Performance Analysis

Peter Harrison and Jeremy Bradley
Room 372. Email: jb@doc.ic.ac.uk
Department of Computing, Imperial College London

Produced with prosper and ${ }_{L A} T_{E} X$

The story so far...

- In the "beginning" there were birth-death processes
- ...and Markov chains
- Everything was Markovian...
- ...most analysis applied to small Markovian systems or infinite queues
- We now have tools that can analyse Markov chains with 100 million states and semi-Markov Processes with ~ 20 million states

An exponential distribution

- If $X \sim \exp (\lambda)$ then:
- Probability density function (PDF)

$$
f_{X}(t)=\lambda e^{-\lambda t}
$$

- Cumulative density function (CDF)

$$
F_{X}(t)=\mathbb{P}(X \leq t)=\int_{0}^{t} f_{X}(u) \mathrm{d} u=1-e^{-\lambda t}
$$

- Laplace transform of PDF

$$
L_{X}(s)=\frac{\lambda}{\lambda+s}
$$

An exponential distribution

A non-exponential distribution

An exponential CDF

Memoryless property

- The exponential distribution is unique by being memoryless
- i.e. if you interrupt an exponential event, the remaining time is also exponential
- Let $X \sim \exp (\lambda)$ and at time, t^{\prime}, where $X>t^{\prime}$, let $Y=X-t^{\prime}$ is the distribution of the remaining time:

$$
f_{\left(Y \mid X>t^{\prime}\right)}(t)=f_{X}(t)
$$

Memoryless property

So what is a stochastic process...

- A stochastic process is a set of random variables
- Discrete: $\left\{Z_{n}: n \in \mathbb{N}\right\}$, e.g. DTMC

。 Continuous: $\{Z(t): t \geq 0\}$. e.g. CTMC, SMP

PEPA

- PEPA is a language for describing systems which are composed of individual continuous time Markov chains
- PEPA is useful because:
- it is a formal, algebraic description of a system
- it is compositional
- it is parsimonious (succinct)
- it is easy to learn!
- it is used in research and in industry

Tool Support

- PEPA has several methods of execution and analysis, through comprehensive tool support:
- PEPA Workbench: Edinburgh
- Möbius: Urbana-Champaign, Illinois
- PRISM: Birmingham
- ipc: Imperial College London

Types of Analysis

Steady-state and transient analysis in PEPA:

A1 \stackrel{def }{=}(\mathrm{ start, r}\mp@subsup{r}{1}{})\cdot\textrm{A}2+(\mathrm{ pause, r}\mp@subsup{r}{2}{})\cdot\textrm{A}3
A1 \stackrel{def }{=}(\mathrm{ start, r}\mp@subsup{r}{1}{})\cdot\textrm{A}2+(\mathrm{ pause, r}\mp@subsup{r}{2}{})\cdot\textrm{A}3
A2 \stackrel{def}{=}}(\mathrm{ run, r}3)\cdot\textrm{A}1+(\mathrm{ fail, r}\mp@subsup{r}{4}{})\cdot\textrm{A}
A2 \stackrel{def}{=}}(\mathrm{ run, r}3)\cdot\textrm{A}1+(\mathrm{ fail, r}\mp@subsup{r}{4}{})\cdot\textrm{A}
A3 \stackrel{def}{=}}\mathrm{ (recover, r}\mp@subsup{r}{1}{}).A
A3 \stackrel{def}{=}}\mathrm{ (recover, r}\mp@subsup{r}{1}{}).A
AA \stackrel{def (run, T).(alert, r5).AA}{=}
AA \stackrel{def (run, T).(alert, r5).AA}{=}
Sys \stackrel{\mathrm{ def }}{=}AA}\underset{{run}}{=}A
Sys \stackrel{\mathrm{ def }}{=}AA}\underset{{run}}{=}A

Passage-time Quantiles

Extract a passage-time density from a PEPA model:

```
A1 }\stackrel{\mathrm{ def }}{=}\mathrm{ (start, r}).A2+(\mathrm{ pause, r}\mp@subsup{r}{2}{})\cdot\textrm{A}
A2 \def (run, r}\mp@code{=})\cdot\textrm{A}1+(\mathrm{ fail, r}\mp@subsup{r}{4}{})\cdot\textrm{A}
A3 \stackrel{def (recover, r}{=}).A1
AA \stackrel{def (run, T).(alert, r}{=}).AA
Sys \stackrel{\mathrm{ def }}{=}\textrm{AA}\underset{{run}}{<}\textrm{A}1
```


PEPA Syntax

Syntax:

$$
P::=(a, \lambda) . P|P+P| P \not \underbrace{}_{L} P|P / L| A
$$

- Action prefix: $(a, \lambda) . P$
- Competitive choice: $P_{1}+P_{2}$
- Cooperation: $P_{1} \underset{L}{\otimes} P_{2}$
- Action hiding: P / L
- Constant label: A

Prefix: $(a, \lambda) . A$

- Prefix is used to describe a process that evolves from one state to another by emitting or performing an action
- Example:

$$
P \stackrel{\text { def }}{=}(a, \lambda) \cdot A
$$

...means that the process P evolves with rate λ to become process A, by emitting an a-action

- λ is an exponential rate parameter
- This is also be written:

$$
P \xrightarrow{(0, \lambda)} A
$$

Choice: $P_{1}+P_{2}$

- PEPA uses a type of choice known as competitive choice
- Example:

$$
P \stackrel{\text { def }}{=}(a, \lambda) \cdot P_{1}+(b, \mu) \cdot P_{2}
$$

...means that P can evolve either to produce an a-action with rate λ or to produce a b-action with rate μ

- In state-transition terms, P

Choice: $P_{1}+P_{2}$

- $P \stackrel{\text { def }}{=}(a, \lambda) \cdot P_{1}+(b, \mu) \cdot P_{2}$
- This is competitive choice since:
- P_{1} and P_{2} are in a race condition - the first one to perform an a or a b will dictate the direction of choice for $P_{1}+P_{2}$
- What is the probability that we see an a-action?

Cooperation: $P_{1} \bowtie P_{2}$

$\bigcirc \bowtie$ defines concurrency and communication within PEPA

- The L in $P_{1} \underset{L}{\boxtimes} P_{2}$ defines the set of actions over which two components are to cooperate
- Any other actions that P_{1} and P_{2} can do, not mentioned in L, can happen independently
- If $a \in L$ and P_{1} enables an a, then P_{1} has to wait for P_{2} to enable an a before the cooperation can proceed
- Easy source of deadlock!

Cooperation: $P_{1} \bowtie P_{2}$

จ If $P_{1} \xrightarrow{(0, \lambda)} P_{1}^{\prime}$ and $P_{2} \xrightarrow{(a, T)} P_{2}^{\prime}$ then:

$$
P_{1} \underset{\{a\}}{\boxtimes} P_{2} \xrightarrow{(a, \lambda)} P_{1}^{\prime} \underset{\{a\}}{\boxtimes} P_{2}^{\prime}
$$

- T represents a passive rate which, in the cooperation, inherits the λ-rate of from P_{1}
- If both rates are specified and the only a-evolutions allowed from P_{1} and P_{2} are, $P_{1} \xrightarrow{(0, \lambda)} P_{1}^{\prime}$ and $P_{2} \xrightarrow{((a, \mu)} P_{2}^{\prime}$ then:

$$
P_{1} \underset{\{a\}}{\bowtie} P_{2} \xrightarrow{(a, \min (x, \mu))} P_{1}^{\prime} \underset{\{a\}}{\bowtie} P_{2}^{\prime}
$$

Cooperation: $P_{1} \bowtie P_{2}$

- The general cooperation case is where:
- P_{1} enables m a-actions
- P_{2} enables $n a$-actions
at the moment of cooperation
- ...in which case there are $m n$ possible transitions for $P_{1} \underset{\{a\}}{\bowtie} P_{2}$
- $P_{1} \underset{\{a\}}{\bowtie} P_{2} \xrightarrow{(a, R)}$ where

$$
R=\frac{\lambda}{r_{a}\left(P_{1}\right)} \frac{\mu}{r_{a}\left(P_{2}\right)} \min \left(r_{a}\left(P_{1}\right), r_{a}\left(P_{2}\right)\right)
$$

- More on this later...

Hiding: P / L

- Used to turn observable actions in P into hidden or silent actions in P / L
- L defines the set of actions to hide
- If $P \xrightarrow{(a, \lambda)} P^{\prime}$:

$$
P /\{a\} \xrightarrow{(\tau, \lambda)} P^{\prime} /\{a\}
$$

- τ is the silent action
- Used to hide complexity and create a component interface
- Cooperation on τ not allowed

Constant: A

- Used to define components labels, as in:
- $P \stackrel{\text { def }}{=}(a, \lambda) \cdot P^{\prime}$
- $Q \stackrel{\text { def }}{=}(q, \mu) . W$
- P, P^{\prime}, Q and W are all constants

Steady-state reward vectors

- Reward vectors are a way of relating the analysis of the CTMC back to the PEPA model
- A reward vector is a vector, \vec{r}, which expresses a looked-for property in the system:
- e.g. utilisation, loss, delay, mean buffer length
- To find the reward value of this property at steady state - need to calculate:

$$
\text { reward }=\vec{\pi} \cdot \vec{r}
$$

Constructing reward vectors

- Typically reward vectors match the states where particular actions are enabled in the PEPA model

$$
\begin{aligned}
\text { Client } & =(\text { use }, \top) \cdot(\text { think }, \mu) \cdot \text { Client } \\
\text { Server } & =(\text { use }, \lambda) \cdot(\text { swap }, \gamma) \cdot \text { Server } \\
\text { Sys } & =\text { Client } \underset{\text { use }}{ } \text { Server }
\end{aligned}
$$

- There are 4 states - enumerated as $1:(C, S)$, $2:\left(C^{\prime}, S^{\prime}\right), 3:\left(C, S^{\prime}\right)$ and $4:\left(C^{\prime}, S\right)$

Constructing reward vectors

- If we want to measure server usage in the system, we would reward states in the global state space where the action use is enabled or active
- Only the state 1: (C, S) enables use
- So we set $r_{1}=1$ and $r_{i}=0$ for $2 \leq i \leq 4$, giving:

$$
\vec{r}=(1,0,0,0)
$$

- These are typical action-enabled rewards, where the result of $\vec{r} \cdot \vec{\pi}$ is a probability

Mean Occupation as a Reward

- Quantities such as mean buffer size can also be expressed as rewards

$$
\begin{aligned}
& B_{0}=(\text { arrive }, \lambda) \cdot B_{1} \\
& B_{1}=(\text { arrive }, \lambda) \cdot B_{2}+(\text { service }, \mu) \cdot B_{0} \\
& B_{2}=(\text { arrive }, \lambda) \cdot B_{3}+(\text { service }, \mu) \cdot B_{1} \\
& B_{3}=(\text { service }, \mu) \cdot B_{2}
\end{aligned}
$$

- For this $\mathrm{M} / \mathrm{M} / 1 / 3$ queue, number of states is 4

Mean Occupation as a Reward

- Having a reward vector which reflects the number of elements in the queue will give the mean buffer occupation for $\mathrm{M} / \mathrm{M} / 1 / 3$
- i.e. set $\vec{r}=(0,1,2,3)$ such that:

$$
\text { mean buffer size }=\vec{\pi} \cdot \vec{r}=\sum_{i=0}^{3} \pi_{i} r_{i}
$$

Transient rewards

- For the same reward vector, \vec{r}
- If we have a transient function $\vec{\pi}(t)$, such that:

$$
\pi_{i}(t)=\mathbb{P}(\text { in state } i \text { at time } t)
$$

- Can construct a time-based reward, $r(t)$, in similar fashion:

$$
r(t)=\vec{r} \cdot \vec{\pi}(t)
$$

Apparent Rate

- Apparent rate of a component P is given by $r_{a}(\mathrm{P})$
- Apparent rate describes the overall observed rate that P performs an a-action
- Apparent rate is given by:

$$
r_{a}(\mathrm{P})=\sum_{\mathrm{P} \xrightarrow[\left(\mathrm{a}, \lambda_{i}\right)]{ }} \lambda_{i}
$$

- Note: $\lambda+\mathrm{T}$ is forbidden by the apparent rate calculation

Apparent Rate Examples

$$
\text { っ } r_{a}(\mathrm{P} \xrightarrow{(a, \lambda)})=\lambda
$$

$$
\text { ๑ } r_{a}(\mathrm{P} \xrightarrow{(\mathrm{a}, \mathrm{~T})})=\top
$$

$$
r_{a}\left(\mathrm{P} \underset{\left(\mathrm{a}, \lambda_{2}\right)}{\left(\mathrm{a}, \lambda_{1}\right)} \mathrm{C}\right)=\lambda_{1}+\lambda_{2}
$$

Synchronisation Rate

- In PEPA, when synchronising two model components, P and Q where both P and Q enable many a-actions:

- The synchronised rate for

$$
\begin{aligned}
& \mathrm{P} \underset{\{a\}}{\underset{\sim}{Q}} \mathrm{Q} \xrightarrow{(\mathrm{a}, \mathrm{R})} \mathrm{P}^{\prime} \underset{\{a\}}{\underset{\sim}{~}} \mathrm{Q}^{\prime} \text { is: } \\
& \quad R=\frac{\lambda}{r_{a}(\mathrm{P})} \frac{\mu}{r_{a}(\mathrm{Q})} \min \left(r_{a}(\mathrm{P}), \mathrm{r}_{\mathrm{a}}(\mathrm{Q})\right)
\end{aligned}
$$

Apparent Rate Rules

- In PEPA, rate λ is drawn from the set:
$\lambda \in \mathbb{R}^{+} \cup\{n \top: n \in \mathbb{Q}, n>0\}$
- $n \top$ is shorthand for $n \times \top$
- n T for $n \neq 1$ is never used as rate in a model but will occur as result of $r_{a}(P)$ function
- Other T-rules required:

$$
\begin{gathered}
m \top<n \top \quad: \quad \text { for } m<n \text { and } m, n \in \mathbb{Q} \\
r<n \top \quad: \quad \text { for all } r \in \mathbb{R}, n \in \mathbb{Q} \\
m \top+n \top=(m+n) \top \quad: \quad m, n \in \mathbb{Q} \\
\\
\frac{m \top}{n \top}=\frac{m}{n} \quad: \quad m, n \in \mathbb{Q}
\end{gathered}
$$

Approximate Synchronisation

- Some tools such as: Möbius, PRISM, PWB use an approximate synchronisation model
- With two model components, P and Q where both P and Q enable many a-actions:

- The approximated rate for

$$
\begin{aligned}
& \mathrm{P} \underset{\{a\}}{\bowtie} \mathrm{Q} \xrightarrow{(a, R)} \mathrm{P}^{\prime} \underset{\{a\}}{\bowtie} \mathrm{Q}^{\prime} \text { is: } \\
& R=\min (\lambda, \mu)
\end{aligned}
$$

Example

- As an example:
- Client $\stackrel{\text { def }}{=}($ data, $\lambda)$. Client $^{\prime}$
- Network $\stackrel{\text { def }}{=}($ data, $T)$.NetworkGo + (data, \top).NetworkStall
- The combination Client $\underset{\{d a t a\}}{\infty}$ Network should evolve with an overall data rate parameter of λ
- Under the tool approximation the overall synchronised rate becomes 2λ

Results: Multiple Passive

$$
\begin{aligned}
\mathrm{A} & \stackrel{\text { def }}{=}\left(\text { run }, \lambda_{1}\right) \cdot\left(\text { stop }, \lambda_{2}\right) \cdot \mathrm{A} \\
\mathrm{~B} & \stackrel{\text { def }}{=}(\text { run, } \top) \cdot\left(\text { pause }, \lambda_{3}\right) \cdot \mathrm{B} \\
\mathrm{Sys}_{\mathrm{A}} & \stackrel{\text { def }}{=} \mathrm{A} \underset{\{r u n\}}{\infty}(\mathrm{B} \| \mathrm{B})
\end{aligned}
$$

- Multiple passive (T-rate) actions are enabled against a single real rate

Results: Multiple Passive

- Passage time density between consecutive stop actions

Results: Multiple Passive

- Percentage difference in CDF functions over passage time between consecutive stop actions

Multiple Active

$$
\begin{aligned}
\mathrm{A} & \stackrel{\text { def }}{=}\left(\text { run }, \lambda_{1}\right) \cdot\left(\text { stop }, \lambda_{2}\right) \cdot \mathrm{A} \\
\mathrm{~B} & \stackrel{\text { def }}{=}\left(\text { run, } \mu_{1}\right) \cdot\left(\text { pause }, \lambda_{3}\right) \cdot \mathrm{B} \\
\mathrm{Sys}_{\mathrm{C}} & \stackrel{\text { def }}{=} \mathrm{A} \underset{\{r u n\}}{ }(\mathrm{B} \| \mathrm{B})
\end{aligned}
$$

- Multiple real-rate actions (in (B || B)) are synchronised against a single real-rate action (in A)

How usual is this?

- Have an explicit individual component with either:
。 $\mathrm{P} \xlongequal{\text { def }}(\mathrm{a}, \lambda) \cdot \mathrm{P}^{\prime}+(\mathrm{a}, \mu) \cdot \mathrm{P}^{\prime \prime} \quad$ (multiple active)
- $\mathrm{Q} \stackrel{\text { def }}{=}(\mathrm{a}, \mathrm{T}) \cdot \mathrm{Q}^{\prime}+(\mathrm{a}, \top) \cdot \mathrm{Q}^{\prime \prime}$ (multiple passive)
- ...simple multi-agent synchronisation of
$S \underset{\{a\}}{\bowtie}(\mathrm{R}\|\mathrm{R}\| \cdots \| \mathrm{R})$ for some S where
$R \stackrel{\text { def }}{=}(a, T) \cdot(b, \mu) \cdot R^{\prime}$ requires use of the full $r_{a}(\cdot)$ formula
- This is a very common client-server architecture

Apparent rate example

- From initial model:

$$
\begin{aligned}
A & \stackrel{\text { def }}{=}(a, s) \cdot(b, r) \cdot A \\
B & \stackrel{\text { def }}{=}(a, \top) \cdot(b, s) \cdot B+(a, \top) \cdot B
\end{aligned}
$$

- Rewrite as equivalent model:

$$
\begin{aligned}
A & \stackrel{\text { def }}{=}(a, s) \cdot A^{\prime} \\
A^{\prime} & \stackrel{\text { def }}{=}(b, r) \cdot A \\
B & \stackrel{\text { def }}{=}(a, \top) \cdot B^{\prime}+(a, \top) \cdot B \\
B^{\prime} & \stackrel{\text { def }}{=}(b, s) \cdot B
\end{aligned}
$$

State space searching

- Abbreviate $X \underset{L}{\boxtimes} Y$ as (X, Y) :

$$
\begin{array}{ll}
\circ(P, Q) \xrightarrow{\left(a, R_{1}\right)}\left(P^{\prime}, Q^{\prime}\right) & \circ\left(P^{\prime}, Q^{\prime}\right) \xrightarrow{(b, s)}\left(P^{\prime}, Q\right) \\
\circ(P, Q) \xrightarrow{\left(a, R_{2}\right)}\left(P^{\prime}, Q\right) & \circ\left(P^{\prime}, Q^{\prime}\right) \xrightarrow{(b, r)}\left(P, Q^{\prime}\right) \\
\circ\left(P^{\prime}, Q\right) \xrightarrow{(b, r)}(P, Q) & \circ\left(P, Q^{\prime}\right) \xrightarrow{(b, s)}(P, Q)
\end{array}
$$

- In this case $R_{1}=R_{2}$ (not always case):

$$
\begin{aligned}
R_{1}=R_{2} & =\frac{s}{r_{a}(P)} \frac{\top}{r_{a}(Q)} \min \left(r_{a}(P), r_{a}(Q)\right) \\
& =\frac{s}{s} \frac{\top}{2 \top} \min (s, 2 \top)=\frac{s}{2}
\end{aligned}
$$

Constructing the generator matrix

- 4 distinct states,
$(P, Q),\left(P^{\prime}, Q\right),\left(P^{\prime}, Q^{\prime}\right),\left(P, Q^{\prime}\right)$ gives generator matrix A :

$$
A=\left(\begin{array}{cccc}
-s & s / 2 & s / 2 & 0 \\
r & -r & 0 & 0 \\
0 & s & -(s+r) & r \\
s & 0 & 0 & -s
\end{array}\right)
$$

- Solve $\vec{\pi} A=0$ subject to $\sum_{i} \pi_{i}=1$
- $\vec{\pi}=\frac{1}{3 r^{2}+4 r s+2 s^{2}}\left(2 r(r+s), s(r+2 s), r s, r^{2}\right)$

Equivalences relations

- Equivalence relations relate the semantics of PEPA processes
- We equate processes that behave in the same way
- Equivalence relation help compute performance measures in smaller processes
- reducing the state space (aggregation)
- preserving the Markov property in the smaller process
- relating performance measures back to the original stochastic process

Lumpability

Let S be the state space of a CTMC, such that $S=\bigcup\left\{S_{1}, \ldots S_{N}\right\}$ is a partition of the CTMC.

A CTMC is ordinarily lumpable with respect to S if and only if for any partition S_{I} with states
$s_{i}, s_{j} \in S_{I}$:

$$
\mathbf{R}\left(s_{i}, S_{K}\right)=\mathbf{R}\left(s_{j}, S_{K}\right) \quad \text { for all } 0<K \leq N
$$

where:

$$
\mathbf{R}\left(s_{i}, S_{K}\right)=\sum_{s_{k} \in S_{K}} \mathbf{R}\left(s_{i}, s_{k}\right)
$$

Lumpability in words

- For any two states the cumulative rate of moving to any other partition is the same
- The performance measures of the CTMC and the lumped counterpart are strongly related
- The (macro)-probability of being lumped CTMC being in state S_{I} equals $\sum_{s_{i} \in S_{I}} \pi\left(s_{i}\right)$ where $\pi\left(s_{i}\right)$ is the probability of being in the state s_{i}
- We know how to express this property in a CTMCs, but how to express it in PEPA?

Relating CTMCs

Two CTMCs are lumpable equivalent if they have lumpable partition generating the same number of equivalence classes with the same aggregate transition rate

S and T are two state spaces of CTMCs. $S=\bigcup\left\{S_{1}, \ldots S_{N}\right\}$ and $T=\bigcup\left\{T_{1}, \ldots T_{N}\right\}$ be the respective partitions.

Two CTMCs are lumpable equivalent if:

$$
\mathbf{R}\left(s_{i}, S_{k}\right)=\mathbf{R}\left(t_{j}, T_{k}\right) \text { for all } 0<K \leq N
$$

for all $i \leq|S|$ such that there exists a $j \leq|T|$

Strong equivalence

Let \mathcal{S} be an equivalence relation over the set of PEPA processes.
\mathcal{S} is a strong equivalence if for any pair of processes P, Q such that $P \mathcal{S} Q$ implies that for all equivalence classes C (over the set of processes)

$$
\mathbf{R}(P, C, a)=\mathbf{R}(Q, C, a)
$$

where $\mathbf{R}(P, T, a)=\sum_{P \xrightarrow{P^{\prime} \in T}{ }^{(a, i)} P^{\prime}} \mathbf{R}\left(P, P^{\prime}\right)$
$P \cong Q$, if $P \mathcal{S} Q$ for some strong equivalence \mathcal{S}

Strong equivalence (2)

- If two processes are strongly equivalent then their CTMCs are lumpable equivalent
- For any PEPA process P :

$$
d s(P) / \cong
$$

induces a lumpable partition on the state space of the CTMC corresponding to P

Properties of Strong equivalence

If $P \cong Q$ then

1. $(a, \lambda) \cdot P \cong(a, \lambda) \cdot Q$
2. $P+R \cong Q+R$
3. $P \underset{L}{\boxtimes} R \cong R \underset{L}{\bowtie} P$
4. $P / L \cong Q / L$

Very useful for modular reasoning

More properties of SE

- Choice

$$
\begin{aligned}
& \circ P+Q \cong Q+P \\
& \circ(P+Q)+R \cong P+(Q+R)
\end{aligned}
$$

- Cooperation
- $P \bowtie \Vdash_{L} Q \cong Q \underset{L}{ } P$
- $(P \underset{L}{\boxtimes} Q) \underset{L}{\bowtie} R \cong P \underset{L}{\boxtimes}(Q \underset{L}{\bowtie} R)$
- Hiding

$$
\begin{aligned}
& \quad(P+Q) / L \cong P / L+Q / L \\
& \therefore P / L / K \cong P /(L \cup K) \\
& \circ P / \emptyset \cong P
\end{aligned}
$$

Useful facts about queues

- Little's Law: $L=\gamma W$
- L - mean buffer length; γ - arrival rate; W - mean waiting time/passage time
- only applies to system in steady-state; no creating/destroying of jobs
- For M/M/1 queue:
- λ - arrival rate, μ - service rate
- Stability condition, $\rho=\lambda / \mu<1$ for steady state to exist
- Mean queue length $=\frac{\rho}{1-\rho}$
- $\mathbb{P}(n$ jobs in queue at $\mathbf{s}-\mathbf{s})=\rho^{n}(1-\rho)$

Small bit of queueing theory

- Going to show for M/M/1 queue, that: 1. steady-state probability for buffer having k customers is:

$$
\pi_{k}=(1-\rho) \rho^{k}
$$

2. mean queue length, N, at steady-state is:

$$
\frac{\rho}{1-\rho}
$$

Small bit of queueing theory

- As $N=\sum_{k=0}^{\infty} k \pi_{k}$, we need to find π_{k} :
- Derive steady-state equations from time-varying equations
- Solve steady-state equations to get π_{k}
- Calculate M/M/1 mean queue length, N
- (In what follows, remember $\rho=\lambda / \mu$)

Small bit of queueing theory

- Write down time-varying equations for $\mathrm{M} / \mathrm{M} / 1$ queue:
- At time t, in state $k=0$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \pi_{0}(t)=-\lambda \pi_{0}(t)+\mu \pi_{1}(t)
$$

- At time, t, in state $k \geq 1$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \pi_{k}(t)=-(\lambda+\mu) \pi_{k}(t)+\lambda \pi_{k-1}(t)+\mu \pi_{k+1}(t)
$$

Steady-state for M/M/1

っ At steady-state, $\pi_{k}(t)$ are constant (i.e. π_{k}) and $\frac{\mathrm{d}}{\mathrm{d} t} \pi_{k}(t)=0$ for all k
\Rightarrow Balance equations:

$$
\begin{aligned}
& \circ-\lambda \pi_{0}+\mu \pi_{1}=0 \\
& \circ-(\lambda+\mu) \pi_{k}+\lambda \pi_{k-1}+\mu \pi_{k+1}=0 \quad: k \geq 1
\end{aligned}
$$

- Rearrange balance equations to give:
- $\pi_{1}=\frac{\lambda}{\mu} \pi_{0}=\rho \pi_{0}$
- $\pi_{k+1}=\frac{\lambda+\mu}{\mu} \pi_{k}-\frac{\lambda}{\mu} \pi_{k-1} \quad: k \geq 1$
- Solution: $\pi_{k}=\rho^{k} \pi_{0}$ (proof by induction)

Normalising to find π_{0}

- As these π_{k} are probabilities which sum to 1 :

$$
\sum_{k=0}^{\infty} \pi_{k}=1
$$

ง i.e. $\sum_{k=0}^{\infty} \pi_{k}=\sum_{k=0}^{\infty} \rho^{k} \pi_{0}=\frac{\pi_{0}}{1-\rho}=1$
$\Rightarrow \pi_{0}=1-\rho$ as long as $\rho<1$

- So overall steady-state formula for $\mathrm{M} / \mathrm{M} / 1$ queue is:

$$
\pi_{k}=(1-\rho) \rho^{k}
$$

M/M/1 Mean Queue Length

- N is queue length random variable
- N could be 0 or 1 or 2 or 3 ...
- Mean queue length is written N :

$$
\begin{aligned}
N & =0 . \mathbb{P}(\text { in state } 0)+1 . \mathbb{P}(\text { in state } 1)+2 . \mathbb{P}(\text { in state } 2)+\cdots \\
& =\sum_{k=0}^{\infty} k \pi_{k} \\
& =\pi_{0} \sum_{k=0}^{\infty} k \rho^{k}=\pi_{0} \rho \sum_{k=0}^{\infty} k \rho^{k-1}=\pi_{0} \rho \sum_{k=0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} \rho} \rho^{k} \\
& =\pi_{0} \rho \frac{\mathrm{~d}}{\mathrm{~d} \rho} \sum_{k=0}^{\infty} \rho^{k}=\pi_{0} \rho \frac{\mathrm{~d}}{\mathrm{~d} \rho}\left(\frac{1}{1-\rho}\right) \\
& =\frac{\pi_{0} \rho}{(1-\rho)^{2}}=\frac{\rho}{1-\rho}
\end{aligned}
$$

M/M/1 Mean Queue Length

Queueing Networks

- Individual queue nodes represent contention for single resources
- A system consists of many inter-dependent resources - hence we need to reason about a network of queues to represent a system

Open Queueing Networks

- A network of queueing nodes with inputs/outputs connected to each other
- Called an open queueing network (or OQN) because, traffic may enter (or leave) one or more of the nodes in the system from an external source (to an external sink)
- An open network is defined by:
- γ_{i}, the exponential arrival rate from an external source
- $q_{i j}$, the probability that traffic leaving node i will be routed to node j
- μ_{i} exponential service rate at node i

OQN: Notation

- A node whose output can be probabilistically redirected into its input is represented as:

- or...

- probability p of being rerouted back into buffer

OQN: Network assumptions

In the following analysis, we assume:

- Exponential arrivals to network
- Exponential service at queueing nodes
- FIFO service at queueing nodes
- A network may be stable (be capable of reaching steady-state) or it may be unstable (have unbounded buffer growth)
- If a network reaches steady-state (becomes stationary), a single rate, λ_{i}, may be used to represent the throughput (both arrivals and departure rate) at node i

OQN: Traffic Equations

- The traffic equations for a queueing network are a linear system in λ_{i}
- λ_{i} represents the aggregate arrival rate at node i (taking into account any traffic feedback from other nodes)
- For a given node i, in an open network:

$$
\lambda_{i}=\gamma_{i}+\sum_{j=1}^{n} \lambda_{j} q_{j i} \quad: i=1,2, \ldots, n
$$

OQN: Traffic Equations

- Define:
- the vector of aggregate arrival rates

$$
\vec{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

- the vector of external arrival rates

$$
\vec{\gamma}=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)
$$

- the matrix of routeing probabilities $Q=\left(q_{i j}\right)$
- In matrix form, traffic equations become:

$$
\begin{aligned}
\vec{\lambda} & =\vec{\gamma}+\vec{\lambda} Q \\
& =\vec{\gamma}(I-Q)^{-1}
\end{aligned}
$$

OQN: Traffic Equations: example 1

- Set up and solve traffic equations to find λ_{i} :

$$
\vec{\lambda}=(2 \gamma, 0, \gamma)+\vec{\lambda}\left(\begin{array}{ccc}
0 & 1-p & p \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

๑ i.e. $\lambda_{1}=2 \gamma, \lambda_{2}=(1-p) \lambda_{1}, \lambda_{3}=\gamma+p \lambda_{1}$

OQN: Traffic Equations: example 2

- Set up and solve traffic equations to find λ_{i} :

$$
\vec{\lambda}=(2 \gamma, 0,0, \gamma)+\vec{\lambda}\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
p & 0 & 0 & 0 \\
q & r & s & 0
\end{array}\right)
$$

OQN: Network stability

- Stability of network (whether it achieves steady-state) is determined by utilisation, $\rho_{i}<1$ at every node i
- After solving traffic equations for λ_{i}, need to check that:

$$
\rho_{i}=\frac{\lambda_{i}}{\mu_{i}}<1 \quad: \forall i
$$

Recall facts about M/M/1

- If λ is arrival rate, μ service rate then $\rho=\lambda / \mu$ is utilisation
- If $\rho<1$, then steady state solution exists
- Average buffer length:

$$
\mathbb{E}(N)=\frac{\rho}{1-\rho}
$$

- Distribution of jobs in queue is:
$\mathbb{P}(k$ jobs is queue at steady-state $)=(1-\rho) \rho^{k}$

OQN: Jackson's Theorem

- Where node i has a service rate of μ_{i}, define

$$
\rho_{i}=\lambda_{i} / \mu_{i}
$$

- If the arrival rates from the traffic equations are such that $\rho_{i}<1$ for all $i=1,2, \ldots, n$, then the steady-state exists and:

$$
\pi\left(r_{1}, r_{2}, \ldots, r_{n}\right)=\prod_{i=1}^{n}\left(1-\rho_{i}\right) \rho_{i}^{r_{i}}
$$

- This is a product form result!

OQN: Jackson's Theorem Results

- The marginal distribution of no. of jobs at node i is same as for isolated $\mathrm{M} / \mathrm{M} / 1$ queue: $(1-\rho) \rho^{k}$
- Number of jobs at any node is independent of jobs at any other node - hence product form solution
- Powerful since queues can be reasoned about separately for queue length - summing to give overall network queue occupancy

OQN: Mean Jobs in System

- If only need mean results, we can use Little's law to derive mean performance measures
- Product form result implies that each node can be reasoned about as separate $\mathrm{M} / \mathrm{M} / 1$ queue in isolation, hence:

$$
\text { Av. no. of jobs at node } i=L_{i}=\frac{\rho_{i}}{1-\rho_{i}}
$$

- Thus total av. number of jobs in system is:

$$
L=\sum_{i=1}^{n} \frac{\rho_{i}}{1-\rho_{i}}
$$

OQN: Mean Total Waiting Time

- Applying Little's law to whole network gives:

$$
L=\gamma W
$$

where γ is total external arrival rate, W is mean response time.

- So mean response time from entering to leaving system:

$$
W=\frac{1}{\gamma} \sum_{i=1}^{n} \frac{\rho_{i}}{1-\rho_{i}}
$$

OQN: Intermediate Waiting Times

- r_{i} represents the the average waiting time from arriving at node i to leaving the system
- w_{i} represents average response time at node i, then:

$$
r_{i}=w_{i}+\sum_{j=1}^{n} q_{i j} r_{j}
$$

- which as before gives a vector equation:

$$
\begin{aligned}
\vec{r} & =\vec{w}+Q \vec{r} \\
& =(I-Q)^{-1} \vec{w}
\end{aligned}
$$

Closed Queueing Networks

- A network of queueing nodes with inputs/outputs connected to each other
- Called a closed queueing network (CQN) because, traffic must stay within the system i.e. total number of customers in network buffers remains constant at all times
- Independent Delay Nodes (IDNs) used to represent an arbitrary delay in transit between queueing nodes
- Now routeing probabilities reflect closure of network, $\sum_{j=0}^{N} q_{i j}=1$, for all i

CQN: State enumeration

- For K jobs in the network, the state of the CQN is represented by a tuple $\left(n_{1}, n_{2}, \ldots, n_{N}\right)$ where $\sum_{i=1}^{N} n_{i}=K$ and n_{i} is no. of jobs at node i
- For N queues, K customers, we have:

$$
\binom{K+N-1}{N-1} \text { states }
$$

...obtained by looking at all possible combinations of K jobs in N queues

CQN: Traffic Equations

- As with OQN, linear traffic equations constructed for steady-state network:

$$
\lambda_{i}=\sum_{j=1}^{N} \lambda_{j} q_{j i}
$$

- ...in CQN case, no input traffic, thus:

$$
\vec{\lambda}(I-Q)=\overrightarrow{0}
$$

- Clearly $|I-Q|=0$ and if $r n k(I-Q)=N-1$, we will be able to state all λ_{i} in terms of λ_{1} for instance

CQN: Gordon-Newell Theorem

- Steady-state distribution for CQN:
- For ρ_{i}, the utilisation at node i :

$$
\pi\left(r_{1}, r_{2}, \ldots, r_{N}\right)=\frac{1}{G} \prod_{i=1}^{N} \beta_{i}\left(r_{i}\right) \rho_{i}^{r_{i}}
$$

where:

$$
\beta_{i}\left(r_{i}\right)=\left\{\begin{aligned}
1 & : \text { if node } i \text { is single server } \\
\frac{1}{r_{i}!} & : \text { if node } i \text { is IDN }
\end{aligned}\right.
$$

$$
G=\sum_{\left\{r_{i}\right\}: r_{1}+r_{2}+\cdots+r_{N}=K} \prod_{i=1}^{N} \beta_{i}\left(r_{i}\right) \rho_{i}^{r_{i}}
$$

CQN: Simplified Gordon-Newell

- For closed queueing networks with no independent delay nodes, we can simplify the full Gordon-Newell result considerably
- Steady-state result:

$$
\pi\left(r_{1}, r_{2}, \ldots, r_{N}\right)=\frac{1}{G} \prod_{i=1}^{N} \rho_{i}^{r_{i}}
$$

where:

$$
G=\quad \sum \quad \prod_{i=1}^{N} \rho_{i}^{r_{i}}
$$

CQN: Normalisation Constant

- Hard issue behind Gordon-Newell is finding the normalisation constant G
- To find G you have to enumerate the state space - as with other concurrent systems, there is a state space explosion as number of queues/customers grows
- Recall that for N queues, K customers, we have:

$$
\binom{K+N-1}{N-1} \text { states }
$$

Recall Jackson's theorem

- For a steady-state probability $\pi\left(r_{1}, \ldots, r_{N}\right)$ of there being r_{1} jobs in node 1, r_{2} nodes at node 2, etc.:

$$
\begin{aligned}
\pi\left(r_{1}, r_{2}, \ldots, r_{N}\right) & =\prod_{i=1}^{N}\left(1-\rho_{i}\right) \rho_{i}^{r_{i}} \\
& =\prod_{i=1}^{N} \pi_{i}\left(r_{i}\right)
\end{aligned}
$$

where $\pi_{i}\left(r_{i}\right)$ is the steady-state probability there being n_{i} jobs at node i independently

PEPA and Product Form

- A product form result links the overall steady-state of a system to the product of the steady state for the components of that system
- e.g. Jackson's theorem
- In PEPA, a simple product form can be got from:

$$
P_{1} \triangleq P_{2} \underset{\theta}{\triangleleft} \cdots P_{n}
$$

- $\pi\left(P_{1}^{r_{1}}, P_{2}^{r_{2}}, \ldots, P_{n}^{r_{n}}\right)=\frac{1}{G} \prod_{i=1}^{n} \pi\left(P_{1}^{r_{1}}\right) \cdots \pi\left(P_{n}^{r_{n}}\right)$
- where $\pi\left(P_{i}^{r_{i}}\right)$ is steady state prob. that component P_{i} is in state r_{i}

PEPA and RCAT

- RCAT: Reversed Compound Agent Theorem
- RCAT can take the more general cooperation:

$$
P \underset{L}{\bowtie} Q
$$

- ...and find a product form, given structural conditions, in terms of the individual components P and Q

What does RCAT do?

- RCAT expresses the reversed component $\bar{P} \boxtimes_{L} Q$ in terms of \bar{P} and \bar{Q} (almost)
- This is powerful since it avoids the need to expand the state space of $P \underset{L}{\boxtimes} Q$
- This is useful since from the forward and reversed processes, $P \bowtie Q$ and $\overline{P \bowtie Q}$, we can find the steady state distribution $\pi\left(P_{i}, Q_{i}\right)$
- $\pi\left(P_{i}, Q_{i}\right)$ is the steady state distribution of both the forward and reversed processes (by definition)

Recall: Reversed processes

The reversed process of a stochastic process is a dual process:

- with the same state space
- in which the direction of time is reversed (like seeing a film backwards)
- if the reversed process is stochastically identical to the original process, that process is called reversible

Recall: Reversed processes

- The reversed process of a stationary Markov process $\left\{X_{t}: t \geq 0\right\}$ with state space S, generator matrix Q and stationary probabilities $\vec{\pi}$ is a stationary Markov process with generator matrix Q^{\prime} defined by:

$$
q_{i j}^{\prime}=\frac{\pi_{j} q_{j i}}{\pi_{i}} \quad: i, j \in S
$$

and with the same stationary probabilities $\vec{\pi}$.

Reversible processes

- If $\left\{X\left(t_{1}\right), \ldots X\left(t_{n}\right)\right\}$ has the same distribution as $\left\{X\left(\tau-t_{1}\right), \ldots X\left(\tau-t_{n}\right)\right\}$ for all $\tau, t_{1}, \ldots t_{n}$ then the process is called reversible
- Reversible processes are stationary i.e. stationary means that the joint distribution is independent of shifts of time
- Reversible processes satisfy the detailed balance equations

$$
\pi_{i} q_{i j}=\pi_{j} q_{j i}
$$

where π is the steady state probability and $q_{i j}$ are the transition from i to j

Kolmogorov’s Generalised Criteria

A stationary Markov process with state space S and generator matrix Q has reversed process with generator matrix Q^{\prime} if and only if:

1. $q_{i}^{\prime}=q_{i}$ for every state $i \in S$
2. For every finite sequence of states
$i_{1}, i_{2}, \ldots, i_{n} \in S$,

$$
q_{i_{1} i_{2}} q_{i_{2} i_{3}} \ldots q_{i_{n-1} i_{n}} q_{i_{n} i_{1}}=q_{i_{1} i_{n}}^{\prime} q_{i_{n} i_{n-1}}^{\prime} \ldots q_{i_{3} i_{2}}^{\prime} q_{i_{2} i_{1}}^{\prime}
$$

where $q_{i}=-q_{i i}=\sum_{j: j \neq i} q_{i j}$

Finding π from the reversed process

- Once reversed process rates Q^{\prime} have been found, can be used to extract $\vec{\pi}$
- In an irreducible Markov process, choose a reference state 0 arbitrarily
- Find a sequence of connected states, in either the forward or reversed process, $0, \ldots, j$ (i.e. with either $q_{i, i+1}>0$ or $q_{i, i+1}^{\prime}>0$ for $0 \leq i \leq j-1$) for any state j and calculate:

$$
\pi_{j}=\pi_{0} \prod_{i=0}^{j-1} \frac{q_{i, i+1}}{q_{i+1, i}^{\prime}}=\pi_{0} \prod_{i=0}^{j-1} \frac{q_{i, i+1}^{\prime}}{q_{i+1, i}}
$$

Reversing a sequential component

- Reversing a sequential component, S, is straightforward:

$$
\bar{S} \stackrel{\text { def }}{=} \sum_{i: R_{i} \xrightarrow{\left(a_{i}, \lambda_{i}\right)}}\left(\bar{a}_{i}, \bar{\lambda}_{i}\right) \cdot \bar{R}_{i}
$$

Activity substitution

- We need to be able to substitute a PEPA activity $\alpha=(a, r)$ for another $\alpha^{\prime}=\left(a^{\prime}, r^{\prime}\right)$:

$$
\left.\begin{array}{l}
\quad(\beta . P)\left\{\alpha \leftarrow \alpha^{\prime}\right\}=\left\{\begin{array}{l}
\alpha^{\prime} .\left(P\left\{\alpha \leftarrow \alpha^{\prime}\right\}\right): \text { if } \alpha=\beta \\
\beta \cdot\left(P\left\{\alpha \leftarrow \alpha^{\prime}\right\}\right): \text { otherwise }
\end{array}\right. \\
(P+Q)\left\{\alpha \leftarrow \alpha^{\prime}\right\}=P\left\{\alpha \leftarrow \alpha^{\prime}\right\}+Q\left\{\alpha \leftarrow \alpha^{\prime}\right\}
\end{array}\right\} \begin{aligned}
& \left.\left(P \not \bowtie_{L} Q\right)\left\{\alpha \leftarrow \alpha^{\prime}\right\}=P\left\{\alpha \leftarrow \alpha^{\prime}\right\}_{L\left\{\alpha-\alpha^{\prime}\right\}}^{\infty} Q \alpha \leftarrow \alpha^{\prime}\right\}
\end{aligned} \begin{aligned}
& \text { where } L\left\{(a, \lambda) \leftarrow\left(a^{\prime}, \lambda^{\prime}\right)\right\}=(L \backslash\{a\}) \cup\left\{a^{\prime}\right\} \\
& \text { if } a \in L \text { and } L \text { otherwise }
\end{aligned}
$$

- A set of substitutions can be applied with:

$$
P\left\{\alpha \leftarrow \alpha^{\prime}, \beta \leftarrow \beta^{\prime}\right\}
$$

RCAT Conditions (Informal)

For a cooperation $P \boxtimes_{L} Q$, the reversed process $\overline{P \bowtie Q}$ can be created if:

1. Every passive action in P or Q that is involved in the cooperation \bowtie must always be enabled in P or Q respectively.
2. Every reversed action \bar{a} in \bar{P} or \bar{Q}, where a is active in the original cooperation $\underset{L}{ }$, must:
(a) always be enabled in \bar{P} or \bar{Q} respectively
(b) have the same rate throughout \bar{P} or \bar{Q} respectively

RCAT Notation

In the cooperation, $P \underset{L}{\otimes} Q$:

- $\mathcal{A}_{P}(L)$ is the set of actions in L that are also active in the component P
- $\mathcal{A}_{Q}(L)$ is the set of actions in L that are also active in the component Q
- $\mathcal{P}_{P}(L)$ is the set of actions in L that are also passive in the component P
- $\mathcal{P}_{Q}(L)$ is the set of actions in L that are also passive in the component Q
- \bar{L} is the reversed set of actions in L, that is $\bar{L}=\{\bar{a} \mid a \in L\}$

RCAT Conditions (Formal)

For a cooperation $P \bowtie Q$, the reversed process $\overline{P \boxtimes Q}$ can be created if:

1. Every passive action type in $\mathcal{P}_{P}(L)$ or $\mathcal{P}_{Q}(L)$ is always enabled in P or Q respectively (i.e. enabled in all states of the transition graph)
2. Every reversed action of an active action type in $\mathcal{A}_{P}(L)$ or $\mathcal{A}_{Q}(L)$ is always enabled in \bar{P} or \bar{Q} respectively
3. Every occurrence of a reversed action of an active action type in $\mathcal{A}_{P}(L)$ or $\mathcal{A}_{Q}(L)$ has the same rate in \bar{P} or \bar{Q} respectively

RCAT (I)

For $P \bowtie Q$, the reversed process is:

$$
\overline{P \bowtie_{L} Q}=R^{*}{\underset{L}{L}}^{\bowtie} S^{*}
$$

where:

$$
\begin{aligned}
R^{*} & =\bar{R}\left\{\left(\bar{a}, \bar{p}_{a}\right) \leftarrow(\bar{a}, \top) \mid a \in \mathcal{A}_{P}(L)\right\} \\
S^{*} & =\bar{S}\left\{\left(\bar{a}, \bar{q}_{a}\right) \leftarrow(\bar{a}, \top) \mid a \in \mathcal{A}_{Q}(L)\right\} \\
R & =P\left\{(a, \top) \leftarrow\left(a, x_{a}\right) \mid a \in \mathcal{P}_{P}(L)\right\} \\
S & =Q\left\{(a, \top) \leftarrow\left(a, x_{a}\right) \mid a \in \mathcal{P}_{Q}(L)\right\}
\end{aligned}
$$

where the reversed rates, \bar{p}_{a} and \bar{q}_{a}, of reversed actions are solutions of Kolmogorov equations.

RCAT (II)

x_{a} are solutions to the linear equations:

$$
x_{a}= \begin{cases}\bar{q}_{a} & : \text { if } a \in \mathcal{P}_{P}(L) \\ \bar{p}_{a} & : \text { if } a \in \mathcal{P}_{Q}(L)\end{cases}
$$

and \bar{p}_{a}, \bar{q}_{a} are the symbolic rates of action types \bar{a} in \bar{P} and \bar{Q} respectively.

RCAT in words

To obtain $\overline{P \boxtimes ্} \underset{L}{\boxtimes}=R^{*} \underset{L}{\bowtie} S^{*}$:

1. substitute all the cooperating passive rates in P, Q with symbolic rates, $x_{\text {action }}$, to get R, S
2. reverse R and S, to get \bar{R} and \bar{S}
3. solve non-linear equations to get reversed rates, $\{\bar{r}\}$ in terms of forward rates $\{r\}$
4. solve non-linear equations to get symbolic rates $\left\{x_{\text {action }}\right\}$ in terms of forward rates
5. substitute all the cooperating active rates in \bar{R}, \bar{S} with T to get R^{*}, S^{*}

Example: Tandem queues (I)

- Jobs arrive to node P with activity (e, γ)
- Jobs are serviced at node P with rate μ_{1}
- Jobs move between node P and Q with action a
- Jobs are serviced at node Q with rate μ_{2}
- Jobs depart Q with action d

Example: Tandem queues (II)

- PEPA description, $P_{0} \underset{\{a\}}{\bowtie} Q_{0}$, where:

$$
\begin{array}{ll}
P_{0} & \stackrel{\text { def }}{=}(e, \gamma) \cdot P_{1} \\
P_{n} & \stackrel{\text { def }}{=}(e, \gamma) \cdot P_{n+1}+\left(a, \mu_{1}\right) \cdot P_{n-1} \\
Q_{0} & : n>0 \\
Q_{n} & \stackrel{\text { def }}{=}(a, \top) \cdot Q_{1} \\
= & \\
= & (a, \top) \cdot Q_{n+1}+\left(d, \mu_{2}\right) \cdot Q_{n-1}
\end{array} \quad: n>0
$$

Example: Tandem queues (III)

- Replace passive rates in cooperation with variables:

$$
\begin{aligned}
R & =P\left\{(a, \top) \leftarrow\left(a, x_{a}\right) \mid a \in \mathcal{P}_{P}(L)\right\} \\
S & =Q\left\{(a, \top) \leftarrow\left(a, x_{a}\right) \mid a \in \mathcal{P}_{Q}(L)\right\}
\end{aligned}
$$

- Transformed PEPA model:

$$
\begin{array}{rll}
R_{0} & \stackrel{\text { def }}{=}(e, \gamma) \cdot R_{1} & \\
R_{n} & \stackrel{\text { def }}{=}(e, \gamma) \cdot R_{n+1}+\left(a, \mu_{1}\right) \cdot R_{n-1} & : n>0 \\
S_{0} & \stackrel{\text { def }}{=}\left(a, x_{a}\right) \cdot S_{1} & \\
S_{n} & \stackrel{\text { def }}{=}\left(a, x_{a}\right) \cdot S_{n+1}+\left(d, \mu_{2}\right) \cdot S_{n-1} & : n>0
\end{array}
$$

Example: Tandem queues (IV)

- Reverse components R and S to get:

$$
\begin{array}{ll}
\bar{R}_{0} \stackrel{\text { def }}{=}\left(\bar{a}, \bar{\mu}_{1}\right) \cdot \bar{R}_{1} & \\
\bar{R}_{n} \stackrel{\text { def }}{=}\left(\bar{a}, \bar{\mu}_{1}\right) \cdot \bar{R}_{n+1}+(\bar{e}, \bar{\gamma}) \cdot \bar{R}_{n-1} & : n>0 \\
\bar{S}_{0} \stackrel{\text { def }}{=}\left(\bar{d}, \bar{\mu}_{2}\right) \cdot \bar{S}_{1} & \\
\bar{S}_{n} \stackrel{\text { def }}{=}\left(\bar{d}, \bar{\mu}_{2}\right) \cdot \bar{S}_{n+1}+\left(\bar{a}, \bar{x}_{a}\right) \cdot \bar{S}_{n-1} & : n>0
\end{array}
$$

- Now need to find in this order:

1. reverse rates in terms of forward rates
2. variable x_{a} in terms of forward rates

Example: Tandem queues (V.1)

- To find reverse rates - easiest route is to use reversibility of $M / M / 1$ queue. In an $M / M / 1$ queue:
- forward arrival rate = reverse service rate
- forward service rate $=$ reverse arrival rate
- Thus: $\bar{\mu}_{1}=\gamma, \bar{\mu}_{2}=x_{a}, \bar{\gamma}=\mu_{1}$ and $\bar{x}_{a}=\mu_{2}$
- Sometimes Kolmogorov Criteria will be needed to generate extra equations (see over for alternative method involving exit rate and Kolmogorov)

Example: Tandem queues (V.2)

- Finding reverse rates using Kolmogorov
- Compare forward/reverse leaving rate from states R_{0}, S_{0} :

$$
\begin{aligned}
\text { exit_rate }\left(R_{0}\right)=\text { exit_rate }\left(\bar{R}_{0}\right): & \bar{\mu}_{1}=\gamma \\
\text { exit_rate }\left(S_{0}\right)=\text { exit_rate }\left(\bar{S}_{0}\right): & \bar{\mu}_{2}=x_{a}
\end{aligned}
$$

- Compare rate cycles in R, \bar{R} and S, \bar{S} :

$$
\begin{aligned}
R_{0} \rightarrow R_{1} \rightarrow R_{0}: & \gamma \mu_{1}=\bar{\mu}_{1} \bar{\gamma} \\
S_{0} \rightarrow S_{1} \rightarrow S_{0}: & x_{a} \mu_{2}=\bar{\mu}_{2} \bar{x}_{a}
\end{aligned}
$$

。 Giving: $\bar{\gamma}=\mu_{1}$ and $\bar{x}_{a}=\mu_{2}$

Example: Tandem queues (VI)

- Finding symbolic rates - recall:

$$
x_{a}= \begin{cases}\bar{q}_{a} & : \text { if } a \in \mathcal{P}_{P}(L) \\ \bar{p}_{a} & : \text { if } a \in \mathcal{P}_{Q}(L)\end{cases}
$$

- In this case, $a \in \mathcal{P}_{Q}(L)$, so $x_{a}=\bar{p}_{a}=$ reversed rate of a-action in \bar{R}
- Thus $x_{a}=\bar{\mu}_{1}=\gamma$
- This agrees with rate of customers leaving forward network - why?

Example: Tandem queues (VII)

- Constructing $\overline{P \bowtie Q}$
- $\overline{P_{0} \underset{\{a\}}{\boxtimes} Q_{0}}=R_{0}^{*} \underset{\{\bar{a}\}}{\boxtimes} S_{0}^{*}$ where:

$$
\begin{array}{ll}
R_{0}^{*} \stackrel{\text { def }}{=}(\bar{a}, \top) \cdot R_{1}^{*} \\
R_{n}^{*} \stackrel{\text { def }}{=}(\bar{a}, \top) \cdot R_{n+1}^{*}+\left(\bar{e}, \mu_{1}\right) \cdot R_{n-1}^{*} & : n>0 \\
S_{0}^{*} \stackrel{\text { def }}{=}(\bar{d}, \gamma) \cdot S_{1}^{*} & \\
S_{n}^{*} \stackrel{\text { def }}{=}(\bar{d}, \gamma) \cdot S_{n+1}^{*}+\left(\bar{a}, \mu_{2}\right) \cdot S_{n-1}^{*} & : n>0
\end{array}
$$

Example: Tandem queues (VIII)

- Finding the steady state distribution:
- Need to use the following formula:

$$
\pi_{j}=\pi_{0} \prod_{i=0}^{j-1} \frac{q_{i, i+1}}{q_{i+1, i}^{\prime}}
$$

...to find the steady state distribution

- First need to construct a sequence of events to a generic state (n, m) in network - where (n, m) represents n jobs in node P and m in node Q

Example: Tandem queues (IX)

- Generic state can be reached by:

1. $n+m$ arrivals or e-actions to node P (forward rate $=\gamma$, reverse rate $=\mu_{1}$)
2. followed by m departures or a-actions from node P and arrivals to node Q (forward rate $=\mu_{1}$, reverse rate $=\mu_{2}$)

$$
\text { Thus: } \begin{aligned}
\pi(n, m) & =\pi_{0} \prod_{i=0}^{n+m-1} \frac{\gamma}{\mu_{1}} \times \prod_{i=0}^{m-1} \frac{\mu_{1}}{\mu_{2}} \\
& =\pi_{0}\left(\frac{\gamma}{\mu_{1}}\right)^{n}\left(\frac{\gamma}{\mu_{2}}\right)^{m}
\end{aligned}
$$

References

- RCAT
- Turning back time in Markovian Process Algebra. Peter Harrison. TCS 290(3), pp. 1947-1986. January 2003.
- Generalised RCAT: less strict structural conditions
- Reversed processes, product forms and a non-product form. Peter Harrison. LAA 386, pp. 359-381. July 2004.
- MARCAT: N-way cooperation extension:
- Separable equilibrium state probabilities via time-reversal in Markovian process algebra. Peter Harrison and Ting-Ting Lee. TCS, pp. 161-182. November 2005.

