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Differential Equations: Contents

What are differential equations used for?

Useful differential equation solutions:
1st order, constant coefficient
1st order, variable coefficient
2nd order, constant coefficient
Coupled ODEs, 1st order, constant
coefficient

Useful for:
Performance modelling (3rd year)
Simulation and modelling (3rd year)
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Differential Equations: Background

Used to model how systems evolve over time:
e.g. computer systems, biological systems,
chemical systems

Terminology:
Ordinary differential equations (ODEs) are

first order if they contain a
dy

dx
term but no

higher derivatives
ODEs are second order if they contain a
d2y

dx2
term but no higher derivatives
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Ordinary Differential Equations

First order, constant coefficients:

For example, 2
dy

dx
+ y = 0 (∗)

Try: y = emx

⇒ 2memx + emx = 0
⇒ emx(2m + 1) = 0

⇒ emx = 0 or m = −1
2

emx 6= 0 for any x, m. Therefore m = −1
2

General solution to (∗):

y = Ae−
1

2
x
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Ordinary Differential Equations

First order, variable coefficients of type:

dy

dx
+ f(x)y = g(x)

Use integrating factor (IF): e
∫

f(x) dx

For example:
dy

dx
+ 2xy = x (∗)

Multiply throughout by IF: e
∫

2xdx = ex2

⇒ ex2 dy
dx

+ 2xex2

y = xex2

⇒ d
dx

(ex2

y) = xex2

⇒ ex2

y = 1
2e

x2

+ C So, y = Ce−x2

+ 1
2
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Ordinary Differential Equations

Second order, constant coefficients:

For example,
d2y

dx2
+ 5

dy

dx
+ 6y = 0 (∗)

Try: y = emx

⇒ m2emx + 5memx + 6emx = 0
⇒ emx(m2 + 5m + 6) = 0
⇒ emx(m + 3)(m + 2) = 0

m = −3,−2

i.e. two possible solutions
General solution to (∗):

y = Ae−2x + Be−3x
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Ordinary Differential Equations

Second order, constant coefficients:
If y = f(x) and y = g(x) are distinct
solutions to (∗)

Then y = Af(x) + Bg(x) is also a solution
of (∗) by following argument:

d2

dx2 (Af(x) + Bg(x)) + 5 d
dx

(Af(x) + Bg(x))

+ 6(Af(x) + Bg(x)) = 0

A

(
d2

dx2
f(x) + 5

d

dx
f(x) + 6f(x)

)

︸ ︷︷ ︸

=0

+ B

(
d2

dx2
g(x) + 5

d

dx
g(x) + 6g(x)

)

︸ ︷︷ ︸

=0

= 0
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Ordinary Differential Equations

Second order, constant coefficients (repeated
root):

For example,
d2y

dx2
− 6

dy

dx
+ 9y = 0 (∗)

Try: y = emx

⇒ m2emx − 6memx + 9emx = 0
⇒ emx(m2 − 6m + 9) = 0
⇒ emx(m − 3)2 = 0

m = 3 (twice)
General solution to (∗) for repeated roots:

y = (Ax + B)e3x
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Applications: Coupled ODEs

Coupled ODEs are used to model massive
state-space physical and computer systems

Coupled Ordinary Differential Equations are
used to model:

chemical reactions and concentrations
biological systems
epidemics and viral infection spread
large state-space computer systems (e.g.
distributed publish-subscribe systems
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Coupled ODEs

Coupled ODEs are of the form:
{

dy1

dx
= ay1 + by2

dy2

dx
= cy1 + dy2

If we let ~y =

(

y1

y2

)

, we can rewrite this as:

(
dy1

dx
dy2

dx

)

=

(

a b

c d

) (

y1

y2

)

or
d~y

dx
=

(

a b

c d

)

~y
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Coupled ODE solutions

For coupled ODE of type:
d~y

dx
= A~y (∗)

Try ~y = ~veλx so,
d~y

dx
= λ~veλx

But also
d~y

dx
= A~y, so A~veλx = λ~veλx

Now solution of (∗) can be derived from an
eigenvector solution of A~v = λ~v

For n eigenvectors ~v1, . . . , ~vn and corresp.
eigenvalues λ1, . . . , λn : general solution of
(∗) is ~y = B1~v1e

λ1x + · · · + Bn~vne
λnx
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Coupled ODEs: Example

Example coupled ODEs:
{

dy1

dx
= 2y1 + 8y2

dy2

dx
= 5y1 + 5y2

So d~y
dx

=

(

2 8

5 5

)

~y

Require to find eigenvectors/values of

A =

(

2 8

5 5

)
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Coupled ODEs: Example

Eigenvalues of A:

∣
∣
∣
∣
∣

(

2 − λ 8

5 5 − λ

)∣
∣
∣
∣
∣
=

λ2 − 7λ − 30 = (λ − 10)(λ + 3) = 0

Thus eigenvalues λ = 10,−3

Giving:

λ1 = 10, ~v1 =

(

1

1

)

; λ2 = −3, ~v2 =

(

8

−5

)

Solution of ODEs:

~y = B1

(

1

1

)

e10x + B2

(

8

−5

)

e−3x
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Partial Derivatives

Used in (amongst others):

Computational Techniques (2nd Year)
Optimisation (3rd Year)
Computational Finance (4th Year)
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Differentiation Contents

What is a (partial) differentiation used for?

Useful (partial) differentiation tools:
Differentiation from first principles
Partial derivative chain rule
Derivatives of a parametric function
Multiple partial derivatives
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Optimisation

Example: look to find best predicted gain in
portfolio given different possible share
holdings in portfolio

Optimum value
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Differentiation

 0
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y=x^2

δx

δy

Gradient on a curve f(x) is approximately:

δy

δx
=

f(x + δx) − f(x)

δx
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Definition of derivative

The derivative at a point x is defined by:

df

dx
= lim

δx→0

f(x + δx) − f(x)

δx

Take f(x) = xn

We want to show that:

df

dx
= nxn−1
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Derivative of xn

df
dx

= limδx→0
f(x+δx)−f(x)

δx

= limδx→0
(x+δx)n−xn

δx

= limδx→0

∑
n

i=0(
n

i)xn−iδxi−xn

δx

= limδx→0

∑
n

i=1(
n

i)xn−iδxi

δx

= limδx→0

∑n
i=1 (n

i) xn−iδxi−1

= limδx→0((
n
1) xn−1 +

n∑

i=2

(
n

i

)
xn−iδxi−1

︸ ︷︷ ︸

→0 as δx→0

)

= n!
1!(n−1)!x

n−1 = nxn−1

METHODS [10/08] – p. 19



Partial Differentiation

Ordinary differentiation df
dx

applies to functions
of one variable i.e. f ≡ f(x)

What if function f depends on one or more
variables e.g. f ≡ f(x1, x2)

Finding the derivative involves finding the
gradient of the function by varying one
variable and keeping the others constant

For example for f(x, y) = x2y + xy3; partial
derivatives are written:

∂f
∂x

= 2xy + y3 and ∂f
∂y

= x2 + 3xy2
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Partial Derivative: example

Parabaloid
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f(x, y) = x2 + y2
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Partial Derivative: example

f(x, y) = x2 + y2

Fix y = k ⇒ g(x) = f(x, k) = x2 + k2

Now dg
dx

= ∂f
∂x

= 2x
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Further Examples

f(x, y) = (x + 2y3)2

⇒ ∂f
∂x

= 2(x + 2y3) ∂
∂x

(x + 2y3) = 2(x + 2y3)

If x and y are themselves functions of t then

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

So if f(x, y) = x2 + 2y where x = sin t and
y = cos t then:

df
dt

= 2x cos t − 2 sin t = 2 sin t(cos t − 1)
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Extended Chain Rule

If f is a function of x and y where x and y are
themselves functions of s and t then:

∂f
∂s

= ∂f
∂x

∂x
∂s

+ ∂f
∂y

∂y
∂s

∂f
∂t

= ∂f
∂x

∂x
∂t

+ ∂f
∂y

∂y
∂t

which can be expressed as a matrix equation:
(

∂f
∂s

∂f
∂t

)

=

(
∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

) (
∂f
∂x

∂f
∂y

)

Useful for changes of variable e.g. to polar
coordinates
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Jacobian

The modulus of this matrix is called the
Jacobian:

J =

∣
∣
∣
∣
∣

∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

∣
∣
∣
∣
∣

Just as when performing a substitution on the
integral:

∫

f(x) dx

we would use: du ≡
df(x)

dx
dx

So if converting between multiple variables in
an integration, we would use du ≡ Jdx.
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Formal Definition

Similar to ordinary derivative. For a two
variable function f(x, y) :

∂f

∂x
= lim

δx→0

f(x + δx, y) − f(x, y)

δx

and in the y-direction:

∂f

∂y
= lim

δy→0

f(x, y + δy) − f(x, y)

δy
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Further Notation

Multiple partial derivatives (as for ordinary
derivatives) are expressed:

∂2f
∂x2 is the second partial derivative of f

∂nf
∂xn is the nth partial derivative of f

∂2f
∂x∂y

is the partial derivative obtained by
first partial differentiating by y and then x

∂2f
∂y∂x

is the partial derivative obtained by
first partial differentiating by x and then y

If f(x, y) is a nice function then: ∂2f
∂x∂y

= ∂2f
∂y∂x
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