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The story so far...

In the “beginning” there were birth–death
processes

...and Markov chains

Everything was Markovian...

...most analysis applied to small Markovian
systems or infinite queues

We now have tools that can analyse Markov
chains with 100 million states and
semi-Markov Processes with ∼20 million
states
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An exponential distribution

If X ∼ exp(λ) then:
Probability density function (PDF)

fX(t) = λe−λt

Cumulative density function (CDF)

FX(t) = IP(X ≤ t) =

∫ t

0

fX(u) du = 1− e−λt

Laplace transform of PDF

LX(s) =
λ

λ + s
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An exponential distribution
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A non-exponential distribution
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An exponential CDF
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Memoryless property

The exponential distribution is unique by
being memoryless

i.e. if you interrupt an exponential event,
the remaining time is also exponential
Let X ∼ exp(λ) and at time, t′, where
X > t′, let Y = X − t′ is the distribution of
the remaining time:

f(Y |X>t′)(t) = fX(t)
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Memoryless property
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So what is a stochastic process...

A stochastic process is a set of random variables

Discrete: {Zn : n ∈ IN}, e.g. DTMC

Continuous: {Z(t) : t ≥ 0}. e.g. CTMC, SMP

 0

 2

 4

 6

 8

 10

 12

 14

 0  1  2  3  4  5

S
ta

te
 o

f p
ro

ce
ss

, Z
(t

)

Time, t

Random process, Z(t) evolving with time

436 – JTB [02/2009] – p. 9

PEPA

PEPA is a language for describing systems
which are composed of individual continuous
time Markov chains

PEPA is useful because:
it is a formal, algebraic description of a
system
it is compositional
it is parsimonious (succinct)
it is easy to learn!
it is used in research and in industry
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Tool Support

PEPA has several methods of execution and
analysis, through comprehensive tool
support:

PEPA Workbench: Edinburgh
Möbius: Urbana-Champaign, Illinois
PRISM: Birmingham
ipc: Imperial College London
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Types of Analysis

Steady-state and transient analysis in PEPA:

A1
def
= (start, r1 ).A2 + (pause, r2 ).A3

A2
def
= (run, r3 ).A1 + (fail, r4 ).A3

A3
def
= (recover, r1 ).A1

AA
def
= (run,⊤).(alert, r5 ).AA

Sys
def
= AA ��

{run}
A1

⇒
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Passage-time Quantiles

Extract a passage-time density from a PEPA
model:

A1
def
= (start, r1 ).A2 + (pause, r2 ).A3

A2
def
= (run, r3 ).A1 + (fail, r4 ).A3

A3
def
= (recover, r1 ).A1

AA
def
= (run,⊤).(alert, r5 ).AA

Sys
def
= AA ��

{run}
A1

⇒
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PEPA Syntax

Syntax:

P ::= (a, λ).P P + P P ��
L

P P/L A

Action prefix: (a, λ).P

Competitive choice: P1 + P2

Cooperation: P1 ��
L

P2

Action hiding: P/L

Constant label: A
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Prefix: (a, λ).A

Prefix is used to describe a process that
evolves from one state to another by emitting
or performing an action

Example:

P
def
= (a, λ).A

...means that the process P evolves with rate
λ to become process A, by emitting an
a-action

λ is an exponential rate parameter

This is also be written:

P
(a,λ)

−−−→ A
436 – JTB [02/2009] – p. 15

Choice: P1 + P2

PEPA uses a type of choice known as
competitive choice

Example:

P
def
= (a, λ).P1 + (b, µ).P2

...means that P can evolve either to produce
an a-action with rate λ or to produce a
b-action with rate µ

In state-transition terms, P �
�

�
�3

Q
Q

Q
Qs

(a, λ)

(b, µ)

P1

P2
436 – JTB [02/2009] – p. 16



Choice: P1 + P2

P
def
= (a, λ).P1 + (b, µ).P2

This is competitive choice since:
P1 and P2 are in a race condition – the first
one to perform an a or a b will dictate the
direction of choice for P1 + P2

What is the probability that we see an
a-action?
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Cooperation: P1 ��
L

P2

��
L

defines concurrency and communication
within PEPA

The L in P1 ��
L

P2 defines the set of actions
over which two components are to cooperate

Any other actions that P1 and P2 can do, not
mentioned in L, can happen independently

If a ∈ L and P1 enables an a, then P1 has to
wait for P2 to enable an a before the
cooperation can proceed

Easy source of deadlock!
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Cooperation: P1 ��
L

P2

If P1

(a,λ)

−−−→ P ′1 and P2

(a,⊤)

−−−→ P ′2 then:

P1 ��
{a}

P2

(a,λ)

−−−→ P ′1 ��
{a}

P ′2

⊤ represents a passive rate which, in the
cooperation, inherits the λ-rate of from P1

If both rates are specified and the only
a-evolutions allowed from P1 and P2 are,

P1

(a,λ)

−−−→ P ′1 and P2

(a,µ)

−−−→ P ′2 then:

P1 ��
{a}

P2

(a,min(λ,µ))

−−−→ P ′1 ��
{a}

P ′2
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Cooperation: P1 ��
L

P2

The general cooperation case is where:
P1 enables m a-actions
P2 enables n a-actions

at the moment of cooperation

...in which case there are mn possible
transitions for P1 ��

{a}
P2

P1 ��
{a}

P2

(a,R)

−−−→ where

R = λ
ra(P1)

µ
ra(P2)

min(ra(P1), ra(P2))

More on this later...
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Hiding: P/L

Used to turn observable actions in P into
hidden or silent actions in P/L

L defines the set of actions to hide

If P
(a,λ)

−−−→ P ′:

P/{a}
(τ,λ)

−−−→ P ′/{a}

τ is the silent action

Used to hide complexity and create a
component interface

Cooperation on τ not allowed

436 – JTB [02/2009] – p. 21

Constant: A

Used to define components labels, as in:

P
def
= (a, λ).P ′

Q
def
= (q, µ).W

P ,P ′, Q and W are all constants

436 – JTB [02/2009] – p. 22

Steady-state reward vectors

Reward vectors are a way of relating the
analysis of the CTMC back to the PEPA
model

A reward vector is a vector, ~r, which
expresses a looked-for property in the
system:

e.g. utilisation, loss, delay, mean buffer
length

To find the reward value of this property at
steady state – need to calculate:

reward = ~π · ~r

436 – JTB [02/2009] – p. 23

Constructing reward vectors

Typically reward vectors match the states
where particular actions are enabled in the
PEPA model

Client = (use,⊤).(think, µ).Client

Server = (use, λ).(swap, γ).Server

Sys = Client ��
use

Server

There are 4 states – enumerated as 1 : (C, S),
2 : (C ′, S ′), 3 : (C, S ′) and 4 : (C ′, S)

436 – JTB [02/2009] – p. 24



Constructing reward vectors

If we want to measure server usage in the
system, we would reward states in the global
state space where the action use is enabled
or active

Only the state 1 : (C, S) enables use

So we set r1 = 1 and ri = 0 for 2 ≤ i ≤ 4,
giving:

~r = (1, 0, 0, 0)

These are typical action-enabled rewards,
where the result of ~r · ~π is a probability

436 – JTB [02/2009] – p. 25

Mean Occupation as a Reward

Quantities such as mean buffer size can also
be expressed as rewards

B0 = (arrive, λ).B1

B1 = (arrive, λ).B2 + (service, µ).B0

B2 = (arrive, λ).B3 + (service, µ).B1

B3 = (service, µ).B2

For this M/M/1/3 queue, number of states is 4

436 – JTB [02/2009] – p. 26

Mean Occupation as a Reward

Having a reward vector which reflects the
number of elements in the queue will give the
mean buffer occupation for M/M/1/3

i.e. set ~r = (0, 1, 2, 3) such that:

mean buffer size = ~π · ~r =
3
∑

i=0

πiri

436 – JTB [02/2009] – p. 27

Transient rewards

For the same reward vector, ~r

If we have a transient function ~π(t), such
that:

πi(t) = IP(in state i at time t)

Can construct a time-based reward, r(t), in
similar fashion:

r(t) = ~r · ~π(t)

436 – JTB [02/2009] – p. 28



Apparent Rate

Apparent rate of a component P is given by
ra(P)

Apparent rate describes the overall observed
rate that P performs an a-action

Apparent rate is given by:

ra(P) =
∑

P
(a,λi )

−−−→

λi

Note: λ +⊤ is forbidden by the apparent rate
calculation

436 – JTB [02/2009] – p. 29

Apparent Rate Examples

ra(P
(a,λ)

−−−→) = λ

ra(P
(a,⊤)

−−−→) = ⊤

ra









P �
�

�
�3

Q
Q

Q
Qs

(a, λ1)

(a, λ2)









= λ1 + λ2

ra









P �
�

�
�3

Q
Q

Q
Qs

(a,⊤)

(a,⊤)









= 2⊤
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Synchronisation Rate

In PEPA, when synchronising two model
components, P and Q where both P and Q
enable many a-actions:

P �
�

�
�3

Q
Q

Q
Qs

-

(a, λ)

(a, ·)

(a, ·)

P′

and Q �
�

�
�3

Q
Q

Q
Qs

-

(a, µ)

(a, ·)

(a, ·)

Q′

The synchronised rate for

P ��
{a}

Q
(a,R)

−−−→ P′ ��
{a}

Q′ is:

R =
λ

ra(P)

µ

ra(Q)
min(ra(P), ra(Q))

436 – JTB [02/2009] – p. 31

Apparent Rate Rules

In PEPA, rate λ is drawn from the set:
λ ∈ IR+ ∪ {n⊤ : n ∈ Q, n > 0}

n⊤ is shorthand for n×⊤

n⊤ for n 6= 1 is never used as rate in a model
but will occur as result of ra(P ) function

Other ⊤-rules required:
m⊤ < n⊤ : for m < n and m,n ∈ Q

r < n⊤ : for all r ∈ IR, n ∈ Q

m⊤+ n⊤ = (m + n)⊤ : m,n ∈ Q

m⊤

n⊤
=

m

n
: m,n ∈ Q

436 – JTB [02/2009] – p. 32



Approximate Synchronisation

Some tools such as: Möbius, PRISM, PWB
use an approximate synchronisation model

With two model components, P and Q where
both P and Q enable many a-actions:

P �
�

�
�3

Q
Q

Q
Qs

-

(a, λ)

(a, ·)

(a, ·)

P′

and Q �
�

�
�3

Q
Q

Q
Qs

-

(a, µ)

(a, ·)

(a, ·)

Q′

The approximated rate for

P ��
{a}

Q
(a,R)

−−−→ P′ ��
{a}

Q′ is:

R = min(λ, µ)
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Example

As an example:

Client
def
= (data, λ).Client′

Network
def
= (data,⊤).NetworkGo

+ (data,⊤).NetworkStall

The combination Client ��
{data}

Network should

evolve with an overall data rate parameter of λ

Under the tool approximation the overall
synchronised rate becomes 2λ
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Results: Multiple Passive

A
def
= (run, λ1 ).(stop, λ2 ).A

B
def
= (run,⊤).(pause, λ3 ).B

SysA
def
= A ��

{run}
(B || B)

Multiple passive (⊤-rate) actions are enabled
against a single real rate

436 – JTB [02/2009] – p. 35

Results: Multiple Passive
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Results: Multiple Passive
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Multiple Active

A
def
= (run, λ1 ).(stop, λ2 ).A

B
def
= (run, µ1 ).(pause, λ3 ).B

SysC
def
= A ��

{run}
(B || B)

Multiple real-rate actions (in (B || B)) are
synchronised against a single real-rate action
(in A)
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How usual is this?

Have an explicit individual component with
either:

P
def
= (a, λ).P′ + (a, µ).P′′ (multiple active)

Q
def
= (a,⊤).Q′ + (a,⊤).Q′′ (multiple passive)

...simple multi-agent synchronisation of
S ��
{a}

(R || R || · · · || R) for some S where

R
def
= (a,⊤).(b, µ).R′ requires use of the full

ra(·) formula

This is a very common client–server
architecture
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Apparent rate example

From initial model:

A
def
= (a, s).(b, r).A

B
def
= (a,⊤).(b, s).B + (a,⊤).B

Rewrite as equivalent model:

A
def
= (a, s).A′

A′ def
= (b, r).A

B
def
= (a,⊤).B′ + (a,⊤).B

B′ def
= (b, s).B

436 – JTB [02/2009] – p. 40



State space searching

Abbreviate X ��
L

Y as (X, Y ):

(P, Q)
(a,R1)

−−−→ (P ′, Q′)

(P, Q)
(a,R2)

−−−→ (P ′, Q)

(P ′, Q)
(b,r)

−−−→ (P, Q)

(P ′, Q′)
(b,s)

−−−→ (P ′, Q)

(P ′, Q′)
(b,r)

−−−→ (P, Q′)

(P, Q′)
(b,s)

−−−→ (P, Q)

In this case R1 = R2 (not always case):

R1 = R2 =
s

ra(P )

⊤

ra(Q)
min(ra(P ), ra(Q))

=
s

s

⊤

2⊤
min(s, 2⊤) =

s

2
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Constructing the generator matrix

4 distinct states,
(P, Q), (P ′, Q), (P ′, Q′), (P, Q′) gives generator
matrix A:

A =











−s s/2 s/2 0

r −r 0 0

0 s −(s + r) r

s 0 0 −s











Solve ~πA = 0 subject to
∑

i πi = 1

~π = 1
3r2+4rs+2s2 (2r(r + s), s(r + 2s), rs, r2)
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Equivalences relations

Equivalence relations relate the semantics of
PEPA processes

We equate processes that behave in the
same way

Equivalence relation help compute
performance measures in smaller processes

reducing the state space (aggregation)
preserving the Markov property in the
smaller process
relating performance measures back to the
original stochastic process

436 – JTB [02/2009] – p. 43

Lumpability

Let S be the state space of a CTMC, such that
S =

⋃

{S1, . . . SN} is a partition of the CTMC.

A CTMC is ordinarily lumpable with respect to S
if and only if for any partition SI with states
si, sj ∈ SI :

R(si, SK) = R(sj, SK) for all 0 < K ≤ N

where:
R(si, SK) =

∑

sk∈SK

R(si, sk)

436 – JTB [02/2009] – p. 44



Lumpability in words

For any two states the cumulative rate of
moving to any other partition is the same

The performance measures of the CTMC and
the lumped counterpart are strongly related

The (macro)-probability of being lumped
CTMC being in state SI equals

∑

si∈SI
π(si)

where π(si) is the probability of being in the
state si

We know how to express this property in a
CTMCs, but how to express it in PEPA?
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Relating CTMCs

Two CTMCs are lumpable equivalent if they
have lumpable partition generating the same
number of equivalence classes with the same
aggregate transition rate

S and T are two state spaces of CTMCs.
S =

⋃

{S1, . . . SN} and T =
⋃

{T1, . . . TN} be the
respective partitions.

Two CTMCs are lumpable equivalent if:

R(si, Sk) = R(tj, Tk) for all 0 < K ≤ N

for all i ≤ |S| such that there exists a j ≤ |T |
436 – JTB [02/2009] – p. 46

Strong equivalence

Let S be an equivalence relation over the set of
PEPA processes.

S is a strong equivalence if for any pair of pro-
cesses P, Q such that PSQ implies that for all
equivalence classes C (over the set of pro-
cesses)

R(P, C, a) = R(Q, C, a)

where R(P, T, a) =
∑P ′∈T

P
(a,·)
−→P ′

R(P, P ′)

P ∼= Q, if PSQ for some strong equivalence S

436 – JTB [02/2009] – p. 47

Strong equivalence (2)

If two processes are strongly equivalent then
their CTMCs are lumpable equivalent

For any PEPA process P :

ds(P )/ ∼=

induces a lumpable partition on the state
space of the CTMC corresponding to P

436 – JTB [02/2009] – p. 48



Properties of Strong equivalence

If P ∼= Q then

1. (a, λ).P ∼= (a, λ).Q

2. P + R ∼= Q + R

3. P ��
L

R ∼= R ��
L

P

4. P/L ∼= Q/L

Very useful for modular reasoning
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More properties of SE

Choice
P + Q ∼= Q + P

(P + Q) + R ∼= P + (Q + R)

Cooperation
P ��

L

Q ∼= Q ��
L

P

(P ��
L

Q) ��
L

R ∼= P ��
L

(Q ��
L

R)

Hiding
(P + Q)/L ∼= P/L + Q/L

P/L/K ∼= P/(L ∪K)

P/∅ ∼= P

436 – JTB [02/2009] – p. 50

Useful facts about queues

Little’s Law: L = γW

L – mean buffer length; γ – arrival rate;
W – mean waiting time/passage time
only applies to system in steady-state; no
creating/destroying of jobs

For M/M/1 queue:
λ – arrival rate, µ – service rate
Stability condition, ρ = λ/µ < 1 for steady
state to exist
Mean queue length = ρ

1−ρ

IP(n jobs in queue at s-s) = ρn(1− ρ)

436 – JTB [02/2009] – p. 51

Small bit of queueing theory

Going to show for M/M/1 queue, that:
1. steady-state probability for buffer having k

customers is:

πk = (1− ρ)ρk

2. mean queue length, N , at steady-state is:

ρ

1− ρ

436 – JTB [02/2009] – p. 52



Small bit of queueing theory

As N =
∑∞

k=0 kπk, we need to find πk:
Derive steady-state equations from
time-varying equations
Solve steady-state equations to get πk

Calculate M/M/1 mean queue length, N

(In what follows, remember ρ = λ/µ)

436 – JTB [02/2009] – p. 53

Small bit of queueing theory

Write down time-varying equations for M/M/1
queue:

At time t, in state k = 0:

d

dt
π0(t) = −λπ0(t) + µπ1(t)

At time, t, in state k ≥ 1:

d

dt
πk(t) = −(λ+µ)πk(t)+λπk−1(t)+µπk+1(t)

436 – JTB [02/2009] – p. 54

Steady-state for M/M/1

At steady-state, πk(t) are constant (i.e. πk)
and d

dt
πk(t) = 0 for all k

⇒ Balance equations:
−λπ0 + µπ1 = 0

−(λ + µ)πk + λπk−1 + µπk+1 = 0 : k ≥ 1

Rearrange balance equations to give:

π1 = λ
µ
π0 = ρπ0

πk+1 = λ+µ
µ

πk −
λ
µ
πk−1 : k ≥ 1

Solution: πk = ρkπ0 (proof by induction)

436 – JTB [02/2009] – p. 55

Normalising to find π0

As these πk are probabilities which sum to 1:

∞
∑

k=0

πk = 1

i.e.
∑∞

k=0 πk =
∑∞

k=0 ρkπ0 = π0

1−ρ
= 1

⇒ π0 = 1− ρ as long as ρ < 1

So overall steady-state formula for M/M/1
queue is:

πk = (1− ρ)ρk

436 – JTB [02/2009] – p. 56



M/M/1 Mean Queue Length

N is queue length random variable

N could be 0 or 1 or 2 or 3 ...
Mean queue length is written N :
N = 0.IP(in state 0) + 1.IP(in state 1) + 2.IP(in state 2) + · · ·

=

∞
∑

k=0

kπk

= π0

∞
∑

k=0

kρk = π0ρ

∞
∑

k=0

kρk−1 = π0ρ

∞
∑

k=0

d

dρ
ρk

= π0ρ
d

dρ

∞
∑

k=0

ρk = π0ρ
d

dρ

(

1

1− ρ

)

=
π0ρ

(1− ρ)2
=

ρ

1− ρ
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M/M/1 Mean Queue Length
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Queueing Networks

Individual queue nodes represent contention
for single resources

A system consists of many inter-dependent
resources – hence we need to reason about a
network of queues to represent a system

436 – JTB [02/2009] – p. 59

Open Queueing Networks

A network of queueing nodes with
inputs/outputs connected to each other

Called an open queueing network (or OQN)
because, traffic may enter (or leave) one or
more of the nodes in the system from an
external source (to an external sink)

An open network is defined by:
γi, the exponential arrival rate from an
external source
qij, the probability that traffic leaving node i
will be routed to node j

µi exponential service rate at node i
436 – JTB [02/2009] – p. 60



OQN: Notation

A node whose output can be probabilistically
redirected into its input is represented as:

p

or...

p

probability p of being rerouted back into buffer
436 – JTB [02/2009] – p. 61

OQN: Network assumptions

In the following analysis, we assume:

Exponential arrivals to network

Exponential service at queueing nodes

FIFO service at queueing nodes

A network may be stable (be capable of
reaching steady-state) or it may be unstable
(have unbounded buffer growth)

If a network reaches steady-state (becomes
stationary), a single rate, λi, may be used to
represent the throughput (both arrivals and
departure rate) at node i

436 – JTB [02/2009] – p. 62

OQN: Traffic Equations

The traffic equations for a queueing network
are a linear system in λi

λi represents the aggregate arrival rate at
node i (taking into account any traffic
feedback from other nodes)

For a given node i, in an open network:

λi = γi +
n
∑

j=1

λjqji : i = 1, 2, . . . , n

436 – JTB [02/2009] – p. 63

OQN: Traffic Equations

Define:
the vector of aggregate arrival rates
~λ = (λ1, λ2, . . . , λn)

the vector of external arrival rates
~γ = (γ1, γ2, . . . , γn)

the matrix of routeing probabilities Q = (qij)

In matrix form, traffic equations become:

~λ = ~γ + ~λQ

= ~γ(I −Q)−1

436 – JTB [02/2009] – p. 64



OQN: Traffic Equations: example 1

1 2

3
γ

2γ

p

Set up and solve traffic equations to find λi:

~λ = (2γ, 0, γ) + ~λ







0 1− p p

0 0 0

0 0 0







i.e. λ1 = 2γ, λ2 = (1− p)λ1, λ3 = γ + pλ1
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OQN: Traffic Equations: example 2

1 2 3

4
γ

2γ
p

q r s

Set up and solve traffic equations to find λi:

~λ = (2γ, 0, 0, γ) + ~λ











0 1 0 0

0 0 1 0

p 0 0 0

q r s 0
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OQN: Network stability

Stability of network (whether it achieves
steady-state) is determined by utilisation,
ρi < 1 at every node i

After solving traffic equations for λi, need to
check that:

ρi =
λi

µi

< 1 : ∀i

436 – JTB [02/2009] – p. 67

Recall facts about M/M/1

If λ is arrival rate, µ service rate then ρ = λ/µ
is utilisation

If ρ < 1, then steady state solution exists

Average buffer length:

IE(N) =
ρ

1− ρ

Distribution of jobs in queue is:

IP(k jobs is queue at steady-state) = (1− ρ)ρk

436 – JTB [02/2009] – p. 68



OQN: Jackson’s Theorem

Where node i has a service rate of µi, define
ρi = λi/µi

If the arrival rates from the traffic equations
are such that ρi < 1 for all i = 1, 2, . . . , n, then
the steady-state exists and:

π(r1, r2, . . . , rn) =
n
∏

i=1

(1− ρi)ρ
ri

i

This is a product form result!
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OQN: Jackson’s Theorem Results

The marginal distribution of no. of jobs at
node i is same as for isolated M/M/1 queue:
(1− ρ)ρk

Number of jobs at any node is independent of
jobs at any other node – hence product form
solution

Powerful since queues can be reasoned
about separately for queue length – summing
to give overall network queue occupancy
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OQN: Mean Jobs in System

If only need mean results, we can use Little’s
law to derive mean performance measures

Product form result implies that each node
can be reasoned about as separate M/M/1
queue in isolation, hence:

Av. no. of jobs at node i = Li =
ρi

1− ρi

Thus total av. number of jobs in system is:

L =
n
∑

i=1

ρi

1− ρi
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OQN: Mean Total Waiting Time

Applying Little’s law to whole network gives:

L = γW

where γ is total external arrival rate, W is
mean response time.

So mean response time from entering to
leaving system:

W =
1

γ

n
∑

i=1

ρi

1− ρi
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OQN: Intermediate Waiting Times

ri represents the the average waiting time
from arriving at node i to leaving the system

wi represents average response time at node
i, then:

ri = wi +
n
∑

j=1

qijrj

which as before gives a vector equation:

~r = ~w + Q~r

= (I −Q)−1 ~w
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Closed Queueing Networks

A network of queueing nodes with
inputs/outputs connected to each other

Called a closed queueing network (CQN)
because, traffic must stay within the system
i.e. total number of customers in network
buffers remains constant at all times

Independent Delay Nodes (IDNs) used to
represent an arbitrary delay in transit between
queueing nodes

Now routeing probabilities reflect closure of
network,

∑N
j=0 qij = 1, for all i
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CQN: State enumeration

For K jobs in the network, the state of the
CQN is represented by a tuple (n1, n2, . . . , nN)

where
∑N

i=1 ni = K and ni is no. of jobs at
node i

For N queues, K customers, we have:
(

K + N − 1

N − 1

)

states

...obtained by looking at all possible
combinations of K jobs in N queues
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CQN: Traffic Equations

As with OQN, linear traffic equations
constructed for steady-state network:

λi =
N
∑

j=1

λjqji

...in CQN case, no input traffic, thus:

~λ(I −Q) = ~0

Clearly |I −Q| = 0 and if rnk(I −Q) = N − 1,
we will be able to state all λi in terms of λ1 for
instance
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CQN: Gordon–Newell Theorem

Steady-state distribution for CQN:
For ρi, the utilisation at node i:

π(r1, r2, . . . , rN) =
1

G

N
∏

i=1

βi(ri)ρ
ri

i

where:

βi(ri) =

{

1 : if node i is single server
1
ri!

: if node i is IDN

G =
∑

{ri} : r1+r2+···+rN=K

N
∏

i=1

βi(ri)ρ
ri

i
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CQN: Simplified Gordon–Newell

For closed queueing networks with no
independent delay nodes, we can simplify the
full Gordon–Newell result considerably

Steady-state result:

π(r1, r2, . . . , rN) =
1

G

N
∏

i=1

ρri

i

where:

G =
∑

{ri} : r1+r2+···+rN=K

N
∏

i=1

ρri

i
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CQN: Normalisation Constant

Hard issue behind Gordon–Newell is finding
the normalisation constant G

To find G you have to enumerate the state
space – as with other concurrent systems,
there is a state space explosion as number of
queues/customers grows

Recall that for N queues, K customers, we
have:

(

K + N − 1

N − 1

)

states
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Recall Jackson’s theorem

For a steady-state probability π(r1, . . . , rN) of
there being r1 jobs in node 1, r2 nodes at
node 2, etc.:

π(r1, r2, . . . , rN) =
N
∏

i=1

(1− ρi)ρ
ri

i

=
N
∏

i=1

πi(ri)

where πi(ri) is the steady-state probability
there being ni jobs at node i independently
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PEPA and Product Form

A product form result links the overall
steady-state of a system to the product of the
steady state for the components of that
system

e.g. Jackson’s theorem

In PEPA, a simple product form can be got
from:

P1 ��
∅

P2 ��
∅
· · · ��

∅
Pn

π(P r1

1 , P r2

2 , . . . , P rn

n ) = 1
G

∏n
i=1 π(P r1

1 ) · · ·π(P rn

n )

where π(P ri

i ) is steady state prob. that
component Pi is in state ri
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PEPA and RCAT

RCAT: Reversed Compound Agent Theorem

RCAT can take the more general cooperation:

P ��
L

Q

...and find a product form, given structural
conditions, in terms of the individual
components P and Q
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What does RCAT do?

RCAT expresses the reversed component
P ��

L

Q in terms of P and Q (almost)

This is powerful since it avoids the need to
expand the state space of P ��

L

Q

This is useful since from the forward and
reversed processes, P ��

L

Q and P ��
L

Q, we
can find the steady state distribution π(Pi, Qi)

π(Pi, Qi) is the steady state distribution of
both the forward and reversed processes (by
definition)

436 – JTB [02/2009] – p. 83

Recall: Reversed processes

The reversed process of a stochastic process is
a dual process:

with the same state space

in which the direction of time is reversed (like
seeing a film backwards)

if the reversed process is stochastically
identical to the original process, that process
is called reversible

436 – JTB [02/2009] – p. 84



Recall: Reversed processes

The reversed process of a stationary Markov
process {Xt : t ≥ 0} with state space S,
generator matrix Q and stationary
probabilities ~π is a stationary Markov process
with generator matrix Q′ defined by:

q′ij =
πjqji

πi

: i, j ∈ S

and with the same stationary probabilities ~π.

436 – JTB [02/2009] – p. 85

Reversible processes

If {X(t1), . . . X(tn)} has the same distribution
as {X(τ − t1), . . . X(τ − tn)} for all τ , t1,. . . tn
then the process is called reversible

Reversible processes are stationary i.e.
stationary means that the joint distribution is
independent of shifts of time

Reversible processes satisfy the detailed
balance equations

πiqij = πjqji

where π is the steady state probability and qij are
the transition from i to j

436 – JTB [02/2009] – p. 86

Kolmogorov’s Generalised Criteria

A stationary Markov process with state space S
and generator matrix Q has reversed process
with generator matrix Q′ if and only if:

1. q′i = qi for every state i ∈ S

2. For every finite sequence of states
i1, i2, ..., in ∈ S,

qi1i2qi2i3 . . . qin−1inqini1 = q′i1inq
′
inin−1

. . . q′i3i2q
′
i2i1

where qi = −qii =
∑

j : j 6=i qij
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Finding π from the reversed process

Once reversed process rates Q′ have been
found, can be used to extract ~π

In an irreducible Markov process, choose a
reference state 0 arbitrarily

Find a sequence of connected states, in
either the forward or reversed process,
0, . . . , j (i.e. with either qi,i+1 > 0 or q′i,i+1 > 0

for 0 ≤ i ≤ j − 1) for any state j and calculate:

πj = π0

j−1
∏

i=0

qi,i+1

q′i+1,i

= π0

j−1
∏

i=0

q′i,i+1

qi+1,i

436 – JTB [02/2009] – p. 88



Reversing a sequential component

Reversing a sequential component, S, is
straightforward:

S
def
=

∑

i : Ri

(ai,λi)

−−−→S

(ai, λi).Ri

S1 S4

S2

S3

(a, λ1)

(b, µ1)

(c, λ2)
(a, µ2)

(a, µ3)
(b, µ4)

→
S1 S4

S2

S3

(a, λ1)

(b, µ1)

(c, λ2)
(a, µ2)

(a, µ3)
(b, µ4)
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Activity substitution

We need to be able to substitute a PEPA
activity α = (a, r) for another α′ = (a′, r′):

(β.P ){α← α′} =

{

α′.(P{α← α′}) : if α = β

β.(P{α← α′}) : otherwise

(P + Q){α← α′} = P{α← α′}+ Q{α← α′}

(P ��
L

Q){α← α′} = P{α← α′} ��
L{α←α

′}
Q{α← α′}

where L{(a, λ) ← (a′, λ′)} = (L \ {a}) ∪ {a′}
if a ∈ L and L otherwise

A set of substitutions can be applied with:

P{α← α′, β ← β′}
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RCAT Conditions (Informal)

For a cooperation P ��
L

Q, the reversed process

P ��
L

Q can be created if:

1. Every passive action in P or Q that is involved
in the cooperation ��

L

must always be
enabled in P or Q respectively.

2. Every reversed action a in P or Q, where a is
active in the original cooperation ��

L

, must:

(a) always be enabled in P or Q respectively

(b) have the same rate throughout P or Q
respectively
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RCAT Notation

In the cooperation, P ��
L

Q:

AP (L) is the set of actions in L that are also
active in the component P

AQ(L) is the set of actions in L that are also
active in the component Q

PP (L) is the set of actions in L that are also
passive in the component P

PQ(L) is the set of actions in L that are also
passive in the component Q

L is the reversed set of actions in L, that is
L = {a | a ∈ L}
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RCAT Conditions (Formal)

For a cooperation P ��
L

Q, the reversed process

P ��
L

Q can be created if:

1. Every passive action type in PP (L) or PQ(L)
is always enabled in P or Q respectively (i.e.
enabled in all states of the transition graph)

2. Every reversed action of an active action type
in AP (L) or AQ(L) is always enabled in P or
Q respectively

3. Every occurrence of a reversed action of an
active action type in AP (L) or AQ(L) has the
same rate in P or Q respectively
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RCAT (I)

For P ��
L

Q, the reversed process is:

P ��
L

Q = R∗ ��
L

S∗

where:

R∗ = R{(a, pa)← (a,⊤) | a ∈ AP (L)}

S∗ = S{(a, qa)← (a,⊤) | a ∈ AQ(L)}

R = P{(a,⊤)← (a, xa) | a ∈ PP (L)}

S = Q{(a,⊤)← (a, xa) | a ∈ PQ(L)}

where the reversed rates, pa and qa, of reversed
actions are solutions of Kolmogorov equations.
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RCAT (II)

xa are solutions to the linear equations:

xa =

{

qa : if a ∈ PP (L)

pa : if a ∈ PQ(L)

and pa, qa are the symbolic rates of action types a

in P and Q respectively.
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RCAT in words

To obtain P ��
L

Q = R∗ ��
L

S∗:

1. substitute all the cooperating passive rates in
P , Q with symbolic rates, xaction , to get R, S

2. reverse R and S, to get R and S

3. solve non-linear equations to get reversed
rates, {r} in terms of forward rates {r}

4. solve non-linear equations to get symbolic
rates {xaction} in terms of forward rates

5. substitute all the cooperating active rates in
R, S with ⊤ to get R∗, S∗
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Example: Tandem queues (I)

γ
P Q

Jobs arrive to node P with activity (e, γ)

Jobs are serviced at node P with rate µ1

Jobs move between node P and Q with
action a

Jobs are serviced at node Q with rate µ2

Jobs depart Q with action d
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Example: Tandem queues (II)

γ
P Q

PEPA description, P0 ��
{a}

Q0, where:

P0
def
= (e, γ).P1

Pn
def
= (e, γ).Pn+1 + (a, µ1).Pn−1 : n > 0

Q0
def
= (a,⊤).Q1

Qn
def
= (a,⊤).Qn+1 + (d, µ2).Qn−1 : n > 0
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Example: Tandem queues (III)

Replace passive rates in cooperation with
variables:

R = P{(a,⊤)← (a, xa) | a ∈ PP (L)}

S = Q{(a,⊤)← (a, xa) | a ∈ PQ(L)}

Transformed PEPA model:

R0
def
= (e, γ).R1

Rn
def
= (e, γ).Rn+1 + (a, µ1).Rn−1 : n > 0

S0
def
= (a, xa).S1

Sn
def
= (a, xa).Sn+1 + (d, µ2).Sn−1 : n > 0
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Example: Tandem queues (IV)

Reverse components R and S to get:

R0
def
= (a, µ1).R1

Rn
def
= (a, µ1).Rn+1 + (e, γ).Rn−1 : n > 0

S0
def
= (d, µ2).S1

Sn
def
= (d, µ2).Sn+1 + (a, xa).Sn−1 : n > 0

Now need to find in this order:
1. reverse rates in terms of forward rates
2. variable xa in terms of forward rates
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Example: Tandem queues (V.1)

To find reverse rates – easiest route is to use
reversibility of M/M/1 queue. In an M/M/1
queue:

forward arrival rate = reverse service rate
forward service rate = reverse arrival rate
Thus: µ1 = γ, µ2 = xa,γ = µ1 and xa = µ2

Sometimes Kolmogorov Criteria will be
needed to generate extra equations (see over
for alternative method involving exit rate and
Kolmogorov)
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Example: Tandem queues (V.2)

Finding reverse rates using Kolmogorov
Compare forward/reverse leaving rate from
states R0, S0:

exit_rate(R0) = exit_rate(R0) : µ1 = γ

exit_rate(S0) = exit_rate(S0) : µ2 = xa

Compare rate cycles in R, R and S, S:

R0 → R1 → R0 : γµ1 = µ1γ

S0 → S1 → S0 : xaµ2 = µ2xa

Giving: γ = µ1 and xa = µ2
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Example: Tandem queues (VI)

Finding symbolic rates – recall:

xa =

{

qa : if a ∈ PP (L)

pa : if a ∈ PQ(L)

In this case, a ∈ PQ(L), so xa = pa = reversed
rate of a-action in R

Thus xa = µ1 = γ

This agrees with rate of customers leaving
forward network – why?
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Example: Tandem queues (VII)

Constructing P ��
L

Q

P0 ��
{a}

Q0 = R∗0 ��
{a}

S∗0 where:

R∗0
def
= (a,⊤).R∗1

R∗n
def
= (a,⊤).R∗n+1 + (e, µ1).R

∗
n−1 : n > 0

S∗0
def
= (d, γ).S∗1

S∗n
def
= (d, γ).S∗n+1 + (a, µ2).S

∗
n−1 : n > 0
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Example: Tandem queues (VIII)

Finding the steady state distribution:
Need to use the following formula:

πj = π0

j−1
∏

i=0

qi,i+1

q′i+1,i

...to find the steady state distribution
First need to construct a sequence of
events to a generic state (n, m) in network

where (n, m) represents n jobs in node P
and m in node Q
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Example: Tandem queues (IX)

Generic state can be reached by:
1. n + m arrivals or e-actions to node P

(forward rate = γ, reverse rate = µ1)
2. followed by m departures or a-actions from

node P and arrivals to node Q (forward
rate = µ1, reverse rate = µ2)

Thus: π(n, m) = π0

n+m−1
∏

i=0

γ

µ1
×

m−1
∏

i=0

µ1

µ2

= π0

(

γ

µ1

)n(
γ

µ2

)m
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