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Differential Equations: Contents

> What are differential equations used for?

°> Useful differential equation solutions:
> 1st order, constant coefficient
> 1st order, variable coefficient
> 2nd order, constant coefficient
> Coupled ODEs, 1st order, constant
coefficient
> Useful for:
> Performance modelling (3rd year)
> Simulation and modelling (3rd year)




Differential Equations: Background

°> Used to model how systems evolve over time:

> e.g. computer systems, biological systems,
chemical systems

2 Terminology:

> Ordinary differential equations (ODES) are
. . . d
first order If they contain a d—y term but no
X

higher derivatives

> ODEs are second order if they contain a

d? . L
d—z term but no higher derivatives
X




Ordinary Differential Equations

2 First order, constant coefficients:

d
> For example, 2d—y +y=0 (%)
X

o Try: y =€

= 2me"™" + e =0
= ™ (2m+1) =0
= e =00rm=—

DO | —

o ™ £ ( for any x, m. Therefore m = —
> General solution to (x):

DO | —

1

y p— Ae_ﬁx




Ordinary Differential Equations

> First order, variable coefficients of type:

> Use integrating factor (IF): e//(®)d
d
> For example: d_y +2zy =z (%)
X
> Multiply throughout by IF; e/2dz — ¢o°
= e"”zg—i + 2xex2y = e
= dda:(e Qy) = xe” v

= e y——e ‘+C So,y=Ce* +1
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Ordinary Differential Equations

9> Second order, constant coefficients:
d*y  _dy

dz? 5dx

> For example, F6y =0 (%)

o Try: y =¢e™"

= m?e™ + 5me™* 4 6™ = ()
= ™ (m* 4+ 5m +6) =0

= ™ (m+3)(m+2)=0

> m = —3,—2

> |.e. two possible solutions

> General solution to (x):

y = Ae *" + Be %"




Ordinary Differential Equations

© Second order, constant coefficients:
> If y = f(z) and y = g(x) are distinct
solutions to (x)

> Then y = Af(x) + Bg(x) is also a solution
of (x) by following argument:

5 (f—;(Af(m) + Bg(x)) + 5, (Af (x) + Bg(z))

+6(Af(x) g Bg(z)) =0

> A (dd—;ﬂ:c) +50f(x) + 6f(af))

A\ J
N

=0

+ B (dd—;g(x) +5—g(x) + 69(x)> =0

\ . J




Ordinary Differential Equations

°> Second order, constant coefficients (repeated
root).
d?y

> For example,
P dx? dx

o Try: y =¢e™"

= m2e™ — 6me™ 4 9e™* = ()

= ™ (m* —6m+9) =0

= ™(m —3)* =0

> m = 3 (twice)

> General solution to (x) for repeated roots:

y = (Az + B)e™




Applications: Coupled ODEs

° Coupled ODEs are used to model massive
state-space physical and computer systems

> Coupled Ordinary Differential Equations are
used to model:
> chemical reactions and concentrations
> Dbiological systems
> epidemics and viral infection spread

> large state-space computer systems (e.g.
distributed publish-subscribe systems




Coupled ODEs

° Coupled ODEs are of the form:

(d
. (?_zil = ay1 + bys
\% = cy1 + dys

> If we let 7 = ( & ) we can rewrite this as:
Y2

%:ab N ord_g:ab*
% c d Y2 dx cdy




Coupled ODE solutions

d—)
2 For coupled ODE of type: d—y = Ay (%)
X

dy

o Try ¢ = ve’ S0, T AT
x
dy—) A&7 = AT .\ AT
°> But also T Ay, SO Ave™ = A\ve
x

© Now solution of (x) can be derived from an
eigenvector solution of Av = \v

° For n eigenvectors vy, ..., v, and corresp.
eigenvalues )\, ..., A\, . general solution of

(*) |S gj: Blﬁle)‘lx + ...+ Bn@’ne)\naf




Coupled ODEs: Example

> Example coupled ODEs:

.

< % = 2y1 + 8y2
d
L dr = Uty

- (238
380319%(5 5)g

° Require to find eigenvectors/values of

(2)




Coupled ODEs: Example

> Eigenvalues of A: 248 —
5 5— A\

M—TA=30=A-10)(A+3)=0
° Thus eigenvalues A = 10, —3

2> Glving:

. 1 S 3
)\110,01(1);>\23,U2(5)

2> Solution of ODES:

1 8
7 — B 10x B —3x




Partial Derivatives

° Used in (amongst others):

> Computational Technigues (2nd Year)
> Optimisation (3rd Year)
> Computational Finance (4th Year)




Differentiation Contents

> What is a (partial) differentiation used for?

o Useful (partial) differentiation tools:
> Differentiation from first principles
> Partial derivative chain rule
> Derivatives of a parametric function
> Multiple partial derivatives




Optimisation

> Example: look to find best predicted gain in
portfolio given different possible share
holdings in portfolio

200
150
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50




Differentiation

© Gradient on a curve f(x) is approximately:

by _ fo+82) — f(a)
Sr 0x




Definition of derivative

° The derivative at a point x is defined by:

Af _ . fla+n)— f(x)
dr  62—0 0x

° Take f(x) = 2"
> We want to show that:
ﬂ L n—1

= N
dx




Derivative of "

df _ 1: flz+dx)—f(x)
2 &= limgs,_.o =

: rt+ox)"—x™
— hm5x—>() ( 5;

n N\ ,.n—1igs,.0 n
Sy (et

— hm&ljﬁo S

D e (vz)xn—z(;xz

— hm&ljﬁo 5T

= limg, o > oy () 2" 102"

— hmgxﬁ()( x" 1 —+ Z n_i5$i_1)

S

—0 as dx—0
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Partial Differentiation

° Ordinary differentiation % applies to functions
of one variable i.e. f = f(x)

> What If function f depends on one or more
variables e.qg. f = f(z1, x9)

° Finding the derivative involves finding the
gradient of the function by varying one
variable and keeping the others constant

> For example for f(z,y) = z*y + zy?; partial
derivatives are written:

> %:226@/4—@/3 and g—JyB:xQ—I—S:EyQ




Partial Derivative: example

R Sesase

00
NS

0 \:!!!!g§§s=§§§==r~““‘<115:;f‘.‘:’ :4i=iEZQ5;’!(
“@g’fy’//

10
5
0
5
10 -10

> f(x,y) =a* +y°




Partial Derivative: example

> flzy) =a+y°
> Fixy =k = g(x) = f(z,k) = 2° + k?

dg _ df __
o NOde—ﬁx—QZE




Further Examples

> fl,y) = (z+2¢°)°
= 5 = 2(v+ 2°) (v + 2°) = 2(x + 29°)

° If x and y are themselves functions of ¢ then

ﬂ_@fdx - Of dy
dt Oz dt = Oy dt

°> Soif f(x,y) = 2° + 2y where z = sint and
y = cost then:

> % = 2xcost — 2sint = 2sint(cost — 1)




Extended Chain Rule

° If fIs a function of x and y where x and y are

themselves functions of s and ¢ then:

ﬁ_af&lf | of dy
Os ~— Ox0ds ' Oy0Os

of __ 0fox | Of 0y
ot — Oz 0t ' Oy ot

° which can be expressed as a matrix equation:

of or Oy of
0s o ds Os ox
ot ot Ot oy

° Useful for changes of variable e.g. to polar
coordinates

2

2
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2 The modulus of this matrix is called the

Jacobian:
Ooxr Oy

oxr Oy
ot ot

° Just as when performing a substitution on the

integral.
[ @

we would use: du = ) dy

° So If converting between multiple variables Iin
an integration, we would use du = Jdz.
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Formal Definition

© Similar to ordinary derivative. For a two
variable function f(x,y) :

of _ . [fla+owy) — f(z,y)
— = lim
or  6x—0 ox

° and in the y-direction:

— = 1111
0oy  6y—0 0y




Further Notation

> Multiple partial derivatives (as for ordinary
derivatives) are expressed:

5 an is the second partial derivative of f
> 3 f is the nth partial derivative of f

5 gf gy is the partial derivative obtained by

first partial differentiating by y and then z
> afgx IS the partial derivative obtained by
first partial differentiating by x and then y

> If f(z,y) Is a nice function then: -~ gy = 53:—5’;
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