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Recall Jackson’s theorem

For a steady-state probability π(r1, . . . , rN ) of
there being r1 jobs in node 1, r2 nodes at
node 2, etc.:

π(r1, r2, . . . , rN ) =
N
∏

i=1

(1− ρi)ρ
ri

i

=
N
∏

i=1

πi(ri)

where πi(ri) is the steady-state probability
there being ni jobs at node i independently
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PEPA and Product Form

A product form result links the overall
steady-state of a system to the product of the
steady state for the components of that
system

e.g. Jackson’s theorem

In PEPA, a simple product form can be got
from:

P1 ��
∅

P2 ��
∅
· · · ��

∅
Pn

π(P r1

1 , P r2

2 , . . . , P rn

n ) = 1

G

∏n
i=1

π(P r1

1 ) · · · π(P rn

n )

where π(P ri

i ) is steady state prob. that
component Pi is in state ri
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PEPA and RCAT

RCAT: Reversed Compound Agent Theorem

RCAT can take the more general cooperation:

P ��
L

Q

...and find a product form, given structural
conditions, in terms of the individual
components P and Q
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What does RCAT do?

RCAT expresses the reversed component
P ��

L

Q in terms of P and Q (almost)

This is powerful since it avoids the need to
expand the state space of P ��

L

Q

This is useful since from the forward and
reversed processes, P ��

L

Q and P ��
L

Q, we
can find the steady state distribution π(Pi, Qi)

π(Pi, Qi) is the steady state distribution of
both the forward and reversed processes (by
definition)
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Recall: Reversed processes

The reversed process of a stationary Markov
process {Xt : t ≥ 0} with state space S,
generator matrix Q and stationary
probabilities ~π is a stationary Markov process
with generator matrix Q′ defined by:

q′ij =
πjqji

πi

: i, j ∈ S

and with the same stationary probabilities ~π.

336 – JTB [02/2007] – p. 6/26

Kolmogorov’s Generalised Criteria

A stationary Markov process with state space S
and generator matrix Q has reversed process
with generator matrix Q′ if and only if:

1. q′i = qi for every state i ∈ S

2. For every finite sequence of states
i1, i2, ..., in ∈ S,

qi1i2qi2i3 . . . qin−1inqini1 = q′i1inq
′
inin−1

. . . q′i3i2q
′
i2i1

where qi = −qii =
∑

j : j 6=i qij
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Finding π from the reversed process

Once reversed process rates Q′ have been
found, can be used to extract ~π

In an irreducible Markov process, choose a
reference state 0 arbitrarily

Find a sequence of connected states, in
either the forward or reversed process,
0, . . . , j (i.e. with either qi,i+1 > 0 or q′i,i+1 > 0

for 0 ≤ i ≤ j − 1) for any state j and calculate:

πj = π0

j−1
∏

i=0

qi,i+1

q′i+1,i

= π0

j−1
∏

i=0

q′i,i+1

qi+1,i
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Reversing a sequential component

Reversing a sequential component, S, is
straightforward:

S
def
=

∑

i : Ri

(ai,λi)

−−−→S

(ai, λi).Ri

S1 S4

S2

S3

(a, λ)

(b, µ)

(c, λ)
(a, µ)

(a, µ)
(b, µ)

→
S1 S4

S2

S3

(a, λ)

(b, µ)

(c, λ)
(a, µ)

(a, µ)
(b, µ)
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Activity substitution

We need to be able to substitute a PEPA
activity α = (a, r) for another α′ = (a′, r′):

(β.P ){α← α′} =

{

α′.(P{α← α′}) : if α = β

β.(P{α← α′}) : otherwise

(P + Q){α← α′} = P{α← α′}+ Q{α← α′}

(P ��
L

Q){α← α′} = P{α← α′} ��
L{α←α

′}
Q{α← α′}

where L{(a, λ) ← (a′, λ′)} = (L \ {a}) ∪ {a′}
if a ∈ L and L otherwise

A set of substitutions can be applied with:

P{α← α′, β ← β′}
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RCAT Conditions (Informal)

For a cooperation P ��
L

Q, the reversed process

P ��
L

Q can be created if:

1. Every passive action in P or Q that is involved
in the cooperation ��

L

must always be
enabled in P or Q respectively.

2. Every reversed action a in P or Q, where a is
active in the original cooperation ��

L

, must:

(a) always be enabled in P or Q respectively

(b) have the same rate throughout P or Q
respectively
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RCAT Notation

In the cooperation, P ��
L

Q:

AP (L) is the set of actions in L that are also
active in the component P

AQ(L) is the set of actions in L that are also
active in the component Q

PP (L) is the set of actions in L that are also
passive in the component P

PQ(L) is the set of actions in L that are also
passive in the component Q

L is the reversed set of actions in L, that is
L = {a | a ∈ L}
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RCAT Conditions (Formal)

For a cooperation P ��
L

Q, the reversed process

P ��
L

Q can be created if:

1. Every passive action type in PP (L) or PQ(L)
is always enabled in P or Q respectively (i.e.
enabled in all states of the transition graph)

2. Every reversed action of an active action type
in AP (L) or AQ(L) is always enabled in P or
Q respectively

3. Every occurrence of a reversed action of an
active action type in AP (L) or AQ(L) has the
same rate in P or Q respectively
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RCAT (I)

For P ��
L

Q, the reversed process is:

P ��
L

Q = R∗ ��
L

S∗

where:

R∗ = R{(a, pa)← (a,⊤) | a ∈ AP (L)}

S∗ = S{(a, qa)← (a,⊤) | a ∈ AQ(L)}

R = P{(a,⊤)← (a, xa) | a ∈ PP (L)}

S = Q{(a,⊤)← (a, xa) | a ∈ PQ(L)}

where the reversed rates, pa and qa, of reversed
actions are solutions of Kolmogorov equations.
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RCAT (II)

xa are solutions to the linear equations:

xa =

{

qa : if a ∈ PP (L)

pa : if a ∈ PQ(L)

and pa, qa are the symbolic rates of action types a

in P and Q respectively.
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RCAT in words

To obtain P ��
L

Q = R∗ ��
L

S∗:

1. substitute all the cooperating passive rates in
P , Q with symbolic rates, xaction , to get R, S

2. reverse R and S, to get R and S

3. solve non-linear equations to get reversed
rates, {r} in terms of forward rates {r}

4. solve non-linear equations to get symbolic
rates {xaction} in terms of forward rates

5. substitute all the cooperating active rates in
R, S with ⊤ to get R∗, S∗
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Example: Tandem queues (I)

γ
P Q

Jobs arrive to node P with activity (e, γ)

Jobs are serviced at node P with rate µ1

Jobs move between node P and Q with
action a

Jobs are serviced at node Q with rate µ2

Jobs depart Q with action d
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Example: Tandem queues (II)

γ
P Q

PEPA description, P0 ��
{a}

Q0, where:

P0

def
= (e, γ).P1

Pn
def
= (e, γ).Pn+1 + (a, µ1).Pn−1 : n > 0

Q0

def
= (a,⊤).Q1

Qn
def
= (a,⊤).Qn+1 + (d, µ2).Qn−1 : n > 0
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Example: Tandem queues (III)

Replace passive rates in cooperation with
variables:

R = P{(a,⊤)← (a, xa) | a ∈ PP (L)}

S = Q{(a,⊤)← (a, xa) | a ∈ PQ(L)}

Transformed PEPA model:

R0

def
= (e, γ).R1

Rn
def
= (e, γ).Rn+1 + (a, µ1).Rn−1 : n > 0

S0

def
= (a, xa).S1

Sn
def
= (a, xa).Sn+1 + (d, µ2).Sn−1 : n > 0
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Example: Tandem queues (IV)

Reverse components R and S to get:

R0

def
= (a, µ1).R1

Rn
def
= (a, µ1).Rn+1 + (e, γ).Rn−1 : n > 0

S0

def
= (d, µ2).S1

Sn
def
= (d, µ2).Sn+1 + (a, xa).Sn−1 : n > 0

Now need to find in this order:
1. reverse rates in terms of forward rates
2. variable xa in terms of forward rates
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Example: Tandem queues (V)

Finding reverse rates using Kolmogorov
Compare forward/reverse leaving rate from
states R0, S0:

exit_rate(R0) = exit_rate(R0) : µ1 = γ

exit_rate(S0) = exit_rate(S0) : µ2 = xa

Compare rate cycles in R, R and S, S:

R0 → R1 → R0 : γµ1 = µ1γ

S0 → S1 → S0 : xaµ2 = µ2xa

Giving: γ = µ1 and xa = µ2
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Example: Tandem queues (VI)

Finding symbolic rates – recall:

xa =

{

qa : if a ∈ PP (L)

pa : if a ∈ PQ(L)

In this case, a ∈ PQ(L), so xa = pa = reversed
rate of a-action in R

Thus xa = µ1 = γ

This agrees with rate of customers leaving
forward network – why?
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Example: Tandem queues (VII)

Constructing P ��
L

Q

P0 ��
{a}

Q0 = R∗0 ��
{a}

S∗0 where:

R∗0
def
= (a,⊤).R∗1

R∗n
def
= (a,⊤).R∗n+1 + (e, µ1).R

∗
n−1 : n > 0

S∗0
def
= (d, γ).S∗1

S∗n
def
= (d, γ).S∗n+1 + (a, µ2).S

∗
n−1 : n > 0
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Example: Tandem queues (VIII)

Finding the steady state distribution:
Need to use the following formula:

πj = π0

j−1
∏

i=0

qi,i+1

q′i+1,i

...to find the steady state distribution
First need to construct a sequence of
events to a generic state (n,m) in network

where (n,m) represents n jobs in node P
and m in node Q
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Example: Tandem queues (IX)

Generic state can be reached by:
1. n + m arrivals or e-actions to node P

(forward rate = γ, reverse rate = µ1)
2. followed by m departures or a-actions from

node P and arrivals to node Q (forward
rate = µ1, reverse rate = µ2)

Thus: π(n,m) = π0

n+m−1
∏

i=0

γ

µ1

×

m−1
∏

i=0

µ1

µ2

= π0

(

γ

µ1

)n (

γ

µ2

)m
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