

What does RCAT do?

- RCAT expresses the reversed component $\overline{P \bowtie Q}$ in terms of \bar{P} and \bar{Q} (almost)
- This is powerful since it avoids the need to expand the state space of $P \bowtie Q$
- This is useful since from the forward and reversed processes, $P \bowtie Q$ and $\overline{P \bowtie Q}$, we can find the steady state distribution $\pi\left(P_{i}, Q_{i}\right)$
- $\pi\left(P_{i}, Q_{i}\right)$ is the steady state distribution of both the forward and reversed processes (by definition)

Recall: Reversed processes

- The reversed process of a stationary Markov process $\left\{X_{t}: t \geq 0\right\}$ with state space S, generator matrix Q and stationary probabilities $\vec{\pi}$ is a stationary Markov process with generator matrix Q^{\prime} defined by:

$$
q_{i j}^{\prime}=\frac{\pi_{j} q_{j i}}{\pi_{i}} \quad: i, j \in S
$$

and with the same stationary probabilities $\vec{\pi}$.

Kolmogorov’s Generalised Criteria

A stationary Markov process with state space S and generator matrix Q has reversed process with generator matrix Q^{\prime} if and only if:

1. $q_{i}^{\prime}=q_{i}$ for every state $i \in S$
2. For every finite sequence of states
$i_{1}, i_{2}, \ldots, i_{n} \in S$,

$$
q_{i_{1} i_{2}} q_{i_{2} i_{3}} \ldots q_{i_{n-1} i_{n}} q_{i_{n} i_{1}}=q_{i_{1} i_{n}}^{\prime} q_{i_{n} i_{n-1}}^{\prime} \ldots q_{i_{3} i_{2}}^{\prime} q_{i_{2} i_{1}}^{\prime}
$$

where $q_{i}=-q_{i i}=\sum_{j: j \neq i} q_{i j}$

Finding π from the reversed process

- Once reversed process rates Q^{\prime} have been found, can be used to extract $\vec{\pi}$
- In an irreducible Markov process, choose a reference state 0 arbitrarily
- Find a sequence of connected states, in either the forward or reversed process,
$0, \ldots, j$ (i.e. with either $q_{i, i+1}>0$ or $q_{i, i+1}^{\prime}>0$ for $0 \leq i \leq j-1$) for any state j and calculate:

$$
\pi_{j}=\pi_{0} \prod_{i=0}^{j-1} \frac{q_{i, i+1}}{q_{i+1, i}^{\prime}}=\pi_{0} \prod_{i=0}^{j-1} \frac{q_{i, i+1}^{\prime}}{q_{i+1, i}}
$$

Reversing a sequential component

- Reversing a sequential component, S, is straightforward:

$$
\bar{S} \stackrel{\text { def }}{=} \sum_{i: R_{i} \xrightarrow{\left(a_{\left.i, \lambda_{i}\right)}\right.} S}\left(\bar{a}_{i}, \bar{\lambda}_{i}\right) \cdot \bar{R}_{i}
$$

RCAT Conditions (Informal)

For a cooperation $P \underset{L}{\otimes} Q$, the reversed process $\overline{P \bowtie Q}$ can be created if:

1. Every passive action in P or Q that is involved in the cooperation \bowtie must always be enabled in P or Q respectively.
2. Every reversed action \bar{a} in \bar{P} or \bar{Q}, where a is active in the original cooperation \boxtimes, must:
(a) always be enabled in \bar{P} or \bar{Q} respectively
(b) have the same rate throughout \bar{P} or \bar{Q} respectively

Activity substitution

- We need to be able to substitute a PEPA activity $\alpha=(a, r)$ for another $\alpha^{\prime}=\left(a^{\prime}, r^{\prime}\right)$:

$$
(\beta . P)\left\{\alpha \leftarrow \alpha^{\prime}\right\}= \begin{cases}\alpha^{\prime} .\left(P\left\{\alpha \leftarrow \alpha^{\prime}\right\}\right) & : \text { if } \alpha=\beta \\ \beta .\left(P\left\{\alpha \leftarrow \alpha^{\prime}\right\}\right) & : \text { otherwise }\end{cases}
$$

$$
(P+Q)\left\{\alpha \leftarrow \alpha^{\prime}\right\}=P\left\{\alpha \leftarrow \alpha^{\prime}\right\}+Q\left\{\alpha \leftarrow \alpha^{\prime}\right\}
$$

$$
\left(P \bowtie \bowtie_{L} Q\right)\left\{\alpha \leftarrow \alpha^{\prime}\right\}=P\left\{\alpha \leftarrow \alpha^{\prime}\right\} \underset{L\left\{\alpha-\alpha^{\prime}\right\}}{\bowtie} Q\left\{\alpha \leftarrow \alpha^{\prime}\right\}
$$

where $L\left\{(a, \lambda) \leftarrow\left(a^{\prime}, \lambda^{\prime}\right)\right\}=(L \backslash\{a\}) \cup\left\{a^{\prime}\right\}$
if $a \in L$ and L otherwise

- A set of substitutions can be applied with:

$$
P\left\{\alpha \leftarrow \alpha^{\prime}, \beta \leftarrow \beta^{\prime}\right\}
$$

RCAT Notation

In the cooperation, $P \underset{L}{\boxtimes} Q$:

- $\mathcal{A}_{P}(L)$ is the set of actions in L that are also active in the component P
- $\mathcal{A}_{Q}(L)$ is the set of actions in L that are also active in the component Q
- $\mathcal{P}_{P}(L)$ is the set of actions in L that are also passive in the component P
- $\mathcal{P}_{Q}(L)$ is the set of actions in L that are also passive in the component Q
\bar{L} is the reversed set of actions in L, that is $\bar{L}=\{\bar{a} \mid a \in L\}$

RCAT Conditions (Formal)

For a cooperation $P \bowtie Q$, the reversed process $\overline{P \boxtimes Q}$ can be created if:

1. Every passive action type in $\mathcal{P}_{P}(L)$ or $\mathcal{P}_{Q}(L)$ is always enabled in P or Q respectively (i.e. enabled in all states of the transition graph)
2. Every reversed action of an active action type in $\mathcal{A}_{P}(L)$ or $\mathcal{A}_{Q}(L)$ is always enabled in \bar{P} or \bar{Q} respectively
3. Every occurrence of a reversed action of an active action type in $\mathcal{A}_{P}(L)$ or $\mathcal{A}_{Q}(L)$ has the same rate in \bar{P} or \bar{Q} respectively

RCAT (II)

x_{a} are solutions to the linear equations:

$$
x_{a}= \begin{cases}\bar{q}_{a} & : \text { if } a \in \mathcal{P}_{P}(L) \\ \bar{p}_{a} & : \text { if } a \in \mathcal{P}_{Q}(L)\end{cases}
$$

and \bar{p}_{a}, \bar{q}_{a} are the symbolic rates of action types \bar{a} in \bar{P} and \bar{Q} respectively.

RCAT (I)
For $P \bowtie Q$, the reversed process is:

$$
\overline{P{\underset{L}{ }}_{\triangle} Q}=R^{*} \underset{L}{\boxtimes} S^{*}
$$

where:

$$
\begin{aligned}
R^{*} & =\bar{R}\left\{\left(\bar{a}, \bar{p}_{a}\right) \leftarrow(\bar{a}, \top) \mid a \in \mathcal{A}_{P}(L)\right\} \\
S^{*} & =\bar{S}\left\{\left(\bar{a}, \bar{q}_{a}\right) \leftarrow(\bar{a}, \top) \mid a \in \mathcal{A}_{Q}(L)\right\} \\
R & =P\left\{(a, \top) \leftarrow\left(a, x_{a}\right) \mid a \in \mathcal{P}_{P}(L)\right\} \\
S & =Q\left\{(a, \top) \leftarrow\left(a, x_{a}\right) \mid a \in \mathcal{P}_{Q}(L)\right\}
\end{aligned}
$$

where the reversed rates, \bar{p}_{a} and \bar{q}_{a}, of reversed actions are solutions of Kolmogorov equations.

RCAT in words

To obtain $\bar{P} \underset{L}{\boxtimes} Q=R^{*} \underset{L}{\boxtimes} S^{*}$:

1. substitute all the cooperating passive rates in P, Q with symbolic rates, $x_{\text {action }}$, to get R, S
2. reverse R and S, to get \bar{R} and \bar{S}
3. solve non-linear equations to get reversed rates, $\{\bar{r}\}$ in terms of forward rates $\{r\}$
4. solve non-linear equations to get symbolic rates $\left\{x_{\text {action }}\right\}$ in terms of forward rates
5. substitute all the cooperating active rates in \bar{R}, \bar{S} with T to get R^{*}, S^{*}

Example: Tandem queues (I)

- Jobs arrive to node P with activity (e, γ)
- Jobs are serviced at node P with rate μ_{1}
- Jobs move between node P and Q with action a
- Jobs are serviced at node Q with rate μ_{2}
- Jobs depart Q with action d

Example: Tandem queues (III)

- Replace passive rates in cooperation with variables:

$$
\begin{aligned}
R & =P\left\{(a, \top) \leftarrow\left(a, x_{a}\right) \mid a \in \mathcal{P}_{P}(L)\right\} \\
S & =Q\left\{(a, \top) \leftarrow\left(a, x_{a}\right) \mid a \in \mathcal{P}_{Q}(L)\right\}
\end{aligned}
$$

- Transformed PEPA model:

$$
\begin{array}{ll}
R_{0} & \stackrel{\text { def }}{=}(e, \gamma) \cdot R_{1} \\
R_{n} & \stackrel{\text { def }}{=}(e, \gamma) \cdot R_{n+1}+\left(a, \mu_{1}\right) \cdot R_{n-1} \\
S_{0} & : n>0 \\
S_{n} & \stackrel{\text { def }}{=}\left(a, x_{a}\right) \cdot S_{1} \\
= & \left(a, x_{a}\right) \cdot S_{n+1}+\left(d, \mu_{2}\right) \cdot S_{n-1}
\end{array} \quad: n>0
$$

Example: Tandem queues (II)

- PEPA description, $P_{0} \underset{\{a\}}{\bowtie} Q_{0}$, where:
$P_{0} \stackrel{\text { def }}{=}(e, \gamma) \cdot P_{1}$
$P_{n} \stackrel{\text { def }}{=}(e, \gamma) \cdot P_{n+1}+\left(a, \mu_{1}\right) \cdot P_{n-1} \quad: n>0$
$Q_{0} \stackrel{\text { def }}{=}(a, \top) \cdot Q_{1}$
$Q_{n} \stackrel{\text { def }}{=}(a, \top) \cdot Q_{n+1}+\left(d, \mu_{2}\right) \cdot Q_{n-1} \quad: n>0$

Example: Tandem queues (IV)

- Reverse components R and S to get:
$\bar{R}_{0} \stackrel{\text { def }}{=}\left(\bar{a}, \bar{\mu}_{1}\right) \cdot \bar{R}_{1}$
$\bar{R}_{n} \stackrel{\text { def }}{=}\left(\bar{a}, \bar{\mu}_{1}\right) \cdot \bar{R}_{n+1}+(\bar{e}, \bar{\gamma}) \cdot \bar{R}_{n-1} \quad: n>0$
$\bar{S}_{0} \stackrel{\text { def }}{=}\left(\bar{d}, \bar{\mu}_{2}\right) \cdot \bar{S}_{1}$
$\bar{S}_{n} \stackrel{\text { def }}{=}\left(\bar{d}, \bar{\mu}_{2}\right) \cdot \bar{S}_{n+1}+\left(\bar{a}, \bar{x}_{a}\right) \cdot \bar{S}_{n-1} \quad: n>0$
- Now need to find in this order:

1. reverse rates in terms of forward rates
2. variable x_{a} in terms of forward rates

Example: Tandem queues (V)

- Finding reverse rates using Kolmogorov
- Compare forward/reverse leaving rate from states R_{0}, S_{0} :

$$
\begin{aligned}
\text { exit_rate }\left(R_{0}\right)=\text { exit_rate }\left(\bar{R}_{0}\right): & \bar{\mu}_{1}=\gamma \\
\text { exit_rate }\left(S_{0}\right)=\text { exit_rate }\left(\bar{S}_{0}\right): & \bar{\mu}_{2}=x_{a}
\end{aligned}
$$

- Compare rate cycles in R, \bar{R} and S, \bar{S} :

$$
\begin{aligned}
R_{0} \rightarrow R_{1} \rightarrow R_{0}: & \gamma \mu_{1}=\bar{\mu}_{1} \bar{\gamma} \\
S_{0} \rightarrow S_{1} \rightarrow S_{0}: & x_{a} \mu_{2}=\bar{\mu}_{2} \bar{x}_{a}
\end{aligned}
$$

。 Giving: $\bar{\gamma}=\mu_{1}$ and $\bar{x}_{a}=\mu_{2}$

Example: Tandem queues (VII)

- Constructing $\overline{P \bowtie Q}$

。 $\overline{P_{0} \underset{\{a\}}{\boxtimes} Q_{0}}=R_{0}^{*} \underset{\{a \overline{ }\}}{\boxtimes} S_{0}^{*}$ where:
$R_{0}^{*} \stackrel{\text { def }}{=}(\bar{a}, \top) \cdot R_{1}^{*}$
$R_{n}^{*} \stackrel{\text { def }}{=}(\bar{a}, \top) \cdot R_{n+1}^{*}+\left(\bar{e}, \mu_{1}\right) \cdot R_{n-1}^{*} \quad: n>0$
$S_{0}^{*} \stackrel{\text { def }}{=}(\bar{d}, \gamma) \cdot S_{1}^{*}$
$S_{n}^{*} \stackrel{\text { def }}{=}(\bar{d}, \gamma) \cdot S_{n+1}^{*}+\left(\bar{a}, \mu_{2}\right) \cdot S_{n-1}^{*} \quad: n>0$

Example: Tandem queues (VI)

- Finding symbolic rates - recall:

$$
x_{a}= \begin{cases}\bar{q}_{a} & : \text { if } a \in \mathcal{P}_{P}(L) \\ \bar{p}_{a} & : \text { if } a \in \mathcal{P}_{Q}(L)\end{cases}
$$

- In this case, $a \in \mathcal{P}_{Q}(L)$, so $x_{a}=\bar{p}_{a}=$ reversed rate of a-action in \bar{R}
- Thus $x_{a}=\bar{\mu}_{1}=\gamma$
- This agrees with rate of customers leaving forward network - why?

Example: Tandem queues (VIII)

- Finding the steady state distribution:
- Need to use the following formula:

$$
\pi_{j}=\pi_{0} \prod_{i=0}^{j-1} \frac{q_{i, i+1}}{q_{i+1, i}^{\prime}}
$$

...to find the steady state distribution

- First need to construct a sequence of events to a generic state (n, m) in network - where (n, m) represents n jobs in node P and m in node Q

Example: Tandem queues (IX)

- Generic state can be reached by:

1. $n+m$ arrivals or e-actions to node P
(forward rate $=\gamma$, reverse rate $=\mu_{1}$)
2. followed by m departures or a-actions from node P and arrivals to node Q (forward rate $=\mu_{1}$, reverse rate $=\mu_{2}$)

$$
\text { Thus: } \begin{aligned}
\pi(n, m) & =\pi_{0} \prod_{i=0}^{n+m-1} \frac{\gamma}{\mu_{1}} \times \prod_{i=0}^{m-1} \frac{\mu_{1}}{\mu_{2}} \\
& =\pi_{0}\left(\frac{\gamma}{\mu_{1}}\right)^{n}\left(\frac{\gamma}{\mu_{2}}\right)^{m}
\end{aligned}
$$

References

- RCAT
- Turning back time in Markovian Process Algebra. Peter Harrison. TCS 290(3), pp. 1947-1986. January 2003.
- Generalised RCAT: less strict structural conditions
- Reversed processes, product forms and a non-product form. Peter Harrison. LAA 386, pp. 359-381. July 2004.
- MARCAT: N-way cooperation extension:
- Separable equilibrium state probabilities via time-reversal in Markovian process algebra. Peter Harrison and Ting-Ting Lee. TCS, pp. 161-182. November 2005.

