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Differential Equations: Contents

2 What are differential equations used for?

2 Useful differential equation solutions:
> 1st order, constant coefficient
> 1st order, variable coefficient
> 2nd order, constant coefficient

> Coupled ODEs, 1st order, constant
coefficient

2 Useful for:
> Performance modelling (3rd year)
> Simulation and modelling (3rd year)
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Differential Equations: Background

2 Used to model how systems evolve over time:

> e.g. computer systems, biological systems,
chemical systems

2 Terminology:
> Ordinary differential equations (ODESs) are

) . . d

first order if they contain a d—y term but no
x

higher derivatives

> ODEs are second order if they contain a

d%y

02 term but no higher derivatives
i

Ordinary Differential Equations

2 First order, constant coefficients:

d
> For example, 2d—y +y=0 (%)
xT
o Tryry=e™
= 2me™ 4+ ™ =0
= ™2m+1)=0

=™ =00rm= f%
> e™? #£ 0 for any x, m. Therefore m = —

> General solution to (x):

1
2

y= Ae~2"




Ordinary Differential Equations

2 First order, variable coefficients of type:

% + f(x)y = g(x)

> Use integrating factor (IF): ¢//(®)dz

d
> For example: d—y +2ry=1x (%)
xz

2

> Multiply throughout by IF: e/2rdr — ¢
e‘”zg—zz—i- 2xew2y2: ze®
4y = e

ety = %ewz +C So,y=Ce ™ + %

Uy
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Ordinary Differential Equations

2 Second order, constant coefficients:
2
> For example, % + 5% +6y=0 (%)
> Try: y=e™
= m%e™ + 5me™ + 6™ = ()
= e™(m2+5m+6)=0
= ™ (m+3)(m+2)=0
°om=—3,-2
> |.e. two possible solutions
> General solution to (x):

y=Ae ¥ + Be "
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Ordinary Differential Equations

2 Second order, constant coefficients:
> Ify = f(z) and y = g(x) are distinct
solutions to (x)
> Theny = Af(x) + Bg(z) is also a solution
of (x) by following argument:
> &5(Af(x) + By(x)) + 545 (Af (2) + By())
+6(Af(z) + By(x)) = 0

o Al @) + 5521 w) + 0£(0))

=0

+B (%g(z) + 5%g(m) + 6g(:r)> =0

=0

Ordinary Differential Equations

2 Second order, constant coefficients (repeated
root):
d? d

> For example, d—lz - 6d—z +9 =0 (%)

o Try: y =e™*

= m2€ma¢ — 6me™® + 9eMmT = ()

= e"(m?—6m+9)=0

= e™(m—3)2=0

> m = 3 (twice)

> General solution to (x) for repeated roots:

y = (Az + B)e*”




Applications: Coupled ODEs

2 Coupled ODEs are used to model massive
state-space physical and computer systems

2 Coupled Ordinary Differential Equations are
used to model:
> chemical reactions and concentrations
> biological systems
> epidemics and viral infection spread

large state-space computer systems (e.g.
distributed publish-subscribe systems

©
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Coupled ODEs

9 Coupled ODEs are of the form:

{((lff = ayy + bys

e = ey +dy,

> Ifwe let § = ( o ) we can rewrite this as:

Y2

% [ad 1 Or@'_
‘% “\ed Yo dz

a b\
cdy
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Coupled ODE solutions

—

2 For coupled ODE of type: j—y = Ay (%)
X

. dy

> Try § = e’ so, P AgeM

dy : g
> But also d—y = Ajj, S0 Ave = \vel”
X

2 Now solution of (x) can be derived from an
eigenvector solution of Av = AU

> For n eigenvectors v, . . ., ¥, and corresp.
eigenvalues Ay, ..., A, : general solution of
(*) is Zj = Blﬁle)\lm + -+ B"’UHGA"”T

Coupled ODEs: Example

2 Example coupled ODEs:

% = 2y + 8y
de — oY1 + by

dz

. (2
350330:(5 i)g

2 Require to find eigenvectors/values of

(21)




Coupled ODEs: Example

V)

Eigenvalues of A:

2—-X 8

( 5 5—)\>‘_
AN —TA=30=A—-10)(A+3)=0
Thus eigenvalues A\ = 10, —3

(V)

3 Giving:

. 1 . 8
/\1=107v1=<1>;>\2=—3,v2=(_5>

Solution of ODESs:

1 8 .
372 B1 ( >610x+32 < )eSz

(V)

1 )
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Partial Derivatives

2 Used in (amongst others):
> Computational Techniques (2nd Year)
> Optimisation (3rd Year)
> Computational Finance (4th Year)

Differentiation Contents

> What is a (partial) differentiation used for?
> Useful (partial) differentiation tools:

> Differentiation from first principles

> Partial derivative chain rule

> Derivatives of a parametric function

> Multiple partial derivatives
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Optimisation

2 Example: look to find best predicted gain in
portfolio given different possible share
holdings in portfolio

Optimun value ——




Differentiation

2 Gradient on a curve f(z) is approximately:

0y _ flz+dz) — fla)
o ox
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Definition of derivative

2 The derivative at a point z is defined by:

df _ o Sl de) = f(@)

dz  sa—0 ox
> Take f(x) =a"
> We want to show that:
ﬂ _ n—1

=nx
dzx

————— " >—ss RN

Derivative of "

> 4 — Jimy, o

f(z+d2)—f(x)
dz ox

(z4da)"—a"

= 1im6:1:—>0 o

iy o St

S ()

= limg, 0 or

= limgz—o iy (7) it

n
— hméwﬂo((?) Z,nfl + Z (7) In,—15$i—1)
i=2
—0 as jz—0

_ n! n—1 _ n—1
- 1!(71,71)!'r =nr
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Partial Differentiation

2 Ordinary differentiation % applies to functions
of one variable i.e. f = f(z)

2 What if function f depends on one or more
variables e.g. f = f(x1,z2)

2 Finding the derivative involves finding the
gradient of the function by varying one
variable and keeping the others constant

> For example for f(z,y) = 2%y + 2y*; partial
derivatives are written:

° %:2wy+y3 and %:22+31'y2




Partial Derivative: example

> f(z,y) =2* +
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Partial Derivative: example

> fla,y) =2® +y°
o Fixy =k = g(z) = f(x, k) = 2° + k*

° NOW%:%:%E

= AT

Further Examples

> flay) = @+ 27
= a—;: =2(z +2y°) 2 (z + 2¢°) = 2(z + 2¢°)

> If x and y are themselves functions of ¢ then
df ofdr Ofdy

dt — dxdt ' 9y dt
> Soif f(z,y) = 2* + 2y where z = sint and
y = cost then:

> % =2z cost — 2sint = 2sint(cost — 1)
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Extended Chain Rule

2 If fis a function of x and y where z and y are
themselves functions of s and ¢ then:

of _ 0fdx | 0f0y
° 95 = 9z 0s + dy Os

of _ 0fdx | 9f0y
> o = owo Tayon

2 which can be expressed as a matrix equation:

af dz Oy of
s o Jds 0s ox
ot ot ot oy

2 Useful for changes of variable e.g. to polar
coordinates




Jacobian
2 The modulus of this matrix is called the
Jacobian:
dz Oy
| 0s 0s
7= dz dy
ot Ot

2 Just as when performing a substitution on the

integral:
/ f(z)dx

we would use: du = 2 qz

T

2 So if converting between multiple variables in

an integration, we would use du = Jdz.
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Formal Definition

2 Similar to ordinary derivative. For a two
variable function f(z,y) :

Of . Jlwtony) -~ f(z,9)
or dx—0 ox

2 and in the y-direction:

ay oy—0 6y

e EEEPEPEPET————— - veTvops 008,29

Further Notation

> Multiple partial derivatives (as for ordinary
derivatives) are expressed:

° % is the second partial derivative of f

> 2'1'is the nth partial derivative of f

> ggy is the partial derivative obtained by

first partial differentiating by y and then z

> 2 s the partial derivative obtained by

yox
first partial differentiating by x and then y
> If f(z,y) is a nice function then: ggy = OT({L,
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