jAjCT
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Linear Systems

Linear systems are used in all branches of
science and scientific computing

Example of a simple linear system:
If 3 PCs and 5 Macs emit 151W of heat in
1 room, and 6 PCs together with 2 Macs
emit 142W in another. How much energy
does a single PC or Mac emit?
When a linear system has 2 variables also
called simultaneous equation
Here we have: 3p+ 5m = 151 and6p+ 2m = 142
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Linear Systems as Matrix Equations

Our PC/Mac example can be rewritten as a
matrix/vector equation: 3 56 2

! pm
! =  151142
!

Then a solution can be gained from inverting
the matrix, so: pm

! =  3 56 2
!�1 151142
!
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Gaussian Elimination

For larger n� n matrix systems finding the
inverse is a lot of work

A simpler way of solving such systems in one
go is by Gaussian Elimination. We rewrite the
previous model as: 3 56 2

! pm
! =  151142
! !  3 5 1516 2 142
!

We can perform operations on this matrix:
multiply/divide any row by a scalar
add/subtract any row to/from another
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Gaussian Elimination

Using just these operations we aim to turn: 3 5 1516 2 142
! !  1 0 x0 1 y
!

Why? ...because in the previous matrix
notation, this means: 1 00 1

! pm
! =  xy
!

So x and y are our solutions
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Example Solution using GE

(r1) := 2� (r1):0� 3 5 1516 2 142
1A ! 0� 6 10 3026 2 142
1A

(r2) := (r2)� (r1):0� 6 10 3026 2 142
1A ! 0� 6 10 3020 �8 �160
1A

(r2) := (r2)=(�8):0� 6 10 3020 �8 �160
1A ! 0� 6 10 3020 1 20
1A
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Example Solution using GE

(r1) := (r1)� 10� (r2):0� 6 10 3020 1 20
1A ! 0� 6 0 1020 1 20
1A

(r1) := (r1)=6:0� 6 0 1020 1 20
1A ! 0� 1 0 170 1 20
1A

So we can say that our solution is p = 17 and m = 20
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Gaussian Elimination: 3� 3
1.

0B� a � � �� � � �� � � �
1CA !
0B� 1 � � �0 � � �0 � � �
1CA

2.

0B� 1 � � �0 b � �0 � � �
1CA !
0B� 1 � � �0 1 � �0 0 � �
1CA

3.

0B� 1 � � �0 1 � �0 0 
 �
1CA !
0B� 1 � � �0 1 � �0 0 1 �
1CA
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Gaussian Elimination: 3� 3
4.

0B� 1 � � �0 1 � �0 0 1 �
1CA !
0B� 1 � 0 �0 1 0 �0 0 1 �
1CA

5.

0B� 1 � 0 �0 1 0 �0 0 1 �
1CA !
0B� 1 0 0 �0 1 0 �0 0 1 �
1CA

* represents an unknown entry
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Linear Dependence

System of n equations is linearly dependent:
if one or more of the equations can be
formed from a linear sum of the remaining
equations

For example – if our Mac/PC system were:3p+ 5m = 151 (1)6p+ 10m = 302 (2)

This is linearly dependent as:
eqn (2) = 2� eqn (1)
i.e. we get no extra information from eqn (2)

...and there is no single solution for p and m
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Linear Dependence

If P represents a matrix in P~x = ~b then the
equations generated by P~x are linearly
dependent

iff jP j = 0 (i.e. P is singular)

The rank of the matrix P represents the
number of linearly independent equations inP~x

We can use Gaussian elimination to calculate
the rank of a matrix
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Calculating the Rank

If after doing GE, and getting to the stage
where we have zeroes under the leading
diagonal, we have:0B� 1 � � �0 1 � �0 0 0 �

1CA
Then we have a linearly dependent system
where the number of independent equations
or rank is 2
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Rank and Nullity

If we consider multiplication by a matrix M as a
function:M :: IR3 ! IR3

Input set is called the domain

Set of possible outputs is called the range

The Rank is the dimension of the range (i.e. the
dimension of right-hand sides, ~b, that give systems,M~x = ~b, that don’t contradict)

The Nullity is the dimension of space (subset of the
domain) that maps onto a single point in the range.
(Alternatively, the dimension of the space which solvesM~x = ~0).
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Rank/Nullity theorem

If we consider multiplication by a matrix M as
a function:M :: IR3 ! IR3

If rank is calculated from number of linearly
independent rows of M : nullity is number of
dependent rows

We have the following theorem:

Rank of M+Nullity of M = dim(Domain of M )
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PageRank Algorithm

Used by Google (and others?) to calculate a
ranking vector for the whole web!

Ranking vector is used to order search results
returned from a user query

PageRank of a webpage, u, is proportional to:X
v:pages with links to u PageRank of v

Number of links out of v

For a PageRank vector, ~r, and a web graph
matrix, P : P~r = �~r
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PageRank and Eigenvectors

PageRank vector is an eigenvector of the
matrix which defines the web graph

An eigenvector, ~v of a matrix A is a vector
which satisfies the following equation:

A~v = �~v (�)
where � is an eigenvalue of the matrix A

If A is an n� n matrix then there may be as
many as n possible interesting ~v; �

eigenvector/eigenvalue pairs which solve
equation (*)
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Calculating the eigenvector

From the definition (*) of the eigenvector,A~v = �~v) A~v � �~v = ~0) (A� �I)~v = ~0

Let M be the matrix A� �I then if jM j 6= 0

then: ~v =M�1~0 = ~0
This means that any interesting solutions of
(*) must occur when jM j = 0 thus:jA� �Ij = 0
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Eigenvector Example

Find eigenvectors and eigenvalues of

A =  4 12 3
!

Using jA� �Ij = 0, we get:�����
 4 12 3
!� � 1 00 1
!����� = 0

) �����
 4� � 12 3� �
!����� = 0
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Eigenvector Example

Thus by definition of a 2� 2 determinant, we
get:(4� �)(3� �)� 2 = 0
This is just a quadratic equation in � which
will give us two possible eigenvalues�2 � 7�+ 10 = 0) (�� 5)(�� 2) = 0� = 5 or 2
We have two eigenvalues and there will be
one eigenvector solution for � = 5 and
another for � = 2
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Finding Eigenvectors

Given an eigenvalue, we now use equation (*)
in order to find the eigenvectors. ThusA~v = �~v and � = 5 gives: 4 12 3

! v1v2
! = 5 v1v2
!

  4 12 3
!� 5I! v1v2
! = ~0 �1 12 �2

! v1v2
! =  00
!

METHODS [10/06] – p. 100/129



Finding Eigenvectors

This gives us two equations in v1 and v2:�v1 + v2 = 0 (1:a)2v1 � 2v2 = 0 (1:b)
These are linearly dependent: which means
that equation (1.b) is a multiple of equation
(1.a) and vice versa(1:b) = �2� (1:a)

This is expected in situations wherejM j = 0 in M~v = ~0
Eqn. (1.a) or (1.b) ) v1 = v2
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First Eigenvector

v1 = v2 gives us the � = 5 eigenvector: v1v1
! = v1 11
!

We can ignore the scalar multiplier and use

the remaining

0� 11 1A vector as the eigenvector

Checking with equation (*) gives: 4 12 3
! 11
! = 5 11
! p
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Second Eigenvector

For A~v = �~v and � = 2:

)  2 12 1
! v1v2
! =  00
!

) 2v1 + v2 = 0 (and 2v1 + v2 = 0)) v2 = �2v1
Thus second eigenvector is ~v = v1 1�2

!

...or just ~v =  1�2
!
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Differential Equations: Contents

What are differential equations used for?

Useful differential equation solutions:
1st order, constant coefficient
1st order, variable coefficient
2nd order, constant coefficient
Coupled ODEs, 1st order, constant
coefficient

Useful for:
Performance modelling (3rd year)
Simulation and modelling (3rd year)
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Differential Equations: Background

Used to model how systems evolve over time:
e.g. computer systems, biological systems,
chemical systems

Terminology:
Ordinary differential equations (ODEs) are

first order if they contain a

dydx term but no

higher derivatives
ODEs are second order if they contain ad2ydx2 term but no higher derivatives
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Ordinary Differential Equations

First order, constant coefficients:

For example, 2dydx + y = 0 (�)
Try: y = emx) 2memx + emx = 0) emx(2m + 1) = 0) emx = 0 or m = �12emx 6= 0 for any x;m. Therefore m = �12

General solution to (�):
y = Ae� 12x
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Ordinary Differential Equations

First order, variable coefficients of type:dydx + f(x)y = g(x)
Use integrating factor (IF): eR f(x) dx

For example:

dydx + 2xy = x (�)

Multiply throughout by IF: eR 2x dx = ex2) ex2 dydx + 2xex2y = xex2) ddx(ex2y) = xex2) ex2y = 12ex2 + C So, y = Ce�x2 + 12
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Ordinary Differential Equations

Second order, constant coefficients:

For example,

d2ydx2 + 5dydx + 6y = 0 (�)
Try: y = emx) m2emx + 5memx + 6emx = 0) emx(m2 + 5m+ 6) = 0) emx(m+ 3)(m + 2) = 0m = �3;�2
i.e. two possible solutions
General solution to (�):

y = Ae�2x +Be�3x
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Ordinary Differential Equations

Second order, constant coefficients:
If y = f(x) and y = g(x) are distinct
solutions to (�)

Then y = Af(x) +Bg(x) is also a solution
of (�) by following argument:d2dx2 (Af(x) +Bg(x)) + 5 ddx(Af(x) +Bg(x))+ 6(Af(x) +Bg(x)) = 0A� d2dx2f(x) + 5 ddxf(x) + 6f(x)�| {z }=0+ B� d2dx2 g(x) + 5 ddxg(x) + 6g(x)�| {z }=0 = 0
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Ordinary Differential Equations

Second order, constant coefficients (repeated
root):

For example,

d2ydx2 � 6dydx + 9y = 0 (�)

Try: y = emx) m2emx � 6memx + 9emx = 0) emx(m2 � 6m+ 9) = 0) emx(m� 3)2 = 0m = 3 (twice)
General solution to (�) for repeated roots:

y = (Ax+B)e3x
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Applications: Coupled ODEs

Coupled ODEs are used to model massive
state-space physical and computer systems

Coupled Ordinary Differential Equations are
used to model:

chemical reactions and concentrations
biological systems
epidemics and viral infection spread
large state-space computer systems (e.g.
distributed publish-subscribe systems
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Coupled ODEs

Coupled ODEs are of the form:( dy1dx = ay1 + by2dy2dx = 
y1 + dy2
If we let ~y =  y1y2

!
, we can rewrite this as:

 dy1dxdy2dx
! =  a b
 d
! y1y2
!

or

d~ydx =  a b
 d
! ~y
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Coupled ODE solutions

For coupled ODE of type:

d~ydx = A~y (�)
Try ~y = ~ve�x so,

d~ydx = �~ve�x
But also

d~ydx = A~y, so A~ve�x = �~ve�x

Now solution of (�) can be derived from an
eigenvector solution of A~v = �~v

For n eigenvectors ~v1; : : : ; ~vn and corresp.
eigenvalues �1; : : : ; �n : general solution of(�) is ~y = B1~v1e�1x + � � �+Bn~vne�nx
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Coupled ODEs: Example

Example coupled ODEs:( dy1dx = 2y1 + 8y2dy2dx = 5y1 + 5y2
So d~ydx =  2 85 5

! ~y
Require to find eigenvectors/values of

A =  2 85 5
!
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Coupled ODEs: Example

Eigenvalues of A:

�����
 2� � 85 5� �
!����� =�2 � 7�� 30 = (�� 10)(�+ 3) = 0
Thus eigenvalues � = 10;�3
Giving:

�1 = 10; ~v1 =  11
! ;�2 = �3; ~v2 =  8�5
!

Solution of ODEs:~y = B1 11
! e10x +B2 8�5
! e�3x
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Partial Derivatives

Used in (amongst others):

Computational Techniques (2nd Year)
Optimisation (3rd Year)
Computational Finance (3rd Year)
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Differentiation Contents

What is a (partial) differentiation used for?

Useful (partial) differentiation tools:
Differentiation from first principles
Partial derivative chain rule
Derivatives of a parametric function
Multiple partial derivatives
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Optimisation

Example: look to find best predicted gain in
portfolio given different possible share
holdings in portfolio

Optimum value
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Differentiation

 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5

y=x^2

Æx Æy

Gradient on a curve f(x) is approximately:ÆyÆx = f(x+ Æx)� f(x)Æx
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Definition of derivative

The derivative at a point x is defined by:dfdx = limÆx!0 f(x+ Æx)� f(x)Æx
Take f(x) = xn

We want to show that:dfdx = nxn�1
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Derivative of xn

dfdx = limÆx!0 f(x+Æx)�f(x)Æx= limÆx!0 (x+Æx)n�xnÆx= limÆx!0 Pni=0(ni)xn�iÆxi�xnÆx= limÆx!0 Pni=1(ni)xn�iÆxiÆx= limÆx!0Pni=1 (ni) xn�iÆxi�1

= limÆx!0((n1) xn�1 + nXi=2 �ni�xn�iÆxi�1| {z }!0 as Æx!0
)

= n!1!(n�1)!xn�1 = nxn�1

METHODS [10/06] – p. 121/129



Partial Differentiation

Ordinary differentiation dfdx applies to functions
of one variable i.e. f � f(x)
What if function f depends on one or more
variables e.g. f � f(x1; x2)
Finding the derivative involves finding the
gradient of the function by varying one
variable and keeping the others constant

For example for f(x; y) = x2y + xy3; partial
derivatives are written:�f�x = 2xy + y3 and �f�y = x2 + 3xy2
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Partial Derivative: example

Parabaloid
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f(x; y) = x2 + y2
METHODS [10/06] – p. 123/129



Partial Derivative: example

f(x; y) = x2 + y2

Fix y = k ) g(x) = f(x; k) = x2 + k2
Now dgdx = �f�x = 2x
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Section through parabaloid
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Further Examples

f(x; y) = (x+ 2y3)2) �f�x = 2(x+ 2y3) ��x(x+ 2y3) = 2(x+ 2y3)
If x and y are themselves functions of t thendfdt = �f�x dxdt + �f�y dydt
So if f(x; y) = x2 + 2y where x = sin t andy = 
os t then:dfdt = 2x 
os t� 2 sin t = 2 sin t(
os t� 1)
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Extended Chain Rule

If f is a function of x and y where x and y are
themselves functions of s and t then:�f�s = �f�x �x�s + �f�y �y�s�f�t = �f�x �x�t + �f�y �y�t
which can be expressed as a matrix equation: �f�s�f�t

! =  �x�s �y�s�x�t �y�t
! �f�x�f�y
!

Useful for changes of variable e.g. to polar
coordinates

METHODS [10/06] – p. 126/129



Jacobian

The modulus of this matrix is called the
Jacobian:

J = ����� �x�s �y�s�x�t �y�t
�����

Just as when performing a substitution on the
integral: Z f(x) dx

we would use: du � df(x)dx dx

So if converting between multiple variables in
an integration, we would use du � Jdx.
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Formal Definition

Similar to ordinary derivative. For a two
variable function f(x; y) :�f�x = limÆx!0 f(x+ Æx; y)� f(x; y)Æx
and in the y-direction:�f�y = limÆy!0 f(x; y + Æy)� f(x; y)Æy
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Further Notation

Multiple partial derivatives (as for ordinary
derivatives) are expressed:�2f�x2 is the second partial derivative of f�nf�xn is the nth partial derivative of f�2f�x�y is the partial derivative obtained by

first partial differentiating by y and then x�2f�y�x is the partial derivative obtained by
first partial differentiating by x and then y

If f(x; y) is a nice function then: �2f�x�y = �2f�y�x
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