Performance Analysis

Peter Harrison and Jeremy Bradley

Room 372. Email: jb@doc.ic.ac.uk

Department of Computing, Imperial College London

Produced with prosper and LATEX

The story so far...

- In the "beginning" there were birth—death processes
- ...and Markov chains
- Everything was Markovian...
- ...most analysis applied to small Markovian systems or infinite queues
- We now have tools that can analyse Markov chains with 100 million states and semi-Markov Processes with ~20 million states

An exponential distribution

- If $X \sim \exp(\lambda)$ then:
 - Probability density function (PDF)

$$f_X(t) = \lambda e^{-\lambda t}$$

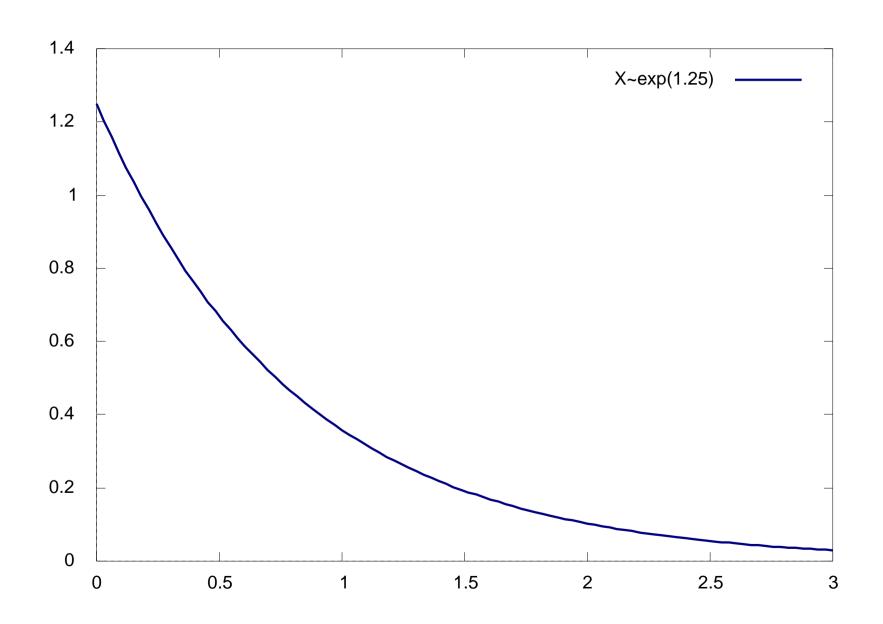
Cumulative density function (CDF)

$$F_X(t) = \mathbb{P}(X \le t) = \int_0^t f_X(u) du = 1 - e^{-\lambda t}$$

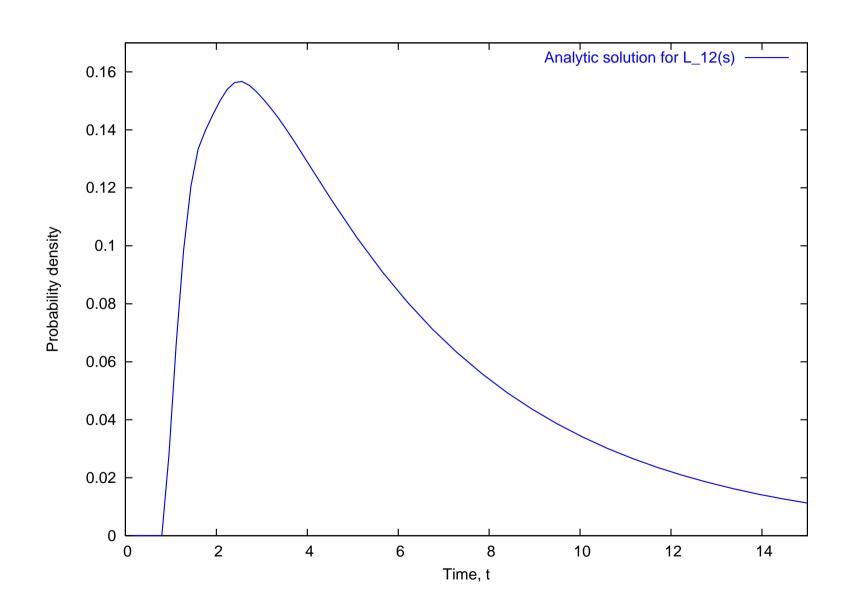
Laplace transform of PDF

$$L_X(s) = \frac{\lambda}{\lambda + s}$$

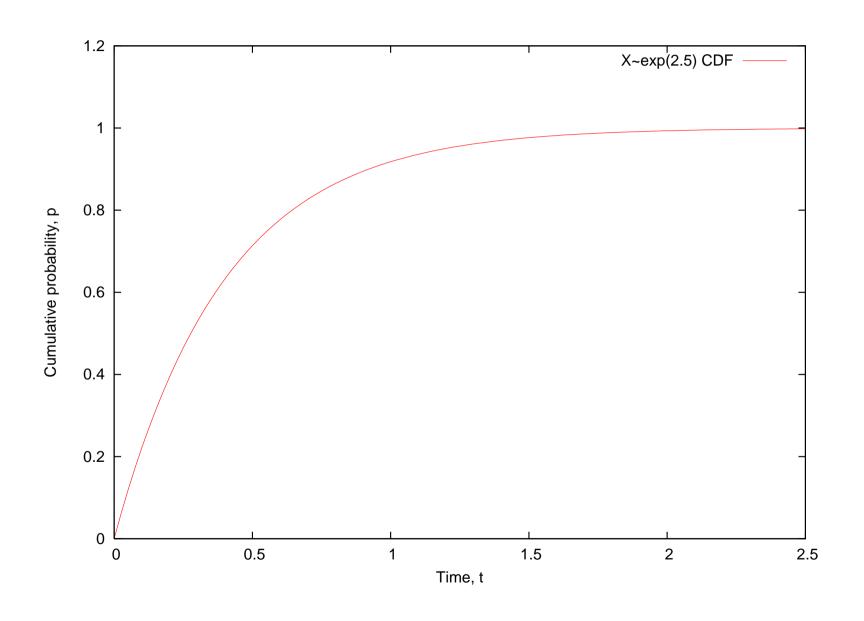
An exponential distribution



A non-exponential distribution



An exponential CDF

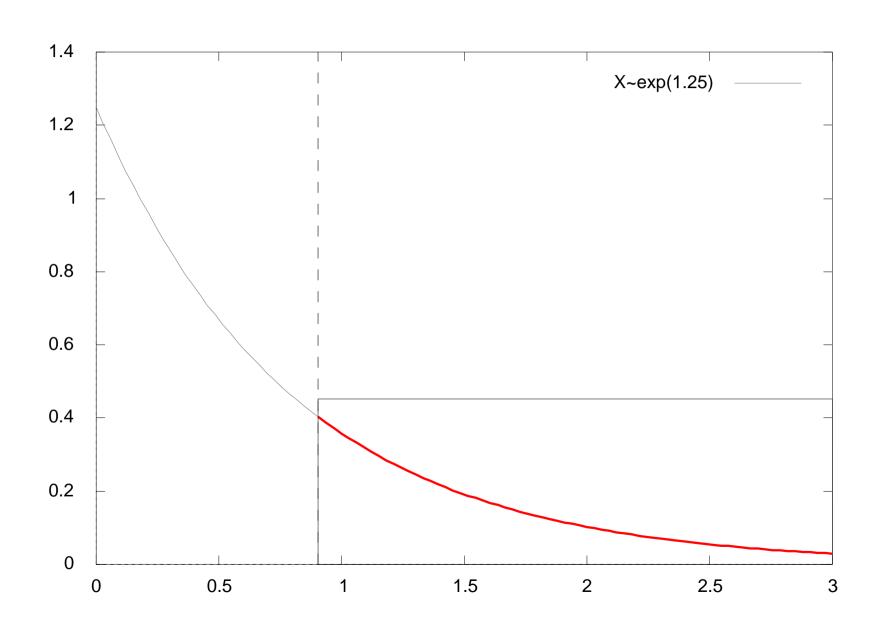


Memoryless property

- The exponential distribution is unique by being memoryless
 - i.e. if you interrupt an exponential event,
 the remaining time is also exponential
 - Let $X \sim \exp(\lambda)$ and at time, t', where X > t', let Y = X t' is the distribution of the *remaining time*:

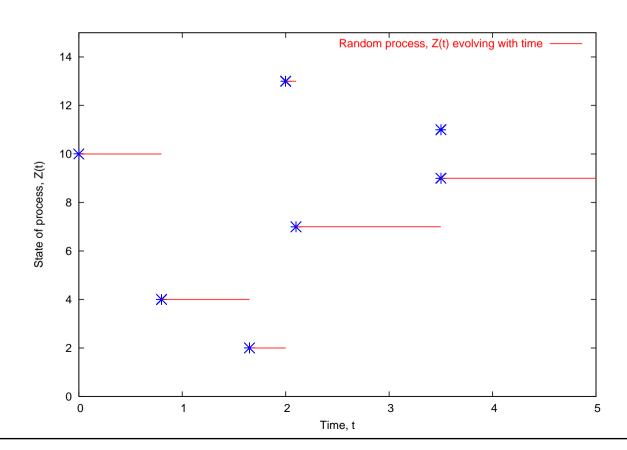
$$f_{(Y|X>t')}(t) = f_X(t)$$

Memoryless property



So what is a stochastic process...

- A stochastic process is a set of random variables
 - Discrete: $\{Z_n : n \in \mathbb{N}\}$, e.g. DTMC
 - Continuous: $\{Z(t): t \geq 0\}$. e.g. CTMC, SMP



PEPA

- PEPA is a language for describing systems which are composed of individual continuous time Markov chains
- PEPA is useful because:
 - it is a formal, algebraic description of a system
 - it is compositional
 - it is parsimonious (succinct)
 - it is easy to learn!
 - it is used in research and in industry

Tool Support

- PEPA has several methods of execution and analysis, through comprehensive tool support:
 - PEPA Workbench: Edinburgh
 - Möbius: Urbana-Champaign, Illinois
 - PRISM: Birmingham
 - ipc: Imperial College London

Types of Analysis

Steady-state and transient analysis in PEPA:

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3

A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3

A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1

AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA

Sys $\stackrel{\text{def}}{=}$ AA \nearrow A1

Passage-time Quantiles

Extract a passage-time density from a PEPA model:

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3

A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3

A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1

AA $\stackrel{\text{def}}{=}$ (run, T).(alert, r_5).AA

Sys $\stackrel{\text{def}}{=}$ AA \bowtie A1

PEPA Syntax

Syntax:

$$P ::= (a, \lambda).P \mid P + P \mid P \bowtie_{L} P \mid P/L \mid A$$

- Action prefix: $(a, \lambda).P$
- Competitive choice: $P_1 + P_2$
- Cooperation: $P_1 \bowtie_L P_2$
- \bullet Action hiding: P/L
- Constant label: A

Prefix: $(a, \lambda).A$

- Prefix is used to describe a process that evolves from one state to another by emitting or performing an action
- Example:

$$P \stackrel{\text{def}}{=} (a, \lambda).A$$

...means that the process P evolves with rate λ to become process A, by emitting an a-action

- \bullet λ is an exponential rate parameter
- This is also be written:

$$P \xrightarrow{(a,\lambda)} A$$

Choice: $P_1 + P_2$

- PEPA uses a type of choice known as competitive choice
- Example:

$$P \stackrel{\text{def}}{=} (a, \lambda).P_1 + (b, \mu).P_2$$

...means that P can evolve *either* to produce an a-action with rate λ *or* to produce a b-action with rate μ

■ In state-transition terms, P

Choice: $P_1 + P_2$

- $P \stackrel{\text{def}}{=} (a, \lambda).P_1 + (b, \mu).P_2$
- This is competitive choice since:
 - P_1 and P_2 are in a *race condition* the first one to perform an a or a b will dictate the direction of choice for $P_1 + P_2$
- What is the probability that we see an a-action?

Cooperation: $P_1 \bowtie P_2$

- defines concurrency and communication within PEPA
- The L in $P_1 \bowtie_L P_2$ defines the set of actions over which two components are to cooperate
- Any other actions that P_1 and P_2 can do, not mentioned in L, can happen independently
- If $a \in L$ and P_1 enables an a, then P_1 has to wait for P_2 to enable an a before the cooperation can proceed
- Easy source of deadlock!

Cooperation: $P_1 \bowtie_L P_2$

 $If P_1 \xrightarrow{\stackrel{(a,\lambda)}{\longrightarrow}} P_1' \text{ and } P_2 \xrightarrow{\stackrel{(a,\top)}{\longrightarrow}} P_2' \text{ then:}$

$$P_1 \bowtie_{\{a\}} P_2 \xrightarrow{(a,\lambda)} P_1' \bowtie_{\{a\}} P_2'$$

- ightharpoonup T represents a passive rate which, in the cooperation, inherits the λ -rate of from P_1
- If both rates are specified and the only a-evolutions allowed from P_1 and P_2 are,

$$P_1 \xrightarrow{(a,\lambda)} P_1'$$
 and $P_2 \xrightarrow{(a,\mu)} P_2'$ then:

$$P_1 \bowtie_{\{a\}} P_2 \xrightarrow{(a,\min(\lambda,\mu))} P_1' \bowtie_{\{a\}} P_2'$$

Cooperation: $P_1 \bowtie P_2$

- The general cooperation case is where:
 - P_1 enables m a-actions
 - P_2 enables n a-actions at the moment of cooperation
- ...in which case there are mn possible transitions for $P_1 \bowtie_{\{a\}} P_2$
- $P_1 \bowtie_{\{a\}} P_2 \xrightarrow{\stackrel{(a,R)}{\longrightarrow}} \mathbf{where}$ $R = \frac{\lambda}{r_a(P_1)} \frac{\mu}{r_a(P_2)} \min(r_a(P_1), r_a(P_2))$
- More on this later...

Hiding: P/L

- Used to turn observable actions in P into hidden or silent actions in P/L
- L defines the set of actions to hide

$$P/\{a\} \xrightarrow{(\tau,\lambda)} P'/\{a\}$$

- \bullet τ is the *silent* action
- Used to hide complexity and create a component interface
- Cooperation on \(\tau \) not allowed

Constant: A

Used to define components labels, as in:

•
$$P \stackrel{\text{def}}{=} (a, \lambda).P'$$

•
$$Q \stackrel{\mathrm{def}}{=} (q, \mu).W$$

 \bullet P,P',Q and W are all constants

Steady-state reward vectors

- Reward vectors are a way of relating the analysis of the CTMC back to the PEPA model
- A reward vector is a vector, \vec{r} , which expresses a looked-for property in the system:
 - e.g. utilisation, loss, delay, mean buffer length
- To find the reward value of this property at steady state – need to calculate:

$$\mathsf{reward} = \vec{\pi} \cdot \vec{r}$$

Constructing reward vectors

Typically reward vectors match the states where particular actions are enabled in the PEPA model

$$Client = (use, T).(think, \mu).Client$$

 $Server = (use, \lambda).(swap, \gamma).Server$
 $Sys = Client \bowtie Server$

There are 4 states – enumerated as 1:(C,S), 2:(C',S'), 3:(C,S') and 4:(C',S)

Constructing reward vectors

- If we want to measure server usage in the system, we would reward states in the global state space where the action use is enabled or active
- Only the state 1:(C,S) enables use
- So we set $r_1 = 1$ and $r_i = 0$ for $2 \le i \le 4$, giving:

$$\vec{r} = (1, 0, 0, 0)$$

• These are typical *action-enabled* rewards, where the result of $\vec{r} \cdot \vec{\pi}$ is a probability

Mean Occupation as a Reward

 Quantities such as mean buffer size can also be expressed as rewards

$$B_0 = (arrive, \lambda).B_1$$

 $B_1 = (arrive, \lambda).B_2 + (service, \mu).B_0$
 $B_2 = (arrive, \lambda).B_3 + (service, \mu).B_1$
 $B_3 = (service, \mu).B_2$

For this M/M/1/3 queue, number of states is 4

Mean Occupation as a Reward

- Having a reward vector which reflects the number of elements in the queue will give the mean buffer occupation for M/M/1/3
- i.e. set $\vec{r} = (0, 1, 2, 3)$ such that:

mean buffer size
$$= \vec{\pi} \cdot \vec{r} = \sum_{i=0}^{3} \pi_i r_i$$

Transient rewards

- For the same reward vector, \vec{r}
 - If we have a transient function $\vec{\pi}(t)$, such that:

$$\pi_i(t) = \mathbb{P}(\text{in state } i \text{ at time } t)$$

• Can construct a time-based reward, r(t), in similar fashion:

$$r(t) = \vec{r} \cdot \vec{\pi}(t)$$

Apparent Rate

- Apparent rate of a component P is given by $r_a(P)$
- Apparent rate describes the overall observed rate that P performs an a-action
- Apparent rate is given by:

$$r_a(P) = \sum_{P \xrightarrow{(a,\lambda_i)}} \lambda_i$$

• Note: $\lambda + \top$ is forbidden by the apparent rate calculation

Apparent Rate Examples

$$r_a(P \xrightarrow{(a,\lambda)}) = \lambda$$

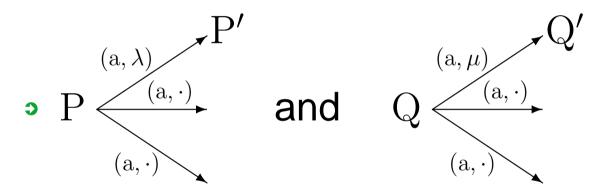
$$r_a(P \xrightarrow{(a,T)}) = T$$

$$r_a \left(P \right) = \lambda_1 + \lambda_2$$

$$r_a \left(P \right) = 2T$$

Synchronisation Rate

• In PEPA, when synchronising two model components, P and Q where both P and Q enable many *a*-actions:



The synchronised rate for

$$P \bowtie_{\{a\}} Q \xrightarrow{(a,R)} P' \bowtie_{\{a\}} Q' \text{ is:}$$

$$R = \frac{\lambda}{r_a(P)} \frac{\mu}{r_a(Q)} \min(r_a(P), r_a(Q))$$

Apparent Rate Rules

• In PEPA, rate λ is drawn from the set:

$$\lambda \in \mathbb{R}^+ \cup \{n\top : n \in \mathbb{Q}, n > 0\}$$

- \bullet $n\top$ is shorthand for $n\times \top$
- n op for $n \neq 1$ is never used as rate in a model but will occur as result of $r_a(P)$ function
- Other ⊤-rules required:

$$m \top < n \top$$
 : for $m < n$ and $m, n \in \mathbb{Q}$

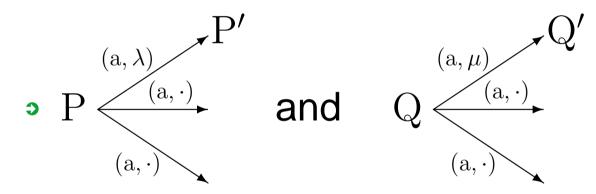
$$r < n \top$$
 : for all $r \in \mathbb{R}, n \in \mathbb{Q}$

$$m\top + n\top = (m+n)\top : m, n \in \mathbb{Q}$$

$$\frac{m\top}{n\top} = \frac{m}{n} : m, n \in \mathbb{Q}$$

Approximate Synchronisation

- Some tools such as: Möbius, PRISM, PWB use an approximate synchronisation model
- With two model components, P and Q where both P and Q enable many a-actions:



The approximated rate for

$$P \bowtie_{\{a\}} Q \xrightarrow{(a,R)} P' \bowtie_{\{a\}} Q'$$
 is:

$$R = \min(\lambda, \mu)$$

Example

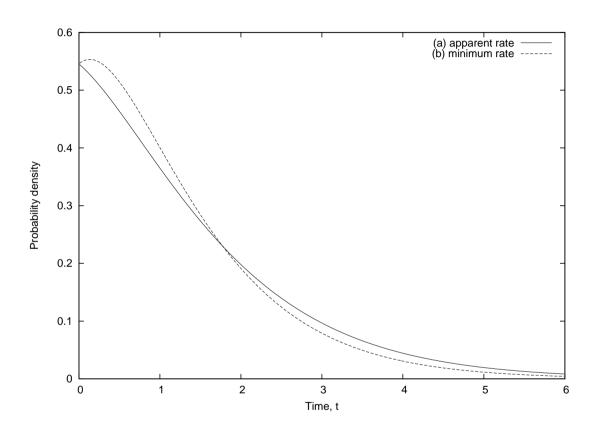
- As an example:
 - Client $\stackrel{\text{def}}{=}$ (data, λ). Client'
 - Network $\stackrel{\text{def}}{=}$ (data, \top).NetworkGo + (data, \top).NetworkStall
- The combination Client \bowtie Network should evolve with an overall data rate parameter of λ
- Under the tool approximation the overall synchronised rate becomes 2λ

Results: Multiple Passive

A
$$\stackrel{\text{def}}{=}$$
 (run, λ_1).(stop, λ_2).A
B $\stackrel{\text{def}}{=}$ (run, \top).(pause, λ_3).B
Sys_A $\stackrel{\text{def}}{=}$ A $\bowtie_{\{run\}}$ (B || B)

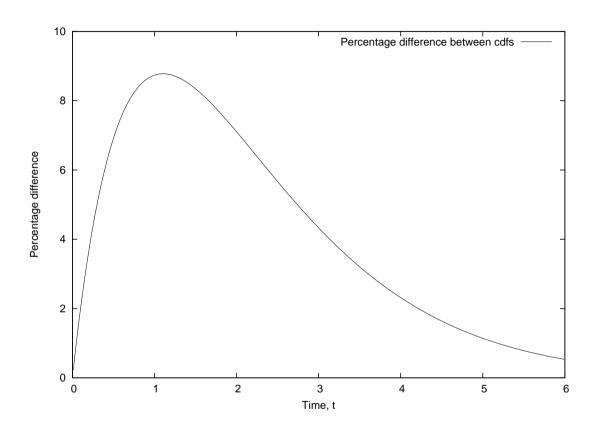
Multiple passive (⊤-rate) actions are enabled against a single real rate

Results: Multiple Passive



Passage time density between consecutive stop actions

Results: Multiple Passive



Percentage difference in CDF functions over passage time between consecutive stop actions

Multiple Active

A
$$\stackrel{\text{def}}{=}$$
 (run, λ_1).(stop, λ_2).A
B $\stackrel{\text{def}}{=}$ (run, μ_1).(pause, λ_3).B
Sys_C $\stackrel{\text{def}}{=}$ A $\bowtie_{\{run\}}$ (B || B)

• Multiple real-rate actions (in (B || B)) are synchronised against a single real-rate action (in A)

How usual is this?

- Have an explicit individual component with either:
 - $P \stackrel{\text{def}}{=} (a, \lambda).P' + (a, \mu).P''$ (multiple active)
 - $Q \stackrel{\text{def}}{=} (a, \top).Q' + (a, \top).Q''$ (multiple passive)
- simple multi-agent synchronisation of $S \bowtie_{\{a\}} (R \mid\mid R \mid\mid \cdots \mid\mid R)$ for some S where $R \stackrel{\text{def}}{=} (a, \top).(b, \mu).R'$ requires use of the full $r_a(\cdot)$ formula
- This is a very common client—server architecture

Apparent rate example

From initial model:

$$\begin{array}{cccc} A & \stackrel{\mathrm{def}}{=} & (a,s).(b,r).A \\ \\ B & \stackrel{\mathrm{def}}{=} & (a,\top).(b,s).B + (a,\top).B \end{array}$$

Rewrite as equivalent model:

$$A \stackrel{\text{def}}{=} (a, s).A'$$
 $A' \stackrel{\text{def}}{=} (b, r).A$
 $B \stackrel{\text{def}}{=} (a, \top).B' + (a, \top).B$
 $B' \stackrel{\text{def}}{=} (b, s).B$

State space searching

• Abbreviate $X \bowtie Y$ as (X, Y):

$$\bullet \quad (P,Q) \xrightarrow{(a,R_1)} (P',Q') \qquad \bullet \quad (P',Q') \xrightarrow{(b,s)} (P',Q)$$

$$\bullet \quad (P',Q') \xrightarrow{(b,s)} (P',Q)$$

$$\bullet \quad (P,Q) \xrightarrow{(a,R_2)} (P',Q)$$

$$\bullet \quad (P,Q) \xrightarrow{(a,R_2)} (P',Q) \qquad \bullet \quad (P',Q') \xrightarrow{(b,r)} (P,Q')$$

$$(P',Q) \xrightarrow{(b,r)} (P,Q)$$

$$\bullet \quad (P',Q) \xrightarrow{(b,r)} (P,Q) \qquad \bullet \quad (P,Q') \xrightarrow{(b,s)} (P,Q)$$

• In this case $R_1 = R_2$ (not always case):

$$R_1 = R_2 = \frac{s}{r_a(P)} \frac{1}{r_a(Q)} \min(r_a(P), r_a(Q))$$
$$= \frac{s}{s} \frac{1}{2 + 1} \min(s, 2 + 1) = \frac{s}{2}$$

Constructing the generator matrix

• 4 distinct states, (P,Q),(P',Q),(P',Q'),(P,Q') gives generator matrix A:

$$A = \begin{pmatrix} -s & s/2 & s/2 & 0 \\ r & -r & 0 & 0 \\ 0 & s & -(s+r) & r \\ s & 0 & 0 & -s \end{pmatrix}$$

- Solve $\vec{\pi}A = 0$ subject to $\sum_i \pi_i = 1$
- $\vec{\pi} = \frac{1}{3r^2 + 4rs + 2s^2} (2r(r+s), s(r+2s), rs, r^2)$

Equivalences relations

- Equivalence relations relate the semantics of PEPA processes
- We equate processes that behave in the same way
- Equivalence relation help compute performance measures in smaller processes
 - reducing the state space (aggregation)
 - preserving the Markov property in the smaller process
 - relating performance measures back to the original stochastic process

Lumpability

Let S be the state space of a CTMC, such that $S = \bigcup \{S_1, \dots S_N\}$ is a partition of the CTMC.

A CTMC is *ordinarily lumpable* with respect to S if and only if for any partition S_I with states $s_i, s_j \in S_I$:

$$\mathbf{R}(s_i, S_K) = \mathbf{R}(s_j, S_K)$$
 for all $0 < K \le N$

where:

$$\mathbf{R}(s_i, S_K) = \sum_{s_k \in S_K} \mathbf{R}(s_i, s_k)$$

Lumpability in words

- For any two states the cumulative rate of moving to any other partition is the same
- The performance measures of the CTMC and the lumped counterpart are strongly related
- The (macro)-probability of being lumped CTMC being in state S_I equals $\sum_{s_i \in S_I} \pi(s_i)$ where $\pi(s_i)$ is the probability of being in the state s_i
- We know how to express this property in a CTMCs, but how to express it in PEPA?

Relating CTMCs

Two CTMCs are *lumpable equivalent* if they have lumpable partition generating the same number of equivalence classes with the same aggregate transition rate

S and T are two state spaces of CTMCs. $S = \bigcup \{S_1, \ldots S_N\}$ and $T = \bigcup \{T_1, \ldots T_N\}$ be the respective partitions.

Two CTMCs are *lumpable equivalent* if:

$$\mathbf{R}(s_i, S_k) = \mathbf{R}(t_j, T_k)$$
 for all $0 < K \le N$

for all $i \leq |S|$ such that there exists a $j \leq |T|$

Strong equivalence

Let S be an equivalence relation over the set of PEPA processes.

S is a *strong equivalence* if for any pair of processes P,Q such that PSQ implies that for all equivalence classes C (over the set of processes)

$$\mathbf{R}(P, C, a) = \mathbf{R}(Q, C, a)$$

where
$$\mathbf{R}(P,T,a) = \sum_{P \stackrel{(a,\cdot)}{\longrightarrow} P'}^{P' \in T} \mathbf{R}(P,P')$$

 $P\cong Q$, if $P\mathcal{S}Q$ for some strong equivalence \mathcal{S}

Strong equivalence (2)

- If two processes are strongly equivalent then their CTMCs are lumpable equivalent
- For any PEPA process *P*:

$$ds(P)/\cong$$

induces a lumpable partition on the state space of the CTMC corresponding to P

Properties of Strong equivalence

If
$$P \cong Q$$
 then

1.
$$(a, \lambda).P \cong (a, \lambda).Q$$

2.
$$P + R \cong Q + R$$

3.
$$P \bowtie_{L} R \cong R \bowtie_{L} P$$

4.
$$P/L \cong Q/L$$

Very useful for modular reasoning

More properties of SE

Choice

•
$$P+Q\cong Q+P$$

•
$$(P+Q) + R \cong P + (Q+R)$$

Cooperation

$$\bullet \ (P \bowtie_L Q) \bowtie_L R \cong P \bowtie_L (Q \bowtie_L R)$$

Hiding

•
$$(P+Q)/L \cong P/L + Q/L$$

•
$$P/L/K \cong P/(L \cup K)$$

•
$$P/\emptyset \cong P$$

Useful facts about queues

- Little's Law: $L = \gamma W$
 - L mean buffer length; γ arrival rate; W mean waiting time/passage time
 - only applies to system in steady-state; no creating/destroying of jobs
- For M/M/1 queue:
 - λ arrival rate, μ service rate
 - Stability condition, $\rho = \lambda/\mu < 1$ for steady state to exist
 - Mean queue length $=\frac{\rho}{1-\rho}$
 - $\mathbb{P}(n \text{ jobs in queue at s-s}) = \rho^n (1 \rho)$

Small bit of queueing theory

- Going to show for M/M/1 queue, that:
 - 1. steady-state probability for buffer having *k* customers is:

$$\pi_k = (1 - \rho)\rho^k$$

2. mean queue length, N, at steady-state is:

$$\frac{\rho}{1-\rho}$$

Small bit of queueing theory

- As $N = \sum_{k=0}^{\infty} k\pi_k$, we need to find π_k :
 - Derive steady-state equations from time-varying equations
 - Solve steady-state equations to get π_k
 - ullet Calculate M/M/1 mean queue length, N
- (In what follows, remember $\rho = \lambda/\mu$)

Small bit of queueing theory

- Write down time-varying equations for M/M/1 queue:
 - At time t, in state k=0:

$$\frac{\mathrm{d}}{\mathrm{d}t}\pi_0(t) = -\lambda\pi_0(t) + \mu\pi_1(t)$$

• At time, t, in state $k \geq 1$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\pi_k(t) = -(\lambda + \mu)\pi_k(t) + \lambda \pi_{k-1}(t) + \mu \pi_{k+1}(t)$$

Steady-state for M/M/1

- At steady-state, $\pi_k(t)$ are constant (i.e. π_k) and $\frac{\mathrm{d}}{\mathrm{d}t}\pi_k(t)=0$ for all k
- ⇒ Balance equations:
 - $-\lambda \pi_0 + \mu \pi_1 = 0$
 - $-(\lambda + \mu)\pi_k + \lambda \pi_{k-1} + \mu \pi_{k+1} = 0 : k \ge 1$
 - Rearrange balance equations to give:
 - $\bullet \ \pi_1 = \frac{\lambda}{\mu} \pi_0 = \rho \pi_0$
 - $\pi_{k+1} = \frac{\lambda + \mu}{\mu} \pi_k \frac{\lambda}{\mu} \pi_{k-1} : k \ge 1$
 - Solution: $\pi_k = \rho^k \pi_0$ (proof by induction)

Normalising to find π_0

• As these π_k are probabilities which sum to 1:

$$\sum_{k=0}^{\infty} \pi_k = 1$$

• i.e.
$$\sum_{k=0}^{\infty} \pi_k = \sum_{k=0}^{\infty} \rho^k \pi_0 = \frac{\pi_0}{1-\rho} = 1$$

$$\Rightarrow \pi_0 = 1 - \rho$$
 as long as $\rho < 1$

So overall steady-state formula for M/M/1 queue is:

$$\pi_k = (1 - \rho)\rho^k$$

M/M/1 Mean Queue Length

- N is queue length random variable
- N could be 0 or 1 or 2 or 3 ...
- \bullet Mean queue length is written N:

$$N = 0.\text{P(in state 0)} + 1.\text{P(in state 1)} + 2.\text{P(in state 2)} + \cdots$$

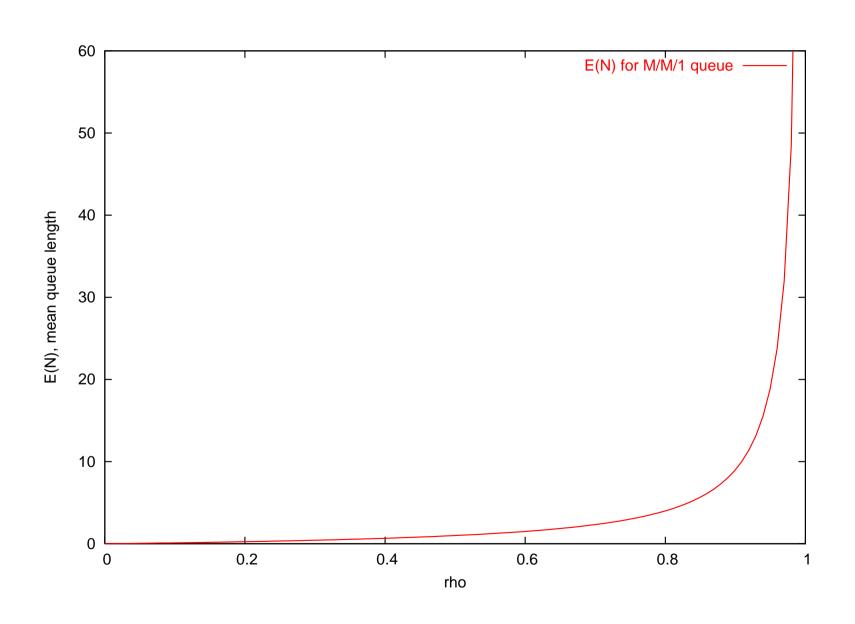
$$= \sum_{k=0}^{\infty} k \pi_k$$

$$= \pi_0 \sum_{k=0}^{\infty} k \rho^k = \pi_0 \rho \sum_{k=0}^{\infty} k \rho^{k-1} = \pi_0 \rho \sum_{k=0}^{\infty} \frac{\mathrm{d}}{\mathrm{d}\rho} \rho^k$$

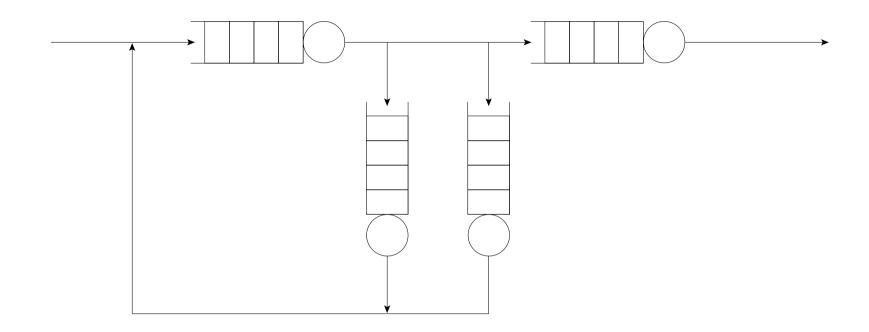
$$= \pi_0 \rho \frac{\mathrm{d}}{\mathrm{d}\rho} \sum_{k=0}^{\infty} \rho^k = \pi_0 \rho \frac{\mathrm{d}}{\mathrm{d}\rho} \left(\frac{1}{1-\rho}\right)$$

$$= \frac{\pi_0 \rho}{(1-\rho)^2} = \frac{\rho}{1-\rho} \quad \Box$$

M/M/1 Mean Queue Length



Queueing Networks



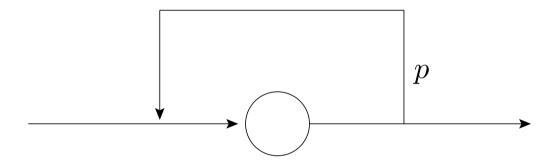
- Individual queue nodes represent contention for single resources
- A system consists of many inter-dependent resources – hence we need to reason about a network of queues to represent a system

Open Queueing Networks

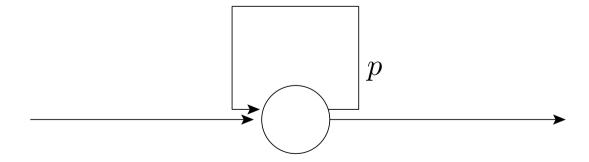
- A network of queueing nodes with inputs/outputs connected to each other
- Called an open queueing network (or OQN) because, traffic may enter (or leave) one or more of the nodes in the system from an external source (to an external sink)
- An open network is defined by:
 - γ_i , the exponential arrival rate from an external source
 - q_{ij} , the probability that traffic leaving node i will be routed to node j
 - μ_i exponential service rate at node i

OQN: Notation

A node whose output can be probabilistically redirected into its input is represented as:



or...



probability p of being rerouted back into buffer

OQN: Network assumptions

In the following analysis, we assume:

- Exponential arrivals to network
- Exponential service at queueing nodes
- FIFO service at queueing nodes
- A network may be stable (be capable of reaching steady-state) or it may be unstable (have unbounded buffer growth)
- If a network reaches steady-state (becomes stationary), a single rate, λ_i , may be used to represent the throughput (both arrivals and departure rate) at node i

OQN: Traffic Equations

- The traffic equations for a queueing network are a linear system in λ_i
- λ_i represents the aggregate arrival rate at node i (taking into account any traffic feedback from other nodes)
- For a given node i, in an open network:

$$\lambda_i = \gamma_i + \sum_{j=1}^n \lambda_j q_{ji} \quad : i = 1, 2, \dots, n$$

OQN: Traffic Equations

- Define:
 - the vector of aggregate arrival rates

$$\vec{\lambda} = (\lambda_1, \lambda_2, \dots, \lambda_n)$$

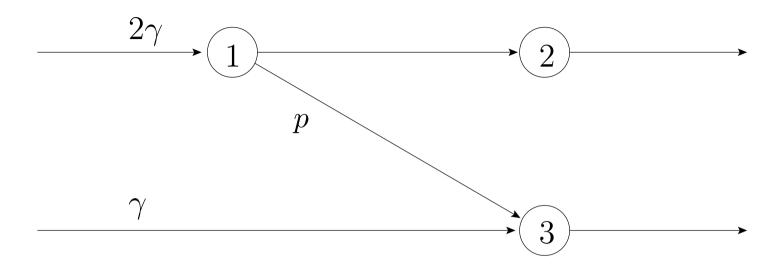
the vector of external arrival rates

$$\vec{\gamma} = (\gamma_1, \gamma_2, \dots, \gamma_n)$$

- the matrix of routeing probabilities $Q = (q_{ij})$
- In matrix form, traffic equations become:

$$\vec{\lambda} = \vec{\gamma} + \vec{\lambda}Q$$
$$= \vec{\gamma}(I - Q)^{-1}$$

OQN: Traffic Equations: example 1

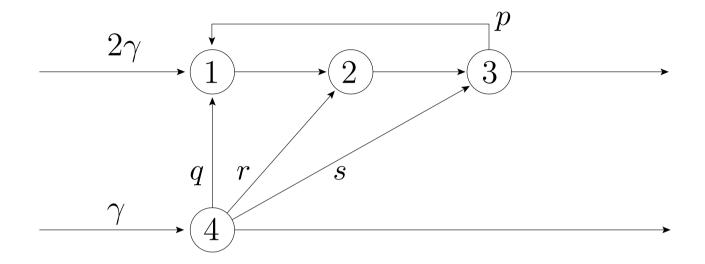


• Set up and solve traffic equations to find λ_i :

$$\vec{\lambda} = (2\gamma, 0, \gamma) + \vec{\lambda} \begin{pmatrix} 0 & 1 - p & p \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• i.e. $\lambda_1=2\gamma$, $\lambda_2=(1-p)\lambda_1$, $\lambda_3=\gamma+p\lambda_1$

OQN: Traffic Equations: example 2



• Set up and solve traffic equations to find λ_i :

$$\vec{\lambda} = (2\gamma, 0, 0, \gamma) + \vec{\lambda} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ p & 0 & 0 & 0 \\ q & r & s & 0 \end{pmatrix}$$

OQN: Network stability

- Stability of network (whether it achieves steady-state) is determined by utilisation, $\rho_i < 1$ at every node i
- After solving traffic equations for λ_i , need to check that:

$$\rho_i = \frac{\lambda_i}{\mu_i} < 1 \quad : \forall i$$

Recall facts about M/M/1

- If λ is arrival rate, μ service rate then $\rho = \lambda/\mu$ is utilisation
- If $\rho < 1$, then steady state solution exists
- Average buffer length:

$$\mathbb{E}(N) = \frac{\rho}{1 - \rho}$$

Distribution of jobs in queue is:

 $\mathbb{P}(k \text{ jobs is queue at steady-state}) = (1-\rho)\rho^k$

OQN: Jackson's Theorem

- Where node i has a service rate of μ_i , define $\rho_i = \lambda_i/\mu_i$
- If the arrival rates from the traffic equations are such that $\rho_i < 1$ for all i = 1, 2, ..., n, then the steady-state exists and:

$$\pi(r_1, r_2, \dots, r_n) = \prod_{i=1}^n (1 - \rho_i) \rho_i^{r_i}$$

This is a product form result!

OQN: Jackson's Theorem Results

- The marginal distribution of no. of jobs at node i is same as for isolated M/M/1 queue: $(1-\rho)\rho^k$
- Number of jobs at any node is independent of jobs at any other node – hence product form solution
- Powerful since queues can be reasoned about separately for queue length – summing to give overall network queue occupancy

OQN: Mean Jobs in System

- If only need mean results, we can use Little's law to derive mean performance measures
- Product form result implies that each node can be reasoned about as separate M/M/1 queue in isolation, hence:

Av. no. of jobs at node
$$i=L_i=\frac{\rho_i}{1-\rho_i}$$

Thus total av. number of jobs in system is:

$$L = \sum_{i=1}^{n} \frac{\rho_i}{1 - \rho_i}$$

OQN: Mean Total Waiting Time

Applying Little's law to whole network gives:

$$L = \gamma W$$

where γ is total external arrival rate, W is mean response time.

So mean response time from entering to leaving system:

$$W = \frac{1}{\gamma} \sum_{i=1}^{n} \frac{\rho_i}{1 - \rho_i}$$

OQN: Intermediate Waiting Times

- r_i represents the the average waiting time from arriving at node i to leaving the system
- w_i represents average response time at node i, then:

$$r_i = w_i + \sum_{j=1}^n q_{ij} r_j$$

which as before gives a vector equation:

$$\vec{r} = \vec{w} + Q\vec{r}$$
$$= (I - Q)^{-1}\vec{w}$$

Closed Queueing Networks

- A network of queueing nodes with inputs/outputs connected to each other
- Called a closed queueing network (CQN) because, traffic must stay within the system i.e. total number of customers in network buffers remains constant at all times
- Independent Delay Nodes (IDNs) used to represent an arbitrary delay in transit between queueing nodes
- Now routeing probabilities reflect closure of network, $\sum_{j=0}^{N} q_{ij} = 1$, for all i

CQN: State enumeration

- For K jobs in the network, the state of the CQN is represented by a tuple (n_1, n_2, \ldots, n_N) where $\sum_{i=1}^{N} n_i = K$ and n_i is no. of jobs at node i
- \bullet For N queues, K customers, we have:

$$\left(egin{array}{c} K+N-1 \ N-1 \end{array}
ight)$$
 states

...obtained by looking at all possible combinations of K jobs in N queues

CQN: Traffic Equations

As with OQN, linear traffic equations constructed for steady-state network:

$$\lambda_i = \sum_{j=1}^N \lambda_j q_{ji}$$

…in CQN case, no input traffic, thus:

$$\vec{\lambda}(I-Q) = \vec{0}$$

• Clearly |I-Q|=0 and if rnk(I-Q)=N-1, we will be able to state all λ_i in terms of λ_1 for instance

CQN: Gordon–Newell Theorem

- Steady-state distribution for CQN:
 - For ρ_i , the utilisation at node i:

$$\pi(r_1, r_2, \dots, r_N) = \frac{1}{G} \prod_{i=1}^N \beta_i(r_i) \rho_i^{r_i}$$

where:

$$eta_i(r_i) = \left\{ egin{array}{ll} 1 & : \mbox{if node } i \mbox{ is single server} \\ rac{1}{r_i!} & : \mbox{if node } i \mbox{ is IDN} \end{array}
ight.$$

$$G = \sum_{\{r_i\} : r_1 + r_2 + \dots + r_N = K} \prod_{i=1}^{N} \beta_i(r_i) \rho_i^{r_i}$$

CQN: Simplified Gordon–Newell

- For closed queueing networks with no independent delay nodes, we can simplify the full Gordon–Newell result considerably
- Steady-state result:

$$\pi(r_1, r_2, \dots, r_N) = \frac{1}{G} \prod_{i=1}^{N} \rho_i^{r_i}$$

where:

$$G = \sum_{\{r_i\} \ : \ r_1 + r_2 + \dots + r_N = K} \prod_{i=1}^N \rho_i^{r_i}$$

CQN: Normalisation Constant

- Hard issue behind Gordon-Newell is finding the normalisation constant G
- To find G you have to enumerate the state space – as with other concurrent systems, there is a state space explosion as number of queues/customers grows
- Recall that for N queues, K customers, we have:

$$\left(\begin{array}{c} K+N-1 \\ N-1 \end{array} \right)$$
 states

Recall Jackson's theorem

For a steady-state probability $\pi(r_1, \ldots, r_N)$ of there being r_1 jobs in node 1, r_2 nodes at node 2, etc.:

$$\pi(r_1, r_2, \dots, r_N) = \prod_{i=1}^{N} (1 - \rho_i) \rho_i^{r_i}$$

$$= \prod_{i=1}^{N} \pi_i(r_i)$$

where $\pi_i(r_i)$ is the steady-state probability there being n_i jobs at node i independently

PEPA and Product Form

- A product form result links the overall steady-state of a system to the product of the steady state for the components of that system
 - e.g. Jackson's theorem
- In PEPA, a simple product form can be got from:

$$P_1 \bowtie P_2 \bowtie \cdots \bowtie P_n$$

- $\pi(P_1^{r_1}, P_2^{r_2}, \dots, P_n^{r_n}) = \frac{1}{G} \prod_{i=1}^n \pi(P_1^{r_1}) \cdots \pi(P_n^{r_n})$
- where $\pi(P_i^{r_i})$ is steady state prob. that component P_i is in state r_i

PEPA and RCAT

- RCAT: Reversed Compound Agent Theorem
- RCAT can take the more general cooperation:

$$P \bowtie_{L} Q$$

• ...and find a product form, given structural conditions, in terms of the individual components P and Q

What does RCAT do?

- RCAT expresses the reversed component $\overline{P}\bowtie Q$ in terms of \overline{P} and \overline{Q} (almost)
- This is powerful since it avoids the need to expand the state space of $P\bowtie_L Q$
- This is useful since from the forward and reversed processes, $P \bowtie_{L} Q$ and $\overline{P} \bowtie_{L} Q$, we can find the steady state distribution $\pi(P_i, Q_i)$
- \bullet $\pi(P_i,Q_i)$ is the steady state distribution of both the forward and reversed processes (by definition)

Recall: Reversed processes

The *reversed process* of a stochastic process is a dual process:

- with the same state space
- in which the direction of time is reversed (like seeing a film backwards)
- if the reversed process is stochastically identical to the original process, that process is called *reversible*

Recall: Reversed processes

The reversed process of a stationary Markov process $\{X_t : t \geq 0\}$ with state space S, generator matrix Q and stationary probabilities $\vec{\pi}$ is a stationary Markov process with generator matrix Q' defined by:

$$q'_{ij} = \frac{\pi_j q_{ji}}{\pi_i} \qquad : i, j \in S$$

and with the same stationary probabilities $\vec{\pi}$.

Reversible processes

- If $\{X(t_1), \dots X(t_n)\}$ has the same distribution as $\{X(\tau-t_1), \dots X(\tau-t_n)\}$ for all $\tau, t_1, \dots t_n$ then the process is called *reversible*
- Reversible processes are stationary i.e. stationary means that the joint distribution is independent of shifts of time
- Reversible processes satisfy the detailed balance equations

$$\pi_i q_{ij} = \pi_j q_{ji}$$

where π is the steady state probability and q_{ij} are the transition from i to j

Kolmogorov's Generalised Criteria

A stationary Markov process with state space S and generator matrix Q has reversed process with generator matrix Q' if and only if:

- 1. $q'_i = q_i$ for every state $i \in S$
- 2. For every finite sequence of states

$$i_1, i_2, ..., i_n \in S$$
,

$$q_{i_1 i_2} q_{i_2 i_3} \dots q_{i_{n-1} i_n} q_{i_n i_1} = q'_{i_1 i_n} q'_{i_n i_{n-1}} \dots q'_{i_3 i_2} q'_{i_2 i_1}$$

where
$$q_i = -q_{ii} = \sum_{j:j\neq i} q_{ij}$$

Finding π from the reversed process

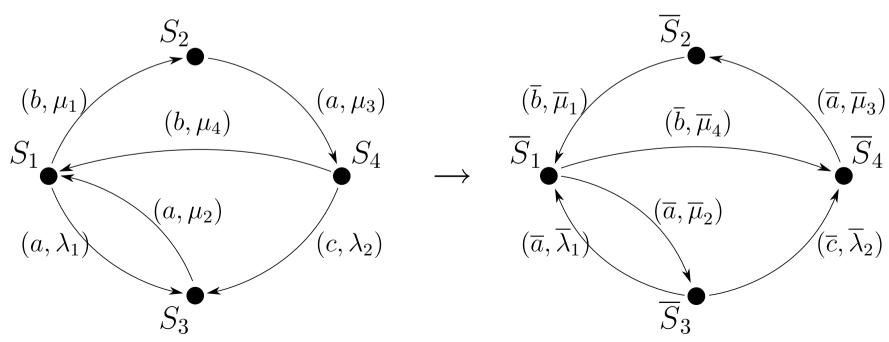
- Once reversed process rates Q' have been found, can be used to extract $\vec{\pi}$
- In an irreducible Markov process, choose a reference state 0 arbitrarily
- Find a sequence of connected states, in either the forward or reversed process, $0, \ldots, j$ (i.e. with either $q_{i,i+1} > 0$ or $q'_{i,i+1} > 0$ for $0 \le i \le j-1$) for any state j and calculate:

$$\pi_j = \pi_0 \prod_{i=0}^{j-1} \frac{q_{i,i+1}}{q'_{i+1,i}} = \pi_0 \prod_{i=0}^{j-1} \frac{q'_{i,i+1}}{q_{i+1,i}}$$

Reversing a sequential component

Reversing a sequential component, S, is straightforward:

$$\overline{S} \stackrel{\text{def}}{=} \sum_{i: R_i \xrightarrow{(a_i, \lambda_i)} S} (\overline{a}_i, \overline{\lambda}_i) . \overline{R}_i$$



Activity substitution

• We need to be able to substitute a PEPA activity $\alpha = (a, r)$ for another $\alpha' = (a', r')$:

$$(\beta.P)\{\alpha \leftarrow \alpha'\} \ = \ \begin{cases} \alpha'.(P\{\alpha \leftarrow \alpha'\}) \ : \text{if } \alpha = \beta \\ \beta.(P\{\alpha \leftarrow \alpha'\}) \ : \text{otherwise} \end{cases}$$

$$(P+Q)\{\alpha \leftarrow \alpha'\} \ = \ P\{\alpha \leftarrow \alpha'\} + Q\{\alpha \leftarrow \alpha'\}$$

$$(P \bowtie Q)\{\alpha \leftarrow \alpha'\} \ = \ P\{\alpha \leftarrow \alpha'\} \bowtie Q\{\alpha \leftarrow \alpha'\}$$
 where
$$L\{(a,\lambda) \leftarrow (a',\lambda')\} = (L \setminus \{a\}) \cup \{a'\}$$
 if $a \in L$ and L otherwise

A set of substitutions can be applied with:

$$P\{\alpha \leftarrow \alpha', \beta \leftarrow \beta'\}$$

RCAT Conditions (Informal)

For a cooperation $P \bowtie_L Q$, the reversed process $\overline{P \bowtie_L Q}$ can be created if:

- 1. Every passive action in P or Q that is involved in the cooperation \bowtie_L must always be enabled in P or Q respectively.
- 2. Every reversed action \overline{a} in \overline{P} or \overline{Q} , where a is active in the original cooperation \bowtie_{L} , must:
 - (a) always be enabled in \overline{P} or \overline{Q} respectively
 - (b) have the same rate throughout P or Q respectively

RCAT Notation

In the cooperation, $P \bowtie_{L} Q$:

- $\mathcal{A}_P(L)$ is the set of actions in L that are also active in the component P
- $\mathcal{A}_Q(L)$ is the set of actions in L that are also active in the component Q
- $\mathcal{P}_P(L)$ is the set of actions in L that are also passive in the component P
- $\mathcal{P}_Q(L)$ is the set of actions in L that are also passive in the component Q
- \overline{L} is the reversed set of actions in L, that is $\overline{L}=\{\overline{a}\mid a\in L\}$

RCAT Conditions (Formal)

For a cooperation $P \bowtie_L Q$, the reversed process $\overline{P \bowtie_L Q}$ can be created if:

- 1. Every passive action type in $\mathcal{P}_P(L)$ or $\mathcal{P}_Q(L)$ is always enabled in P or Q respectively (i.e. enabled in all states of the transition graph)
- 2. Every reversed action of an active action type in $\mathcal{A}_P(L)$ or $\mathcal{A}_Q(L)$ is always enabled in \overline{P} or \overline{Q} respectively
- 3. Every occurrence of a reversed action of an active action type in $\mathcal{A}_P(L)$ or $\mathcal{A}_Q(L)$ has the same rate in \overline{P} or \overline{Q} respectively

RCAT (I)

For $P \bowtie_{L} Q$, the reversed process is:

$$\overline{P \bowtie_{L} Q} = R^* \bowtie_{\overline{L}} S^*$$

where:

$$R^* = \overline{R}\{(\overline{a}, \overline{p}_a) \leftarrow (\overline{a}, \top) \mid a \in \mathcal{A}_P(L)\}$$

$$S^* = \overline{S}\{(\overline{a}, \overline{q}_a) \leftarrow (\overline{a}, \top) \mid a \in \mathcal{A}_Q(L)\}$$

$$R = P\{(a, \top) \leftarrow (a, x_a) \mid a \in \mathcal{P}_P(L)\}$$

$$S = Q\{(a, \top) \leftarrow (a, x_a) \mid a \in \mathcal{P}_Q(L)\}$$

where the reversed rates, \overline{p}_a and \overline{q}_a , of reversed actions are solutions of Kolmogorov equations.

RCAT (II)

 x_a are solutions to the linear equations:

$$x_a = \begin{cases} \overline{q}_a & : \text{if } a \in \mathcal{P}_P(L) \\ \overline{p}_a & : \text{if } a \in \mathcal{P}_Q(L) \end{cases}$$

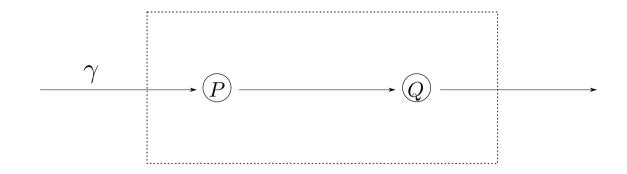
and \overline{p}_a , \overline{q}_a are the symbolic rates of action types \overline{a} in \overline{P} and \overline{Q} respectively.

RCAT in words

To obtain
$$\overline{P \bowtie_{L} Q} = R^{*} \bowtie_{\overline{L}} S^{*}$$
:

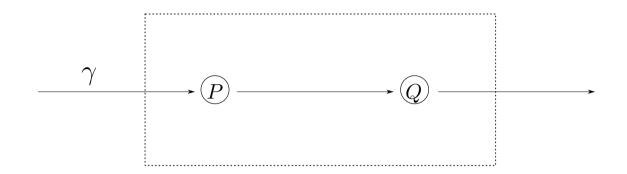
- 1. substitute all the cooperating passive rates in P, Q with symbolic rates, x_{action} , to get R, S
- 2. reverse R and S, to get \overline{R} and \overline{S}
- 3. solve non-linear equations to get reversed rates, $\{\overline{r}\}$ in terms of forward rates $\{r\}$
- 4. solve non-linear equations to get symbolic rates $\{x_{action}\}$ in terms of forward rates
- 5. substitute all the cooperating active rates in \overline{R} , \overline{S} with \top to get R^* , S^*

Example: Tandem queues (I)



- Jobs arrive to node P with activity (e, γ)
- lacktriangle Jobs are serviced at node P with rate μ_1
- Jobs move between node P and Q with action a
- ullet Jobs are serviced at node Q with rate μ_2
- Jobs depart Q with action d

Example: Tandem queues (II)



• PEPA description, $P_0 \bowtie_{\{a\}} Q_0$, where:

$$P_0 \stackrel{\text{def}}{=} (e, \gamma).P_1$$
 $P_n \stackrel{\text{def}}{=} (e, \gamma).P_{n+1} + (a, \mu_1).P_{n-1} : n > 0$
 $Q_0 \stackrel{\text{def}}{=} (a, \top).Q_1$
 $Q_n \stackrel{\text{def}}{=} (a, \top).Q_{n+1} + (d, \mu_2).Q_{n-1} : n > 0$

Example: Tandem queues (III)

Replace passive rates in cooperation with variables:

$$R = P\{(a, \top) \leftarrow (a, x_a) \mid a \in \mathcal{P}_P(L)\}$$

$$S = Q\{(a, \top) \leftarrow (a, x_a) \mid a \in \mathcal{P}_Q(L)\}$$

Transformed PEPA model:

$$R_0 \stackrel{\text{def}}{=} (e, \gamma).R_1$$
 $R_n \stackrel{\text{def}}{=} (e, \gamma).R_{n+1} + (a, \mu_1).R_{n-1} : n > 0$
 $S_0 \stackrel{\text{def}}{=} (a, x_a).S_1$
 $S_n \stackrel{\text{def}}{=} (a, x_a).S_{n+1} + (d, \mu_2).S_{n-1} : n > 0$

436 – JTB [02/2009] – p. 9

Example: Tandem queues (IV)

Reverse components R and S to get:

$$\overline{R}_{0} \stackrel{\text{def}}{=} (\overline{a}, \overline{\mu}_{1}).\overline{R}_{1}$$

$$\overline{R}_{n} \stackrel{\text{def}}{=} (\overline{a}, \overline{\mu}_{1}).\overline{R}_{n+1} + (\overline{e}, \overline{\gamma}).\overline{R}_{n-1} : n > 0$$

$$\overline{S}_{0} \stackrel{\text{def}}{=} (\overline{d}, \overline{\mu}_{2}).\overline{S}_{1}$$

$$\overline{S}_{n} \stackrel{\text{def}}{=} (\overline{d}, \overline{\mu}_{2}).\overline{S}_{n+1} + (\overline{a}, \overline{x}_{a}).\overline{S}_{n-1} : n > 0$$

- Now need to find in this order:
 - 1. reverse rates in terms of forward rates
 - 2. variable x_a in terms of forward rates

Example: Tandem queues (V.1)

- To find reverse rates easiest route is to use reversibility of M/M/1 queue. In an M/M/1 queue:
 - forward arrival rate = reverse service rate
 - forward service rate = reverse arrival rate
 - Thus: $\overline{\mu}_1=\gamma$, $\overline{\mu}_2=x_a$, $\overline{\gamma}=\mu_1$ and $\overline{x}_a=\mu_2$
- Sometimes Kolmogorov Criteria will be needed to generate extra equations (see over for alternative method involving exit rate and Kolmogorov)

Example: Tandem queues (V.2)

- Finding reverse rates using Kolmogorov
 - Compare forward/reverse leaving rate from states R_0 , S_0 :

$$exit_rate(R_0) = exit_rate(R_0) : \overline{\mu}_1 = \gamma$$

 $exit_rate(S_0) = exit_rate(\overline{S}_0) : \overline{\mu}_2 = x_a$

• Compare rate cycles in R, \overline{R} and S, \overline{S} :

$$R_0 \to R_1 \to R_0: \quad \gamma \mu_1 = \overline{\mu}_1 \overline{\gamma}$$

 $S_0 \to S_1 \to S_0: \quad x_a \mu_2 = \overline{\mu}_2 \overline{x}_a$

• Giving: $\overline{\gamma} = \mu_1$ and $\overline{x}_a = \mu_2$

Example: Tandem queues (VI)

Finding symbolic rates – recall:

$$x_a = \begin{cases} \overline{q}_a & : \text{if } a \in \mathcal{P}_P(L) \\ \overline{p}_a & : \text{if } a \in \mathcal{P}_Q(L) \end{cases}$$

- In this case, $a \in \mathcal{P}_Q(L)$, so $x_a = \overline{p}_a = \text{reversed}$ rate of $a\text{-action in }\overline{R}$
- Thus $x_a = \overline{\mu}_1 = \gamma$
- This agrees with rate of customers leaving forward network – why?

Example: Tandem queues (VII)

- Constructing $\overline{P \bowtie Q}$
 - ${f P}_0 igotimes_{\{a\}} Q_0 = R_0^* igotimes_{\{\overline{a}\}} S_0^*$ where:

$$R_0^* \stackrel{\text{def}}{=} (\overline{a}, \top).R_1^*$$

$$R_n^* \stackrel{\text{def}}{=} (\overline{a}, \top).R_{n+1}^* + (\overline{e}, \mu_1).R_{n-1}^* : n > 0$$

$$S_0^* \stackrel{\text{def}}{=} (\overline{d}, \gamma).S_1^*$$

$$S_n^* \stackrel{\text{def}}{=} (\overline{d}, \gamma).S_{n+1}^* + (\overline{a}, \mu_2).S_{n-1}^* : n > 0$$

Example: Tandem queues (VIII)

- Finding the steady state distribution:
 - Need to use the following formula:

$$\pi_j = \pi_0 \prod_{i=0}^{j-1} \frac{q_{i,i+1}}{q'_{i+1,i}}$$

...to find the steady state distribution

- First need to construct a sequence of events to a generic state (n, m) in network
 - where (n,m) represents n jobs in node P and m in node Q

Example: Tandem queues (IX)

- Generic state can be reached by:
 - 1. n+m arrivals or e-actions to node P (forward rate $=\gamma$, reverse rate $=\mu_1$)
 - 2. followed by m departures or a-actions from node P and arrivals to node Q (forward rate $= \mu_1$, reverse rate $= \mu_2$)

Thus:
$$\pi(n,m) = \pi_0 \prod_{i=0}^{n+m-1} \frac{\gamma}{\mu_1} \times \prod_{i=0}^{m-1} \frac{\mu_1}{\mu_2}$$

$$= \pi_0 \left(\frac{\gamma}{\mu_1}\right)^n \left(\frac{\gamma}{\mu_2}\right)^m$$

References

RCAT

- Turning back time in Markovian Process Algebra. Peter Harrison. TCS 290(3), pp. 1947–1986. January 2003.
- Generalised RCAT: less strict structural conditions
 - Reversed processes, product forms and a non-product form. Peter Harrison. LAA 386, pp. 359–381. July 2004.
- MARCAT: N-way cooperation extension:
 - Separable equilibrium state probabilities via time-reversal in Markovian process algebra.
 Peter Harrison and Ting-Ting Lee. TCS, pp. 161–182. November 2005.