Mathematical Methods for Computer Science

Peter Harrison and Jeremy Bradley

Email: {pgh,jb}@doc.ic.ac.uk

Web page: http://www.doc.ic.ac.uk/~jb/teaching/145/

Room 372. Department of Computing, Imperial College London

Produced with prosper and LATEX

Vectors

- Used in (amongst others):
 - Computational Techniques (2nd Year)
 - Graphics (3rd Year)
 - Computational Finance (3rd Year)
 - Modelling and Simulation (3rd Year)
 - Performance Analysis (3rd Year)
 - Digital Libraries and Search Engines (3rd Year)
 - Computer Vision (4th Year)

Vector Contents

- What is a vector?
- Useful vector tools:
 - Vector magnitude
 - Vector addition
 - Scalar multiplication
 - Dot product
 - Cross product
- Useful results finding the intersection of:
 - a line with a line
 - a line with a plane
 - a plane with a plane

What is a vector?

- A vector is used :
 - to convey both direction and magnitude
 - to store data (usually numbers) in an ordered form

•
$$\vec{p} = (10, 5, 7)$$
 is a *row* vector
• $\vec{p} = \begin{pmatrix} 10 \\ 5 \\ 7 \end{pmatrix}$ is a *column* vector

 A vector is used in computer graphics to represent the position coordinates for a point

What is a vector?

- The dimension of a vector is given by the number of elements it contains. e.g.
 - (-2.4, 5.1) is a 2-dimensional real vector
 - (-2.4, 5.1) comes from set \mathbb{R}^2 (or $\mathbb{R} \times \mathbb{R}$)
 - $\begin{array}{c}
 \\
 5 \\
 7 \\
 0
 \end{array}$ is a 4-dimensional integer vector (comes from set \mathbb{Z}^4 or $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$)

Vector Magnitude

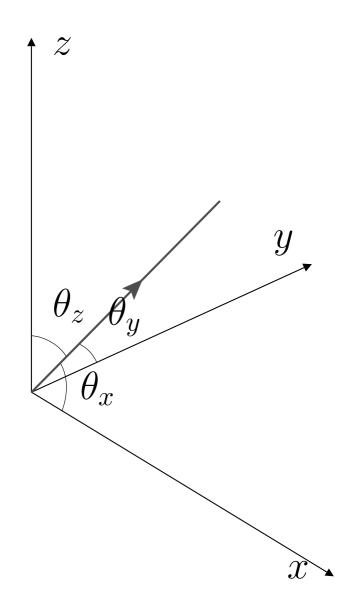
• The size or magnitude of a vector $\vec{p} = (p_1, p_2, p_3)$ is defined as its length:

$$|\vec{p}| = \sqrt{p_1^2 + p_2^2 + p_3^2} = \sqrt{\sum_{i=1}^3 p_i^2}$$

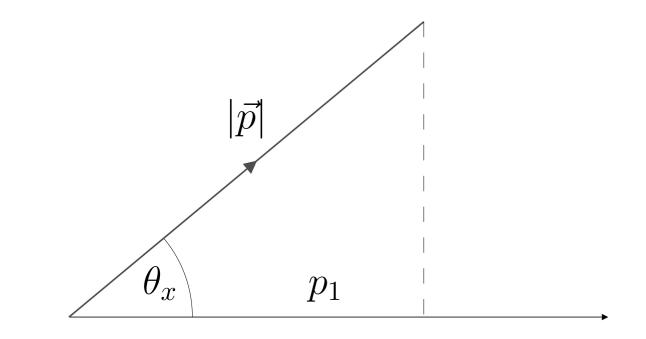
• e.g.
$$\left| \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \right| = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$$

• For an *n*-dimensional vector, $\vec{p} = (p_1, p_2, \dots, p_n), |\vec{p}| = \sqrt{\sum_{i=1}^n p_i^2}$

Vector Direction



Vector Angles



• For a vector, $\vec{p} = (p_1, p_2, p_3)$:

•
$$\cos(\theta_x) = p_1/|\vec{p}|$$

•
$$\cos(\theta_y) = p_2/|\vec{p}|$$

•
$$\cos(\theta_z) = p_3/|\vec{p}|$$

Vector addition

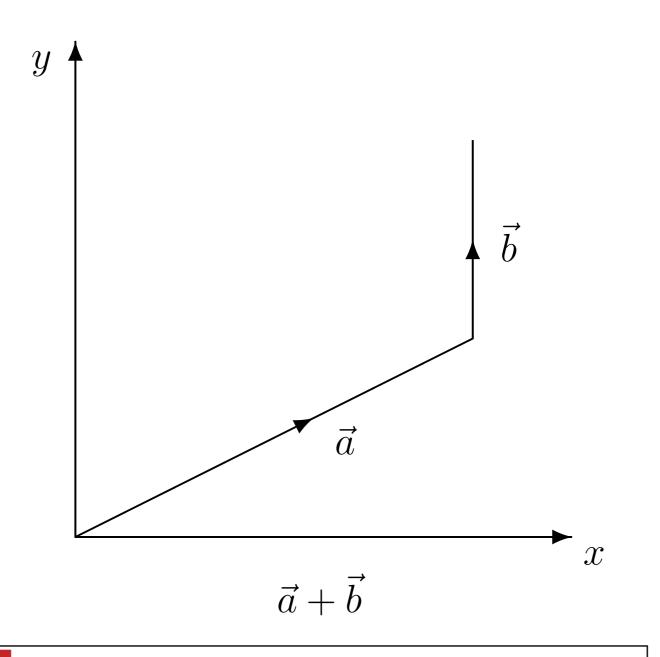
Two vectors (of the same dimension) can be added together:

• e.g.
$$\begin{pmatrix} 1\\2\\-1 \end{pmatrix} + \begin{pmatrix} 1\\-1\\4 \end{pmatrix} = \begin{pmatrix} 2\\1\\3 \end{pmatrix}$$

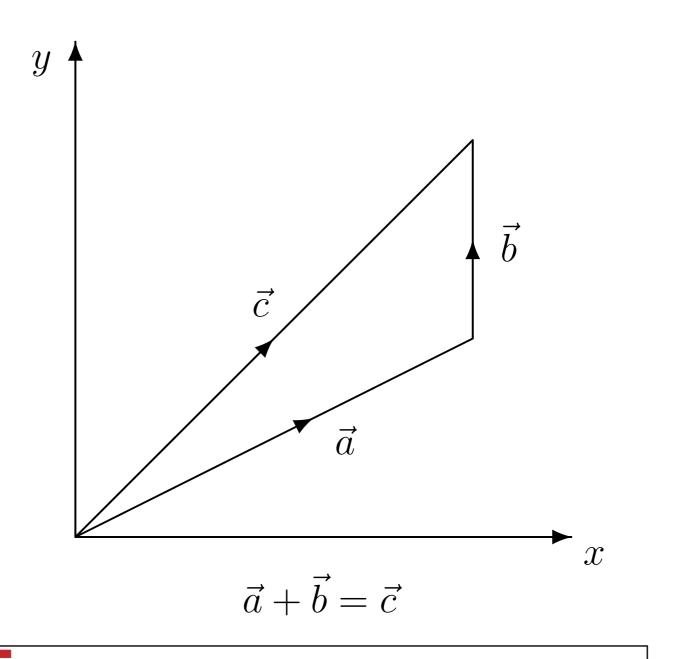
• So if $\vec{p} = (p_1, p_2, p_3)$ and $\vec{q} = (q_1, q_2, q_3)$ then:

$$\vec{p} + \vec{q} = (p_1 + q_1, p_2 + q_2, p_3 + q_3)$$

Vector addition



Vector addition



Scalar Multiplication

- A scalar is just a number, e.g. 3. Unlike a vector, it has no direction.
- Multiplication of a vector \vec{p} by a scalar λ means that each element of the vector is multiplied by the scalar
- So if $\vec{p} = (p_1, p_2, p_3)$ then:

$$\lambda \vec{p} = (\lambda p_1, \lambda p_2, \lambda p_3)$$

3D Unit vectors

- We use \vec{i} , \vec{j} , \vec{k} to define the 3 unit vectors in 3 dimensions
- They convey the basic directions along x, y and z axes.

• So:
$$\vec{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\vec{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\vec{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

• All unit vectors have magnitude 1; i.e. $|\vec{i}| = 1$

Vector notation

All vectors in 3D (or ℝ³) can be expressed as weighted sums of $\vec{i}, \vec{j}, \vec{k}$

• i.e.
$$\vec{p} = (10, 5, 7) \equiv \begin{pmatrix} 10 \\ 5 \\ 7 \end{pmatrix} \equiv 10\vec{i} + 5\vec{j} + 7\vec{k}$$

$$|p_1\vec{i} + p_2\vec{j} + p_3\vec{k}| = \sqrt{p_1^2 + p_2^2 + p_3^2}$$

Dot Product

- Also known as: scalar product
- Used to determine how close 2 vectors are to being parallel/perpendicular
- The dot product of two vectors \vec{p} and \vec{q} is:

$$\vec{p} \cdot \vec{q} = |\vec{p}| \, |\vec{q}| \cos \theta$$

- where θ is angle between the vectors \vec{p} and \vec{q}
- For $\vec{p} = (p_1, p_2, p_3)$ and $\vec{q} = (q_1, q_2, q_3)$ then:

$$\vec{p} \cdot \vec{q} = p_1 q_1 + p_2 q_2 + p_3 q_3$$

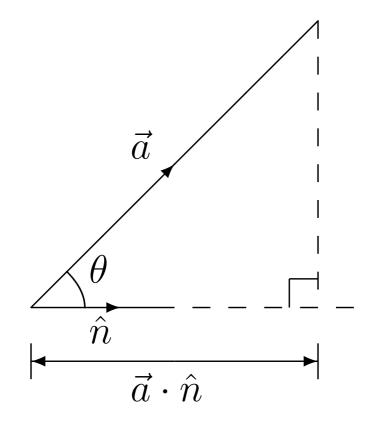
Properties of the Dot Product

$$\vec{p} \cdot \vec{p} = |\vec{p}|^2$$

- $\vec{p} \cdot \vec{q} = 0$ if \vec{p} and \vec{q} are perpendicular (at right angles)
- Commutative: $\vec{p} \cdot \vec{q} = \vec{q} \cdot \vec{p}$
- Linearity: $\vec{p} \cdot (\lambda \vec{q}) = \lambda (\vec{p} \cdot \vec{q})$
- Distributive over addition:

$$\vec{p} \cdot (\vec{q} + \vec{r}) = \vec{p} \cdot \vec{q} + \vec{p} \cdot \vec{r}$$

Vector Projection



- \hat{n} is a unit vector, i.e. $|\hat{n}| = 1$
- $\vec{a} \cdot \hat{n} = |\vec{a}| \cos \theta$ represents the *amount* of \vec{a} that points in the \hat{n} direction

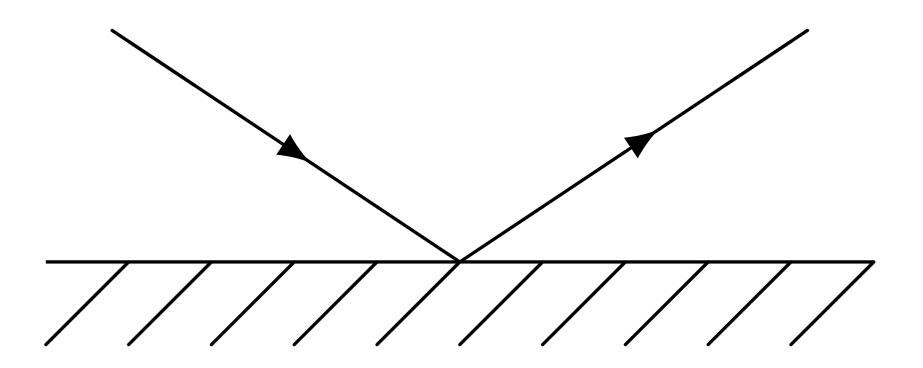
What can't you do with a vector...

The following are classic mistakes – \vec{u} and \vec{v} are vectors, and λ is a scalar:

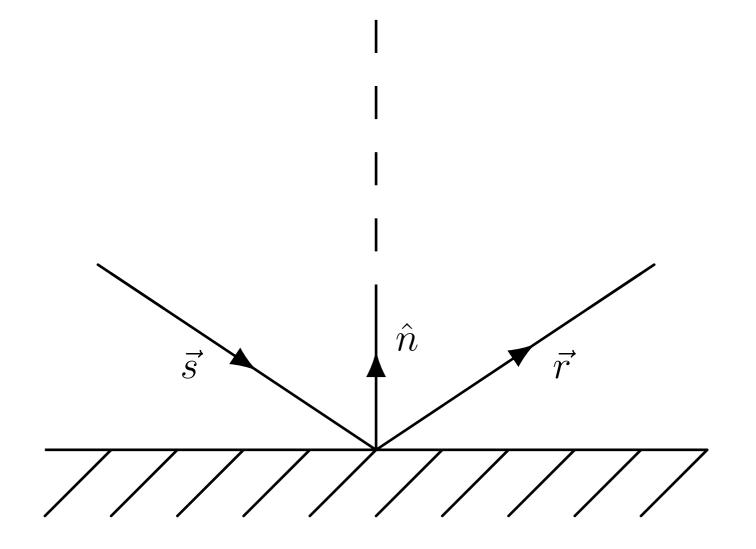
- Don't do it!
 - Vector division: $\frac{\vec{u}}{\vec{v}}$
 - Divide a scalar by a vector: $\frac{\lambda}{\vec{u}}$
 - Add a scalar to a vector: $\lambda + \vec{u}$
 - Subtract a scalar from a vector: $\vec{u} \lambda$
 - Cancel a vector in a dot product with vector:

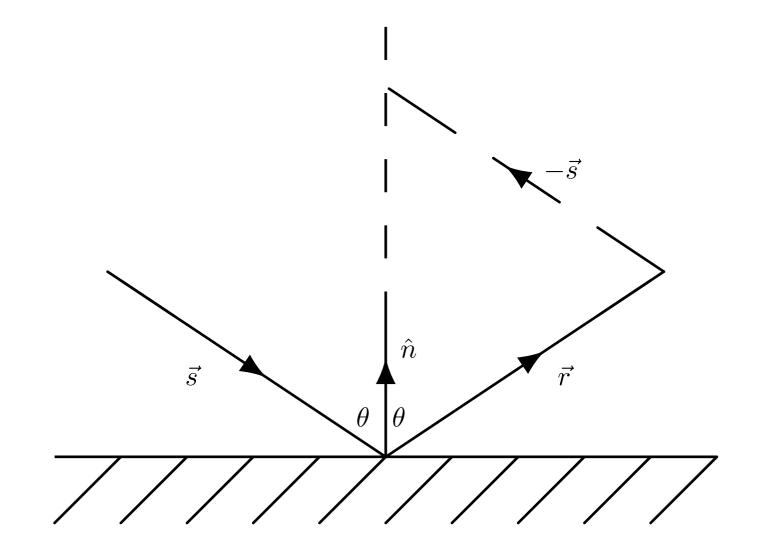
$$\frac{1}{\vec{a}\cdot\vec{n}}\vec{n} = \frac{1}{\vec{a}}$$

Example: Rays of light

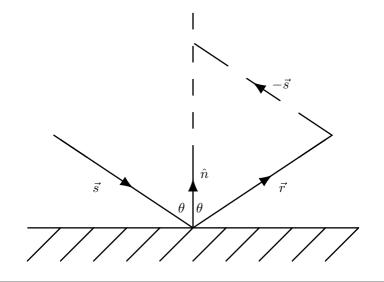


- A ray of light strikes a reflective surface...
- Question: in what direction does the reflection travel?





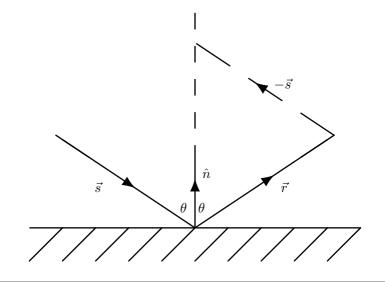
• Problem: find \vec{r} , given \vec{s} and \hat{n} ?



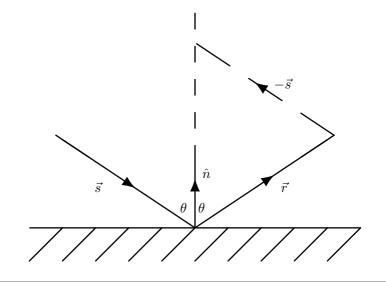
angle of incidence = angle of reflection

$$\Rightarrow -\vec{s} \cdot \hat{n} = \vec{r} \cdot \hat{n}$$

- Also: $\vec{r} + (-\vec{s}) = \lambda \hat{n}$ thus $\lambda \hat{n} = \vec{r} \vec{s}$
- > Taking the dot product of both sides:
 ⇒ $\lambda |\hat{n}|^2 = \vec{r} \cdot \hat{n} \vec{s} \cdot \hat{n}$

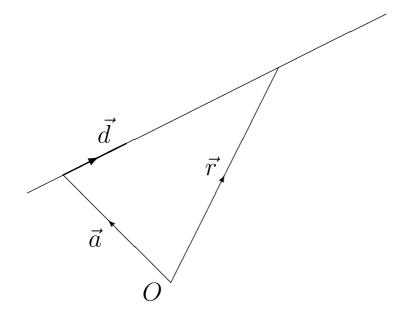


But î is a unit vector, so |î|² = 1
\$\lambda\$ \$\lambda\$ = \$\vec{r} \cdot \$\hat{n}\$ - \$\vec{s} \cdot \$\hat{n}\$\$
...and \$\vec{r} \cdot \$\hat{n}\$ = -\$\vec{s} \cdot \$\hat{n}\$\$
\$\lambda\$ = -2\$\vec{s} \cdot \$\hat{n}\$\$



Similar Finally, we know that: $\vec{r} + (-\vec{s}) = \lambda \hat{n}$ ⇒ $\vec{r} = \lambda \hat{n} + \vec{s}$ ⇒ $\vec{r} = \vec{s} - 2(\vec{s} \cdot \hat{n})\hat{n}$

Equation of a line



• For a general point, \vec{r} , on the line:

$$\vec{r} = \vec{a} + \lambda \vec{d}$$

• where: \vec{a} is a point on the line and \vec{d} is a vector parallel to the line

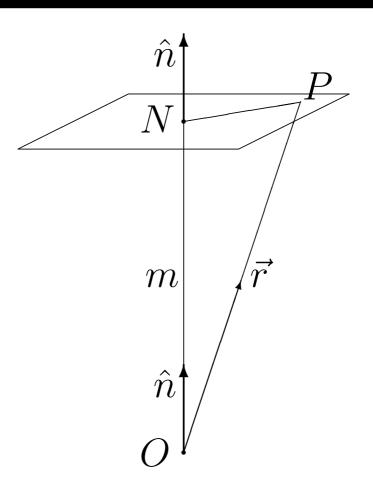
Equation of a plane

• Equation of a plane. For a general point, \vec{r} , in the plane, \vec{r} has the property that:

$$\vec{r}.\hat{n} = m$$

- where:
 - *n̂* is the unit vector perpendicular to the plane
 - |m| is the distance from the plane to the origin (at its closest point)

Equation of a plane



Equation of a plane (why?):

$$\vec{r}.\hat{n} = m$$

How to solve Vector Problems

- 1. IMPORTANT: Draw a diagram!
- 2. Write down the equations that you are given/apply to the situation
- 3. Write down what you are trying to find?
- 4. Try variable substitution
- 5. Try taking the dot product of one or more equations
 - What vector to dot with?

Answer: if eqn (1) has term \vec{r} in and eqn (2) has term $\vec{r} \cdot \vec{s}$ in: *dot eqn (1) with* \vec{s} .

Two intersecting lines

- Application: projectile interception
- Problem given two lines:

• Line 1:
$$\vec{r_1} = \vec{a}_1 + t_1 \vec{d_1}$$

• Line 2:
$$\vec{r_2} = \vec{a}_2 + t_2 \vec{d_2}$$

- Do they intersect? If so, at what point?
- This is the same problem as: find the values t_1 and t_2 at which $\vec{r_1} = \vec{r_2}$ or:

$$\vec{a}_1 + t_1 \vec{d}_1 = \vec{a}_2 + t_2 \vec{d}_2$$

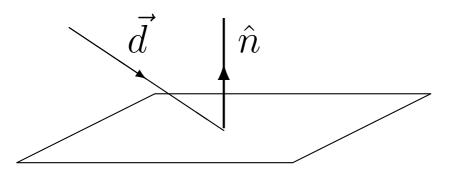
How to solve: 2 intersecting lines

• Separate \vec{i} , \vec{j} , \vec{k} components of equation:

$$\vec{a}_1 + t_1 \vec{d}_1 = \vec{a}_2 + t_2 \vec{d}_2$$

- ...to get 3 equations in t_1 and t_2
- If the 3 equations:
 - contradict each other then the lines do not intersect
 - produce a single solution then the lines do intersect
 - are all the same (or multiples of each other) then the lines are identical (and always intersect)

Intersection of a line and plane



- Application: ray tracing, particle tracing, projectile tracking
- Problem given one line/one plane:

• Line:
$$\vec{r} = \vec{a} + t\vec{d}$$

- Plane: $\vec{r} \cdot \hat{n} = s$
- Take dot product of line equation with n̂ to get:

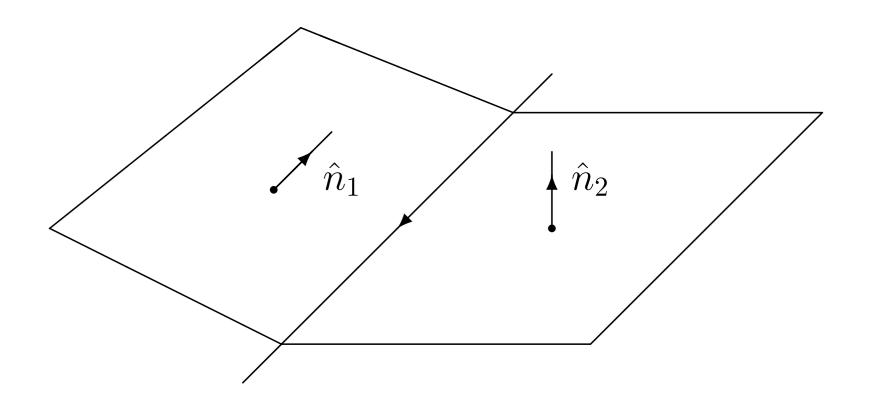
$$\vec{r} \cdot \hat{n} = \vec{a} \cdot \hat{n} + t(\vec{d} \cdot \hat{n})$$

Intersection of a line and plane

- With $\vec{r} \cdot \hat{n} = \vec{a} \cdot \hat{n} + t(\vec{d} \cdot \hat{n})$ what are we trying to find?
 - We are trying to find a specific value of t that corresponds to the point of intersection
- Since $\vec{r} \cdot \hat{n} = s$ at intersection, we get: $t = \frac{s - \vec{a} \cdot \hat{n}}{\vec{d} \cdot \hat{n}}$
- So using line equation we get our point of intersection, $\vec{r'}$:

$$\vec{r'} = \vec{a} + \frac{s - \vec{a} \cdot \hat{n}}{\vec{d} \cdot \hat{n}} \vec{d}$$

Example: intersecting planes



Problem: find the line that represents the intersection of two planes

Intersecting planes

- Application: edge detection
- Equations of planes:
 - Plane 1: $\vec{r} \cdot \hat{n}_1 = s_1$
 - Plane 2: $\vec{r} \cdot \hat{n}_2 = s_2$
- We want to find the line of intesection, i.e. find \vec{a} and \vec{d} in: $\vec{s} = \vec{a} + \lambda \vec{d}$
- If $\vec{s} = x\vec{i} + y\vec{j} + z\vec{k}$ is on the intersection line:
 - \Rightarrow it also lies in both planes 1 and 2
 - $\Rightarrow \vec{s} \cdot \hat{n}_1 = s_1 \text{ and } \vec{s} \cdot \hat{n}_2 = s_2$
 - Can use these two equations to generate equation of line

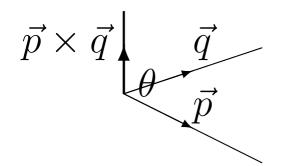
Example: Intersecting planes

- Equations of planes:
 - Plane 1: $\vec{r} \cdot (2\vec{i} \vec{j} + 2\vec{k}) = 3$
 - Plane 2: $\vec{r} \cdot \vec{k} = 4$
- Pick point $\vec{s} = x\vec{i} + y\vec{j} + z\vec{k}$
 - From plane 1: 2x y + 2z = 3
 - From plane 2: z = 4
- We have two equations in 3 unknowns not enough to solve the system
- But... we can express all three variables in terms of one of the other variables

Example: Intersecting planes

- From plane 1: 2x y + 2z = 3
- From plane 2: z = 4
- Substituting (Eqn. 2) → (Eqn. 1) gives: $\Rightarrow 2x = y 5$
- Also trivially: y = y and z = 4
- > Line: $\vec{s} = ((y 5)/2)\vec{i} + y\vec{j} + 4\vec{k}$ ⇒ $\vec{s} = -\frac{5}{2}\vec{i} + 4\vec{k} + y(\frac{1}{2}\vec{i} + \vec{j})$
- ...which is the equation of a line

Cross Product



- Also known as: Vector Product
- Used to produce a 3rd vector that is perpendicular to the original two vectors
- Written as $\vec{p} \times \vec{q}$ (or sometimes $\vec{p} \wedge \vec{q}$)
- Formally: $\vec{p} \times \vec{q} = (|\vec{p}| |\vec{q}| \sin \theta)\hat{n}$
 - where \hat{n} is the unit vector perpendicular to \vec{p} and \vec{q} ; θ is the angle between \vec{p} and \vec{q}

Cross Product

- From definition: $|\vec{p} \times \vec{q}| = |\vec{p}| |\vec{q}| \sin \theta$
- In coordinate form: $\vec{a} \times \vec{b} = \left| \begin{pmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \right|$

$$\Rightarrow \vec{a} \times \vec{b} = (a_2b_3 - a_3b_2)\vec{i} - (a_1b_3 - a_3b_1)\vec{j} + (a_1b_2 - a_2b_1)\vec{k}$$

Useful for: e.g. given 2 lines in a plane, write down the equation of the plane

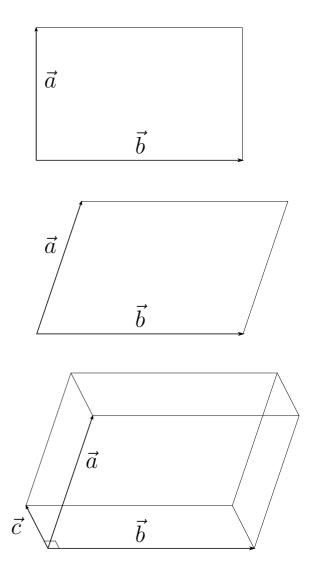
Properties of Cross Product

- $\vec{p} \times \vec{q}$ is itself a vector that is perpendicular to both \vec{p} and \vec{q} , so:
 - $\vec{p} \cdot (\vec{p} \times \vec{q}) = 0$ and $\vec{q} \cdot (\vec{p} \times \vec{q}) = 0$
- NOT commutative: \$\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}\$
 In fact: \$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}\$
- **>** NOT associative: $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$
- Left distributive: $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
- Right distributive: $(\vec{b} + \vec{c}) \times \vec{a} = \vec{b} \times \vec{a} + \vec{c} \times \vec{a}$

Properties of Cross Product

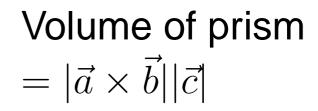
- Final important vector product identity:
 - $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} (\vec{a} \cdot \vec{b})\vec{c}$
 - which says that: $\vec{a} \times (\vec{b} \times \vec{c}) = \lambda \vec{b} + \mu \vec{c}$
 - i.e. the vector $\vec{a} \times (\vec{b} \times \vec{c})$ lies in the plane created by \vec{b} and \vec{c}

Examples of Cross Product



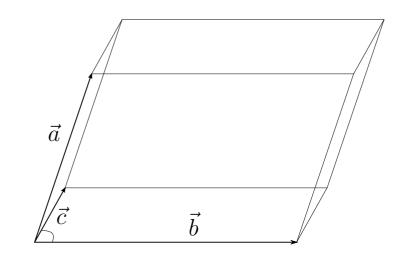
Area of rectangle $= |\vec{a}| |\vec{b}|$

Area of parallelogram $= |\vec{a} \times \vec{b}|$

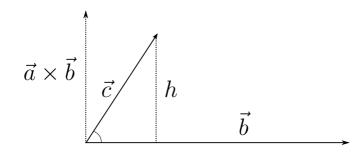


METHODS [10/08] - p. 39

Examples of Cross Product



Volume of parallelepiped = $(\vec{a} \times \vec{b}) \cdot \vec{c}$



View from above: $h = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \cdot \vec{c}$