Performance Analysis 11: Open queueing networks

Jeremy Bradley

9th March 2007

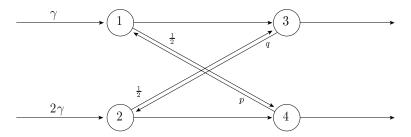


Figure 1: Open queueing network with 4 nodes.

- 1. (a) Construct a matrix equation for the aggregate arrival rates (the traffic equations) in Fig. 1
 - (b) Solve the traffic equations from part (a)
- 2. Given that the service rate of each node in Fig. 1 is $\mu_i = \frac{3\gamma}{2-p+q}, 1 \le i \le 4$:
 - (a) Use Jackson's theorem to write down an expression for the steady state probability for each state in the queueing network in Fig. 1
 - (b) Hence find the steady-state probability that there are no customers in the network
 - (c) Using Little's law, find an expression for the total response time in the system
 - (d) Find the average waiting time from entering node 4 to leaving the system completely

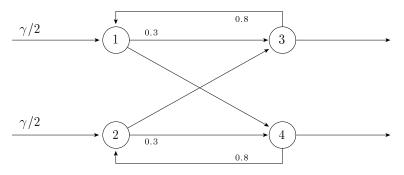


Figure 2: A symmetric open queueing network with 4 nodes.

- 3. In Fig. 2, the service rates for the queueing nodes are, $\mu_1 = \mu_2 = 1$ and $\mu_3 = \mu_4 = 0.5$
 - (a) Using conditions for stability in the network, find the largest lower bound on the total average response time, W, through the system?
 - (b) Find a condition on the arrival rate γ for the response time, W < 20.