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Matrices

Used in (amongst others):
Computational Techniques (2nd Year)
Graphics (3rd Year)
Performance Analysis (3rd Year)
Digital Libraries and Search Engines (3rd
Year)
Computing for Optimal Decisions (4th Year)
Quantum Computing (4th Year)
Computer Vision (4th Year)
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Matrix Contents

What is a Matrix?
Useful Matrix tools:

Matrix addition

Matrix multiplication

Matrix transpose

Matrix determinant

Matrix inverse

Gaussian Elimination

Eigenvectors and eigenvalues

Useful results:
solution of linear systems

Google’s PageRank algorithm
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What is a Matrix?

A matrix is a 2 dimensional array of numbers

Used to represent, for instance, a network:
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


0 1 1

1 0 1

0 0 0





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Application: Markov Chains

Example: What is the probability that it will be
sunny today given that it rained yesterday?
(Answer: 0.25)

(

0.6 0.4

0.25 0.75

)
Sun Rain

Today

Sun

Rain

Ye
st

er
da

y

Example question: what is the probability that
it’s raining on Thursday given that it’s sunny
on Monday?
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Matrix Addition

In general matrices can have m rows and n
columns – this would be an m × n matrix. e.g.
a 2 × 3 matrix would look like:

A =

(

1 2 3

0 −1 2

)

Matrices with the same number of rows and
columns can be added:
(

1 2 3

0 −1 2

)

+

(

3 −1 0

2 2 1

)

=

(

4 1 3

2 1 3

)
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Scalar multiplication

As with vectors, multiplying by a scalar
involves multiplying the individual elements by
the scalar, e.g. :

λA = λ

(

1 2 3

0 −1 2

)

=

(

λ 2λ 3λ

0 −λ 2λ

)

Now matrix subtraction is expressible as a
matrix addition operation
A − B = A + (−B) = A + (−1 × B)
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Matrix Identities

An identity element is one that leaves any
other element unchanged under a particular
operation e.g. 1 is the identity in 5 × 1 = 5
under multiplication

There are two matrix identity elements: one
for addition, 0, and one for multiplication, I.

The zero matrix:
(

1 2

3 −3

)

+

(

0 0

0 0

)

=

(

1 2

3 −3

)

In general: A + 0 = A and 0 + A = A
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Matrix Identities

For 2 × 2 matrices, the multiplicative identity,

I =

(

1 0

0 1

)

:

(

1 2

3 −3

)

×
(

1 0

0 1

)

=

(

1 2

3 −3

)

In general for square (n × n) matrices:
AI = A and IA = A
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Matrix Multiplication

The elements of a matrix, A, can be
expressed as aij, so:

A =

(

a11 a12

a21 a22

)

Matrix multiplication can be defined so that, if
C = AB then:

cij =
n∑

k=1

aikbkj
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Matrix Multiplication

Multiplication, AB, is only well defined if the
number of columns of A = the number of rows
of B. i.e.

A can be m × n

B has to be n × p

the result, AB, is m × p

Example:

0
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0 1 2

3 4 5

1

A

0

B

B

@

6 7

8 9

10 11

1

C

C

A

=

0

@

0 × 6 + 1 × 8 + 2 × 10 0 × 7 + 1 × 9 + 2 × 11

3 × 6 + 4 × 8 + 5 × 10 3 × 7 + 4 × 9 + 5 × 11

1

A
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Matrix Properties

A + B = B + A

(A + B) + C = A + (B + C)

λA = Aλ

λ(A + B) = λA + λB

(AB)C = A(BC)

(A + B)C = AC + BC; C(A + B) = CA + CB

But... AB 6= BA i.e. matrix multiplication is
NOT commutative



0 1

1 −1








1 1

1 1



 =




1 1

0 0



 6=




1 1

1 1








0 1

1 −1




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Matrices in Graphics

Matrix multiplication is a simple way to
encode different transformations of objects in
computer graphics, e.g. :

reflection

scaling

rotation

translation (requires 4 × 4 transformation
matrix)
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Reflection

-
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(5, 3) (9, 3)

(8, 9)

Coordinates stored in matrix form as:
(

5 9 8

3 3 9

)

METHODS [10/08] – p. 14



Reflection

The matrix which represents a reflection in
the x-axis is: (

1 0

0 −1

)

This is applied to the coordinate matrix to give
the coordinates of the reflected object:

(

1 0

0 −1

) (

5 9 8

3 3 9

)

=

(

5 9 8

−3 −3 −9

)
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Scaling

-
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Scaling matrix by factor of λ:
(

λ 0

0 λ

) (

1

2

)

=

(

λ

2λ

)

Here triangle scaled by factor of 3

METHODS [10/08] – p. 16



Rotation

Rotation by angle θ about origin takes
(x, y) → (x′, y′)
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(x, y)

xx′

(x′, y′)

y

y′

rr

ψ

θ

Initially: x = r cos ψ and y = r sin ψ

After rotation: x′ = r cos(ψ + θ) and
y′ = r sin(ψ + θ)
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Rotation

Require matrix R s.t.:

(

x′

y′

)

= R

(

x

y

)

Initially: x = r cos ψ and y = r sin ψ

Start with x′ = r cos(ψ + θ)

⇒ x′ = r cos ψ
︸ ︷︷ ︸

x

cos θ − r sin ψ
︸ ︷︷ ︸

y

sin θ

⇒ x′ = x cos θ − y sin θ

Similarly: y′ = x sin θ + y cos θ

Thus R =




cos θ − sin θ

sin θ cos θ




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3D Rotation

Anti-clockwise rotation of θ about z-axis:

0

B

B

@

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

1

C

C

A

Anti-clockwise rotation of θ about y-axis:

0

B

B

@

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

1

C

C

A

Anti-clockwise rotation of θ about x-axis:

0

B

B

@

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

1

C

C

A
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Transpose

For a matrix P , the transpose of P is written
P T and is created by rewriting the ith row as
the ith column

So for:

P =






1 3 −2

2 5 0

−3 −2 1




 ⇒ P T =






1 2 −3

3 5 −2

−2 0 1






Note that taking the transpose leaves the
leading diagonal, in this case (1, 5, 1),
unchanged
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Application of Transpose

Main application: allows reversal of order of
matrix multiplication

If AB = C then BTAT = CT

Example:
(

1 2

3 4

) (

5 6

7 8

)

=

(

19 22

43 50

)

(

5 7

6 8

) (

1 3

2 4

)

=

(

19 43

22 50

)
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Matrix Determinant

The determinant of a matrix, P :
represents the expansion factor that a P
transformation applies to an object

tells us if equations in P~x = ~b are linearly
dependent

If a square matrix has a determinant 0, then it
is known as singular

The determinant of a 2 × 2 matrix:
∣
∣
∣
∣
∣

(

a b

c d

)∣
∣
∣
∣
∣
= ad − bc
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3 × 3 Matrix Determinant

For a 3 × 3 matrix:

A =






a1 a2 a3

b1 b2 b3

c1 c2 c3






...the determinant can be calculated by:

a1

∣
∣
∣
∣
∣

(

b2 b3

c2 c3

)∣
∣
∣
∣
∣
−a2

∣
∣
∣
∣
∣

(

b1 b3

c1 c3

)∣
∣
∣
∣
∣
+a3

∣
∣
∣
∣
∣

(

b1 b2

c1 c2

)∣
∣
∣
∣
∣

= a1(b2c3 − b3c2)− a2(b1c3 − b3c1) + a3(b1c2 − b2c1)
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The Parity Matrix

Before describing a general method for
calculating the determinant, we require a
parity matrix

For a 3 × 3 matrix this is:





+1 −1 +1

−1 +1 −1

+1 −1 +1






We will be picking pivot elements from our
matrix A which will end up being multiplied by
+1 or −1 depending on where in the matrix
the pivot element lies (e.g. a12 maps to −1)
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The general method...

The 3 × 3 matrix determinant |A| is calculated by:

1. pick a row or column of A as a pivot

2. for each element x in the pivot, construct a
2 × 2 matrix, B, by removing the row and
column which contain x

3. take the determinant of the 2 × 2 matrix, B

4. let v = product of determinant of B and x

5. let u = product of v with +1 or −1 (according
to parity matrix rule – see previous slide)

6. repeat from (2) for all the pivot elements x
and add the u-values to get the determinant
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Example

Find determinant of:

A =






1 0 −2

4 2 3

−2 5 1






|A| = +1×1×
∣
∣
∣
∣
∣

(

2 3

5 1

)∣
∣
∣
∣
∣
+−1×0×

∣
∣
∣
∣
∣

(

4 3

−2 1

)∣
∣
∣
∣
∣

+1 ×−2 ×
∣
∣
∣
∣
∣

(

4 2

−2 5

)∣
∣
∣
∣
∣

⇒ |A| = −13 + (−2 × 24) = −61
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Matrix Inverse

The inverse of a matrix describes the reverse
transformation that the original matrix
described

A matrix, A, multiplied by its inverse, A−1,
gives the identity matrix, I

That is: AA−1 = I and A−1A = I
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Matrix Inverse Example

The reflection matrix, A =

(

1 0

0 −1

)

The transformation required to undo the
reflection is another reflection.

A is its own inverse ⇒ A = A−1 and:
(

1 0

0 −1

) (

1 0

0 −1

)

=

(

1 0

0 1

)
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2 × 2 Matrix inverse

As usual things are easier for 2 × 2 matrices.
For:

A =

(

a b

c d

)

The inverse exists only if |A| 6= 0 and:

A−1 =
1

|A|

(

d −b

−c a

)

⇒ if |A| = 0 then the inverse A−1 does not exist
(very important: true for any n × n matrix).
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n × n Matrix Inverse

Define minor of an element of a matrix is the
determinant of the matrix formed by deleting
the row/column containing that element, as
before.

We also need to define C, the cofactors
matrix of a matrix, A, to have elements
cij = ± minor of aij, using the parity matrix as
before to determine whether it gets multiplied
by +1 or −1

Then the n × n inverse of A is:

A−1 =
1

|A|C
T
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Linear Systems

Linear systems are used in all branches of
science and scientific computing

Example of a simple linear system:
If 3 PCs and 5 Macs emit 151W of heat in
1 room, and 6 PCs together with 2 Macs
emit 142W in another. How much energy
does a single PC or Mac emit?
When a linear system has 2 variables also
called simultaneous equation
Here we have: 3p + 5m = 151 and
6p + 2m = 142
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Linear Systems as Matrix Equations

Our PC/Mac example can be rewritten as a
matrix/vector equation:

(

3 5

6 2

) (

p

m

)

=

(

151

142

)

Then a solution can be gained from inverting
the matrix, so:

(

p

m

)

=

(

3 5

6 2

)−1 (

151

142

)
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Gaussian Elimination

For larger n × n matrix systems finding the
inverse is a lot of work

A simpler way of solving such systems in one
go is by Gaussian Elimination. We rewrite the
previous model as:
(

3 5

6 2

) (

p

m

)

=

(

151

142

)

→
(

3 5 151

6 2 142

)

We can perform operations on this matrix:
multiply/divide any row by a scalar
add/subtract any row to/from another
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Gaussian Elimination

Using just these operations we aim to turn:
(

3 5 151

6 2 142

)

→
(

1 0 x

0 1 y

)

Why? ...because in the previous matrix
notation, this means:

(

1 0

0 1

) (

p

m

)

=

(

x

y

)

So x and y are our solutions
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Example Solution using GE

(r1) := 2 × (r1):




3 5 151

6 2 142



 →




6 10 302

6 2 142





(r2) := (r2) − (r1):




6 10 302

6 2 142



 →




6 10 302

0 −8 −160





(r2) := (r2)/(−8):




6 10 302

0 −8 −160



 →




6 10 302

0 1 20




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Example Solution using GE

(r1) := (r1) − 10 × (r2):




6 10 302

0 1 20



 →




6 0 102

0 1 20





(r1) := (r1)/6:




6 0 102

0 1 20



 →




1 0 17

0 1 20





So we can say that our solution is p = 17 and m = 20

The matrix is said to be in reduced row echelon form (see later)
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Gaussian Elimination: 3 × 3

1.






a ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




 →






1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗






2.






1 ∗ ∗ ∗
0 b ∗ ∗
0 ∗ ∗ ∗




 →






1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 ∗ ∗






3.






1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 c ∗




 →






1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗





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Gaussian Elimination: 3 × 3

4.






1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗




 →






1 ∗ 0 ∗
0 1 0 ∗
0 0 1 ∗






5.






1 ∗ 0 ∗
0 1 0 ∗
0 0 1 ∗




 →






1 0 0 ∗
0 1 0 ∗
0 0 1 ∗






* represents an unknown entry

METHODS [10/08] – p. 38



Row Echelon Form

A matrix is in Row Echelon Form if:

1. All non-zero rows are above any all-zero rows

2. The first non-zero element of a row is always
strictly to the right of the first non-zero
element of the row above it

Example:







2 3 0 1

0 −2 1 4

0 0 0 −3

0 0 0 0







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Reduced Row Echelon Form

A matrix is in Reduced Row Echelon Form if it is
in row echelon form and:

1. The first non-zero element (or leading
coefficient) of each non-zero row is 1

2. Every leading coefficient is the only non-zero
entry in its column

Example:







1 0 0 0

0 1 3 0

0 0 0 1

0 0 0 0







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Linear Dependence

System of n equations is linearly dependent:
if one or more of the equations can be
formed from a linear sum of the remaining
equations

For example – if our Mac/PC system were:
3p + 5m = 151 (1)
6p + 10m = 302 (2)

This is linearly dependent as:
eqn (2) = 2 × eqn (1)

i.e. we get no extra information from eqn (2)

...and there is no single solution for p and m
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Linear Dependence

If P represents a matrix in P~x = ~b then the
equations generated by P~x are linearly
dependent

iff |P | = 0 (i.e. P is singular)

The rank of the matrix P represents the
number of linearly independent equations in
P~x

We can use Gaussian elimination to calculate
the rank of a matrix
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Calculating the Rank

If after doing GE, and getting the matrix into
row echelon form, we have:






a ∗ ∗ ∗
0 b ∗ ∗
0 0 0 ∗






Then we have a linearly dependent system
where the number of independent equations
or rank is 2
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Rank and Nullity

If we consider multiplication by a matrix M as a
function:

M :: IR3 → IR3

Input set is called the domain

Set of possible outputs is called the range

The Rank is the dimension of the range (i.e. the
dimension of right-hand sides, ~b, that give systems,
M~x = ~b, that don’t contradict)

The Nullity is the dimension of space (subset of the
domain) that maps onto a single point in the range.
(Alternatively, the dimension of the space which solves
M~x = ~0).
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Rank/Nullity theorem

If we consider multiplication by a matrix M as
a function:

M :: IR3 → IR3

If rank is calculated from number of linearly
independent rows of M : nullity is number of
dependent rows

We have the following theorem:

Rank of M+Nullity of M = dim(Domain of M )
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PageRank Algorithm

Used by Google (and others?) to calculate a
ranking vector for the whole web!

Ranking vector is used to order search results
returned from a user query

PageRank of a webpage, u, is proportional to:

∑

v:pages with links to u

PageRank of v

Number of links out of v

For a PageRank vector, ~r, and a web graph
matrix, P :

P~r = λ~r
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PageRank and Eigenvectors

PageRank vector is an eigenvector of the
matrix which defines the web graph

An eigenvector, ~v of a matrix A is a vector
which satisfies the following equation:

A~v = λ~v (∗)

where λ is an eigenvalue of the matrix A

If A is an n × n matrix then there may be as
many as n possible interesting ~v, λ
eigenvector/eigenvalue pairs which solve
equation (*)
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Calculating the eigenvector

From the definition (*) of the eigenvector,
A~v = λ~v

⇒ A~v − λ~v = ~0

⇒ (A − λI)~v = ~0

Let M be the matrix A − λI then if |M | 6= 0
then:

~v = M−1~0 = ~0

This means that any interesting solutions of
(*) must occur when |M | = 0 thus:

|A − λI| = 0
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Eigenvector Example

Find eigenvectors and eigenvalues of

A =

(

4 1

2 3

)

Using |A − λI| = 0, we get:
∣
∣
∣
∣
∣

(

4 1

2 3

)

− λ

(

1 0

0 1

)∣
∣
∣
∣
∣
= 0

⇒
∣
∣
∣
∣
∣

(

4 − λ 1

2 3 − λ

)∣
∣
∣
∣
∣
= 0
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Eigenvector Example

Thus by definition of a 2 × 2 determinant, we
get:

(4 − λ)(3 − λ) − 2 = 0

This is just a quadratic equation in λ which
will give us two possible eigenvalues

λ2 − 7λ + 10 = 0

⇒ (λ − 5)(λ − 2) = 0

λ = 5 or 2

We have two eigenvalues and there will be
one eigenvector solution for λ = 5 and
another for λ = 2
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Finding Eigenvectors

Given an eigenvalue, we now use equation (*)
in order to find the eigenvectors. Thus
A~v = λ~v and λ = 5 gives:

(

4 1

2 3

) (

v1

v2

)

= 5

(

v1

v2

)

((

4 1

2 3

)

− 5I

)(

v1

v2

)

= ~0

(

−1 1

2 −2

) (

v1

v2

)

=

(

0

0

)
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Finding Eigenvectors

This gives us two equations in v1 and v2:
−v1 + v2 = 0 (1.a)

2v1 − 2v2 = 0 (1.b)

These are linearly dependent: which means
that equation (1.b) is a multiple of equation
(1.a) and vice versa

(1.b) = −2 × (1.a)

This is expected in situations where
|M | = 0 in M~v = ~0

Eqn. (1.a) or (1.b) ⇒ v1 = v2
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First Eigenvector

v1 = v2 gives us the λ = 5 eigenvector:
(

v1

v1

)

= v1

(

1

1

)

We can ignore the scalar multiplier and use

the remaining
0

@

1

1

1

A vector as the eigenvector

Checking with equation (*) gives:
(

4 1

2 3

) (

1

1

)

= 5

(

1

1

)

√
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Second Eigenvector

For A~v = λ~v and λ = 2:

⇒
(

2 1

2 1

) (

v1

v2

)

=

(

0

0

)

⇒ 2v1 + v2 = 0 (and 2v1 + v2 = 0)
⇒ v2 = −2v1

Thus second eigenvector is ~v = v1

(

1

−2

)

...or just ~v =

(

1

−2

)
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Cayley–Hamilton Theorem

Define characteristic polynomial to be a
function of the eigenvalue, λ:

p(λ) = |A − λI|

where p(λ) = 0 is the polynomial you solve to
find λ

Cayley–Hamilton Theorem states
(surprisingly, perhaps) that:

p(A) = 0n

where 0n is the n × n 0-matrix
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Cayley–Hamilton Theorem

Uses of Cayley–Hamilton (A is n × n matrix):
finding an expression for Am in terms of I,
A, A2, . . ., An−1 for m ≥ n

finding an expression for A−1 in terms of I,
A,. . ., An−1

Example: A =

(

1 −1

2 1

)

, p(λ) = λ2 − 2λ + 3

C-H Thm states: A2 − 2A + 3I = 0

So you can derive: A2 = 2A − 3I or
A−1 = 1

3(2I − A)

METHODS [10/08] – p. 56



Matrix Diagonalisation

Another use for eigenvectors and eigenvalues
is matrix diagonalisation where a matrix A
can be decomposed into the composition of:
1. a transformation P

2. a simple scaling transformation D

3. an inverse transformation P−1

A = PDP−1

where operations involving A can be reduced
to operations involving the much simpler D
matrix

For example: An = PDnP−1
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Matrix Diagonalisation

P is comprised of eigenvectors of A as
columns of matrix, P = (~v1, . . . , ~vn)

D is made up of eigenvalues:

D =






λ1 0 0

0 . . . 0

0 0 λn






Useful for finding matrices A with nice
eigenvalue/eigenvector pairs!
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Matrix Diagonalisation Example

For A =

(

4 −1

0 2

)

Eigenvalues are: λ1 = 2,λ2 = 4

Eigenvectors corresponding are:

~v1 =

(

1

2

)

,~v2 =

(

1

0

)

So P =

(

1 1

2 0

)

, D =

(

2 0

0 4

)

, P−1 = 1
2

(

0 1

2 −1

)

And A = PDP−1 (check to make sure)
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